1 /* $NetBSD: uaudio.c,v 1.169 2021/02/15 13:39:18 isaki Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2012 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Lennart Augustsson (lennart@augustsson.net) at 9 * Carlstedt Research & Technology, and Matthew R. Green (mrg@eterna.com.au). 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * USB audio specs: http://www.usb.org/developers/docs/devclass_docs/audio10.pdf 35 * http://www.usb.org/developers/docs/devclass_docs/frmts10.pdf 36 * http://www.usb.org/developers/docs/devclass_docs/termt10.pdf 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: uaudio.c,v 1.169 2021/02/15 13:39:18 isaki Exp $"); 41 42 #ifdef _KERNEL_OPT 43 #include "opt_usb.h" 44 #endif 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/device.h> 51 #include <sys/ioctl.h> 52 #include <sys/file.h> 53 #include <sys/reboot.h> /* for bootverbose */ 54 #include <sys/select.h> 55 #include <sys/proc.h> 56 #include <sys/vnode.h> 57 #include <sys/poll.h> 58 #include <sys/module.h> 59 #include <sys/bus.h> 60 #include <sys/cpu.h> 61 #include <sys/atomic.h> 62 63 #include <sys/audioio.h> 64 #include <dev/audio/audio_if.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include <dev/usb/usbdivar.h> 69 #include <dev/usb/usbdi_util.h> 70 #include <dev/usb/usb_quirks.h> 71 72 #include <dev/usb/usbdevs.h> 73 74 #include <dev/usb/uaudioreg.h> 75 76 /* #define UAUDIO_DEBUG */ 77 /* #define UAUDIO_MULTIPLE_ENDPOINTS */ 78 #ifdef UAUDIO_DEBUG 79 #define DPRINTF(x,y...) do { \ 80 if (uaudiodebug) { \ 81 struct lwp *l = curlwp; \ 82 printf("%s[%d:%d]: "x, __func__, l->l_proc->p_pid, l->l_lid, y); \ 83 } \ 84 } while (0) 85 #define DPRINTFN_CLEAN(n,x...) do { \ 86 if (uaudiodebug > (n)) \ 87 printf(x); \ 88 } while (0) 89 #define DPRINTFN(n,x,y...) do { \ 90 if (uaudiodebug > (n)) { \ 91 struct lwp *l = curlwp; \ 92 printf("%s[%d:%d]: "x, __func__, l->l_proc->p_pid, l->l_lid, y); \ 93 } \ 94 } while (0) 95 int uaudiodebug = 0; 96 #else 97 #define DPRINTF(x,y...) 98 #define DPRINTFN_CLEAN(n,x...) 99 #define DPRINTFN(n,x,y...) 100 #endif 101 102 #define UAUDIO_NCHANBUFS 6 /* number of outstanding request */ 103 #define UAUDIO_NFRAMES 10 /* ms of sound in each request */ 104 105 106 #define MIX_MAX_CHAN 8 107 struct mixerctl { 108 uint16_t wValue[MIX_MAX_CHAN]; /* using nchan */ 109 uint16_t wIndex; 110 uint8_t nchan; 111 uint8_t type; 112 #define MIX_ON_OFF 1 113 #define MIX_SIGNED_16 2 114 #define MIX_UNSIGNED_16 3 115 #define MIX_SIGNED_8 4 116 #define MIX_SELECTOR 5 117 #define MIX_SIZE(n) ((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16 ? 2 : 1) 118 #define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16) 119 int minval, maxval; 120 u_int delta; 121 u_int mul; 122 uint8_t class; 123 char ctlname[MAX_AUDIO_DEV_LEN]; 124 const char *ctlunit; 125 }; 126 #define MAKE(h,l) (((h) << 8) | (l)) 127 128 struct as_info { 129 uint8_t alt; 130 uint8_t encoding; 131 uint8_t attributes; /* Copy of bmAttributes of 132 * usb_audio_streaming_endpoint_descriptor 133 */ 134 struct usbd_interface * ifaceh; 135 const usb_interface_descriptor_t *idesc; 136 const usb_endpoint_descriptor_audio_t *edesc; 137 const usb_endpoint_descriptor_audio_t *edesc1; 138 const struct usb_audio_streaming_type1_descriptor *asf1desc; 139 struct audio_format *aformat; 140 int sc_busy; /* currently used */ 141 }; 142 143 struct chan { 144 void (*intr)(void *); /* DMA completion intr handler */ 145 void *arg; /* arg for intr() */ 146 struct usbd_pipe *pipe; 147 struct usbd_pipe *sync_pipe; 148 149 u_int sample_size; 150 u_int sample_rate; 151 u_int bytes_per_frame; 152 u_int fraction; /* fraction/1000 is the extra samples/frame */ 153 u_int residue; /* accumulates the fractional samples */ 154 155 u_char *start; /* upper layer buffer start */ 156 u_char *end; /* upper layer buffer end */ 157 u_char *cur; /* current position in upper layer buffer */ 158 int blksize; /* chunk size to report up */ 159 int transferred; /* transferred bytes not reported up */ 160 161 int altidx; /* currently used altidx */ 162 163 int curchanbuf; 164 struct chanbuf { 165 struct chan *chan; 166 struct usbd_xfer *xfer; 167 u_char *buffer; 168 uint16_t sizes[UAUDIO_NFRAMES]; 169 uint16_t offsets[UAUDIO_NFRAMES]; 170 uint16_t size; 171 } chanbufs[UAUDIO_NCHANBUFS]; 172 173 struct uaudio_softc *sc; /* our softc */ 174 }; 175 176 /* 177 * The MI USB audio subsystem is now MP-SAFE and expects sc_intr_lock to be 178 * held on entry the callbacks passed to uaudio_trigger_{in,out}put 179 */ 180 struct uaudio_softc { 181 device_t sc_dev; /* base device */ 182 kmutex_t sc_lock; 183 kmutex_t sc_intr_lock; 184 struct usbd_device *sc_udev; /* USB device */ 185 int sc_ac_iface; /* Audio Control interface */ 186 struct usbd_interface * sc_ac_ifaceh; 187 struct chan sc_playchan; /* play channel */ 188 struct chan sc_recchan; /* record channel */ 189 int sc_nullalt; 190 int sc_audio_rev; 191 struct as_info *sc_alts; /* alternate settings */ 192 int sc_nalts; /* # of alternate settings */ 193 int sc_altflags; 194 #define HAS_8 0x01 195 #define HAS_16 0x02 196 #define HAS_8U 0x04 197 #define HAS_ALAW 0x08 198 #define HAS_MULAW 0x10 199 #define UA_NOFRAC 0x20 /* don't do sample rate adjustment */ 200 #define HAS_24 0x40 201 int sc_mode; /* play/record capability */ 202 struct mixerctl *sc_ctls; /* mixer controls */ 203 int sc_nctls; /* # of mixer controls */ 204 device_t sc_audiodev; 205 struct audio_format *sc_formats; 206 int sc_nformats; 207 u_int sc_channel_config; 208 char sc_dying; 209 struct audio_device sc_adev; 210 }; 211 212 struct terminal_list { 213 int size; 214 uint16_t terminals[1]; 215 }; 216 #define TERMINAL_LIST_SIZE(N) (offsetof(struct terminal_list, terminals) \ 217 + sizeof(uint16_t) * (N)) 218 219 struct io_terminal { 220 union { 221 const uaudio_cs_descriptor_t *desc; 222 const struct usb_audio_input_terminal *it; 223 const struct usb_audio_output_terminal *ot; 224 const struct usb_audio_mixer_unit *mu; 225 const struct usb_audio_selector_unit *su; 226 const struct usb_audio_feature_unit *fu; 227 const struct usb_audio_processing_unit *pu; 228 const struct usb_audio_extension_unit *eu; 229 } d; 230 int inputs_size; 231 struct terminal_list **inputs; /* list of source input terminals */ 232 struct terminal_list *output; /* list of destination output terminals */ 233 int direct; /* directly connected to an output terminal */ 234 }; 235 236 #define UAC_OUTPUT 0 237 #define UAC_INPUT 1 238 #define UAC_EQUAL 2 239 #define UAC_RECORD 3 240 #define UAC_NCLASSES 4 241 #ifdef UAUDIO_DEBUG 242 Static const char *uac_names[] = { 243 AudioCoutputs, AudioCinputs, AudioCequalization, AudioCrecord, 244 }; 245 #endif 246 247 #ifdef UAUDIO_DEBUG 248 Static void uaudio_dump_tml 249 (struct terminal_list *tml); 250 #endif 251 Static usbd_status uaudio_identify_ac 252 (struct uaudio_softc *, const usb_config_descriptor_t *); 253 Static usbd_status uaudio_identify_as 254 (struct uaudio_softc *, const usb_config_descriptor_t *); 255 Static usbd_status uaudio_process_as 256 (struct uaudio_softc *, const char *, int *, int, 257 const usb_interface_descriptor_t *); 258 259 Static void uaudio_add_alt(struct uaudio_softc *, const struct as_info *); 260 261 Static const usb_interface_descriptor_t *uaudio_find_iface 262 (const char *, int, int *, int); 263 264 Static void uaudio_mixer_add_ctl(struct uaudio_softc *, struct mixerctl *); 265 Static char *uaudio_id_name 266 (struct uaudio_softc *, const struct io_terminal *, int); 267 #ifdef UAUDIO_DEBUG 268 Static void uaudio_dump_cluster(const struct usb_audio_cluster *); 269 #endif 270 Static struct usb_audio_cluster uaudio_get_cluster 271 (int, const struct io_terminal *); 272 Static void uaudio_add_input 273 (struct uaudio_softc *, const struct io_terminal *, int); 274 Static void uaudio_add_output 275 (struct uaudio_softc *, const struct io_terminal *, int); 276 Static void uaudio_add_mixer 277 (struct uaudio_softc *, const struct io_terminal *, int); 278 Static void uaudio_add_selector 279 (struct uaudio_softc *, const struct io_terminal *, int); 280 #ifdef UAUDIO_DEBUG 281 Static const char *uaudio_get_terminal_name(int); 282 #endif 283 Static int uaudio_determine_class 284 (const struct io_terminal *, struct mixerctl *); 285 Static const char *uaudio_feature_name 286 (const struct io_terminal *, struct mixerctl *); 287 Static void uaudio_add_feature 288 (struct uaudio_softc *, const struct io_terminal *, int); 289 Static void uaudio_add_processing_updown 290 (struct uaudio_softc *, const struct io_terminal *, int); 291 Static void uaudio_add_processing 292 (struct uaudio_softc *, const struct io_terminal *, int); 293 Static void uaudio_add_extension 294 (struct uaudio_softc *, const struct io_terminal *, int); 295 Static struct terminal_list *uaudio_merge_terminal_list 296 (const struct io_terminal *); 297 Static struct terminal_list *uaudio_io_terminaltype 298 (int, struct io_terminal *, int); 299 Static usbd_status uaudio_identify 300 (struct uaudio_softc *, const usb_config_descriptor_t *); 301 302 Static int uaudio_signext(int, int); 303 Static int uaudio_value2bsd(struct mixerctl *, int); 304 Static int uaudio_bsd2value(struct mixerctl *, int); 305 Static int uaudio_get(struct uaudio_softc *, int, int, int, int, int); 306 Static int uaudio_ctl_get 307 (struct uaudio_softc *, int, struct mixerctl *, int); 308 Static void uaudio_set 309 (struct uaudio_softc *, int, int, int, int, int, int); 310 Static void uaudio_ctl_set 311 (struct uaudio_softc *, int, struct mixerctl *, int, int); 312 313 Static usbd_status uaudio_set_speed(struct uaudio_softc *, int, u_int); 314 315 Static usbd_status uaudio_chan_open(struct uaudio_softc *, struct chan *); 316 Static void uaudio_chan_abort(struct uaudio_softc *, struct chan *); 317 Static void uaudio_chan_close(struct uaudio_softc *, struct chan *); 318 Static usbd_status uaudio_chan_alloc_buffers 319 (struct uaudio_softc *, struct chan *); 320 Static void uaudio_chan_free_buffers(struct uaudio_softc *, struct chan *); 321 Static void uaudio_chan_init 322 (struct chan *, int, const struct audio_params *, int); 323 Static void uaudio_chan_set_param(struct chan *, u_char *, u_char *, int); 324 Static void uaudio_chan_ptransfer(struct chan *); 325 Static void uaudio_chan_pintr 326 (struct usbd_xfer *, void *, usbd_status); 327 328 Static void uaudio_chan_rtransfer(struct chan *); 329 Static void uaudio_chan_rintr 330 (struct usbd_xfer *, void *, usbd_status); 331 332 Static int uaudio_open(void *, int); 333 Static int uaudio_query_format(void *, audio_format_query_t *); 334 Static int uaudio_set_format 335 (void *, int, const audio_params_t *, const audio_params_t *, 336 audio_filter_reg_t *, audio_filter_reg_t *); 337 Static int uaudio_round_blocksize(void *, int, int, const audio_params_t *); 338 Static int uaudio_trigger_output 339 (void *, void *, void *, int, void (*)(void *), void *, 340 const audio_params_t *); 341 Static int uaudio_trigger_input 342 (void *, void *, void *, int, void (*)(void *), void *, 343 const audio_params_t *); 344 Static int uaudio_halt_in_dma(void *); 345 Static int uaudio_halt_out_dma(void *); 346 Static void uaudio_halt_in_dma_unlocked(struct uaudio_softc *); 347 Static void uaudio_halt_out_dma_unlocked(struct uaudio_softc *); 348 Static int uaudio_getdev(void *, struct audio_device *); 349 Static int uaudio_mixer_set_port(void *, mixer_ctrl_t *); 350 Static int uaudio_mixer_get_port(void *, mixer_ctrl_t *); 351 Static int uaudio_query_devinfo(void *, mixer_devinfo_t *); 352 Static int uaudio_get_props(void *); 353 Static void uaudio_get_locks(void *, kmutex_t **, kmutex_t **); 354 355 Static const struct audio_hw_if uaudio_hw_if = { 356 .open = uaudio_open, 357 .query_format = uaudio_query_format, 358 .set_format = uaudio_set_format, 359 .round_blocksize = uaudio_round_blocksize, 360 .halt_output = uaudio_halt_out_dma, 361 .halt_input = uaudio_halt_in_dma, 362 .getdev = uaudio_getdev, 363 .set_port = uaudio_mixer_set_port, 364 .get_port = uaudio_mixer_get_port, 365 .query_devinfo = uaudio_query_devinfo, 366 .get_props = uaudio_get_props, 367 .trigger_output = uaudio_trigger_output, 368 .trigger_input = uaudio_trigger_input, 369 .get_locks = uaudio_get_locks, 370 }; 371 372 static int uaudio_match(device_t, cfdata_t, void *); 373 static void uaudio_attach(device_t, device_t, void *); 374 static int uaudio_detach(device_t, int); 375 static void uaudio_childdet(device_t, device_t); 376 static int uaudio_activate(device_t, enum devact); 377 378 379 380 CFATTACH_DECL2_NEW(uaudio, sizeof(struct uaudio_softc), 381 uaudio_match, uaudio_attach, uaudio_detach, uaudio_activate, NULL, 382 uaudio_childdet); 383 384 static int 385 uaudio_match(device_t parent, cfdata_t match, void *aux) 386 { 387 struct usbif_attach_arg *uiaa = aux; 388 389 /* Trigger on the control interface. */ 390 if (uiaa->uiaa_class != UICLASS_AUDIO || 391 uiaa->uiaa_subclass != UISUBCLASS_AUDIOCONTROL || 392 (usbd_get_quirks(uiaa->uiaa_device)->uq_flags & UQ_BAD_AUDIO)) 393 return UMATCH_NONE; 394 395 return UMATCH_IFACECLASS_IFACESUBCLASS; 396 } 397 398 static void 399 uaudio_attach(device_t parent, device_t self, void *aux) 400 { 401 struct uaudio_softc *sc = device_private(self); 402 struct usbif_attach_arg *uiaa = aux; 403 usb_interface_descriptor_t *id; 404 usb_config_descriptor_t *cdesc; 405 char *devinfop; 406 usbd_status err; 407 int i, j, found; 408 409 sc->sc_dev = self; 410 sc->sc_udev = uiaa->uiaa_device; 411 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 412 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 413 414 strlcpy(sc->sc_adev.name, "USB audio", sizeof(sc->sc_adev.name)); 415 strlcpy(sc->sc_adev.version, "", sizeof(sc->sc_adev.version)); 416 snprintf(sc->sc_adev.config, sizeof(sc->sc_adev.config), "usb:%08x", 417 sc->sc_udev->ud_cookie.cookie); 418 419 aprint_naive("\n"); 420 aprint_normal("\n"); 421 422 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0); 423 aprint_normal_dev(self, "%s\n", devinfop); 424 usbd_devinfo_free(devinfop); 425 426 cdesc = usbd_get_config_descriptor(sc->sc_udev); 427 if (cdesc == NULL) { 428 aprint_error_dev(self, 429 "failed to get configuration descriptor\n"); 430 return; 431 } 432 433 err = uaudio_identify(sc, cdesc); 434 if (err) { 435 aprint_error_dev(self, 436 "audio descriptors make no sense, error=%d\n", err); 437 return; 438 } 439 440 sc->sc_ac_ifaceh = uiaa->uiaa_iface; 441 /* Pick up the AS interface. */ 442 for (i = 0; i < uiaa->uiaa_nifaces; i++) { 443 if (uiaa->uiaa_ifaces[i] == NULL) 444 continue; 445 id = usbd_get_interface_descriptor(uiaa->uiaa_ifaces[i]); 446 if (id == NULL) 447 continue; 448 found = 0; 449 for (j = 0; j < sc->sc_nalts; j++) { 450 if (id->bInterfaceNumber == 451 sc->sc_alts[j].idesc->bInterfaceNumber) { 452 sc->sc_alts[j].ifaceh = uiaa->uiaa_ifaces[i]; 453 found = 1; 454 } 455 } 456 if (found) 457 uiaa->uiaa_ifaces[i] = NULL; 458 } 459 460 for (j = 0; j < sc->sc_nalts; j++) { 461 if (sc->sc_alts[j].ifaceh == NULL) { 462 aprint_error_dev(self, 463 "alt %d missing AS interface(s)\n", j); 464 return; 465 } 466 } 467 468 aprint_normal_dev(self, "audio rev %d.%02x\n", 469 sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff); 470 471 sc->sc_playchan.sc = sc->sc_recchan.sc = sc; 472 sc->sc_playchan.altidx = -1; 473 sc->sc_recchan.altidx = -1; 474 475 if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_FRAC) 476 sc->sc_altflags |= UA_NOFRAC; 477 478 #ifndef UAUDIO_DEBUG 479 if (bootverbose) 480 #endif 481 aprint_normal_dev(self, "%d mixer controls\n", 482 sc->sc_nctls); 483 484 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 485 486 DPRINTF("%s", "doing audio_attach_mi\n"); 487 sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, sc->sc_dev); 488 489 if (!pmf_device_register(self, NULL, NULL)) 490 aprint_error_dev(self, "couldn't establish power handler\n"); 491 492 return; 493 } 494 495 static int 496 uaudio_activate(device_t self, enum devact act) 497 { 498 struct uaudio_softc *sc = device_private(self); 499 500 switch (act) { 501 case DVACT_DEACTIVATE: 502 sc->sc_dying = 1; 503 return 0; 504 default: 505 return EOPNOTSUPP; 506 } 507 } 508 509 static void 510 uaudio_childdet(device_t self, device_t child) 511 { 512 struct uaudio_softc *sc = device_private(self); 513 514 KASSERT(sc->sc_audiodev == child); 515 sc->sc_audiodev = NULL; 516 } 517 518 static int 519 uaudio_detach(device_t self, int flags) 520 { 521 struct uaudio_softc *sc = device_private(self); 522 int rv = 0; 523 524 sc->sc_dying = 1; 525 526 pmf_device_deregister(self); 527 528 /* Wait for outstanding requests to complete. */ 529 uaudio_halt_out_dma_unlocked(sc); 530 uaudio_halt_in_dma_unlocked(sc); 531 532 if (sc->sc_audiodev != NULL) 533 rv = config_detach(sc->sc_audiodev, flags); 534 535 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 536 537 if (sc->sc_formats != NULL) 538 kmem_free(sc->sc_formats, 539 sizeof(struct audio_format) * sc->sc_nformats); 540 541 mutex_destroy(&sc->sc_lock); 542 mutex_destroy(&sc->sc_intr_lock); 543 544 return rv; 545 } 546 547 Static int 548 uaudio_query_format(void *addr, audio_format_query_t *afp) 549 { 550 struct uaudio_softc *sc; 551 552 sc = addr; 553 return audio_query_format(sc->sc_formats, sc->sc_nformats, afp); 554 } 555 556 Static const usb_interface_descriptor_t * 557 uaudio_find_iface(const char *tbuf, int size, int *offsp, int subtype) 558 { 559 const usb_interface_descriptor_t *d; 560 561 while (*offsp < size) { 562 d = (const void *)(tbuf + *offsp); 563 *offsp += d->bLength; 564 if (d->bDescriptorType == UDESC_INTERFACE && 565 d->bInterfaceClass == UICLASS_AUDIO && 566 d->bInterfaceSubClass == subtype) 567 return d; 568 } 569 return NULL; 570 } 571 572 Static void 573 uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mc) 574 { 575 int res; 576 size_t len; 577 struct mixerctl *nmc; 578 579 if (mc->class < UAC_NCLASSES) { 580 DPRINTF("adding %s.%s\n", uac_names[mc->class], mc->ctlname); 581 } else { 582 DPRINTF("adding %s\n", mc->ctlname); 583 } 584 len = sizeof(*mc) * (sc->sc_nctls + 1); 585 nmc = kmem_alloc(len, KM_SLEEP); 586 /* Copy old data, if there was any */ 587 if (sc->sc_nctls != 0) { 588 memcpy(nmc, sc->sc_ctls, sizeof(*mc) * (sc->sc_nctls)); 589 kmem_free(sc->sc_ctls, sizeof(*mc) * sc->sc_nctls); 590 } 591 sc->sc_ctls = nmc; 592 593 mc->delta = 0; 594 if (mc->type == MIX_ON_OFF) { 595 mc->minval = 0; 596 mc->maxval = 1; 597 } else if (mc->type == MIX_SELECTOR) { 598 ; 599 } else { 600 /* Determine min and max values. */ 601 mc->minval = uaudio_signext(mc->type, 602 uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE, 603 mc->wValue[0], mc->wIndex, 604 MIX_SIZE(mc->type))); 605 mc->maxval = 1 + uaudio_signext(mc->type, 606 uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE, 607 mc->wValue[0], mc->wIndex, 608 MIX_SIZE(mc->type))); 609 mc->mul = mc->maxval - mc->minval; 610 if (mc->mul == 0) 611 mc->mul = 1; 612 res = uaudio_get(sc, GET_RES, UT_READ_CLASS_INTERFACE, 613 mc->wValue[0], mc->wIndex, 614 MIX_SIZE(mc->type)); 615 if (res > 0) 616 mc->delta = (res * 255 + mc->mul/2) / mc->mul; 617 } 618 619 sc->sc_ctls[sc->sc_nctls++] = *mc; 620 621 #ifdef UAUDIO_DEBUG 622 if (uaudiodebug > 2) { 623 int i; 624 625 DPRINTFN_CLEAN(2, "wValue=%04x", mc->wValue[0]); 626 for (i = 1; i < mc->nchan; i++) 627 DPRINTFN_CLEAN(2, ",%04x", mc->wValue[i]); 628 DPRINTFN_CLEAN(2, " wIndex=%04x type=%d name='%s' unit='%s' " 629 "min=%d max=%d\n", 630 mc->wIndex, mc->type, mc->ctlname, mc->ctlunit, 631 mc->minval, mc->maxval); 632 } 633 #endif 634 } 635 636 Static char * 637 uaudio_id_name(struct uaudio_softc *sc, 638 const struct io_terminal *iot, int id) 639 { 640 static char tbuf[32]; 641 642 snprintf(tbuf, sizeof(tbuf), "i%d", id); 643 return tbuf; 644 } 645 646 #ifdef UAUDIO_DEBUG 647 Static void 648 uaudio_dump_cluster(const struct usb_audio_cluster *cl) 649 { 650 static const char *channel_names[16] = { 651 "LEFT", "RIGHT", "CENTER", "LFE", 652 "LEFT_SURROUND", "RIGHT_SURROUND", "LEFT_CENTER", "RIGHT_CENTER", 653 "SURROUND", "LEFT_SIDE", "RIGHT_SIDE", "TOP", 654 "RESERVED12", "RESERVED13", "RESERVED14", "RESERVED15", 655 }; 656 int cc, i, first; 657 658 cc = UGETW(cl->wChannelConfig); 659 printf("cluster: bNrChannels=%u wChannelConfig=%#.4x", 660 cl->bNrChannels, cc); 661 first = TRUE; 662 for (i = 0; cc != 0; i++) { 663 if (cc & 1) { 664 printf("%c%s", first ? '<' : ',', channel_names[i]); 665 first = FALSE; 666 } 667 cc = cc >> 1; 668 } 669 printf("> iChannelNames=%u", cl->iChannelNames); 670 } 671 #endif 672 673 Static struct usb_audio_cluster 674 uaudio_get_cluster(int id, const struct io_terminal *iot) 675 { 676 struct usb_audio_cluster r; 677 const uaudio_cs_descriptor_t *dp; 678 int i; 679 680 for (i = 0; i < 25; i++) { /* avoid infinite loops */ 681 dp = iot[id].d.desc; 682 if (dp == 0) 683 goto bad; 684 switch (dp->bDescriptorSubtype) { 685 case UDESCSUB_AC_INPUT: 686 r.bNrChannels = iot[id].d.it->bNrChannels; 687 USETW(r.wChannelConfig, UGETW(iot[id].d.it->wChannelConfig)); 688 r.iChannelNames = iot[id].d.it->iChannelNames; 689 return r; 690 case UDESCSUB_AC_OUTPUT: 691 id = iot[id].d.ot->bSourceId; 692 break; 693 case UDESCSUB_AC_MIXER: 694 r = *(const struct usb_audio_cluster *) 695 &iot[id].d.mu->baSourceId[iot[id].d.mu->bNrInPins]; 696 return r; 697 case UDESCSUB_AC_SELECTOR: 698 /* XXX This is not really right */ 699 id = iot[id].d.su->baSourceId[0]; 700 break; 701 case UDESCSUB_AC_FEATURE: 702 id = iot[id].d.fu->bSourceId; 703 break; 704 case UDESCSUB_AC_PROCESSING: 705 r = *(const struct usb_audio_cluster *) 706 &iot[id].d.pu->baSourceId[iot[id].d.pu->bNrInPins]; 707 return r; 708 case UDESCSUB_AC_EXTENSION: 709 r = *(const struct usb_audio_cluster *) 710 &iot[id].d.eu->baSourceId[iot[id].d.eu->bNrInPins]; 711 return r; 712 default: 713 goto bad; 714 } 715 } 716 bad: 717 aprint_error("uaudio_get_cluster: bad data\n"); 718 memset(&r, 0, sizeof(r)); 719 return r; 720 721 } 722 723 Static void 724 uaudio_add_input(struct uaudio_softc *sc, const struct io_terminal *iot, int id) 725 { 726 const struct usb_audio_input_terminal *d; 727 728 d = iot[id].d.it; 729 #ifdef UAUDIO_DEBUG 730 DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x " 731 "bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d " 732 "iChannelNames=%d iTerminal=%d\n", 733 d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, 734 d->bNrChannels, UGETW(d->wChannelConfig), 735 d->iChannelNames, d->iTerminal); 736 #endif 737 /* If USB input terminal, record wChannelConfig */ 738 if ((UGETW(d->wTerminalType) & 0xff00) != 0x0100) 739 return; 740 sc->sc_channel_config = UGETW(d->wChannelConfig); 741 } 742 743 Static void 744 uaudio_add_output(struct uaudio_softc *sc, 745 const struct io_terminal *iot, int id) 746 { 747 #ifdef UAUDIO_DEBUG 748 const struct usb_audio_output_terminal *d; 749 750 d = iot[id].d.ot; 751 DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x " 752 "bAssocTerminal=%d bSourceId=%d iTerminal=%d\n", 753 d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, 754 d->bSourceId, d->iTerminal); 755 #endif 756 } 757 758 Static void 759 uaudio_add_mixer(struct uaudio_softc *sc, const struct io_terminal *iot, int id) 760 { 761 const struct usb_audio_mixer_unit *d; 762 const struct usb_audio_mixer_unit_1 *d1; 763 int c, chs, ichs, ochs, i, o, bno, p, mo, mc, k; 764 const uByte *bm; 765 struct mixerctl mix; 766 767 d = iot[id].d.mu; 768 DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n", 769 d->bUnitId, d->bNrInPins); 770 771 /* Compute the number of input channels */ 772 ichs = 0; 773 for (i = 0; i < d->bNrInPins; i++) 774 ichs += uaudio_get_cluster(d->baSourceId[i], iot).bNrChannels; 775 776 /* and the number of output channels */ 777 d1 = (const struct usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins]; 778 ochs = d1->bNrChannels; 779 DPRINTFN(2,"ichs=%d ochs=%d\n", ichs, ochs); 780 781 bm = d1->bmControls; 782 mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); 783 uaudio_determine_class(&iot[id], &mix); 784 mix.type = MIX_SIGNED_16; 785 mix.ctlunit = AudioNvolume; 786 #define _BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1) 787 for (p = i = 0; i < d->bNrInPins; i++) { 788 chs = uaudio_get_cluster(d->baSourceId[i], iot).bNrChannels; 789 mc = 0; 790 for (c = 0; c < chs; c++) { 791 mo = 0; 792 for (o = 0; o < ochs; o++) { 793 bno = (p + c) * ochs + o; 794 if (_BIT(bno)) 795 mo++; 796 } 797 if (mo == 1) 798 mc++; 799 } 800 if (mc == chs && chs <= MIX_MAX_CHAN) { 801 k = 0; 802 for (c = 0; c < chs; c++) 803 for (o = 0; o < ochs; o++) { 804 bno = (p + c) * ochs + o; 805 if (_BIT(bno)) 806 mix.wValue[k++] = 807 MAKE(p+c+1, o+1); 808 } 809 snprintf(mix.ctlname, sizeof(mix.ctlname), "mix%d-%s", 810 d->bUnitId, uaudio_id_name(sc, iot, 811 d->baSourceId[i])); 812 mix.nchan = chs; 813 uaudio_mixer_add_ctl(sc, &mix); 814 } else { 815 /* XXX */ 816 } 817 #undef _BIT 818 p += chs; 819 } 820 821 } 822 823 Static void 824 uaudio_add_selector(struct uaudio_softc *sc, const struct io_terminal *iot, int id) 825 { 826 const struct usb_audio_selector_unit *d; 827 struct mixerctl mix; 828 int i, wp; 829 830 d = iot[id].d.su; 831 DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n", 832 d->bUnitId, d->bNrInPins); 833 mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); 834 mix.wValue[0] = MAKE(0, 0); 835 uaudio_determine_class(&iot[id], &mix); 836 mix.nchan = 1; 837 mix.type = MIX_SELECTOR; 838 mix.ctlunit = ""; 839 mix.minval = 1; 840 mix.maxval = d->bNrInPins; 841 mix.mul = mix.maxval - mix.minval; 842 wp = snprintf(mix.ctlname, MAX_AUDIO_DEV_LEN, "sel%d-", d->bUnitId); 843 for (i = 1; i <= d->bNrInPins; i++) { 844 wp += snprintf(mix.ctlname + wp, MAX_AUDIO_DEV_LEN - wp, 845 "i%d", d->baSourceId[i - 1]); 846 if (wp > MAX_AUDIO_DEV_LEN - 1) 847 break; 848 } 849 uaudio_mixer_add_ctl(sc, &mix); 850 } 851 852 #ifdef UAUDIO_DEBUG 853 Static const char * 854 uaudio_get_terminal_name(int terminal_type) 855 { 856 static char tbuf[100]; 857 858 switch (terminal_type) { 859 /* USB terminal types */ 860 case UAT_UNDEFINED: return "UAT_UNDEFINED"; 861 case UAT_STREAM: return "UAT_STREAM"; 862 case UAT_VENDOR: return "UAT_VENDOR"; 863 /* input terminal types */ 864 case UATI_UNDEFINED: return "UATI_UNDEFINED"; 865 case UATI_MICROPHONE: return "UATI_MICROPHONE"; 866 case UATI_DESKMICROPHONE: return "UATI_DESKMICROPHONE"; 867 case UATI_PERSONALMICROPHONE: return "UATI_PERSONALMICROPHONE"; 868 case UATI_OMNIMICROPHONE: return "UATI_OMNIMICROPHONE"; 869 case UATI_MICROPHONEARRAY: return "UATI_MICROPHONEARRAY"; 870 case UATI_PROCMICROPHONEARR: return "UATI_PROCMICROPHONEARR"; 871 /* output terminal types */ 872 case UATO_UNDEFINED: return "UATO_UNDEFINED"; 873 case UATO_SPEAKER: return "UATO_SPEAKER"; 874 case UATO_HEADPHONES: return "UATO_HEADPHONES"; 875 case UATO_DISPLAYAUDIO: return "UATO_DISPLAYAUDIO"; 876 case UATO_DESKTOPSPEAKER: return "UATO_DESKTOPSPEAKER"; 877 case UATO_ROOMSPEAKER: return "UATO_ROOMSPEAKER"; 878 case UATO_COMMSPEAKER: return "UATO_COMMSPEAKER"; 879 case UATO_SUBWOOFER: return "UATO_SUBWOOFER"; 880 /* bidir terminal types */ 881 case UATB_UNDEFINED: return "UATB_UNDEFINED"; 882 case UATB_HANDSET: return "UATB_HANDSET"; 883 case UATB_HEADSET: return "UATB_HEADSET"; 884 case UATB_SPEAKERPHONE: return "UATB_SPEAKERPHONE"; 885 case UATB_SPEAKERPHONEESUP: return "UATB_SPEAKERPHONEESUP"; 886 case UATB_SPEAKERPHONEECANC: return "UATB_SPEAKERPHONEECANC"; 887 /* telephony terminal types */ 888 case UATT_UNDEFINED: return "UATT_UNDEFINED"; 889 case UATT_PHONELINE: return "UATT_PHONELINE"; 890 case UATT_TELEPHONE: return "UATT_TELEPHONE"; 891 case UATT_DOWNLINEPHONE: return "UATT_DOWNLINEPHONE"; 892 /* external terminal types */ 893 case UATE_UNDEFINED: return "UATE_UNDEFINED"; 894 case UATE_ANALOGCONN: return "UATE_ANALOGCONN"; 895 case UATE_LINECONN: return "UATE_LINECONN"; 896 case UATE_LEGACYCONN: return "UATE_LEGACYCONN"; 897 case UATE_DIGITALAUIFC: return "UATE_DIGITALAUIFC"; 898 case UATE_SPDIF: return "UATE_SPDIF"; 899 case UATE_1394DA: return "UATE_1394DA"; 900 case UATE_1394DV: return "UATE_1394DV"; 901 /* embedded function terminal types */ 902 case UATF_UNDEFINED: return "UATF_UNDEFINED"; 903 case UATF_CALIBNOISE: return "UATF_CALIBNOISE"; 904 case UATF_EQUNOISE: return "UATF_EQUNOISE"; 905 case UATF_CDPLAYER: return "UATF_CDPLAYER"; 906 case UATF_DAT: return "UATF_DAT"; 907 case UATF_DCC: return "UATF_DCC"; 908 case UATF_MINIDISK: return "UATF_MINIDISK"; 909 case UATF_ANALOGTAPE: return "UATF_ANALOGTAPE"; 910 case UATF_PHONOGRAPH: return "UATF_PHONOGRAPH"; 911 case UATF_VCRAUDIO: return "UATF_VCRAUDIO"; 912 case UATF_VIDEODISCAUDIO: return "UATF_VIDEODISCAUDIO"; 913 case UATF_DVDAUDIO: return "UATF_DVDAUDIO"; 914 case UATF_TVTUNERAUDIO: return "UATF_TVTUNERAUDIO"; 915 case UATF_SATELLITE: return "UATF_SATELLITE"; 916 case UATF_CABLETUNER: return "UATF_CABLETUNER"; 917 case UATF_DSS: return "UATF_DSS"; 918 case UATF_RADIORECV: return "UATF_RADIORECV"; 919 case UATF_RADIOXMIT: return "UATF_RADIOXMIT"; 920 case UATF_MULTITRACK: return "UATF_MULTITRACK"; 921 case UATF_SYNTHESIZER: return "UATF_SYNTHESIZER"; 922 default: 923 snprintf(tbuf, sizeof(tbuf), "unknown type (%#.4x)", terminal_type); 924 return tbuf; 925 } 926 } 927 #endif 928 929 Static int 930 uaudio_determine_class(const struct io_terminal *iot, struct mixerctl *mix) 931 { 932 int terminal_type; 933 934 if (iot == NULL || iot->output == NULL) { 935 mix->class = UAC_OUTPUT; 936 return 0; 937 } 938 terminal_type = 0; 939 if (iot->output->size == 1) 940 terminal_type = iot->output->terminals[0]; 941 /* 942 * If the only output terminal is USB, 943 * the class is UAC_RECORD. 944 */ 945 if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) { 946 mix->class = UAC_RECORD; 947 if (iot->inputs_size == 1 948 && iot->inputs[0] != NULL 949 && iot->inputs[0]->size == 1) 950 return iot->inputs[0]->terminals[0]; 951 else 952 return 0; 953 } 954 /* 955 * If the ultimate destination of the unit is just one output 956 * terminal and the unit is connected to the output terminal 957 * directly, the class is UAC_OUTPUT. 958 */ 959 if (terminal_type != 0 && iot->direct) { 960 mix->class = UAC_OUTPUT; 961 return terminal_type; 962 } 963 /* 964 * If the unit is connected to just one input terminal, 965 * the class is UAC_INPUT. 966 */ 967 if (iot->inputs_size == 1 && iot->inputs[0] != NULL 968 && iot->inputs[0]->size == 1) { 969 mix->class = UAC_INPUT; 970 return iot->inputs[0]->terminals[0]; 971 } 972 /* 973 * Otherwise, the class is UAC_OUTPUT. 974 */ 975 mix->class = UAC_OUTPUT; 976 return terminal_type; 977 } 978 979 Static const char * 980 uaudio_feature_name(const struct io_terminal *iot, struct mixerctl *mix) 981 { 982 int terminal_type; 983 984 terminal_type = uaudio_determine_class(iot, mix); 985 if (mix->class == UAC_RECORD && terminal_type == 0) 986 return AudioNmixerout; 987 DPRINTF("terminal_type=%s\n", uaudio_get_terminal_name(terminal_type)); 988 switch (terminal_type) { 989 case UAT_STREAM: 990 return AudioNdac; 991 992 case UATI_MICROPHONE: 993 case UATI_DESKMICROPHONE: 994 case UATI_PERSONALMICROPHONE: 995 case UATI_OMNIMICROPHONE: 996 case UATI_MICROPHONEARRAY: 997 case UATI_PROCMICROPHONEARR: 998 return AudioNmicrophone; 999 1000 case UATO_SPEAKER: 1001 case UATO_DESKTOPSPEAKER: 1002 case UATO_ROOMSPEAKER: 1003 case UATO_COMMSPEAKER: 1004 return AudioNspeaker; 1005 1006 case UATO_HEADPHONES: 1007 return AudioNheadphone; 1008 1009 case UATO_SUBWOOFER: 1010 return AudioNlfe; 1011 1012 /* telephony terminal types */ 1013 case UATT_UNDEFINED: 1014 case UATT_PHONELINE: 1015 case UATT_TELEPHONE: 1016 case UATT_DOWNLINEPHONE: 1017 return "phone"; 1018 1019 case UATE_ANALOGCONN: 1020 case UATE_LINECONN: 1021 case UATE_LEGACYCONN: 1022 return AudioNline; 1023 1024 case UATE_DIGITALAUIFC: 1025 case UATE_SPDIF: 1026 case UATE_1394DA: 1027 case UATE_1394DV: 1028 return AudioNaux; 1029 1030 case UATF_CDPLAYER: 1031 return AudioNcd; 1032 1033 case UATF_SYNTHESIZER: 1034 return AudioNfmsynth; 1035 1036 case UATF_VIDEODISCAUDIO: 1037 case UATF_DVDAUDIO: 1038 case UATF_TVTUNERAUDIO: 1039 return AudioNvideo; 1040 1041 case UAT_UNDEFINED: 1042 case UAT_VENDOR: 1043 case UATI_UNDEFINED: 1044 /* output terminal types */ 1045 case UATO_UNDEFINED: 1046 case UATO_DISPLAYAUDIO: 1047 /* bidir terminal types */ 1048 case UATB_UNDEFINED: 1049 case UATB_HANDSET: 1050 case UATB_HEADSET: 1051 case UATB_SPEAKERPHONE: 1052 case UATB_SPEAKERPHONEESUP: 1053 case UATB_SPEAKERPHONEECANC: 1054 /* external terminal types */ 1055 case UATE_UNDEFINED: 1056 /* embedded function terminal types */ 1057 case UATF_UNDEFINED: 1058 case UATF_CALIBNOISE: 1059 case UATF_EQUNOISE: 1060 case UATF_DAT: 1061 case UATF_DCC: 1062 case UATF_MINIDISK: 1063 case UATF_ANALOGTAPE: 1064 case UATF_PHONOGRAPH: 1065 case UATF_VCRAUDIO: 1066 case UATF_SATELLITE: 1067 case UATF_CABLETUNER: 1068 case UATF_DSS: 1069 case UATF_RADIORECV: 1070 case UATF_RADIOXMIT: 1071 case UATF_MULTITRACK: 1072 case 0xffff: 1073 default: 1074 DPRINTF("'master' for %#.4x\n", terminal_type); 1075 return AudioNmaster; 1076 } 1077 return AudioNmaster; 1078 } 1079 1080 Static void 1081 uaudio_add_feature(struct uaudio_softc *sc, const struct io_terminal *iot, int id) 1082 { 1083 const struct usb_audio_feature_unit *d; 1084 const uByte *ctls; 1085 int ctlsize; 1086 int nchan; 1087 u_int fumask, mmask, cmask; 1088 struct mixerctl mix; 1089 int chan, ctl, i, unit; 1090 const char *mixername; 1091 1092 #define GET(i) (ctls[(i)*ctlsize] | \ 1093 (ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0)) 1094 d = iot[id].d.fu; 1095 ctls = d->bmaControls; 1096 ctlsize = d->bControlSize; 1097 if (ctlsize == 0) { 1098 DPRINTF("ignoring feature %d with controlSize of zero\n", id); 1099 return; 1100 } 1101 nchan = (d->bLength - 7) / ctlsize; 1102 mmask = GET(0); 1103 /* Figure out what we can control */ 1104 for (cmask = 0, chan = 1; chan < nchan; chan++) { 1105 DPRINTFN(9,"chan=%d mask=%x\n", 1106 chan, GET(chan)); 1107 cmask |= GET(chan); 1108 } 1109 1110 DPRINTFN(1,"bUnitId=%d, " 1111 "%d channels, mmask=0x%04x, cmask=0x%04x\n", 1112 d->bUnitId, nchan, mmask, cmask); 1113 1114 if (nchan > MIX_MAX_CHAN) 1115 nchan = MIX_MAX_CHAN; 1116 unit = d->bUnitId; 1117 mix.wIndex = MAKE(unit, sc->sc_ac_iface); 1118 for (ctl = MUTE_CONTROL; ctl < LOUDNESS_CONTROL; ctl++) { 1119 fumask = FU_MASK(ctl); 1120 DPRINTFN(4,"ctl=%d fumask=0x%04x\n", 1121 ctl, fumask); 1122 if (mmask & fumask) { 1123 mix.nchan = 1; 1124 mix.wValue[0] = MAKE(ctl, 0); 1125 } else if (cmask & fumask) { 1126 mix.nchan = nchan - 1; 1127 for (i = 1; i < nchan; i++) { 1128 if (GET(i) & fumask) 1129 mix.wValue[i-1] = MAKE(ctl, i); 1130 else 1131 mix.wValue[i-1] = -1; 1132 } 1133 } else { 1134 continue; 1135 } 1136 #undef GET 1137 mixername = uaudio_feature_name(&iot[id], &mix); 1138 switch (ctl) { 1139 case MUTE_CONTROL: 1140 mix.type = MIX_ON_OFF; 1141 mix.ctlunit = ""; 1142 snprintf(mix.ctlname, sizeof(mix.ctlname), 1143 "%s.%s", mixername, AudioNmute); 1144 break; 1145 case VOLUME_CONTROL: 1146 mix.type = MIX_SIGNED_16; 1147 mix.ctlunit = AudioNvolume; 1148 strlcpy(mix.ctlname, mixername, sizeof(mix.ctlname)); 1149 break; 1150 case BASS_CONTROL: 1151 mix.type = MIX_SIGNED_8; 1152 mix.ctlunit = AudioNbass; 1153 snprintf(mix.ctlname, sizeof(mix.ctlname), 1154 "%s.%s", mixername, AudioNbass); 1155 break; 1156 case MID_CONTROL: 1157 mix.type = MIX_SIGNED_8; 1158 mix.ctlunit = AudioNmid; 1159 snprintf(mix.ctlname, sizeof(mix.ctlname), 1160 "%s.%s", mixername, AudioNmid); 1161 break; 1162 case TREBLE_CONTROL: 1163 mix.type = MIX_SIGNED_8; 1164 mix.ctlunit = AudioNtreble; 1165 snprintf(mix.ctlname, sizeof(mix.ctlname), 1166 "%s.%s", mixername, AudioNtreble); 1167 break; 1168 case GRAPHIC_EQUALIZER_CONTROL: 1169 continue; /* XXX don't add anything */ 1170 break; 1171 case AGC_CONTROL: 1172 mix.type = MIX_ON_OFF; 1173 mix.ctlunit = ""; 1174 snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", 1175 mixername, AudioNagc); 1176 break; 1177 case DELAY_CONTROL: 1178 mix.type = MIX_UNSIGNED_16; 1179 mix.ctlunit = "4 ms"; 1180 snprintf(mix.ctlname, sizeof(mix.ctlname), 1181 "%s.%s", mixername, AudioNdelay); 1182 break; 1183 case BASS_BOOST_CONTROL: 1184 mix.type = MIX_ON_OFF; 1185 mix.ctlunit = ""; 1186 snprintf(mix.ctlname, sizeof(mix.ctlname), 1187 "%s.%s", mixername, AudioNbassboost); 1188 break; 1189 case LOUDNESS_CONTROL: 1190 mix.type = MIX_ON_OFF; 1191 mix.ctlunit = ""; 1192 snprintf(mix.ctlname, sizeof(mix.ctlname), 1193 "%s.%s", mixername, AudioNloudness); 1194 break; 1195 } 1196 uaudio_mixer_add_ctl(sc, &mix); 1197 } 1198 } 1199 1200 Static void 1201 uaudio_add_processing_updown(struct uaudio_softc *sc, 1202 const struct io_terminal *iot, int id) 1203 { 1204 const struct usb_audio_processing_unit *d; 1205 const struct usb_audio_processing_unit_1 *d1; 1206 const struct usb_audio_processing_unit_updown *ud; 1207 struct mixerctl mix; 1208 int i; 1209 1210 d = iot[id].d.pu; 1211 d1 = (const struct usb_audio_processing_unit_1 *) 1212 &d->baSourceId[d->bNrInPins]; 1213 ud = (const struct usb_audio_processing_unit_updown *) 1214 &d1->bmControls[d1->bControlSize]; 1215 DPRINTFN(2,"bUnitId=%d bNrModes=%d\n", 1216 d->bUnitId, ud->bNrModes); 1217 1218 if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) { 1219 DPRINTF("%s", "no mode select\n"); 1220 return; 1221 } 1222 1223 mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); 1224 mix.nchan = 1; 1225 mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0); 1226 uaudio_determine_class(&iot[id], &mix); 1227 mix.type = MIX_ON_OFF; /* XXX */ 1228 mix.ctlunit = ""; 1229 snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d-mode", d->bUnitId); 1230 1231 for (i = 0; i < ud->bNrModes; i++) { 1232 DPRINTFN(2,"i=%d bm=%#x\n", 1233 i, UGETW(ud->waModes[i])); 1234 /* XXX */ 1235 } 1236 uaudio_mixer_add_ctl(sc, &mix); 1237 } 1238 1239 Static void 1240 uaudio_add_processing(struct uaudio_softc *sc, const struct io_terminal *iot, int id) 1241 { 1242 const struct usb_audio_processing_unit *d; 1243 const struct usb_audio_processing_unit_1 *d1; 1244 int ptype; 1245 struct mixerctl mix; 1246 1247 d = iot[id].d.pu; 1248 d1 = (const struct usb_audio_processing_unit_1 *) 1249 &d->baSourceId[d->bNrInPins]; 1250 ptype = UGETW(d->wProcessType); 1251 DPRINTFN(2,"wProcessType=%d bUnitId=%d " 1252 "bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins); 1253 1254 if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) { 1255 mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); 1256 mix.nchan = 1; 1257 mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0); 1258 uaudio_determine_class(&iot[id], &mix); 1259 mix.type = MIX_ON_OFF; 1260 mix.ctlunit = ""; 1261 snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d.%d-enable", 1262 d->bUnitId, ptype); 1263 uaudio_mixer_add_ctl(sc, &mix); 1264 } 1265 1266 switch(ptype) { 1267 case UPDOWNMIX_PROCESS: 1268 uaudio_add_processing_updown(sc, iot, id); 1269 break; 1270 case DOLBY_PROLOGIC_PROCESS: 1271 case P3D_STEREO_EXTENDER_PROCESS: 1272 case REVERBATION_PROCESS: 1273 case CHORUS_PROCESS: 1274 case DYN_RANGE_COMP_PROCESS: 1275 default: 1276 #ifdef UAUDIO_DEBUG 1277 aprint_debug( 1278 "uaudio_add_processing: unit %d, type=%d not impl.\n", 1279 d->bUnitId, ptype); 1280 #endif 1281 break; 1282 } 1283 } 1284 1285 Static void 1286 uaudio_add_extension(struct uaudio_softc *sc, const struct io_terminal *iot, int id) 1287 { 1288 const struct usb_audio_extension_unit *d; 1289 const struct usb_audio_extension_unit_1 *d1; 1290 struct mixerctl mix; 1291 1292 d = iot[id].d.eu; 1293 d1 = (const struct usb_audio_extension_unit_1 *) 1294 &d->baSourceId[d->bNrInPins]; 1295 DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n", 1296 d->bUnitId, d->bNrInPins); 1297 1298 if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_XU) 1299 return; 1300 1301 if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) { 1302 mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); 1303 mix.nchan = 1; 1304 mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0); 1305 uaudio_determine_class(&iot[id], &mix); 1306 mix.type = MIX_ON_OFF; 1307 mix.ctlunit = ""; 1308 snprintf(mix.ctlname, sizeof(mix.ctlname), "ext%d-enable", 1309 d->bUnitId); 1310 uaudio_mixer_add_ctl(sc, &mix); 1311 } 1312 } 1313 1314 Static struct terminal_list* 1315 uaudio_merge_terminal_list(const struct io_terminal *iot) 1316 { 1317 struct terminal_list *tml; 1318 uint16_t *ptm; 1319 int i, len; 1320 1321 len = 0; 1322 if (iot->inputs == NULL) 1323 return NULL; 1324 for (i = 0; i < iot->inputs_size; i++) { 1325 if (iot->inputs[i] != NULL) 1326 len += iot->inputs[i]->size; 1327 } 1328 tml = malloc(TERMINAL_LIST_SIZE(len), M_TEMP, M_NOWAIT); 1329 if (tml == NULL) { 1330 aprint_error("uaudio_merge_terminal_list: no memory\n"); 1331 return NULL; 1332 } 1333 tml->size = 0; 1334 ptm = tml->terminals; 1335 for (i = 0; i < iot->inputs_size; i++) { 1336 if (iot->inputs[i] == NULL) 1337 continue; 1338 if (iot->inputs[i]->size > len) 1339 break; 1340 memcpy(ptm, iot->inputs[i]->terminals, 1341 iot->inputs[i]->size * sizeof(uint16_t)); 1342 tml->size += iot->inputs[i]->size; 1343 ptm += iot->inputs[i]->size; 1344 len -= iot->inputs[i]->size; 1345 } 1346 return tml; 1347 } 1348 1349 Static struct terminal_list * 1350 uaudio_io_terminaltype(int outtype, struct io_terminal *iot, int id) 1351 { 1352 struct terminal_list *tml; 1353 struct io_terminal *it; 1354 int src_id, i; 1355 1356 it = &iot[id]; 1357 if (it->output != NULL) { 1358 /* already has outtype? */ 1359 for (i = 0; i < it->output->size; i++) 1360 if (it->output->terminals[i] == outtype) 1361 return uaudio_merge_terminal_list(it); 1362 tml = malloc(TERMINAL_LIST_SIZE(it->output->size + 1), 1363 M_TEMP, M_NOWAIT); 1364 if (tml == NULL) { 1365 aprint_error("uaudio_io_terminaltype: no memory\n"); 1366 return uaudio_merge_terminal_list(it); 1367 } 1368 memcpy(tml, it->output, TERMINAL_LIST_SIZE(it->output->size)); 1369 tml->terminals[it->output->size] = outtype; 1370 tml->size++; 1371 free(it->output, M_TEMP); 1372 it->output = tml; 1373 if (it->inputs != NULL) { 1374 for (i = 0; i < it->inputs_size; i++) 1375 if (it->inputs[i] != NULL) 1376 free(it->inputs[i], M_TEMP); 1377 free(it->inputs, M_TEMP); 1378 } 1379 it->inputs_size = 0; 1380 it->inputs = NULL; 1381 } else { /* end `iot[id] != NULL' */ 1382 it->inputs_size = 0; 1383 it->inputs = NULL; 1384 it->output = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); 1385 if (it->output == NULL) { 1386 aprint_error("uaudio_io_terminaltype: no memory\n"); 1387 return NULL; 1388 } 1389 it->output->terminals[0] = outtype; 1390 it->output->size = 1; 1391 it->direct = FALSE; 1392 } 1393 1394 switch (it->d.desc->bDescriptorSubtype) { 1395 case UDESCSUB_AC_INPUT: 1396 it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); 1397 if (it->inputs == NULL) { 1398 aprint_error("uaudio_io_terminaltype: no memory\n"); 1399 return NULL; 1400 } 1401 tml = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); 1402 if (tml == NULL) { 1403 aprint_error("uaudio_io_terminaltype: no memory\n"); 1404 free(it->inputs, M_TEMP); 1405 it->inputs = NULL; 1406 return NULL; 1407 } 1408 it->inputs[0] = tml; 1409 tml->terminals[0] = UGETW(it->d.it->wTerminalType); 1410 tml->size = 1; 1411 it->inputs_size = 1; 1412 return uaudio_merge_terminal_list(it); 1413 case UDESCSUB_AC_FEATURE: 1414 src_id = it->d.fu->bSourceId; 1415 it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); 1416 if (it->inputs == NULL) { 1417 aprint_error("uaudio_io_terminaltype: no memory\n"); 1418 return uaudio_io_terminaltype(outtype, iot, src_id); 1419 } 1420 it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); 1421 it->inputs_size = 1; 1422 return uaudio_merge_terminal_list(it); 1423 case UDESCSUB_AC_OUTPUT: 1424 it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); 1425 if (it->inputs == NULL) { 1426 aprint_error("uaudio_io_terminaltype: no memory\n"); 1427 return NULL; 1428 } 1429 src_id = it->d.ot->bSourceId; 1430 it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); 1431 it->inputs_size = 1; 1432 iot[src_id].direct = TRUE; 1433 return NULL; 1434 case UDESCSUB_AC_MIXER: 1435 it->inputs_size = 0; 1436 it->inputs = malloc(sizeof(struct terminal_list *) 1437 * it->d.mu->bNrInPins, M_TEMP, M_NOWAIT); 1438 if (it->inputs == NULL) { 1439 aprint_error("uaudio_io_terminaltype: no memory\n"); 1440 return NULL; 1441 } 1442 for (i = 0; i < it->d.mu->bNrInPins; i++) { 1443 src_id = it->d.mu->baSourceId[i]; 1444 it->inputs[i] = uaudio_io_terminaltype(outtype, iot, 1445 src_id); 1446 it->inputs_size++; 1447 } 1448 return uaudio_merge_terminal_list(it); 1449 case UDESCSUB_AC_SELECTOR: 1450 it->inputs_size = 0; 1451 it->inputs = malloc(sizeof(struct terminal_list *) 1452 * it->d.su->bNrInPins, M_TEMP, M_NOWAIT); 1453 if (it->inputs == NULL) { 1454 aprint_error("uaudio_io_terminaltype: no memory\n"); 1455 return NULL; 1456 } 1457 for (i = 0; i < it->d.su->bNrInPins; i++) { 1458 src_id = it->d.su->baSourceId[i]; 1459 it->inputs[i] = uaudio_io_terminaltype(outtype, iot, 1460 src_id); 1461 it->inputs_size++; 1462 } 1463 return uaudio_merge_terminal_list(it); 1464 case UDESCSUB_AC_PROCESSING: 1465 it->inputs_size = 0; 1466 it->inputs = malloc(sizeof(struct terminal_list *) 1467 * it->d.pu->bNrInPins, M_TEMP, M_NOWAIT); 1468 if (it->inputs == NULL) { 1469 aprint_error("uaudio_io_terminaltype: no memory\n"); 1470 return NULL; 1471 } 1472 for (i = 0; i < it->d.pu->bNrInPins; i++) { 1473 src_id = it->d.pu->baSourceId[i]; 1474 it->inputs[i] = uaudio_io_terminaltype(outtype, iot, 1475 src_id); 1476 it->inputs_size++; 1477 } 1478 return uaudio_merge_terminal_list(it); 1479 case UDESCSUB_AC_EXTENSION: 1480 it->inputs_size = 0; 1481 it->inputs = malloc(sizeof(struct terminal_list *) 1482 * it->d.eu->bNrInPins, M_TEMP, M_NOWAIT); 1483 if (it->inputs == NULL) { 1484 aprint_error("uaudio_io_terminaltype: no memory\n"); 1485 return NULL; 1486 } 1487 for (i = 0; i < it->d.eu->bNrInPins; i++) { 1488 src_id = it->d.eu->baSourceId[i]; 1489 it->inputs[i] = uaudio_io_terminaltype(outtype, iot, 1490 src_id); 1491 it->inputs_size++; 1492 } 1493 return uaudio_merge_terminal_list(it); 1494 case UDESCSUB_AC_HEADER: 1495 default: 1496 return NULL; 1497 } 1498 } 1499 1500 Static usbd_status 1501 uaudio_identify(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) 1502 { 1503 usbd_status err; 1504 1505 err = uaudio_identify_ac(sc, cdesc); 1506 if (err) 1507 return err; 1508 return uaudio_identify_as(sc, cdesc); 1509 } 1510 1511 Static void 1512 uaudio_add_alt(struct uaudio_softc *sc, const struct as_info *ai) 1513 { 1514 size_t len; 1515 struct as_info *nai; 1516 1517 len = sizeof(*ai) * (sc->sc_nalts + 1); 1518 nai = kmem_alloc(len, KM_SLEEP); 1519 /* Copy old data, if there was any */ 1520 if (sc->sc_nalts != 0) { 1521 memcpy(nai, sc->sc_alts, sizeof(*ai) * (sc->sc_nalts)); 1522 kmem_free(sc->sc_alts, sizeof(*ai) * sc->sc_nalts); 1523 } 1524 sc->sc_alts = nai; 1525 DPRINTFN(2,"adding alt=%d, enc=%d\n", 1526 ai->alt, ai->encoding); 1527 sc->sc_alts[sc->sc_nalts++] = *ai; 1528 } 1529 1530 Static usbd_status 1531 uaudio_process_as(struct uaudio_softc *sc, const char *tbuf, int *offsp, 1532 int size, const usb_interface_descriptor_t *id) 1533 #define offs (*offsp) 1534 { 1535 const struct usb_audio_streaming_interface_descriptor *asid; 1536 const struct usb_audio_streaming_type1_descriptor *asf1d; 1537 const usb_endpoint_descriptor_audio_t *ed; 1538 const usb_endpoint_descriptor_audio_t *epdesc1; 1539 const struct usb_audio_streaming_endpoint_descriptor *sed; 1540 int format, chan __unused, prec, enc; 1541 int dir, type, sync; 1542 struct as_info ai; 1543 const char *format_str __unused; 1544 1545 asid = (const void *)(tbuf + offs); 1546 if (asid->bDescriptorType != UDESC_CS_INTERFACE || 1547 asid->bDescriptorSubtype != AS_GENERAL) 1548 return USBD_INVAL; 1549 DPRINTF("asid: bTerminalLink=%d wFormatTag=%d\n", 1550 asid->bTerminalLink, UGETW(asid->wFormatTag)); 1551 offs += asid->bLength; 1552 if (offs > size) 1553 return USBD_INVAL; 1554 1555 asf1d = (const void *)(tbuf + offs); 1556 if (asf1d->bDescriptorType != UDESC_CS_INTERFACE || 1557 asf1d->bDescriptorSubtype != FORMAT_TYPE) 1558 return USBD_INVAL; 1559 offs += asf1d->bLength; 1560 if (offs > size) 1561 return USBD_INVAL; 1562 1563 if (asf1d->bFormatType != FORMAT_TYPE_I) { 1564 aprint_normal_dev(sc->sc_dev, 1565 "ignored setting with type %d format\n", UGETW(asid->wFormatTag)); 1566 return USBD_NORMAL_COMPLETION; 1567 } 1568 1569 ed = (const void *)(tbuf + offs); 1570 if (ed->bDescriptorType != UDESC_ENDPOINT) 1571 return USBD_INVAL; 1572 DPRINTF("endpoint[0] bLength=%d bDescriptorType=%d " 1573 "bEndpointAddress=%d bmAttributes=%#x wMaxPacketSize=%d " 1574 "bInterval=%d bRefresh=%d bSynchAddress=%d\n", 1575 ed->bLength, ed->bDescriptorType, ed->bEndpointAddress, 1576 ed->bmAttributes, UGETW(ed->wMaxPacketSize), 1577 ed->bInterval, ed->bRefresh, ed->bSynchAddress); 1578 offs += ed->bLength; 1579 if (offs > size) 1580 return USBD_INVAL; 1581 if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS) 1582 return USBD_INVAL; 1583 1584 dir = UE_GET_DIR(ed->bEndpointAddress); 1585 type = UE_GET_ISO_TYPE(ed->bmAttributes); 1586 if ((usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_INP_ASYNC) && 1587 dir == UE_DIR_IN && type == UE_ISO_ADAPT) 1588 type = UE_ISO_ASYNC; 1589 1590 /* We can't handle endpoints that need a sync pipe yet. */ 1591 sync = FALSE; 1592 if (dir == UE_DIR_IN && type == UE_ISO_ADAPT) { 1593 sync = TRUE; 1594 #ifndef UAUDIO_MULTIPLE_ENDPOINTS 1595 aprint_normal_dev(sc->sc_dev, 1596 "ignored input endpoint of type adaptive\n"); 1597 return USBD_NORMAL_COMPLETION; 1598 #endif 1599 } 1600 if (dir != UE_DIR_IN && type == UE_ISO_ASYNC) { 1601 sync = TRUE; 1602 #ifndef UAUDIO_MULTIPLE_ENDPOINTS 1603 aprint_normal_dev(sc->sc_dev, 1604 "ignored output endpoint of type async\n"); 1605 return USBD_NORMAL_COMPLETION; 1606 #endif 1607 } 1608 1609 sed = (const void *)(tbuf + offs); 1610 if (sed->bDescriptorType != UDESC_CS_ENDPOINT || 1611 sed->bDescriptorSubtype != AS_GENERAL) 1612 return USBD_INVAL; 1613 DPRINTF(" streadming_endpoint: offset=%d bLength=%d\n", offs, sed->bLength); 1614 offs += sed->bLength; 1615 if (offs > size) 1616 return USBD_INVAL; 1617 1618 #ifdef UAUDIO_MULTIPLE_ENDPOINTS 1619 if (sync && id->bNumEndpoints <= 1) { 1620 aprint_error_dev(sc->sc_dev, 1621 "a sync-pipe endpoint but no other endpoint\n"); 1622 return USBD_INVAL; 1623 } 1624 #endif 1625 if (!sync && id->bNumEndpoints > 1) { 1626 aprint_error_dev(sc->sc_dev, 1627 "non sync-pipe endpoint but multiple endpoints\n"); 1628 return USBD_INVAL; 1629 } 1630 epdesc1 = NULL; 1631 if (id->bNumEndpoints > 1) { 1632 epdesc1 = (const void*)(tbuf + offs); 1633 if (epdesc1->bDescriptorType != UDESC_ENDPOINT) 1634 return USBD_INVAL; 1635 DPRINTF("endpoint[1] bLength=%d " 1636 "bDescriptorType=%d bEndpointAddress=%d " 1637 "bmAttributes=%#x wMaxPacketSize=%d bInterval=%d " 1638 "bRefresh=%d bSynchAddress=%d\n", 1639 epdesc1->bLength, epdesc1->bDescriptorType, 1640 epdesc1->bEndpointAddress, epdesc1->bmAttributes, 1641 UGETW(epdesc1->wMaxPacketSize), epdesc1->bInterval, 1642 epdesc1->bRefresh, epdesc1->bSynchAddress); 1643 offs += epdesc1->bLength; 1644 if (offs > size) 1645 return USBD_INVAL; 1646 if (epdesc1->bSynchAddress != 0) { 1647 aprint_error_dev(sc->sc_dev, 1648 "invalid endpoint: bSynchAddress=0\n"); 1649 return USBD_INVAL; 1650 } 1651 if (UE_GET_XFERTYPE(epdesc1->bmAttributes) != UE_ISOCHRONOUS) { 1652 aprint_error_dev(sc->sc_dev, 1653 "invalid endpoint: bmAttributes=%#x\n", 1654 epdesc1->bmAttributes); 1655 return USBD_INVAL; 1656 } 1657 if (epdesc1->bEndpointAddress != ed->bSynchAddress) { 1658 aprint_error_dev(sc->sc_dev, 1659 "invalid endpoint addresses: " 1660 "ep[0]->bSynchAddress=%#x " 1661 "ep[1]->bEndpointAddress=%#x\n", 1662 ed->bSynchAddress, epdesc1->bEndpointAddress); 1663 return USBD_INVAL; 1664 } 1665 /* UE_GET_ADDR(epdesc1->bEndpointAddress), and epdesc1->bRefresh */ 1666 } 1667 1668 format = UGETW(asid->wFormatTag); 1669 chan = asf1d->bNrChannels; 1670 prec = asf1d->bBitResolution; 1671 if (prec != 8 && prec != 16 && prec != 24) { 1672 aprint_normal_dev(sc->sc_dev, 1673 "ignored setting with precision %d\n", prec); 1674 return USBD_NORMAL_COMPLETION; 1675 } 1676 switch (format) { 1677 case UA_FMT_PCM: 1678 if (prec == 8) { 1679 sc->sc_altflags |= HAS_8; 1680 } else if (prec == 16) { 1681 sc->sc_altflags |= HAS_16; 1682 } else if (prec == 24) { 1683 sc->sc_altflags |= HAS_24; 1684 } 1685 enc = AUDIO_ENCODING_SLINEAR_LE; 1686 format_str = "pcm"; 1687 break; 1688 case UA_FMT_PCM8: 1689 enc = AUDIO_ENCODING_ULINEAR_LE; 1690 sc->sc_altflags |= HAS_8U; 1691 format_str = "pcm8"; 1692 break; 1693 case UA_FMT_ALAW: 1694 enc = AUDIO_ENCODING_ALAW; 1695 sc->sc_altflags |= HAS_ALAW; 1696 format_str = "alaw"; 1697 break; 1698 case UA_FMT_MULAW: 1699 enc = AUDIO_ENCODING_ULAW; 1700 sc->sc_altflags |= HAS_MULAW; 1701 format_str = "mulaw"; 1702 break; 1703 case UA_FMT_IEEE_FLOAT: 1704 default: 1705 aprint_normal_dev(sc->sc_dev, 1706 "ignored setting with format %d\n", format); 1707 return USBD_NORMAL_COMPLETION; 1708 } 1709 #ifdef UAUDIO_DEBUG 1710 aprint_debug_dev(sc->sc_dev, "%s: %dch, %d/%dbit, %s,", 1711 dir == UE_DIR_IN ? "recording" : "playback", 1712 chan, prec, asf1d->bSubFrameSize * 8, format_str); 1713 if (asf1d->bSamFreqType == UA_SAMP_CONTNUOUS) { 1714 aprint_debug(" %d-%dHz\n", UA_SAMP_LO(asf1d), 1715 UA_SAMP_HI(asf1d)); 1716 } else { 1717 int r; 1718 aprint_debug(" %d", UA_GETSAMP(asf1d, 0)); 1719 for (r = 1; r < asf1d->bSamFreqType; r++) 1720 aprint_debug(",%d", UA_GETSAMP(asf1d, r)); 1721 aprint_debug("Hz\n"); 1722 } 1723 #endif 1724 ai.alt = id->bAlternateSetting; 1725 ai.encoding = enc; 1726 ai.attributes = sed->bmAttributes; 1727 ai.idesc = id; 1728 ai.edesc = ed; 1729 ai.edesc1 = epdesc1; 1730 ai.asf1desc = asf1d; 1731 ai.sc_busy = 0; 1732 ai.aformat = NULL; 1733 ai.ifaceh = NULL; 1734 uaudio_add_alt(sc, &ai); 1735 #ifdef UAUDIO_DEBUG 1736 if (ai.attributes & UA_SED_FREQ_CONTROL) 1737 DPRINTFN(1, "%s", "FREQ_CONTROL\n"); 1738 if (ai.attributes & UA_SED_PITCH_CONTROL) 1739 DPRINTFN(1, "%s", "PITCH_CONTROL\n"); 1740 #endif 1741 sc->sc_mode |= (dir == UE_DIR_OUT) ? AUMODE_PLAY : AUMODE_RECORD; 1742 1743 return USBD_NORMAL_COMPLETION; 1744 } 1745 #undef offs 1746 1747 Static usbd_status 1748 uaudio_identify_as(struct uaudio_softc *sc, 1749 const usb_config_descriptor_t *cdesc) 1750 { 1751 const usb_interface_descriptor_t *id; 1752 const char *tbuf; 1753 struct audio_format *auf; 1754 const struct usb_audio_streaming_type1_descriptor *t1desc; 1755 int size, offs; 1756 int i, j; 1757 1758 size = UGETW(cdesc->wTotalLength); 1759 tbuf = (const char *)cdesc; 1760 1761 /* Locate the AudioStreaming interface descriptor. */ 1762 offs = 0; 1763 id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOSTREAM); 1764 if (id == NULL) 1765 return USBD_INVAL; 1766 1767 /* Loop through all the alternate settings. */ 1768 while (offs <= size) { 1769 DPRINTFN(2, "interface=%d offset=%d\n", 1770 id->bInterfaceNumber, offs); 1771 switch (id->bNumEndpoints) { 1772 case 0: 1773 DPRINTFN(2, "AS null alt=%d\n", 1774 id->bAlternateSetting); 1775 sc->sc_nullalt = id->bAlternateSetting; 1776 break; 1777 case 1: 1778 #ifdef UAUDIO_MULTIPLE_ENDPOINTS 1779 case 2: 1780 #endif 1781 uaudio_process_as(sc, tbuf, &offs, size, id); 1782 break; 1783 default: 1784 aprint_error_dev(sc->sc_dev, 1785 "ignored audio interface with %d endpoints\n", 1786 id->bNumEndpoints); 1787 break; 1788 } 1789 id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOSTREAM); 1790 if (id == NULL) 1791 break; 1792 } 1793 if (offs > size) 1794 return USBD_INVAL; 1795 DPRINTF("%d alts available\n", sc->sc_nalts); 1796 1797 if (sc->sc_mode == 0) { 1798 aprint_error_dev(sc->sc_dev, "no usable endpoint found\n"); 1799 return USBD_INVAL; 1800 } 1801 1802 /* build audio_format array */ 1803 sc->sc_formats = kmem_zalloc(sizeof(struct audio_format) * sc->sc_nalts, 1804 KM_SLEEP); 1805 sc->sc_nformats = sc->sc_nalts; 1806 for (i = 0; i < sc->sc_nalts; i++) { 1807 auf = &sc->sc_formats[i]; 1808 t1desc = sc->sc_alts[i].asf1desc; 1809 if (UE_GET_DIR(sc->sc_alts[i].edesc->bEndpointAddress) == UE_DIR_OUT) 1810 auf->mode = AUMODE_PLAY; 1811 else 1812 auf->mode = AUMODE_RECORD; 1813 auf->encoding = sc->sc_alts[i].encoding; 1814 auf->validbits = t1desc->bBitResolution; 1815 auf->precision = t1desc->bSubFrameSize * 8; 1816 auf->channels = t1desc->bNrChannels; 1817 auf->channel_mask = sc->sc_channel_config; 1818 auf->frequency_type = t1desc->bSamFreqType; 1819 if (t1desc->bSamFreqType == UA_SAMP_CONTNUOUS) { 1820 auf->frequency[0] = UA_SAMP_LO(t1desc); 1821 auf->frequency[1] = UA_SAMP_HI(t1desc); 1822 } else { 1823 for (j = 0; j < t1desc->bSamFreqType; j++) { 1824 if (j >= AUFMT_MAX_FREQUENCIES) { 1825 aprint_error("%s: please increase " 1826 "AUFMT_MAX_FREQUENCIES to %d\n", 1827 __func__, t1desc->bSamFreqType); 1828 auf->frequency_type = 1829 AUFMT_MAX_FREQUENCIES; 1830 break; 1831 } 1832 auf->frequency[j] = UA_GETSAMP(t1desc, j); 1833 } 1834 } 1835 sc->sc_alts[i].aformat = auf; 1836 } 1837 1838 return USBD_NORMAL_COMPLETION; 1839 } 1840 1841 #ifdef UAUDIO_DEBUG 1842 Static void 1843 uaudio_dump_tml(struct terminal_list *tml) { 1844 if (tml == NULL) { 1845 printf("NULL"); 1846 } else { 1847 int i; 1848 for (i = 0; i < tml->size; i++) 1849 printf("%s ", uaudio_get_terminal_name 1850 (tml->terminals[i])); 1851 } 1852 printf("\n"); 1853 } 1854 #endif 1855 1856 Static usbd_status 1857 uaudio_identify_ac(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) 1858 { 1859 struct io_terminal* iot; 1860 const usb_interface_descriptor_t *id; 1861 const struct usb_audio_control_descriptor *acdp; 1862 const uaudio_cs_descriptor_t *dp; 1863 const struct usb_audio_output_terminal *pot; 1864 struct terminal_list *tml; 1865 const char *tbuf, *ibuf, *ibufend; 1866 int size, offs, ndps, i, j; 1867 1868 size = UGETW(cdesc->wTotalLength); 1869 tbuf = (const char *)cdesc; 1870 1871 /* Locate the AudioControl interface descriptor. */ 1872 offs = 0; 1873 id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOCONTROL); 1874 if (id == NULL) 1875 return USBD_INVAL; 1876 if (offs + sizeof(*acdp) > size) 1877 return USBD_INVAL; 1878 sc->sc_ac_iface = id->bInterfaceNumber; 1879 DPRINTFN(2,"AC interface is %d\n", sc->sc_ac_iface); 1880 1881 /* A class-specific AC interface header should follow. */ 1882 ibuf = tbuf + offs; 1883 ibufend = tbuf + size; 1884 acdp = (const struct usb_audio_control_descriptor *)ibuf; 1885 if (acdp->bDescriptorType != UDESC_CS_INTERFACE || 1886 acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER) 1887 return USBD_INVAL; 1888 1889 if (!(usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_BAD_ADC) && 1890 UGETW(acdp->bcdADC) != UAUDIO_VERSION) 1891 return USBD_INVAL; 1892 1893 sc->sc_audio_rev = UGETW(acdp->bcdADC); 1894 DPRINTFN(2, "found AC header, vers=%03x\n", sc->sc_audio_rev); 1895 1896 sc->sc_nullalt = -1; 1897 1898 /* Scan through all the AC specific descriptors */ 1899 dp = (const uaudio_cs_descriptor_t *)ibuf; 1900 ndps = 0; 1901 iot = malloc(sizeof(struct io_terminal) * 256, M_TEMP, M_NOWAIT | M_ZERO); 1902 if (iot == NULL) { 1903 aprint_error("%s: no memory\n", __func__); 1904 return USBD_NOMEM; 1905 } 1906 for (;;) { 1907 ibuf += dp->bLength; 1908 if (ibuf >= ibufend) 1909 break; 1910 dp = (const uaudio_cs_descriptor_t *)ibuf; 1911 if (ibuf + dp->bLength > ibufend) { 1912 free(iot, M_TEMP); 1913 return USBD_INVAL; 1914 } 1915 if (dp->bDescriptorType != UDESC_CS_INTERFACE) 1916 break; 1917 i = ((const struct usb_audio_input_terminal *)dp)->bTerminalId; 1918 iot[i].d.desc = dp; 1919 if (i > ndps) 1920 ndps = i; 1921 } 1922 ndps++; 1923 1924 /* construct io_terminal */ 1925 for (i = 0; i < ndps; i++) { 1926 dp = iot[i].d.desc; 1927 if (dp == NULL) 1928 continue; 1929 if (dp->bDescriptorSubtype != UDESCSUB_AC_OUTPUT) 1930 continue; 1931 pot = iot[i].d.ot; 1932 tml = uaudio_io_terminaltype(UGETW(pot->wTerminalType), iot, i); 1933 if (tml != NULL) 1934 free(tml, M_TEMP); 1935 } 1936 1937 #ifdef UAUDIO_DEBUG 1938 for (i = 0; i < 256; i++) { 1939 struct usb_audio_cluster cluster; 1940 1941 if (iot[i].d.desc == NULL) 1942 continue; 1943 printf("id %d:\t", i); 1944 switch (iot[i].d.desc->bDescriptorSubtype) { 1945 case UDESCSUB_AC_INPUT: 1946 printf("AC_INPUT type=%s\n", uaudio_get_terminal_name 1947 (UGETW(iot[i].d.it->wTerminalType))); 1948 printf("\t"); 1949 cluster = uaudio_get_cluster(i, iot); 1950 uaudio_dump_cluster(&cluster); 1951 printf("\n"); 1952 break; 1953 case UDESCSUB_AC_OUTPUT: 1954 printf("AC_OUTPUT type=%s ", uaudio_get_terminal_name 1955 (UGETW(iot[i].d.ot->wTerminalType))); 1956 printf("src=%d\n", iot[i].d.ot->bSourceId); 1957 break; 1958 case UDESCSUB_AC_MIXER: 1959 printf("AC_MIXER src="); 1960 for (j = 0; j < iot[i].d.mu->bNrInPins; j++) 1961 printf("%d ", iot[i].d.mu->baSourceId[j]); 1962 printf("\n\t"); 1963 cluster = uaudio_get_cluster(i, iot); 1964 uaudio_dump_cluster(&cluster); 1965 printf("\n"); 1966 break; 1967 case UDESCSUB_AC_SELECTOR: 1968 printf("AC_SELECTOR src="); 1969 for (j = 0; j < iot[i].d.su->bNrInPins; j++) 1970 printf("%d ", iot[i].d.su->baSourceId[j]); 1971 printf("\n"); 1972 break; 1973 case UDESCSUB_AC_FEATURE: 1974 printf("AC_FEATURE src=%d\n", iot[i].d.fu->bSourceId); 1975 break; 1976 case UDESCSUB_AC_PROCESSING: 1977 printf("AC_PROCESSING src="); 1978 for (j = 0; j < iot[i].d.pu->bNrInPins; j++) 1979 printf("%d ", iot[i].d.pu->baSourceId[j]); 1980 printf("\n\t"); 1981 cluster = uaudio_get_cluster(i, iot); 1982 uaudio_dump_cluster(&cluster); 1983 printf("\n"); 1984 break; 1985 case UDESCSUB_AC_EXTENSION: 1986 printf("AC_EXTENSION src="); 1987 for (j = 0; j < iot[i].d.eu->bNrInPins; j++) 1988 printf("%d ", iot[i].d.eu->baSourceId[j]); 1989 printf("\n\t"); 1990 cluster = uaudio_get_cluster(i, iot); 1991 uaudio_dump_cluster(&cluster); 1992 printf("\n"); 1993 break; 1994 default: 1995 printf("unknown audio control (subtype=%d)\n", 1996 iot[i].d.desc->bDescriptorSubtype); 1997 } 1998 for (j = 0; j < iot[i].inputs_size; j++) { 1999 printf("\tinput%d: ", j); 2000 uaudio_dump_tml(iot[i].inputs[j]); 2001 } 2002 printf("\toutput: "); 2003 uaudio_dump_tml(iot[i].output); 2004 } 2005 #endif 2006 2007 for (i = 0; i < ndps; i++) { 2008 dp = iot[i].d.desc; 2009 if (dp == NULL) 2010 continue; 2011 DPRINTF("id=%d subtype=%d\n", i, dp->bDescriptorSubtype); 2012 switch (dp->bDescriptorSubtype) { 2013 case UDESCSUB_AC_HEADER: 2014 aprint_error("uaudio_identify_ac: unexpected AC header\n"); 2015 break; 2016 case UDESCSUB_AC_INPUT: 2017 uaudio_add_input(sc, iot, i); 2018 break; 2019 case UDESCSUB_AC_OUTPUT: 2020 uaudio_add_output(sc, iot, i); 2021 break; 2022 case UDESCSUB_AC_MIXER: 2023 uaudio_add_mixer(sc, iot, i); 2024 break; 2025 case UDESCSUB_AC_SELECTOR: 2026 uaudio_add_selector(sc, iot, i); 2027 break; 2028 case UDESCSUB_AC_FEATURE: 2029 uaudio_add_feature(sc, iot, i); 2030 break; 2031 case UDESCSUB_AC_PROCESSING: 2032 uaudio_add_processing(sc, iot, i); 2033 break; 2034 case UDESCSUB_AC_EXTENSION: 2035 uaudio_add_extension(sc, iot, i); 2036 break; 2037 default: 2038 aprint_error( 2039 "uaudio_identify_ac: bad AC desc subtype=0x%02x\n", 2040 dp->bDescriptorSubtype); 2041 break; 2042 } 2043 } 2044 2045 /* delete io_terminal */ 2046 for (i = 0; i < 256; i++) { 2047 if (iot[i].d.desc == NULL) 2048 continue; 2049 if (iot[i].inputs != NULL) { 2050 for (j = 0; j < iot[i].inputs_size; j++) { 2051 if (iot[i].inputs[j] != NULL) 2052 free(iot[i].inputs[j], M_TEMP); 2053 } 2054 free(iot[i].inputs, M_TEMP); 2055 } 2056 if (iot[i].output != NULL) 2057 free(iot[i].output, M_TEMP); 2058 iot[i].d.desc = NULL; 2059 } 2060 free(iot, M_TEMP); 2061 2062 return USBD_NORMAL_COMPLETION; 2063 } 2064 2065 Static int 2066 uaudio_query_devinfo(void *addr, mixer_devinfo_t *mi) 2067 { 2068 struct uaudio_softc *sc; 2069 struct mixerctl *mc; 2070 int n, nctls, i; 2071 2072 DPRINTFN(7, "index=%d\n", mi->index); 2073 sc = addr; 2074 if (sc->sc_dying) 2075 return EIO; 2076 2077 n = mi->index; 2078 nctls = sc->sc_nctls; 2079 2080 switch (n) { 2081 case UAC_OUTPUT: 2082 mi->type = AUDIO_MIXER_CLASS; 2083 mi->mixer_class = UAC_OUTPUT; 2084 mi->next = mi->prev = AUDIO_MIXER_LAST; 2085 strlcpy(mi->label.name, AudioCoutputs, sizeof(mi->label.name)); 2086 return 0; 2087 case UAC_INPUT: 2088 mi->type = AUDIO_MIXER_CLASS; 2089 mi->mixer_class = UAC_INPUT; 2090 mi->next = mi->prev = AUDIO_MIXER_LAST; 2091 strlcpy(mi->label.name, AudioCinputs, sizeof(mi->label.name)); 2092 return 0; 2093 case UAC_EQUAL: 2094 mi->type = AUDIO_MIXER_CLASS; 2095 mi->mixer_class = UAC_EQUAL; 2096 mi->next = mi->prev = AUDIO_MIXER_LAST; 2097 strlcpy(mi->label.name, AudioCequalization, 2098 sizeof(mi->label.name)); 2099 return 0; 2100 case UAC_RECORD: 2101 mi->type = AUDIO_MIXER_CLASS; 2102 mi->mixer_class = UAC_RECORD; 2103 mi->next = mi->prev = AUDIO_MIXER_LAST; 2104 strlcpy(mi->label.name, AudioCrecord, sizeof(mi->label.name)); 2105 return 0; 2106 default: 2107 break; 2108 } 2109 2110 n -= UAC_NCLASSES; 2111 if (n < 0 || n >= nctls) 2112 return ENXIO; 2113 2114 mc = &sc->sc_ctls[n]; 2115 strlcpy(mi->label.name, mc->ctlname, sizeof(mi->label.name)); 2116 mi->mixer_class = mc->class; 2117 mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */ 2118 switch (mc->type) { 2119 case MIX_ON_OFF: 2120 mi->type = AUDIO_MIXER_ENUM; 2121 mi->un.e.num_mem = 2; 2122 strlcpy(mi->un.e.member[0].label.name, AudioNoff, 2123 sizeof(mi->un.e.member[0].label.name)); 2124 mi->un.e.member[0].ord = 0; 2125 strlcpy(mi->un.e.member[1].label.name, AudioNon, 2126 sizeof(mi->un.e.member[1].label.name)); 2127 mi->un.e.member[1].ord = 1; 2128 break; 2129 case MIX_SELECTOR: 2130 mi->type = AUDIO_MIXER_ENUM; 2131 mi->un.e.num_mem = mc->maxval - mc->minval + 1; 2132 for (i = 0; i <= mc->maxval - mc->minval; i++) { 2133 snprintf(mi->un.e.member[i].label.name, 2134 sizeof(mi->un.e.member[i].label.name), 2135 "%d", i + mc->minval); 2136 mi->un.e.member[i].ord = i + mc->minval; 2137 } 2138 break; 2139 default: 2140 mi->type = AUDIO_MIXER_VALUE; 2141 strncpy(mi->un.v.units.name, mc->ctlunit, MAX_AUDIO_DEV_LEN); 2142 mi->un.v.num_channels = mc->nchan; 2143 mi->un.v.delta = mc->delta; 2144 break; 2145 } 2146 return 0; 2147 } 2148 2149 Static int 2150 uaudio_open(void *addr, int flags) 2151 { 2152 struct uaudio_softc *sc; 2153 2154 sc = addr; 2155 DPRINTF("sc=%p\n", sc); 2156 if (sc->sc_dying) 2157 return EIO; 2158 2159 if ((flags & FWRITE) && !(sc->sc_mode & AUMODE_PLAY)) 2160 return EACCES; 2161 if ((flags & FREAD) && !(sc->sc_mode & AUMODE_RECORD)) 2162 return EACCES; 2163 2164 return 0; 2165 } 2166 2167 Static int 2168 uaudio_halt_out_dma(void *addr) 2169 { 2170 struct uaudio_softc *sc = addr; 2171 2172 DPRINTF("%s", "enter\n"); 2173 2174 mutex_exit(&sc->sc_intr_lock); 2175 uaudio_halt_out_dma_unlocked(sc); 2176 mutex_enter(&sc->sc_intr_lock); 2177 2178 return 0; 2179 } 2180 2181 Static void 2182 uaudio_halt_out_dma_unlocked(struct uaudio_softc *sc) 2183 { 2184 if (sc->sc_playchan.pipe != NULL) { 2185 uaudio_chan_abort(sc, &sc->sc_playchan); 2186 uaudio_chan_free_buffers(sc, &sc->sc_playchan); 2187 uaudio_chan_close(sc, &sc->sc_playchan); 2188 sc->sc_playchan.intr = NULL; 2189 } 2190 } 2191 2192 Static int 2193 uaudio_halt_in_dma(void *addr) 2194 { 2195 struct uaudio_softc *sc = addr; 2196 2197 DPRINTF("%s", "enter\n"); 2198 2199 mutex_exit(&sc->sc_intr_lock); 2200 uaudio_halt_in_dma_unlocked(sc); 2201 mutex_enter(&sc->sc_intr_lock); 2202 2203 return 0; 2204 } 2205 2206 Static void 2207 uaudio_halt_in_dma_unlocked(struct uaudio_softc *sc) 2208 { 2209 if (sc->sc_recchan.pipe != NULL) { 2210 uaudio_chan_abort(sc, &sc->sc_recchan); 2211 uaudio_chan_free_buffers(sc, &sc->sc_recchan); 2212 uaudio_chan_close(sc, &sc->sc_recchan); 2213 sc->sc_recchan.intr = NULL; 2214 } 2215 } 2216 2217 Static int 2218 uaudio_getdev(void *addr, struct audio_device *retp) 2219 { 2220 struct uaudio_softc *sc; 2221 2222 DPRINTF("%s", "\n"); 2223 sc = addr; 2224 if (sc->sc_dying) 2225 return EIO; 2226 2227 *retp = sc->sc_adev; 2228 return 0; 2229 } 2230 2231 /* 2232 * Make sure the block size is large enough to hold all outstanding transfers. 2233 */ 2234 Static int 2235 uaudio_round_blocksize(void *addr, int blk, 2236 int mode, const audio_params_t *param) 2237 { 2238 struct uaudio_softc *sc; 2239 int b; 2240 2241 sc = addr; 2242 DPRINTF("blk=%d mode=%s\n", blk, 2243 mode == AUMODE_PLAY ? "AUMODE_PLAY" : "AUMODE_RECORD"); 2244 2245 /* chan.bytes_per_frame can be 0. */ 2246 if (mode == AUMODE_PLAY || sc->sc_recchan.bytes_per_frame <= 0) { 2247 b = param->sample_rate * UAUDIO_NFRAMES * UAUDIO_NCHANBUFS; 2248 2249 /* 2250 * This does not make accurate value in the case 2251 * of b % USB_FRAMES_PER_SECOND != 0 2252 */ 2253 b /= USB_FRAMES_PER_SECOND; 2254 2255 b *= param->precision / 8 * param->channels; 2256 } else { 2257 /* 2258 * use wMaxPacketSize in bytes_per_frame. 2259 * See uaudio_set_format() and uaudio_chan_init() 2260 */ 2261 b = sc->sc_recchan.bytes_per_frame 2262 * UAUDIO_NFRAMES * UAUDIO_NCHANBUFS; 2263 } 2264 2265 if (b <= 0) 2266 b = 1; 2267 blk = blk <= b ? b : blk / b * b; 2268 2269 #ifdef DIAGNOSTIC 2270 if (blk <= 0) { 2271 aprint_debug("uaudio_round_blocksize: blk=%d\n", blk); 2272 blk = 512; 2273 } 2274 #endif 2275 2276 DPRINTF("resultant blk=%d\n", blk); 2277 return blk; 2278 } 2279 2280 Static int 2281 uaudio_get_props(void *addr) 2282 { 2283 struct uaudio_softc *sc; 2284 int props; 2285 2286 sc = addr; 2287 props = 0; 2288 if ((sc->sc_mode & AUMODE_PLAY)) 2289 props |= AUDIO_PROP_PLAYBACK; 2290 if ((sc->sc_mode & AUMODE_RECORD)) 2291 props |= AUDIO_PROP_CAPTURE; 2292 2293 /* XXX I'm not sure all bidirectional devices support FULLDUP&INDEP */ 2294 if (props == (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE)) 2295 props |= AUDIO_PROP_FULLDUPLEX | AUDIO_PROP_INDEPENDENT; 2296 2297 return props; 2298 } 2299 2300 Static void 2301 uaudio_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) 2302 { 2303 struct uaudio_softc *sc; 2304 2305 sc = addr; 2306 *intr = &sc->sc_intr_lock; 2307 *thread = &sc->sc_lock; 2308 } 2309 2310 Static int 2311 uaudio_get(struct uaudio_softc *sc, int which, int type, int wValue, 2312 int wIndex, int len) 2313 { 2314 usb_device_request_t req; 2315 uint8_t data[4]; 2316 usbd_status err; 2317 int val; 2318 2319 if (wValue == -1) 2320 return 0; 2321 2322 req.bmRequestType = type; 2323 req.bRequest = which; 2324 USETW(req.wValue, wValue); 2325 USETW(req.wIndex, wIndex); 2326 USETW(req.wLength, len); 2327 DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x " 2328 "wIndex=0x%04x len=%d\n", 2329 type, which, wValue, wIndex, len); 2330 err = usbd_do_request(sc->sc_udev, &req, data); 2331 if (err) { 2332 DPRINTF("err=%s\n", usbd_errstr(err)); 2333 return -1; 2334 } 2335 switch (len) { 2336 case 1: 2337 val = data[0]; 2338 break; 2339 case 2: 2340 val = data[0] | (data[1] << 8); 2341 break; 2342 default: 2343 DPRINTF("bad length=%d\n", len); 2344 return -1; 2345 } 2346 DPRINTFN(2,"val=%d\n", val); 2347 return val; 2348 } 2349 2350 Static void 2351 uaudio_set(struct uaudio_softc *sc, int which, int type, int wValue, 2352 int wIndex, int len, int val) 2353 { 2354 usb_device_request_t req; 2355 uint8_t data[4]; 2356 int err __unused; 2357 2358 if (wValue == -1) 2359 return; 2360 2361 req.bmRequestType = type; 2362 req.bRequest = which; 2363 USETW(req.wValue, wValue); 2364 USETW(req.wIndex, wIndex); 2365 USETW(req.wLength, len); 2366 switch (len) { 2367 case 1: 2368 data[0] = val; 2369 break; 2370 case 2: 2371 data[0] = val; 2372 data[1] = val >> 8; 2373 break; 2374 default: 2375 return; 2376 } 2377 DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x " 2378 "wIndex=0x%04x len=%d, val=%d\n", 2379 type, which, wValue, wIndex, len, val & 0xffff); 2380 err = usbd_do_request(sc->sc_udev, &req, data); 2381 #ifdef UAUDIO_DEBUG 2382 if (err) 2383 DPRINTF("err=%d\n", err); 2384 #endif 2385 } 2386 2387 Static int 2388 uaudio_signext(int type, int val) 2389 { 2390 if (!MIX_UNSIGNED(type)) { 2391 if (MIX_SIZE(type) == 2) 2392 val = (int16_t)val; 2393 else 2394 val = (int8_t)val; 2395 } 2396 return val; 2397 } 2398 2399 Static int 2400 uaudio_value2bsd(struct mixerctl *mc, int val) 2401 { 2402 DPRINTFN(5, "type=%03x val=%d min=%d max=%d ", 2403 mc->type, val, mc->minval, mc->maxval); 2404 if (mc->type == MIX_ON_OFF) { 2405 val = (val != 0); 2406 } else if (mc->type == MIX_SELECTOR) { 2407 if (val < mc->minval || val > mc->maxval) 2408 val = mc->minval; 2409 } else 2410 val = ((uaudio_signext(mc->type, val) - mc->minval) * 255 2411 + mc->mul/2) / mc->mul; 2412 DPRINTFN_CLEAN(5, "val'=%d\n", val); 2413 return val; 2414 } 2415 2416 int 2417 uaudio_bsd2value(struct mixerctl *mc, int val) 2418 { 2419 DPRINTFN(5,"type=%03x val=%d min=%d max=%d ", 2420 mc->type, val, mc->minval, mc->maxval); 2421 if (mc->type == MIX_ON_OFF) { 2422 val = (val != 0); 2423 } else if (mc->type == MIX_SELECTOR) { 2424 if (val < mc->minval || val > mc->maxval) 2425 val = mc->minval; 2426 } else 2427 val = (val + mc->delta/2) * mc->mul / 255 + mc->minval; 2428 DPRINTFN_CLEAN(5, "val'=%d\n", val); 2429 return val; 2430 } 2431 2432 Static int 2433 uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc, 2434 int chan) 2435 { 2436 int val; 2437 2438 DPRINTFN(5,"which=%d chan=%d\n", which, chan); 2439 mutex_exit(&sc->sc_lock); 2440 val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan], 2441 mc->wIndex, MIX_SIZE(mc->type)); 2442 mutex_enter(&sc->sc_lock); 2443 return uaudio_value2bsd(mc, val); 2444 } 2445 2446 Static void 2447 uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc, 2448 int chan, int val) 2449 { 2450 2451 val = uaudio_bsd2value(mc, val); 2452 mutex_exit(&sc->sc_lock); 2453 uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan], 2454 mc->wIndex, MIX_SIZE(mc->type), val); 2455 mutex_enter(&sc->sc_lock); 2456 } 2457 2458 Static int 2459 uaudio_mixer_get_port(void *addr, mixer_ctrl_t *cp) 2460 { 2461 struct uaudio_softc *sc; 2462 struct mixerctl *mc; 2463 int i, n, vals[MIX_MAX_CHAN], val; 2464 2465 DPRINTFN(2, "index=%d\n", cp->dev); 2466 sc = addr; 2467 if (sc->sc_dying) 2468 return EIO; 2469 2470 n = cp->dev - UAC_NCLASSES; 2471 if (n < 0 || n >= sc->sc_nctls) 2472 return ENXIO; 2473 mc = &sc->sc_ctls[n]; 2474 2475 if (mc->type == MIX_ON_OFF) { 2476 if (cp->type != AUDIO_MIXER_ENUM) 2477 return EINVAL; 2478 cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); 2479 } else if (mc->type == MIX_SELECTOR) { 2480 if (cp->type != AUDIO_MIXER_ENUM) 2481 return EINVAL; 2482 cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); 2483 } else { 2484 if (cp->type != AUDIO_MIXER_VALUE) 2485 return EINVAL; 2486 if (cp->un.value.num_channels != 1 && 2487 cp->un.value.num_channels != mc->nchan) 2488 return EINVAL; 2489 for (i = 0; i < mc->nchan; i++) 2490 vals[i] = uaudio_ctl_get(sc, GET_CUR, mc, i); 2491 if (cp->un.value.num_channels == 1 && mc->nchan != 1) { 2492 for (val = 0, i = 0; i < mc->nchan; i++) 2493 val += vals[i]; 2494 vals[0] = val / mc->nchan; 2495 } 2496 for (i = 0; i < cp->un.value.num_channels; i++) 2497 cp->un.value.level[i] = vals[i]; 2498 } 2499 2500 return 0; 2501 } 2502 2503 Static int 2504 uaudio_mixer_set_port(void *addr, mixer_ctrl_t *cp) 2505 { 2506 struct uaudio_softc *sc; 2507 struct mixerctl *mc; 2508 int i, n, vals[MIX_MAX_CHAN]; 2509 2510 DPRINTFN(2, "index = %d\n", cp->dev); 2511 sc = addr; 2512 if (sc->sc_dying) 2513 return EIO; 2514 2515 n = cp->dev - UAC_NCLASSES; 2516 if (n < 0 || n >= sc->sc_nctls) 2517 return ENXIO; 2518 mc = &sc->sc_ctls[n]; 2519 2520 if (mc->type == MIX_ON_OFF) { 2521 if (cp->type != AUDIO_MIXER_ENUM) 2522 return EINVAL; 2523 uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); 2524 } else if (mc->type == MIX_SELECTOR) { 2525 if (cp->type != AUDIO_MIXER_ENUM) 2526 return EINVAL; 2527 uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); 2528 } else { 2529 if (cp->type != AUDIO_MIXER_VALUE) 2530 return EINVAL; 2531 if (cp->un.value.num_channels == 1) 2532 for (i = 0; i < mc->nchan; i++) 2533 vals[i] = cp->un.value.level[0]; 2534 else if (cp->un.value.num_channels == mc->nchan) 2535 for (i = 0; i < mc->nchan; i++) 2536 vals[i] = cp->un.value.level[i]; 2537 else 2538 return EINVAL; 2539 for (i = 0; i < mc->nchan; i++) 2540 uaudio_ctl_set(sc, SET_CUR, mc, i, vals[i]); 2541 } 2542 return 0; 2543 } 2544 2545 Static int 2546 uaudio_trigger_input(void *addr, void *start, void *end, int blksize, 2547 void (*intr)(void *), void *arg, 2548 const audio_params_t *param) 2549 { 2550 struct uaudio_softc *sc; 2551 struct chan *ch; 2552 usbd_status err; 2553 int i; 2554 2555 sc = addr; 2556 if (sc->sc_dying) 2557 return EIO; 2558 2559 DPRINTFN(3, "sc=%p start=%p end=%p " 2560 "blksize=%d\n", sc, start, end, blksize); 2561 ch = &sc->sc_recchan; 2562 uaudio_chan_set_param(ch, start, end, blksize); 2563 DPRINTFN(3, "sample_size=%d bytes/frame=%d " 2564 "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, 2565 ch->fraction); 2566 2567 err = uaudio_chan_open(sc, ch); 2568 if (err) { 2569 return EIO; 2570 } 2571 2572 err = uaudio_chan_alloc_buffers(sc, ch); 2573 if (err) { 2574 uaudio_chan_close(sc, ch); 2575 return EIO; 2576 } 2577 2578 2579 ch->intr = intr; 2580 ch->arg = arg; 2581 2582 /* 2583 * Start as half as many channels for recording as for playback. 2584 * This stops playback from stuttering in full-duplex operation. 2585 */ 2586 for (i = 0; i < UAUDIO_NCHANBUFS / 2; i++) { 2587 uaudio_chan_rtransfer(ch); 2588 } 2589 2590 return 0; 2591 } 2592 2593 Static int 2594 uaudio_trigger_output(void *addr, void *start, void *end, int blksize, 2595 void (*intr)(void *), void *arg, 2596 const audio_params_t *param) 2597 { 2598 struct uaudio_softc *sc; 2599 struct chan *ch; 2600 usbd_status err; 2601 int i; 2602 2603 sc = addr; 2604 if (sc->sc_dying) 2605 return EIO; 2606 2607 DPRINTFN(3, "sc=%p start=%p end=%p " 2608 "blksize=%d\n", sc, start, end, blksize); 2609 ch = &sc->sc_playchan; 2610 uaudio_chan_set_param(ch, start, end, blksize); 2611 DPRINTFN(3, "sample_size=%d bytes/frame=%d " 2612 "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, 2613 ch->fraction); 2614 2615 err = uaudio_chan_open(sc, ch); 2616 if (err) { 2617 return EIO; 2618 } 2619 2620 err = uaudio_chan_alloc_buffers(sc, ch); 2621 if (err) { 2622 uaudio_chan_close(sc, ch); 2623 return EIO; 2624 } 2625 2626 ch->intr = intr; 2627 ch->arg = arg; 2628 2629 for (i = 0; i < UAUDIO_NCHANBUFS; i++) 2630 uaudio_chan_ptransfer(ch); 2631 2632 return 0; 2633 } 2634 2635 /* Set up a pipe for a channel. */ 2636 Static usbd_status 2637 uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch) 2638 { 2639 struct as_info *as; 2640 usb_device_descriptor_t *ddesc; 2641 int endpt; 2642 usbd_status err; 2643 2644 as = &sc->sc_alts[ch->altidx]; 2645 endpt = as->edesc->bEndpointAddress; 2646 DPRINTF("endpt=0x%02x, speed=%d, alt=%d\n", 2647 endpt, ch->sample_rate, as->alt); 2648 2649 /* Set alternate interface corresponding to the mode. */ 2650 err = usbd_set_interface(as->ifaceh, as->alt); 2651 if (err) 2652 return err; 2653 2654 /* 2655 * Roland SD-90 freezes by a SAMPLING_FREQ_CONTROL request. 2656 */ 2657 ddesc = usbd_get_device_descriptor(sc->sc_udev); 2658 if ((UGETW(ddesc->idVendor) != USB_VENDOR_ROLAND) && 2659 (UGETW(ddesc->idProduct) != USB_PRODUCT_ROLAND_SD90)) { 2660 err = uaudio_set_speed(sc, endpt, ch->sample_rate); 2661 if (err) { 2662 DPRINTF("set_speed failed err=%s\n", usbd_errstr(err)); 2663 } 2664 } 2665 2666 DPRINTF("create pipe to 0x%02x\n", endpt); 2667 err = usbd_open_pipe(as->ifaceh, endpt, USBD_MPSAFE, &ch->pipe); 2668 if (err) 2669 return err; 2670 if (as->edesc1 != NULL) { 2671 endpt = as->edesc1->bEndpointAddress; 2672 DPRINTF("create sync-pipe to 0x%02x\n", endpt); 2673 err = usbd_open_pipe(as->ifaceh, endpt, USBD_MPSAFE, 2674 &ch->sync_pipe); 2675 } 2676 return err; 2677 } 2678 2679 Static void 2680 uaudio_chan_abort(struct uaudio_softc *sc, struct chan *ch) 2681 { 2682 struct usbd_pipe *pipe; 2683 struct as_info *as; 2684 2685 as = &sc->sc_alts[ch->altidx]; 2686 as->sc_busy = 0; 2687 if (sc->sc_nullalt >= 0) { 2688 DPRINTF("set null alt=%d\n", sc->sc_nullalt); 2689 usbd_set_interface(as->ifaceh, sc->sc_nullalt); 2690 } 2691 pipe = ch->pipe; 2692 if (pipe) { 2693 usbd_abort_pipe(pipe); 2694 } 2695 pipe = ch->sync_pipe; 2696 if (pipe) { 2697 usbd_abort_pipe(pipe); 2698 } 2699 } 2700 2701 Static void 2702 uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch) 2703 { 2704 struct usbd_pipe *pipe; 2705 2706 pipe = atomic_swap_ptr(&ch->pipe, NULL); 2707 if (pipe) { 2708 usbd_close_pipe(pipe); 2709 } 2710 pipe = atomic_swap_ptr(&ch->sync_pipe, NULL); 2711 if (pipe) { 2712 usbd_close_pipe(pipe); 2713 } 2714 } 2715 2716 Static usbd_status 2717 uaudio_chan_alloc_buffers(struct uaudio_softc *sc, struct chan *ch) 2718 { 2719 int i, size; 2720 2721 size = (ch->bytes_per_frame + ch->sample_size) * UAUDIO_NFRAMES; 2722 for (i = 0; i < UAUDIO_NCHANBUFS; i++) { 2723 struct usbd_xfer *xfer; 2724 2725 int err = usbd_create_xfer(ch->pipe, size, 0, UAUDIO_NFRAMES, 2726 &xfer); 2727 if (err) 2728 goto bad; 2729 2730 ch->chanbufs[i].xfer = xfer; 2731 ch->chanbufs[i].buffer = usbd_get_buffer(xfer); 2732 ch->chanbufs[i].chan = ch; 2733 } 2734 2735 return USBD_NORMAL_COMPLETION; 2736 2737 bad: 2738 while (--i >= 0) 2739 /* implicit buffer free */ 2740 usbd_destroy_xfer(ch->chanbufs[i].xfer); 2741 return USBD_NOMEM; 2742 } 2743 2744 Static void 2745 uaudio_chan_free_buffers(struct uaudio_softc *sc, struct chan *ch) 2746 { 2747 int i; 2748 2749 for (i = 0; i < UAUDIO_NCHANBUFS; i++) 2750 usbd_destroy_xfer(ch->chanbufs[i].xfer); 2751 } 2752 2753 Static void 2754 uaudio_chan_ptransfer(struct chan *ch) 2755 { 2756 struct chanbuf *cb; 2757 int i, n, size, residue, total; 2758 2759 if (ch->sc->sc_dying) 2760 return; 2761 2762 /* Pick the next channel buffer. */ 2763 cb = &ch->chanbufs[ch->curchanbuf]; 2764 if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) 2765 ch->curchanbuf = 0; 2766 2767 /* Compute the size of each frame in the next transfer. */ 2768 residue = ch->residue; 2769 total = 0; 2770 for (i = 0; i < UAUDIO_NFRAMES; i++) { 2771 size = ch->bytes_per_frame; 2772 residue += ch->fraction; 2773 if (residue >= USB_FRAMES_PER_SECOND) { 2774 if ((ch->sc->sc_altflags & UA_NOFRAC) == 0) 2775 size += ch->sample_size; 2776 residue -= USB_FRAMES_PER_SECOND; 2777 } 2778 cb->sizes[i] = size; 2779 total += size; 2780 } 2781 ch->residue = residue; 2782 cb->size = total; 2783 2784 /* 2785 * Transfer data from upper layer buffer to channel buffer, taking 2786 * care of wrapping the upper layer buffer. 2787 */ 2788 n = uimin(total, ch->end - ch->cur); 2789 memcpy(cb->buffer, ch->cur, n); 2790 ch->cur += n; 2791 if (ch->cur >= ch->end) 2792 ch->cur = ch->start; 2793 if (total > n) { 2794 total -= n; 2795 memcpy(cb->buffer + n, ch->cur, total); 2796 ch->cur += total; 2797 } 2798 2799 #ifdef UAUDIO_DEBUG 2800 if (uaudiodebug > 8) { 2801 DPRINTF("buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue); 2802 for (i = 0; i < UAUDIO_NFRAMES; i++) { 2803 DPRINTF(" [%d] length %d\n", i, cb->sizes[i]); 2804 } 2805 } 2806 #endif 2807 2808 //DPRINTFN(5, "ptransfer xfer=%p\n", cb->xfer); 2809 /* Fill the request */ 2810 usbd_setup_isoc_xfer(cb->xfer, cb, cb->sizes, UAUDIO_NFRAMES, 0, 2811 uaudio_chan_pintr); 2812 2813 (void)usbd_transfer(cb->xfer); 2814 } 2815 2816 Static void 2817 uaudio_chan_pintr(struct usbd_xfer *xfer, void *priv, 2818 usbd_status status) 2819 { 2820 struct chanbuf *cb; 2821 struct chan *ch; 2822 uint32_t count; 2823 2824 cb = priv; 2825 ch = cb->chan; 2826 /* Return if we are aborting. */ 2827 if (status == USBD_CANCELLED) 2828 return; 2829 2830 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); 2831 DPRINTFN(5, "count=%d, transferred=%d\n", 2832 count, ch->transferred); 2833 #ifdef DIAGNOSTIC 2834 if (count != cb->size) { 2835 aprint_error("uaudio_chan_pintr: count(%d) != size(%d)\n", 2836 count, cb->size); 2837 } 2838 #endif 2839 2840 mutex_enter(&ch->sc->sc_intr_lock); 2841 ch->transferred += cb->size; 2842 /* Call back to upper layer */ 2843 while (ch->transferred >= ch->blksize) { 2844 ch->transferred -= ch->blksize; 2845 DPRINTFN(5, "call %p(%p)\n", ch->intr, ch->arg); 2846 ch->intr(ch->arg); 2847 } 2848 mutex_exit(&ch->sc->sc_intr_lock); 2849 2850 /* start next transfer */ 2851 uaudio_chan_ptransfer(ch); 2852 } 2853 2854 Static void 2855 uaudio_chan_rtransfer(struct chan *ch) 2856 { 2857 struct chanbuf *cb; 2858 int i, size, residue, total; 2859 2860 if (ch->sc->sc_dying) 2861 return; 2862 2863 /* Pick the next channel buffer. */ 2864 cb = &ch->chanbufs[ch->curchanbuf]; 2865 if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) 2866 ch->curchanbuf = 0; 2867 2868 /* Compute the size of each frame in the next transfer. */ 2869 residue = ch->residue; 2870 total = 0; 2871 for (i = 0; i < UAUDIO_NFRAMES; i++) { 2872 size = ch->bytes_per_frame; 2873 cb->sizes[i] = size; 2874 cb->offsets[i] = total; 2875 total += size; 2876 } 2877 ch->residue = residue; 2878 cb->size = total; 2879 2880 #ifdef UAUDIO_DEBUG 2881 if (uaudiodebug > 8) { 2882 DPRINTF("buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue); 2883 for (i = 0; i < UAUDIO_NFRAMES; i++) { 2884 DPRINTF(" [%d] length %d\n", i, cb->sizes[i]); 2885 } 2886 } 2887 #endif 2888 2889 DPRINTFN(5, "transfer xfer=%p\n", cb->xfer); 2890 /* Fill the request */ 2891 usbd_setup_isoc_xfer(cb->xfer, cb, cb->sizes, UAUDIO_NFRAMES, 0, 2892 uaudio_chan_rintr); 2893 2894 (void)usbd_transfer(cb->xfer); 2895 } 2896 2897 Static void 2898 uaudio_chan_rintr(struct usbd_xfer *xfer, void *priv, 2899 usbd_status status) 2900 { 2901 struct chanbuf *cb; 2902 struct chan *ch; 2903 uint32_t count; 2904 int i, n, frsize; 2905 2906 cb = priv; 2907 ch = cb->chan; 2908 /* Return if we are aborting. */ 2909 if (status == USBD_CANCELLED) 2910 return; 2911 2912 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); 2913 DPRINTFN(5, "count=%d, transferred=%d\n", count, ch->transferred); 2914 2915 /* count < cb->size is normal for asynchronous source */ 2916 #ifdef DIAGNOSTIC 2917 if (count > cb->size) { 2918 aprint_error("uaudio_chan_rintr: count(%d) > size(%d)\n", 2919 count, cb->size); 2920 } 2921 #endif 2922 2923 /* 2924 * Transfer data from channel buffer to upper layer buffer, taking 2925 * care of wrapping the upper layer buffer. 2926 */ 2927 for (i = 0; i < UAUDIO_NFRAMES; i++) { 2928 frsize = cb->sizes[i]; 2929 n = uimin(frsize, ch->end - ch->cur); 2930 memcpy(ch->cur, cb->buffer + cb->offsets[i], n); 2931 ch->cur += n; 2932 if (ch->cur >= ch->end) 2933 ch->cur = ch->start; 2934 if (frsize > n) { 2935 memcpy(ch->cur, cb->buffer + cb->offsets[i] + n, 2936 frsize - n); 2937 ch->cur += frsize - n; 2938 } 2939 } 2940 2941 /* Call back to upper layer */ 2942 mutex_enter(&ch->sc->sc_intr_lock); 2943 ch->transferred += count; 2944 while (ch->transferred >= ch->blksize) { 2945 ch->transferred -= ch->blksize; 2946 DPRINTFN(5, "call %p(%p)\n", ch->intr, ch->arg); 2947 ch->intr(ch->arg); 2948 } 2949 mutex_exit(&ch->sc->sc_intr_lock); 2950 2951 /* start next transfer */ 2952 uaudio_chan_rtransfer(ch); 2953 } 2954 2955 Static void 2956 uaudio_chan_init(struct chan *ch, int altidx, const struct audio_params *param, 2957 int maxpktsize) 2958 { 2959 int samples_per_frame, sample_size; 2960 2961 ch->altidx = altidx; 2962 sample_size = param->precision * param->channels / 8; 2963 samples_per_frame = param->sample_rate / USB_FRAMES_PER_SECOND; 2964 ch->sample_size = sample_size; 2965 ch->sample_rate = param->sample_rate; 2966 if (maxpktsize == 0) { 2967 ch->fraction = param->sample_rate % USB_FRAMES_PER_SECOND; 2968 ch->bytes_per_frame = samples_per_frame * sample_size; 2969 } else { 2970 ch->fraction = 0; 2971 ch->bytes_per_frame = maxpktsize; 2972 } 2973 ch->residue = 0; 2974 } 2975 2976 Static void 2977 uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize) 2978 { 2979 2980 ch->start = start; 2981 ch->end = end; 2982 ch->cur = start; 2983 ch->blksize = blksize; 2984 ch->transferred = 0; 2985 ch->curchanbuf = 0; 2986 } 2987 2988 Static int 2989 uaudio_set_format(void *addr, int setmode, 2990 const audio_params_t *play, const audio_params_t *rec, 2991 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil) 2992 { 2993 struct uaudio_softc *sc; 2994 int paltidx, raltidx; 2995 2996 sc = addr; 2997 paltidx = -1; 2998 raltidx = -1; 2999 if (sc->sc_dying) 3000 return EIO; 3001 3002 if ((setmode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) { 3003 sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 0; 3004 } 3005 if ((setmode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) { 3006 sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 0; 3007 } 3008 3009 /* Some uaudio devices are unidirectional. Don't try to find a 3010 matching mode for the unsupported direction. */ 3011 setmode &= sc->sc_mode; 3012 3013 if ((setmode & AUMODE_PLAY)) { 3014 paltidx = audio_indexof_format(sc->sc_formats, sc->sc_nformats, 3015 AUMODE_PLAY, play); 3016 /* Transfer should have halted */ 3017 uaudio_chan_init(&sc->sc_playchan, paltidx, play, 0); 3018 } 3019 if ((setmode & AUMODE_RECORD)) { 3020 raltidx = audio_indexof_format(sc->sc_formats, sc->sc_nformats, 3021 AUMODE_RECORD, rec); 3022 /* Transfer should have halted */ 3023 uaudio_chan_init(&sc->sc_recchan, raltidx, rec, 3024 UGETW(sc->sc_alts[raltidx].edesc->wMaxPacketSize)); 3025 } 3026 3027 if ((setmode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) { 3028 sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 1; 3029 } 3030 if ((setmode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) { 3031 sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 1; 3032 } 3033 3034 DPRINTF("use altidx=p%d/r%d, altno=p%d/r%d\n", 3035 sc->sc_playchan.altidx, sc->sc_recchan.altidx, 3036 (sc->sc_playchan.altidx >= 0) 3037 ?sc->sc_alts[sc->sc_playchan.altidx].idesc->bAlternateSetting 3038 : -1, 3039 (sc->sc_recchan.altidx >= 0) 3040 ? sc->sc_alts[sc->sc_recchan.altidx].idesc->bAlternateSetting 3041 : -1); 3042 3043 return 0; 3044 } 3045 3046 Static usbd_status 3047 uaudio_set_speed(struct uaudio_softc *sc, int endpt, u_int speed) 3048 { 3049 usb_device_request_t req; 3050 usbd_status err; 3051 uint8_t data[3]; 3052 3053 DPRINTFN(5, "endpt=%d speed=%u\n", endpt, speed); 3054 req.bmRequestType = UT_WRITE_CLASS_ENDPOINT; 3055 req.bRequest = SET_CUR; 3056 USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0); 3057 USETW(req.wIndex, endpt); 3058 USETW(req.wLength, 3); 3059 data[0] = speed; 3060 data[1] = speed >> 8; 3061 data[2] = speed >> 16; 3062 3063 err = usbd_do_request(sc->sc_udev, &req, data); 3064 3065 return err; 3066 } 3067 3068 #ifdef _MODULE 3069 3070 MODULE(MODULE_CLASS_DRIVER, uaudio, NULL); 3071 3072 static const struct cfiattrdata audiobuscf_iattrdata = { 3073 "audiobus", 0, { { NULL, NULL, 0 }, } 3074 }; 3075 static const struct cfiattrdata * const uaudio_attrs[] = { 3076 &audiobuscf_iattrdata, NULL 3077 }; 3078 CFDRIVER_DECL(uaudio, DV_DULL, uaudio_attrs); 3079 extern struct cfattach uaudio_ca; 3080 static int uaudioloc[6/*USBIFIFCF_NLOCS*/] = { 3081 -1/*USBIFIFCF_PORT_DEFAULT*/, 3082 -1/*USBIFIFCF_CONFIGURATION_DEFAULT*/, 3083 -1/*USBIFIFCF_INTERFACE_DEFAULT*/, 3084 -1/*USBIFIFCF_VENDOR_DEFAULT*/, 3085 -1/*USBIFIFCF_PRODUCT_DEFAULT*/, 3086 -1/*USBIFIFCF_RELEASE_DEFAULT*/}; 3087 static struct cfparent uhubparent = { 3088 "usbifif", NULL, DVUNIT_ANY 3089 }; 3090 static struct cfdata uaudio_cfdata[] = { 3091 { 3092 .cf_name = "uaudio", 3093 .cf_atname = "uaudio", 3094 .cf_unit = 0, 3095 .cf_fstate = FSTATE_STAR, 3096 .cf_loc = uaudioloc, 3097 .cf_flags = 0, 3098 .cf_pspec = &uhubparent, 3099 }, 3100 { NULL } 3101 }; 3102 3103 static int 3104 uaudio_modcmd(modcmd_t cmd, void *arg) 3105 { 3106 int err; 3107 3108 switch (cmd) { 3109 case MODULE_CMD_INIT: 3110 err = config_cfdriver_attach(&uaudio_cd); 3111 if (err) { 3112 return err; 3113 } 3114 err = config_cfattach_attach("uaudio", &uaudio_ca); 3115 if (err) { 3116 config_cfdriver_detach(&uaudio_cd); 3117 return err; 3118 } 3119 err = config_cfdata_attach(uaudio_cfdata, 1); 3120 if (err) { 3121 config_cfattach_detach("uaudio", &uaudio_ca); 3122 config_cfdriver_detach(&uaudio_cd); 3123 return err; 3124 } 3125 return 0; 3126 case MODULE_CMD_FINI: 3127 err = config_cfdata_detach(uaudio_cfdata); 3128 if (err) 3129 return err; 3130 config_cfattach_detach("uaudio", &uaudio_ca); 3131 config_cfdriver_detach(&uaudio_cd); 3132 return 0; 3133 default: 3134 return ENOTTY; 3135 } 3136 } 3137 3138 #endif 3139