xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision e61202360d5611414dd6f6115934a96aa1f50b1a)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.32 2012/09/23 14:40:29 joerg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.32 2012/09/23 14:40:29 joerg Exp $");
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54 
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/firmload.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66 
67 #include <dev/usb/if_zydreg.h>
68 
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72 
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84 
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p)	\
87 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p)	\
89 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 	struct usb_devno	dev;
92 	uint8_t			rev;
93 #define ZYD_ZD1211	0
94 #define ZYD_ZD1211B	1
95 } zyd_devs[] = {
96 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
97 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
98 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
99 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
100 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
101 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
102 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
103 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
104 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
105 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
106 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
107 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
108 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
109 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
110 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
111 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
112 	ZYD_ZD1211_DEV(TWINMOS,		G240),
113 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
114 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
115 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
116 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
117 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
118 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
119 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
120 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
121 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
122 
123 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
124 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
125 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
126 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
127 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
128 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
129 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
130 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
131 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
132 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
133 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
134 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
135 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
136 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
137 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
138 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
139 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
140 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
141 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
142 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
143 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
144 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
145 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
146 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
147 	ZYD_ZD1211B_DEV(USR,		USR5423),
148 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
149 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
150 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
151 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
152 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
153 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
154 };
155 #define zyd_lookup(v, p)	\
156 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
157 
158 int zyd_match(device_t, cfdata_t, void *);
159 void zyd_attach(device_t, device_t, void *);
160 int zyd_detach(device_t, int);
161 int zyd_activate(device_t, enum devact);
162 extern struct cfdriver zyd_cd;
163 
164 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
165     zyd_attach, zyd_detach, zyd_activate);
166 
167 Static void	zyd_attachhook(device_t);
168 Static int	zyd_complete_attach(struct zyd_softc *);
169 Static int	zyd_open_pipes(struct zyd_softc *);
170 Static void	zyd_close_pipes(struct zyd_softc *);
171 Static int	zyd_alloc_tx_list(struct zyd_softc *);
172 Static void	zyd_free_tx_list(struct zyd_softc *);
173 Static int	zyd_alloc_rx_list(struct zyd_softc *);
174 Static void	zyd_free_rx_list(struct zyd_softc *);
175 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
176 Static int	zyd_media_change(struct ifnet *);
177 Static void	zyd_next_scan(void *);
178 Static void	zyd_task(void *);
179 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
181 		    void *, int, u_int);
182 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
183 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
184 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
185 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
186 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
187 Static void	zyd_lock_phy(struct zyd_softc *);
188 Static void	zyd_unlock_phy(struct zyd_softc *);
189 Static int	zyd_rfmd_init(struct zyd_rf *);
190 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
191 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
192 Static int	zyd_al2230_init(struct zyd_rf *);
193 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
194 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
195 Static int	zyd_al2230_init_b(struct zyd_rf *);
196 Static int	zyd_al7230B_init(struct zyd_rf *);
197 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
198 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
199 Static int	zyd_al2210_init(struct zyd_rf *);
200 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
201 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
202 Static int	zyd_gct_init(struct zyd_rf *);
203 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
204 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
205 Static int	zyd_maxim_init(struct zyd_rf *);
206 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
207 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
208 Static int	zyd_maxim2_init(struct zyd_rf *);
209 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
210 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
211 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
212 Static const char *zyd_rf_name(uint8_t);
213 Static int	zyd_hw_init(struct zyd_softc *);
214 Static int	zyd_read_eeprom(struct zyd_softc *);
215 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
216 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
217 Static int	zyd_switch_radio(struct zyd_softc *, int);
218 Static void	zyd_set_led(struct zyd_softc *, int, int);
219 Static int	zyd_set_rxfilter(struct zyd_softc *);
220 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
221 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
222 Static uint8_t	zyd_plcp_signal(int);
223 Static void	zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
224 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
225 Static void	zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
226 Static void	zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
227 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
228 		    struct ieee80211_node *);
229 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
230 		    struct ieee80211_node *);
231 Static void	zyd_start(struct ifnet *);
232 Static void	zyd_watchdog(struct ifnet *);
233 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
234 Static int	zyd_init(struct ifnet *);
235 Static void	zyd_stop(struct ifnet *, int);
236 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
237 Static void	zyd_iter_func(void *, struct ieee80211_node *);
238 Static void	zyd_amrr_timeout(void *);
239 Static void	zyd_newassoc(struct ieee80211_node *, int);
240 
241 static const struct ieee80211_rateset zyd_rateset_11b =
242 	{ 4, { 2, 4, 11, 22 } };
243 
244 static const struct ieee80211_rateset zyd_rateset_11g =
245 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
246 
247 int
248 zyd_match(device_t parent, cfdata_t match, void *aux)
249 {
250 	struct usb_attach_arg *uaa = aux;
251 
252 	return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
253 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
254 }
255 
256 Static void
257 zyd_attachhook(device_t self)
258 {
259 	struct zyd_softc *sc = device_private(self);
260 	firmware_handle_t fwh;
261 	const char *fwname;
262 	u_char *fw;
263 	size_t size;
264 	int error;
265 
266 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
267 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
268 		aprint_error_dev(sc->sc_dev,
269 		    "failed to open firmware %s (error=%d)\n", fwname, error);
270 		return;
271 	}
272 	size = firmware_get_size(fwh);
273 	fw = firmware_malloc(size);
274 	if (fw == NULL) {
275 		aprint_error_dev(sc->sc_dev,
276 		    "failed to allocate firmware memory\n");
277 		firmware_close(fwh);
278 		return;
279 	}
280 	error = firmware_read(fwh, 0, fw, size);
281 	firmware_close(fwh);
282 	if (error != 0) {
283 		aprint_error_dev(sc->sc_dev,
284 		    "failed to read firmware (error %d)\n", error);
285 		firmware_free(fw, 0);
286 		return;
287 	}
288 
289 	error = zyd_loadfirmware(sc, fw, size);
290 	if (error != 0) {
291 		aprint_error_dev(sc->sc_dev,
292 		    "could not load firmware (error=%d)\n", error);
293 		firmware_free(fw, 0);
294 		return;
295 	}
296 
297 	firmware_free(fw, 0);
298 	sc->sc_flags |= ZD1211_FWLOADED;
299 
300 	/* complete the attach process */
301 	if ((error = zyd_complete_attach(sc)) == 0)
302 		sc->attached = 1;
303 	return;
304 }
305 
306 void
307 zyd_attach(device_t parent, device_t self, void *aux)
308 {
309 	struct zyd_softc *sc = device_private(self);
310 	struct usb_attach_arg *uaa = aux;
311 	char *devinfop;
312 	usb_device_descriptor_t* ddesc;
313 	struct ifnet *ifp = &sc->sc_if;
314 
315 	sc->sc_dev = self;
316 	sc->sc_udev = uaa->device;
317 	sc->sc_flags = 0;
318 
319 	aprint_naive("\n");
320 	aprint_normal("\n");
321 
322 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
323 	aprint_normal_dev(self, "%s\n", devinfop);
324 	usbd_devinfo_free(devinfop);
325 
326 	sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
327 
328 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
329 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
330 		aprint_error_dev(self, "device version mismatch: 0x%x "
331 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
332 		return;
333 	}
334 
335 	ifp->if_softc = sc;
336 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 	ifp->if_init = zyd_init;
338 	ifp->if_ioctl = zyd_ioctl;
339 	ifp->if_start = zyd_start;
340 	ifp->if_watchdog = zyd_watchdog;
341 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
342 	IFQ_SET_READY(&ifp->if_snd);
343 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
344 
345 	SIMPLEQ_INIT(&sc->sc_rqh);
346 
347 	/* defer configrations after file system is ready to load firmware */
348 	config_mountroot(self, zyd_attachhook);
349 }
350 
351 Static int
352 zyd_complete_attach(struct zyd_softc *sc)
353 {
354 	struct ieee80211com *ic = &sc->sc_ic;
355 	struct ifnet *ifp = &sc->sc_if;
356 	usbd_status error;
357 	int i;
358 
359 	usb_init_task(&sc->sc_task, zyd_task, sc);
360 	callout_init(&(sc->sc_scan_ch), 0);
361 
362 	sc->amrr.amrr_min_success_threshold =  1;
363 	sc->amrr.amrr_max_success_threshold = 10;
364 	callout_init(&sc->sc_amrr_ch, 0);
365 
366 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
367 	if (error != 0) {
368 		aprint_error_dev(sc->sc_dev, "setting config no failed\n");
369 		goto fail;
370 	}
371 
372 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
373 	    &sc->sc_iface);
374 	if (error != 0) {
375 		aprint_error_dev(sc->sc_dev,
376 		    "getting interface handle failed\n");
377 		goto fail;
378 	}
379 
380 	if ((error = zyd_open_pipes(sc)) != 0) {
381 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
382 		goto fail;
383 	}
384 
385 	if ((error = zyd_read_eeprom(sc)) != 0) {
386 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
387 		goto fail;
388 	}
389 
390 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
391 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
392 		goto fail;
393 	}
394 
395 	if ((error = zyd_hw_init(sc)) != 0) {
396 		aprint_error_dev(sc->sc_dev,
397 		    "hardware initialization failed\n");
398 		goto fail;
399 	}
400 
401 	aprint_normal_dev(sc->sc_dev,
402 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
403 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
404 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
405 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
406 
407 	ic->ic_ifp = ifp;
408 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
409 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
410 	ic->ic_state = IEEE80211_S_INIT;
411 
412 	/* set device capabilities */
413 	ic->ic_caps =
414 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
415 	    IEEE80211_C_TXPMGT |	/* tx power management */
416 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
417 	    IEEE80211_C_WEP;		/* s/w WEP */
418 
419 	/* set supported .11b and .11g rates */
420 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
421 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
422 
423 	/* set supported .11b and .11g channels (1 through 14) */
424 	for (i = 1; i <= 14; i++) {
425 		ic->ic_channels[i].ic_freq =
426 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
427 		ic->ic_channels[i].ic_flags =
428 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
429 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
430 	}
431 
432 	if_attach(ifp);
433 	ieee80211_ifattach(ic);
434 	ic->ic_node_alloc = zyd_node_alloc;
435 	ic->ic_newassoc = zyd_newassoc;
436 
437 	/* override state transition machine */
438 	sc->sc_newstate = ic->ic_newstate;
439 	ic->ic_newstate = zyd_newstate;
440 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
441 
442 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
443 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
444 	    &sc->sc_drvbpf);
445 
446 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
447 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
448 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
449 
450 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
451 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
452 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
453 
454 	ieee80211_announce(ic);
455 
456 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
457 
458 fail:	return error;
459 }
460 
461 int
462 zyd_detach(device_t self, int flags)
463 {
464 	struct zyd_softc *sc = device_private(self);
465 	struct ieee80211com *ic = &sc->sc_ic;
466 	struct ifnet *ifp = &sc->sc_if;
467 	int s;
468 
469 	if (!sc->attached)
470 		return 0;
471 
472 	s = splusb();
473 
474 	zyd_stop(ifp, 1);
475 	usb_rem_task(sc->sc_udev, &sc->sc_task);
476 	callout_stop(&sc->sc_scan_ch);
477 	callout_stop(&sc->sc_amrr_ch);
478 
479 	zyd_close_pipes(sc);
480 
481 	sc->attached = 0;
482 
483 	bpf_detach(ifp);
484 	ieee80211_ifdetach(ic);
485 	if_detach(ifp);
486 
487 	splx(s);
488 
489 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
490 	    sc->sc_dev);
491 
492 	return 0;
493 }
494 
495 Static int
496 zyd_open_pipes(struct zyd_softc *sc)
497 {
498 	usb_endpoint_descriptor_t *edesc;
499 	int isize;
500 	usbd_status error;
501 
502 	/* interrupt in */
503 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
504 	if (edesc == NULL)
505 		return EINVAL;
506 
507 	isize = UGETW(edesc->wMaxPacketSize);
508 	if (isize == 0)	/* should not happen */
509 		return EINVAL;
510 
511 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
512 	if (sc->ibuf == NULL)
513 		return ENOMEM;
514 
515 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
516 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
517 	    USBD_DEFAULT_INTERVAL);
518 	if (error != 0) {
519 		printf("%s: open rx intr pipe failed: %s\n",
520 		    device_xname(sc->sc_dev), usbd_errstr(error));
521 		goto fail;
522 	}
523 
524 	/* interrupt out (not necessarily an interrupt pipe) */
525 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
526 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
527 	if (error != 0) {
528 		printf("%s: open tx intr pipe failed: %s\n",
529 		    device_xname(sc->sc_dev), usbd_errstr(error));
530 		goto fail;
531 	}
532 
533 	/* bulk in */
534 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
535 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
536 	if (error != 0) {
537 		printf("%s: open rx pipe failed: %s\n",
538 		    device_xname(sc->sc_dev), usbd_errstr(error));
539 		goto fail;
540 	}
541 
542 	/* bulk out */
543 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
544 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
545 	if (error != 0) {
546 		printf("%s: open tx pipe failed: %s\n",
547 		    device_xname(sc->sc_dev), usbd_errstr(error));
548 		goto fail;
549 	}
550 
551 	return 0;
552 
553 fail:	zyd_close_pipes(sc);
554 	return error;
555 }
556 
557 Static void
558 zyd_close_pipes(struct zyd_softc *sc)
559 {
560 	int i;
561 
562 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
563 		if (sc->zyd_ep[i] != NULL) {
564 			usbd_abort_pipe(sc->zyd_ep[i]);
565 			usbd_close_pipe(sc->zyd_ep[i]);
566 			sc->zyd_ep[i] = NULL;
567 		}
568 	}
569 	if (sc->ibuf != NULL) {
570 		free(sc->ibuf, M_USBDEV);
571 		sc->ibuf = NULL;
572 	}
573 }
574 
575 Static int
576 zyd_alloc_tx_list(struct zyd_softc *sc)
577 {
578 	int i, error;
579 
580 	sc->tx_queued = 0;
581 
582 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
583 		struct zyd_tx_data *data = &sc->tx_data[i];
584 
585 		data->sc = sc;	/* backpointer for callbacks */
586 
587 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
588 		if (data->xfer == NULL) {
589 			printf("%s: could not allocate tx xfer\n",
590 			    device_xname(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 		data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
595 		if (data->buf == NULL) {
596 			printf("%s: could not allocate tx buffer\n",
597 			    device_xname(sc->sc_dev));
598 			error = ENOMEM;
599 			goto fail;
600 		}
601 
602 		/* clear Tx descriptor */
603 		memset(data->buf, 0, sizeof (struct zyd_tx_desc));
604 	}
605 	return 0;
606 
607 fail:	zyd_free_tx_list(sc);
608 	return error;
609 }
610 
611 Static void
612 zyd_free_tx_list(struct zyd_softc *sc)
613 {
614 	int i;
615 
616 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
617 		struct zyd_tx_data *data = &sc->tx_data[i];
618 
619 		if (data->xfer != NULL) {
620 			usbd_free_xfer(data->xfer);
621 			data->xfer = NULL;
622 		}
623 		if (data->ni != NULL) {
624 			ieee80211_free_node(data->ni);
625 			data->ni = NULL;
626 		}
627 	}
628 }
629 
630 Static int
631 zyd_alloc_rx_list(struct zyd_softc *sc)
632 {
633 	int i, error;
634 
635 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
636 		struct zyd_rx_data *data = &sc->rx_data[i];
637 
638 		data->sc = sc;	/* backpointer for callbacks */
639 
640 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
641 		if (data->xfer == NULL) {
642 			printf("%s: could not allocate rx xfer\n",
643 			    device_xname(sc->sc_dev));
644 			error = ENOMEM;
645 			goto fail;
646 		}
647 		data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
648 		if (data->buf == NULL) {
649 			printf("%s: could not allocate rx buffer\n",
650 			    device_xname(sc->sc_dev));
651 			error = ENOMEM;
652 			goto fail;
653 		}
654 	}
655 	return 0;
656 
657 fail:	zyd_free_rx_list(sc);
658 	return error;
659 }
660 
661 Static void
662 zyd_free_rx_list(struct zyd_softc *sc)
663 {
664 	int i;
665 
666 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
667 		struct zyd_rx_data *data = &sc->rx_data[i];
668 
669 		if (data->xfer != NULL) {
670 			usbd_free_xfer(data->xfer);
671 			data->xfer = NULL;
672 		}
673 	}
674 }
675 
676 /* ARGUSED */
677 Static struct ieee80211_node *
678 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
679 {
680 	struct zyd_node *zn;
681 
682 	zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
683 
684 	return &zn->ni;
685 }
686 
687 Static int
688 zyd_media_change(struct ifnet *ifp)
689 {
690 	int error;
691 
692 	error = ieee80211_media_change(ifp);
693 	if (error != ENETRESET)
694 		return error;
695 
696 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
697 		zyd_init(ifp);
698 
699 	return 0;
700 }
701 
702 /*
703  * This function is called periodically (every 200ms) during scanning to
704  * switch from one channel to another.
705  */
706 Static void
707 zyd_next_scan(void *arg)
708 {
709 	struct zyd_softc *sc = arg;
710 	struct ieee80211com *ic = &sc->sc_ic;
711 
712 	if (ic->ic_state == IEEE80211_S_SCAN)
713 		ieee80211_next_scan(ic);
714 }
715 
716 Static void
717 zyd_task(void *arg)
718 {
719 	struct zyd_softc *sc = arg;
720 	struct ieee80211com *ic = &sc->sc_ic;
721 	enum ieee80211_state ostate;
722 
723 	ostate = ic->ic_state;
724 
725 	switch (sc->sc_state) {
726 	case IEEE80211_S_INIT:
727 		if (ostate == IEEE80211_S_RUN) {
728 			/* turn link LED off */
729 			zyd_set_led(sc, ZYD_LED1, 0);
730 
731 			/* stop data LED from blinking */
732 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
733 		}
734 		break;
735 
736 	case IEEE80211_S_SCAN:
737 		zyd_set_chan(sc, ic->ic_curchan);
738 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
739 		break;
740 
741 	case IEEE80211_S_AUTH:
742 	case IEEE80211_S_ASSOC:
743 		zyd_set_chan(sc, ic->ic_curchan);
744 		break;
745 
746 	case IEEE80211_S_RUN:
747 	{
748 		struct ieee80211_node *ni = ic->ic_bss;
749 
750 		zyd_set_chan(sc, ic->ic_curchan);
751 
752 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
753 			/* turn link LED on */
754 			zyd_set_led(sc, ZYD_LED1, 1);
755 
756 			/* make data LED blink upon Tx */
757 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
758 
759 			zyd_set_bssid(sc, ni->ni_bssid);
760 		}
761 
762 		if (ic->ic_opmode == IEEE80211_M_STA) {
763 			/* fake a join to init the tx rate */
764 			zyd_newassoc(ni, 1);
765 		}
766 
767 		/* start automatic rate control timer */
768 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
769 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
770 
771 		break;
772 	}
773 	}
774 
775 	sc->sc_newstate(ic, sc->sc_state, -1);
776 }
777 
778 Static int
779 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
780 {
781 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
782 
783 	if (!sc->attached)
784 		return ENXIO;
785 
786 	usb_rem_task(sc->sc_udev, &sc->sc_task);
787 	callout_stop(&sc->sc_scan_ch);
788 	callout_stop(&sc->sc_amrr_ch);
789 
790 	/* do it in a process context */
791 	sc->sc_state = nstate;
792 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
793 
794 	return 0;
795 }
796 
797 Static int
798 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
799     void *odata, int olen, u_int flags)
800 {
801 	usbd_xfer_handle xfer;
802 	struct zyd_cmd cmd;
803 	struct rq rq;
804 	uint16_t xferflags;
805 	int error;
806 	usbd_status uerror;
807 	int s = 0;
808 
809 	if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
810 		return ENOMEM;
811 
812 	cmd.code = htole16(code);
813 	bcopy(idata, cmd.data, ilen);
814 
815 	xferflags = USBD_FORCE_SHORT_XFER;
816 	if (!(flags & ZYD_CMD_FLAG_READ))
817 		xferflags |= USBD_SYNCHRONOUS;
818 	else {
819 		s = splusb();
820 		rq.idata = idata;
821 		rq.odata = odata;
822 		rq.len = olen / sizeof (struct zyd_pair);
823 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
824 	}
825 
826 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
827 	    sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
828 	uerror = usbd_transfer(xfer);
829 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
830 		if (flags & ZYD_CMD_FLAG_READ)
831 			splx(s);
832 		printf("%s: could not send command (error=%s)\n",
833 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
834 		(void)usbd_free_xfer(xfer);
835 		return EIO;
836 	}
837 	if (!(flags & ZYD_CMD_FLAG_READ)) {
838 		(void)usbd_free_xfer(xfer);
839 		return 0;	/* write: don't wait for reply */
840 	}
841 	/* wait at most one second for command reply */
842 	error = tsleep(odata, PCATCH, "zydcmd", hz);
843 	if (error == EWOULDBLOCK)
844 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
845 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
846 	splx(s);
847 
848 	(void)usbd_free_xfer(xfer);
849 	return error;
850 }
851 
852 Static int
853 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
854 {
855 	struct zyd_pair tmp;
856 	int error;
857 
858 	reg = htole16(reg);
859 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
860 	    ZYD_CMD_FLAG_READ);
861 	if (error == 0)
862 		*val = le16toh(tmp.val);
863 	else
864 		*val = 0;
865 	return error;
866 }
867 
868 Static int
869 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
870 {
871 	struct zyd_pair tmp[2];
872 	uint16_t regs[2];
873 	int error;
874 
875 	regs[0] = htole16(ZYD_REG32_HI(reg));
876 	regs[1] = htole16(ZYD_REG32_LO(reg));
877 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
878 	    ZYD_CMD_FLAG_READ);
879 	if (error == 0)
880 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
881 	else
882 		*val = 0;
883 	return error;
884 }
885 
886 Static int
887 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
888 {
889 	struct zyd_pair pair;
890 
891 	pair.reg = htole16(reg);
892 	pair.val = htole16(val);
893 
894 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
895 }
896 
897 Static int
898 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
899 {
900 	struct zyd_pair pair[2];
901 
902 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
903 	pair[0].val = htole16(val >> 16);
904 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
905 	pair[1].val = htole16(val & 0xffff);
906 
907 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
908 }
909 
910 Static int
911 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
912 {
913 	struct zyd_rf *rf = &sc->sc_rf;
914 	struct zyd_rfwrite req;
915 	uint16_t cr203;
916 	int i;
917 
918 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
919 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
920 
921 	req.code  = htole16(2);
922 	req.width = htole16(rf->width);
923 	for (i = 0; i < rf->width; i++) {
924 		req.bit[i] = htole16(cr203);
925 		if (val & (1 << (rf->width - 1 - i)))
926 			req.bit[i] |= htole16(ZYD_RF_DATA);
927 	}
928 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
929 }
930 
931 Static void
932 zyd_lock_phy(struct zyd_softc *sc)
933 {
934 	uint32_t tmp;
935 
936 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
938 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
939 }
940 
941 Static void
942 zyd_unlock_phy(struct zyd_softc *sc)
943 {
944 	uint32_t tmp;
945 
946 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
947 	tmp |= ZYD_UNLOCK_PHY_REGS;
948 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
949 }
950 
951 /*
952  * RFMD RF methods.
953  */
954 Static int
955 zyd_rfmd_init(struct zyd_rf *rf)
956 {
957 	struct zyd_softc *sc = rf->rf_sc;
958 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
959 	static const uint32_t rfini[] = ZYD_RFMD_RF;
960 	int error;
961 	size_t i;
962 
963 	/* init RF-dependent PHY registers */
964 	for (i = 0; i < __arraycount(phyini); i++) {
965 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
966 		if (error != 0)
967 			return error;
968 	}
969 
970 	/* init RFMD radio */
971 	for (i = 0; i < __arraycount(rfini); i++) {
972 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
973 			return error;
974 	}
975 	return 0;
976 }
977 
978 Static int
979 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
980 {
981 	struct zyd_softc *sc = rf->rf_sc;
982 
983 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
984 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
985 
986 	return 0;
987 }
988 
989 Static int
990 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
991 {
992 	struct zyd_softc *sc = rf->rf_sc;
993 	static const struct {
994 		uint32_t	r1, r2;
995 	} rfprog[] = ZYD_RFMD_CHANTABLE;
996 
997 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
998 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * AL2230 RF methods.
1005  */
1006 Static int
1007 zyd_al2230_init(struct zyd_rf *rf)
1008 {
1009 	struct zyd_softc *sc = rf->rf_sc;
1010 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1011 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1012 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1013 	int error;
1014 	size_t i;
1015 
1016 	/* init RF-dependent PHY registers */
1017 	for (i = 0; i < __arraycount(phyini); i++) {
1018 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1019 		if (error != 0)
1020 			return error;
1021 	}
1022 
1023 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1024 		for (i = 0; i < __arraycount(phy2230s); i++) {
1025 			error = zyd_write16(sc, phy2230s[i].reg,
1026 			    phy2230s[i].val);
1027 			if (error != 0)
1028 				return error;
1029 		}
1030 	}
1031 
1032 	/* init AL2230 radio */
1033 	for (i = 0; i < __arraycount(rfini); i++) {
1034 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1035 			return error;
1036 	}
1037 	return 0;
1038 }
1039 
1040 Static int
1041 zyd_al2230_init_b(struct zyd_rf *rf)
1042 {
1043 	struct zyd_softc *sc = rf->rf_sc;
1044 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1045 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1046 	int error;
1047 	size_t i;
1048 
1049 	/* init RF-dependent PHY registers */
1050 	for (i = 0; i < __arraycount(phyini); i++) {
1051 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1052 		if (error != 0)
1053 			return error;
1054 	}
1055 
1056 	/* init AL2230 radio */
1057 	for (i = 0; i < __arraycount(rfini); i++) {
1058 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1059 			return error;
1060 	}
1061 	return 0;
1062 }
1063 
1064 Static int
1065 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1066 {
1067 	struct zyd_softc *sc = rf->rf_sc;
1068 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1069 
1070 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1071 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1072 
1073 	return 0;
1074 }
1075 
1076 Static int
1077 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1078 {
1079 	struct zyd_softc *sc = rf->rf_sc;
1080 	static const struct {
1081 		uint32_t	r1, r2, r3;
1082 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1083 
1084 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1085 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1086 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1087 
1088 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1089 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * AL7230B RF methods.
1096  */
1097 Static int
1098 zyd_al7230B_init(struct zyd_rf *rf)
1099 {
1100 	struct zyd_softc *sc = rf->rf_sc;
1101 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1102 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1103 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1104 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1105 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1106 	int error;
1107 	size_t i;
1108 
1109 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1110 
1111 	/* init RF-dependent PHY registers, part one */
1112 	for (i = 0; i < __arraycount(phyini_1); i++) {
1113 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1114 		if (error != 0)
1115 			return error;
1116 	}
1117 	/* init AL7230B radio, part one */
1118 	for (i = 0; i < __arraycount(rfini_1); i++) {
1119 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1120 			return error;
1121 	}
1122 	/* init RF-dependent PHY registers, part two */
1123 	for (i = 0; i < __arraycount(phyini_2); i++) {
1124 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1125 		if (error != 0)
1126 			return error;
1127 	}
1128 	/* init AL7230B radio, part two */
1129 	for (i = 0; i < __arraycount(rfini_2); i++) {
1130 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1131 			return error;
1132 	}
1133 	/* init RF-dependent PHY registers, part three */
1134 	for (i = 0; i < __arraycount(phyini_3); i++) {
1135 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1136 		if (error != 0)
1137 			return error;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 Static int
1144 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1145 {
1146 	struct zyd_softc *sc = rf->rf_sc;
1147 
1148 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1149 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1150 
1151 	return 0;
1152 }
1153 
1154 Static int
1155 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1156 {
1157 	struct zyd_softc *sc = rf->rf_sc;
1158 	static const struct {
1159 		uint32_t	r1, r2;
1160 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1161 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1162 	int error;
1163 	size_t i;
1164 
1165 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1166 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1167 
1168 	for (i = 0; i < __arraycount(rfsc); i++) {
1169 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1170 			return error;
1171 	}
1172 
1173 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1174 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1175 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1176 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1177 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1178 
1179 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1180 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1181 	(void)zyd_rfwrite(sc, 0x3c9000);
1182 
1183 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1184 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1185 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1186 
1187 	return 0;
1188 }
1189 
1190 /*
1191  * AL2210 RF methods.
1192  */
1193 Static int
1194 zyd_al2210_init(struct zyd_rf *rf)
1195 {
1196 	struct zyd_softc *sc = rf->rf_sc;
1197 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1198 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1199 	uint32_t tmp;
1200 	int error;
1201 	size_t i;
1202 
1203 	(void)zyd_write32(sc, ZYD_CR18, 2);
1204 
1205 	/* init RF-dependent PHY registers */
1206 	for (i = 0; i < __arraycount(phyini); i++) {
1207 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1208 		if (error != 0)
1209 			return error;
1210 	}
1211 	/* init AL2210 radio */
1212 	for (i = 0; i < __arraycount(rfini); i++) {
1213 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1214 			return error;
1215 	}
1216 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1217 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1218 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1219 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1220 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1221 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1222 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1223 	(void)zyd_write32(sc, ZYD_CR18, 3);
1224 
1225 	return 0;
1226 }
1227 
1228 Static int
1229 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1230 {
1231 	/* vendor driver does nothing for this RF chip */
1232 
1233 	return 0;
1234 }
1235 
1236 Static int
1237 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1238 {
1239 	struct zyd_softc *sc = rf->rf_sc;
1240 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1241 	uint32_t tmp;
1242 
1243 	(void)zyd_write32(sc, ZYD_CR18, 2);
1244 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1245 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1246 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1247 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1248 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1249 
1250 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1251 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1252 
1253 	/* actually set the channel */
1254 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1255 
1256 	(void)zyd_write32(sc, ZYD_CR18, 3);
1257 
1258 	return 0;
1259 }
1260 
1261 /*
1262  * GCT RF methods.
1263  */
1264 Static int
1265 zyd_gct_init(struct zyd_rf *rf)
1266 {
1267 	struct zyd_softc *sc = rf->rf_sc;
1268 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1269 	static const uint32_t rfini[] = ZYD_GCT_RF;
1270 	int error;
1271 	size_t i;
1272 
1273 	/* init RF-dependent PHY registers */
1274 	for (i = 0; i < __arraycount(phyini); i++) {
1275 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1276 		if (error != 0)
1277 			return error;
1278 	}
1279 	/* init cgt radio */
1280 	for (i = 0; i < __arraycount(rfini); i++) {
1281 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1282 			return error;
1283 	}
1284 	return 0;
1285 }
1286 
1287 Static int
1288 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1289 {
1290 	/* vendor driver does nothing for this RF chip */
1291 
1292 	return 0;
1293 }
1294 
1295 Static int
1296 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1297 {
1298 	struct zyd_softc *sc = rf->rf_sc;
1299 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1300 
1301 	(void)zyd_rfwrite(sc, 0x1c0000);
1302 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1303 	(void)zyd_rfwrite(sc, 0x1c0008);
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Maxim RF methods.
1310  */
1311 Static int
1312 zyd_maxim_init(struct zyd_rf *rf)
1313 {
1314 	struct zyd_softc *sc = rf->rf_sc;
1315 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1316 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1317 	uint16_t tmp;
1318 	int error;
1319 	size_t i;
1320 
1321 	/* init RF-dependent PHY registers */
1322 	for (i = 0; i < __arraycount(phyini); i++) {
1323 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1324 		if (error != 0)
1325 			return error;
1326 	}
1327 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1328 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1329 
1330 	/* init maxim radio */
1331 	for (i = 0; i < __arraycount(rfini); i++) {
1332 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1333 			return error;
1334 	}
1335 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1336 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1337 
1338 	return 0;
1339 }
1340 
1341 Static int
1342 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1343 {
1344 	/* vendor driver does nothing for this RF chip */
1345 
1346 	return 0;
1347 }
1348 
1349 Static int
1350 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1351 {
1352 	struct zyd_softc *sc = rf->rf_sc;
1353 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1354 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1355 	static const struct {
1356 		uint32_t	r1, r2;
1357 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1358 	uint16_t tmp;
1359 	int error;
1360 	size_t i;
1361 
1362 	/*
1363 	 * Do the same as we do when initializing it, except for the channel
1364 	 * values coming from the two channel tables.
1365 	 */
1366 
1367 	/* init RF-dependent PHY registers */
1368 	for (i = 0; i < __arraycount(phyini); i++) {
1369 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1370 		if (error != 0)
1371 			return error;
1372 	}
1373 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1374 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1375 
1376 	/* first two values taken from the chantables */
1377 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1378 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1379 
1380 	/* init maxim radio - skipping the two first values */
1381 	for (i = 2; i < __arraycount(rfini); i++) {
1382 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1383 			return error;
1384 	}
1385 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1386 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1387 
1388 	return 0;
1389 }
1390 
1391 /*
1392  * Maxim2 RF methods.
1393  */
1394 Static int
1395 zyd_maxim2_init(struct zyd_rf *rf)
1396 {
1397 	struct zyd_softc *sc = rf->rf_sc;
1398 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1399 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1400 	uint16_t tmp;
1401 	int error;
1402 	size_t i;
1403 
1404 	/* init RF-dependent PHY registers */
1405 	for (i = 0; i < __arraycount(phyini); i++) {
1406 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1407 		if (error != 0)
1408 			return error;
1409 	}
1410 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1411 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1412 
1413 	/* init maxim2 radio */
1414 	for (i = 0; i < __arraycount(rfini); i++) {
1415 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1416 			return error;
1417 	}
1418 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1419 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1420 
1421 	return 0;
1422 }
1423 
1424 Static int
1425 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1426 {
1427 	/* vendor driver does nothing for this RF chip */
1428 
1429 	return 0;
1430 }
1431 
1432 Static int
1433 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1434 {
1435 	struct zyd_softc *sc = rf->rf_sc;
1436 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1437 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1438 	static const struct {
1439 		uint32_t	r1, r2;
1440 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1441 	uint16_t tmp;
1442 	int error;
1443 	size_t i;
1444 
1445 	/*
1446 	 * Do the same as we do when initializing it, except for the channel
1447 	 * values coming from the two channel tables.
1448 	 */
1449 
1450 	/* init RF-dependent PHY registers */
1451 	for (i = 0; i < __arraycount(phyini); i++) {
1452 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1453 		if (error != 0)
1454 			return error;
1455 	}
1456 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1457 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1458 
1459 	/* first two values taken from the chantables */
1460 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1461 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1462 
1463 	/* init maxim2 radio - skipping the two first values */
1464 	for (i = 2; i < __arraycount(rfini); i++) {
1465 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1466 			return error;
1467 	}
1468 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1469 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1470 
1471 	return 0;
1472 }
1473 
1474 Static int
1475 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1476 {
1477 	struct zyd_rf *rf = &sc->sc_rf;
1478 
1479 	rf->rf_sc = sc;
1480 
1481 	switch (type) {
1482 	case ZYD_RF_RFMD:
1483 		rf->init         = zyd_rfmd_init;
1484 		rf->switch_radio = zyd_rfmd_switch_radio;
1485 		rf->set_channel  = zyd_rfmd_set_channel;
1486 		rf->width        = 24;	/* 24-bit RF values */
1487 		break;
1488 	case ZYD_RF_AL2230:
1489 	case ZYD_RF_AL2230S:
1490 		if (sc->mac_rev == ZYD_ZD1211B)
1491 			rf->init = zyd_al2230_init_b;
1492 		else
1493 			rf->init = zyd_al2230_init;
1494 		rf->switch_radio = zyd_al2230_switch_radio;
1495 		rf->set_channel  = zyd_al2230_set_channel;
1496 		rf->width        = 24;	/* 24-bit RF values */
1497 		break;
1498 	case ZYD_RF_AL7230B:
1499 		rf->init         = zyd_al7230B_init;
1500 		rf->switch_radio = zyd_al7230B_switch_radio;
1501 		rf->set_channel  = zyd_al7230B_set_channel;
1502 		rf->width        = 24;	/* 24-bit RF values */
1503 		break;
1504 	case ZYD_RF_AL2210:
1505 		rf->init         = zyd_al2210_init;
1506 		rf->switch_radio = zyd_al2210_switch_radio;
1507 		rf->set_channel  = zyd_al2210_set_channel;
1508 		rf->width        = 24;	/* 24-bit RF values */
1509 		break;
1510 	case ZYD_RF_GCT:
1511 		rf->init         = zyd_gct_init;
1512 		rf->switch_radio = zyd_gct_switch_radio;
1513 		rf->set_channel  = zyd_gct_set_channel;
1514 		rf->width        = 21;	/* 21-bit RF values */
1515 		break;
1516 	case ZYD_RF_MAXIM_NEW:
1517 		rf->init         = zyd_maxim_init;
1518 		rf->switch_radio = zyd_maxim_switch_radio;
1519 		rf->set_channel  = zyd_maxim_set_channel;
1520 		rf->width        = 18;	/* 18-bit RF values */
1521 		break;
1522 	case ZYD_RF_MAXIM_NEW2:
1523 		rf->init         = zyd_maxim2_init;
1524 		rf->switch_radio = zyd_maxim2_switch_radio;
1525 		rf->set_channel  = zyd_maxim2_set_channel;
1526 		rf->width        = 18;	/* 18-bit RF values */
1527 		break;
1528 	default:
1529 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1530 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1531 		return EINVAL;
1532 	}
1533 	return 0;
1534 }
1535 
1536 Static const char *
1537 zyd_rf_name(uint8_t type)
1538 {
1539 	static const char * const zyd_rfs[] = {
1540 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1541 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1542 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1543 		"PHILIPS"
1544 	};
1545 
1546 	return zyd_rfs[(type > 15) ? 0 : type];
1547 }
1548 
1549 Static int
1550 zyd_hw_init(struct zyd_softc *sc)
1551 {
1552 	struct zyd_rf *rf = &sc->sc_rf;
1553 	const struct zyd_phy_pair *phyp;
1554 	int error;
1555 
1556 	/* specify that the plug and play is finished */
1557 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1558 
1559 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1560 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1561 
1562 	/* retrieve firmware revision number */
1563 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1564 
1565 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1566 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1567 
1568 	/* disable interrupts */
1569 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1570 
1571 	/* PHY init */
1572 	zyd_lock_phy(sc);
1573 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1574 	for (; phyp->reg != 0; phyp++) {
1575 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1576 			goto fail;
1577 	}
1578 	zyd_unlock_phy(sc);
1579 
1580 	/* HMAC init */
1581 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1582 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1583 
1584 	if (sc->mac_rev == ZYD_ZD1211) {
1585 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1586 	} else {
1587 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1588 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1589 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1590 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1591 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1592 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1593 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1594 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1595 	}
1596 
1597 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1598 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1599 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1600 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1601 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1602 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1603 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1604 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1605 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1606 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1607 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1608 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1609 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1610 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1611 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1612 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1613 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1614 
1615 	/* RF chip init */
1616 	zyd_lock_phy(sc);
1617 	error = (*rf->init)(rf);
1618 	zyd_unlock_phy(sc);
1619 	if (error != 0) {
1620 		printf("%s: radio initialization failed\n",
1621 		    device_xname(sc->sc_dev));
1622 		goto fail;
1623 	}
1624 
1625 	/* init beacon interval to 100ms */
1626 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1627 		goto fail;
1628 
1629 fail:	return error;
1630 }
1631 
1632 Static int
1633 zyd_read_eeprom(struct zyd_softc *sc)
1634 {
1635 	struct ieee80211com *ic = &sc->sc_ic;
1636 	uint32_t tmp;
1637 	uint16_t val;
1638 	int i;
1639 
1640 	/* read MAC address */
1641 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1642 	ic->ic_myaddr[0] = tmp & 0xff;
1643 	ic->ic_myaddr[1] = tmp >>  8;
1644 	ic->ic_myaddr[2] = tmp >> 16;
1645 	ic->ic_myaddr[3] = tmp >> 24;
1646 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1647 	ic->ic_myaddr[4] = tmp & 0xff;
1648 	ic->ic_myaddr[5] = tmp >>  8;
1649 
1650 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1651 	sc->rf_rev = tmp & 0x0f;
1652 	sc->pa_rev = (tmp >> 16) & 0x0f;
1653 
1654 	/* read regulatory domain (currently unused) */
1655 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1656 	sc->regdomain = tmp >> 16;
1657 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1658 
1659 	/* read Tx power calibration tables */
1660 	for (i = 0; i < 7; i++) {
1661 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1662 		sc->pwr_cal[i * 2] = val >> 8;
1663 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1664 
1665 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1666 		sc->pwr_int[i * 2] = val >> 8;
1667 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1668 
1669 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1670 		sc->ofdm36_cal[i * 2] = val >> 8;
1671 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1672 
1673 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1674 		sc->ofdm48_cal[i * 2] = val >> 8;
1675 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1676 
1677 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1678 		sc->ofdm54_cal[i * 2] = val >> 8;
1679 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1680 	}
1681 	return 0;
1682 }
1683 
1684 Static int
1685 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1686 {
1687 	uint32_t tmp;
1688 
1689 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1691 
1692 	tmp = addr[5] << 8 | addr[4];
1693 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1694 
1695 	return 0;
1696 }
1697 
1698 Static int
1699 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1700 {
1701 	uint32_t tmp;
1702 
1703 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1704 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1705 
1706 	tmp = addr[5] << 8 | addr[4];
1707 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1708 
1709 	return 0;
1710 }
1711 
1712 Static int
1713 zyd_switch_radio(struct zyd_softc *sc, int on)
1714 {
1715 	struct zyd_rf *rf = &sc->sc_rf;
1716 	int error;
1717 
1718 	zyd_lock_phy(sc);
1719 	error = (*rf->switch_radio)(rf, on);
1720 	zyd_unlock_phy(sc);
1721 
1722 	return error;
1723 }
1724 
1725 Static void
1726 zyd_set_led(struct zyd_softc *sc, int which, int on)
1727 {
1728 	uint32_t tmp;
1729 
1730 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1731 	tmp &= ~which;
1732 	if (on)
1733 		tmp |= which;
1734 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1735 }
1736 
1737 Static int
1738 zyd_set_rxfilter(struct zyd_softc *sc)
1739 {
1740 	uint32_t rxfilter;
1741 
1742 	switch (sc->sc_ic.ic_opmode) {
1743 	case IEEE80211_M_STA:
1744 		rxfilter = ZYD_FILTER_BSS;
1745 		break;
1746 	case IEEE80211_M_IBSS:
1747 	case IEEE80211_M_HOSTAP:
1748 		rxfilter = ZYD_FILTER_HOSTAP;
1749 		break;
1750 	case IEEE80211_M_MONITOR:
1751 		rxfilter = ZYD_FILTER_MONITOR;
1752 		break;
1753 	default:
1754 		/* should not get there */
1755 		return EINVAL;
1756 	}
1757 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1758 }
1759 
1760 Static void
1761 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1762 {
1763 	struct ieee80211com *ic = &sc->sc_ic;
1764 	struct zyd_rf *rf = &sc->sc_rf;
1765 	u_int chan;
1766 
1767 	chan = ieee80211_chan2ieee(ic, c);
1768 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1769 		return;
1770 
1771 	zyd_lock_phy(sc);
1772 
1773 	(*rf->set_channel)(rf, chan);
1774 
1775 	/* update Tx power */
1776 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1777 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1778 
1779 	if (sc->mac_rev == ZYD_ZD1211B) {
1780 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1781 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1782 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1783 
1784 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1785 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1786 	}
1787 
1788 	zyd_unlock_phy(sc);
1789 }
1790 
1791 Static int
1792 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1793 {
1794 	/* XXX this is probably broken.. */
1795 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1796 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1797 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1798 
1799 	return 0;
1800 }
1801 
1802 Static uint8_t
1803 zyd_plcp_signal(int rate)
1804 {
1805 	switch (rate) {
1806 	/* CCK rates (returned values are device-dependent) */
1807 	case 2:		return 0x0;
1808 	case 4:		return 0x1;
1809 	case 11:	return 0x2;
1810 	case 22:	return 0x3;
1811 
1812 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1813 	case 12:	return 0xb;
1814 	case 18:	return 0xf;
1815 	case 24:	return 0xa;
1816 	case 36:	return 0xe;
1817 	case 48:	return 0x9;
1818 	case 72:	return 0xd;
1819 	case 96:	return 0x8;
1820 	case 108:	return 0xc;
1821 
1822 	/* unsupported rates (should not get there) */
1823 	default:	return 0xff;
1824 	}
1825 }
1826 
1827 Static void
1828 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1829 {
1830 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1831 	struct zyd_cmd *cmd;
1832 	uint32_t datalen;
1833 
1834 	if (status != USBD_NORMAL_COMPLETION) {
1835 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1836 			return;
1837 
1838 		if (status == USBD_STALLED) {
1839 			usbd_clear_endpoint_stall_async(
1840 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1841 		}
1842 		return;
1843 	}
1844 
1845 	cmd = (struct zyd_cmd *)sc->ibuf;
1846 
1847 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1848 		struct zyd_notif_retry *retry =
1849 		    (struct zyd_notif_retry *)cmd->data;
1850 		struct ieee80211com *ic = &sc->sc_ic;
1851 		struct ifnet *ifp = &sc->sc_if;
1852 		struct ieee80211_node *ni;
1853 
1854 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1855 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1856 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1857 
1858 		/*
1859 		 * Find the node to which the packet was sent and update its
1860 		 * retry statistics.  In BSS mode, this node is the AP we're
1861 		 * associated to so no lookup is actually needed.
1862 		 */
1863 		if (ic->ic_opmode != IEEE80211_M_STA) {
1864 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1865 			if (ni == NULL)
1866 				return;	/* just ignore */
1867 		} else
1868 			ni = ic->ic_bss;
1869 
1870 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1871 
1872 		if (le16toh(retry->count) & 0x100)
1873 			ifp->if_oerrors++;	/* too many retries */
1874 
1875 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1876 		struct rq *rqp;
1877 
1878 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1879 			return;	/* HMAC interrupt */
1880 
1881 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1882 		datalen -= sizeof(cmd->code);
1883 		datalen -= 2;	/* XXX: padding? */
1884 
1885 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1886 			int i;
1887 
1888 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1889 				continue;
1890 			for (i = 0; i < rqp->len; i++) {
1891 				if (*(((const uint16_t *)rqp->idata) + i) !=
1892 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1893 					break;
1894 			}
1895 			if (i != rqp->len)
1896 				continue;
1897 
1898 			/* copy answer into caller-supplied buffer */
1899 			bcopy(cmd->data, rqp->odata,
1900 			    sizeof(struct zyd_pair) * rqp->len);
1901 			wakeup(rqp->odata);	/* wakeup caller */
1902 
1903 			return;
1904 		}
1905 		return;	/* unexpected IORD notification */
1906 	} else {
1907 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1908 		    le16toh(cmd->code));
1909 	}
1910 }
1911 
1912 Static void
1913 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1914 {
1915 	struct ieee80211com *ic = &sc->sc_ic;
1916 	struct ifnet *ifp = &sc->sc_if;
1917 	struct ieee80211_node *ni;
1918 	struct ieee80211_frame *wh;
1919 	const struct zyd_plcphdr *plcp;
1920 	const struct zyd_rx_stat *stat;
1921 	struct mbuf *m;
1922 	int rlen, s;
1923 
1924 	if (len < ZYD_MIN_FRAGSZ) {
1925 		printf("%s: frame too short (length=%d)\n",
1926 		    device_xname(sc->sc_dev), len);
1927 		ifp->if_ierrors++;
1928 		return;
1929 	}
1930 
1931 	plcp = (const struct zyd_plcphdr *)buf;
1932 	stat = (const struct zyd_rx_stat *)
1933 	    (buf + len - sizeof (struct zyd_rx_stat));
1934 
1935 	if (stat->flags & ZYD_RX_ERROR) {
1936 		DPRINTF(("%s: RX status indicated error (%x)\n",
1937 		    device_xname(sc->sc_dev), stat->flags));
1938 		ifp->if_ierrors++;
1939 		return;
1940 	}
1941 
1942 	/* compute actual frame length */
1943 	rlen = len - sizeof (struct zyd_plcphdr) -
1944 	    sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1945 
1946 	/* allocate a mbuf to store the frame */
1947 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1948 	if (m == NULL) {
1949 		printf("%s: could not allocate rx mbuf\n",
1950 		    device_xname(sc->sc_dev));
1951 		ifp->if_ierrors++;
1952 		return;
1953 	}
1954 	if (rlen > MHLEN) {
1955 		MCLGET(m, M_DONTWAIT);
1956 		if (!(m->m_flags & M_EXT)) {
1957 			printf("%s: could not allocate rx mbuf cluster\n",
1958 			    device_xname(sc->sc_dev));
1959 			m_freem(m);
1960 			ifp->if_ierrors++;
1961 			return;
1962 		}
1963 	}
1964 	m->m_pkthdr.rcvif = ifp;
1965 	m->m_pkthdr.len = m->m_len = rlen;
1966 	bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1967 
1968 	s = splnet();
1969 
1970 	if (sc->sc_drvbpf != NULL) {
1971 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1972 		static const uint8_t rates[] = {
1973 			/* reverse function of zyd_plcp_signal() */
1974 			2, 4, 11, 22, 0, 0, 0, 0,
1975 			96, 48, 24, 12, 108, 72, 36, 18
1976 		};
1977 
1978 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1979 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1980 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1981 		tap->wr_rssi = stat->rssi;
1982 		tap->wr_rate = rates[plcp->signal & 0xf];
1983 
1984 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1985 	}
1986 
1987 	wh = mtod(m, struct ieee80211_frame *);
1988 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1989 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1990 
1991 	/* node is no longer needed */
1992 	ieee80211_free_node(ni);
1993 
1994 	splx(s);
1995 }
1996 
1997 Static void
1998 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1999 {
2000 	struct zyd_rx_data *data = priv;
2001 	struct zyd_softc *sc = data->sc;
2002 	struct ifnet *ifp = &sc->sc_if;
2003 	const struct zyd_rx_desc *desc;
2004 	int len;
2005 
2006 	if (status != USBD_NORMAL_COMPLETION) {
2007 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2008 			return;
2009 
2010 		if (status == USBD_STALLED)
2011 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2012 
2013 		goto skip;
2014 	}
2015 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2016 
2017 	if (len < ZYD_MIN_RXBUFSZ) {
2018 		printf("%s: xfer too short (length=%d)\n",
2019 		    device_xname(sc->sc_dev), len);
2020 		ifp->if_ierrors++;
2021 		goto skip;
2022 	}
2023 
2024 	desc = (const struct zyd_rx_desc *)
2025 	    (data->buf + len - sizeof (struct zyd_rx_desc));
2026 
2027 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2028 		const uint8_t *p = data->buf, *end = p + len;
2029 		int i;
2030 
2031 		DPRINTFN(3, ("received multi-frame transfer\n"));
2032 
2033 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2034 			const uint16_t len16 = UGETW(desc->len[i]);
2035 
2036 			if (len16 == 0 || p + len16 > end)
2037 				break;
2038 
2039 			zyd_rx_data(sc, p, len16);
2040 			/* next frame is aligned on a 32-bit boundary */
2041 			p += (len16 + 3) & ~3;
2042 		}
2043 	} else {
2044 		DPRINTFN(3, ("received single-frame transfer\n"));
2045 
2046 		zyd_rx_data(sc, data->buf, len);
2047 	}
2048 
2049 skip:	/* setup a new transfer */
2050 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2051 	    ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2052 	    USBD_NO_TIMEOUT, zyd_rxeof);
2053 	(void)usbd_transfer(xfer);
2054 }
2055 
2056 Static int
2057 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2058 {
2059 	struct ieee80211com *ic = &sc->sc_ic;
2060 	struct ifnet *ifp = &sc->sc_if;
2061 	struct zyd_tx_desc *desc;
2062 	struct zyd_tx_data *data;
2063 	struct ieee80211_frame *wh;
2064 	struct ieee80211_key *k;
2065 	int xferlen, totlen, rate;
2066 	uint16_t pktlen;
2067 	usbd_status error;
2068 
2069 	data = &sc->tx_data[0];
2070 	desc = (struct zyd_tx_desc *)data->buf;
2071 
2072 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2073 
2074 	wh = mtod(m0, struct ieee80211_frame *);
2075 
2076 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2077 		k = ieee80211_crypto_encap(ic, ni, m0);
2078 		if (k == NULL) {
2079 			m_freem(m0);
2080 			return ENOBUFS;
2081 		}
2082 	}
2083 
2084 	data->ni = ni;
2085 
2086 	wh = mtod(m0, struct ieee80211_frame *);
2087 
2088 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2089 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2090 
2091 	/* fill Tx descriptor */
2092 	desc->len = htole16(totlen);
2093 
2094 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2095 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2096 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2097 		if (totlen > ic->ic_rtsthreshold) {
2098 			desc->flags |= ZYD_TX_FLAG_RTS;
2099 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2100 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2101 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2102 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2103 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2104 				desc->flags |= ZYD_TX_FLAG_RTS;
2105 		}
2106 	} else
2107 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2108 
2109 	if ((wh->i_fc[0] &
2110 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2111 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2112 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2113 
2114 	desc->phy = zyd_plcp_signal(rate);
2115 	if (ZYD_RATE_IS_OFDM(rate)) {
2116 		desc->phy |= ZYD_TX_PHY_OFDM;
2117 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2118 			desc->phy |= ZYD_TX_PHY_5GHZ;
2119 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2120 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2121 
2122 	/* actual transmit length (XXX why +10?) */
2123 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2124 	if (sc->mac_rev == ZYD_ZD1211)
2125 		pktlen += totlen;
2126 	desc->pktlen = htole16(pktlen);
2127 
2128 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2129 	desc->plcp_service = 0;
2130 	if (rate == 22) {
2131 		const int remainder = (16 * totlen) % 22;
2132 		if (remainder != 0 && remainder < 7)
2133 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2134 	}
2135 
2136 	if (sc->sc_drvbpf != NULL) {
2137 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2138 
2139 		tap->wt_flags = 0;
2140 		tap->wt_rate = rate;
2141 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2142 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2143 
2144 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2145 	}
2146 
2147 	m_copydata(m0, 0, m0->m_pkthdr.len,
2148 	    data->buf + sizeof (struct zyd_tx_desc));
2149 
2150 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2151 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2152 
2153 	m_freem(m0);	/* mbuf no longer needed */
2154 
2155 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2156 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2157 	    ZYD_TX_TIMEOUT, zyd_txeof);
2158 	error = usbd_transfer(data->xfer);
2159 	if (error != USBD_IN_PROGRESS && error != 0) {
2160 		ifp->if_oerrors++;
2161 		return EIO;
2162 	}
2163 	sc->tx_queued++;
2164 
2165 	return 0;
2166 }
2167 
2168 Static void
2169 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2170 {
2171 	struct zyd_tx_data *data = priv;
2172 	struct zyd_softc *sc = data->sc;
2173 	struct ifnet *ifp = &sc->sc_if;
2174 	int s;
2175 
2176 	if (status != USBD_NORMAL_COMPLETION) {
2177 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2178 			return;
2179 
2180 		printf("%s: could not transmit buffer: %s\n",
2181 		    device_xname(sc->sc_dev), usbd_errstr(status));
2182 
2183 		if (status == USBD_STALLED) {
2184 			usbd_clear_endpoint_stall_async(
2185 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2186 		}
2187 		ifp->if_oerrors++;
2188 		return;
2189 	}
2190 
2191 	s = splnet();
2192 
2193 	/* update rate control statistics */
2194 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2195 
2196 	ieee80211_free_node(data->ni);
2197 	data->ni = NULL;
2198 
2199 	sc->tx_queued--;
2200 	ifp->if_opackets++;
2201 
2202 	sc->tx_timer = 0;
2203 	ifp->if_flags &= ~IFF_OACTIVE;
2204 	zyd_start(ifp);
2205 
2206 	splx(s);
2207 }
2208 
2209 Static int
2210 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2211 {
2212 	struct ieee80211com *ic = &sc->sc_ic;
2213 	struct ifnet *ifp = &sc->sc_if;
2214 	struct zyd_tx_desc *desc;
2215 	struct zyd_tx_data *data;
2216 	struct ieee80211_frame *wh;
2217 	struct ieee80211_key *k;
2218 	int xferlen, totlen, rate;
2219 	uint16_t pktlen;
2220 	usbd_status error;
2221 
2222 	wh = mtod(m0, struct ieee80211_frame *);
2223 
2224 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2225 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2226 	else
2227 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2228 	rate &= IEEE80211_RATE_VAL;
2229 
2230 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2231 		k = ieee80211_crypto_encap(ic, ni, m0);
2232 		if (k == NULL) {
2233 			m_freem(m0);
2234 			return ENOBUFS;
2235 		}
2236 
2237 		/* packet header may have moved, reset our local pointer */
2238 		wh = mtod(m0, struct ieee80211_frame *);
2239 	}
2240 
2241 	data = &sc->tx_data[0];
2242 	desc = (struct zyd_tx_desc *)data->buf;
2243 
2244 	data->ni = ni;
2245 
2246 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2247 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2248 
2249 	/* fill Tx descriptor */
2250 	desc->len = htole16(totlen);
2251 
2252 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2253 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2254 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2255 		if (totlen > ic->ic_rtsthreshold) {
2256 			desc->flags |= ZYD_TX_FLAG_RTS;
2257 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2258 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2259 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2260 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2261 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2262 				desc->flags |= ZYD_TX_FLAG_RTS;
2263 		}
2264 	} else
2265 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2266 
2267 	if ((wh->i_fc[0] &
2268 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2269 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2270 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2271 
2272 	desc->phy = zyd_plcp_signal(rate);
2273 	if (ZYD_RATE_IS_OFDM(rate)) {
2274 		desc->phy |= ZYD_TX_PHY_OFDM;
2275 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2276 			desc->phy |= ZYD_TX_PHY_5GHZ;
2277 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2278 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2279 
2280 	/* actual transmit length (XXX why +10?) */
2281 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2282 	if (sc->mac_rev == ZYD_ZD1211)
2283 		pktlen += totlen;
2284 	desc->pktlen = htole16(pktlen);
2285 
2286 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2287 	desc->plcp_service = 0;
2288 	if (rate == 22) {
2289 		const int remainder = (16 * totlen) % 22;
2290 		if (remainder != 0 && remainder < 7)
2291 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2292 	}
2293 
2294 	if (sc->sc_drvbpf != NULL) {
2295 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2296 
2297 		tap->wt_flags = 0;
2298 		tap->wt_rate = rate;
2299 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2300 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2301 
2302 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2303 	}
2304 
2305 	m_copydata(m0, 0, m0->m_pkthdr.len,
2306 	    data->buf + sizeof (struct zyd_tx_desc));
2307 
2308 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2309 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2310 
2311 	m_freem(m0);	/* mbuf no longer needed */
2312 
2313 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2314 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2315 	    ZYD_TX_TIMEOUT, zyd_txeof);
2316 	error = usbd_transfer(data->xfer);
2317 	if (error != USBD_IN_PROGRESS && error != 0) {
2318 		ifp->if_oerrors++;
2319 		return EIO;
2320 	}
2321 	sc->tx_queued++;
2322 
2323 	return 0;
2324 }
2325 
2326 Static void
2327 zyd_start(struct ifnet *ifp)
2328 {
2329 	struct zyd_softc *sc = ifp->if_softc;
2330 	struct ieee80211com *ic = &sc->sc_ic;
2331 	struct ether_header *eh;
2332 	struct ieee80211_node *ni;
2333 	struct mbuf *m0;
2334 
2335 	for (;;) {
2336 		IF_POLL(&ic->ic_mgtq, m0);
2337 		if (m0 != NULL) {
2338 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2339 				ifp->if_flags |= IFF_OACTIVE;
2340 				break;
2341 			}
2342 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2343 
2344 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2345 			m0->m_pkthdr.rcvif = NULL;
2346 			bpf_mtap3(ic->ic_rawbpf, m0);
2347 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2348 				break;
2349 		} else {
2350 			if (ic->ic_state != IEEE80211_S_RUN)
2351 				break;
2352 			IFQ_POLL(&ifp->if_snd, m0);
2353 			if (m0 == NULL)
2354 				break;
2355 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2356 				ifp->if_flags |= IFF_OACTIVE;
2357 				break;
2358 			}
2359 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2360 
2361 			if (m0->m_len < sizeof(struct ether_header) &&
2362 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2363 				continue;
2364 
2365 			eh = mtod(m0, struct ether_header *);
2366 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2367 			if (ni == NULL) {
2368 				m_freem(m0);
2369 				continue;
2370 			}
2371 			bpf_mtap(ifp, m0);
2372 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2373 				ieee80211_free_node(ni);
2374 				ifp->if_oerrors++;
2375 				continue;
2376 			}
2377 			bpf_mtap3(ic->ic_rawbpf, m0);
2378 			if (zyd_tx_data(sc, m0, ni) != 0) {
2379 				ieee80211_free_node(ni);
2380 				ifp->if_oerrors++;
2381 				break;
2382 			}
2383 		}
2384 
2385 		sc->tx_timer = 5;
2386 		ifp->if_timer = 1;
2387 	}
2388 }
2389 
2390 Static void
2391 zyd_watchdog(struct ifnet *ifp)
2392 {
2393 	struct zyd_softc *sc = ifp->if_softc;
2394 	struct ieee80211com *ic = &sc->sc_ic;
2395 
2396 	ifp->if_timer = 0;
2397 
2398 	if (sc->tx_timer > 0) {
2399 		if (--sc->tx_timer == 0) {
2400 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2401 			/* zyd_init(ifp); XXX needs a process context ? */
2402 			ifp->if_oerrors++;
2403 			return;
2404 		}
2405 		ifp->if_timer = 1;
2406 	}
2407 
2408 	ieee80211_watchdog(ic);
2409 }
2410 
2411 Static int
2412 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2413 {
2414 	struct zyd_softc *sc = ifp->if_softc;
2415 	struct ieee80211com *ic = &sc->sc_ic;
2416 	int s, error = 0;
2417 
2418 	s = splnet();
2419 
2420 	switch (cmd) {
2421 	case SIOCSIFFLAGS:
2422 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2423 			break;
2424 		/* XXX re-use ether_ioctl() */
2425 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2426 		case IFF_UP:
2427 			zyd_init(ifp);
2428 			break;
2429 		case IFF_RUNNING:
2430 			zyd_stop(ifp, 1);
2431 			break;
2432 		default:
2433 			break;
2434 		}
2435 		break;
2436 
2437 	default:
2438 		error = ieee80211_ioctl(ic, cmd, data);
2439 	}
2440 
2441 	if (error == ENETRESET) {
2442 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2443 		    (IFF_RUNNING | IFF_UP))
2444 			zyd_init(ifp);
2445 		error = 0;
2446 	}
2447 
2448 	splx(s);
2449 
2450 	return error;
2451 }
2452 
2453 Static int
2454 zyd_init(struct ifnet *ifp)
2455 {
2456 	struct zyd_softc *sc = ifp->if_softc;
2457 	struct ieee80211com *ic = &sc->sc_ic;
2458 	int i, error;
2459 
2460 	zyd_stop(ifp, 0);
2461 
2462 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2463 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2464 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2465 	if (error != 0)
2466 		return error;
2467 
2468 	/* we'll do software WEP decryption for now */
2469 	DPRINTF(("setting encryption type\n"));
2470 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2471 	if (error != 0)
2472 		return error;
2473 
2474 	/* promiscuous mode */
2475 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2476 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2477 
2478 	(void)zyd_set_rxfilter(sc);
2479 
2480 	/* switch radio transmitter ON */
2481 	(void)zyd_switch_radio(sc, 1);
2482 
2483 	/* set basic rates */
2484 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2485 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2486 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2487 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2488 	else	/* assumes 802.11b/g */
2489 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2490 
2491 	/* set mandatory rates */
2492 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2493 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2494 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2495 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2496 	else	/* assumes 802.11b/g */
2497 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2498 
2499 	/* set default BSS channel */
2500 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2501 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2502 
2503 	/* enable interrupts */
2504 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2505 
2506 	/*
2507 	 * Allocate Tx and Rx xfer queues.
2508 	 */
2509 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2510 		printf("%s: could not allocate Tx list\n",
2511 		    device_xname(sc->sc_dev));
2512 		goto fail;
2513 	}
2514 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2515 		printf("%s: could not allocate Rx list\n",
2516 		    device_xname(sc->sc_dev));
2517 		goto fail;
2518 	}
2519 
2520 	/*
2521 	 * Start up the receive pipe.
2522 	 */
2523 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2524 		struct zyd_rx_data *data = &sc->rx_data[i];
2525 
2526 		usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2527 		    NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2528 		    USBD_NO_TIMEOUT, zyd_rxeof);
2529 		error = usbd_transfer(data->xfer);
2530 		if (error != USBD_IN_PROGRESS && error != 0) {
2531 			printf("%s: could not queue Rx transfer\n",
2532 			    device_xname(sc->sc_dev));
2533 			goto fail;
2534 		}
2535 	}
2536 
2537 	ifp->if_flags &= ~IFF_OACTIVE;
2538 	ifp->if_flags |= IFF_RUNNING;
2539 
2540 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2541 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2542 	else
2543 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2544 
2545 	return 0;
2546 
2547 fail:	zyd_stop(ifp, 1);
2548 	return error;
2549 }
2550 
2551 Static void
2552 zyd_stop(struct ifnet *ifp, int disable)
2553 {
2554 	struct zyd_softc *sc = ifp->if_softc;
2555 	struct ieee80211com *ic = &sc->sc_ic;
2556 
2557 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2558 
2559 	sc->tx_timer = 0;
2560 	ifp->if_timer = 0;
2561 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2562 
2563 	/* switch radio transmitter OFF */
2564 	(void)zyd_switch_radio(sc, 0);
2565 
2566 	/* disable Rx */
2567 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2568 
2569 	/* disable interrupts */
2570 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2571 
2572 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2573 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2574 
2575 	zyd_free_rx_list(sc);
2576 	zyd_free_tx_list(sc);
2577 }
2578 
2579 Static int
2580 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2581 {
2582 	usb_device_request_t req;
2583 	uint16_t addr;
2584 	uint8_t stat;
2585 
2586 	DPRINTF(("firmware size=%zu\n", size));
2587 
2588 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2589 	req.bRequest = ZYD_DOWNLOADREQ;
2590 	USETW(req.wIndex, 0);
2591 
2592 	addr = ZYD_FIRMWARE_START_ADDR;
2593 	while (size > 0) {
2594 #if 0
2595 		const int mlen = min(size, 4096);
2596 #else
2597 		/*
2598 		 * XXXX: When the transfer size is 4096 bytes, it is not
2599 		 * likely to be able to transfer it.
2600 		 * The cause is port or machine or chip?
2601 		 */
2602 		const int mlen = min(size, 64);
2603 #endif
2604 
2605 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2606 		    addr));
2607 
2608 		USETW(req.wValue, addr);
2609 		USETW(req.wLength, mlen);
2610 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2611 			return EIO;
2612 
2613 		addr += mlen / 2;
2614 		fw   += mlen;
2615 		size -= mlen;
2616 	}
2617 
2618 	/* check whether the upload succeeded */
2619 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2620 	req.bRequest = ZYD_DOWNLOADSTS;
2621 	USETW(req.wValue, 0);
2622 	USETW(req.wIndex, 0);
2623 	USETW(req.wLength, sizeof stat);
2624 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2625 		return EIO;
2626 
2627 	return (stat & 0x80) ? EIO : 0;
2628 }
2629 
2630 Static void
2631 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2632 {
2633 	struct zyd_softc *sc = arg;
2634 	struct zyd_node *zn = (struct zyd_node *)ni;
2635 
2636 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2637 }
2638 
2639 Static void
2640 zyd_amrr_timeout(void *arg)
2641 {
2642 	struct zyd_softc *sc = arg;
2643 	struct ieee80211com *ic = &sc->sc_ic;
2644 	int s;
2645 
2646 	s = splnet();
2647 	if (ic->ic_opmode == IEEE80211_M_STA)
2648 		zyd_iter_func(sc, ic->ic_bss);
2649 	else
2650 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2651 	splx(s);
2652 
2653 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2654 }
2655 
2656 Static void
2657 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2658 {
2659 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2660 	int i;
2661 
2662 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2663 
2664 	/* set rate to some reasonable initial value */
2665 	for (i = ni->ni_rates.rs_nrates - 1;
2666 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2667 	     i--);
2668 	ni->ni_txrate = i;
2669 }
2670 
2671 int
2672 zyd_activate(device_t self, enum devact act)
2673 {
2674 	struct zyd_softc *sc = device_private(self);
2675 
2676 	switch (act) {
2677 	case DVACT_DEACTIVATE:
2678 		if_deactivate(&sc->sc_if);
2679 		return 0;
2680 	default:
2681 		return EOPNOTSUPP;
2682 	}
2683 }
2684