1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.42 2016/07/07 06:55:42 msaitoh Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.42 2016/07/07 06:55:42 msaitoh Exp $"); 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/kmem.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <machine/endian.h> 42 43 #include <net/bpf.h> 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/if_dl.h> 47 #include <net/if_ether.h> 48 #include <net/if_media.h> 49 #include <net/if_types.h> 50 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 56 #include <net80211/ieee80211_netbsd.h> 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/firmload.h> 62 63 #include <dev/usb/usb.h> 64 #include <dev/usb/usbdi.h> 65 #include <dev/usb/usbdi_util.h> 66 #include <dev/usb/usbdevs.h> 67 68 #include <dev/usb/if_zydreg.h> 69 70 #ifdef ZYD_DEBUG 71 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 72 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 73 int zyddebug = 0; 74 #else 75 #define DPRINTF(x) 76 #define DPRINTFN(n, x) 77 #endif 78 79 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 80 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 81 82 /* various supported device vendors/products */ 83 #define ZYD_ZD1211_DEV(v, p) \ 84 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 85 #define ZYD_ZD1211B_DEV(v, p) \ 86 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 87 static const struct zyd_type { 88 struct usb_devno dev; 89 uint8_t rev; 90 #define ZYD_ZD1211 0 91 #define ZYD_ZD1211B 1 92 } zyd_devs[] = { 93 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 94 ZYD_ZD1211_DEV(ABOCOM, WL54), 95 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 96 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 97 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 98 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 99 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 100 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 101 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 102 ZYD_ZD1211_DEV(SAGEM, XG760A), 103 ZYD_ZD1211_DEV(SENAO, NUB8301), 104 ZYD_ZD1211_DEV(SITECOMEU, WL113), 105 ZYD_ZD1211_DEV(SWEEX, ZD1211), 106 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 107 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 108 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 109 ZYD_ZD1211_DEV(TWINMOS, G240), 110 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 111 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 112 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 113 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 114 ZYD_ZD1211_DEV(ZCOM, ZD1211), 115 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 116 ZYD_ZD1211_DEV(ZYXEL, AG225H), 117 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 118 ZYD_ZD1211_DEV(ZYXEL, G200V2), 119 120 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 121 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 122 ZYD_ZD1211B_DEV(ACCTON, WUS201), 123 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 124 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 125 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 126 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 127 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 128 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 129 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 131 ZYD_ZD1211B_DEV(MELCO, KG54L), 132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 133 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 134 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 135 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 136 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 137 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 138 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 139 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 140 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 141 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 142 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 143 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 144 ZYD_ZD1211B_DEV(USR, USR5423), 145 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 146 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 147 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 148 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 149 ZYD_ZD1211B_DEV(ZYXEL, M202), 150 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 151 }; 152 #define zyd_lookup(v, p) \ 153 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 154 155 int zyd_match(device_t, cfdata_t, void *); 156 void zyd_attach(device_t, device_t, void *); 157 int zyd_detach(device_t, int); 158 int zyd_activate(device_t, enum devact); 159 extern struct cfdriver zyd_cd; 160 161 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 162 zyd_attach, zyd_detach, zyd_activate); 163 164 Static void zyd_attachhook(device_t); 165 Static int zyd_complete_attach(struct zyd_softc *); 166 Static int zyd_open_pipes(struct zyd_softc *); 167 Static void zyd_close_pipes(struct zyd_softc *); 168 Static int zyd_alloc_tx_list(struct zyd_softc *); 169 Static void zyd_free_tx_list(struct zyd_softc *); 170 Static int zyd_alloc_rx_list(struct zyd_softc *); 171 Static void zyd_free_rx_list(struct zyd_softc *); 172 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 173 Static int zyd_media_change(struct ifnet *); 174 Static void zyd_next_scan(void *); 175 Static void zyd_task(void *); 176 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 177 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 178 void *, int, u_int); 179 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 180 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 181 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 182 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 183 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 184 Static void zyd_lock_phy(struct zyd_softc *); 185 Static void zyd_unlock_phy(struct zyd_softc *); 186 Static int zyd_rfmd_init(struct zyd_rf *); 187 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 188 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 189 Static int zyd_al2230_init(struct zyd_rf *); 190 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 191 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 192 Static int zyd_al2230_init_b(struct zyd_rf *); 193 Static int zyd_al7230B_init(struct zyd_rf *); 194 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 195 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 196 Static int zyd_al2210_init(struct zyd_rf *); 197 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 198 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 199 Static int zyd_gct_init(struct zyd_rf *); 200 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 201 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 202 Static int zyd_maxim_init(struct zyd_rf *); 203 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 204 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 205 Static int zyd_maxim2_init(struct zyd_rf *); 206 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 207 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 208 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 209 Static const char *zyd_rf_name(uint8_t); 210 Static int zyd_hw_init(struct zyd_softc *); 211 Static int zyd_read_eeprom(struct zyd_softc *); 212 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 213 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 214 Static int zyd_switch_radio(struct zyd_softc *, int); 215 Static void zyd_set_led(struct zyd_softc *, int, int); 216 Static int zyd_set_rxfilter(struct zyd_softc *); 217 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 218 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 219 Static uint8_t zyd_plcp_signal(int); 220 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status); 221 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 222 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status); 223 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status); 224 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 225 struct ieee80211_node *); 226 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 227 struct ieee80211_node *); 228 Static void zyd_start(struct ifnet *); 229 Static void zyd_watchdog(struct ifnet *); 230 Static int zyd_ioctl(struct ifnet *, u_long, void *); 231 Static int zyd_init(struct ifnet *); 232 Static void zyd_stop(struct ifnet *, int); 233 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 234 Static void zyd_iter_func(void *, struct ieee80211_node *); 235 Static void zyd_amrr_timeout(void *); 236 Static void zyd_newassoc(struct ieee80211_node *, int); 237 238 static const struct ieee80211_rateset zyd_rateset_11b = 239 { 4, { 2, 4, 11, 22 } }; 240 241 static const struct ieee80211_rateset zyd_rateset_11g = 242 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 243 244 int 245 zyd_match(device_t parent, cfdata_t match, void *aux) 246 { 247 struct usb_attach_arg *uaa = aux; 248 249 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 250 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 251 } 252 253 Static void 254 zyd_attachhook(device_t self) 255 { 256 struct zyd_softc *sc = device_private(self); 257 firmware_handle_t fwh; 258 const char *fwname; 259 u_char *fw; 260 size_t size; 261 int error; 262 263 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 264 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 265 aprint_error_dev(sc->sc_dev, 266 "failed to open firmware %s (error=%d)\n", fwname, error); 267 return; 268 } 269 size = firmware_get_size(fwh); 270 fw = firmware_malloc(size); 271 if (fw == NULL) { 272 aprint_error_dev(sc->sc_dev, 273 "failed to allocate firmware memory\n"); 274 firmware_close(fwh); 275 return; 276 } 277 error = firmware_read(fwh, 0, fw, size); 278 firmware_close(fwh); 279 if (error != 0) { 280 aprint_error_dev(sc->sc_dev, 281 "failed to read firmware (error %d)\n", error); 282 firmware_free(fw, size); 283 return; 284 } 285 286 error = zyd_loadfirmware(sc, fw, size); 287 if (error != 0) { 288 aprint_error_dev(sc->sc_dev, 289 "could not load firmware (error=%d)\n", error); 290 firmware_free(fw, size); 291 return; 292 } 293 294 firmware_free(fw, size); 295 sc->sc_flags |= ZD1211_FWLOADED; 296 297 /* complete the attach process */ 298 if ((error = zyd_complete_attach(sc)) == 0) 299 sc->attached = 1; 300 return; 301 } 302 303 void 304 zyd_attach(device_t parent, device_t self, void *aux) 305 { 306 struct zyd_softc *sc = device_private(self); 307 struct usb_attach_arg *uaa = aux; 308 char *devinfop; 309 usb_device_descriptor_t* ddesc; 310 struct ifnet *ifp = &sc->sc_if; 311 312 sc->sc_dev = self; 313 sc->sc_udev = uaa->uaa_device; 314 sc->sc_flags = 0; 315 316 aprint_naive("\n"); 317 aprint_normal("\n"); 318 319 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0); 320 aprint_normal_dev(self, "%s\n", devinfop); 321 usbd_devinfo_free(devinfop); 322 323 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev; 324 325 ddesc = usbd_get_device_descriptor(sc->sc_udev); 326 if (UGETW(ddesc->bcdDevice) < 0x4330) { 327 aprint_error_dev(self, "device version mismatch: 0x%x " 328 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 329 return; 330 } 331 332 ifp->if_softc = sc; 333 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 334 ifp->if_init = zyd_init; 335 ifp->if_ioctl = zyd_ioctl; 336 ifp->if_start = zyd_start; 337 ifp->if_watchdog = zyd_watchdog; 338 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 339 IFQ_SET_READY(&ifp->if_snd); 340 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 341 342 SIMPLEQ_INIT(&sc->sc_rqh); 343 344 /* defer configrations after file system is ready to load firmware */ 345 config_mountroot(self, zyd_attachhook); 346 } 347 348 Static int 349 zyd_complete_attach(struct zyd_softc *sc) 350 { 351 struct ieee80211com *ic = &sc->sc_ic; 352 struct ifnet *ifp = &sc->sc_if; 353 usbd_status error; 354 int i; 355 356 usb_init_task(&sc->sc_task, zyd_task, sc, 0); 357 callout_init(&(sc->sc_scan_ch), 0); 358 359 sc->amrr.amrr_min_success_threshold = 1; 360 sc->amrr.amrr_max_success_threshold = 10; 361 callout_init(&sc->sc_amrr_ch, 0); 362 363 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 364 if (error != 0) { 365 aprint_error_dev(sc->sc_dev, "failed to set configuration" 366 ", err=%s\n", usbd_errstr(error)); 367 goto fail; 368 } 369 370 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 371 &sc->sc_iface); 372 if (error != 0) { 373 aprint_error_dev(sc->sc_dev, 374 "getting interface handle failed\n"); 375 goto fail; 376 } 377 378 if ((error = zyd_open_pipes(sc)) != 0) { 379 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 380 goto fail; 381 } 382 383 if ((error = zyd_read_eeprom(sc)) != 0) { 384 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 385 goto fail; 386 } 387 388 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 389 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 390 goto fail; 391 } 392 393 if ((error = zyd_hw_init(sc)) != 0) { 394 aprint_error_dev(sc->sc_dev, 395 "hardware initialization failed\n"); 396 goto fail; 397 } 398 399 aprint_normal_dev(sc->sc_dev, 400 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 401 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 402 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 403 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 404 405 ic->ic_ifp = ifp; 406 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 407 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 408 ic->ic_state = IEEE80211_S_INIT; 409 410 /* set device capabilities */ 411 ic->ic_caps = 412 IEEE80211_C_MONITOR | /* monitor mode supported */ 413 IEEE80211_C_TXPMGT | /* tx power management */ 414 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 415 IEEE80211_C_WEP; /* s/w WEP */ 416 417 /* set supported .11b and .11g rates */ 418 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 419 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 420 421 /* set supported .11b and .11g channels (1 through 14) */ 422 for (i = 1; i <= 14; i++) { 423 ic->ic_channels[i].ic_freq = 424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 425 ic->ic_channels[i].ic_flags = 426 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 427 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 428 } 429 430 if_attach(ifp); 431 ieee80211_ifattach(ic); 432 ic->ic_node_alloc = zyd_node_alloc; 433 ic->ic_newassoc = zyd_newassoc; 434 435 /* override state transition machine */ 436 sc->sc_newstate = ic->ic_newstate; 437 ic->ic_newstate = zyd_newstate; 438 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 439 440 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 441 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 442 &sc->sc_drvbpf); 443 444 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 445 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 446 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 447 448 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 449 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 450 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 451 452 ieee80211_announce(ic); 453 454 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 455 456 fail: return error; 457 } 458 459 int 460 zyd_detach(device_t self, int flags) 461 { 462 struct zyd_softc *sc = device_private(self); 463 struct ieee80211com *ic = &sc->sc_ic; 464 struct ifnet *ifp = &sc->sc_if; 465 int s; 466 467 if (!sc->attached) 468 return 0; 469 470 s = splusb(); 471 472 zyd_stop(ifp, 1); 473 usb_rem_task(sc->sc_udev, &sc->sc_task); 474 callout_stop(&sc->sc_scan_ch); 475 callout_stop(&sc->sc_amrr_ch); 476 477 /* Abort, etc. done by zyd_stop */ 478 zyd_close_pipes(sc); 479 480 sc->attached = 0; 481 482 bpf_detach(ifp); 483 ieee80211_ifdetach(ic); 484 if_detach(ifp); 485 486 splx(s); 487 488 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 489 490 return 0; 491 } 492 493 Static int 494 zyd_open_pipes(struct zyd_softc *sc) 495 { 496 usb_endpoint_descriptor_t *edesc; 497 usbd_status error; 498 499 /* interrupt in */ 500 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 501 if (edesc == NULL) 502 return EINVAL; 503 504 sc->ibuf_size = UGETW(edesc->wMaxPacketSize); 505 if (sc->ibuf_size == 0) /* should not happen */ 506 return EINVAL; 507 508 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP); 509 if (sc->ibuf == NULL) 510 return ENOMEM; 511 512 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 513 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr, 514 USBD_DEFAULT_INTERVAL); 515 if (error != 0) { 516 printf("%s: open rx intr pipe failed: %s\n", 517 device_xname(sc->sc_dev), usbd_errstr(error)); 518 goto fail; 519 } 520 521 /* interrupt out (not necessarily an interrupt pipe) */ 522 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 523 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 524 if (error != 0) { 525 printf("%s: open tx intr pipe failed: %s\n", 526 device_xname(sc->sc_dev), usbd_errstr(error)); 527 goto fail; 528 } 529 530 /* bulk in */ 531 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 532 &sc->zyd_ep[ZYD_ENDPT_BIN]); 533 if (error != 0) { 534 printf("%s: open rx pipe failed: %s\n", 535 device_xname(sc->sc_dev), usbd_errstr(error)); 536 goto fail; 537 } 538 539 /* bulk out */ 540 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 541 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 542 if (error != 0) { 543 printf("%s: open tx pipe failed: %s\n", 544 device_xname(sc->sc_dev), usbd_errstr(error)); 545 goto fail; 546 } 547 548 return 0; 549 550 fail: zyd_close_pipes(sc); 551 return error; 552 } 553 554 Static void 555 zyd_close_pipes(struct zyd_softc *sc) 556 { 557 int i; 558 559 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 560 if (sc->zyd_ep[i] != NULL) { 561 usbd_close_pipe(sc->zyd_ep[i]); 562 sc->zyd_ep[i] = NULL; 563 } 564 } 565 if (sc->ibuf != NULL) { 566 kmem_free(sc->ibuf, sc->ibuf_size); 567 sc->ibuf = NULL; 568 } 569 } 570 571 Static int 572 zyd_alloc_tx_list(struct zyd_softc *sc) 573 { 574 int i, error; 575 576 sc->tx_queued = 0; 577 578 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 579 struct zyd_tx_data *data = &sc->tx_data[i]; 580 581 data->sc = sc; /* backpointer for callbacks */ 582 583 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT], 584 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer); 585 if (error) { 586 printf("%s: could not allocate tx xfer\n", 587 device_xname(sc->sc_dev)); 588 goto fail; 589 } 590 data->buf = usbd_get_buffer(data->xfer); 591 592 /* clear Tx descriptor */ 593 memset(data->buf, 0, sizeof(struct zyd_tx_desc)); 594 } 595 return 0; 596 597 fail: zyd_free_tx_list(sc); 598 return error; 599 } 600 601 Static void 602 zyd_free_tx_list(struct zyd_softc *sc) 603 { 604 int i; 605 606 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 607 struct zyd_tx_data *data = &sc->tx_data[i]; 608 609 if (data->xfer != NULL) { 610 usbd_destroy_xfer(data->xfer); 611 data->xfer = NULL; 612 } 613 if (data->ni != NULL) { 614 ieee80211_free_node(data->ni); 615 data->ni = NULL; 616 } 617 } 618 } 619 620 Static int 621 zyd_alloc_rx_list(struct zyd_softc *sc) 622 { 623 int i, error; 624 625 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 626 struct zyd_rx_data *data = &sc->rx_data[i]; 627 628 data->sc = sc; /* backpointer for callbacks */ 629 630 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN], 631 ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer); 632 if (error) { 633 printf("%s: could not allocate rx xfer\n", 634 device_xname(sc->sc_dev)); 635 goto fail; 636 } 637 data->buf = usbd_get_buffer(data->xfer); 638 } 639 return 0; 640 641 fail: zyd_free_rx_list(sc); 642 return error; 643 } 644 645 Static void 646 zyd_free_rx_list(struct zyd_softc *sc) 647 { 648 int i; 649 650 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 651 struct zyd_rx_data *data = &sc->rx_data[i]; 652 653 if (data->xfer != NULL) { 654 usbd_destroy_xfer(data->xfer); 655 data->xfer = NULL; 656 } 657 } 658 } 659 660 /* ARGUSED */ 661 Static struct ieee80211_node * 662 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 663 { 664 struct zyd_node *zn; 665 666 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 667 668 return &zn->ni; 669 } 670 671 Static int 672 zyd_media_change(struct ifnet *ifp) 673 { 674 int error; 675 676 error = ieee80211_media_change(ifp); 677 if (error != ENETRESET) 678 return error; 679 680 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 681 zyd_init(ifp); 682 683 return 0; 684 } 685 686 /* 687 * This function is called periodically (every 200ms) during scanning to 688 * switch from one channel to another. 689 */ 690 Static void 691 zyd_next_scan(void *arg) 692 { 693 struct zyd_softc *sc = arg; 694 struct ieee80211com *ic = &sc->sc_ic; 695 696 if (ic->ic_state == IEEE80211_S_SCAN) 697 ieee80211_next_scan(ic); 698 } 699 700 Static void 701 zyd_task(void *arg) 702 { 703 struct zyd_softc *sc = arg; 704 struct ieee80211com *ic = &sc->sc_ic; 705 enum ieee80211_state ostate; 706 707 ostate = ic->ic_state; 708 709 switch (sc->sc_state) { 710 case IEEE80211_S_INIT: 711 if (ostate == IEEE80211_S_RUN) { 712 /* turn link LED off */ 713 zyd_set_led(sc, ZYD_LED1, 0); 714 715 /* stop data LED from blinking */ 716 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 717 } 718 break; 719 720 case IEEE80211_S_SCAN: 721 zyd_set_chan(sc, ic->ic_curchan); 722 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 723 break; 724 725 case IEEE80211_S_AUTH: 726 case IEEE80211_S_ASSOC: 727 zyd_set_chan(sc, ic->ic_curchan); 728 break; 729 730 case IEEE80211_S_RUN: 731 { 732 struct ieee80211_node *ni = ic->ic_bss; 733 734 zyd_set_chan(sc, ic->ic_curchan); 735 736 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 737 /* turn link LED on */ 738 zyd_set_led(sc, ZYD_LED1, 1); 739 740 /* make data LED blink upon Tx */ 741 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 742 743 zyd_set_bssid(sc, ni->ni_bssid); 744 } 745 746 if (ic->ic_opmode == IEEE80211_M_STA) { 747 /* fake a join to init the tx rate */ 748 zyd_newassoc(ni, 1); 749 } 750 751 /* start automatic rate control timer */ 752 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 753 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 754 755 break; 756 } 757 } 758 759 sc->sc_newstate(ic, sc->sc_state, -1); 760 } 761 762 Static int 763 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 764 { 765 struct zyd_softc *sc = ic->ic_ifp->if_softc; 766 767 if (!sc->attached) 768 return ENXIO; 769 770 usb_rem_task(sc->sc_udev, &sc->sc_task); 771 callout_stop(&sc->sc_scan_ch); 772 callout_stop(&sc->sc_amrr_ch); 773 774 /* do it in a process context */ 775 sc->sc_state = nstate; 776 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 777 778 return 0; 779 } 780 781 Static int 782 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 783 void *odata, int olen, u_int flags) 784 { 785 struct usbd_xfer *xfer; 786 struct zyd_cmd cmd; 787 struct rq rq; 788 uint16_t xferflags; 789 int error; 790 usbd_status uerror; 791 int s = 0; 792 793 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT], 794 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer); 795 if (error) 796 return error; 797 798 cmd.code = htole16(code); 799 memcpy(cmd.data, idata, ilen); 800 801 xferflags = USBD_FORCE_SHORT_XFER; 802 if (!(flags & ZYD_CMD_FLAG_READ)) 803 xferflags |= USBD_SYNCHRONOUS; 804 else { 805 s = splusb(); 806 rq.idata = idata; 807 rq.odata = odata; 808 rq.len = olen / sizeof(struct zyd_pair); 809 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 810 } 811 812 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags, 813 ZYD_INTR_TIMEOUT, NULL); 814 uerror = usbd_transfer(xfer); 815 if (uerror != USBD_IN_PROGRESS && uerror != 0) { 816 if (flags & ZYD_CMD_FLAG_READ) 817 splx(s); 818 printf("%s: could not send command (error=%s)\n", 819 device_xname(sc->sc_dev), usbd_errstr(uerror)); 820 (void)usbd_destroy_xfer(xfer); 821 return EIO; 822 } 823 if (!(flags & ZYD_CMD_FLAG_READ)) { 824 (void)usbd_destroy_xfer(xfer); 825 return 0; /* write: don't wait for reply */ 826 } 827 /* wait at most one second for command reply */ 828 error = tsleep(odata, PCATCH, "zydcmd", hz); 829 if (error == EWOULDBLOCK) 830 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 831 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 832 splx(s); 833 834 (void)usbd_destroy_xfer(xfer); 835 return error; 836 } 837 838 Static int 839 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 840 { 841 struct zyd_pair tmp; 842 int error; 843 844 reg = htole16(reg); 845 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 846 ZYD_CMD_FLAG_READ); 847 if (error == 0) 848 *val = le16toh(tmp.val); 849 else 850 *val = 0; 851 return error; 852 } 853 854 Static int 855 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 856 { 857 struct zyd_pair tmp[2]; 858 uint16_t regs[2]; 859 int error; 860 861 regs[0] = htole16(ZYD_REG32_HI(reg)); 862 regs[1] = htole16(ZYD_REG32_LO(reg)); 863 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 864 ZYD_CMD_FLAG_READ); 865 if (error == 0) 866 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 867 else 868 *val = 0; 869 return error; 870 } 871 872 Static int 873 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 874 { 875 struct zyd_pair pair; 876 877 pair.reg = htole16(reg); 878 pair.val = htole16(val); 879 880 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 881 } 882 883 Static int 884 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 885 { 886 struct zyd_pair pair[2]; 887 888 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 889 pair[0].val = htole16(val >> 16); 890 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 891 pair[1].val = htole16(val & 0xffff); 892 893 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 894 } 895 896 Static int 897 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 898 { 899 struct zyd_rf *rf = &sc->sc_rf; 900 struct zyd_rfwrite req; 901 uint16_t cr203; 902 int i; 903 904 (void)zyd_read16(sc, ZYD_CR203, &cr203); 905 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 906 907 req.code = htole16(2); 908 req.width = htole16(rf->width); 909 for (i = 0; i < rf->width; i++) { 910 req.bit[i] = htole16(cr203); 911 if (val & (1 << (rf->width - 1 - i))) 912 req.bit[i] |= htole16(ZYD_RF_DATA); 913 } 914 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 915 } 916 917 Static void 918 zyd_lock_phy(struct zyd_softc *sc) 919 { 920 uint32_t tmp; 921 922 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 923 tmp &= ~ZYD_UNLOCK_PHY_REGS; 924 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 925 } 926 927 Static void 928 zyd_unlock_phy(struct zyd_softc *sc) 929 { 930 uint32_t tmp; 931 932 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 933 tmp |= ZYD_UNLOCK_PHY_REGS; 934 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 935 } 936 937 /* 938 * RFMD RF methods. 939 */ 940 Static int 941 zyd_rfmd_init(struct zyd_rf *rf) 942 { 943 struct zyd_softc *sc = rf->rf_sc; 944 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 945 static const uint32_t rfini[] = ZYD_RFMD_RF; 946 int error; 947 size_t i; 948 949 /* init RF-dependent PHY registers */ 950 for (i = 0; i < __arraycount(phyini); i++) { 951 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 952 if (error != 0) 953 return error; 954 } 955 956 /* init RFMD radio */ 957 for (i = 0; i < __arraycount(rfini); i++) { 958 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 959 return error; 960 } 961 return 0; 962 } 963 964 Static int 965 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 966 { 967 struct zyd_softc *sc = rf->rf_sc; 968 969 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 970 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 971 972 return 0; 973 } 974 975 Static int 976 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 977 { 978 struct zyd_softc *sc = rf->rf_sc; 979 static const struct { 980 uint32_t r1, r2; 981 } rfprog[] = ZYD_RFMD_CHANTABLE; 982 983 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 985 986 return 0; 987 } 988 989 /* 990 * AL2230 RF methods. 991 */ 992 Static int 993 zyd_al2230_init(struct zyd_rf *rf) 994 { 995 struct zyd_softc *sc = rf->rf_sc; 996 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 997 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 998 static const uint32_t rfini[] = ZYD_AL2230_RF; 999 int error; 1000 size_t i; 1001 1002 /* init RF-dependent PHY registers */ 1003 for (i = 0; i < __arraycount(phyini); i++) { 1004 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1005 if (error != 0) 1006 return error; 1007 } 1008 1009 if (sc->rf_rev == ZYD_RF_AL2230S) { 1010 for (i = 0; i < __arraycount(phy2230s); i++) { 1011 error = zyd_write16(sc, phy2230s[i].reg, 1012 phy2230s[i].val); 1013 if (error != 0) 1014 return error; 1015 } 1016 } 1017 1018 /* init AL2230 radio */ 1019 for (i = 0; i < __arraycount(rfini); i++) { 1020 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1021 return error; 1022 } 1023 return 0; 1024 } 1025 1026 Static int 1027 zyd_al2230_init_b(struct zyd_rf *rf) 1028 { 1029 struct zyd_softc *sc = rf->rf_sc; 1030 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1031 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1032 int error; 1033 size_t i; 1034 1035 /* init RF-dependent PHY registers */ 1036 for (i = 0; i < __arraycount(phyini); i++) { 1037 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1038 if (error != 0) 1039 return error; 1040 } 1041 1042 /* init AL2230 radio */ 1043 for (i = 0; i < __arraycount(rfini); i++) { 1044 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1045 return error; 1046 } 1047 return 0; 1048 } 1049 1050 Static int 1051 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1052 { 1053 struct zyd_softc *sc = rf->rf_sc; 1054 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1055 1056 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1057 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1058 1059 return 0; 1060 } 1061 1062 Static int 1063 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1064 { 1065 struct zyd_softc *sc = rf->rf_sc; 1066 static const struct { 1067 uint32_t r1, r2, r3; 1068 } rfprog[] = ZYD_AL2230_CHANTABLE; 1069 1070 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1073 1074 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1075 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1076 1077 return 0; 1078 } 1079 1080 /* 1081 * AL7230B RF methods. 1082 */ 1083 Static int 1084 zyd_al7230B_init(struct zyd_rf *rf) 1085 { 1086 struct zyd_softc *sc = rf->rf_sc; 1087 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1088 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1089 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1090 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1091 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1092 int error; 1093 size_t i; 1094 1095 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1096 1097 /* init RF-dependent PHY registers, part one */ 1098 for (i = 0; i < __arraycount(phyini_1); i++) { 1099 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1100 if (error != 0) 1101 return error; 1102 } 1103 /* init AL7230B radio, part one */ 1104 for (i = 0; i < __arraycount(rfini_1); i++) { 1105 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1106 return error; 1107 } 1108 /* init RF-dependent PHY registers, part two */ 1109 for (i = 0; i < __arraycount(phyini_2); i++) { 1110 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1111 if (error != 0) 1112 return error; 1113 } 1114 /* init AL7230B radio, part two */ 1115 for (i = 0; i < __arraycount(rfini_2); i++) { 1116 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1117 return error; 1118 } 1119 /* init RF-dependent PHY registers, part three */ 1120 for (i = 0; i < __arraycount(phyini_3); i++) { 1121 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1122 if (error != 0) 1123 return error; 1124 } 1125 1126 return 0; 1127 } 1128 1129 Static int 1130 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1131 { 1132 struct zyd_softc *sc = rf->rf_sc; 1133 1134 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1135 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1136 1137 return 0; 1138 } 1139 1140 Static int 1141 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1142 { 1143 struct zyd_softc *sc = rf->rf_sc; 1144 static const struct { 1145 uint32_t r1, r2; 1146 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1147 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1148 int error; 1149 size_t i; 1150 1151 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1152 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1153 1154 for (i = 0; i < __arraycount(rfsc); i++) { 1155 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1156 return error; 1157 } 1158 1159 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1160 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1161 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1162 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1163 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1164 1165 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1167 (void)zyd_rfwrite(sc, 0x3c9000); 1168 1169 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1170 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1171 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1172 1173 return 0; 1174 } 1175 1176 /* 1177 * AL2210 RF methods. 1178 */ 1179 Static int 1180 zyd_al2210_init(struct zyd_rf *rf) 1181 { 1182 struct zyd_softc *sc = rf->rf_sc; 1183 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1184 static const uint32_t rfini[] = ZYD_AL2210_RF; 1185 uint32_t tmp; 1186 int error; 1187 size_t i; 1188 1189 (void)zyd_write32(sc, ZYD_CR18, 2); 1190 1191 /* init RF-dependent PHY registers */ 1192 for (i = 0; i < __arraycount(phyini); i++) { 1193 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1194 if (error != 0) 1195 return error; 1196 } 1197 /* init AL2210 radio */ 1198 for (i = 0; i < __arraycount(rfini); i++) { 1199 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1200 return error; 1201 } 1202 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1203 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1204 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1205 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1206 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1207 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1208 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1209 (void)zyd_write32(sc, ZYD_CR18, 3); 1210 1211 return 0; 1212 } 1213 1214 Static int 1215 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1216 { 1217 /* vendor driver does nothing for this RF chip */ 1218 1219 return 0; 1220 } 1221 1222 Static int 1223 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1224 { 1225 struct zyd_softc *sc = rf->rf_sc; 1226 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1227 uint32_t tmp; 1228 1229 (void)zyd_write32(sc, ZYD_CR18, 2); 1230 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1231 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1232 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1233 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1234 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1235 1236 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1237 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1238 1239 /* actually set the channel */ 1240 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1241 1242 (void)zyd_write32(sc, ZYD_CR18, 3); 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * GCT RF methods. 1249 */ 1250 Static int 1251 zyd_gct_init(struct zyd_rf *rf) 1252 { 1253 struct zyd_softc *sc = rf->rf_sc; 1254 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1255 static const uint32_t rfini[] = ZYD_GCT_RF; 1256 int error; 1257 size_t i; 1258 1259 /* init RF-dependent PHY registers */ 1260 for (i = 0; i < __arraycount(phyini); i++) { 1261 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1262 if (error != 0) 1263 return error; 1264 } 1265 /* init cgt radio */ 1266 for (i = 0; i < __arraycount(rfini); i++) { 1267 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1268 return error; 1269 } 1270 return 0; 1271 } 1272 1273 Static int 1274 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1275 { 1276 /* vendor driver does nothing for this RF chip */ 1277 1278 return 0; 1279 } 1280 1281 Static int 1282 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1283 { 1284 struct zyd_softc *sc = rf->rf_sc; 1285 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1286 1287 (void)zyd_rfwrite(sc, 0x1c0000); 1288 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1289 (void)zyd_rfwrite(sc, 0x1c0008); 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Maxim RF methods. 1296 */ 1297 Static int 1298 zyd_maxim_init(struct zyd_rf *rf) 1299 { 1300 struct zyd_softc *sc = rf->rf_sc; 1301 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1302 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1303 uint16_t tmp; 1304 int error; 1305 size_t i; 1306 1307 /* init RF-dependent PHY registers */ 1308 for (i = 0; i < __arraycount(phyini); i++) { 1309 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1310 if (error != 0) 1311 return error; 1312 } 1313 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1314 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1315 1316 /* init maxim radio */ 1317 for (i = 0; i < __arraycount(rfini); i++) { 1318 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1319 return error; 1320 } 1321 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1322 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1323 1324 return 0; 1325 } 1326 1327 Static int 1328 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1329 { 1330 /* vendor driver does nothing for this RF chip */ 1331 1332 return 0; 1333 } 1334 1335 Static int 1336 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1337 { 1338 struct zyd_softc *sc = rf->rf_sc; 1339 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1340 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1341 static const struct { 1342 uint32_t r1, r2; 1343 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1344 uint16_t tmp; 1345 int error; 1346 size_t i; 1347 1348 /* 1349 * Do the same as we do when initializing it, except for the channel 1350 * values coming from the two channel tables. 1351 */ 1352 1353 /* init RF-dependent PHY registers */ 1354 for (i = 0; i < __arraycount(phyini); i++) { 1355 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1356 if (error != 0) 1357 return error; 1358 } 1359 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1360 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1361 1362 /* first two values taken from the chantables */ 1363 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1364 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1365 1366 /* init maxim radio - skipping the two first values */ 1367 for (i = 2; i < __arraycount(rfini); i++) { 1368 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1369 return error; 1370 } 1371 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1372 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1373 1374 return 0; 1375 } 1376 1377 /* 1378 * Maxim2 RF methods. 1379 */ 1380 Static int 1381 zyd_maxim2_init(struct zyd_rf *rf) 1382 { 1383 struct zyd_softc *sc = rf->rf_sc; 1384 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1385 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1386 uint16_t tmp; 1387 int error; 1388 size_t i; 1389 1390 /* init RF-dependent PHY registers */ 1391 for (i = 0; i < __arraycount(phyini); i++) { 1392 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1393 if (error != 0) 1394 return error; 1395 } 1396 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1397 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1398 1399 /* init maxim2 radio */ 1400 for (i = 0; i < __arraycount(rfini); i++) { 1401 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1402 return error; 1403 } 1404 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1405 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1406 1407 return 0; 1408 } 1409 1410 Static int 1411 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1412 { 1413 /* vendor driver does nothing for this RF chip */ 1414 1415 return 0; 1416 } 1417 1418 Static int 1419 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1420 { 1421 struct zyd_softc *sc = rf->rf_sc; 1422 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1423 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1424 static const struct { 1425 uint32_t r1, r2; 1426 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1427 uint16_t tmp; 1428 int error; 1429 size_t i; 1430 1431 /* 1432 * Do the same as we do when initializing it, except for the channel 1433 * values coming from the two channel tables. 1434 */ 1435 1436 /* init RF-dependent PHY registers */ 1437 for (i = 0; i < __arraycount(phyini); i++) { 1438 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1439 if (error != 0) 1440 return error; 1441 } 1442 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1443 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1444 1445 /* first two values taken from the chantables */ 1446 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1448 1449 /* init maxim2 radio - skipping the two first values */ 1450 for (i = 2; i < __arraycount(rfini); i++) { 1451 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1452 return error; 1453 } 1454 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1455 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1456 1457 return 0; 1458 } 1459 1460 Static int 1461 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1462 { 1463 struct zyd_rf *rf = &sc->sc_rf; 1464 1465 rf->rf_sc = sc; 1466 1467 switch (type) { 1468 case ZYD_RF_RFMD: 1469 rf->init = zyd_rfmd_init; 1470 rf->switch_radio = zyd_rfmd_switch_radio; 1471 rf->set_channel = zyd_rfmd_set_channel; 1472 rf->width = 24; /* 24-bit RF values */ 1473 break; 1474 case ZYD_RF_AL2230: 1475 case ZYD_RF_AL2230S: 1476 if (sc->mac_rev == ZYD_ZD1211B) 1477 rf->init = zyd_al2230_init_b; 1478 else 1479 rf->init = zyd_al2230_init; 1480 rf->switch_radio = zyd_al2230_switch_radio; 1481 rf->set_channel = zyd_al2230_set_channel; 1482 rf->width = 24; /* 24-bit RF values */ 1483 break; 1484 case ZYD_RF_AL7230B: 1485 rf->init = zyd_al7230B_init; 1486 rf->switch_radio = zyd_al7230B_switch_radio; 1487 rf->set_channel = zyd_al7230B_set_channel; 1488 rf->width = 24; /* 24-bit RF values */ 1489 break; 1490 case ZYD_RF_AL2210: 1491 rf->init = zyd_al2210_init; 1492 rf->switch_radio = zyd_al2210_switch_radio; 1493 rf->set_channel = zyd_al2210_set_channel; 1494 rf->width = 24; /* 24-bit RF values */ 1495 break; 1496 case ZYD_RF_GCT: 1497 rf->init = zyd_gct_init; 1498 rf->switch_radio = zyd_gct_switch_radio; 1499 rf->set_channel = zyd_gct_set_channel; 1500 rf->width = 21; /* 21-bit RF values */ 1501 break; 1502 case ZYD_RF_MAXIM_NEW: 1503 rf->init = zyd_maxim_init; 1504 rf->switch_radio = zyd_maxim_switch_radio; 1505 rf->set_channel = zyd_maxim_set_channel; 1506 rf->width = 18; /* 18-bit RF values */ 1507 break; 1508 case ZYD_RF_MAXIM_NEW2: 1509 rf->init = zyd_maxim2_init; 1510 rf->switch_radio = zyd_maxim2_switch_radio; 1511 rf->set_channel = zyd_maxim2_set_channel; 1512 rf->width = 18; /* 18-bit RF values */ 1513 break; 1514 default: 1515 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1516 device_xname(sc->sc_dev), zyd_rf_name(type)); 1517 return EINVAL; 1518 } 1519 return 0; 1520 } 1521 1522 Static const char * 1523 zyd_rf_name(uint8_t type) 1524 { 1525 static const char * const zyd_rfs[] = { 1526 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1527 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1528 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1529 "PHILIPS" 1530 }; 1531 1532 return zyd_rfs[(type > 15) ? 0 : type]; 1533 } 1534 1535 Static int 1536 zyd_hw_init(struct zyd_softc *sc) 1537 { 1538 struct zyd_rf *rf = &sc->sc_rf; 1539 const struct zyd_phy_pair *phyp; 1540 int error; 1541 1542 /* specify that the plug and play is finished */ 1543 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1544 1545 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1546 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1547 1548 /* retrieve firmware revision number */ 1549 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1550 1551 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1552 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1553 1554 /* disable interrupts */ 1555 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1556 1557 /* PHY init */ 1558 zyd_lock_phy(sc); 1559 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1560 for (; phyp->reg != 0; phyp++) { 1561 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1562 goto fail; 1563 } 1564 zyd_unlock_phy(sc); 1565 1566 /* HMAC init */ 1567 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1568 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1569 1570 if (sc->mac_rev == ZYD_ZD1211) { 1571 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1572 } else { 1573 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1574 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1578 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1580 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1581 } 1582 1583 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1584 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1585 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1586 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1587 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1588 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1589 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1590 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1591 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1592 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1593 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1594 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1595 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1596 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1597 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1598 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1599 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1600 1601 /* RF chip init */ 1602 zyd_lock_phy(sc); 1603 error = (*rf->init)(rf); 1604 zyd_unlock_phy(sc); 1605 if (error != 0) { 1606 printf("%s: radio initialization failed\n", 1607 device_xname(sc->sc_dev)); 1608 goto fail; 1609 } 1610 1611 /* init beacon interval to 100ms */ 1612 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1613 goto fail; 1614 1615 fail: return error; 1616 } 1617 1618 Static int 1619 zyd_read_eeprom(struct zyd_softc *sc) 1620 { 1621 struct ieee80211com *ic = &sc->sc_ic; 1622 uint32_t tmp; 1623 uint16_t val; 1624 int i; 1625 1626 /* read MAC address */ 1627 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1628 ic->ic_myaddr[0] = tmp & 0xff; 1629 ic->ic_myaddr[1] = tmp >> 8; 1630 ic->ic_myaddr[2] = tmp >> 16; 1631 ic->ic_myaddr[3] = tmp >> 24; 1632 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1633 ic->ic_myaddr[4] = tmp & 0xff; 1634 ic->ic_myaddr[5] = tmp >> 8; 1635 1636 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1637 sc->rf_rev = tmp & 0x0f; 1638 sc->pa_rev = (tmp >> 16) & 0x0f; 1639 1640 /* read regulatory domain (currently unused) */ 1641 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1642 sc->regdomain = tmp >> 16; 1643 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1644 1645 /* read Tx power calibration tables */ 1646 for (i = 0; i < 7; i++) { 1647 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1648 sc->pwr_cal[i * 2] = val >> 8; 1649 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1650 1651 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1652 sc->pwr_int[i * 2] = val >> 8; 1653 sc->pwr_int[i * 2 + 1] = val & 0xff; 1654 1655 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1656 sc->ofdm36_cal[i * 2] = val >> 8; 1657 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1658 1659 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1660 sc->ofdm48_cal[i * 2] = val >> 8; 1661 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1662 1663 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1664 sc->ofdm54_cal[i * 2] = val >> 8; 1665 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1666 } 1667 return 0; 1668 } 1669 1670 Static int 1671 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1672 { 1673 uint32_t tmp; 1674 1675 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1676 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1677 1678 tmp = addr[5] << 8 | addr[4]; 1679 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1680 1681 return 0; 1682 } 1683 1684 Static int 1685 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1686 { 1687 uint32_t tmp; 1688 1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1690 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1691 1692 tmp = addr[5] << 8 | addr[4]; 1693 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1694 1695 return 0; 1696 } 1697 1698 Static int 1699 zyd_switch_radio(struct zyd_softc *sc, int on) 1700 { 1701 struct zyd_rf *rf = &sc->sc_rf; 1702 int error; 1703 1704 zyd_lock_phy(sc); 1705 error = (*rf->switch_radio)(rf, on); 1706 zyd_unlock_phy(sc); 1707 1708 return error; 1709 } 1710 1711 Static void 1712 zyd_set_led(struct zyd_softc *sc, int which, int on) 1713 { 1714 uint32_t tmp; 1715 1716 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1717 tmp &= ~which; 1718 if (on) 1719 tmp |= which; 1720 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1721 } 1722 1723 Static int 1724 zyd_set_rxfilter(struct zyd_softc *sc) 1725 { 1726 uint32_t rxfilter; 1727 1728 switch (sc->sc_ic.ic_opmode) { 1729 case IEEE80211_M_STA: 1730 rxfilter = ZYD_FILTER_BSS; 1731 break; 1732 case IEEE80211_M_IBSS: 1733 case IEEE80211_M_HOSTAP: 1734 rxfilter = ZYD_FILTER_HOSTAP; 1735 break; 1736 case IEEE80211_M_MONITOR: 1737 rxfilter = ZYD_FILTER_MONITOR; 1738 break; 1739 default: 1740 /* should not get there */ 1741 return EINVAL; 1742 } 1743 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1744 } 1745 1746 Static void 1747 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1748 { 1749 struct ieee80211com *ic = &sc->sc_ic; 1750 struct zyd_rf *rf = &sc->sc_rf; 1751 u_int chan; 1752 1753 chan = ieee80211_chan2ieee(ic, c); 1754 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1755 return; 1756 1757 zyd_lock_phy(sc); 1758 1759 (*rf->set_channel)(rf, chan); 1760 1761 /* update Tx power */ 1762 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1763 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1764 1765 if (sc->mac_rev == ZYD_ZD1211B) { 1766 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1767 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1768 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1769 1770 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1771 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1772 } 1773 1774 zyd_unlock_phy(sc); 1775 } 1776 1777 Static int 1778 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1779 { 1780 /* XXX this is probably broken.. */ 1781 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1782 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1783 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1784 1785 return 0; 1786 } 1787 1788 Static uint8_t 1789 zyd_plcp_signal(int rate) 1790 { 1791 switch (rate) { 1792 /* CCK rates (returned values are device-dependent) */ 1793 case 2: return 0x0; 1794 case 4: return 0x1; 1795 case 11: return 0x2; 1796 case 22: return 0x3; 1797 1798 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1799 case 12: return 0xb; 1800 case 18: return 0xf; 1801 case 24: return 0xa; 1802 case 36: return 0xe; 1803 case 48: return 0x9; 1804 case 72: return 0xd; 1805 case 96: return 0x8; 1806 case 108: return 0xc; 1807 1808 /* unsupported rates (should not get there) */ 1809 default: return 0xff; 1810 } 1811 } 1812 1813 Static void 1814 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status) 1815 { 1816 struct zyd_softc *sc = (struct zyd_softc *)priv; 1817 struct zyd_cmd *cmd; 1818 uint32_t datalen; 1819 1820 if (status != USBD_NORMAL_COMPLETION) { 1821 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1822 return; 1823 1824 if (status == USBD_STALLED) { 1825 usbd_clear_endpoint_stall_async( 1826 sc->zyd_ep[ZYD_ENDPT_IIN]); 1827 } 1828 return; 1829 } 1830 1831 cmd = (struct zyd_cmd *)sc->ibuf; 1832 1833 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1834 struct zyd_notif_retry *retry = 1835 (struct zyd_notif_retry *)cmd->data; 1836 struct ieee80211com *ic = &sc->sc_ic; 1837 struct ifnet *ifp = &sc->sc_if; 1838 struct ieee80211_node *ni; 1839 1840 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1841 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1842 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1843 1844 /* 1845 * Find the node to which the packet was sent and update its 1846 * retry statistics. In BSS mode, this node is the AP we're 1847 * associated to so no lookup is actually needed. 1848 */ 1849 if (ic->ic_opmode != IEEE80211_M_STA) { 1850 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1851 if (ni == NULL) 1852 return; /* just ignore */ 1853 } else 1854 ni = ic->ic_bss; 1855 1856 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1857 1858 if (le16toh(retry->count) & 0x100) 1859 ifp->if_oerrors++; /* too many retries */ 1860 1861 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1862 struct rq *rqp; 1863 1864 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1865 return; /* HMAC interrupt */ 1866 1867 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1868 datalen -= sizeof(cmd->code); 1869 datalen -= 2; /* XXX: padding? */ 1870 1871 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1872 int i; 1873 1874 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1875 continue; 1876 for (i = 0; i < rqp->len; i++) { 1877 if (*(((const uint16_t *)rqp->idata) + i) != 1878 (((struct zyd_pair *)cmd->data) + i)->reg) 1879 break; 1880 } 1881 if (i != rqp->len) 1882 continue; 1883 1884 /* copy answer into caller-supplied buffer */ 1885 memcpy(rqp->odata, cmd->data, 1886 sizeof(struct zyd_pair) * rqp->len); 1887 wakeup(rqp->odata); /* wakeup caller */ 1888 1889 return; 1890 } 1891 return; /* unexpected IORD notification */ 1892 } else { 1893 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1894 le16toh(cmd->code)); 1895 } 1896 } 1897 1898 Static void 1899 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1900 { 1901 struct ieee80211com *ic = &sc->sc_ic; 1902 struct ifnet *ifp = &sc->sc_if; 1903 struct ieee80211_node *ni; 1904 struct ieee80211_frame *wh; 1905 const struct zyd_plcphdr *plcp; 1906 const struct zyd_rx_stat *stat; 1907 struct mbuf *m; 1908 int rlen, s; 1909 1910 if (len < ZYD_MIN_FRAGSZ) { 1911 printf("%s: frame too short (length=%d)\n", 1912 device_xname(sc->sc_dev), len); 1913 ifp->if_ierrors++; 1914 return; 1915 } 1916 1917 plcp = (const struct zyd_plcphdr *)buf; 1918 stat = (const struct zyd_rx_stat *) 1919 (buf + len - sizeof(struct zyd_rx_stat)); 1920 1921 if (stat->flags & ZYD_RX_ERROR) { 1922 DPRINTF(("%s: RX status indicated error (%x)\n", 1923 device_xname(sc->sc_dev), stat->flags)); 1924 ifp->if_ierrors++; 1925 return; 1926 } 1927 1928 /* compute actual frame length */ 1929 rlen = len - sizeof(struct zyd_plcphdr) - 1930 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1931 1932 /* allocate a mbuf to store the frame */ 1933 MGETHDR(m, M_DONTWAIT, MT_DATA); 1934 if (m == NULL) { 1935 printf("%s: could not allocate rx mbuf\n", 1936 device_xname(sc->sc_dev)); 1937 ifp->if_ierrors++; 1938 return; 1939 } 1940 if (rlen > MHLEN) { 1941 MCLGET(m, M_DONTWAIT); 1942 if (!(m->m_flags & M_EXT)) { 1943 printf("%s: could not allocate rx mbuf cluster\n", 1944 device_xname(sc->sc_dev)); 1945 m_freem(m); 1946 ifp->if_ierrors++; 1947 return; 1948 } 1949 } 1950 m_set_rcvif(m, ifp); 1951 m->m_pkthdr.len = m->m_len = rlen; 1952 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen); 1953 1954 s = splnet(); 1955 1956 if (sc->sc_drvbpf != NULL) { 1957 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1958 static const uint8_t rates[] = { 1959 /* reverse function of zyd_plcp_signal() */ 1960 2, 4, 11, 22, 0, 0, 0, 0, 1961 96, 48, 24, 12, 108, 72, 36, 18 1962 }; 1963 1964 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1965 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1966 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1967 tap->wr_rssi = stat->rssi; 1968 tap->wr_rate = rates[plcp->signal & 0xf]; 1969 1970 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1971 } 1972 1973 wh = mtod(m, struct ieee80211_frame *); 1974 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1975 ieee80211_input(ic, m, ni, stat->rssi, 0); 1976 1977 /* node is no longer needed */ 1978 ieee80211_free_node(ni); 1979 1980 splx(s); 1981 } 1982 1983 Static void 1984 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 1985 { 1986 struct zyd_rx_data *data = priv; 1987 struct zyd_softc *sc = data->sc; 1988 struct ifnet *ifp = &sc->sc_if; 1989 const struct zyd_rx_desc *desc; 1990 int len; 1991 1992 if (status != USBD_NORMAL_COMPLETION) { 1993 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1994 return; 1995 1996 if (status == USBD_STALLED) 1997 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 1998 1999 goto skip; 2000 } 2001 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2002 2003 if (len < ZYD_MIN_RXBUFSZ) { 2004 printf("%s: xfer too short (length=%d)\n", 2005 device_xname(sc->sc_dev), len); 2006 ifp->if_ierrors++; 2007 goto skip; 2008 } 2009 2010 desc = (const struct zyd_rx_desc *) 2011 (data->buf + len - sizeof(struct zyd_rx_desc)); 2012 2013 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2014 const uint8_t *p = data->buf, *end = p + len; 2015 int i; 2016 2017 DPRINTFN(3, ("received multi-frame transfer\n")); 2018 2019 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2020 const uint16_t len16 = UGETW(desc->len[i]); 2021 2022 if (len16 == 0 || p + len16 > end) 2023 break; 2024 2025 zyd_rx_data(sc, p, len16); 2026 /* next frame is aligned on a 32-bit boundary */ 2027 p += (len16 + 3) & ~3; 2028 } 2029 } else { 2030 DPRINTFN(3, ("received single-frame transfer\n")); 2031 2032 zyd_rx_data(sc, data->buf, len); 2033 } 2034 2035 skip: /* setup a new transfer */ 2036 2037 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 2038 USBD_NO_TIMEOUT, zyd_rxeof); 2039 (void)usbd_transfer(xfer); 2040 } 2041 2042 Static int 2043 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2044 { 2045 struct ieee80211com *ic = &sc->sc_ic; 2046 struct ifnet *ifp = &sc->sc_if; 2047 struct zyd_tx_desc *desc; 2048 struct zyd_tx_data *data; 2049 struct ieee80211_frame *wh; 2050 struct ieee80211_key *k; 2051 int xferlen, totlen, rate; 2052 uint16_t pktlen; 2053 usbd_status error; 2054 2055 data = &sc->tx_data[0]; 2056 desc = (struct zyd_tx_desc *)data->buf; 2057 2058 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2059 2060 wh = mtod(m0, struct ieee80211_frame *); 2061 2062 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2063 k = ieee80211_crypto_encap(ic, ni, m0); 2064 if (k == NULL) { 2065 m_freem(m0); 2066 return ENOBUFS; 2067 } 2068 } 2069 2070 data->ni = ni; 2071 2072 wh = mtod(m0, struct ieee80211_frame *); 2073 2074 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; 2075 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2076 2077 /* fill Tx descriptor */ 2078 desc->len = htole16(totlen); 2079 2080 desc->flags = ZYD_TX_FLAG_BACKOFF; 2081 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2082 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2083 if (totlen > ic->ic_rtsthreshold) { 2084 desc->flags |= ZYD_TX_FLAG_RTS; 2085 } else if (ZYD_RATE_IS_OFDM(rate) && 2086 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2087 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2088 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2089 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2090 desc->flags |= ZYD_TX_FLAG_RTS; 2091 } 2092 } else 2093 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2094 2095 if ((wh->i_fc[0] & 2096 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2097 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2098 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2099 2100 desc->phy = zyd_plcp_signal(rate); 2101 if (ZYD_RATE_IS_OFDM(rate)) { 2102 desc->phy |= ZYD_TX_PHY_OFDM; 2103 if (ic->ic_curmode == IEEE80211_MODE_11A) 2104 desc->phy |= ZYD_TX_PHY_5GHZ; 2105 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2106 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2107 2108 /* actual transmit length (XXX why +10?) */ 2109 pktlen = sizeof(struct zyd_tx_desc) + 10; 2110 if (sc->mac_rev == ZYD_ZD1211) 2111 pktlen += totlen; 2112 desc->pktlen = htole16(pktlen); 2113 2114 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2115 desc->plcp_service = 0; 2116 if (rate == 22) { 2117 const int remainder = (16 * totlen) % 22; 2118 if (remainder != 0 && remainder < 7) 2119 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2120 } 2121 2122 if (sc->sc_drvbpf != NULL) { 2123 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2124 2125 tap->wt_flags = 0; 2126 tap->wt_rate = rate; 2127 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2128 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2129 2130 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2131 } 2132 2133 m_copydata(m0, 0, m0->m_pkthdr.len, 2134 data->buf + sizeof(struct zyd_tx_desc)); 2135 2136 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2137 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2138 2139 m_freem(m0); /* mbuf no longer needed */ 2140 2141 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 2142 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); 2143 error = usbd_transfer(data->xfer); 2144 if (error != USBD_IN_PROGRESS && error != 0) { 2145 ifp->if_oerrors++; 2146 return EIO; 2147 } 2148 sc->tx_queued++; 2149 2150 return 0; 2151 } 2152 2153 Static void 2154 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 2155 { 2156 struct zyd_tx_data *data = priv; 2157 struct zyd_softc *sc = data->sc; 2158 struct ifnet *ifp = &sc->sc_if; 2159 int s; 2160 2161 if (status != USBD_NORMAL_COMPLETION) { 2162 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2163 return; 2164 2165 printf("%s: could not transmit buffer: %s\n", 2166 device_xname(sc->sc_dev), usbd_errstr(status)); 2167 2168 if (status == USBD_STALLED) { 2169 usbd_clear_endpoint_stall_async( 2170 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2171 } 2172 ifp->if_oerrors++; 2173 return; 2174 } 2175 2176 s = splnet(); 2177 2178 /* update rate control statistics */ 2179 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2180 2181 ieee80211_free_node(data->ni); 2182 data->ni = NULL; 2183 2184 sc->tx_queued--; 2185 ifp->if_opackets++; 2186 2187 sc->tx_timer = 0; 2188 ifp->if_flags &= ~IFF_OACTIVE; 2189 zyd_start(ifp); 2190 2191 splx(s); 2192 } 2193 2194 Static int 2195 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2196 { 2197 struct ieee80211com *ic = &sc->sc_ic; 2198 struct ifnet *ifp = &sc->sc_if; 2199 struct zyd_tx_desc *desc; 2200 struct zyd_tx_data *data; 2201 struct ieee80211_frame *wh; 2202 struct ieee80211_key *k; 2203 int xferlen, totlen, rate; 2204 uint16_t pktlen; 2205 usbd_status error; 2206 2207 wh = mtod(m0, struct ieee80211_frame *); 2208 2209 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2210 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2211 else 2212 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2213 rate &= IEEE80211_RATE_VAL; 2214 2215 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2216 k = ieee80211_crypto_encap(ic, ni, m0); 2217 if (k == NULL) { 2218 m_freem(m0); 2219 return ENOBUFS; 2220 } 2221 2222 /* packet header may have moved, reset our local pointer */ 2223 wh = mtod(m0, struct ieee80211_frame *); 2224 } 2225 2226 data = &sc->tx_data[0]; 2227 desc = (struct zyd_tx_desc *)data->buf; 2228 2229 data->ni = ni; 2230 2231 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; 2232 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2233 2234 /* fill Tx descriptor */ 2235 desc->len = htole16(totlen); 2236 2237 desc->flags = ZYD_TX_FLAG_BACKOFF; 2238 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2239 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2240 if (totlen > ic->ic_rtsthreshold) { 2241 desc->flags |= ZYD_TX_FLAG_RTS; 2242 } else if (ZYD_RATE_IS_OFDM(rate) && 2243 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2244 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2245 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2246 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2247 desc->flags |= ZYD_TX_FLAG_RTS; 2248 } 2249 } else 2250 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2251 2252 if ((wh->i_fc[0] & 2253 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2254 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2255 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2256 2257 desc->phy = zyd_plcp_signal(rate); 2258 if (ZYD_RATE_IS_OFDM(rate)) { 2259 desc->phy |= ZYD_TX_PHY_OFDM; 2260 if (ic->ic_curmode == IEEE80211_MODE_11A) 2261 desc->phy |= ZYD_TX_PHY_5GHZ; 2262 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2263 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2264 2265 /* actual transmit length (XXX why +10?) */ 2266 pktlen = sizeof(struct zyd_tx_desc) + 10; 2267 if (sc->mac_rev == ZYD_ZD1211) 2268 pktlen += totlen; 2269 desc->pktlen = htole16(pktlen); 2270 2271 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2272 desc->plcp_service = 0; 2273 if (rate == 22) { 2274 const int remainder = (16 * totlen) % 22; 2275 if (remainder != 0 && remainder < 7) 2276 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2277 } 2278 2279 if (sc->sc_drvbpf != NULL) { 2280 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2281 2282 tap->wt_flags = 0; 2283 tap->wt_rate = rate; 2284 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2285 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2286 2287 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2288 } 2289 2290 m_copydata(m0, 0, m0->m_pkthdr.len, 2291 data->buf + sizeof(struct zyd_tx_desc)); 2292 2293 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2294 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2295 2296 m_freem(m0); /* mbuf no longer needed */ 2297 2298 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 2299 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); 2300 error = usbd_transfer(data->xfer); 2301 if (error != USBD_IN_PROGRESS && error != 0) { 2302 ifp->if_oerrors++; 2303 return EIO; 2304 } 2305 sc->tx_queued++; 2306 2307 return 0; 2308 } 2309 2310 Static void 2311 zyd_start(struct ifnet *ifp) 2312 { 2313 struct zyd_softc *sc = ifp->if_softc; 2314 struct ieee80211com *ic = &sc->sc_ic; 2315 struct ether_header *eh; 2316 struct ieee80211_node *ni; 2317 struct mbuf *m0; 2318 2319 for (;;) { 2320 IF_POLL(&ic->ic_mgtq, m0); 2321 if (m0 != NULL) { 2322 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2323 ifp->if_flags |= IFF_OACTIVE; 2324 break; 2325 } 2326 IF_DEQUEUE(&ic->ic_mgtq, m0); 2327 2328 ni = M_GETCTX(m0, struct ieee80211_node *); 2329 M_CLEARCTX(m0); 2330 bpf_mtap3(ic->ic_rawbpf, m0); 2331 if (zyd_tx_mgt(sc, m0, ni) != 0) 2332 break; 2333 } else { 2334 if (ic->ic_state != IEEE80211_S_RUN) 2335 break; 2336 IFQ_POLL(&ifp->if_snd, m0); 2337 if (m0 == NULL) 2338 break; 2339 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2340 ifp->if_flags |= IFF_OACTIVE; 2341 break; 2342 } 2343 IFQ_DEQUEUE(&ifp->if_snd, m0); 2344 2345 if (m0->m_len < sizeof(struct ether_header) && 2346 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2347 continue; 2348 2349 eh = mtod(m0, struct ether_header *); 2350 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2351 if (ni == NULL) { 2352 m_freem(m0); 2353 continue; 2354 } 2355 bpf_mtap(ifp, m0); 2356 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2357 ieee80211_free_node(ni); 2358 ifp->if_oerrors++; 2359 continue; 2360 } 2361 bpf_mtap3(ic->ic_rawbpf, m0); 2362 if (zyd_tx_data(sc, m0, ni) != 0) { 2363 ieee80211_free_node(ni); 2364 ifp->if_oerrors++; 2365 break; 2366 } 2367 } 2368 2369 sc->tx_timer = 5; 2370 ifp->if_timer = 1; 2371 } 2372 } 2373 2374 Static void 2375 zyd_watchdog(struct ifnet *ifp) 2376 { 2377 struct zyd_softc *sc = ifp->if_softc; 2378 struct ieee80211com *ic = &sc->sc_ic; 2379 2380 ifp->if_timer = 0; 2381 2382 if (sc->tx_timer > 0) { 2383 if (--sc->tx_timer == 0) { 2384 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2385 /* zyd_init(ifp); XXX needs a process context ? */ 2386 ifp->if_oerrors++; 2387 return; 2388 } 2389 ifp->if_timer = 1; 2390 } 2391 2392 ieee80211_watchdog(ic); 2393 } 2394 2395 Static int 2396 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2397 { 2398 struct zyd_softc *sc = ifp->if_softc; 2399 struct ieee80211com *ic = &sc->sc_ic; 2400 int s, error = 0; 2401 2402 s = splnet(); 2403 2404 switch (cmd) { 2405 case SIOCSIFFLAGS: 2406 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2407 break; 2408 /* XXX re-use ether_ioctl() */ 2409 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2410 case IFF_UP: 2411 zyd_init(ifp); 2412 break; 2413 case IFF_RUNNING: 2414 zyd_stop(ifp, 1); 2415 break; 2416 default: 2417 break; 2418 } 2419 break; 2420 2421 default: 2422 error = ieee80211_ioctl(ic, cmd, data); 2423 } 2424 2425 if (error == ENETRESET) { 2426 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2427 (IFF_RUNNING | IFF_UP)) 2428 zyd_init(ifp); 2429 error = 0; 2430 } 2431 2432 splx(s); 2433 2434 return error; 2435 } 2436 2437 Static int 2438 zyd_init(struct ifnet *ifp) 2439 { 2440 struct zyd_softc *sc = ifp->if_softc; 2441 struct ieee80211com *ic = &sc->sc_ic; 2442 int i, error; 2443 2444 zyd_stop(ifp, 0); 2445 2446 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2447 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2448 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2449 if (error != 0) 2450 return error; 2451 2452 /* we'll do software WEP decryption for now */ 2453 DPRINTF(("setting encryption type\n")); 2454 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2455 if (error != 0) 2456 return error; 2457 2458 /* promiscuous mode */ 2459 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2460 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2461 2462 (void)zyd_set_rxfilter(sc); 2463 2464 /* switch radio transmitter ON */ 2465 (void)zyd_switch_radio(sc, 1); 2466 2467 /* set basic rates */ 2468 if (ic->ic_curmode == IEEE80211_MODE_11B) 2469 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2470 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2471 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2472 else /* assumes 802.11b/g */ 2473 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2474 2475 /* set mandatory rates */ 2476 if (ic->ic_curmode == IEEE80211_MODE_11B) 2477 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2478 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2479 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2480 else /* assumes 802.11b/g */ 2481 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2482 2483 /* set default BSS channel */ 2484 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2485 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2486 2487 /* enable interrupts */ 2488 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2489 2490 /* 2491 * Allocate Tx and Rx xfer queues. 2492 */ 2493 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2494 printf("%s: could not allocate Tx list\n", 2495 device_xname(sc->sc_dev)); 2496 goto fail; 2497 } 2498 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2499 printf("%s: could not allocate Rx list\n", 2500 device_xname(sc->sc_dev)); 2501 goto fail; 2502 } 2503 2504 /* 2505 * Start up the receive pipe. 2506 */ 2507 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2508 struct zyd_rx_data *data = &sc->rx_data[i]; 2509 2510 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ, 2511 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); 2512 error = usbd_transfer(data->xfer); 2513 if (error != USBD_IN_PROGRESS && error != 0) { 2514 printf("%s: could not queue Rx transfer\n", 2515 device_xname(sc->sc_dev)); 2516 goto fail; 2517 } 2518 } 2519 2520 ifp->if_flags &= ~IFF_OACTIVE; 2521 ifp->if_flags |= IFF_RUNNING; 2522 2523 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2524 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2525 else 2526 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2527 2528 return 0; 2529 2530 fail: zyd_stop(ifp, 1); 2531 return error; 2532 } 2533 2534 Static void 2535 zyd_stop(struct ifnet *ifp, int disable) 2536 { 2537 struct zyd_softc *sc = ifp->if_softc; 2538 struct ieee80211com *ic = &sc->sc_ic; 2539 2540 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2541 2542 sc->tx_timer = 0; 2543 ifp->if_timer = 0; 2544 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2545 2546 /* switch radio transmitter OFF */ 2547 (void)zyd_switch_radio(sc, 0); 2548 2549 /* disable Rx */ 2550 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2551 2552 /* disable interrupts */ 2553 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2554 2555 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2556 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2557 2558 zyd_free_rx_list(sc); 2559 zyd_free_tx_list(sc); 2560 } 2561 2562 Static int 2563 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2564 { 2565 usb_device_request_t req; 2566 uint16_t addr; 2567 uint8_t stat; 2568 2569 DPRINTF(("firmware size=%zu\n", size)); 2570 2571 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2572 req.bRequest = ZYD_DOWNLOADREQ; 2573 USETW(req.wIndex, 0); 2574 2575 addr = ZYD_FIRMWARE_START_ADDR; 2576 while (size > 0) { 2577 #if 0 2578 const int mlen = min(size, 4096); 2579 #else 2580 /* 2581 * XXXX: When the transfer size is 4096 bytes, it is not 2582 * likely to be able to transfer it. 2583 * The cause is port or machine or chip? 2584 */ 2585 const int mlen = min(size, 64); 2586 #endif 2587 2588 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2589 addr)); 2590 2591 USETW(req.wValue, addr); 2592 USETW(req.wLength, mlen); 2593 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2594 return EIO; 2595 2596 addr += mlen / 2; 2597 fw += mlen; 2598 size -= mlen; 2599 } 2600 2601 /* check whether the upload succeeded */ 2602 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2603 req.bRequest = ZYD_DOWNLOADSTS; 2604 USETW(req.wValue, 0); 2605 USETW(req.wIndex, 0); 2606 USETW(req.wLength, sizeof(stat)); 2607 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2608 return EIO; 2609 2610 return (stat & 0x80) ? EIO : 0; 2611 } 2612 2613 Static void 2614 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2615 { 2616 struct zyd_softc *sc = arg; 2617 struct zyd_node *zn = (struct zyd_node *)ni; 2618 2619 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2620 } 2621 2622 Static void 2623 zyd_amrr_timeout(void *arg) 2624 { 2625 struct zyd_softc *sc = arg; 2626 struct ieee80211com *ic = &sc->sc_ic; 2627 int s; 2628 2629 s = splnet(); 2630 if (ic->ic_opmode == IEEE80211_M_STA) 2631 zyd_iter_func(sc, ic->ic_bss); 2632 else 2633 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2634 splx(s); 2635 2636 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2637 } 2638 2639 Static void 2640 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2641 { 2642 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2643 int i; 2644 2645 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2646 2647 /* set rate to some reasonable initial value */ 2648 for (i = ni->ni_rates.rs_nrates - 1; 2649 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2650 i--); 2651 ni->ni_txrate = i; 2652 } 2653 2654 int 2655 zyd_activate(device_t self, enum devact act) 2656 { 2657 struct zyd_softc *sc = device_private(self); 2658 2659 switch (act) { 2660 case DVACT_DEACTIVATE: 2661 if_deactivate(&sc->sc_if); 2662 return 0; 2663 default: 2664 return EOPNOTSUPP; 2665 } 2666 } 2667