xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.52 2019/05/05 03:17:54 mrg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.52 2019/05/05 03:17:54 mrg Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/firmload.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71 
72 #include <dev/usb/if_zydreg.h>
73 
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82 
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85 
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p)	\
88 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 	struct usb_devno	dev;
93 	uint8_t			rev;
94 #define ZYD_ZD1211	0
95 #define ZYD_ZD1211B	1
96 } zyd_devs[] = {
97 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
98 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
99 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
100 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
101 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
102 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
103 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
104 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
106 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
107 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
108 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
109 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
110 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
111 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
113 	ZYD_ZD1211_DEV(TWINMOS,		G240),
114 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
115 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
117 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
118 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
119 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
121 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
122 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
126 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
127 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
128 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
129 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
130 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
131 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
132 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
133 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
134 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
135 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
136 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
137 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
138 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
139 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
140 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
141 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
142 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
143 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
144 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
145 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
146 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
147 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
148 	ZYD_ZD1211B_DEV(USR,		USR5423),
149 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
150 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
151 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
152 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
153 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
154 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
155 };
156 #define zyd_lookup(v, p)	\
157 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158 
159 int zyd_match(device_t, cfdata_t, void *);
160 void zyd_attach(device_t, device_t, void *);
161 int zyd_detach(device_t, int);
162 int zyd_activate(device_t, enum devact);
163 
164 
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166     zyd_attach, zyd_detach, zyd_activate);
167 
168 Static void	zyd_attachhook(device_t);
169 Static int	zyd_complete_attach(struct zyd_softc *);
170 Static int	zyd_open_pipes(struct zyd_softc *);
171 Static void	zyd_close_pipes(struct zyd_softc *);
172 Static int	zyd_alloc_tx_list(struct zyd_softc *);
173 Static void	zyd_free_tx_list(struct zyd_softc *);
174 Static int	zyd_alloc_rx_list(struct zyd_softc *);
175 Static void	zyd_free_rx_list(struct zyd_softc *);
176 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int	zyd_media_change(struct ifnet *);
178 Static void	zyd_next_scan(void *);
179 Static void	zyd_task(void *);
180 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 		    void *, int, u_int);
183 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void	zyd_lock_phy(struct zyd_softc *);
189 Static void	zyd_unlock_phy(struct zyd_softc *);
190 Static int	zyd_rfmd_init(struct zyd_rf *);
191 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int	zyd_al2230_init(struct zyd_rf *);
194 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_al2230_init_b(struct zyd_rf *);
197 Static int	zyd_al7230B_init(struct zyd_rf *);
198 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int	zyd_al2210_init(struct zyd_rf *);
201 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int	zyd_gct_init(struct zyd_rf *);
204 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int	zyd_maxim_init(struct zyd_rf *);
207 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int	zyd_maxim2_init(struct zyd_rf *);
210 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int	zyd_hw_init(struct zyd_softc *);
215 Static int	zyd_read_eeprom(struct zyd_softc *);
216 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int	zyd_switch_radio(struct zyd_softc *, int);
219 Static void	zyd_set_led(struct zyd_softc *, int, int);
220 Static int	zyd_set_rxfilter(struct zyd_softc *);
221 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t	zyd_plcp_signal(int);
224 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 		    struct ieee80211_node *);
230 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 Static void	zyd_start(struct ifnet *);
233 Static void	zyd_watchdog(struct ifnet *);
234 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int	zyd_init(struct ifnet *);
236 Static void	zyd_stop(struct ifnet *, int);
237 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void	zyd_iter_func(void *, struct ieee80211_node *);
239 Static void	zyd_amrr_timeout(void *);
240 Static void	zyd_newassoc(struct ieee80211_node *, int);
241 
242 int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 	struct usb_attach_arg *uaa = aux;
246 
247 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250 
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 	struct zyd_softc *sc = device_private(self);
255 	firmware_handle_t fwh;
256 	const char *fwname;
257 	u_char *fw;
258 	size_t size;
259 	int error;
260 
261 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 		aprint_error_dev(sc->sc_dev,
264 		    "failed to open firmware %s (error=%d)\n", fwname, error);
265 		return;
266 	}
267 	size = firmware_get_size(fwh);
268 	fw = firmware_malloc(size);
269 	if (fw == NULL) {
270 		aprint_error_dev(sc->sc_dev,
271 		    "failed to allocate firmware memory\n");
272 		firmware_close(fwh);
273 		return;
274 	}
275 	error = firmware_read(fwh, 0, fw, size);
276 	firmware_close(fwh);
277 	if (error != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "failed to read firmware (error %d)\n", error);
280 		firmware_free(fw, size);
281 		return;
282 	}
283 
284 	error = zyd_loadfirmware(sc, fw, size);
285 	if (error != 0) {
286 		aprint_error_dev(sc->sc_dev,
287 		    "could not load firmware (error=%d)\n", error);
288 		firmware_free(fw, size);
289 		return;
290 	}
291 
292 	firmware_free(fw, size);
293 
294 	/* complete the attach process */
295 	if ((error = zyd_complete_attach(sc)) == 0)
296 		sc->attached = 1;
297 	return;
298 }
299 
300 void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 	struct zyd_softc *sc = device_private(self);
304 	struct usb_attach_arg *uaa = aux;
305 	char *devinfop;
306 	usb_device_descriptor_t* ddesc;
307 	struct ifnet *ifp = &sc->sc_if;
308 
309 	sc->sc_dev = self;
310 	sc->sc_udev = uaa->uaa_device;
311 
312 	aprint_naive("\n");
313 	aprint_normal("\n");
314 
315 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 	aprint_normal_dev(self, "%s\n", devinfop);
317 	usbd_devinfo_free(devinfop);
318 
319 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320 
321 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 		aprint_error_dev(self, "device version mismatch: 0x%x "
324 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 		return;
326 	}
327 
328 	ifp->if_softc = sc;
329 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 	ifp->if_init = zyd_init;
331 	ifp->if_ioctl = zyd_ioctl;
332 	ifp->if_start = zyd_start;
333 	ifp->if_watchdog = zyd_watchdog;
334 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 	IFQ_SET_READY(&ifp->if_snd);
336 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337 
338 	SIMPLEQ_INIT(&sc->sc_rqh);
339 
340 	/* defer configrations after file system is ready to load firmware */
341 	config_mountroot(self, zyd_attachhook);
342 }
343 
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_if;
349 	usbd_status error;
350 	int i;
351 
352 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
353 	callout_init(&(sc->sc_scan_ch), 0);
354 
355 	sc->amrr.amrr_min_success_threshold =  1;
356 	sc->amrr.amrr_max_success_threshold = 10;
357 	callout_init(&sc->sc_amrr_ch, 0);
358 
359 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 	if (error != 0) {
361 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
362 		    ", err=%s\n", usbd_errstr(error));
363 		goto fail;
364 	}
365 
366 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
367 	    &sc->sc_iface);
368 	if (error != 0) {
369 		aprint_error_dev(sc->sc_dev,
370 		    "getting interface handle failed\n");
371 		goto fail;
372 	}
373 
374 	if ((error = zyd_open_pipes(sc)) != 0) {
375 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
376 		goto fail;
377 	}
378 
379 	if ((error = zyd_read_eeprom(sc)) != 0) {
380 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
381 		goto fail;
382 	}
383 
384 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
385 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
386 		goto fail;
387 	}
388 
389 	if ((error = zyd_hw_init(sc)) != 0) {
390 		aprint_error_dev(sc->sc_dev,
391 		    "hardware initialization failed\n");
392 		goto fail;
393 	}
394 
395 	aprint_normal_dev(sc->sc_dev,
396 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
397 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
398 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
399 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
400 
401 	ic->ic_ifp = ifp;
402 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
403 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
404 	ic->ic_state = IEEE80211_S_INIT;
405 
406 	/* set device capabilities */
407 	ic->ic_caps =
408 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
409 	    IEEE80211_C_TXPMGT |	/* tx power management */
410 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
411 	    IEEE80211_C_WEP;		/* s/w WEP */
412 
413 	/* set supported .11b and .11g rates */
414 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
415 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
416 
417 	/* set supported .11b and .11g channels (1 through 14) */
418 	for (i = 1; i <= 14; i++) {
419 		ic->ic_channels[i].ic_freq =
420 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
421 		ic->ic_channels[i].ic_flags =
422 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
423 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
424 	}
425 
426 	if_attach(ifp);
427 	ieee80211_ifattach(ic);
428 	ic->ic_node_alloc = zyd_node_alloc;
429 	ic->ic_newassoc = zyd_newassoc;
430 
431 	/* override state transition machine */
432 	sc->sc_newstate = ic->ic_newstate;
433 	ic->ic_newstate = zyd_newstate;
434 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
435 
436 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
437 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
438 	    &sc->sc_drvbpf);
439 
440 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
441 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
443 
444 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
445 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
447 
448 	ieee80211_announce(ic);
449 
450 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
451 
452 fail:	return error;
453 }
454 
455 int
456 zyd_detach(device_t self, int flags)
457 {
458 	struct zyd_softc *sc = device_private(self);
459 	struct ieee80211com *ic = &sc->sc_ic;
460 	struct ifnet *ifp = &sc->sc_if;
461 	int s;
462 
463 	if (!sc->attached)
464 		return 0;
465 
466 	s = splusb();
467 
468 	zyd_stop(ifp, 1);
469 	callout_halt(&sc->sc_scan_ch, NULL);
470 	callout_halt(&sc->sc_amrr_ch, NULL);
471 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
472 
473 	/* Abort, etc. done by zyd_stop */
474 	zyd_close_pipes(sc);
475 
476 	sc->attached = 0;
477 
478 	bpf_detach(ifp);
479 	ieee80211_ifdetach(ic);
480 	if_detach(ifp);
481 
482 	splx(s);
483 
484 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
485 
486 	return 0;
487 }
488 
489 Static int
490 zyd_open_pipes(struct zyd_softc *sc)
491 {
492 	usb_endpoint_descriptor_t *edesc;
493 	usbd_status error;
494 
495 	/* interrupt in */
496 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 	if (edesc == NULL)
498 		return EINVAL;
499 
500 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
501 	if (sc->ibuf_size == 0)	/* should not happen */
502 		return EINVAL;
503 
504 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
505 
506 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
507 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
508 	    USBD_DEFAULT_INTERVAL);
509 	if (error != 0) {
510 		printf("%s: open rx intr pipe failed: %s\n",
511 		    device_xname(sc->sc_dev), usbd_errstr(error));
512 		goto fail;
513 	}
514 
515 	/* interrupt out (not necessarily an interrupt pipe) */
516 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
517 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
518 	if (error != 0) {
519 		printf("%s: open tx intr pipe failed: %s\n",
520 		    device_xname(sc->sc_dev), usbd_errstr(error));
521 		goto fail;
522 	}
523 
524 	/* bulk in */
525 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
526 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
527 	if (error != 0) {
528 		printf("%s: open rx pipe failed: %s\n",
529 		    device_xname(sc->sc_dev), usbd_errstr(error));
530 		goto fail;
531 	}
532 
533 	/* bulk out */
534 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
535 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
536 	if (error != 0) {
537 		printf("%s: open tx pipe failed: %s\n",
538 		    device_xname(sc->sc_dev), usbd_errstr(error));
539 		goto fail;
540 	}
541 
542 	return 0;
543 
544 fail:	zyd_close_pipes(sc);
545 	return error;
546 }
547 
548 Static void
549 zyd_close_pipes(struct zyd_softc *sc)
550 {
551 	int i;
552 
553 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
554 		if (sc->zyd_ep[i] != NULL) {
555 			usbd_close_pipe(sc->zyd_ep[i]);
556 			sc->zyd_ep[i] = NULL;
557 		}
558 	}
559 	if (sc->ibuf != NULL) {
560 		kmem_free(sc->ibuf, sc->ibuf_size);
561 		sc->ibuf = NULL;
562 	}
563 }
564 
565 Static int
566 zyd_alloc_tx_list(struct zyd_softc *sc)
567 {
568 	int i, error;
569 
570 	sc->tx_queued = 0;
571 
572 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
573 		struct zyd_tx_data *data = &sc->tx_data[i];
574 
575 		data->sc = sc;	/* backpointer for callbacks */
576 
577 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
578 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
579 		if (error) {
580 			printf("%s: could not allocate tx xfer\n",
581 			    device_xname(sc->sc_dev));
582 			goto fail;
583 		}
584 		data->buf = usbd_get_buffer(data->xfer);
585 
586 		/* clear Tx descriptor */
587 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
588 	}
589 	return 0;
590 
591 fail:	zyd_free_tx_list(sc);
592 	return error;
593 }
594 
595 Static void
596 zyd_free_tx_list(struct zyd_softc *sc)
597 {
598 	int i;
599 
600 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
601 		struct zyd_tx_data *data = &sc->tx_data[i];
602 
603 		if (data->xfer != NULL) {
604 			usbd_destroy_xfer(data->xfer);
605 			data->xfer = NULL;
606 		}
607 		if (data->ni != NULL) {
608 			ieee80211_free_node(data->ni);
609 			data->ni = NULL;
610 		}
611 	}
612 }
613 
614 Static int
615 zyd_alloc_rx_list(struct zyd_softc *sc)
616 {
617 	int i, error;
618 
619 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
620 		struct zyd_rx_data *data = &sc->rx_data[i];
621 
622 		data->sc = sc;	/* backpointer for callbacks */
623 
624 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
625 		    ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
626 		if (error) {
627 			printf("%s: could not allocate rx xfer\n",
628 			    device_xname(sc->sc_dev));
629 			goto fail;
630 		}
631 		data->buf = usbd_get_buffer(data->xfer);
632 	}
633 	return 0;
634 
635 fail:	zyd_free_rx_list(sc);
636 	return error;
637 }
638 
639 Static void
640 zyd_free_rx_list(struct zyd_softc *sc)
641 {
642 	int i;
643 
644 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
645 		struct zyd_rx_data *data = &sc->rx_data[i];
646 
647 		if (data->xfer != NULL) {
648 			usbd_destroy_xfer(data->xfer);
649 			data->xfer = NULL;
650 		}
651 	}
652 }
653 
654 /* ARGUSED */
655 Static struct ieee80211_node *
656 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
657 {
658 	struct zyd_node *zn;
659 
660 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
661 
662 	return &zn->ni;
663 }
664 
665 Static int
666 zyd_media_change(struct ifnet *ifp)
667 {
668 	int error;
669 
670 	error = ieee80211_media_change(ifp);
671 	if (error != ENETRESET)
672 		return error;
673 
674 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
675 		zyd_init(ifp);
676 
677 	return 0;
678 }
679 
680 /*
681  * This function is called periodically (every 200ms) during scanning to
682  * switch from one channel to another.
683  */
684 Static void
685 zyd_next_scan(void *arg)
686 {
687 	struct zyd_softc *sc = arg;
688 	struct ieee80211com *ic = &sc->sc_ic;
689 
690 	if (ic->ic_state == IEEE80211_S_SCAN)
691 		ieee80211_next_scan(ic);
692 }
693 
694 Static void
695 zyd_task(void *arg)
696 {
697 	struct zyd_softc *sc = arg;
698 	struct ieee80211com *ic = &sc->sc_ic;
699 	enum ieee80211_state ostate;
700 
701 	ostate = ic->ic_state;
702 
703 	switch (sc->sc_state) {
704 	case IEEE80211_S_INIT:
705 		if (ostate == IEEE80211_S_RUN) {
706 			/* turn link LED off */
707 			zyd_set_led(sc, ZYD_LED1, 0);
708 
709 			/* stop data LED from blinking */
710 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
711 		}
712 		break;
713 
714 	case IEEE80211_S_SCAN:
715 		zyd_set_chan(sc, ic->ic_curchan);
716 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
717 		break;
718 
719 	case IEEE80211_S_AUTH:
720 	case IEEE80211_S_ASSOC:
721 		zyd_set_chan(sc, ic->ic_curchan);
722 		break;
723 
724 	case IEEE80211_S_RUN:
725 	{
726 		struct ieee80211_node *ni = ic->ic_bss;
727 
728 		zyd_set_chan(sc, ic->ic_curchan);
729 
730 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
731 			/* turn link LED on */
732 			zyd_set_led(sc, ZYD_LED1, 1);
733 
734 			/* make data LED blink upon Tx */
735 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
736 
737 			zyd_set_bssid(sc, ni->ni_bssid);
738 		}
739 
740 		if (ic->ic_opmode == IEEE80211_M_STA) {
741 			/* fake a join to init the tx rate */
742 			zyd_newassoc(ni, 1);
743 		}
744 
745 		/* start automatic rate control timer */
746 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
747 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
748 
749 		break;
750 	}
751 	}
752 
753 	sc->sc_newstate(ic, sc->sc_state, -1);
754 }
755 
756 Static int
757 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
758 {
759 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
760 
761 	if (!sc->attached)
762 		return ENXIO;
763 
764 	/*
765 	 * XXXSMP: This does not wait for the task, if it is in flight,
766 	 * to complete.  If this code works at all, it must rely on the
767 	 * kernel lock to serialize with the USB task thread.
768 	 */
769 	usb_rem_task(sc->sc_udev, &sc->sc_task);
770 	callout_stop(&sc->sc_scan_ch);
771 	callout_stop(&sc->sc_amrr_ch);
772 
773 	/* do it in a process context */
774 	sc->sc_state = nstate;
775 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
776 
777 	return 0;
778 }
779 
780 Static int
781 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
782     void *odata, int olen, u_int flags)
783 {
784 	struct usbd_xfer *xfer;
785 	struct zyd_cmd cmd;
786 	struct rq rq;
787 	uint16_t xferflags;
788 	int error;
789 	usbd_status uerror;
790 	int s = 0;
791 
792 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
793 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
794 	if (error)
795 		return error;
796 
797 	cmd.code = htole16(code);
798 	memcpy(cmd.data, idata, ilen);
799 
800 	xferflags = USBD_FORCE_SHORT_XFER;
801 	if (!(flags & ZYD_CMD_FLAG_READ))
802 		xferflags |= USBD_SYNCHRONOUS;
803 	else {
804 		s = splusb();
805 		rq.idata = idata;
806 		rq.odata = odata;
807 		rq.len = olen / sizeof(struct zyd_pair);
808 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
809 	}
810 
811 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
812 	    ZYD_INTR_TIMEOUT, NULL);
813 	uerror = usbd_transfer(xfer);
814 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
815 		if (flags & ZYD_CMD_FLAG_READ)
816 			splx(s);
817 		printf("%s: could not send command (error=%s)\n",
818 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
819 		(void)usbd_destroy_xfer(xfer);
820 		return EIO;
821 	}
822 	if (!(flags & ZYD_CMD_FLAG_READ)) {
823 		(void)usbd_destroy_xfer(xfer);
824 		return 0;	/* write: don't wait for reply */
825 	}
826 	/* wait at most one second for command reply */
827 	error = tsleep(odata, PCATCH, "zydcmd", hz);
828 	if (error == EWOULDBLOCK)
829 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
830 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
831 	splx(s);
832 
833 	(void)usbd_destroy_xfer(xfer);
834 	return error;
835 }
836 
837 Static int
838 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
839 {
840 	struct zyd_pair tmp;
841 	int error;
842 
843 	reg = htole16(reg);
844 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
845 	    ZYD_CMD_FLAG_READ);
846 	if (error == 0)
847 		*val = le16toh(tmp.val);
848 	else
849 		*val = 0;
850 	return error;
851 }
852 
853 Static int
854 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
855 {
856 	struct zyd_pair tmp[2];
857 	uint16_t regs[2];
858 	int error;
859 
860 	regs[0] = htole16(ZYD_REG32_HI(reg));
861 	regs[1] = htole16(ZYD_REG32_LO(reg));
862 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
863 	    ZYD_CMD_FLAG_READ);
864 	if (error == 0)
865 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
866 	else
867 		*val = 0;
868 	return error;
869 }
870 
871 Static int
872 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
873 {
874 	struct zyd_pair pair;
875 
876 	pair.reg = htole16(reg);
877 	pair.val = htole16(val);
878 
879 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
880 }
881 
882 Static int
883 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
884 {
885 	struct zyd_pair pair[2];
886 
887 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
888 	pair[0].val = htole16(val >> 16);
889 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
890 	pair[1].val = htole16(val & 0xffff);
891 
892 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
893 }
894 
895 Static int
896 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
897 {
898 	struct zyd_rf *rf = &sc->sc_rf;
899 	struct zyd_rfwrite req;
900 	uint16_t cr203;
901 	int i;
902 
903 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
904 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
905 
906 	req.code  = htole16(2);
907 	req.width = htole16(rf->width);
908 	for (i = 0; i < rf->width; i++) {
909 		req.bit[i] = htole16(cr203);
910 		if (val & (1 << (rf->width - 1 - i)))
911 			req.bit[i] |= htole16(ZYD_RF_DATA);
912 	}
913 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
914 }
915 
916 Static void
917 zyd_lock_phy(struct zyd_softc *sc)
918 {
919 	uint32_t tmp;
920 
921 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
922 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
923 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
924 }
925 
926 Static void
927 zyd_unlock_phy(struct zyd_softc *sc)
928 {
929 	uint32_t tmp;
930 
931 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
932 	tmp |= ZYD_UNLOCK_PHY_REGS;
933 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
934 }
935 
936 /*
937  * RFMD RF methods.
938  */
939 Static int
940 zyd_rfmd_init(struct zyd_rf *rf)
941 {
942 	struct zyd_softc *sc = rf->rf_sc;
943 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
944 	static const uint32_t rfini[] = ZYD_RFMD_RF;
945 	int error;
946 	size_t i;
947 
948 	/* init RF-dependent PHY registers */
949 	for (i = 0; i < __arraycount(phyini); i++) {
950 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
951 		if (error != 0)
952 			return error;
953 	}
954 
955 	/* init RFMD radio */
956 	for (i = 0; i < __arraycount(rfini); i++) {
957 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
958 			return error;
959 	}
960 	return 0;
961 }
962 
963 Static int
964 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
965 {
966 	struct zyd_softc *sc = rf->rf_sc;
967 
968 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
969 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
970 
971 	return 0;
972 }
973 
974 Static int
975 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
976 {
977 	struct zyd_softc *sc = rf->rf_sc;
978 	static const struct {
979 		uint32_t	r1, r2;
980 	} rfprog[] = ZYD_RFMD_CHANTABLE;
981 
982 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
983 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
984 
985 	return 0;
986 }
987 
988 /*
989  * AL2230 RF methods.
990  */
991 Static int
992 zyd_al2230_init(struct zyd_rf *rf)
993 {
994 	struct zyd_softc *sc = rf->rf_sc;
995 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
996 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
997 	static const uint32_t rfini[] = ZYD_AL2230_RF;
998 	int error;
999 	size_t i;
1000 
1001 	/* init RF-dependent PHY registers */
1002 	for (i = 0; i < __arraycount(phyini); i++) {
1003 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1004 		if (error != 0)
1005 			return error;
1006 	}
1007 
1008 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1009 		for (i = 0; i < __arraycount(phy2230s); i++) {
1010 			error = zyd_write16(sc, phy2230s[i].reg,
1011 			    phy2230s[i].val);
1012 			if (error != 0)
1013 				return error;
1014 		}
1015 	}
1016 
1017 	/* init AL2230 radio */
1018 	for (i = 0; i < __arraycount(rfini); i++) {
1019 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1020 			return error;
1021 	}
1022 	return 0;
1023 }
1024 
1025 Static int
1026 zyd_al2230_init_b(struct zyd_rf *rf)
1027 {
1028 	struct zyd_softc *sc = rf->rf_sc;
1029 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1030 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1031 	int error;
1032 	size_t i;
1033 
1034 	/* init RF-dependent PHY registers */
1035 	for (i = 0; i < __arraycount(phyini); i++) {
1036 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1037 		if (error != 0)
1038 			return error;
1039 	}
1040 
1041 	/* init AL2230 radio */
1042 	for (i = 0; i < __arraycount(rfini); i++) {
1043 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1044 			return error;
1045 	}
1046 	return 0;
1047 }
1048 
1049 Static int
1050 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1051 {
1052 	struct zyd_softc *sc = rf->rf_sc;
1053 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1054 
1055 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1056 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1057 
1058 	return 0;
1059 }
1060 
1061 Static int
1062 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1063 {
1064 	struct zyd_softc *sc = rf->rf_sc;
1065 	static const struct {
1066 		uint32_t	r1, r2, r3;
1067 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1068 
1069 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1070 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1071 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1072 
1073 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1074 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1075 
1076 	return 0;
1077 }
1078 
1079 /*
1080  * AL7230B RF methods.
1081  */
1082 Static int
1083 zyd_al7230B_init(struct zyd_rf *rf)
1084 {
1085 	struct zyd_softc *sc = rf->rf_sc;
1086 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1087 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1088 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1089 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1090 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1091 	int error;
1092 	size_t i;
1093 
1094 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1095 
1096 	/* init RF-dependent PHY registers, part one */
1097 	for (i = 0; i < __arraycount(phyini_1); i++) {
1098 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1099 		if (error != 0)
1100 			return error;
1101 	}
1102 	/* init AL7230B radio, part one */
1103 	for (i = 0; i < __arraycount(rfini_1); i++) {
1104 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1105 			return error;
1106 	}
1107 	/* init RF-dependent PHY registers, part two */
1108 	for (i = 0; i < __arraycount(phyini_2); i++) {
1109 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1110 		if (error != 0)
1111 			return error;
1112 	}
1113 	/* init AL7230B radio, part two */
1114 	for (i = 0; i < __arraycount(rfini_2); i++) {
1115 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1116 			return error;
1117 	}
1118 	/* init RF-dependent PHY registers, part three */
1119 	for (i = 0; i < __arraycount(phyini_3); i++) {
1120 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1121 		if (error != 0)
1122 			return error;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 Static int
1129 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1130 {
1131 	struct zyd_softc *sc = rf->rf_sc;
1132 
1133 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1134 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1135 
1136 	return 0;
1137 }
1138 
1139 Static int
1140 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1141 {
1142 	struct zyd_softc *sc = rf->rf_sc;
1143 	static const struct {
1144 		uint32_t	r1, r2;
1145 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1146 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1147 	int error;
1148 	size_t i;
1149 
1150 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1151 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1152 
1153 	for (i = 0; i < __arraycount(rfsc); i++) {
1154 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1155 			return error;
1156 	}
1157 
1158 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1159 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1160 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1161 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1162 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1163 
1164 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1165 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1166 	(void)zyd_rfwrite(sc, 0x3c9000);
1167 
1168 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1169 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1170 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * AL2210 RF methods.
1177  */
1178 Static int
1179 zyd_al2210_init(struct zyd_rf *rf)
1180 {
1181 	struct zyd_softc *sc = rf->rf_sc;
1182 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1183 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1184 	uint32_t tmp;
1185 	int error;
1186 	size_t i;
1187 
1188 	(void)zyd_write32(sc, ZYD_CR18, 2);
1189 
1190 	/* init RF-dependent PHY registers */
1191 	for (i = 0; i < __arraycount(phyini); i++) {
1192 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1193 		if (error != 0)
1194 			return error;
1195 	}
1196 	/* init AL2210 radio */
1197 	for (i = 0; i < __arraycount(rfini); i++) {
1198 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1199 			return error;
1200 	}
1201 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1202 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1203 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1204 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1205 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1206 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1207 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1208 	(void)zyd_write32(sc, ZYD_CR18, 3);
1209 
1210 	return 0;
1211 }
1212 
1213 Static int
1214 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1215 {
1216 	/* vendor driver does nothing for this RF chip */
1217 
1218 	return 0;
1219 }
1220 
1221 Static int
1222 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1223 {
1224 	struct zyd_softc *sc = rf->rf_sc;
1225 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1226 	uint32_t tmp;
1227 
1228 	(void)zyd_write32(sc, ZYD_CR18, 2);
1229 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1230 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1231 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1232 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1233 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1234 
1235 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1236 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1237 
1238 	/* actually set the channel */
1239 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1240 
1241 	(void)zyd_write32(sc, ZYD_CR18, 3);
1242 
1243 	return 0;
1244 }
1245 
1246 /*
1247  * GCT RF methods.
1248  */
1249 Static int
1250 zyd_gct_init(struct zyd_rf *rf)
1251 {
1252 	struct zyd_softc *sc = rf->rf_sc;
1253 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1254 	static const uint32_t rfini[] = ZYD_GCT_RF;
1255 	int error;
1256 	size_t i;
1257 
1258 	/* init RF-dependent PHY registers */
1259 	for (i = 0; i < __arraycount(phyini); i++) {
1260 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1261 		if (error != 0)
1262 			return error;
1263 	}
1264 	/* init cgt radio */
1265 	for (i = 0; i < __arraycount(rfini); i++) {
1266 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1267 			return error;
1268 	}
1269 	return 0;
1270 }
1271 
1272 Static int
1273 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1274 {
1275 	/* vendor driver does nothing for this RF chip */
1276 
1277 	return 0;
1278 }
1279 
1280 Static int
1281 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1282 {
1283 	struct zyd_softc *sc = rf->rf_sc;
1284 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1285 
1286 	(void)zyd_rfwrite(sc, 0x1c0000);
1287 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1288 	(void)zyd_rfwrite(sc, 0x1c0008);
1289 
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Maxim RF methods.
1295  */
1296 Static int
1297 zyd_maxim_init(struct zyd_rf *rf)
1298 {
1299 	struct zyd_softc *sc = rf->rf_sc;
1300 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1301 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1302 	uint16_t tmp;
1303 	int error;
1304 	size_t i;
1305 
1306 	/* init RF-dependent PHY registers */
1307 	for (i = 0; i < __arraycount(phyini); i++) {
1308 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1309 		if (error != 0)
1310 			return error;
1311 	}
1312 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1313 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1314 
1315 	/* init maxim radio */
1316 	for (i = 0; i < __arraycount(rfini); i++) {
1317 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1318 			return error;
1319 	}
1320 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1321 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1322 
1323 	return 0;
1324 }
1325 
1326 Static int
1327 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1328 {
1329 	/* vendor driver does nothing for this RF chip */
1330 
1331 	return 0;
1332 }
1333 
1334 Static int
1335 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1336 {
1337 	struct zyd_softc *sc = rf->rf_sc;
1338 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1339 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1340 	static const struct {
1341 		uint32_t	r1, r2;
1342 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1343 	uint16_t tmp;
1344 	int error;
1345 	size_t i;
1346 
1347 	/*
1348 	 * Do the same as we do when initializing it, except for the channel
1349 	 * values coming from the two channel tables.
1350 	 */
1351 
1352 	/* init RF-dependent PHY registers */
1353 	for (i = 0; i < __arraycount(phyini); i++) {
1354 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1355 		if (error != 0)
1356 			return error;
1357 	}
1358 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1359 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1360 
1361 	/* first two values taken from the chantables */
1362 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1363 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1364 
1365 	/* init maxim radio - skipping the two first values */
1366 	for (i = 2; i < __arraycount(rfini); i++) {
1367 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1368 			return error;
1369 	}
1370 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1371 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1372 
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Maxim2 RF methods.
1378  */
1379 Static int
1380 zyd_maxim2_init(struct zyd_rf *rf)
1381 {
1382 	struct zyd_softc *sc = rf->rf_sc;
1383 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1384 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1385 	uint16_t tmp;
1386 	int error;
1387 	size_t i;
1388 
1389 	/* init RF-dependent PHY registers */
1390 	for (i = 0; i < __arraycount(phyini); i++) {
1391 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1392 		if (error != 0)
1393 			return error;
1394 	}
1395 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1396 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1397 
1398 	/* init maxim2 radio */
1399 	for (i = 0; i < __arraycount(rfini); i++) {
1400 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1401 			return error;
1402 	}
1403 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1404 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1405 
1406 	return 0;
1407 }
1408 
1409 Static int
1410 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1411 {
1412 	/* vendor driver does nothing for this RF chip */
1413 
1414 	return 0;
1415 }
1416 
1417 Static int
1418 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1419 {
1420 	struct zyd_softc *sc = rf->rf_sc;
1421 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1422 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1423 	static const struct {
1424 		uint32_t	r1, r2;
1425 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1426 	uint16_t tmp;
1427 	int error;
1428 	size_t i;
1429 
1430 	/*
1431 	 * Do the same as we do when initializing it, except for the channel
1432 	 * values coming from the two channel tables.
1433 	 */
1434 
1435 	/* init RF-dependent PHY registers */
1436 	for (i = 0; i < __arraycount(phyini); i++) {
1437 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1438 		if (error != 0)
1439 			return error;
1440 	}
1441 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1442 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1443 
1444 	/* first two values taken from the chantables */
1445 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1446 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1447 
1448 	/* init maxim2 radio - skipping the two first values */
1449 	for (i = 2; i < __arraycount(rfini); i++) {
1450 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1451 			return error;
1452 	}
1453 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1454 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1455 
1456 	return 0;
1457 }
1458 
1459 Static int
1460 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1461 {
1462 	struct zyd_rf *rf = &sc->sc_rf;
1463 
1464 	rf->rf_sc = sc;
1465 
1466 	switch (type) {
1467 	case ZYD_RF_RFMD:
1468 		rf->init         = zyd_rfmd_init;
1469 		rf->switch_radio = zyd_rfmd_switch_radio;
1470 		rf->set_channel  = zyd_rfmd_set_channel;
1471 		rf->width        = 24;	/* 24-bit RF values */
1472 		break;
1473 	case ZYD_RF_AL2230:
1474 	case ZYD_RF_AL2230S:
1475 		if (sc->mac_rev == ZYD_ZD1211B)
1476 			rf->init = zyd_al2230_init_b;
1477 		else
1478 			rf->init = zyd_al2230_init;
1479 		rf->switch_radio = zyd_al2230_switch_radio;
1480 		rf->set_channel  = zyd_al2230_set_channel;
1481 		rf->width        = 24;	/* 24-bit RF values */
1482 		break;
1483 	case ZYD_RF_AL7230B:
1484 		rf->init         = zyd_al7230B_init;
1485 		rf->switch_radio = zyd_al7230B_switch_radio;
1486 		rf->set_channel  = zyd_al7230B_set_channel;
1487 		rf->width        = 24;	/* 24-bit RF values */
1488 		break;
1489 	case ZYD_RF_AL2210:
1490 		rf->init         = zyd_al2210_init;
1491 		rf->switch_radio = zyd_al2210_switch_radio;
1492 		rf->set_channel  = zyd_al2210_set_channel;
1493 		rf->width        = 24;	/* 24-bit RF values */
1494 		break;
1495 	case ZYD_RF_GCT:
1496 		rf->init         = zyd_gct_init;
1497 		rf->switch_radio = zyd_gct_switch_radio;
1498 		rf->set_channel  = zyd_gct_set_channel;
1499 		rf->width        = 21;	/* 21-bit RF values */
1500 		break;
1501 	case ZYD_RF_MAXIM_NEW:
1502 		rf->init         = zyd_maxim_init;
1503 		rf->switch_radio = zyd_maxim_switch_radio;
1504 		rf->set_channel  = zyd_maxim_set_channel;
1505 		rf->width        = 18;	/* 18-bit RF values */
1506 		break;
1507 	case ZYD_RF_MAXIM_NEW2:
1508 		rf->init         = zyd_maxim2_init;
1509 		rf->switch_radio = zyd_maxim2_switch_radio;
1510 		rf->set_channel  = zyd_maxim2_set_channel;
1511 		rf->width        = 18;	/* 18-bit RF values */
1512 		break;
1513 	default:
1514 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1515 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1516 		return EINVAL;
1517 	}
1518 	return 0;
1519 }
1520 
1521 Static const char *
1522 zyd_rf_name(uint8_t type)
1523 {
1524 	static const char * const zyd_rfs[] = {
1525 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1526 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1527 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1528 		"PHILIPS"
1529 	};
1530 
1531 	return zyd_rfs[(type > 15) ? 0 : type];
1532 }
1533 
1534 Static int
1535 zyd_hw_init(struct zyd_softc *sc)
1536 {
1537 	struct zyd_rf *rf = &sc->sc_rf;
1538 	const struct zyd_phy_pair *phyp;
1539 	int error;
1540 
1541 	/* specify that the plug and play is finished */
1542 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1543 
1544 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1545 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1546 
1547 	/* retrieve firmware revision number */
1548 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1549 
1550 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1551 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1552 
1553 	/* disable interrupts */
1554 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1555 
1556 	/* PHY init */
1557 	zyd_lock_phy(sc);
1558 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1559 	for (; phyp->reg != 0; phyp++) {
1560 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1561 			goto fail;
1562 	}
1563 	zyd_unlock_phy(sc);
1564 
1565 	/* HMAC init */
1566 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1567 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1568 
1569 	if (sc->mac_rev == ZYD_ZD1211) {
1570 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1571 	} else {
1572 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1573 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1574 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1575 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1576 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1577 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1578 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1579 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1580 	}
1581 
1582 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1583 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1584 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1585 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1586 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1587 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1588 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1589 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1590 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1591 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1592 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1593 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1594 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1595 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1596 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1597 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1598 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1599 
1600 	/* RF chip init */
1601 	zyd_lock_phy(sc);
1602 	error = (*rf->init)(rf);
1603 	zyd_unlock_phy(sc);
1604 	if (error != 0) {
1605 		printf("%s: radio initialization failed\n",
1606 		    device_xname(sc->sc_dev));
1607 		goto fail;
1608 	}
1609 
1610 	/* init beacon interval to 100ms */
1611 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1612 		goto fail;
1613 
1614 fail:	return error;
1615 }
1616 
1617 Static int
1618 zyd_read_eeprom(struct zyd_softc *sc)
1619 {
1620 	struct ieee80211com *ic = &sc->sc_ic;
1621 	uint32_t tmp;
1622 	uint16_t val;
1623 	int i;
1624 
1625 	/* read MAC address */
1626 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1627 	ic->ic_myaddr[0] = tmp & 0xff;
1628 	ic->ic_myaddr[1] = tmp >>  8;
1629 	ic->ic_myaddr[2] = tmp >> 16;
1630 	ic->ic_myaddr[3] = tmp >> 24;
1631 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1632 	ic->ic_myaddr[4] = tmp & 0xff;
1633 	ic->ic_myaddr[5] = tmp >>  8;
1634 
1635 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1636 	sc->rf_rev = tmp & 0x0f;
1637 	sc->pa_rev = (tmp >> 16) & 0x0f;
1638 
1639 	/* read regulatory domain (currently unused) */
1640 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1641 	sc->regdomain = tmp >> 16;
1642 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1643 
1644 	/* read Tx power calibration tables */
1645 	for (i = 0; i < 7; i++) {
1646 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1647 		sc->pwr_cal[i * 2] = val >> 8;
1648 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1649 
1650 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1651 		sc->pwr_int[i * 2] = val >> 8;
1652 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1653 
1654 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1655 		sc->ofdm36_cal[i * 2] = val >> 8;
1656 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1657 
1658 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1659 		sc->ofdm48_cal[i * 2] = val >> 8;
1660 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1661 
1662 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1663 		sc->ofdm54_cal[i * 2] = val >> 8;
1664 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1665 	}
1666 	return 0;
1667 }
1668 
1669 Static int
1670 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1671 {
1672 	uint32_t tmp;
1673 
1674 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1675 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1676 
1677 	tmp = addr[5] << 8 | addr[4];
1678 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1679 
1680 	return 0;
1681 }
1682 
1683 Static int
1684 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1685 {
1686 	uint32_t tmp;
1687 
1688 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1689 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1690 
1691 	tmp = addr[5] << 8 | addr[4];
1692 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1693 
1694 	return 0;
1695 }
1696 
1697 Static int
1698 zyd_switch_radio(struct zyd_softc *sc, int on)
1699 {
1700 	struct zyd_rf *rf = &sc->sc_rf;
1701 	int error;
1702 
1703 	zyd_lock_phy(sc);
1704 	error = (*rf->switch_radio)(rf, on);
1705 	zyd_unlock_phy(sc);
1706 
1707 	return error;
1708 }
1709 
1710 Static void
1711 zyd_set_led(struct zyd_softc *sc, int which, int on)
1712 {
1713 	uint32_t tmp;
1714 
1715 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1716 	tmp &= ~which;
1717 	if (on)
1718 		tmp |= which;
1719 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1720 }
1721 
1722 Static int
1723 zyd_set_rxfilter(struct zyd_softc *sc)
1724 {
1725 	uint32_t rxfilter;
1726 
1727 	switch (sc->sc_ic.ic_opmode) {
1728 	case IEEE80211_M_STA:
1729 		rxfilter = ZYD_FILTER_BSS;
1730 		break;
1731 	case IEEE80211_M_IBSS:
1732 	case IEEE80211_M_HOSTAP:
1733 		rxfilter = ZYD_FILTER_HOSTAP;
1734 		break;
1735 	case IEEE80211_M_MONITOR:
1736 		rxfilter = ZYD_FILTER_MONITOR;
1737 		break;
1738 	default:
1739 		/* should not get there */
1740 		return EINVAL;
1741 	}
1742 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1743 }
1744 
1745 Static void
1746 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1747 {
1748 	struct ieee80211com *ic = &sc->sc_ic;
1749 	struct zyd_rf *rf = &sc->sc_rf;
1750 	u_int chan;
1751 
1752 	chan = ieee80211_chan2ieee(ic, c);
1753 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1754 		return;
1755 
1756 	zyd_lock_phy(sc);
1757 
1758 	(*rf->set_channel)(rf, chan);
1759 
1760 	/* update Tx power */
1761 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1762 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1763 
1764 	if (sc->mac_rev == ZYD_ZD1211B) {
1765 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1766 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1767 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1768 
1769 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1770 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1771 	}
1772 
1773 	zyd_unlock_phy(sc);
1774 }
1775 
1776 Static int
1777 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1778 {
1779 	/* XXX this is probably broken.. */
1780 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1781 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1782 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1783 
1784 	return 0;
1785 }
1786 
1787 Static uint8_t
1788 zyd_plcp_signal(int rate)
1789 {
1790 	switch (rate) {
1791 	/* CCK rates (returned values are device-dependent) */
1792 	case 2:		return 0x0;
1793 	case 4:		return 0x1;
1794 	case 11:	return 0x2;
1795 	case 22:	return 0x3;
1796 
1797 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1798 	case 12:	return 0xb;
1799 	case 18:	return 0xf;
1800 	case 24:	return 0xa;
1801 	case 36:	return 0xe;
1802 	case 48:	return 0x9;
1803 	case 72:	return 0xd;
1804 	case 96:	return 0x8;
1805 	case 108:	return 0xc;
1806 
1807 	/* unsupported rates (should not get there) */
1808 	default:	return 0xff;
1809 	}
1810 }
1811 
1812 Static void
1813 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1814 {
1815 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1816 	struct zyd_cmd *cmd;
1817 	uint32_t datalen;
1818 
1819 	if (status != USBD_NORMAL_COMPLETION) {
1820 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1821 			return;
1822 
1823 		if (status == USBD_STALLED) {
1824 			usbd_clear_endpoint_stall_async(
1825 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1826 		}
1827 		return;
1828 	}
1829 
1830 	cmd = (struct zyd_cmd *)sc->ibuf;
1831 
1832 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1833 		struct zyd_notif_retry *retry =
1834 		    (struct zyd_notif_retry *)cmd->data;
1835 		struct ieee80211com *ic = &sc->sc_ic;
1836 		struct ifnet *ifp = &sc->sc_if;
1837 		struct ieee80211_node *ni;
1838 
1839 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1840 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1841 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1842 
1843 		/*
1844 		 * Find the node to which the packet was sent and update its
1845 		 * retry statistics.  In BSS mode, this node is the AP we're
1846 		 * associated to so no lookup is actually needed.
1847 		 */
1848 		if (ic->ic_opmode != IEEE80211_M_STA) {
1849 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1850 			if (ni == NULL)
1851 				return;	/* just ignore */
1852 		} else
1853 			ni = ic->ic_bss;
1854 
1855 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1856 
1857 		if (le16toh(retry->count) & 0x100)
1858 			ifp->if_oerrors++;	/* too many retries */
1859 
1860 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1861 		struct rq *rqp;
1862 
1863 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1864 			return;	/* HMAC interrupt */
1865 
1866 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1867 		datalen -= sizeof(cmd->code);
1868 		datalen -= 2;	/* XXX: padding? */
1869 
1870 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1871 			int i;
1872 
1873 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1874 				continue;
1875 			for (i = 0; i < rqp->len; i++) {
1876 				if (*(((const uint16_t *)rqp->idata) + i) !=
1877 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1878 					break;
1879 			}
1880 			if (i != rqp->len)
1881 				continue;
1882 
1883 			/* copy answer into caller-supplied buffer */
1884 			memcpy(rqp->odata, cmd->data,
1885 			    sizeof(struct zyd_pair) * rqp->len);
1886 			wakeup(rqp->odata);	/* wakeup caller */
1887 
1888 			return;
1889 		}
1890 		return;	/* unexpected IORD notification */
1891 	} else {
1892 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1893 		    le16toh(cmd->code));
1894 	}
1895 }
1896 
1897 Static void
1898 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1899 {
1900 	struct ieee80211com *ic = &sc->sc_ic;
1901 	struct ifnet *ifp = &sc->sc_if;
1902 	struct ieee80211_node *ni;
1903 	struct ieee80211_frame *wh;
1904 	const struct zyd_plcphdr *plcp;
1905 	const struct zyd_rx_stat *stat;
1906 	struct mbuf *m;
1907 	int rlen, s;
1908 
1909 	if (len < ZYD_MIN_FRAGSZ) {
1910 		printf("%s: frame too short (length=%d)\n",
1911 		    device_xname(sc->sc_dev), len);
1912 		ifp->if_ierrors++;
1913 		return;
1914 	}
1915 
1916 	plcp = (const struct zyd_plcphdr *)buf;
1917 	stat = (const struct zyd_rx_stat *)
1918 	    (buf + len - sizeof(struct zyd_rx_stat));
1919 
1920 	if (stat->flags & ZYD_RX_ERROR) {
1921 		DPRINTF(("%s: RX status indicated error (%x)\n",
1922 		    device_xname(sc->sc_dev), stat->flags));
1923 		ifp->if_ierrors++;
1924 		return;
1925 	}
1926 
1927 	/* compute actual frame length */
1928 	rlen = len - sizeof(struct zyd_plcphdr) -
1929 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1930 
1931 	/* allocate a mbuf to store the frame */
1932 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1933 	if (m == NULL) {
1934 		printf("%s: could not allocate rx mbuf\n",
1935 		    device_xname(sc->sc_dev));
1936 		ifp->if_ierrors++;
1937 		return;
1938 	}
1939 	if (rlen > MHLEN) {
1940 		MCLGET(m, M_DONTWAIT);
1941 		if (!(m->m_flags & M_EXT)) {
1942 			printf("%s: could not allocate rx mbuf cluster\n",
1943 			    device_xname(sc->sc_dev));
1944 			m_freem(m);
1945 			ifp->if_ierrors++;
1946 			return;
1947 		}
1948 	}
1949 	m_set_rcvif(m, ifp);
1950 	m->m_pkthdr.len = m->m_len = rlen;
1951 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1952 
1953 	s = splnet();
1954 
1955 	if (sc->sc_drvbpf != NULL) {
1956 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1957 		static const uint8_t rates[] = {
1958 			/* reverse function of zyd_plcp_signal() */
1959 			2, 4, 11, 22, 0, 0, 0, 0,
1960 			96, 48, 24, 12, 108, 72, 36, 18
1961 		};
1962 
1963 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1964 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1965 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1966 		tap->wr_rssi = stat->rssi;
1967 		tap->wr_rate = rates[plcp->signal & 0xf];
1968 
1969 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1970 	}
1971 
1972 	wh = mtod(m, struct ieee80211_frame *);
1973 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1974 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1975 
1976 	/* node is no longer needed */
1977 	ieee80211_free_node(ni);
1978 
1979 	splx(s);
1980 }
1981 
1982 Static void
1983 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1984 {
1985 	struct zyd_rx_data *data = priv;
1986 	struct zyd_softc *sc = data->sc;
1987 	struct ifnet *ifp = &sc->sc_if;
1988 	const struct zyd_rx_desc *desc;
1989 	int len;
1990 
1991 	if (status != USBD_NORMAL_COMPLETION) {
1992 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1993 			return;
1994 
1995 		if (status == USBD_STALLED)
1996 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1997 
1998 		goto skip;
1999 	}
2000 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2001 
2002 	if (len < ZYD_MIN_RXBUFSZ) {
2003 		printf("%s: xfer too short (length=%d)\n",
2004 		    device_xname(sc->sc_dev), len);
2005 		ifp->if_ierrors++;
2006 		goto skip;
2007 	}
2008 
2009 	desc = (const struct zyd_rx_desc *)
2010 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2011 
2012 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2013 		const uint8_t *p = data->buf, *end = p + len;
2014 		int i;
2015 
2016 		DPRINTFN(3, ("received multi-frame transfer\n"));
2017 
2018 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2019 			const uint16_t len16 = UGETW(desc->len[i]);
2020 
2021 			if (len16 == 0 || p + len16 > end)
2022 				break;
2023 
2024 			zyd_rx_data(sc, p, len16);
2025 			/* next frame is aligned on a 32-bit boundary */
2026 			p += (len16 + 3) & ~3;
2027 		}
2028 	} else {
2029 		DPRINTFN(3, ("received single-frame transfer\n"));
2030 
2031 		zyd_rx_data(sc, data->buf, len);
2032 	}
2033 
2034 skip:	/* setup a new transfer */
2035 
2036 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2037 	    USBD_NO_TIMEOUT, zyd_rxeof);
2038 	(void)usbd_transfer(xfer);
2039 }
2040 
2041 Static int
2042 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2043 {
2044 	struct ieee80211com *ic = &sc->sc_ic;
2045 	struct ifnet *ifp = &sc->sc_if;
2046 	struct zyd_tx_desc *desc;
2047 	struct zyd_tx_data *data;
2048 	struct ieee80211_frame *wh;
2049 	struct ieee80211_key *k;
2050 	int xferlen, totlen, rate;
2051 	uint16_t pktlen;
2052 	usbd_status error;
2053 
2054 	data = &sc->tx_data[0];
2055 	desc = (struct zyd_tx_desc *)data->buf;
2056 
2057 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2058 
2059 	wh = mtod(m0, struct ieee80211_frame *);
2060 
2061 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2062 		k = ieee80211_crypto_encap(ic, ni, m0);
2063 		if (k == NULL) {
2064 			m_freem(m0);
2065 			return ENOBUFS;
2066 		}
2067 	}
2068 
2069 	data->ni = ni;
2070 
2071 	wh = mtod(m0, struct ieee80211_frame *);
2072 
2073 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2074 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2075 
2076 	/* fill Tx descriptor */
2077 	desc->len = htole16(totlen);
2078 
2079 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2080 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2081 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2082 		if (totlen > ic->ic_rtsthreshold) {
2083 			desc->flags |= ZYD_TX_FLAG_RTS;
2084 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2085 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2086 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2087 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2088 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2089 				desc->flags |= ZYD_TX_FLAG_RTS;
2090 		}
2091 	} else
2092 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2093 
2094 	if ((wh->i_fc[0] &
2095 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2096 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2097 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2098 
2099 	desc->phy = zyd_plcp_signal(rate);
2100 	if (ZYD_RATE_IS_OFDM(rate)) {
2101 		desc->phy |= ZYD_TX_PHY_OFDM;
2102 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2103 			desc->phy |= ZYD_TX_PHY_5GHZ;
2104 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2105 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2106 
2107 	/* actual transmit length (XXX why +10?) */
2108 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2109 	if (sc->mac_rev == ZYD_ZD1211)
2110 		pktlen += totlen;
2111 	desc->pktlen = htole16(pktlen);
2112 
2113 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2114 	desc->plcp_service = 0;
2115 	if (rate == 22) {
2116 		const int remainder = (16 * totlen) % 22;
2117 		if (remainder != 0 && remainder < 7)
2118 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2119 	}
2120 
2121 	if (sc->sc_drvbpf != NULL) {
2122 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2123 
2124 		tap->wt_flags = 0;
2125 		tap->wt_rate = rate;
2126 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2127 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2128 
2129 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2130 	}
2131 
2132 	m_copydata(m0, 0, m0->m_pkthdr.len,
2133 	    data->buf + sizeof(struct zyd_tx_desc));
2134 
2135 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2136 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2137 
2138 	m_freem(m0);	/* mbuf no longer needed */
2139 
2140 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2141 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2142 	error = usbd_transfer(data->xfer);
2143 	if (error != USBD_IN_PROGRESS && error != 0) {
2144 		ifp->if_oerrors++;
2145 		return EIO;
2146 	}
2147 	sc->tx_queued++;
2148 
2149 	return 0;
2150 }
2151 
2152 Static void
2153 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2154 {
2155 	struct zyd_tx_data *data = priv;
2156 	struct zyd_softc *sc = data->sc;
2157 	struct ifnet *ifp = &sc->sc_if;
2158 	int s;
2159 
2160 	if (status != USBD_NORMAL_COMPLETION) {
2161 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2162 			return;
2163 
2164 		printf("%s: could not transmit buffer: %s\n",
2165 		    device_xname(sc->sc_dev), usbd_errstr(status));
2166 
2167 		if (status == USBD_STALLED) {
2168 			usbd_clear_endpoint_stall_async(
2169 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2170 		}
2171 		ifp->if_oerrors++;
2172 		return;
2173 	}
2174 
2175 	s = splnet();
2176 
2177 	/* update rate control statistics */
2178 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2179 
2180 	ieee80211_free_node(data->ni);
2181 	data->ni = NULL;
2182 
2183 	sc->tx_queued--;
2184 	ifp->if_opackets++;
2185 
2186 	sc->tx_timer = 0;
2187 	ifp->if_flags &= ~IFF_OACTIVE;
2188 	zyd_start(ifp);
2189 
2190 	splx(s);
2191 }
2192 
2193 Static int
2194 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2195 {
2196 	struct ieee80211com *ic = &sc->sc_ic;
2197 	struct ifnet *ifp = &sc->sc_if;
2198 	struct zyd_tx_desc *desc;
2199 	struct zyd_tx_data *data;
2200 	struct ieee80211_frame *wh;
2201 	struct ieee80211_key *k;
2202 	int xferlen, totlen, rate;
2203 	uint16_t pktlen;
2204 	usbd_status error;
2205 
2206 	wh = mtod(m0, struct ieee80211_frame *);
2207 
2208 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2209 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2210 	else
2211 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2212 	rate &= IEEE80211_RATE_VAL;
2213 
2214 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2215 		k = ieee80211_crypto_encap(ic, ni, m0);
2216 		if (k == NULL) {
2217 			m_freem(m0);
2218 			return ENOBUFS;
2219 		}
2220 
2221 		/* packet header may have moved, reset our local pointer */
2222 		wh = mtod(m0, struct ieee80211_frame *);
2223 	}
2224 
2225 	data = &sc->tx_data[0];
2226 	desc = (struct zyd_tx_desc *)data->buf;
2227 
2228 	data->ni = ni;
2229 
2230 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2231 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2232 
2233 	/* fill Tx descriptor */
2234 	desc->len = htole16(totlen);
2235 
2236 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2237 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2238 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2239 		if (totlen > ic->ic_rtsthreshold) {
2240 			desc->flags |= ZYD_TX_FLAG_RTS;
2241 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2242 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2243 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2244 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2245 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2246 				desc->flags |= ZYD_TX_FLAG_RTS;
2247 		}
2248 	} else
2249 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2250 
2251 	if ((wh->i_fc[0] &
2252 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2253 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2254 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2255 
2256 	desc->phy = zyd_plcp_signal(rate);
2257 	if (ZYD_RATE_IS_OFDM(rate)) {
2258 		desc->phy |= ZYD_TX_PHY_OFDM;
2259 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2260 			desc->phy |= ZYD_TX_PHY_5GHZ;
2261 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2262 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2263 
2264 	/* actual transmit length (XXX why +10?) */
2265 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2266 	if (sc->mac_rev == ZYD_ZD1211)
2267 		pktlen += totlen;
2268 	desc->pktlen = htole16(pktlen);
2269 
2270 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2271 	desc->plcp_service = 0;
2272 	if (rate == 22) {
2273 		const int remainder = (16 * totlen) % 22;
2274 		if (remainder != 0 && remainder < 7)
2275 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2276 	}
2277 
2278 	if (sc->sc_drvbpf != NULL) {
2279 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2280 
2281 		tap->wt_flags = 0;
2282 		tap->wt_rate = rate;
2283 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2284 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2285 
2286 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2287 	}
2288 
2289 	m_copydata(m0, 0, m0->m_pkthdr.len,
2290 	    data->buf + sizeof(struct zyd_tx_desc));
2291 
2292 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2293 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2294 
2295 	m_freem(m0);	/* mbuf no longer needed */
2296 
2297 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2298 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2299 	error = usbd_transfer(data->xfer);
2300 	if (error != USBD_IN_PROGRESS && error != 0) {
2301 		ifp->if_oerrors++;
2302 		return EIO;
2303 	}
2304 	sc->tx_queued++;
2305 
2306 	return 0;
2307 }
2308 
2309 Static void
2310 zyd_start(struct ifnet *ifp)
2311 {
2312 	struct zyd_softc *sc = ifp->if_softc;
2313 	struct ieee80211com *ic = &sc->sc_ic;
2314 	struct ether_header *eh;
2315 	struct ieee80211_node *ni;
2316 	struct mbuf *m0;
2317 
2318 	for (;;) {
2319 		IF_POLL(&ic->ic_mgtq, m0);
2320 		if (m0 != NULL) {
2321 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2322 				ifp->if_flags |= IFF_OACTIVE;
2323 				break;
2324 			}
2325 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2326 
2327 			ni = M_GETCTX(m0, struct ieee80211_node *);
2328 			M_CLEARCTX(m0);
2329 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2330 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2331 				break;
2332 		} else {
2333 			if (ic->ic_state != IEEE80211_S_RUN)
2334 				break;
2335 			IFQ_POLL(&ifp->if_snd, m0);
2336 			if (m0 == NULL)
2337 				break;
2338 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2339 				ifp->if_flags |= IFF_OACTIVE;
2340 				break;
2341 			}
2342 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2343 
2344 			if (m0->m_len < sizeof(struct ether_header) &&
2345 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2346 				continue;
2347 
2348 			eh = mtod(m0, struct ether_header *);
2349 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2350 			if (ni == NULL) {
2351 				m_freem(m0);
2352 				continue;
2353 			}
2354 			bpf_mtap(ifp, m0, BPF_D_OUT);
2355 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2356 				ieee80211_free_node(ni);
2357 				ifp->if_oerrors++;
2358 				continue;
2359 			}
2360 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2361 			if (zyd_tx_data(sc, m0, ni) != 0) {
2362 				ieee80211_free_node(ni);
2363 				ifp->if_oerrors++;
2364 				break;
2365 			}
2366 		}
2367 
2368 		sc->tx_timer = 5;
2369 		ifp->if_timer = 1;
2370 	}
2371 }
2372 
2373 Static void
2374 zyd_watchdog(struct ifnet *ifp)
2375 {
2376 	struct zyd_softc *sc = ifp->if_softc;
2377 	struct ieee80211com *ic = &sc->sc_ic;
2378 
2379 	ifp->if_timer = 0;
2380 
2381 	if (sc->tx_timer > 0) {
2382 		if (--sc->tx_timer == 0) {
2383 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2384 			/* zyd_init(ifp); XXX needs a process context ? */
2385 			ifp->if_oerrors++;
2386 			return;
2387 		}
2388 		ifp->if_timer = 1;
2389 	}
2390 
2391 	ieee80211_watchdog(ic);
2392 }
2393 
2394 Static int
2395 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2396 {
2397 	struct zyd_softc *sc = ifp->if_softc;
2398 	struct ieee80211com *ic = &sc->sc_ic;
2399 	int s, error = 0;
2400 
2401 	s = splnet();
2402 
2403 	switch (cmd) {
2404 	case SIOCSIFFLAGS:
2405 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2406 			break;
2407 		/* XXX re-use ether_ioctl() */
2408 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2409 		case IFF_UP:
2410 			zyd_init(ifp);
2411 			break;
2412 		case IFF_RUNNING:
2413 			zyd_stop(ifp, 1);
2414 			break;
2415 		default:
2416 			break;
2417 		}
2418 		break;
2419 
2420 	default:
2421 		error = ieee80211_ioctl(ic, cmd, data);
2422 	}
2423 
2424 	if (error == ENETRESET) {
2425 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2426 		    (IFF_RUNNING | IFF_UP))
2427 			zyd_init(ifp);
2428 		error = 0;
2429 	}
2430 
2431 	splx(s);
2432 
2433 	return error;
2434 }
2435 
2436 Static int
2437 zyd_init(struct ifnet *ifp)
2438 {
2439 	struct zyd_softc *sc = ifp->if_softc;
2440 	struct ieee80211com *ic = &sc->sc_ic;
2441 	int i, error;
2442 
2443 	zyd_stop(ifp, 0);
2444 
2445 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2446 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2447 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2448 	if (error != 0)
2449 		return error;
2450 
2451 	/* we'll do software WEP decryption for now */
2452 	DPRINTF(("setting encryption type\n"));
2453 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2454 	if (error != 0)
2455 		return error;
2456 
2457 	/* promiscuous mode */
2458 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2459 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2460 
2461 	(void)zyd_set_rxfilter(sc);
2462 
2463 	/* switch radio transmitter ON */
2464 	(void)zyd_switch_radio(sc, 1);
2465 
2466 	/* set basic rates */
2467 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2468 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2469 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2470 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2471 	else	/* assumes 802.11b/g */
2472 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2473 
2474 	/* set mandatory rates */
2475 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2476 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2477 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2478 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2479 	else	/* assumes 802.11b/g */
2480 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2481 
2482 	/* set default BSS channel */
2483 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2484 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2485 
2486 	/* enable interrupts */
2487 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2488 
2489 	/*
2490 	 * Allocate Tx and Rx xfer queues.
2491 	 */
2492 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2493 		printf("%s: could not allocate Tx list\n",
2494 		    device_xname(sc->sc_dev));
2495 		goto fail;
2496 	}
2497 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2498 		printf("%s: could not allocate Rx list\n",
2499 		    device_xname(sc->sc_dev));
2500 		goto fail;
2501 	}
2502 
2503 	/*
2504 	 * Start up the receive pipe.
2505 	 */
2506 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2507 		struct zyd_rx_data *data = &sc->rx_data[i];
2508 
2509 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2510 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2511 		error = usbd_transfer(data->xfer);
2512 		if (error != USBD_IN_PROGRESS && error != 0) {
2513 			printf("%s: could not queue Rx transfer\n",
2514 			    device_xname(sc->sc_dev));
2515 			goto fail;
2516 		}
2517 	}
2518 
2519 	ifp->if_flags &= ~IFF_OACTIVE;
2520 	ifp->if_flags |= IFF_RUNNING;
2521 
2522 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2523 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2524 	else
2525 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2526 
2527 	return 0;
2528 
2529 fail:	zyd_stop(ifp, 1);
2530 	return error;
2531 }
2532 
2533 Static void
2534 zyd_stop(struct ifnet *ifp, int disable)
2535 {
2536 	struct zyd_softc *sc = ifp->if_softc;
2537 	struct ieee80211com *ic = &sc->sc_ic;
2538 
2539 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2540 
2541 	sc->tx_timer = 0;
2542 	ifp->if_timer = 0;
2543 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2544 
2545 	/* switch radio transmitter OFF */
2546 	(void)zyd_switch_radio(sc, 0);
2547 
2548 	/* disable Rx */
2549 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2550 
2551 	/* disable interrupts */
2552 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2553 
2554 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2555 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2556 
2557 	zyd_free_rx_list(sc);
2558 	zyd_free_tx_list(sc);
2559 }
2560 
2561 Static int
2562 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2563 {
2564 	usb_device_request_t req;
2565 	uint16_t addr;
2566 	uint8_t stat;
2567 
2568 	DPRINTF(("firmware size=%zu\n", size));
2569 
2570 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2571 	req.bRequest = ZYD_DOWNLOADREQ;
2572 	USETW(req.wIndex, 0);
2573 
2574 	addr = ZYD_FIRMWARE_START_ADDR;
2575 	while (size > 0) {
2576 #if 0
2577 		const int mlen = uimin(size, 4096);
2578 #else
2579 		/*
2580 		 * XXXX: When the transfer size is 4096 bytes, it is not
2581 		 * likely to be able to transfer it.
2582 		 * The cause is port or machine or chip?
2583 		 */
2584 		const int mlen = uimin(size, 64);
2585 #endif
2586 
2587 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2588 		    addr));
2589 
2590 		USETW(req.wValue, addr);
2591 		USETW(req.wLength, mlen);
2592 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2593 			return EIO;
2594 
2595 		addr += mlen / 2;
2596 		fw   += mlen;
2597 		size -= mlen;
2598 	}
2599 
2600 	/* check whether the upload succeeded */
2601 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2602 	req.bRequest = ZYD_DOWNLOADSTS;
2603 	USETW(req.wValue, 0);
2604 	USETW(req.wIndex, 0);
2605 	USETW(req.wLength, sizeof(stat));
2606 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2607 		return EIO;
2608 
2609 	return (stat & 0x80) ? EIO : 0;
2610 }
2611 
2612 Static void
2613 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2614 {
2615 	struct zyd_softc *sc = arg;
2616 	struct zyd_node *zn = (struct zyd_node *)ni;
2617 
2618 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2619 }
2620 
2621 Static void
2622 zyd_amrr_timeout(void *arg)
2623 {
2624 	struct zyd_softc *sc = arg;
2625 	struct ieee80211com *ic = &sc->sc_ic;
2626 	int s;
2627 
2628 	s = splnet();
2629 	if (ic->ic_opmode == IEEE80211_M_STA)
2630 		zyd_iter_func(sc, ic->ic_bss);
2631 	else
2632 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2633 	splx(s);
2634 
2635 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2636 }
2637 
2638 Static void
2639 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2640 {
2641 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2642 	int i;
2643 
2644 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2645 
2646 	/* set rate to some reasonable initial value */
2647 	for (i = ni->ni_rates.rs_nrates - 1;
2648 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2649 	     i--);
2650 	ni->ni_txrate = i;
2651 }
2652 
2653 int
2654 zyd_activate(device_t self, enum devact act)
2655 {
2656 	struct zyd_softc *sc = device_private(self);
2657 
2658 	switch (act) {
2659 	case DVACT_DEACTIVATE:
2660 		if_deactivate(&sc->sc_if);
2661 		return 0;
2662 	default:
2663 		return EOPNOTSUPP;
2664 	}
2665 }
2666