xref: /netbsd-src/sys/dev/usb/umidi.c (revision 6cd39ddb8550f6fa1bff3fed32053d7f19fd0453)
1 /*	$NetBSD: umidi.c,v 1.68 2015/01/02 20:42:44 mrg Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
9  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
10  * (mrg@eterna.com.au).
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.68 2015/01/02 20:42:44 mrg Exp $");
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60 
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER	0x01
63 #define UMIDI_IN_JACK	0x02
64 #define UMIDI_OUT_JACK	0x03
65 
66 /* Jack Type */
67 #define UMIDI_EMBEDDED	0x01
68 #define UMIDI_EXTERNAL	0x02
69 
70 /* generic, for iteration */
71 typedef struct {
72 	uByte		bLength;
73 	uByte		bDescriptorType;
74 	uByte		bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76 
77 typedef struct {
78 	uByte		bLength;
79 	uByte		bDescriptorType;
80 	uByte		bDescriptorSubtype;
81 	uWord		bcdMSC;
82 	uWord		wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85 
86 typedef struct {
87 	uByte		bLength;
88 	uByte		bDescriptorType;
89 	uByte		bDescriptorSubtype;
90 	uByte		bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93 
94 typedef struct {
95 	uByte		bLength;
96 	uByte		bDescriptorType;
97 	uByte		bDescriptorSubtype;
98 	uByte		bJackType;
99 	uByte		bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
102 
103 
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110 
111 
112 #define UMIDI_PACKET_SIZE 4
113 
114 /*
115  * hierarchie
116  *
117  * <-- parent	       child -->
118  *
119  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
120  *	   ^	 |    ^	    |
121  *	   +-----+    +-----+
122  */
123 
124 /* midi device */
125 struct umidi_mididev {
126 	struct umidi_softc	*sc;
127 	device_t		mdev;
128 	/* */
129 	struct umidi_jack	*in_jack;
130 	struct umidi_jack	*out_jack;
131 	char			*label;
132 	size_t			label_len;
133 	/* */
134 	int			opened;
135 	int			closing;
136 	int			flags;
137 };
138 
139 /* Jack Information */
140 struct umidi_jack {
141 	struct umidi_endpoint	*endpoint;
142 	/* */
143 	int			cable_number;
144 	void			*arg;
145 	int			bound;
146 	int			opened;
147 	unsigned char		*midiman_ppkt;
148 	union {
149 		struct {
150 			void			(*intr)(void *);
151 		} out;
152 		struct {
153 			void			(*intr)(void *, int);
154 		} in;
155 	} u;
156 };
157 
158 #define UMIDI_MAX_EPJACKS	16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 	struct umidi_softc	*sc;
163 	/* */
164 	int			addr;
165 	usbd_pipe_handle	pipe;
166 	usbd_xfer_handle	xfer;
167 	umidi_packet_bufp	buffer;
168 	umidi_packet_bufp	next_slot;
169 	u_int32_t               buffer_size;
170 	int			num_scheduled;
171 	int			num_open;
172 	int			num_jacks;
173 	int			soliciting;
174 	void			*solicit_cookie;
175 	int			armed;
176 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
177 	u_int16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
178 	u_int16_t		next_schedule;
179 };
180 
181 /* software context */
182 struct umidi_softc {
183 	device_t		sc_dev;
184 	usbd_device_handle	sc_udev;
185 	usbd_interface_handle	sc_iface;
186 	const struct umidi_quirk	*sc_quirk;
187 
188 	int			sc_dying;
189 
190 	int			sc_out_num_jacks;
191 	struct umidi_jack	*sc_out_jacks;
192 	int			sc_in_num_jacks;
193 	struct umidi_jack	*sc_in_jacks;
194 	struct umidi_jack	*sc_jacks;
195 
196 	int			sc_num_mididevs;
197 	struct umidi_mididev	*sc_mididevs;
198 
199 	int			sc_out_num_endpoints;
200 	struct umidi_endpoint	*sc_out_ep;
201 	int			sc_in_num_endpoints;
202 	struct umidi_endpoint	*sc_in_ep;
203 	struct umidi_endpoint	*sc_endpoints;
204 	size_t			sc_endpoints_len;
205 	int			cblnums_global;
206 
207 	kmutex_t		sc_lock;
208 	kcondvar_t		sc_cv;
209 	kcondvar_t		sc_detach_cv;
210 
211 	int			sc_refcnt;
212 };
213 
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x)	if (umididebug) printf x
216 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int	umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224 
225 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
226 				 (sc->sc_out_num_endpoints + \
227 				  sc->sc_in_num_endpoints))
228 
229 
230 static int umidi_open(void *, int,
231 		      void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239 
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242 
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245 
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 					 struct umidi_jack *,
250 					 struct umidi_jack *,
251 					 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 				 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 				void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261 
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271 
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277 
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
282 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285 
286 
287 const struct midi_hw_if umidi_hw_if = {
288 	.open = umidi_open,
289 	.close = umidi_close,
290 	.output = umidi_rtmsg,
291 	.getinfo = umidi_getinfo,
292 	.get_locks = umidi_get_locks,
293 };
294 
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 	.channel = umidi_channelmsg,
297 	.common  = umidi_commonmsg,
298 	.sysex   = umidi_sysex,
299 };
300 
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 	.channel = umidi_channelmsg,
303 	.common  = umidi_commonmsg,
304 	.sysex   = umidi_sysex,
305 	.compress = 1,
306 };
307 
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316 
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 	struct usbif_attach_arg *uaa = aux;
321 
322 	DPRINTFN(1,("umidi_match\n"));
323 
324 	if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
325 		return UMATCH_IFACECLASS_IFACESUBCLASS;
326 
327 	if (uaa->class == UICLASS_AUDIO &&
328 	    uaa->subclass == UISUBCLASS_MIDISTREAM)
329 		return UMATCH_IFACECLASS_IFACESUBCLASS;
330 
331 	return UMATCH_NONE;
332 }
333 
334 void
335 umidi_attach(device_t parent, device_t self, void *aux)
336 {
337 	usbd_status     err;
338 	struct umidi_softc *sc = device_private(self);
339 	struct usbif_attach_arg *uaa = aux;
340 	char *devinfop;
341 
342 	DPRINTFN(1,("umidi_attach\n"));
343 
344 	sc->sc_dev = self;
345 
346 	aprint_naive("\n");
347 	aprint_normal("\n");
348 
349 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
350 	aprint_normal_dev(self, "%s\n", devinfop);
351 	usbd_devinfo_free(devinfop);
352 
353 	sc->sc_iface = uaa->iface;
354 	sc->sc_udev = uaa->device;
355 
356 	sc->sc_quirk =
357 	    umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
358 	aprint_normal_dev(self, "");
359 	umidi_print_quirk(sc->sc_quirk);
360 
361 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
362 	cv_init(&sc->sc_cv, "umidopcl");
363 	cv_init(&sc->sc_detach_cv, "umidetcv");
364 	sc->sc_refcnt = 0;
365 
366 	err = alloc_all_endpoints(sc);
367 	if (err != USBD_NORMAL_COMPLETION) {
368 		aprint_error_dev(self,
369 		    "alloc_all_endpoints failed. (err=%d)\n", err);
370 		goto out;
371 	}
372 	err = alloc_all_jacks(sc);
373 	if (err != USBD_NORMAL_COMPLETION) {
374 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
375 		    err);
376 		goto out_free_endpoints;
377 	}
378 	aprint_normal_dev(self, "out=%d, in=%d\n",
379 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
380 
381 	err = assign_all_jacks_automatically(sc);
382 	if (err != USBD_NORMAL_COMPLETION) {
383 		aprint_error_dev(self,
384 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
385 		goto out_free_jacks;
386 	}
387 	err = attach_all_mididevs(sc);
388 	if (err != USBD_NORMAL_COMPLETION) {
389 		aprint_error_dev(self,
390 		    "attach_all_mididevs failed. (err=%d)\n", err);
391 		goto out_free_jacks;
392 	}
393 
394 #ifdef UMIDI_DEBUG
395 	dump_sc(sc);
396 #endif
397 
398 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
399 			   sc->sc_udev, sc->sc_dev);
400 
401 	return;
402 
403 out_free_jacks:
404 	unbind_all_jacks(sc);
405 	free_all_jacks(sc);
406 
407 out_free_endpoints:
408 	free_all_endpoints(sc);
409 
410 out:
411 	aprint_error_dev(self, "disabled.\n");
412 	sc->sc_dying = 1;
413 	KERNEL_UNLOCK_ONE(curlwp);
414 	return;
415 }
416 
417 void
418 umidi_childdet(device_t self, device_t child)
419 {
420 	int i;
421 	struct umidi_softc *sc = device_private(self);
422 
423 	KASSERT(sc->sc_mididevs != NULL);
424 
425 	for (i = 0; i < sc->sc_num_mididevs; i++) {
426 		if (sc->sc_mididevs[i].mdev == child)
427 			break;
428 	}
429 	KASSERT(i < sc->sc_num_mididevs);
430 	sc->sc_mididevs[i].mdev = NULL;
431 }
432 
433 int
434 umidi_activate(device_t self, enum devact act)
435 {
436 	struct umidi_softc *sc = device_private(self);
437 
438 	switch (act) {
439 	case DVACT_DEACTIVATE:
440 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
441 		sc->sc_dying = 1;
442 		deactivate_all_mididevs(sc);
443 		return 0;
444 	default:
445 		DPRINTFN(1,("umidi_activate (%d)\n", act));
446 		return EOPNOTSUPP;
447 	}
448 }
449 
450 int
451 umidi_detach(device_t self, int flags)
452 {
453 	struct umidi_softc *sc = device_private(self);
454 
455 	DPRINTFN(1,("umidi_detach\n"));
456 
457 	mutex_enter(&sc->sc_lock);
458 	sc->sc_dying = 1;
459 	if (--sc->sc_refcnt >= 0)
460 		usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
461 	mutex_exit(&sc->sc_lock);
462 
463 	detach_all_mididevs(sc, flags);
464 	free_all_mididevs(sc);
465 	free_all_jacks(sc);
466 	free_all_endpoints(sc);
467 
468 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
469 			   sc->sc_dev);
470 
471 	mutex_destroy(&sc->sc_lock);
472 	cv_destroy(&sc->sc_detach_cv);
473 	cv_destroy(&sc->sc_cv);
474 
475 	return 0;
476 }
477 
478 
479 /*
480  * midi_if stuffs
481  */
482 int
483 umidi_open(void *addr,
484 	   int flags,
485 	   void (*iintr)(void *, int),
486 	   void (*ointr)(void *),
487 	   void *arg)
488 {
489 	struct umidi_mididev *mididev = addr;
490 	struct umidi_softc *sc = mididev->sc;
491 	usbd_status err;
492 
493 	KASSERT(mutex_owned(&sc->sc_lock));
494 	DPRINTF(("umidi_open: sc=%p\n", sc));
495 
496 	if (mididev->opened)
497 		return EBUSY;
498 	if (sc->sc_dying)
499 		return EIO;
500 
501 	mididev->opened = 1;
502 	mididev->flags = flags;
503 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
504 		err = open_out_jack(mididev->out_jack, arg, ointr);
505 		if (err != USBD_NORMAL_COMPLETION)
506 			goto bad;
507 	}
508 	if ((mididev->flags & FREAD) && mididev->in_jack) {
509 		err = open_in_jack(mididev->in_jack, arg, iintr);
510 		KASSERT(mididev->opened);
511 		if (err != USBD_NORMAL_COMPLETION &&
512 		    err != USBD_IN_PROGRESS) {
513 			if (mididev->out_jack)
514 				close_out_jack(mididev->out_jack);
515 			goto bad;
516 		}
517 	}
518 
519 	return 0;
520 bad:
521 	mididev->opened = 0;
522 	DPRINTF(("umidi_open: usbd_status %d\n", err));
523 	KASSERT(mutex_owned(&sc->sc_lock));
524 	return USBD_IN_USE == err ? EBUSY : EIO;
525 }
526 
527 void
528 umidi_close(void *addr)
529 {
530 	struct umidi_mididev *mididev = addr;
531 	struct umidi_softc *sc = mididev->sc;
532 
533 	KASSERT(mutex_owned(&sc->sc_lock));
534 
535 	if (mididev->closing)
536 		return;
537 
538 	mididev->closing = 1;
539 
540 	sc->sc_refcnt++;
541 
542 	if ((mididev->flags & FWRITE) && mididev->out_jack)
543 		close_out_jack(mididev->out_jack);
544 	if ((mididev->flags & FREAD) && mididev->in_jack)
545 		close_in_jack(mididev->in_jack);
546 
547 	if (--sc->sc_refcnt < 0)
548 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
549 
550 	mididev->opened = 0;
551 	mididev->closing = 0;
552 }
553 
554 int
555 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
556     int len)
557 {
558 	struct umidi_mididev *mididev = addr;
559 
560 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
561 
562 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
563 		return EIO;
564 
565 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
566 }
567 
568 int
569 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
570 {
571 	struct umidi_mididev *mididev = addr;
572 	int cin;
573 
574 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
575 
576 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
577 		return EIO;
578 
579 	switch ( len ) {
580 	case 1: cin = 5; break;
581 	case 2: cin = 2; break;
582 	case 3: cin = 3; break;
583 	default: return EIO; /* or gcc warns of cin uninitialized */
584 	}
585 
586 	return out_jack_output(mididev->out_jack, msg, len, cin);
587 }
588 
589 int
590 umidi_sysex(void *addr, u_char *msg, int len)
591 {
592 	struct umidi_mididev *mididev = addr;
593 	int cin;
594 
595 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
596 
597 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
598 		return EIO;
599 
600 	switch ( len ) {
601 	case 1: cin = 5; break;
602 	case 2: cin = 6; break;
603 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
604 	default: return EIO; /* or gcc warns of cin uninitialized */
605 	}
606 
607 	return out_jack_output(mididev->out_jack, msg, len, cin);
608 }
609 
610 int
611 umidi_rtmsg(void *addr, int d)
612 {
613 	struct umidi_mididev *mididev = addr;
614 	u_char msg = d;
615 
616 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
617 
618 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
619 		return EIO;
620 
621 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
622 }
623 
624 void
625 umidi_getinfo(void *addr, struct midi_info *mi)
626 {
627 	struct umidi_mididev *mididev = addr;
628 	struct umidi_softc *sc = mididev->sc;
629 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
630 
631 	KASSERT(mutex_owned(&sc->sc_lock));
632 
633 	mi->name = mididev->label;
634 	mi->props = MIDI_PROP_OUT_INTR;
635 	if (mididev->in_jack)
636 		mi->props |= MIDI_PROP_CAN_INPUT;
637 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
638 }
639 
640 static void
641 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
642 {
643 	struct umidi_mididev *mididev = addr;
644 	struct umidi_softc *sc = mididev->sc;
645 
646 	*intr = NULL;
647 	*thread = &sc->sc_lock;
648 }
649 
650 /*
651  * each endpoint stuffs
652  */
653 
654 /* alloc/free pipe */
655 static usbd_status
656 alloc_pipe(struct umidi_endpoint *ep)
657 {
658 	struct umidi_softc *sc = ep->sc;
659 	usbd_status err;
660 	usb_endpoint_descriptor_t *epd;
661 
662 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
663 	/*
664 	 * For output, an improvement would be to have a buffer bigger than
665 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
666 	 * allow out_solicit to fill the buffer to the full packet size in
667 	 * all cases. But to use usbd_alloc_buffer to get a slightly larger
668 	 * buffer would not be a good way to do that, because if the addition
669 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
670 	 * larger block may be wastefully allocated. Some flavor of double
671 	 * buffering could serve the same purpose, but would increase the
672 	 * code complexity, so for now I will live with the current slight
673 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
674 	 * packet slots.
675 	 */
676 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
677 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
678 
679 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
680 	        device_xname(sc->sc_dev), ep, ep->buffer_size));
681 	ep->num_scheduled = 0;
682 	ep->this_schedule = 0;
683 	ep->next_schedule = 0;
684 	ep->soliciting = 0;
685 	ep->armed = 0;
686 	ep->xfer = usbd_alloc_xfer(sc->sc_udev);
687 	if (ep->xfer == NULL) {
688 	    err = USBD_NOMEM;
689 	    goto quit;
690 	}
691 	ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
692 	if (ep->buffer == NULL) {
693 	    usbd_free_xfer(ep->xfer);
694 	    err = USBD_NOMEM;
695 	    goto quit;
696 	}
697 	ep->next_slot = ep->buffer;
698 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
699 	if (err)
700 	    usbd_free_xfer(ep->xfer);
701 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
702 quit:
703 	return err;
704 }
705 
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 	usbd_abort_pipe(ep->pipe);
711 	usbd_close_pipe(ep->pipe);
712 	usbd_free_xfer(ep->xfer);
713 	softint_disestablish(ep->solicit_cookie);
714 }
715 
716 
717 /* alloc/free the array of endpoint structures */
718 
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722 
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 	usbd_status err;
727 	struct umidi_endpoint *ep;
728 	int i;
729 
730 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 		err = alloc_all_endpoints_fixed_ep(sc);
732 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 		err = alloc_all_endpoints_yamaha(sc);
734 	} else {
735 		err = alloc_all_endpoints_genuine(sc);
736 	}
737 	if (err != USBD_NORMAL_COMPLETION)
738 		return err;
739 
740 	ep = sc->sc_endpoints;
741 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 		err = alloc_pipe(ep++);
743 		if (err != USBD_NORMAL_COMPLETION) {
744 			for (; ep != sc->sc_endpoints; ep--)
745 				free_pipe(ep-1);
746 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 			break;
749 		}
750 	}
751 	return err;
752 }
753 
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 	int i;
758 
759 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
760 		free_pipe(&sc->sc_endpoints[i]);
761 	if (sc->sc_endpoints != NULL)
762 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
763 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
764 }
765 
766 static usbd_status
767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
768 {
769 	usbd_status err;
770 	const struct umq_fixed_ep_desc *fp;
771 	struct umidi_endpoint *ep;
772 	usb_endpoint_descriptor_t *epd;
773 	int i;
774 
775 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
776 					    UMQ_TYPE_FIXED_EP);
777 	sc->sc_out_num_jacks = 0;
778 	sc->sc_in_num_jacks = 0;
779 	sc->sc_out_num_endpoints = fp->num_out_ep;
780 	sc->sc_in_num_endpoints = fp->num_in_ep;
781 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
782 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
783 	if (!sc->sc_endpoints)
784 		return USBD_NOMEM;
785 
786 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
787 	sc->sc_in_ep =
788 	    sc->sc_in_num_endpoints ?
789 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
790 
791 	ep = &sc->sc_out_ep[0];
792 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
793 		epd = usbd_interface2endpoint_descriptor(
794 			sc->sc_iface,
795 			fp->out_ep[i].ep);
796 		if (!epd) {
797 			aprint_error_dev(sc->sc_dev,
798 			    "cannot get endpoint descriptor(out:%d)\n",
799 			     fp->out_ep[i].ep);
800 			err = USBD_INVAL;
801 			goto error;
802 		}
803 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
804 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
805 			aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
806 			    fp->out_ep[i].ep);
807 			err = USBD_INVAL;
808 			goto error;
809 		}
810 		ep->sc = sc;
811 		ep->addr = epd->bEndpointAddress;
812 		ep->num_jacks = fp->out_ep[i].num_jacks;
813 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
814 		ep->num_open = 0;
815 		ep++;
816 	}
817 	ep = &sc->sc_in_ep[0];
818 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
819 		epd = usbd_interface2endpoint_descriptor(
820 			sc->sc_iface,
821 			fp->in_ep[i].ep);
822 		if (!epd) {
823 			aprint_error_dev(sc->sc_dev,
824 			    "cannot get endpoint descriptor(in:%d)\n",
825 			     fp->in_ep[i].ep);
826 			err = USBD_INVAL;
827 			goto error;
828 		}
829 		/*
830 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
831 		 * endpoint.  The existing input logic in this driver seems
832 		 * to work successfully if we just stop treating an interrupt
833 		 * endpoint as illegal (or the in_progress status we get on
834 		 * the initial transfer).  It does not seem necessary to
835 		 * actually use the interrupt flavor of alloc_pipe or make
836 		 * other serious rearrangements of logic.  I like that.
837 		 */
838 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
839 		case UE_BULK:
840 		case UE_INTERRUPT:
841 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
842 				break;
843 			/*FALLTHROUGH*/
844 		default:
845 			aprint_error_dev(sc->sc_dev,
846 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
847 			err = USBD_INVAL;
848 			goto error;
849 		}
850 
851 		ep->sc = sc;
852 		ep->addr = epd->bEndpointAddress;
853 		ep->num_jacks = fp->in_ep[i].num_jacks;
854 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
855 		ep->num_open = 0;
856 		ep++;
857 	}
858 
859 	return USBD_NORMAL_COMPLETION;
860 error:
861 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
862 	sc->sc_endpoints = NULL;
863 	return err;
864 }
865 
866 static usbd_status
867 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
868 {
869 	/* This driver currently supports max 1in/1out bulk endpoints */
870 	usb_descriptor_t *desc;
871 	umidi_cs_descriptor_t *udesc;
872 	usb_endpoint_descriptor_t *epd;
873 	int out_addr, in_addr, i;
874 	int dir;
875 	size_t remain, descsize;
876 
877 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
878 	out_addr = in_addr = 0;
879 
880 	/* detect endpoints */
881 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
882 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
883 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
884 		KASSERT(epd != NULL);
885 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
886 			dir = UE_GET_DIR(epd->bEndpointAddress);
887 			if (dir==UE_DIR_OUT && !out_addr)
888 				out_addr = epd->bEndpointAddress;
889 			else if (dir==UE_DIR_IN && !in_addr)
890 				in_addr = epd->bEndpointAddress;
891 		}
892 	}
893 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
894 
895 	/* count jacks */
896 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
897 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
898 		return USBD_INVAL;
899 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
900 		(size_t)udesc->bLength;
901 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
902 
903 	while (remain >= sizeof(usb_descriptor_t)) {
904 		descsize = udesc->bLength;
905 		if (descsize>remain || descsize==0)
906 			break;
907 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
908 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
909 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
910 				sc->sc_out_num_jacks++;
911 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
912 				sc->sc_in_num_jacks++;
913 		}
914 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
915 		remain -= descsize;
916 	}
917 
918 	/* validate some parameters */
919 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
920 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
921 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
922 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
923 	if (sc->sc_out_num_jacks && out_addr) {
924 		sc->sc_out_num_endpoints = 1;
925 	} else {
926 		sc->sc_out_num_endpoints = 0;
927 		sc->sc_out_num_jacks = 0;
928 	}
929 	if (sc->sc_in_num_jacks && in_addr) {
930 		sc->sc_in_num_endpoints = 1;
931 	} else {
932 		sc->sc_in_num_endpoints = 0;
933 		sc->sc_in_num_jacks = 0;
934 	}
935 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
936 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
937 	if (!sc->sc_endpoints)
938 		return USBD_NOMEM;
939 	if (sc->sc_out_num_endpoints) {
940 		sc->sc_out_ep = sc->sc_endpoints;
941 		sc->sc_out_ep->sc = sc;
942 		sc->sc_out_ep->addr = out_addr;
943 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
944 		sc->sc_out_ep->num_open = 0;
945 	} else
946 		sc->sc_out_ep = NULL;
947 
948 	if (sc->sc_in_num_endpoints) {
949 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
950 		sc->sc_in_ep->sc = sc;
951 		sc->sc_in_ep->addr = in_addr;
952 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
953 		sc->sc_in_ep->num_open = 0;
954 	} else
955 		sc->sc_in_ep = NULL;
956 
957 	return USBD_NORMAL_COMPLETION;
958 }
959 
960 static usbd_status
961 alloc_all_endpoints_genuine(struct umidi_softc *sc)
962 {
963 	usb_interface_descriptor_t *interface_desc;
964 	usb_config_descriptor_t *config_desc;
965 	usb_descriptor_t *desc;
966 	int num_ep;
967 	size_t remain, descsize;
968 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
969 	int epaddr;
970 
971 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
972 	num_ep = interface_desc->bNumEndpoints;
973 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
974 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
975 	if (!p)
976 		return USBD_NOMEM;
977 
978 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
979 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
980 	epaddr = -1;
981 
982 	/* get the list of endpoints for midi stream */
983 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
984 	desc = (usb_descriptor_t *) config_desc;
985 	remain = (size_t)UGETW(config_desc->wTotalLength);
986 	while (remain>=sizeof(usb_descriptor_t)) {
987 		descsize = desc->bLength;
988 		if (descsize>remain || descsize==0)
989 			break;
990 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
991 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
992 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
993 			epaddr = TO_EPD(desc)->bEndpointAddress;
994 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
995 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
996 			   epaddr!=-1) {
997 			if (num_ep>0) {
998 				num_ep--;
999 				p->sc = sc;
1000 				p->addr = epaddr;
1001 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1002 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1003 					sc->sc_out_num_endpoints++;
1004 					sc->sc_out_num_jacks += p->num_jacks;
1005 				} else {
1006 					sc->sc_in_num_endpoints++;
1007 					sc->sc_in_num_jacks += p->num_jacks;
1008 				}
1009 				p++;
1010 			}
1011 		} else
1012 			epaddr = -1;
1013 		desc = NEXT_D(desc);
1014 		remain-=descsize;
1015 	}
1016 
1017 	/* sort endpoints */
1018 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1019 	p = sc->sc_endpoints;
1020 	endep = p + num_ep;
1021 	while (p<endep) {
1022 		lowest = p;
1023 		for (q=p+1; q<endep; q++) {
1024 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1025 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1026 			    ((UE_GET_DIR(lowest->addr)==
1027 			      UE_GET_DIR(q->addr)) &&
1028 			     (UE_GET_ADDR(lowest->addr)>
1029 			      UE_GET_ADDR(q->addr))))
1030 				lowest = q;
1031 		}
1032 		if (lowest != p) {
1033 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1034 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1035 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1036 		}
1037 		p->num_open = 0;
1038 		p++;
1039 	}
1040 
1041 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1042 	sc->sc_in_ep =
1043 	    sc->sc_in_num_endpoints ?
1044 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1045 
1046 	return USBD_NORMAL_COMPLETION;
1047 }
1048 
1049 
1050 /*
1051  * jack stuffs
1052  */
1053 
1054 static usbd_status
1055 alloc_all_jacks(struct umidi_softc *sc)
1056 {
1057 	int i, j;
1058 	struct umidi_endpoint *ep;
1059 	struct umidi_jack *jack;
1060 	const unsigned char *cn_spec;
1061 
1062 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1063 		sc->cblnums_global = 0;
1064 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1065 		sc->cblnums_global = 1;
1066 	else {
1067 		/*
1068 		 * I don't think this default is correct, but it preserves
1069 		 * the prior behavior of the code. That's why I defined two
1070 		 * complementary quirks. Any device for which the default
1071 		 * behavior is wrong can be made to work by giving it an
1072 		 * explicit quirk, and if a pattern ever develops (as I suspect
1073 		 * it will) that a lot of otherwise standard USB MIDI devices
1074 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
1075 		 * changed to 0, and the only devices that will break are those
1076 		 * listing neither quirk, and they'll easily be fixed by giving
1077 		 * them the CN_SEQ_GLOBAL quirk.
1078 		 */
1079 		sc->cblnums_global = 1;
1080 	}
1081 
1082 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1083 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1084 					    		 UMQ_TYPE_CN_FIXED);
1085 	else
1086 		cn_spec = NULL;
1087 
1088 	/* allocate/initialize structures */
1089 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
1090 						      sc->sc_out_num_jacks), KM_SLEEP);
1091 	if (!sc->sc_jacks)
1092 		return USBD_NOMEM;
1093 	sc->sc_out_jacks =
1094 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1095 	sc->sc_in_jacks =
1096 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1097 
1098 	jack = &sc->sc_out_jacks[0];
1099 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
1100 		jack->opened = 0;
1101 		jack->bound = 0;
1102 		jack->arg = NULL;
1103 		jack->u.out.intr = NULL;
1104 		jack->midiman_ppkt = NULL;
1105 		if (sc->cblnums_global)
1106 			jack->cable_number = i;
1107 		jack++;
1108 	}
1109 	jack = &sc->sc_in_jacks[0];
1110 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
1111 		jack->opened = 0;
1112 		jack->bound = 0;
1113 		jack->arg = NULL;
1114 		jack->u.in.intr = NULL;
1115 		if (sc->cblnums_global)
1116 			jack->cable_number = i;
1117 		jack++;
1118 	}
1119 
1120 	/* assign each jacks to each endpoints */
1121 	jack = &sc->sc_out_jacks[0];
1122 	ep = &sc->sc_out_ep[0];
1123 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1124 		for (j = 0; j < ep->num_jacks; j++) {
1125 			jack->endpoint = ep;
1126 			if (cn_spec != NULL)
1127 				jack->cable_number = *cn_spec++;
1128 			else if (!sc->cblnums_global)
1129 				jack->cable_number = j;
1130 			ep->jacks[jack->cable_number] = jack;
1131 			jack++;
1132 		}
1133 		ep++;
1134 	}
1135 	jack = &sc->sc_in_jacks[0];
1136 	ep = &sc->sc_in_ep[0];
1137 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1138 		for (j = 0; j < ep->num_jacks; j++) {
1139 			jack->endpoint = ep;
1140 			if (cn_spec != NULL)
1141 				jack->cable_number = *cn_spec++;
1142 			else if (!sc->cblnums_global)
1143 				jack->cable_number = j;
1144 			ep->jacks[jack->cable_number] = jack;
1145 			jack++;
1146 		}
1147 		ep++;
1148 	}
1149 
1150 	return USBD_NORMAL_COMPLETION;
1151 }
1152 
1153 static void
1154 free_all_jacks(struct umidi_softc *sc)
1155 {
1156 	struct umidi_jack *jacks;
1157 	size_t len;
1158 
1159 	mutex_enter(&sc->sc_lock);
1160 	jacks = sc->sc_jacks;
1161 	len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
1162 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1163 	mutex_exit(&sc->sc_lock);
1164 
1165 	if (jacks)
1166 		kmem_free(jacks, len);
1167 }
1168 
1169 static usbd_status
1170 bind_jacks_to_mididev(struct umidi_softc *sc,
1171 		      struct umidi_jack *out_jack,
1172 		      struct umidi_jack *in_jack,
1173 		      struct umidi_mididev *mididev)
1174 {
1175 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1176 		return USBD_IN_USE;
1177 	if (mididev->out_jack || mididev->in_jack)
1178 		return USBD_IN_USE;
1179 
1180 	if (out_jack)
1181 		out_jack->bound = 1;
1182 	if (in_jack)
1183 		in_jack->bound = 1;
1184 	mididev->in_jack = in_jack;
1185 	mididev->out_jack = out_jack;
1186 
1187 	mididev->closing = 0;
1188 
1189 	return USBD_NORMAL_COMPLETION;
1190 }
1191 
1192 static void
1193 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1194 {
1195 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
1196 
1197 	mididev->closing = 1;
1198 
1199 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1200 		close_out_jack(mididev->out_jack);
1201 	if ((mididev->flags & FREAD) && mididev->in_jack)
1202 		close_in_jack(mididev->in_jack);
1203 
1204 	if (mididev->out_jack) {
1205 		mididev->out_jack->bound = 0;
1206 		mididev->out_jack = NULL;
1207 	}
1208 	if (mididev->in_jack) {
1209 		mididev->in_jack->bound = 0;
1210 		mididev->in_jack = NULL;
1211 	}
1212 }
1213 
1214 static void
1215 unbind_all_jacks(struct umidi_softc *sc)
1216 {
1217 	int i;
1218 
1219 	mutex_spin_enter(&sc->sc_lock);
1220 	if (sc->sc_mididevs)
1221 		for (i = 0; i < sc->sc_num_mididevs; i++)
1222 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1223 	mutex_spin_exit(&sc->sc_lock);
1224 }
1225 
1226 static usbd_status
1227 assign_all_jacks_automatically(struct umidi_softc *sc)
1228 {
1229 	usbd_status err;
1230 	int i;
1231 	struct umidi_jack *out, *in;
1232 	const signed char *asg_spec;
1233 
1234 	err =
1235 	    alloc_all_mididevs(sc,
1236 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1237 	if (err!=USBD_NORMAL_COMPLETION)
1238 		return err;
1239 
1240 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1241 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1242 					    		  UMQ_TYPE_MD_FIXED);
1243 	else
1244 		asg_spec = NULL;
1245 
1246 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1247 		if (asg_spec != NULL) {
1248 			if (*asg_spec == -1)
1249 				out = NULL;
1250 			else
1251 				out = &sc->sc_out_jacks[*asg_spec];
1252 			++ asg_spec;
1253 			if (*asg_spec == -1)
1254 				in = NULL;
1255 			else
1256 				in = &sc->sc_in_jacks[*asg_spec];
1257 			++ asg_spec;
1258 		} else {
1259 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1260 			                               : NULL;
1261 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1262 						     : NULL;
1263 		}
1264 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1265 		if (err != USBD_NORMAL_COMPLETION) {
1266 			free_all_mididevs(sc);
1267 			return err;
1268 		}
1269 	}
1270 
1271 	return USBD_NORMAL_COMPLETION;
1272 }
1273 
1274 static usbd_status
1275 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1276 {
1277 	struct umidi_endpoint *ep = jack->endpoint;
1278 	struct umidi_softc *sc = ep->sc;
1279 	umidi_packet_bufp end;
1280 	int err;
1281 
1282 	KASSERT(mutex_owned(&sc->sc_lock));
1283 
1284 	if (jack->opened)
1285 		return USBD_IN_USE;
1286 
1287 	jack->arg = arg;
1288 	jack->u.out.intr = intr;
1289 	jack->midiman_ppkt = NULL;
1290 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1291 	jack->opened = 1;
1292 	ep->num_open++;
1293 	/*
1294 	 * out_solicit maintains an invariant that there will always be
1295 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1296 	 * just incremented num_open, the buffer may be too full to satisfy
1297 	 * the invariant until a transfer completes, for which we must wait.
1298 	 */
1299 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1300 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1301 		     mstohz(10));
1302 		if (err) {
1303 			ep->num_open--;
1304 			jack->opened = 0;
1305 			return USBD_IOERROR;
1306 		}
1307 	}
1308 
1309 	return USBD_NORMAL_COMPLETION;
1310 }
1311 
1312 static usbd_status
1313 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1314 {
1315 	usbd_status err = USBD_NORMAL_COMPLETION;
1316 	struct umidi_endpoint *ep = jack->endpoint;
1317 
1318 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1319 
1320 	if (jack->opened)
1321 		return USBD_IN_USE;
1322 
1323 	jack->arg = arg;
1324 	jack->u.in.intr = intr;
1325 	jack->opened = 1;
1326 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1327 		/*
1328 		 * Can't hold the interrupt lock while calling into USB,
1329 		 * but we can safely drop it here.
1330 		 */
1331 		mutex_exit(&ep->sc->sc_lock);
1332 		err = start_input_transfer(ep);
1333 		if (err != USBD_NORMAL_COMPLETION &&
1334 		    err != USBD_IN_PROGRESS) {
1335 			ep->num_open--;
1336 		}
1337 		mutex_enter(&ep->sc->sc_lock);
1338 	}
1339 
1340 	return err;
1341 }
1342 
1343 static void
1344 close_out_jack(struct umidi_jack *jack)
1345 {
1346 	struct umidi_endpoint *ep;
1347 	struct umidi_softc *sc;
1348 	u_int16_t mask;
1349 	int err;
1350 
1351 	if (jack->opened) {
1352 		ep = jack->endpoint;
1353 		sc = ep->sc;
1354 
1355 		KASSERT(mutex_owned(&sc->sc_lock));
1356 		mask = 1 << (jack->cable_number);
1357 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1358 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1359 			     mstohz(10));
1360 			if (err)
1361 				break;
1362 		}
1363 		/*
1364 		 * We can re-enter this function from both close() and
1365 		 * detach().  Make sure only one of them does this part.
1366 		 */
1367 		if (jack->opened) {
1368 			jack->opened = 0;
1369 			jack->endpoint->num_open--;
1370 			ep->this_schedule &= ~mask;
1371 			ep->next_schedule &= ~mask;
1372 		}
1373 	}
1374 }
1375 
1376 static void
1377 close_in_jack(struct umidi_jack *jack)
1378 {
1379 	if (jack->opened) {
1380 		struct umidi_softc *sc = jack->endpoint->sc;
1381 
1382 		KASSERT(mutex_owned(&sc->sc_lock));
1383 
1384 		jack->opened = 0;
1385 		if (--jack->endpoint->num_open == 0) {
1386 			/*
1387 			 * We have to drop the (interrupt) lock so that
1388 			 * the USB thread lock can be safely taken by
1389 			 * the abort operation.  This is safe as this
1390 			 * either closing or dying will be set proerly.
1391 			 */
1392 			mutex_spin_exit(&sc->sc_lock);
1393 			usbd_abort_pipe(jack->endpoint->pipe);
1394 			mutex_spin_enter(&sc->sc_lock);
1395 		}
1396 	}
1397 }
1398 
1399 static usbd_status
1400 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1401 {
1402 	if (mididev->sc)
1403 		return USBD_IN_USE;
1404 
1405 	mididev->sc = sc;
1406 
1407 	describe_mididev(mididev);
1408 
1409 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1410 
1411 	return USBD_NORMAL_COMPLETION;
1412 }
1413 
1414 static usbd_status
1415 detach_mididev(struct umidi_mididev *mididev, int flags)
1416 {
1417 	struct umidi_softc *sc = mididev->sc;
1418 
1419 	if (!sc)
1420 		return USBD_NO_ADDR;
1421 
1422 	mutex_spin_enter(&sc->sc_lock);
1423 	if (mididev->opened) {
1424 		umidi_close(mididev);
1425 	}
1426 	unbind_jacks_from_mididev(mididev);
1427 	mutex_spin_exit(&sc->sc_lock);
1428 
1429 	if (mididev->mdev != NULL)
1430 		config_detach(mididev->mdev, flags);
1431 
1432 	if (NULL != mididev->label) {
1433 		kmem_free(mididev->label, mididev->label_len);
1434 		mididev->label = NULL;
1435 	}
1436 
1437 	mididev->sc = NULL;
1438 
1439 	return USBD_NORMAL_COMPLETION;
1440 }
1441 
1442 static void
1443 deactivate_mididev(struct umidi_mididev *mididev)
1444 {
1445 	if (mididev->out_jack)
1446 		mididev->out_jack->bound = 0;
1447 	if (mididev->in_jack)
1448 		mididev->in_jack->bound = 0;
1449 }
1450 
1451 static usbd_status
1452 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1453 {
1454 	sc->sc_num_mididevs = nmidi;
1455 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1456 	if (!sc->sc_mididevs)
1457 		return USBD_NOMEM;
1458 
1459 	return USBD_NORMAL_COMPLETION;
1460 }
1461 
1462 static void
1463 free_all_mididevs(struct umidi_softc *sc)
1464 {
1465 	struct umidi_mididev *mididevs;
1466 	size_t len;
1467 
1468 	mutex_enter(&sc->sc_lock);
1469 	mididevs = sc->sc_mididevs;
1470 	if (mididevs)
1471 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1472 	sc->sc_mididevs = NULL;
1473 	sc->sc_num_mididevs = 0;
1474 	mutex_exit(&sc->sc_lock);
1475 
1476 	if (mididevs)
1477 		kmem_free(mididevs, len);
1478 }
1479 
1480 static usbd_status
1481 attach_all_mididevs(struct umidi_softc *sc)
1482 {
1483 	usbd_status err;
1484 	int i;
1485 
1486 	if (sc->sc_mididevs)
1487 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1488 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1489 			if (err != USBD_NORMAL_COMPLETION)
1490 				return err;
1491 		}
1492 
1493 	return USBD_NORMAL_COMPLETION;
1494 }
1495 
1496 static usbd_status
1497 detach_all_mididevs(struct umidi_softc *sc, int flags)
1498 {
1499 	usbd_status err;
1500 	int i;
1501 
1502 	if (sc->sc_mididevs)
1503 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1504 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1505 			if (err != USBD_NORMAL_COMPLETION)
1506 				return err;
1507 		}
1508 
1509 	return USBD_NORMAL_COMPLETION;
1510 }
1511 
1512 static void
1513 deactivate_all_mididevs(struct umidi_softc *sc)
1514 {
1515 	int i;
1516 
1517 	if (sc->sc_mididevs) {
1518 		for (i = 0; i < sc->sc_num_mididevs; i++)
1519 			deactivate_mididev(&sc->sc_mididevs[i]);
1520 	}
1521 }
1522 
1523 /*
1524  * TODO: the 0-based cable numbers will often not match the labeling of the
1525  * equipment. Ideally:
1526  *  For class-compliant devices: get the iJack string from the jack descriptor.
1527  *  Otherwise:
1528  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1529  *    number for display)
1530  *  - support an array quirk explictly giving a char * for each jack.
1531  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1532  * the CNs are not globally unique, each is shown with its associated endpoint
1533  * address in hex also. That should not be necessary when using iJack values
1534  * or a quirk array.
1535  */
1536 void
1537 describe_mididev(struct umidi_mididev *md)
1538 {
1539 	char in_label[16];
1540 	char out_label[16];
1541 	const char *unit_label;
1542 	char *final_label;
1543 	struct umidi_softc *sc;
1544 	int show_ep_in;
1545 	int show_ep_out;
1546 	size_t len;
1547 
1548 	sc = md->sc;
1549 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1550 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1551 
1552 	if (NULL == md->in_jack)
1553 		in_label[0] = '\0';
1554 	else if (show_ep_in)
1555 		snprintf(in_label, sizeof in_label, "<%d(%x) ",
1556 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1557 	else
1558 		snprintf(in_label, sizeof in_label, "<%d ",
1559 		    md->in_jack->cable_number);
1560 
1561 	if (NULL == md->out_jack)
1562 		out_label[0] = '\0';
1563 	else if (show_ep_out)
1564 		snprintf(out_label, sizeof out_label, ">%d(%x) ",
1565 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1566 	else
1567 		snprintf(out_label, sizeof out_label, ">%d ",
1568 		    md->out_jack->cable_number);
1569 
1570 	unit_label = device_xname(sc->sc_dev);
1571 
1572 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1573 
1574 	final_label = kmem_alloc(len, KM_SLEEP);
1575 
1576 	snprintf(final_label, len, "%s%son %s",
1577 	    in_label, out_label, unit_label);
1578 
1579 	md->label = final_label;
1580 	md->label_len = len;
1581 }
1582 
1583 #ifdef UMIDI_DEBUG
1584 static void
1585 dump_sc(struct umidi_softc *sc)
1586 {
1587 	int i;
1588 
1589 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1590 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1591 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1592 		dump_ep(&sc->sc_out_ep[i]);
1593 	}
1594 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1595 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1596 		dump_ep(&sc->sc_in_ep[i]);
1597 	}
1598 }
1599 
1600 static void
1601 dump_ep(struct umidi_endpoint *ep)
1602 {
1603 	int i;
1604 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1605 		if (NULL==ep->jacks[i])
1606 			continue;
1607 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1608 		dump_jack(ep->jacks[i]);
1609 	}
1610 }
1611 static void
1612 dump_jack(struct umidi_jack *jack)
1613 {
1614 	DPRINTFN(10, ("\t\t\tep=%p\n",
1615 		      jack->endpoint));
1616 }
1617 
1618 #endif /* UMIDI_DEBUG */
1619 
1620 
1621 
1622 /*
1623  * MUX MIDI PACKET
1624  */
1625 
1626 static const int packet_length[16] = {
1627 	/*0*/	-1,
1628 	/*1*/	-1,
1629 	/*2*/	2,
1630 	/*3*/	3,
1631 	/*4*/	3,
1632 	/*5*/	1,
1633 	/*6*/	2,
1634 	/*7*/	3,
1635 	/*8*/	3,
1636 	/*9*/	3,
1637 	/*A*/	3,
1638 	/*B*/	3,
1639 	/*C*/	2,
1640 	/*D*/	2,
1641 	/*E*/	3,
1642 	/*F*/	1,
1643 };
1644 
1645 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1646 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1647 #define MIX_CN_CIN(cn, cin) \
1648 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1649 			  ((unsigned char)(cin)&0x0F)))
1650 
1651 static usbd_status
1652 start_input_transfer(struct umidi_endpoint *ep)
1653 {
1654 	usbd_setup_xfer(ep->xfer, ep->pipe,
1655 			(usbd_private_handle)ep,
1656 			ep->buffer, ep->buffer_size,
1657 			USBD_SHORT_XFER_OK | USBD_NO_COPY,
1658                         USBD_NO_TIMEOUT, in_intr);
1659 	return usbd_transfer(ep->xfer);
1660 }
1661 
1662 static usbd_status
1663 start_output_transfer(struct umidi_endpoint *ep)
1664 {
1665 	usbd_status rv;
1666 	u_int32_t length;
1667 	int i;
1668 
1669 	length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1670 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1671 	    ep->buffer, ep->next_slot, length));
1672 	usbd_setup_xfer(ep->xfer, ep->pipe,
1673 			(usbd_private_handle)ep,
1674 			ep->buffer, length,
1675 			USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1676 	rv = usbd_transfer(ep->xfer);
1677 
1678 	/*
1679 	 * Once the transfer is scheduled, no more adding to partial
1680 	 * packets within it.
1681 	 */
1682 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1683 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1684 			if (NULL != ep->jacks[i])
1685 				ep->jacks[i]->midiman_ppkt = NULL;
1686 	}
1687 
1688 	return rv;
1689 }
1690 
1691 #ifdef UMIDI_DEBUG
1692 #define DPR_PACKET(dir, sc, p)						\
1693 if ((unsigned char)(p)[1]!=0xFE)				\
1694 	DPRINTFN(500,							\
1695 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1696 		  device_xname(sc->sc_dev),				\
1697 		  (unsigned char)(p)[0],			\
1698 		  (unsigned char)(p)[1],			\
1699 		  (unsigned char)(p)[2],			\
1700 		  (unsigned char)(p)[3]));
1701 #else
1702 #define DPR_PACKET(dir, sc, p)
1703 #endif
1704 
1705 /*
1706  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1707  * with the cable number and length in the last byte instead of the first,
1708  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1709  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1710  * with a cable nybble and a length nybble (which, unlike the CIN of a
1711  * real USB MIDI packet, has no semantics at all besides the length).
1712  * A packet received from a Midiman may contain part of a MIDI message,
1713  * more than one MIDI message, or parts of more than one MIDI message. A
1714  * three-byte MIDI message may arrive in three packets of data length 1, and
1715  * running status may be used. Happily, the midi(4) driver above us will put
1716  * it all back together, so the only cost is in USB bandwidth. The device
1717  * has an easier time with what it receives from us: we'll pack messages in
1718  * and across packets, but filling the packets whenever possible and,
1719  * as midi(4) hands us a complete message at a time, we'll never send one
1720  * in a dribble of short packets.
1721  */
1722 
1723 static int
1724 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1725 {
1726 	struct umidi_endpoint *ep = out_jack->endpoint;
1727 	struct umidi_softc *sc = ep->sc;
1728 	unsigned char *packet;
1729 	int plen;
1730 	int poff;
1731 
1732 	KASSERT(mutex_owned(&sc->sc_lock));
1733 
1734 	if (sc->sc_dying)
1735 		return EIO;
1736 
1737 	if (!out_jack->opened)
1738 		return ENODEV; /* XXX as it was, is this the right errno? */
1739 
1740 	sc->sc_refcnt++;
1741 
1742 #ifdef UMIDI_DEBUG
1743 	if (umididebug >= 100)
1744 		microtime(&umidi_tv);
1745 #endif
1746 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1747 	    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1748 	    ep, out_jack->cable_number, len, cin));
1749 
1750 	packet = *ep->next_slot++;
1751 	KASSERT(ep->buffer_size >=
1752 	    (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1753 	memset(packet, 0, UMIDI_PACKET_SIZE);
1754 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1755 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1756 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1757 			plen = 3 - poff;
1758 			if (plen > len)
1759 				plen = len;
1760 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1761 			src += plen;
1762 			len -= plen;
1763 			plen += poff;
1764 			out_jack->midiman_ppkt[3] =
1765 			    MIX_CN_CIN(out_jack->cable_number, plen);
1766 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1767 			if (3 == plen)
1768 				out_jack->midiman_ppkt = NULL; /* no more */
1769 		}
1770 		if (0 == len)
1771 			ep->next_slot--; /* won't be needed, nevermind */
1772 		else {
1773 			memcpy(packet, src, len);
1774 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1775 			DPR_PACKET(out, sc, packet);
1776 			if (len < 3)
1777 				out_jack->midiman_ppkt = packet;
1778 		}
1779 	} else { /* the nice simple USB class-compliant case */
1780 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1781 		memcpy(packet+1, src, len);
1782 		DPR_PACKET(out, sc, packet);
1783 	}
1784 	ep->next_schedule |= 1<<(out_jack->cable_number);
1785 	++ ep->num_scheduled;
1786 	if (!ep->armed && !ep->soliciting) {
1787 		/*
1788 		 * It would be bad to call out_solicit directly here (the
1789 		 * caller need not be reentrant) but a soft interrupt allows
1790 		 * solicit to run immediately the caller exits its critical
1791 		 * section, and if the caller has more to write we can get it
1792 		 * before starting the USB transfer, and send a longer one.
1793 		 */
1794 		ep->soliciting = 1;
1795 		softint_schedule(ep->solicit_cookie);
1796 	}
1797 
1798 	if (--sc->sc_refcnt < 0)
1799 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1800 
1801 	return 0;
1802 }
1803 
1804 static void
1805 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1806     usbd_status status)
1807 {
1808 	int cn, len, i;
1809 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1810 	struct umidi_softc *sc = ep->sc;
1811 	struct umidi_jack *jack;
1812 	unsigned char *packet;
1813 	umidi_packet_bufp slot;
1814 	umidi_packet_bufp end;
1815 	unsigned char *data;
1816 	u_int32_t count;
1817 
1818 	if (ep->sc->sc_dying || !ep->num_open)
1819 		return;
1820 
1821 	mutex_enter(&sc->sc_lock);
1822 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1823         if (0 == count % UMIDI_PACKET_SIZE) {
1824 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1825 			     device_xname(ep->sc->sc_dev), ep, count));
1826         } else {
1827                 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1828                         device_xname(ep->sc->sc_dev), ep, count));
1829         }
1830 
1831 	slot = ep->buffer;
1832 	end = slot + count / sizeof *slot;
1833 
1834 	for (packet = *slot; slot < end; packet = *++slot) {
1835 
1836 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1837 			cn = (0xf0&(packet[3]))>>4;
1838 			len = 0x0f&(packet[3]);
1839 			data = packet;
1840 		} else {
1841 			cn = GET_CN(packet[0]);
1842 			len = packet_length[GET_CIN(packet[0])];
1843 			data = packet + 1;
1844 		}
1845 		/* 0 <= cn <= 15 by inspection of above code */
1846 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1847 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1848 			         "%02X %02X %02X (try CN_SEQ quirk?)\n",
1849 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1850 				 (unsigned)data[0],
1851 				 (unsigned)data[1],
1852 				 (unsigned)data[2]));
1853 			mutex_exit(&sc->sc_lock);
1854 			return;
1855 		}
1856 
1857 		if (!jack->bound || !jack->opened)
1858 			continue;
1859 
1860 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1861 		             "%02X %02X %02X\n",
1862 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1863 			     (unsigned)data[0],
1864 			     (unsigned)data[1],
1865 			     (unsigned)data[2]));
1866 
1867 		if (jack->u.in.intr) {
1868 			for (i = 0; i < len; i++) {
1869 				(*jack->u.in.intr)(jack->arg, data[i]);
1870 			}
1871 		}
1872 
1873 	}
1874 
1875 	(void)start_input_transfer(ep);
1876 	mutex_exit(&sc->sc_lock);
1877 }
1878 
1879 static void
1880 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1881     usbd_status status)
1882 {
1883 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1884 	struct umidi_softc *sc = ep->sc;
1885 	u_int32_t count;
1886 
1887 	if (sc->sc_dying)
1888 		return;
1889 
1890 	mutex_enter(&sc->sc_lock);
1891 #ifdef UMIDI_DEBUG
1892 	if (umididebug >= 200)
1893 		microtime(&umidi_tv);
1894 #endif
1895 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1896         if (0 == count % UMIDI_PACKET_SIZE) {
1897 		DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1898 			     device_xname(ep->sc->sc_dev),
1899 			     umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1900         } else {
1901                 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1902                         device_xname(ep->sc->sc_dev), ep, count));
1903         }
1904 	count /= UMIDI_PACKET_SIZE;
1905 
1906 	/*
1907 	 * If while the transfer was pending we buffered any new messages,
1908 	 * move them to the start of the buffer.
1909 	 */
1910 	ep->next_slot -= count;
1911 	if (ep->buffer < ep->next_slot) {
1912 		memcpy(ep->buffer, ep->buffer + count,
1913 		       (char *)ep->next_slot - (char *)ep->buffer);
1914 	}
1915 	cv_broadcast(&sc->sc_cv);
1916 	/*
1917 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1918 	 * Running at IPL_USB so the following should happen to be safe.
1919 	 */
1920 	ep->armed = 0;
1921 	if (!ep->soliciting) {
1922 		ep->soliciting = 1;
1923 		out_solicit_locked(ep);
1924 	}
1925 	mutex_exit(&sc->sc_lock);
1926 }
1927 
1928 /*
1929  * A jack on which we have received a packet must be called back on its
1930  * out.intr handler before it will send us another; it is considered
1931  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1932  * we need no extra buffer space for it.
1933  *
1934  * In contrast, a jack that is open but not scheduled may supply us a packet
1935  * at any time, driven by the top half, and we must be able to accept it, no
1936  * excuses. So we must ensure that at any point in time there are at least
1937  * (num_open - num_scheduled) slots free.
1938  *
1939  * As long as there are more slots free than that minimum, we can loop calling
1940  * scheduled jacks back on their "interrupt" handlers, soliciting more
1941  * packets, starting the USB transfer only when the buffer space is down to
1942  * the minimum or no jack has any more to send.
1943  */
1944 
1945 static void
1946 out_solicit_locked(void *arg)
1947 {
1948 	struct umidi_endpoint *ep = arg;
1949 	umidi_packet_bufp end;
1950 	u_int16_t which;
1951 	struct umidi_jack *jack;
1952 
1953 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1954 
1955 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1956 
1957 	for ( ;; ) {
1958 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1959 			break; /* at IPL_USB */
1960 		if (ep->this_schedule == 0) {
1961 			if (ep->next_schedule == 0)
1962 				break; /* at IPL_USB */
1963 			ep->this_schedule = ep->next_schedule;
1964 			ep->next_schedule = 0;
1965 		}
1966 		/*
1967 		 * At least one jack is scheduled. Find and mask off the least
1968 		 * set bit in this_schedule and decrement num_scheduled.
1969 		 * Convert mask to bit index to find the corresponding jack,
1970 		 * and call its intr handler. If it has a message, it will call
1971 		 * back one of the output methods, which will set its bit in
1972 		 * next_schedule (not copied into this_schedule until the
1973 		 * latter is empty). In this way we round-robin the jacks that
1974 		 * have messages to send, until the buffer is as full as we
1975 		 * dare, and then start a transfer.
1976 		 */
1977 		which = ep->this_schedule;
1978 		which &= (~which)+1; /* now mask of least set bit */
1979 		ep->this_schedule &= ~which;
1980 		--ep->num_scheduled;
1981 
1982 		--which; /* now 1s below mask - count 1s to get index */
1983 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1984 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1985 		which = (((which >> 4) + which) & 0x0f0f);
1986 		which +=  (which >> 8);
1987 		which &= 0x1f; /* the bit index a/k/a jack number */
1988 
1989 		jack = ep->jacks[which];
1990 		if (jack->u.out.intr)
1991 			(*jack->u.out.intr)(jack->arg);
1992 	}
1993 	/* intr lock held at loop exit */
1994 	if (!ep->armed && ep->next_slot > ep->buffer) {
1995 		/*
1996 		 * Can't hold the interrupt lock while calling into USB,
1997 		 * but we can safely drop it here.
1998 		 */
1999 		mutex_exit(&ep->sc->sc_lock);
2000 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2001 		mutex_enter(&ep->sc->sc_lock);
2002 	}
2003 	ep->soliciting = 0;
2004 }
2005 
2006 /* Entry point for the softintr.  */
2007 static void
2008 out_solicit(void *arg)
2009 {
2010 	struct umidi_endpoint *ep = arg;
2011 	struct umidi_softc *sc = ep->sc;
2012 
2013 	mutex_enter(&sc->sc_lock);
2014 	out_solicit_locked(arg);
2015 	mutex_exit(&sc->sc_lock);
2016 }
2017