1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.32 2012/09/23 14:40:29 joerg Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.32 2012/09/23 14:40:29 joerg Exp $"); 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <machine/endian.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/in_systm.h> 52 #include <netinet/in_var.h> 53 #include <netinet/ip.h> 54 55 #include <net80211/ieee80211_netbsd.h> 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/firmload.h> 61 62 #include <dev/usb/usb.h> 63 #include <dev/usb/usbdi.h> 64 #include <dev/usb/usbdi_util.h> 65 #include <dev/usb/usbdevs.h> 66 67 #include <dev/usb/if_zydreg.h> 68 69 #ifdef USB_DEBUG 70 #define ZYD_DEBUG 71 #endif 72 73 #ifdef ZYD_DEBUG 74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 76 int zyddebug = 0; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 84 85 /* various supported device vendors/products */ 86 #define ZYD_ZD1211_DEV(v, p) \ 87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 88 #define ZYD_ZD1211B_DEV(v, p) \ 89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 90 static const struct zyd_type { 91 struct usb_devno dev; 92 uint8_t rev; 93 #define ZYD_ZD1211 0 94 #define ZYD_ZD1211B 1 95 } zyd_devs[] = { 96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 97 ZYD_ZD1211_DEV(ABOCOM, WL54), 98 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 103 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 104 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 105 ZYD_ZD1211_DEV(SAGEM, XG760A), 106 ZYD_ZD1211_DEV(SENAO, NUB8301), 107 ZYD_ZD1211_DEV(SITECOMEU, WL113), 108 ZYD_ZD1211_DEV(SWEEX, ZD1211), 109 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 112 ZYD_ZD1211_DEV(TWINMOS, G240), 113 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 116 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 117 ZYD_ZD1211_DEV(ZCOM, ZD1211), 118 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 119 ZYD_ZD1211_DEV(ZYXEL, AG225H), 120 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 121 ZYD_ZD1211_DEV(ZYXEL, G200V2), 122 123 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 124 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 125 ZYD_ZD1211B_DEV(ACCTON, WUS201), 126 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 127 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 128 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 129 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 130 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 131 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 132 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 133 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 134 ZYD_ZD1211B_DEV(MELCO, KG54L), 135 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 136 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 137 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 138 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 139 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 140 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 141 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 142 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 143 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 145 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 146 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 147 ZYD_ZD1211B_DEV(USR, USR5423), 148 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 149 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 150 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 152 ZYD_ZD1211B_DEV(ZYXEL, M202), 153 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 154 }; 155 #define zyd_lookup(v, p) \ 156 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 157 158 int zyd_match(device_t, cfdata_t, void *); 159 void zyd_attach(device_t, device_t, void *); 160 int zyd_detach(device_t, int); 161 int zyd_activate(device_t, enum devact); 162 extern struct cfdriver zyd_cd; 163 164 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 165 zyd_attach, zyd_detach, zyd_activate); 166 167 Static void zyd_attachhook(device_t); 168 Static int zyd_complete_attach(struct zyd_softc *); 169 Static int zyd_open_pipes(struct zyd_softc *); 170 Static void zyd_close_pipes(struct zyd_softc *); 171 Static int zyd_alloc_tx_list(struct zyd_softc *); 172 Static void zyd_free_tx_list(struct zyd_softc *); 173 Static int zyd_alloc_rx_list(struct zyd_softc *); 174 Static void zyd_free_rx_list(struct zyd_softc *); 175 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 176 Static int zyd_media_change(struct ifnet *); 177 Static void zyd_next_scan(void *); 178 Static void zyd_task(void *); 179 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 180 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 181 void *, int, u_int); 182 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 183 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 184 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 185 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 186 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 187 Static void zyd_lock_phy(struct zyd_softc *); 188 Static void zyd_unlock_phy(struct zyd_softc *); 189 Static int zyd_rfmd_init(struct zyd_rf *); 190 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 191 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 192 Static int zyd_al2230_init(struct zyd_rf *); 193 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 194 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 195 Static int zyd_al2230_init_b(struct zyd_rf *); 196 Static int zyd_al7230B_init(struct zyd_rf *); 197 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 198 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 199 Static int zyd_al2210_init(struct zyd_rf *); 200 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 201 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 202 Static int zyd_gct_init(struct zyd_rf *); 203 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 204 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 205 Static int zyd_maxim_init(struct zyd_rf *); 206 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 207 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 208 Static int zyd_maxim2_init(struct zyd_rf *); 209 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 210 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 211 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 212 Static const char *zyd_rf_name(uint8_t); 213 Static int zyd_hw_init(struct zyd_softc *); 214 Static int zyd_read_eeprom(struct zyd_softc *); 215 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 216 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 217 Static int zyd_switch_radio(struct zyd_softc *, int); 218 Static void zyd_set_led(struct zyd_softc *, int, int); 219 Static int zyd_set_rxfilter(struct zyd_softc *); 220 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 221 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 222 Static uint8_t zyd_plcp_signal(int); 223 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 224 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 225 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 226 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 227 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 228 struct ieee80211_node *); 229 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 230 struct ieee80211_node *); 231 Static void zyd_start(struct ifnet *); 232 Static void zyd_watchdog(struct ifnet *); 233 Static int zyd_ioctl(struct ifnet *, u_long, void *); 234 Static int zyd_init(struct ifnet *); 235 Static void zyd_stop(struct ifnet *, int); 236 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 237 Static void zyd_iter_func(void *, struct ieee80211_node *); 238 Static void zyd_amrr_timeout(void *); 239 Static void zyd_newassoc(struct ieee80211_node *, int); 240 241 static const struct ieee80211_rateset zyd_rateset_11b = 242 { 4, { 2, 4, 11, 22 } }; 243 244 static const struct ieee80211_rateset zyd_rateset_11g = 245 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 246 247 int 248 zyd_match(device_t parent, cfdata_t match, void *aux) 249 { 250 struct usb_attach_arg *uaa = aux; 251 252 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 253 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 254 } 255 256 Static void 257 zyd_attachhook(device_t self) 258 { 259 struct zyd_softc *sc = device_private(self); 260 firmware_handle_t fwh; 261 const char *fwname; 262 u_char *fw; 263 size_t size; 264 int error; 265 266 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 267 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 268 aprint_error_dev(sc->sc_dev, 269 "failed to open firmware %s (error=%d)\n", fwname, error); 270 return; 271 } 272 size = firmware_get_size(fwh); 273 fw = firmware_malloc(size); 274 if (fw == NULL) { 275 aprint_error_dev(sc->sc_dev, 276 "failed to allocate firmware memory\n"); 277 firmware_close(fwh); 278 return; 279 } 280 error = firmware_read(fwh, 0, fw, size); 281 firmware_close(fwh); 282 if (error != 0) { 283 aprint_error_dev(sc->sc_dev, 284 "failed to read firmware (error %d)\n", error); 285 firmware_free(fw, 0); 286 return; 287 } 288 289 error = zyd_loadfirmware(sc, fw, size); 290 if (error != 0) { 291 aprint_error_dev(sc->sc_dev, 292 "could not load firmware (error=%d)\n", error); 293 firmware_free(fw, 0); 294 return; 295 } 296 297 firmware_free(fw, 0); 298 sc->sc_flags |= ZD1211_FWLOADED; 299 300 /* complete the attach process */ 301 if ((error = zyd_complete_attach(sc)) == 0) 302 sc->attached = 1; 303 return; 304 } 305 306 void 307 zyd_attach(device_t parent, device_t self, void *aux) 308 { 309 struct zyd_softc *sc = device_private(self); 310 struct usb_attach_arg *uaa = aux; 311 char *devinfop; 312 usb_device_descriptor_t* ddesc; 313 struct ifnet *ifp = &sc->sc_if; 314 315 sc->sc_dev = self; 316 sc->sc_udev = uaa->device; 317 sc->sc_flags = 0; 318 319 aprint_naive("\n"); 320 aprint_normal("\n"); 321 322 devinfop = usbd_devinfo_alloc(uaa->device, 0); 323 aprint_normal_dev(self, "%s\n", devinfop); 324 usbd_devinfo_free(devinfop); 325 326 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 327 328 ddesc = usbd_get_device_descriptor(sc->sc_udev); 329 if (UGETW(ddesc->bcdDevice) < 0x4330) { 330 aprint_error_dev(self, "device version mismatch: 0x%x " 331 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 332 return; 333 } 334 335 ifp->if_softc = sc; 336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 337 ifp->if_init = zyd_init; 338 ifp->if_ioctl = zyd_ioctl; 339 ifp->if_start = zyd_start; 340 ifp->if_watchdog = zyd_watchdog; 341 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 342 IFQ_SET_READY(&ifp->if_snd); 343 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 344 345 SIMPLEQ_INIT(&sc->sc_rqh); 346 347 /* defer configrations after file system is ready to load firmware */ 348 config_mountroot(self, zyd_attachhook); 349 } 350 351 Static int 352 zyd_complete_attach(struct zyd_softc *sc) 353 { 354 struct ieee80211com *ic = &sc->sc_ic; 355 struct ifnet *ifp = &sc->sc_if; 356 usbd_status error; 357 int i; 358 359 usb_init_task(&sc->sc_task, zyd_task, sc); 360 callout_init(&(sc->sc_scan_ch), 0); 361 362 sc->amrr.amrr_min_success_threshold = 1; 363 sc->amrr.amrr_max_success_threshold = 10; 364 callout_init(&sc->sc_amrr_ch, 0); 365 366 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 367 if (error != 0) { 368 aprint_error_dev(sc->sc_dev, "setting config no failed\n"); 369 goto fail; 370 } 371 372 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 373 &sc->sc_iface); 374 if (error != 0) { 375 aprint_error_dev(sc->sc_dev, 376 "getting interface handle failed\n"); 377 goto fail; 378 } 379 380 if ((error = zyd_open_pipes(sc)) != 0) { 381 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 382 goto fail; 383 } 384 385 if ((error = zyd_read_eeprom(sc)) != 0) { 386 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 387 goto fail; 388 } 389 390 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 391 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 392 goto fail; 393 } 394 395 if ((error = zyd_hw_init(sc)) != 0) { 396 aprint_error_dev(sc->sc_dev, 397 "hardware initialization failed\n"); 398 goto fail; 399 } 400 401 aprint_normal_dev(sc->sc_dev, 402 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 403 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 404 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 405 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 406 407 ic->ic_ifp = ifp; 408 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 409 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 410 ic->ic_state = IEEE80211_S_INIT; 411 412 /* set device capabilities */ 413 ic->ic_caps = 414 IEEE80211_C_MONITOR | /* monitor mode supported */ 415 IEEE80211_C_TXPMGT | /* tx power management */ 416 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 417 IEEE80211_C_WEP; /* s/w WEP */ 418 419 /* set supported .11b and .11g rates */ 420 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 421 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 422 423 /* set supported .11b and .11g channels (1 through 14) */ 424 for (i = 1; i <= 14; i++) { 425 ic->ic_channels[i].ic_freq = 426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 427 ic->ic_channels[i].ic_flags = 428 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 429 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 430 } 431 432 if_attach(ifp); 433 ieee80211_ifattach(ic); 434 ic->ic_node_alloc = zyd_node_alloc; 435 ic->ic_newassoc = zyd_newassoc; 436 437 /* override state transition machine */ 438 sc->sc_newstate = ic->ic_newstate; 439 ic->ic_newstate = zyd_newstate; 440 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 441 442 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 443 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 444 &sc->sc_drvbpf); 445 446 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 447 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 448 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 449 450 sc->sc_txtap_len = sizeof sc->sc_txtapu; 451 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 452 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 453 454 ieee80211_announce(ic); 455 456 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 457 458 fail: return error; 459 } 460 461 int 462 zyd_detach(device_t self, int flags) 463 { 464 struct zyd_softc *sc = device_private(self); 465 struct ieee80211com *ic = &sc->sc_ic; 466 struct ifnet *ifp = &sc->sc_if; 467 int s; 468 469 if (!sc->attached) 470 return 0; 471 472 s = splusb(); 473 474 zyd_stop(ifp, 1); 475 usb_rem_task(sc->sc_udev, &sc->sc_task); 476 callout_stop(&sc->sc_scan_ch); 477 callout_stop(&sc->sc_amrr_ch); 478 479 zyd_close_pipes(sc); 480 481 sc->attached = 0; 482 483 bpf_detach(ifp); 484 ieee80211_ifdetach(ic); 485 if_detach(ifp); 486 487 splx(s); 488 489 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 490 sc->sc_dev); 491 492 return 0; 493 } 494 495 Static int 496 zyd_open_pipes(struct zyd_softc *sc) 497 { 498 usb_endpoint_descriptor_t *edesc; 499 int isize; 500 usbd_status error; 501 502 /* interrupt in */ 503 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 504 if (edesc == NULL) 505 return EINVAL; 506 507 isize = UGETW(edesc->wMaxPacketSize); 508 if (isize == 0) /* should not happen */ 509 return EINVAL; 510 511 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 512 if (sc->ibuf == NULL) 513 return ENOMEM; 514 515 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 516 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 517 USBD_DEFAULT_INTERVAL); 518 if (error != 0) { 519 printf("%s: open rx intr pipe failed: %s\n", 520 device_xname(sc->sc_dev), usbd_errstr(error)); 521 goto fail; 522 } 523 524 /* interrupt out (not necessarily an interrupt pipe) */ 525 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 526 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 527 if (error != 0) { 528 printf("%s: open tx intr pipe failed: %s\n", 529 device_xname(sc->sc_dev), usbd_errstr(error)); 530 goto fail; 531 } 532 533 /* bulk in */ 534 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 535 &sc->zyd_ep[ZYD_ENDPT_BIN]); 536 if (error != 0) { 537 printf("%s: open rx pipe failed: %s\n", 538 device_xname(sc->sc_dev), usbd_errstr(error)); 539 goto fail; 540 } 541 542 /* bulk out */ 543 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 544 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 545 if (error != 0) { 546 printf("%s: open tx pipe failed: %s\n", 547 device_xname(sc->sc_dev), usbd_errstr(error)); 548 goto fail; 549 } 550 551 return 0; 552 553 fail: zyd_close_pipes(sc); 554 return error; 555 } 556 557 Static void 558 zyd_close_pipes(struct zyd_softc *sc) 559 { 560 int i; 561 562 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 563 if (sc->zyd_ep[i] != NULL) { 564 usbd_abort_pipe(sc->zyd_ep[i]); 565 usbd_close_pipe(sc->zyd_ep[i]); 566 sc->zyd_ep[i] = NULL; 567 } 568 } 569 if (sc->ibuf != NULL) { 570 free(sc->ibuf, M_USBDEV); 571 sc->ibuf = NULL; 572 } 573 } 574 575 Static int 576 zyd_alloc_tx_list(struct zyd_softc *sc) 577 { 578 int i, error; 579 580 sc->tx_queued = 0; 581 582 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 583 struct zyd_tx_data *data = &sc->tx_data[i]; 584 585 data->sc = sc; /* backpointer for callbacks */ 586 587 data->xfer = usbd_alloc_xfer(sc->sc_udev); 588 if (data->xfer == NULL) { 589 printf("%s: could not allocate tx xfer\n", 590 device_xname(sc->sc_dev)); 591 error = ENOMEM; 592 goto fail; 593 } 594 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 595 if (data->buf == NULL) { 596 printf("%s: could not allocate tx buffer\n", 597 device_xname(sc->sc_dev)); 598 error = ENOMEM; 599 goto fail; 600 } 601 602 /* clear Tx descriptor */ 603 memset(data->buf, 0, sizeof (struct zyd_tx_desc)); 604 } 605 return 0; 606 607 fail: zyd_free_tx_list(sc); 608 return error; 609 } 610 611 Static void 612 zyd_free_tx_list(struct zyd_softc *sc) 613 { 614 int i; 615 616 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 617 struct zyd_tx_data *data = &sc->tx_data[i]; 618 619 if (data->xfer != NULL) { 620 usbd_free_xfer(data->xfer); 621 data->xfer = NULL; 622 } 623 if (data->ni != NULL) { 624 ieee80211_free_node(data->ni); 625 data->ni = NULL; 626 } 627 } 628 } 629 630 Static int 631 zyd_alloc_rx_list(struct zyd_softc *sc) 632 { 633 int i, error; 634 635 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 636 struct zyd_rx_data *data = &sc->rx_data[i]; 637 638 data->sc = sc; /* backpointer for callbacks */ 639 640 data->xfer = usbd_alloc_xfer(sc->sc_udev); 641 if (data->xfer == NULL) { 642 printf("%s: could not allocate rx xfer\n", 643 device_xname(sc->sc_dev)); 644 error = ENOMEM; 645 goto fail; 646 } 647 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 648 if (data->buf == NULL) { 649 printf("%s: could not allocate rx buffer\n", 650 device_xname(sc->sc_dev)); 651 error = ENOMEM; 652 goto fail; 653 } 654 } 655 return 0; 656 657 fail: zyd_free_rx_list(sc); 658 return error; 659 } 660 661 Static void 662 zyd_free_rx_list(struct zyd_softc *sc) 663 { 664 int i; 665 666 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 667 struct zyd_rx_data *data = &sc->rx_data[i]; 668 669 if (data->xfer != NULL) { 670 usbd_free_xfer(data->xfer); 671 data->xfer = NULL; 672 } 673 } 674 } 675 676 /* ARGUSED */ 677 Static struct ieee80211_node * 678 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 679 { 680 struct zyd_node *zn; 681 682 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 683 684 return &zn->ni; 685 } 686 687 Static int 688 zyd_media_change(struct ifnet *ifp) 689 { 690 int error; 691 692 error = ieee80211_media_change(ifp); 693 if (error != ENETRESET) 694 return error; 695 696 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 697 zyd_init(ifp); 698 699 return 0; 700 } 701 702 /* 703 * This function is called periodically (every 200ms) during scanning to 704 * switch from one channel to another. 705 */ 706 Static void 707 zyd_next_scan(void *arg) 708 { 709 struct zyd_softc *sc = arg; 710 struct ieee80211com *ic = &sc->sc_ic; 711 712 if (ic->ic_state == IEEE80211_S_SCAN) 713 ieee80211_next_scan(ic); 714 } 715 716 Static void 717 zyd_task(void *arg) 718 { 719 struct zyd_softc *sc = arg; 720 struct ieee80211com *ic = &sc->sc_ic; 721 enum ieee80211_state ostate; 722 723 ostate = ic->ic_state; 724 725 switch (sc->sc_state) { 726 case IEEE80211_S_INIT: 727 if (ostate == IEEE80211_S_RUN) { 728 /* turn link LED off */ 729 zyd_set_led(sc, ZYD_LED1, 0); 730 731 /* stop data LED from blinking */ 732 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 733 } 734 break; 735 736 case IEEE80211_S_SCAN: 737 zyd_set_chan(sc, ic->ic_curchan); 738 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 739 break; 740 741 case IEEE80211_S_AUTH: 742 case IEEE80211_S_ASSOC: 743 zyd_set_chan(sc, ic->ic_curchan); 744 break; 745 746 case IEEE80211_S_RUN: 747 { 748 struct ieee80211_node *ni = ic->ic_bss; 749 750 zyd_set_chan(sc, ic->ic_curchan); 751 752 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 753 /* turn link LED on */ 754 zyd_set_led(sc, ZYD_LED1, 1); 755 756 /* make data LED blink upon Tx */ 757 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 758 759 zyd_set_bssid(sc, ni->ni_bssid); 760 } 761 762 if (ic->ic_opmode == IEEE80211_M_STA) { 763 /* fake a join to init the tx rate */ 764 zyd_newassoc(ni, 1); 765 } 766 767 /* start automatic rate control timer */ 768 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 769 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 770 771 break; 772 } 773 } 774 775 sc->sc_newstate(ic, sc->sc_state, -1); 776 } 777 778 Static int 779 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 780 { 781 struct zyd_softc *sc = ic->ic_ifp->if_softc; 782 783 if (!sc->attached) 784 return ENXIO; 785 786 usb_rem_task(sc->sc_udev, &sc->sc_task); 787 callout_stop(&sc->sc_scan_ch); 788 callout_stop(&sc->sc_amrr_ch); 789 790 /* do it in a process context */ 791 sc->sc_state = nstate; 792 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 793 794 return 0; 795 } 796 797 Static int 798 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 799 void *odata, int olen, u_int flags) 800 { 801 usbd_xfer_handle xfer; 802 struct zyd_cmd cmd; 803 struct rq rq; 804 uint16_t xferflags; 805 int error; 806 usbd_status uerror; 807 int s = 0; 808 809 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 810 return ENOMEM; 811 812 cmd.code = htole16(code); 813 bcopy(idata, cmd.data, ilen); 814 815 xferflags = USBD_FORCE_SHORT_XFER; 816 if (!(flags & ZYD_CMD_FLAG_READ)) 817 xferflags |= USBD_SYNCHRONOUS; 818 else { 819 s = splusb(); 820 rq.idata = idata; 821 rq.odata = odata; 822 rq.len = olen / sizeof (struct zyd_pair); 823 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 824 } 825 826 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 827 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 828 uerror = usbd_transfer(xfer); 829 if (uerror != USBD_IN_PROGRESS && uerror != 0) { 830 if (flags & ZYD_CMD_FLAG_READ) 831 splx(s); 832 printf("%s: could not send command (error=%s)\n", 833 device_xname(sc->sc_dev), usbd_errstr(uerror)); 834 (void)usbd_free_xfer(xfer); 835 return EIO; 836 } 837 if (!(flags & ZYD_CMD_FLAG_READ)) { 838 (void)usbd_free_xfer(xfer); 839 return 0; /* write: don't wait for reply */ 840 } 841 /* wait at most one second for command reply */ 842 error = tsleep(odata, PCATCH, "zydcmd", hz); 843 if (error == EWOULDBLOCK) 844 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 845 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 846 splx(s); 847 848 (void)usbd_free_xfer(xfer); 849 return error; 850 } 851 852 Static int 853 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 854 { 855 struct zyd_pair tmp; 856 int error; 857 858 reg = htole16(reg); 859 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 860 ZYD_CMD_FLAG_READ); 861 if (error == 0) 862 *val = le16toh(tmp.val); 863 else 864 *val = 0; 865 return error; 866 } 867 868 Static int 869 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 870 { 871 struct zyd_pair tmp[2]; 872 uint16_t regs[2]; 873 int error; 874 875 regs[0] = htole16(ZYD_REG32_HI(reg)); 876 regs[1] = htole16(ZYD_REG32_LO(reg)); 877 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 878 ZYD_CMD_FLAG_READ); 879 if (error == 0) 880 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 881 else 882 *val = 0; 883 return error; 884 } 885 886 Static int 887 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 888 { 889 struct zyd_pair pair; 890 891 pair.reg = htole16(reg); 892 pair.val = htole16(val); 893 894 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 895 } 896 897 Static int 898 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 899 { 900 struct zyd_pair pair[2]; 901 902 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 903 pair[0].val = htole16(val >> 16); 904 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 905 pair[1].val = htole16(val & 0xffff); 906 907 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 908 } 909 910 Static int 911 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 912 { 913 struct zyd_rf *rf = &sc->sc_rf; 914 struct zyd_rfwrite req; 915 uint16_t cr203; 916 int i; 917 918 (void)zyd_read16(sc, ZYD_CR203, &cr203); 919 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 920 921 req.code = htole16(2); 922 req.width = htole16(rf->width); 923 for (i = 0; i < rf->width; i++) { 924 req.bit[i] = htole16(cr203); 925 if (val & (1 << (rf->width - 1 - i))) 926 req.bit[i] |= htole16(ZYD_RF_DATA); 927 } 928 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 929 } 930 931 Static void 932 zyd_lock_phy(struct zyd_softc *sc) 933 { 934 uint32_t tmp; 935 936 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 937 tmp &= ~ZYD_UNLOCK_PHY_REGS; 938 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 939 } 940 941 Static void 942 zyd_unlock_phy(struct zyd_softc *sc) 943 { 944 uint32_t tmp; 945 946 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 947 tmp |= ZYD_UNLOCK_PHY_REGS; 948 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 949 } 950 951 /* 952 * RFMD RF methods. 953 */ 954 Static int 955 zyd_rfmd_init(struct zyd_rf *rf) 956 { 957 struct zyd_softc *sc = rf->rf_sc; 958 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 959 static const uint32_t rfini[] = ZYD_RFMD_RF; 960 int error; 961 size_t i; 962 963 /* init RF-dependent PHY registers */ 964 for (i = 0; i < __arraycount(phyini); i++) { 965 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 966 if (error != 0) 967 return error; 968 } 969 970 /* init RFMD radio */ 971 for (i = 0; i < __arraycount(rfini); i++) { 972 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 973 return error; 974 } 975 return 0; 976 } 977 978 Static int 979 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 980 { 981 struct zyd_softc *sc = rf->rf_sc; 982 983 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 984 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 985 986 return 0; 987 } 988 989 Static int 990 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 991 { 992 struct zyd_softc *sc = rf->rf_sc; 993 static const struct { 994 uint32_t r1, r2; 995 } rfprog[] = ZYD_RFMD_CHANTABLE; 996 997 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 998 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 999 1000 return 0; 1001 } 1002 1003 /* 1004 * AL2230 RF methods. 1005 */ 1006 Static int 1007 zyd_al2230_init(struct zyd_rf *rf) 1008 { 1009 struct zyd_softc *sc = rf->rf_sc; 1010 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1011 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1012 static const uint32_t rfini[] = ZYD_AL2230_RF; 1013 int error; 1014 size_t i; 1015 1016 /* init RF-dependent PHY registers */ 1017 for (i = 0; i < __arraycount(phyini); i++) { 1018 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1019 if (error != 0) 1020 return error; 1021 } 1022 1023 if (sc->rf_rev == ZYD_RF_AL2230S) { 1024 for (i = 0; i < __arraycount(phy2230s); i++) { 1025 error = zyd_write16(sc, phy2230s[i].reg, 1026 phy2230s[i].val); 1027 if (error != 0) 1028 return error; 1029 } 1030 } 1031 1032 /* init AL2230 radio */ 1033 for (i = 0; i < __arraycount(rfini); i++) { 1034 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1035 return error; 1036 } 1037 return 0; 1038 } 1039 1040 Static int 1041 zyd_al2230_init_b(struct zyd_rf *rf) 1042 { 1043 struct zyd_softc *sc = rf->rf_sc; 1044 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1045 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1046 int error; 1047 size_t i; 1048 1049 /* init RF-dependent PHY registers */ 1050 for (i = 0; i < __arraycount(phyini); i++) { 1051 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1052 if (error != 0) 1053 return error; 1054 } 1055 1056 /* init AL2230 radio */ 1057 for (i = 0; i < __arraycount(rfini); i++) { 1058 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1059 return error; 1060 } 1061 return 0; 1062 } 1063 1064 Static int 1065 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1066 { 1067 struct zyd_softc *sc = rf->rf_sc; 1068 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1069 1070 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1071 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1072 1073 return 0; 1074 } 1075 1076 Static int 1077 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1078 { 1079 struct zyd_softc *sc = rf->rf_sc; 1080 static const struct { 1081 uint32_t r1, r2, r3; 1082 } rfprog[] = ZYD_AL2230_CHANTABLE; 1083 1084 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1085 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1086 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1087 1088 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1089 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * AL7230B RF methods. 1096 */ 1097 Static int 1098 zyd_al7230B_init(struct zyd_rf *rf) 1099 { 1100 struct zyd_softc *sc = rf->rf_sc; 1101 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1102 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1103 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1104 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1105 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1106 int error; 1107 size_t i; 1108 1109 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1110 1111 /* init RF-dependent PHY registers, part one */ 1112 for (i = 0; i < __arraycount(phyini_1); i++) { 1113 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1114 if (error != 0) 1115 return error; 1116 } 1117 /* init AL7230B radio, part one */ 1118 for (i = 0; i < __arraycount(rfini_1); i++) { 1119 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1120 return error; 1121 } 1122 /* init RF-dependent PHY registers, part two */ 1123 for (i = 0; i < __arraycount(phyini_2); i++) { 1124 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1125 if (error != 0) 1126 return error; 1127 } 1128 /* init AL7230B radio, part two */ 1129 for (i = 0; i < __arraycount(rfini_2); i++) { 1130 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1131 return error; 1132 } 1133 /* init RF-dependent PHY registers, part three */ 1134 for (i = 0; i < __arraycount(phyini_3); i++) { 1135 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1136 if (error != 0) 1137 return error; 1138 } 1139 1140 return 0; 1141 } 1142 1143 Static int 1144 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1145 { 1146 struct zyd_softc *sc = rf->rf_sc; 1147 1148 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1149 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1150 1151 return 0; 1152 } 1153 1154 Static int 1155 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1156 { 1157 struct zyd_softc *sc = rf->rf_sc; 1158 static const struct { 1159 uint32_t r1, r2; 1160 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1161 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1162 int error; 1163 size_t i; 1164 1165 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1166 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1167 1168 for (i = 0; i < __arraycount(rfsc); i++) { 1169 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1170 return error; 1171 } 1172 1173 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1174 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1175 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1176 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1177 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1178 1179 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1180 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1181 (void)zyd_rfwrite(sc, 0x3c9000); 1182 1183 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1184 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1185 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1186 1187 return 0; 1188 } 1189 1190 /* 1191 * AL2210 RF methods. 1192 */ 1193 Static int 1194 zyd_al2210_init(struct zyd_rf *rf) 1195 { 1196 struct zyd_softc *sc = rf->rf_sc; 1197 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1198 static const uint32_t rfini[] = ZYD_AL2210_RF; 1199 uint32_t tmp; 1200 int error; 1201 size_t i; 1202 1203 (void)zyd_write32(sc, ZYD_CR18, 2); 1204 1205 /* init RF-dependent PHY registers */ 1206 for (i = 0; i < __arraycount(phyini); i++) { 1207 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1208 if (error != 0) 1209 return error; 1210 } 1211 /* init AL2210 radio */ 1212 for (i = 0; i < __arraycount(rfini); i++) { 1213 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1214 return error; 1215 } 1216 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1217 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1218 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1219 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1220 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1221 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1222 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1223 (void)zyd_write32(sc, ZYD_CR18, 3); 1224 1225 return 0; 1226 } 1227 1228 Static int 1229 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1230 { 1231 /* vendor driver does nothing for this RF chip */ 1232 1233 return 0; 1234 } 1235 1236 Static int 1237 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1238 { 1239 struct zyd_softc *sc = rf->rf_sc; 1240 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1241 uint32_t tmp; 1242 1243 (void)zyd_write32(sc, ZYD_CR18, 2); 1244 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1245 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1246 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1247 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1248 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1249 1250 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1251 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1252 1253 /* actually set the channel */ 1254 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1255 1256 (void)zyd_write32(sc, ZYD_CR18, 3); 1257 1258 return 0; 1259 } 1260 1261 /* 1262 * GCT RF methods. 1263 */ 1264 Static int 1265 zyd_gct_init(struct zyd_rf *rf) 1266 { 1267 struct zyd_softc *sc = rf->rf_sc; 1268 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1269 static const uint32_t rfini[] = ZYD_GCT_RF; 1270 int error; 1271 size_t i; 1272 1273 /* init RF-dependent PHY registers */ 1274 for (i = 0; i < __arraycount(phyini); i++) { 1275 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1276 if (error != 0) 1277 return error; 1278 } 1279 /* init cgt radio */ 1280 for (i = 0; i < __arraycount(rfini); i++) { 1281 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1282 return error; 1283 } 1284 return 0; 1285 } 1286 1287 Static int 1288 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1289 { 1290 /* vendor driver does nothing for this RF chip */ 1291 1292 return 0; 1293 } 1294 1295 Static int 1296 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1297 { 1298 struct zyd_softc *sc = rf->rf_sc; 1299 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1300 1301 (void)zyd_rfwrite(sc, 0x1c0000); 1302 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1303 (void)zyd_rfwrite(sc, 0x1c0008); 1304 1305 return 0; 1306 } 1307 1308 /* 1309 * Maxim RF methods. 1310 */ 1311 Static int 1312 zyd_maxim_init(struct zyd_rf *rf) 1313 { 1314 struct zyd_softc *sc = rf->rf_sc; 1315 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1316 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1317 uint16_t tmp; 1318 int error; 1319 size_t i; 1320 1321 /* init RF-dependent PHY registers */ 1322 for (i = 0; i < __arraycount(phyini); i++) { 1323 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1324 if (error != 0) 1325 return error; 1326 } 1327 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1328 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1329 1330 /* init maxim radio */ 1331 for (i = 0; i < __arraycount(rfini); i++) { 1332 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1333 return error; 1334 } 1335 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1336 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1337 1338 return 0; 1339 } 1340 1341 Static int 1342 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1343 { 1344 /* vendor driver does nothing for this RF chip */ 1345 1346 return 0; 1347 } 1348 1349 Static int 1350 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1351 { 1352 struct zyd_softc *sc = rf->rf_sc; 1353 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1354 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1355 static const struct { 1356 uint32_t r1, r2; 1357 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1358 uint16_t tmp; 1359 int error; 1360 size_t i; 1361 1362 /* 1363 * Do the same as we do when initializing it, except for the channel 1364 * values coming from the two channel tables. 1365 */ 1366 1367 /* init RF-dependent PHY registers */ 1368 for (i = 0; i < __arraycount(phyini); i++) { 1369 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1370 if (error != 0) 1371 return error; 1372 } 1373 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1374 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1375 1376 /* first two values taken from the chantables */ 1377 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1378 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1379 1380 /* init maxim radio - skipping the two first values */ 1381 for (i = 2; i < __arraycount(rfini); i++) { 1382 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1383 return error; 1384 } 1385 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1386 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * Maxim2 RF methods. 1393 */ 1394 Static int 1395 zyd_maxim2_init(struct zyd_rf *rf) 1396 { 1397 struct zyd_softc *sc = rf->rf_sc; 1398 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1399 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1400 uint16_t tmp; 1401 int error; 1402 size_t i; 1403 1404 /* init RF-dependent PHY registers */ 1405 for (i = 0; i < __arraycount(phyini); i++) { 1406 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1407 if (error != 0) 1408 return error; 1409 } 1410 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1411 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1412 1413 /* init maxim2 radio */ 1414 for (i = 0; i < __arraycount(rfini); i++) { 1415 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1416 return error; 1417 } 1418 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1419 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1420 1421 return 0; 1422 } 1423 1424 Static int 1425 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1426 { 1427 /* vendor driver does nothing for this RF chip */ 1428 1429 return 0; 1430 } 1431 1432 Static int 1433 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1434 { 1435 struct zyd_softc *sc = rf->rf_sc; 1436 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1437 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1438 static const struct { 1439 uint32_t r1, r2; 1440 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1441 uint16_t tmp; 1442 int error; 1443 size_t i; 1444 1445 /* 1446 * Do the same as we do when initializing it, except for the channel 1447 * values coming from the two channel tables. 1448 */ 1449 1450 /* init RF-dependent PHY registers */ 1451 for (i = 0; i < __arraycount(phyini); i++) { 1452 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1453 if (error != 0) 1454 return error; 1455 } 1456 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1457 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1458 1459 /* first two values taken from the chantables */ 1460 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1461 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1462 1463 /* init maxim2 radio - skipping the two first values */ 1464 for (i = 2; i < __arraycount(rfini); i++) { 1465 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1466 return error; 1467 } 1468 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1469 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1470 1471 return 0; 1472 } 1473 1474 Static int 1475 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1476 { 1477 struct zyd_rf *rf = &sc->sc_rf; 1478 1479 rf->rf_sc = sc; 1480 1481 switch (type) { 1482 case ZYD_RF_RFMD: 1483 rf->init = zyd_rfmd_init; 1484 rf->switch_radio = zyd_rfmd_switch_radio; 1485 rf->set_channel = zyd_rfmd_set_channel; 1486 rf->width = 24; /* 24-bit RF values */ 1487 break; 1488 case ZYD_RF_AL2230: 1489 case ZYD_RF_AL2230S: 1490 if (sc->mac_rev == ZYD_ZD1211B) 1491 rf->init = zyd_al2230_init_b; 1492 else 1493 rf->init = zyd_al2230_init; 1494 rf->switch_radio = zyd_al2230_switch_radio; 1495 rf->set_channel = zyd_al2230_set_channel; 1496 rf->width = 24; /* 24-bit RF values */ 1497 break; 1498 case ZYD_RF_AL7230B: 1499 rf->init = zyd_al7230B_init; 1500 rf->switch_radio = zyd_al7230B_switch_radio; 1501 rf->set_channel = zyd_al7230B_set_channel; 1502 rf->width = 24; /* 24-bit RF values */ 1503 break; 1504 case ZYD_RF_AL2210: 1505 rf->init = zyd_al2210_init; 1506 rf->switch_radio = zyd_al2210_switch_radio; 1507 rf->set_channel = zyd_al2210_set_channel; 1508 rf->width = 24; /* 24-bit RF values */ 1509 break; 1510 case ZYD_RF_GCT: 1511 rf->init = zyd_gct_init; 1512 rf->switch_radio = zyd_gct_switch_radio; 1513 rf->set_channel = zyd_gct_set_channel; 1514 rf->width = 21; /* 21-bit RF values */ 1515 break; 1516 case ZYD_RF_MAXIM_NEW: 1517 rf->init = zyd_maxim_init; 1518 rf->switch_radio = zyd_maxim_switch_radio; 1519 rf->set_channel = zyd_maxim_set_channel; 1520 rf->width = 18; /* 18-bit RF values */ 1521 break; 1522 case ZYD_RF_MAXIM_NEW2: 1523 rf->init = zyd_maxim2_init; 1524 rf->switch_radio = zyd_maxim2_switch_radio; 1525 rf->set_channel = zyd_maxim2_set_channel; 1526 rf->width = 18; /* 18-bit RF values */ 1527 break; 1528 default: 1529 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1530 device_xname(sc->sc_dev), zyd_rf_name(type)); 1531 return EINVAL; 1532 } 1533 return 0; 1534 } 1535 1536 Static const char * 1537 zyd_rf_name(uint8_t type) 1538 { 1539 static const char * const zyd_rfs[] = { 1540 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1541 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1542 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1543 "PHILIPS" 1544 }; 1545 1546 return zyd_rfs[(type > 15) ? 0 : type]; 1547 } 1548 1549 Static int 1550 zyd_hw_init(struct zyd_softc *sc) 1551 { 1552 struct zyd_rf *rf = &sc->sc_rf; 1553 const struct zyd_phy_pair *phyp; 1554 int error; 1555 1556 /* specify that the plug and play is finished */ 1557 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1558 1559 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1560 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1561 1562 /* retrieve firmware revision number */ 1563 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1564 1565 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1566 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1567 1568 /* disable interrupts */ 1569 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1570 1571 /* PHY init */ 1572 zyd_lock_phy(sc); 1573 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1574 for (; phyp->reg != 0; phyp++) { 1575 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1576 goto fail; 1577 } 1578 zyd_unlock_phy(sc); 1579 1580 /* HMAC init */ 1581 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1582 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1583 1584 if (sc->mac_rev == ZYD_ZD1211) { 1585 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1586 } else { 1587 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1588 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1589 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1590 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1591 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1592 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1593 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1594 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1595 } 1596 1597 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1598 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1599 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1600 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1601 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1602 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1603 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1604 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1605 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1606 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1607 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1608 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1609 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1610 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1611 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1612 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1613 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1614 1615 /* RF chip init */ 1616 zyd_lock_phy(sc); 1617 error = (*rf->init)(rf); 1618 zyd_unlock_phy(sc); 1619 if (error != 0) { 1620 printf("%s: radio initialization failed\n", 1621 device_xname(sc->sc_dev)); 1622 goto fail; 1623 } 1624 1625 /* init beacon interval to 100ms */ 1626 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1627 goto fail; 1628 1629 fail: return error; 1630 } 1631 1632 Static int 1633 zyd_read_eeprom(struct zyd_softc *sc) 1634 { 1635 struct ieee80211com *ic = &sc->sc_ic; 1636 uint32_t tmp; 1637 uint16_t val; 1638 int i; 1639 1640 /* read MAC address */ 1641 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1642 ic->ic_myaddr[0] = tmp & 0xff; 1643 ic->ic_myaddr[1] = tmp >> 8; 1644 ic->ic_myaddr[2] = tmp >> 16; 1645 ic->ic_myaddr[3] = tmp >> 24; 1646 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1647 ic->ic_myaddr[4] = tmp & 0xff; 1648 ic->ic_myaddr[5] = tmp >> 8; 1649 1650 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1651 sc->rf_rev = tmp & 0x0f; 1652 sc->pa_rev = (tmp >> 16) & 0x0f; 1653 1654 /* read regulatory domain (currently unused) */ 1655 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1656 sc->regdomain = tmp >> 16; 1657 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1658 1659 /* read Tx power calibration tables */ 1660 for (i = 0; i < 7; i++) { 1661 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1662 sc->pwr_cal[i * 2] = val >> 8; 1663 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1664 1665 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1666 sc->pwr_int[i * 2] = val >> 8; 1667 sc->pwr_int[i * 2 + 1] = val & 0xff; 1668 1669 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1670 sc->ofdm36_cal[i * 2] = val >> 8; 1671 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1672 1673 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1674 sc->ofdm48_cal[i * 2] = val >> 8; 1675 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1676 1677 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1678 sc->ofdm54_cal[i * 2] = val >> 8; 1679 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1680 } 1681 return 0; 1682 } 1683 1684 Static int 1685 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1686 { 1687 uint32_t tmp; 1688 1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1690 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1691 1692 tmp = addr[5] << 8 | addr[4]; 1693 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1694 1695 return 0; 1696 } 1697 1698 Static int 1699 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1700 { 1701 uint32_t tmp; 1702 1703 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1704 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1705 1706 tmp = addr[5] << 8 | addr[4]; 1707 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1708 1709 return 0; 1710 } 1711 1712 Static int 1713 zyd_switch_radio(struct zyd_softc *sc, int on) 1714 { 1715 struct zyd_rf *rf = &sc->sc_rf; 1716 int error; 1717 1718 zyd_lock_phy(sc); 1719 error = (*rf->switch_radio)(rf, on); 1720 zyd_unlock_phy(sc); 1721 1722 return error; 1723 } 1724 1725 Static void 1726 zyd_set_led(struct zyd_softc *sc, int which, int on) 1727 { 1728 uint32_t tmp; 1729 1730 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1731 tmp &= ~which; 1732 if (on) 1733 tmp |= which; 1734 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1735 } 1736 1737 Static int 1738 zyd_set_rxfilter(struct zyd_softc *sc) 1739 { 1740 uint32_t rxfilter; 1741 1742 switch (sc->sc_ic.ic_opmode) { 1743 case IEEE80211_M_STA: 1744 rxfilter = ZYD_FILTER_BSS; 1745 break; 1746 case IEEE80211_M_IBSS: 1747 case IEEE80211_M_HOSTAP: 1748 rxfilter = ZYD_FILTER_HOSTAP; 1749 break; 1750 case IEEE80211_M_MONITOR: 1751 rxfilter = ZYD_FILTER_MONITOR; 1752 break; 1753 default: 1754 /* should not get there */ 1755 return EINVAL; 1756 } 1757 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1758 } 1759 1760 Static void 1761 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1762 { 1763 struct ieee80211com *ic = &sc->sc_ic; 1764 struct zyd_rf *rf = &sc->sc_rf; 1765 u_int chan; 1766 1767 chan = ieee80211_chan2ieee(ic, c); 1768 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1769 return; 1770 1771 zyd_lock_phy(sc); 1772 1773 (*rf->set_channel)(rf, chan); 1774 1775 /* update Tx power */ 1776 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1777 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1778 1779 if (sc->mac_rev == ZYD_ZD1211B) { 1780 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1781 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1782 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1783 1784 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1785 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1786 } 1787 1788 zyd_unlock_phy(sc); 1789 } 1790 1791 Static int 1792 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1793 { 1794 /* XXX this is probably broken.. */ 1795 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1796 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1797 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1798 1799 return 0; 1800 } 1801 1802 Static uint8_t 1803 zyd_plcp_signal(int rate) 1804 { 1805 switch (rate) { 1806 /* CCK rates (returned values are device-dependent) */ 1807 case 2: return 0x0; 1808 case 4: return 0x1; 1809 case 11: return 0x2; 1810 case 22: return 0x3; 1811 1812 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1813 case 12: return 0xb; 1814 case 18: return 0xf; 1815 case 24: return 0xa; 1816 case 36: return 0xe; 1817 case 48: return 0x9; 1818 case 72: return 0xd; 1819 case 96: return 0x8; 1820 case 108: return 0xc; 1821 1822 /* unsupported rates (should not get there) */ 1823 default: return 0xff; 1824 } 1825 } 1826 1827 Static void 1828 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1829 { 1830 struct zyd_softc *sc = (struct zyd_softc *)priv; 1831 struct zyd_cmd *cmd; 1832 uint32_t datalen; 1833 1834 if (status != USBD_NORMAL_COMPLETION) { 1835 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1836 return; 1837 1838 if (status == USBD_STALLED) { 1839 usbd_clear_endpoint_stall_async( 1840 sc->zyd_ep[ZYD_ENDPT_IIN]); 1841 } 1842 return; 1843 } 1844 1845 cmd = (struct zyd_cmd *)sc->ibuf; 1846 1847 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1848 struct zyd_notif_retry *retry = 1849 (struct zyd_notif_retry *)cmd->data; 1850 struct ieee80211com *ic = &sc->sc_ic; 1851 struct ifnet *ifp = &sc->sc_if; 1852 struct ieee80211_node *ni; 1853 1854 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1855 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1856 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1857 1858 /* 1859 * Find the node to which the packet was sent and update its 1860 * retry statistics. In BSS mode, this node is the AP we're 1861 * associated to so no lookup is actually needed. 1862 */ 1863 if (ic->ic_opmode != IEEE80211_M_STA) { 1864 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1865 if (ni == NULL) 1866 return; /* just ignore */ 1867 } else 1868 ni = ic->ic_bss; 1869 1870 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1871 1872 if (le16toh(retry->count) & 0x100) 1873 ifp->if_oerrors++; /* too many retries */ 1874 1875 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1876 struct rq *rqp; 1877 1878 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1879 return; /* HMAC interrupt */ 1880 1881 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1882 datalen -= sizeof(cmd->code); 1883 datalen -= 2; /* XXX: padding? */ 1884 1885 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1886 int i; 1887 1888 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1889 continue; 1890 for (i = 0; i < rqp->len; i++) { 1891 if (*(((const uint16_t *)rqp->idata) + i) != 1892 (((struct zyd_pair *)cmd->data) + i)->reg) 1893 break; 1894 } 1895 if (i != rqp->len) 1896 continue; 1897 1898 /* copy answer into caller-supplied buffer */ 1899 bcopy(cmd->data, rqp->odata, 1900 sizeof(struct zyd_pair) * rqp->len); 1901 wakeup(rqp->odata); /* wakeup caller */ 1902 1903 return; 1904 } 1905 return; /* unexpected IORD notification */ 1906 } else { 1907 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1908 le16toh(cmd->code)); 1909 } 1910 } 1911 1912 Static void 1913 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1914 { 1915 struct ieee80211com *ic = &sc->sc_ic; 1916 struct ifnet *ifp = &sc->sc_if; 1917 struct ieee80211_node *ni; 1918 struct ieee80211_frame *wh; 1919 const struct zyd_plcphdr *plcp; 1920 const struct zyd_rx_stat *stat; 1921 struct mbuf *m; 1922 int rlen, s; 1923 1924 if (len < ZYD_MIN_FRAGSZ) { 1925 printf("%s: frame too short (length=%d)\n", 1926 device_xname(sc->sc_dev), len); 1927 ifp->if_ierrors++; 1928 return; 1929 } 1930 1931 plcp = (const struct zyd_plcphdr *)buf; 1932 stat = (const struct zyd_rx_stat *) 1933 (buf + len - sizeof (struct zyd_rx_stat)); 1934 1935 if (stat->flags & ZYD_RX_ERROR) { 1936 DPRINTF(("%s: RX status indicated error (%x)\n", 1937 device_xname(sc->sc_dev), stat->flags)); 1938 ifp->if_ierrors++; 1939 return; 1940 } 1941 1942 /* compute actual frame length */ 1943 rlen = len - sizeof (struct zyd_plcphdr) - 1944 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1945 1946 /* allocate a mbuf to store the frame */ 1947 MGETHDR(m, M_DONTWAIT, MT_DATA); 1948 if (m == NULL) { 1949 printf("%s: could not allocate rx mbuf\n", 1950 device_xname(sc->sc_dev)); 1951 ifp->if_ierrors++; 1952 return; 1953 } 1954 if (rlen > MHLEN) { 1955 MCLGET(m, M_DONTWAIT); 1956 if (!(m->m_flags & M_EXT)) { 1957 printf("%s: could not allocate rx mbuf cluster\n", 1958 device_xname(sc->sc_dev)); 1959 m_freem(m); 1960 ifp->if_ierrors++; 1961 return; 1962 } 1963 } 1964 m->m_pkthdr.rcvif = ifp; 1965 m->m_pkthdr.len = m->m_len = rlen; 1966 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); 1967 1968 s = splnet(); 1969 1970 if (sc->sc_drvbpf != NULL) { 1971 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1972 static const uint8_t rates[] = { 1973 /* reverse function of zyd_plcp_signal() */ 1974 2, 4, 11, 22, 0, 0, 0, 0, 1975 96, 48, 24, 12, 108, 72, 36, 18 1976 }; 1977 1978 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1979 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1980 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1981 tap->wr_rssi = stat->rssi; 1982 tap->wr_rate = rates[plcp->signal & 0xf]; 1983 1984 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1985 } 1986 1987 wh = mtod(m, struct ieee80211_frame *); 1988 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1989 ieee80211_input(ic, m, ni, stat->rssi, 0); 1990 1991 /* node is no longer needed */ 1992 ieee80211_free_node(ni); 1993 1994 splx(s); 1995 } 1996 1997 Static void 1998 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1999 { 2000 struct zyd_rx_data *data = priv; 2001 struct zyd_softc *sc = data->sc; 2002 struct ifnet *ifp = &sc->sc_if; 2003 const struct zyd_rx_desc *desc; 2004 int len; 2005 2006 if (status != USBD_NORMAL_COMPLETION) { 2007 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2008 return; 2009 2010 if (status == USBD_STALLED) 2011 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2012 2013 goto skip; 2014 } 2015 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2016 2017 if (len < ZYD_MIN_RXBUFSZ) { 2018 printf("%s: xfer too short (length=%d)\n", 2019 device_xname(sc->sc_dev), len); 2020 ifp->if_ierrors++; 2021 goto skip; 2022 } 2023 2024 desc = (const struct zyd_rx_desc *) 2025 (data->buf + len - sizeof (struct zyd_rx_desc)); 2026 2027 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2028 const uint8_t *p = data->buf, *end = p + len; 2029 int i; 2030 2031 DPRINTFN(3, ("received multi-frame transfer\n")); 2032 2033 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2034 const uint16_t len16 = UGETW(desc->len[i]); 2035 2036 if (len16 == 0 || p + len16 > end) 2037 break; 2038 2039 zyd_rx_data(sc, p, len16); 2040 /* next frame is aligned on a 32-bit boundary */ 2041 p += (len16 + 3) & ~3; 2042 } 2043 } else { 2044 DPRINTFN(3, ("received single-frame transfer\n")); 2045 2046 zyd_rx_data(sc, data->buf, len); 2047 } 2048 2049 skip: /* setup a new transfer */ 2050 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2051 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2052 USBD_NO_TIMEOUT, zyd_rxeof); 2053 (void)usbd_transfer(xfer); 2054 } 2055 2056 Static int 2057 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2058 { 2059 struct ieee80211com *ic = &sc->sc_ic; 2060 struct ifnet *ifp = &sc->sc_if; 2061 struct zyd_tx_desc *desc; 2062 struct zyd_tx_data *data; 2063 struct ieee80211_frame *wh; 2064 struct ieee80211_key *k; 2065 int xferlen, totlen, rate; 2066 uint16_t pktlen; 2067 usbd_status error; 2068 2069 data = &sc->tx_data[0]; 2070 desc = (struct zyd_tx_desc *)data->buf; 2071 2072 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2073 2074 wh = mtod(m0, struct ieee80211_frame *); 2075 2076 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2077 k = ieee80211_crypto_encap(ic, ni, m0); 2078 if (k == NULL) { 2079 m_freem(m0); 2080 return ENOBUFS; 2081 } 2082 } 2083 2084 data->ni = ni; 2085 2086 wh = mtod(m0, struct ieee80211_frame *); 2087 2088 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2089 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2090 2091 /* fill Tx descriptor */ 2092 desc->len = htole16(totlen); 2093 2094 desc->flags = ZYD_TX_FLAG_BACKOFF; 2095 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2096 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2097 if (totlen > ic->ic_rtsthreshold) { 2098 desc->flags |= ZYD_TX_FLAG_RTS; 2099 } else if (ZYD_RATE_IS_OFDM(rate) && 2100 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2101 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2102 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2103 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2104 desc->flags |= ZYD_TX_FLAG_RTS; 2105 } 2106 } else 2107 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2108 2109 if ((wh->i_fc[0] & 2110 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2111 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2112 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2113 2114 desc->phy = zyd_plcp_signal(rate); 2115 if (ZYD_RATE_IS_OFDM(rate)) { 2116 desc->phy |= ZYD_TX_PHY_OFDM; 2117 if (ic->ic_curmode == IEEE80211_MODE_11A) 2118 desc->phy |= ZYD_TX_PHY_5GHZ; 2119 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2120 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2121 2122 /* actual transmit length (XXX why +10?) */ 2123 pktlen = sizeof (struct zyd_tx_desc) + 10; 2124 if (sc->mac_rev == ZYD_ZD1211) 2125 pktlen += totlen; 2126 desc->pktlen = htole16(pktlen); 2127 2128 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2129 desc->plcp_service = 0; 2130 if (rate == 22) { 2131 const int remainder = (16 * totlen) % 22; 2132 if (remainder != 0 && remainder < 7) 2133 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2134 } 2135 2136 if (sc->sc_drvbpf != NULL) { 2137 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2138 2139 tap->wt_flags = 0; 2140 tap->wt_rate = rate; 2141 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2142 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2143 2144 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2145 } 2146 2147 m_copydata(m0, 0, m0->m_pkthdr.len, 2148 data->buf + sizeof (struct zyd_tx_desc)); 2149 2150 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2151 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2152 2153 m_freem(m0); /* mbuf no longer needed */ 2154 2155 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2156 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2157 ZYD_TX_TIMEOUT, zyd_txeof); 2158 error = usbd_transfer(data->xfer); 2159 if (error != USBD_IN_PROGRESS && error != 0) { 2160 ifp->if_oerrors++; 2161 return EIO; 2162 } 2163 sc->tx_queued++; 2164 2165 return 0; 2166 } 2167 2168 Static void 2169 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2170 { 2171 struct zyd_tx_data *data = priv; 2172 struct zyd_softc *sc = data->sc; 2173 struct ifnet *ifp = &sc->sc_if; 2174 int s; 2175 2176 if (status != USBD_NORMAL_COMPLETION) { 2177 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2178 return; 2179 2180 printf("%s: could not transmit buffer: %s\n", 2181 device_xname(sc->sc_dev), usbd_errstr(status)); 2182 2183 if (status == USBD_STALLED) { 2184 usbd_clear_endpoint_stall_async( 2185 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2186 } 2187 ifp->if_oerrors++; 2188 return; 2189 } 2190 2191 s = splnet(); 2192 2193 /* update rate control statistics */ 2194 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2195 2196 ieee80211_free_node(data->ni); 2197 data->ni = NULL; 2198 2199 sc->tx_queued--; 2200 ifp->if_opackets++; 2201 2202 sc->tx_timer = 0; 2203 ifp->if_flags &= ~IFF_OACTIVE; 2204 zyd_start(ifp); 2205 2206 splx(s); 2207 } 2208 2209 Static int 2210 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2211 { 2212 struct ieee80211com *ic = &sc->sc_ic; 2213 struct ifnet *ifp = &sc->sc_if; 2214 struct zyd_tx_desc *desc; 2215 struct zyd_tx_data *data; 2216 struct ieee80211_frame *wh; 2217 struct ieee80211_key *k; 2218 int xferlen, totlen, rate; 2219 uint16_t pktlen; 2220 usbd_status error; 2221 2222 wh = mtod(m0, struct ieee80211_frame *); 2223 2224 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2225 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2226 else 2227 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2228 rate &= IEEE80211_RATE_VAL; 2229 2230 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2231 k = ieee80211_crypto_encap(ic, ni, m0); 2232 if (k == NULL) { 2233 m_freem(m0); 2234 return ENOBUFS; 2235 } 2236 2237 /* packet header may have moved, reset our local pointer */ 2238 wh = mtod(m0, struct ieee80211_frame *); 2239 } 2240 2241 data = &sc->tx_data[0]; 2242 desc = (struct zyd_tx_desc *)data->buf; 2243 2244 data->ni = ni; 2245 2246 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2247 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2248 2249 /* fill Tx descriptor */ 2250 desc->len = htole16(totlen); 2251 2252 desc->flags = ZYD_TX_FLAG_BACKOFF; 2253 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2254 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2255 if (totlen > ic->ic_rtsthreshold) { 2256 desc->flags |= ZYD_TX_FLAG_RTS; 2257 } else if (ZYD_RATE_IS_OFDM(rate) && 2258 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2259 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2260 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2261 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2262 desc->flags |= ZYD_TX_FLAG_RTS; 2263 } 2264 } else 2265 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2266 2267 if ((wh->i_fc[0] & 2268 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2269 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2270 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2271 2272 desc->phy = zyd_plcp_signal(rate); 2273 if (ZYD_RATE_IS_OFDM(rate)) { 2274 desc->phy |= ZYD_TX_PHY_OFDM; 2275 if (ic->ic_curmode == IEEE80211_MODE_11A) 2276 desc->phy |= ZYD_TX_PHY_5GHZ; 2277 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2278 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2279 2280 /* actual transmit length (XXX why +10?) */ 2281 pktlen = sizeof (struct zyd_tx_desc) + 10; 2282 if (sc->mac_rev == ZYD_ZD1211) 2283 pktlen += totlen; 2284 desc->pktlen = htole16(pktlen); 2285 2286 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2287 desc->plcp_service = 0; 2288 if (rate == 22) { 2289 const int remainder = (16 * totlen) % 22; 2290 if (remainder != 0 && remainder < 7) 2291 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2292 } 2293 2294 if (sc->sc_drvbpf != NULL) { 2295 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2296 2297 tap->wt_flags = 0; 2298 tap->wt_rate = rate; 2299 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2300 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2301 2302 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2303 } 2304 2305 m_copydata(m0, 0, m0->m_pkthdr.len, 2306 data->buf + sizeof (struct zyd_tx_desc)); 2307 2308 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2309 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2310 2311 m_freem(m0); /* mbuf no longer needed */ 2312 2313 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2314 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2315 ZYD_TX_TIMEOUT, zyd_txeof); 2316 error = usbd_transfer(data->xfer); 2317 if (error != USBD_IN_PROGRESS && error != 0) { 2318 ifp->if_oerrors++; 2319 return EIO; 2320 } 2321 sc->tx_queued++; 2322 2323 return 0; 2324 } 2325 2326 Static void 2327 zyd_start(struct ifnet *ifp) 2328 { 2329 struct zyd_softc *sc = ifp->if_softc; 2330 struct ieee80211com *ic = &sc->sc_ic; 2331 struct ether_header *eh; 2332 struct ieee80211_node *ni; 2333 struct mbuf *m0; 2334 2335 for (;;) { 2336 IF_POLL(&ic->ic_mgtq, m0); 2337 if (m0 != NULL) { 2338 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2339 ifp->if_flags |= IFF_OACTIVE; 2340 break; 2341 } 2342 IF_DEQUEUE(&ic->ic_mgtq, m0); 2343 2344 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2345 m0->m_pkthdr.rcvif = NULL; 2346 bpf_mtap3(ic->ic_rawbpf, m0); 2347 if (zyd_tx_mgt(sc, m0, ni) != 0) 2348 break; 2349 } else { 2350 if (ic->ic_state != IEEE80211_S_RUN) 2351 break; 2352 IFQ_POLL(&ifp->if_snd, m0); 2353 if (m0 == NULL) 2354 break; 2355 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2356 ifp->if_flags |= IFF_OACTIVE; 2357 break; 2358 } 2359 IFQ_DEQUEUE(&ifp->if_snd, m0); 2360 2361 if (m0->m_len < sizeof(struct ether_header) && 2362 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2363 continue; 2364 2365 eh = mtod(m0, struct ether_header *); 2366 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2367 if (ni == NULL) { 2368 m_freem(m0); 2369 continue; 2370 } 2371 bpf_mtap(ifp, m0); 2372 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2373 ieee80211_free_node(ni); 2374 ifp->if_oerrors++; 2375 continue; 2376 } 2377 bpf_mtap3(ic->ic_rawbpf, m0); 2378 if (zyd_tx_data(sc, m0, ni) != 0) { 2379 ieee80211_free_node(ni); 2380 ifp->if_oerrors++; 2381 break; 2382 } 2383 } 2384 2385 sc->tx_timer = 5; 2386 ifp->if_timer = 1; 2387 } 2388 } 2389 2390 Static void 2391 zyd_watchdog(struct ifnet *ifp) 2392 { 2393 struct zyd_softc *sc = ifp->if_softc; 2394 struct ieee80211com *ic = &sc->sc_ic; 2395 2396 ifp->if_timer = 0; 2397 2398 if (sc->tx_timer > 0) { 2399 if (--sc->tx_timer == 0) { 2400 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2401 /* zyd_init(ifp); XXX needs a process context ? */ 2402 ifp->if_oerrors++; 2403 return; 2404 } 2405 ifp->if_timer = 1; 2406 } 2407 2408 ieee80211_watchdog(ic); 2409 } 2410 2411 Static int 2412 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2413 { 2414 struct zyd_softc *sc = ifp->if_softc; 2415 struct ieee80211com *ic = &sc->sc_ic; 2416 int s, error = 0; 2417 2418 s = splnet(); 2419 2420 switch (cmd) { 2421 case SIOCSIFFLAGS: 2422 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2423 break; 2424 /* XXX re-use ether_ioctl() */ 2425 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2426 case IFF_UP: 2427 zyd_init(ifp); 2428 break; 2429 case IFF_RUNNING: 2430 zyd_stop(ifp, 1); 2431 break; 2432 default: 2433 break; 2434 } 2435 break; 2436 2437 default: 2438 error = ieee80211_ioctl(ic, cmd, data); 2439 } 2440 2441 if (error == ENETRESET) { 2442 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2443 (IFF_RUNNING | IFF_UP)) 2444 zyd_init(ifp); 2445 error = 0; 2446 } 2447 2448 splx(s); 2449 2450 return error; 2451 } 2452 2453 Static int 2454 zyd_init(struct ifnet *ifp) 2455 { 2456 struct zyd_softc *sc = ifp->if_softc; 2457 struct ieee80211com *ic = &sc->sc_ic; 2458 int i, error; 2459 2460 zyd_stop(ifp, 0); 2461 2462 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2463 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2464 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2465 if (error != 0) 2466 return error; 2467 2468 /* we'll do software WEP decryption for now */ 2469 DPRINTF(("setting encryption type\n")); 2470 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2471 if (error != 0) 2472 return error; 2473 2474 /* promiscuous mode */ 2475 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2476 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2477 2478 (void)zyd_set_rxfilter(sc); 2479 2480 /* switch radio transmitter ON */ 2481 (void)zyd_switch_radio(sc, 1); 2482 2483 /* set basic rates */ 2484 if (ic->ic_curmode == IEEE80211_MODE_11B) 2485 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2486 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2487 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2488 else /* assumes 802.11b/g */ 2489 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2490 2491 /* set mandatory rates */ 2492 if (ic->ic_curmode == IEEE80211_MODE_11B) 2493 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2494 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2495 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2496 else /* assumes 802.11b/g */ 2497 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2498 2499 /* set default BSS channel */ 2500 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2501 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2502 2503 /* enable interrupts */ 2504 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2505 2506 /* 2507 * Allocate Tx and Rx xfer queues. 2508 */ 2509 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2510 printf("%s: could not allocate Tx list\n", 2511 device_xname(sc->sc_dev)); 2512 goto fail; 2513 } 2514 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2515 printf("%s: could not allocate Rx list\n", 2516 device_xname(sc->sc_dev)); 2517 goto fail; 2518 } 2519 2520 /* 2521 * Start up the receive pipe. 2522 */ 2523 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2524 struct zyd_rx_data *data = &sc->rx_data[i]; 2525 2526 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2527 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2528 USBD_NO_TIMEOUT, zyd_rxeof); 2529 error = usbd_transfer(data->xfer); 2530 if (error != USBD_IN_PROGRESS && error != 0) { 2531 printf("%s: could not queue Rx transfer\n", 2532 device_xname(sc->sc_dev)); 2533 goto fail; 2534 } 2535 } 2536 2537 ifp->if_flags &= ~IFF_OACTIVE; 2538 ifp->if_flags |= IFF_RUNNING; 2539 2540 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2541 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2542 else 2543 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2544 2545 return 0; 2546 2547 fail: zyd_stop(ifp, 1); 2548 return error; 2549 } 2550 2551 Static void 2552 zyd_stop(struct ifnet *ifp, int disable) 2553 { 2554 struct zyd_softc *sc = ifp->if_softc; 2555 struct ieee80211com *ic = &sc->sc_ic; 2556 2557 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2558 2559 sc->tx_timer = 0; 2560 ifp->if_timer = 0; 2561 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2562 2563 /* switch radio transmitter OFF */ 2564 (void)zyd_switch_radio(sc, 0); 2565 2566 /* disable Rx */ 2567 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2568 2569 /* disable interrupts */ 2570 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2571 2572 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2573 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2574 2575 zyd_free_rx_list(sc); 2576 zyd_free_tx_list(sc); 2577 } 2578 2579 Static int 2580 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2581 { 2582 usb_device_request_t req; 2583 uint16_t addr; 2584 uint8_t stat; 2585 2586 DPRINTF(("firmware size=%zu\n", size)); 2587 2588 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2589 req.bRequest = ZYD_DOWNLOADREQ; 2590 USETW(req.wIndex, 0); 2591 2592 addr = ZYD_FIRMWARE_START_ADDR; 2593 while (size > 0) { 2594 #if 0 2595 const int mlen = min(size, 4096); 2596 #else 2597 /* 2598 * XXXX: When the transfer size is 4096 bytes, it is not 2599 * likely to be able to transfer it. 2600 * The cause is port or machine or chip? 2601 */ 2602 const int mlen = min(size, 64); 2603 #endif 2604 2605 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2606 addr)); 2607 2608 USETW(req.wValue, addr); 2609 USETW(req.wLength, mlen); 2610 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2611 return EIO; 2612 2613 addr += mlen / 2; 2614 fw += mlen; 2615 size -= mlen; 2616 } 2617 2618 /* check whether the upload succeeded */ 2619 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2620 req.bRequest = ZYD_DOWNLOADSTS; 2621 USETW(req.wValue, 0); 2622 USETW(req.wIndex, 0); 2623 USETW(req.wLength, sizeof stat); 2624 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2625 return EIO; 2626 2627 return (stat & 0x80) ? EIO : 0; 2628 } 2629 2630 Static void 2631 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2632 { 2633 struct zyd_softc *sc = arg; 2634 struct zyd_node *zn = (struct zyd_node *)ni; 2635 2636 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2637 } 2638 2639 Static void 2640 zyd_amrr_timeout(void *arg) 2641 { 2642 struct zyd_softc *sc = arg; 2643 struct ieee80211com *ic = &sc->sc_ic; 2644 int s; 2645 2646 s = splnet(); 2647 if (ic->ic_opmode == IEEE80211_M_STA) 2648 zyd_iter_func(sc, ic->ic_bss); 2649 else 2650 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2651 splx(s); 2652 2653 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2654 } 2655 2656 Static void 2657 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2658 { 2659 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2660 int i; 2661 2662 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2663 2664 /* set rate to some reasonable initial value */ 2665 for (i = ni->ni_rates.rs_nrates - 1; 2666 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2667 i--); 2668 ni->ni_txrate = i; 2669 } 2670 2671 int 2672 zyd_activate(device_t self, enum devact act) 2673 { 2674 struct zyd_softc *sc = device_private(self); 2675 2676 switch (act) { 2677 case DVACT_DEACTIVATE: 2678 if_deactivate(&sc->sc_if); 2679 return 0; 2680 default: 2681 return EOPNOTSUPP; 2682 } 2683 } 2684