xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.42 2016/07/07 06:55:42 msaitoh Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.42 2016/07/07 06:55:42 msaitoh Exp $");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/kmem.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/firmload.h>
62 
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67 
68 #include <dev/usb/if_zydreg.h>
69 
70 #ifdef ZYD_DEBUG
71 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
72 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
73 int zyddebug = 0;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78 
79 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
80 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
81 
82 /* various supported device vendors/products */
83 #define ZYD_ZD1211_DEV(v, p)	\
84 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
85 #define ZYD_ZD1211B_DEV(v, p)	\
86 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
87 static const struct zyd_type {
88 	struct usb_devno	dev;
89 	uint8_t			rev;
90 #define ZYD_ZD1211	0
91 #define ZYD_ZD1211B	1
92 } zyd_devs[] = {
93 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
94 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
95 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
96 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
97 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
98 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
99 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
100 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
101 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
102 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
103 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
104 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
105 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
106 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
107 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
108 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
109 	ZYD_ZD1211_DEV(TWINMOS,		G240),
110 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
111 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
112 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
113 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
114 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
115 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
116 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
117 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
118 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
119 
120 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
121 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
122 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
123 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
124 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
125 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
126 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
127 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
128 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
129 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
130 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
131 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
132 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
133 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
134 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
135 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
136 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
137 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
138 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
139 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
140 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
141 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
142 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
143 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
144 	ZYD_ZD1211B_DEV(USR,		USR5423),
145 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
146 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
147 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
148 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
149 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
150 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
151 };
152 #define zyd_lookup(v, p)	\
153 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
154 
155 int zyd_match(device_t, cfdata_t, void *);
156 void zyd_attach(device_t, device_t, void *);
157 int zyd_detach(device_t, int);
158 int zyd_activate(device_t, enum devact);
159 extern struct cfdriver zyd_cd;
160 
161 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
162     zyd_attach, zyd_detach, zyd_activate);
163 
164 Static void	zyd_attachhook(device_t);
165 Static int	zyd_complete_attach(struct zyd_softc *);
166 Static int	zyd_open_pipes(struct zyd_softc *);
167 Static void	zyd_close_pipes(struct zyd_softc *);
168 Static int	zyd_alloc_tx_list(struct zyd_softc *);
169 Static void	zyd_free_tx_list(struct zyd_softc *);
170 Static int	zyd_alloc_rx_list(struct zyd_softc *);
171 Static void	zyd_free_rx_list(struct zyd_softc *);
172 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
173 Static int	zyd_media_change(struct ifnet *);
174 Static void	zyd_next_scan(void *);
175 Static void	zyd_task(void *);
176 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
177 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
178 		    void *, int, u_int);
179 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
180 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
181 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
182 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
183 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
184 Static void	zyd_lock_phy(struct zyd_softc *);
185 Static void	zyd_unlock_phy(struct zyd_softc *);
186 Static int	zyd_rfmd_init(struct zyd_rf *);
187 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
188 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
189 Static int	zyd_al2230_init(struct zyd_rf *);
190 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
191 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
192 Static int	zyd_al2230_init_b(struct zyd_rf *);
193 Static int	zyd_al7230B_init(struct zyd_rf *);
194 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_al2210_init(struct zyd_rf *);
197 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
198 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
199 Static int	zyd_gct_init(struct zyd_rf *);
200 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
201 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
202 Static int	zyd_maxim_init(struct zyd_rf *);
203 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
204 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
205 Static int	zyd_maxim2_init(struct zyd_rf *);
206 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
207 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
208 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
209 Static const char *zyd_rf_name(uint8_t);
210 Static int	zyd_hw_init(struct zyd_softc *);
211 Static int	zyd_read_eeprom(struct zyd_softc *);
212 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
213 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
214 Static int	zyd_switch_radio(struct zyd_softc *, int);
215 Static void	zyd_set_led(struct zyd_softc *, int, int);
216 Static int	zyd_set_rxfilter(struct zyd_softc *);
217 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
218 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
219 Static uint8_t	zyd_plcp_signal(int);
220 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
221 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
222 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
223 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
224 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
225 		    struct ieee80211_node *);
226 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
227 		    struct ieee80211_node *);
228 Static void	zyd_start(struct ifnet *);
229 Static void	zyd_watchdog(struct ifnet *);
230 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
231 Static int	zyd_init(struct ifnet *);
232 Static void	zyd_stop(struct ifnet *, int);
233 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
234 Static void	zyd_iter_func(void *, struct ieee80211_node *);
235 Static void	zyd_amrr_timeout(void *);
236 Static void	zyd_newassoc(struct ieee80211_node *, int);
237 
238 static const struct ieee80211_rateset zyd_rateset_11b =
239 	{ 4, { 2, 4, 11, 22 } };
240 
241 static const struct ieee80211_rateset zyd_rateset_11g =
242 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
243 
244 int
245 zyd_match(device_t parent, cfdata_t match, void *aux)
246 {
247 	struct usb_attach_arg *uaa = aux;
248 
249 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
250 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251 }
252 
253 Static void
254 zyd_attachhook(device_t self)
255 {
256 	struct zyd_softc *sc = device_private(self);
257 	firmware_handle_t fwh;
258 	const char *fwname;
259 	u_char *fw;
260 	size_t size;
261 	int error;
262 
263 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
264 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
265 		aprint_error_dev(sc->sc_dev,
266 		    "failed to open firmware %s (error=%d)\n", fwname, error);
267 		return;
268 	}
269 	size = firmware_get_size(fwh);
270 	fw = firmware_malloc(size);
271 	if (fw == NULL) {
272 		aprint_error_dev(sc->sc_dev,
273 		    "failed to allocate firmware memory\n");
274 		firmware_close(fwh);
275 		return;
276 	}
277 	error = firmware_read(fwh, 0, fw, size);
278 	firmware_close(fwh);
279 	if (error != 0) {
280 		aprint_error_dev(sc->sc_dev,
281 		    "failed to read firmware (error %d)\n", error);
282 		firmware_free(fw, size);
283 		return;
284 	}
285 
286 	error = zyd_loadfirmware(sc, fw, size);
287 	if (error != 0) {
288 		aprint_error_dev(sc->sc_dev,
289 		    "could not load firmware (error=%d)\n", error);
290 		firmware_free(fw, size);
291 		return;
292 	}
293 
294 	firmware_free(fw, size);
295 	sc->sc_flags |= ZD1211_FWLOADED;
296 
297 	/* complete the attach process */
298 	if ((error = zyd_complete_attach(sc)) == 0)
299 		sc->attached = 1;
300 	return;
301 }
302 
303 void
304 zyd_attach(device_t parent, device_t self, void *aux)
305 {
306 	struct zyd_softc *sc = device_private(self);
307 	struct usb_attach_arg *uaa = aux;
308 	char *devinfop;
309 	usb_device_descriptor_t* ddesc;
310 	struct ifnet *ifp = &sc->sc_if;
311 
312 	sc->sc_dev = self;
313 	sc->sc_udev = uaa->uaa_device;
314 	sc->sc_flags = 0;
315 
316 	aprint_naive("\n");
317 	aprint_normal("\n");
318 
319 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
320 	aprint_normal_dev(self, "%s\n", devinfop);
321 	usbd_devinfo_free(devinfop);
322 
323 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
324 
325 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
326 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
327 		aprint_error_dev(self, "device version mismatch: 0x%x "
328 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
329 		return;
330 	}
331 
332 	ifp->if_softc = sc;
333 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
334 	ifp->if_init = zyd_init;
335 	ifp->if_ioctl = zyd_ioctl;
336 	ifp->if_start = zyd_start;
337 	ifp->if_watchdog = zyd_watchdog;
338 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
339 	IFQ_SET_READY(&ifp->if_snd);
340 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
341 
342 	SIMPLEQ_INIT(&sc->sc_rqh);
343 
344 	/* defer configrations after file system is ready to load firmware */
345 	config_mountroot(self, zyd_attachhook);
346 }
347 
348 Static int
349 zyd_complete_attach(struct zyd_softc *sc)
350 {
351 	struct ieee80211com *ic = &sc->sc_ic;
352 	struct ifnet *ifp = &sc->sc_if;
353 	usbd_status error;
354 	int i;
355 
356 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
357 	callout_init(&(sc->sc_scan_ch), 0);
358 
359 	sc->amrr.amrr_min_success_threshold =  1;
360 	sc->amrr.amrr_max_success_threshold = 10;
361 	callout_init(&sc->sc_amrr_ch, 0);
362 
363 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
364 	if (error != 0) {
365 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
366 		    ", err=%s\n", usbd_errstr(error));
367 		goto fail;
368 	}
369 
370 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
371 	    &sc->sc_iface);
372 	if (error != 0) {
373 		aprint_error_dev(sc->sc_dev,
374 		    "getting interface handle failed\n");
375 		goto fail;
376 	}
377 
378 	if ((error = zyd_open_pipes(sc)) != 0) {
379 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
380 		goto fail;
381 	}
382 
383 	if ((error = zyd_read_eeprom(sc)) != 0) {
384 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
385 		goto fail;
386 	}
387 
388 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
389 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
390 		goto fail;
391 	}
392 
393 	if ((error = zyd_hw_init(sc)) != 0) {
394 		aprint_error_dev(sc->sc_dev,
395 		    "hardware initialization failed\n");
396 		goto fail;
397 	}
398 
399 	aprint_normal_dev(sc->sc_dev,
400 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
401 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
402 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
403 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
404 
405 	ic->ic_ifp = ifp;
406 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
407 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
408 	ic->ic_state = IEEE80211_S_INIT;
409 
410 	/* set device capabilities */
411 	ic->ic_caps =
412 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
413 	    IEEE80211_C_TXPMGT |	/* tx power management */
414 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
415 	    IEEE80211_C_WEP;		/* s/w WEP */
416 
417 	/* set supported .11b and .11g rates */
418 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
419 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
420 
421 	/* set supported .11b and .11g channels (1 through 14) */
422 	for (i = 1; i <= 14; i++) {
423 		ic->ic_channels[i].ic_freq =
424 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
425 		ic->ic_channels[i].ic_flags =
426 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
427 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
428 	}
429 
430 	if_attach(ifp);
431 	ieee80211_ifattach(ic);
432 	ic->ic_node_alloc = zyd_node_alloc;
433 	ic->ic_newassoc = zyd_newassoc;
434 
435 	/* override state transition machine */
436 	sc->sc_newstate = ic->ic_newstate;
437 	ic->ic_newstate = zyd_newstate;
438 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
439 
440 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
441 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
442 	    &sc->sc_drvbpf);
443 
444 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
445 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
446 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
447 
448 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
449 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
450 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
451 
452 	ieee80211_announce(ic);
453 
454 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
455 
456 fail:	return error;
457 }
458 
459 int
460 zyd_detach(device_t self, int flags)
461 {
462 	struct zyd_softc *sc = device_private(self);
463 	struct ieee80211com *ic = &sc->sc_ic;
464 	struct ifnet *ifp = &sc->sc_if;
465 	int s;
466 
467 	if (!sc->attached)
468 		return 0;
469 
470 	s = splusb();
471 
472 	zyd_stop(ifp, 1);
473 	usb_rem_task(sc->sc_udev, &sc->sc_task);
474 	callout_stop(&sc->sc_scan_ch);
475 	callout_stop(&sc->sc_amrr_ch);
476 
477 	/* Abort, etc. done by zyd_stop */
478 	zyd_close_pipes(sc);
479 
480 	sc->attached = 0;
481 
482 	bpf_detach(ifp);
483 	ieee80211_ifdetach(ic);
484 	if_detach(ifp);
485 
486 	splx(s);
487 
488 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
489 
490 	return 0;
491 }
492 
493 Static int
494 zyd_open_pipes(struct zyd_softc *sc)
495 {
496 	usb_endpoint_descriptor_t *edesc;
497 	usbd_status error;
498 
499 	/* interrupt in */
500 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
501 	if (edesc == NULL)
502 		return EINVAL;
503 
504 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
505 	if (sc->ibuf_size == 0)	/* should not happen */
506 		return EINVAL;
507 
508 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
509 	if (sc->ibuf == NULL)
510 		return ENOMEM;
511 
512 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
513 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
514 	    USBD_DEFAULT_INTERVAL);
515 	if (error != 0) {
516 		printf("%s: open rx intr pipe failed: %s\n",
517 		    device_xname(sc->sc_dev), usbd_errstr(error));
518 		goto fail;
519 	}
520 
521 	/* interrupt out (not necessarily an interrupt pipe) */
522 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
523 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
524 	if (error != 0) {
525 		printf("%s: open tx intr pipe failed: %s\n",
526 		    device_xname(sc->sc_dev), usbd_errstr(error));
527 		goto fail;
528 	}
529 
530 	/* bulk in */
531 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
532 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
533 	if (error != 0) {
534 		printf("%s: open rx pipe failed: %s\n",
535 		    device_xname(sc->sc_dev), usbd_errstr(error));
536 		goto fail;
537 	}
538 
539 	/* bulk out */
540 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
541 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
542 	if (error != 0) {
543 		printf("%s: open tx pipe failed: %s\n",
544 		    device_xname(sc->sc_dev), usbd_errstr(error));
545 		goto fail;
546 	}
547 
548 	return 0;
549 
550 fail:	zyd_close_pipes(sc);
551 	return error;
552 }
553 
554 Static void
555 zyd_close_pipes(struct zyd_softc *sc)
556 {
557 	int i;
558 
559 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
560 		if (sc->zyd_ep[i] != NULL) {
561 			usbd_close_pipe(sc->zyd_ep[i]);
562 			sc->zyd_ep[i] = NULL;
563 		}
564 	}
565 	if (sc->ibuf != NULL) {
566 		kmem_free(sc->ibuf, sc->ibuf_size);
567 		sc->ibuf = NULL;
568 	}
569 }
570 
571 Static int
572 zyd_alloc_tx_list(struct zyd_softc *sc)
573 {
574 	int i, error;
575 
576 	sc->tx_queued = 0;
577 
578 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
579 		struct zyd_tx_data *data = &sc->tx_data[i];
580 
581 		data->sc = sc;	/* backpointer for callbacks */
582 
583 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
584 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
585 		if (error) {
586 			printf("%s: could not allocate tx xfer\n",
587 			    device_xname(sc->sc_dev));
588 			goto fail;
589 		}
590 		data->buf = usbd_get_buffer(data->xfer);
591 
592 		/* clear Tx descriptor */
593 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
594 	}
595 	return 0;
596 
597 fail:	zyd_free_tx_list(sc);
598 	return error;
599 }
600 
601 Static void
602 zyd_free_tx_list(struct zyd_softc *sc)
603 {
604 	int i;
605 
606 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
607 		struct zyd_tx_data *data = &sc->tx_data[i];
608 
609 		if (data->xfer != NULL) {
610 			usbd_destroy_xfer(data->xfer);
611 			data->xfer = NULL;
612 		}
613 		if (data->ni != NULL) {
614 			ieee80211_free_node(data->ni);
615 			data->ni = NULL;
616 		}
617 	}
618 }
619 
620 Static int
621 zyd_alloc_rx_list(struct zyd_softc *sc)
622 {
623 	int i, error;
624 
625 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
626 		struct zyd_rx_data *data = &sc->rx_data[i];
627 
628 		data->sc = sc;	/* backpointer for callbacks */
629 
630 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
631 		    ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer);
632 		if (error) {
633 			printf("%s: could not allocate rx xfer\n",
634 			    device_xname(sc->sc_dev));
635 			goto fail;
636 		}
637 		data->buf = usbd_get_buffer(data->xfer);
638 	}
639 	return 0;
640 
641 fail:	zyd_free_rx_list(sc);
642 	return error;
643 }
644 
645 Static void
646 zyd_free_rx_list(struct zyd_softc *sc)
647 {
648 	int i;
649 
650 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
651 		struct zyd_rx_data *data = &sc->rx_data[i];
652 
653 		if (data->xfer != NULL) {
654 			usbd_destroy_xfer(data->xfer);
655 			data->xfer = NULL;
656 		}
657 	}
658 }
659 
660 /* ARGUSED */
661 Static struct ieee80211_node *
662 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
663 {
664 	struct zyd_node *zn;
665 
666 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
667 
668 	return &zn->ni;
669 }
670 
671 Static int
672 zyd_media_change(struct ifnet *ifp)
673 {
674 	int error;
675 
676 	error = ieee80211_media_change(ifp);
677 	if (error != ENETRESET)
678 		return error;
679 
680 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
681 		zyd_init(ifp);
682 
683 	return 0;
684 }
685 
686 /*
687  * This function is called periodically (every 200ms) during scanning to
688  * switch from one channel to another.
689  */
690 Static void
691 zyd_next_scan(void *arg)
692 {
693 	struct zyd_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 
696 	if (ic->ic_state == IEEE80211_S_SCAN)
697 		ieee80211_next_scan(ic);
698 }
699 
700 Static void
701 zyd_task(void *arg)
702 {
703 	struct zyd_softc *sc = arg;
704 	struct ieee80211com *ic = &sc->sc_ic;
705 	enum ieee80211_state ostate;
706 
707 	ostate = ic->ic_state;
708 
709 	switch (sc->sc_state) {
710 	case IEEE80211_S_INIT:
711 		if (ostate == IEEE80211_S_RUN) {
712 			/* turn link LED off */
713 			zyd_set_led(sc, ZYD_LED1, 0);
714 
715 			/* stop data LED from blinking */
716 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
717 		}
718 		break;
719 
720 	case IEEE80211_S_SCAN:
721 		zyd_set_chan(sc, ic->ic_curchan);
722 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
723 		break;
724 
725 	case IEEE80211_S_AUTH:
726 	case IEEE80211_S_ASSOC:
727 		zyd_set_chan(sc, ic->ic_curchan);
728 		break;
729 
730 	case IEEE80211_S_RUN:
731 	{
732 		struct ieee80211_node *ni = ic->ic_bss;
733 
734 		zyd_set_chan(sc, ic->ic_curchan);
735 
736 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
737 			/* turn link LED on */
738 			zyd_set_led(sc, ZYD_LED1, 1);
739 
740 			/* make data LED blink upon Tx */
741 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
742 
743 			zyd_set_bssid(sc, ni->ni_bssid);
744 		}
745 
746 		if (ic->ic_opmode == IEEE80211_M_STA) {
747 			/* fake a join to init the tx rate */
748 			zyd_newassoc(ni, 1);
749 		}
750 
751 		/* start automatic rate control timer */
752 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
753 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
754 
755 		break;
756 	}
757 	}
758 
759 	sc->sc_newstate(ic, sc->sc_state, -1);
760 }
761 
762 Static int
763 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
764 {
765 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
766 
767 	if (!sc->attached)
768 		return ENXIO;
769 
770 	usb_rem_task(sc->sc_udev, &sc->sc_task);
771 	callout_stop(&sc->sc_scan_ch);
772 	callout_stop(&sc->sc_amrr_ch);
773 
774 	/* do it in a process context */
775 	sc->sc_state = nstate;
776 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
777 
778 	return 0;
779 }
780 
781 Static int
782 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
783     void *odata, int olen, u_int flags)
784 {
785 	struct usbd_xfer *xfer;
786 	struct zyd_cmd cmd;
787 	struct rq rq;
788 	uint16_t xferflags;
789 	int error;
790 	usbd_status uerror;
791 	int s = 0;
792 
793 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
794 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
795 	if (error)
796 		return error;
797 
798 	cmd.code = htole16(code);
799 	memcpy(cmd.data, idata, ilen);
800 
801 	xferflags = USBD_FORCE_SHORT_XFER;
802 	if (!(flags & ZYD_CMD_FLAG_READ))
803 		xferflags |= USBD_SYNCHRONOUS;
804 	else {
805 		s = splusb();
806 		rq.idata = idata;
807 		rq.odata = odata;
808 		rq.len = olen / sizeof(struct zyd_pair);
809 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
810 	}
811 
812 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
813 	    ZYD_INTR_TIMEOUT, NULL);
814 	uerror = usbd_transfer(xfer);
815 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
816 		if (flags & ZYD_CMD_FLAG_READ)
817 			splx(s);
818 		printf("%s: could not send command (error=%s)\n",
819 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
820 		(void)usbd_destroy_xfer(xfer);
821 		return EIO;
822 	}
823 	if (!(flags & ZYD_CMD_FLAG_READ)) {
824 		(void)usbd_destroy_xfer(xfer);
825 		return 0;	/* write: don't wait for reply */
826 	}
827 	/* wait at most one second for command reply */
828 	error = tsleep(odata, PCATCH, "zydcmd", hz);
829 	if (error == EWOULDBLOCK)
830 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
831 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
832 	splx(s);
833 
834 	(void)usbd_destroy_xfer(xfer);
835 	return error;
836 }
837 
838 Static int
839 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
840 {
841 	struct zyd_pair tmp;
842 	int error;
843 
844 	reg = htole16(reg);
845 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
846 	    ZYD_CMD_FLAG_READ);
847 	if (error == 0)
848 		*val = le16toh(tmp.val);
849 	else
850 		*val = 0;
851 	return error;
852 }
853 
854 Static int
855 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
856 {
857 	struct zyd_pair tmp[2];
858 	uint16_t regs[2];
859 	int error;
860 
861 	regs[0] = htole16(ZYD_REG32_HI(reg));
862 	regs[1] = htole16(ZYD_REG32_LO(reg));
863 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
864 	    ZYD_CMD_FLAG_READ);
865 	if (error == 0)
866 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
867 	else
868 		*val = 0;
869 	return error;
870 }
871 
872 Static int
873 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
874 {
875 	struct zyd_pair pair;
876 
877 	pair.reg = htole16(reg);
878 	pair.val = htole16(val);
879 
880 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
881 }
882 
883 Static int
884 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
885 {
886 	struct zyd_pair pair[2];
887 
888 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
889 	pair[0].val = htole16(val >> 16);
890 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
891 	pair[1].val = htole16(val & 0xffff);
892 
893 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
894 }
895 
896 Static int
897 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
898 {
899 	struct zyd_rf *rf = &sc->sc_rf;
900 	struct zyd_rfwrite req;
901 	uint16_t cr203;
902 	int i;
903 
904 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
905 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
906 
907 	req.code  = htole16(2);
908 	req.width = htole16(rf->width);
909 	for (i = 0; i < rf->width; i++) {
910 		req.bit[i] = htole16(cr203);
911 		if (val & (1 << (rf->width - 1 - i)))
912 			req.bit[i] |= htole16(ZYD_RF_DATA);
913 	}
914 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
915 }
916 
917 Static void
918 zyd_lock_phy(struct zyd_softc *sc)
919 {
920 	uint32_t tmp;
921 
922 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
923 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
924 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
925 }
926 
927 Static void
928 zyd_unlock_phy(struct zyd_softc *sc)
929 {
930 	uint32_t tmp;
931 
932 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
933 	tmp |= ZYD_UNLOCK_PHY_REGS;
934 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
935 }
936 
937 /*
938  * RFMD RF methods.
939  */
940 Static int
941 zyd_rfmd_init(struct zyd_rf *rf)
942 {
943 	struct zyd_softc *sc = rf->rf_sc;
944 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
945 	static const uint32_t rfini[] = ZYD_RFMD_RF;
946 	int error;
947 	size_t i;
948 
949 	/* init RF-dependent PHY registers */
950 	for (i = 0; i < __arraycount(phyini); i++) {
951 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
952 		if (error != 0)
953 			return error;
954 	}
955 
956 	/* init RFMD radio */
957 	for (i = 0; i < __arraycount(rfini); i++) {
958 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
959 			return error;
960 	}
961 	return 0;
962 }
963 
964 Static int
965 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
966 {
967 	struct zyd_softc *sc = rf->rf_sc;
968 
969 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
970 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
971 
972 	return 0;
973 }
974 
975 Static int
976 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
977 {
978 	struct zyd_softc *sc = rf->rf_sc;
979 	static const struct {
980 		uint32_t	r1, r2;
981 	} rfprog[] = ZYD_RFMD_CHANTABLE;
982 
983 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
984 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
985 
986 	return 0;
987 }
988 
989 /*
990  * AL2230 RF methods.
991  */
992 Static int
993 zyd_al2230_init(struct zyd_rf *rf)
994 {
995 	struct zyd_softc *sc = rf->rf_sc;
996 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
997 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
998 	static const uint32_t rfini[] = ZYD_AL2230_RF;
999 	int error;
1000 	size_t i;
1001 
1002 	/* init RF-dependent PHY registers */
1003 	for (i = 0; i < __arraycount(phyini); i++) {
1004 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1005 		if (error != 0)
1006 			return error;
1007 	}
1008 
1009 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1010 		for (i = 0; i < __arraycount(phy2230s); i++) {
1011 			error = zyd_write16(sc, phy2230s[i].reg,
1012 			    phy2230s[i].val);
1013 			if (error != 0)
1014 				return error;
1015 		}
1016 	}
1017 
1018 	/* init AL2230 radio */
1019 	for (i = 0; i < __arraycount(rfini); i++) {
1020 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1021 			return error;
1022 	}
1023 	return 0;
1024 }
1025 
1026 Static int
1027 zyd_al2230_init_b(struct zyd_rf *rf)
1028 {
1029 	struct zyd_softc *sc = rf->rf_sc;
1030 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1031 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1032 	int error;
1033 	size_t i;
1034 
1035 	/* init RF-dependent PHY registers */
1036 	for (i = 0; i < __arraycount(phyini); i++) {
1037 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1038 		if (error != 0)
1039 			return error;
1040 	}
1041 
1042 	/* init AL2230 radio */
1043 	for (i = 0; i < __arraycount(rfini); i++) {
1044 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1045 			return error;
1046 	}
1047 	return 0;
1048 }
1049 
1050 Static int
1051 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1052 {
1053 	struct zyd_softc *sc = rf->rf_sc;
1054 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1055 
1056 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1057 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1058 
1059 	return 0;
1060 }
1061 
1062 Static int
1063 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1064 {
1065 	struct zyd_softc *sc = rf->rf_sc;
1066 	static const struct {
1067 		uint32_t	r1, r2, r3;
1068 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1069 
1070 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1071 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1072 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1073 
1074 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1075 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1076 
1077 	return 0;
1078 }
1079 
1080 /*
1081  * AL7230B RF methods.
1082  */
1083 Static int
1084 zyd_al7230B_init(struct zyd_rf *rf)
1085 {
1086 	struct zyd_softc *sc = rf->rf_sc;
1087 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1088 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1089 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1090 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1091 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1092 	int error;
1093 	size_t i;
1094 
1095 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1096 
1097 	/* init RF-dependent PHY registers, part one */
1098 	for (i = 0; i < __arraycount(phyini_1); i++) {
1099 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1100 		if (error != 0)
1101 			return error;
1102 	}
1103 	/* init AL7230B radio, part one */
1104 	for (i = 0; i < __arraycount(rfini_1); i++) {
1105 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1106 			return error;
1107 	}
1108 	/* init RF-dependent PHY registers, part two */
1109 	for (i = 0; i < __arraycount(phyini_2); i++) {
1110 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1111 		if (error != 0)
1112 			return error;
1113 	}
1114 	/* init AL7230B radio, part two */
1115 	for (i = 0; i < __arraycount(rfini_2); i++) {
1116 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1117 			return error;
1118 	}
1119 	/* init RF-dependent PHY registers, part three */
1120 	for (i = 0; i < __arraycount(phyini_3); i++) {
1121 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1122 		if (error != 0)
1123 			return error;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 Static int
1130 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1131 {
1132 	struct zyd_softc *sc = rf->rf_sc;
1133 
1134 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1135 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1136 
1137 	return 0;
1138 }
1139 
1140 Static int
1141 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1142 {
1143 	struct zyd_softc *sc = rf->rf_sc;
1144 	static const struct {
1145 		uint32_t	r1, r2;
1146 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1147 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1148 	int error;
1149 	size_t i;
1150 
1151 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1152 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1153 
1154 	for (i = 0; i < __arraycount(rfsc); i++) {
1155 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1156 			return error;
1157 	}
1158 
1159 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1160 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1161 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1162 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1163 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1164 
1165 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1166 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1167 	(void)zyd_rfwrite(sc, 0x3c9000);
1168 
1169 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1170 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1171 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1172 
1173 	return 0;
1174 }
1175 
1176 /*
1177  * AL2210 RF methods.
1178  */
1179 Static int
1180 zyd_al2210_init(struct zyd_rf *rf)
1181 {
1182 	struct zyd_softc *sc = rf->rf_sc;
1183 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1184 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1185 	uint32_t tmp;
1186 	int error;
1187 	size_t i;
1188 
1189 	(void)zyd_write32(sc, ZYD_CR18, 2);
1190 
1191 	/* init RF-dependent PHY registers */
1192 	for (i = 0; i < __arraycount(phyini); i++) {
1193 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1194 		if (error != 0)
1195 			return error;
1196 	}
1197 	/* init AL2210 radio */
1198 	for (i = 0; i < __arraycount(rfini); i++) {
1199 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1200 			return error;
1201 	}
1202 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1203 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1204 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1205 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1206 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1207 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1208 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1209 	(void)zyd_write32(sc, ZYD_CR18, 3);
1210 
1211 	return 0;
1212 }
1213 
1214 Static int
1215 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1216 {
1217 	/* vendor driver does nothing for this RF chip */
1218 
1219 	return 0;
1220 }
1221 
1222 Static int
1223 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1224 {
1225 	struct zyd_softc *sc = rf->rf_sc;
1226 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1227 	uint32_t tmp;
1228 
1229 	(void)zyd_write32(sc, ZYD_CR18, 2);
1230 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1231 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1232 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1233 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1234 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1235 
1236 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1237 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1238 
1239 	/* actually set the channel */
1240 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1241 
1242 	(void)zyd_write32(sc, ZYD_CR18, 3);
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * GCT RF methods.
1249  */
1250 Static int
1251 zyd_gct_init(struct zyd_rf *rf)
1252 {
1253 	struct zyd_softc *sc = rf->rf_sc;
1254 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1255 	static const uint32_t rfini[] = ZYD_GCT_RF;
1256 	int error;
1257 	size_t i;
1258 
1259 	/* init RF-dependent PHY registers */
1260 	for (i = 0; i < __arraycount(phyini); i++) {
1261 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1262 		if (error != 0)
1263 			return error;
1264 	}
1265 	/* init cgt radio */
1266 	for (i = 0; i < __arraycount(rfini); i++) {
1267 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1268 			return error;
1269 	}
1270 	return 0;
1271 }
1272 
1273 Static int
1274 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1275 {
1276 	/* vendor driver does nothing for this RF chip */
1277 
1278 	return 0;
1279 }
1280 
1281 Static int
1282 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1283 {
1284 	struct zyd_softc *sc = rf->rf_sc;
1285 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1286 
1287 	(void)zyd_rfwrite(sc, 0x1c0000);
1288 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1289 	(void)zyd_rfwrite(sc, 0x1c0008);
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Maxim RF methods.
1296  */
1297 Static int
1298 zyd_maxim_init(struct zyd_rf *rf)
1299 {
1300 	struct zyd_softc *sc = rf->rf_sc;
1301 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1302 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1303 	uint16_t tmp;
1304 	int error;
1305 	size_t i;
1306 
1307 	/* init RF-dependent PHY registers */
1308 	for (i = 0; i < __arraycount(phyini); i++) {
1309 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1310 		if (error != 0)
1311 			return error;
1312 	}
1313 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1314 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1315 
1316 	/* init maxim radio */
1317 	for (i = 0; i < __arraycount(rfini); i++) {
1318 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1319 			return error;
1320 	}
1321 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1322 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1323 
1324 	return 0;
1325 }
1326 
1327 Static int
1328 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1329 {
1330 	/* vendor driver does nothing for this RF chip */
1331 
1332 	return 0;
1333 }
1334 
1335 Static int
1336 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1337 {
1338 	struct zyd_softc *sc = rf->rf_sc;
1339 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1340 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1341 	static const struct {
1342 		uint32_t	r1, r2;
1343 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1344 	uint16_t tmp;
1345 	int error;
1346 	size_t i;
1347 
1348 	/*
1349 	 * Do the same as we do when initializing it, except for the channel
1350 	 * values coming from the two channel tables.
1351 	 */
1352 
1353 	/* init RF-dependent PHY registers */
1354 	for (i = 0; i < __arraycount(phyini); i++) {
1355 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1356 		if (error != 0)
1357 			return error;
1358 	}
1359 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1360 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1361 
1362 	/* first two values taken from the chantables */
1363 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1364 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1365 
1366 	/* init maxim radio - skipping the two first values */
1367 	for (i = 2; i < __arraycount(rfini); i++) {
1368 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1369 			return error;
1370 	}
1371 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1372 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1373 
1374 	return 0;
1375 }
1376 
1377 /*
1378  * Maxim2 RF methods.
1379  */
1380 Static int
1381 zyd_maxim2_init(struct zyd_rf *rf)
1382 {
1383 	struct zyd_softc *sc = rf->rf_sc;
1384 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1385 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1386 	uint16_t tmp;
1387 	int error;
1388 	size_t i;
1389 
1390 	/* init RF-dependent PHY registers */
1391 	for (i = 0; i < __arraycount(phyini); i++) {
1392 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1393 		if (error != 0)
1394 			return error;
1395 	}
1396 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1397 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1398 
1399 	/* init maxim2 radio */
1400 	for (i = 0; i < __arraycount(rfini); i++) {
1401 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1402 			return error;
1403 	}
1404 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1405 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1406 
1407 	return 0;
1408 }
1409 
1410 Static int
1411 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1412 {
1413 	/* vendor driver does nothing for this RF chip */
1414 
1415 	return 0;
1416 }
1417 
1418 Static int
1419 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1420 {
1421 	struct zyd_softc *sc = rf->rf_sc;
1422 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1423 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1424 	static const struct {
1425 		uint32_t	r1, r2;
1426 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1427 	uint16_t tmp;
1428 	int error;
1429 	size_t i;
1430 
1431 	/*
1432 	 * Do the same as we do when initializing it, except for the channel
1433 	 * values coming from the two channel tables.
1434 	 */
1435 
1436 	/* init RF-dependent PHY registers */
1437 	for (i = 0; i < __arraycount(phyini); i++) {
1438 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1439 		if (error != 0)
1440 			return error;
1441 	}
1442 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1443 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1444 
1445 	/* first two values taken from the chantables */
1446 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1447 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1448 
1449 	/* init maxim2 radio - skipping the two first values */
1450 	for (i = 2; i < __arraycount(rfini); i++) {
1451 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1452 			return error;
1453 	}
1454 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1455 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1456 
1457 	return 0;
1458 }
1459 
1460 Static int
1461 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1462 {
1463 	struct zyd_rf *rf = &sc->sc_rf;
1464 
1465 	rf->rf_sc = sc;
1466 
1467 	switch (type) {
1468 	case ZYD_RF_RFMD:
1469 		rf->init         = zyd_rfmd_init;
1470 		rf->switch_radio = zyd_rfmd_switch_radio;
1471 		rf->set_channel  = zyd_rfmd_set_channel;
1472 		rf->width        = 24;	/* 24-bit RF values */
1473 		break;
1474 	case ZYD_RF_AL2230:
1475 	case ZYD_RF_AL2230S:
1476 		if (sc->mac_rev == ZYD_ZD1211B)
1477 			rf->init = zyd_al2230_init_b;
1478 		else
1479 			rf->init = zyd_al2230_init;
1480 		rf->switch_radio = zyd_al2230_switch_radio;
1481 		rf->set_channel  = zyd_al2230_set_channel;
1482 		rf->width        = 24;	/* 24-bit RF values */
1483 		break;
1484 	case ZYD_RF_AL7230B:
1485 		rf->init         = zyd_al7230B_init;
1486 		rf->switch_radio = zyd_al7230B_switch_radio;
1487 		rf->set_channel  = zyd_al7230B_set_channel;
1488 		rf->width        = 24;	/* 24-bit RF values */
1489 		break;
1490 	case ZYD_RF_AL2210:
1491 		rf->init         = zyd_al2210_init;
1492 		rf->switch_radio = zyd_al2210_switch_radio;
1493 		rf->set_channel  = zyd_al2210_set_channel;
1494 		rf->width        = 24;	/* 24-bit RF values */
1495 		break;
1496 	case ZYD_RF_GCT:
1497 		rf->init         = zyd_gct_init;
1498 		rf->switch_radio = zyd_gct_switch_radio;
1499 		rf->set_channel  = zyd_gct_set_channel;
1500 		rf->width        = 21;	/* 21-bit RF values */
1501 		break;
1502 	case ZYD_RF_MAXIM_NEW:
1503 		rf->init         = zyd_maxim_init;
1504 		rf->switch_radio = zyd_maxim_switch_radio;
1505 		rf->set_channel  = zyd_maxim_set_channel;
1506 		rf->width        = 18;	/* 18-bit RF values */
1507 		break;
1508 	case ZYD_RF_MAXIM_NEW2:
1509 		rf->init         = zyd_maxim2_init;
1510 		rf->switch_radio = zyd_maxim2_switch_radio;
1511 		rf->set_channel  = zyd_maxim2_set_channel;
1512 		rf->width        = 18;	/* 18-bit RF values */
1513 		break;
1514 	default:
1515 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1516 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1517 		return EINVAL;
1518 	}
1519 	return 0;
1520 }
1521 
1522 Static const char *
1523 zyd_rf_name(uint8_t type)
1524 {
1525 	static const char * const zyd_rfs[] = {
1526 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1527 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1528 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1529 		"PHILIPS"
1530 	};
1531 
1532 	return zyd_rfs[(type > 15) ? 0 : type];
1533 }
1534 
1535 Static int
1536 zyd_hw_init(struct zyd_softc *sc)
1537 {
1538 	struct zyd_rf *rf = &sc->sc_rf;
1539 	const struct zyd_phy_pair *phyp;
1540 	int error;
1541 
1542 	/* specify that the plug and play is finished */
1543 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1544 
1545 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1546 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1547 
1548 	/* retrieve firmware revision number */
1549 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1550 
1551 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1552 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1553 
1554 	/* disable interrupts */
1555 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1556 
1557 	/* PHY init */
1558 	zyd_lock_phy(sc);
1559 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1560 	for (; phyp->reg != 0; phyp++) {
1561 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1562 			goto fail;
1563 	}
1564 	zyd_unlock_phy(sc);
1565 
1566 	/* HMAC init */
1567 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1568 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1569 
1570 	if (sc->mac_rev == ZYD_ZD1211) {
1571 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1572 	} else {
1573 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1574 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1575 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1576 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1577 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1578 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1579 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1580 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1581 	}
1582 
1583 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1584 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1585 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1586 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1587 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1588 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1589 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1590 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1591 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1592 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1593 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1594 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1595 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1596 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1597 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1598 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1599 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1600 
1601 	/* RF chip init */
1602 	zyd_lock_phy(sc);
1603 	error = (*rf->init)(rf);
1604 	zyd_unlock_phy(sc);
1605 	if (error != 0) {
1606 		printf("%s: radio initialization failed\n",
1607 		    device_xname(sc->sc_dev));
1608 		goto fail;
1609 	}
1610 
1611 	/* init beacon interval to 100ms */
1612 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1613 		goto fail;
1614 
1615 fail:	return error;
1616 }
1617 
1618 Static int
1619 zyd_read_eeprom(struct zyd_softc *sc)
1620 {
1621 	struct ieee80211com *ic = &sc->sc_ic;
1622 	uint32_t tmp;
1623 	uint16_t val;
1624 	int i;
1625 
1626 	/* read MAC address */
1627 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1628 	ic->ic_myaddr[0] = tmp & 0xff;
1629 	ic->ic_myaddr[1] = tmp >>  8;
1630 	ic->ic_myaddr[2] = tmp >> 16;
1631 	ic->ic_myaddr[3] = tmp >> 24;
1632 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1633 	ic->ic_myaddr[4] = tmp & 0xff;
1634 	ic->ic_myaddr[5] = tmp >>  8;
1635 
1636 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1637 	sc->rf_rev = tmp & 0x0f;
1638 	sc->pa_rev = (tmp >> 16) & 0x0f;
1639 
1640 	/* read regulatory domain (currently unused) */
1641 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1642 	sc->regdomain = tmp >> 16;
1643 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1644 
1645 	/* read Tx power calibration tables */
1646 	for (i = 0; i < 7; i++) {
1647 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1648 		sc->pwr_cal[i * 2] = val >> 8;
1649 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1650 
1651 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1652 		sc->pwr_int[i * 2] = val >> 8;
1653 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1654 
1655 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1656 		sc->ofdm36_cal[i * 2] = val >> 8;
1657 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1658 
1659 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1660 		sc->ofdm48_cal[i * 2] = val >> 8;
1661 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1662 
1663 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1664 		sc->ofdm54_cal[i * 2] = val >> 8;
1665 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1666 	}
1667 	return 0;
1668 }
1669 
1670 Static int
1671 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1672 {
1673 	uint32_t tmp;
1674 
1675 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1676 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1677 
1678 	tmp = addr[5] << 8 | addr[4];
1679 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1680 
1681 	return 0;
1682 }
1683 
1684 Static int
1685 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1686 {
1687 	uint32_t tmp;
1688 
1689 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1691 
1692 	tmp = addr[5] << 8 | addr[4];
1693 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1694 
1695 	return 0;
1696 }
1697 
1698 Static int
1699 zyd_switch_radio(struct zyd_softc *sc, int on)
1700 {
1701 	struct zyd_rf *rf = &sc->sc_rf;
1702 	int error;
1703 
1704 	zyd_lock_phy(sc);
1705 	error = (*rf->switch_radio)(rf, on);
1706 	zyd_unlock_phy(sc);
1707 
1708 	return error;
1709 }
1710 
1711 Static void
1712 zyd_set_led(struct zyd_softc *sc, int which, int on)
1713 {
1714 	uint32_t tmp;
1715 
1716 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1717 	tmp &= ~which;
1718 	if (on)
1719 		tmp |= which;
1720 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1721 }
1722 
1723 Static int
1724 zyd_set_rxfilter(struct zyd_softc *sc)
1725 {
1726 	uint32_t rxfilter;
1727 
1728 	switch (sc->sc_ic.ic_opmode) {
1729 	case IEEE80211_M_STA:
1730 		rxfilter = ZYD_FILTER_BSS;
1731 		break;
1732 	case IEEE80211_M_IBSS:
1733 	case IEEE80211_M_HOSTAP:
1734 		rxfilter = ZYD_FILTER_HOSTAP;
1735 		break;
1736 	case IEEE80211_M_MONITOR:
1737 		rxfilter = ZYD_FILTER_MONITOR;
1738 		break;
1739 	default:
1740 		/* should not get there */
1741 		return EINVAL;
1742 	}
1743 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1744 }
1745 
1746 Static void
1747 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1748 {
1749 	struct ieee80211com *ic = &sc->sc_ic;
1750 	struct zyd_rf *rf = &sc->sc_rf;
1751 	u_int chan;
1752 
1753 	chan = ieee80211_chan2ieee(ic, c);
1754 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1755 		return;
1756 
1757 	zyd_lock_phy(sc);
1758 
1759 	(*rf->set_channel)(rf, chan);
1760 
1761 	/* update Tx power */
1762 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1763 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1764 
1765 	if (sc->mac_rev == ZYD_ZD1211B) {
1766 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1767 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1768 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1769 
1770 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1771 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1772 	}
1773 
1774 	zyd_unlock_phy(sc);
1775 }
1776 
1777 Static int
1778 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1779 {
1780 	/* XXX this is probably broken.. */
1781 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1782 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1783 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1784 
1785 	return 0;
1786 }
1787 
1788 Static uint8_t
1789 zyd_plcp_signal(int rate)
1790 {
1791 	switch (rate) {
1792 	/* CCK rates (returned values are device-dependent) */
1793 	case 2:		return 0x0;
1794 	case 4:		return 0x1;
1795 	case 11:	return 0x2;
1796 	case 22:	return 0x3;
1797 
1798 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1799 	case 12:	return 0xb;
1800 	case 18:	return 0xf;
1801 	case 24:	return 0xa;
1802 	case 36:	return 0xe;
1803 	case 48:	return 0x9;
1804 	case 72:	return 0xd;
1805 	case 96:	return 0x8;
1806 	case 108:	return 0xc;
1807 
1808 	/* unsupported rates (should not get there) */
1809 	default:	return 0xff;
1810 	}
1811 }
1812 
1813 Static void
1814 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1815 {
1816 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1817 	struct zyd_cmd *cmd;
1818 	uint32_t datalen;
1819 
1820 	if (status != USBD_NORMAL_COMPLETION) {
1821 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1822 			return;
1823 
1824 		if (status == USBD_STALLED) {
1825 			usbd_clear_endpoint_stall_async(
1826 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1827 		}
1828 		return;
1829 	}
1830 
1831 	cmd = (struct zyd_cmd *)sc->ibuf;
1832 
1833 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1834 		struct zyd_notif_retry *retry =
1835 		    (struct zyd_notif_retry *)cmd->data;
1836 		struct ieee80211com *ic = &sc->sc_ic;
1837 		struct ifnet *ifp = &sc->sc_if;
1838 		struct ieee80211_node *ni;
1839 
1840 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1841 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1842 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1843 
1844 		/*
1845 		 * Find the node to which the packet was sent and update its
1846 		 * retry statistics.  In BSS mode, this node is the AP we're
1847 		 * associated to so no lookup is actually needed.
1848 		 */
1849 		if (ic->ic_opmode != IEEE80211_M_STA) {
1850 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1851 			if (ni == NULL)
1852 				return;	/* just ignore */
1853 		} else
1854 			ni = ic->ic_bss;
1855 
1856 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1857 
1858 		if (le16toh(retry->count) & 0x100)
1859 			ifp->if_oerrors++;	/* too many retries */
1860 
1861 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1862 		struct rq *rqp;
1863 
1864 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1865 			return;	/* HMAC interrupt */
1866 
1867 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1868 		datalen -= sizeof(cmd->code);
1869 		datalen -= 2;	/* XXX: padding? */
1870 
1871 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1872 			int i;
1873 
1874 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1875 				continue;
1876 			for (i = 0; i < rqp->len; i++) {
1877 				if (*(((const uint16_t *)rqp->idata) + i) !=
1878 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1879 					break;
1880 			}
1881 			if (i != rqp->len)
1882 				continue;
1883 
1884 			/* copy answer into caller-supplied buffer */
1885 			memcpy(rqp->odata, cmd->data,
1886 			    sizeof(struct zyd_pair) * rqp->len);
1887 			wakeup(rqp->odata);	/* wakeup caller */
1888 
1889 			return;
1890 		}
1891 		return;	/* unexpected IORD notification */
1892 	} else {
1893 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1894 		    le16toh(cmd->code));
1895 	}
1896 }
1897 
1898 Static void
1899 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1900 {
1901 	struct ieee80211com *ic = &sc->sc_ic;
1902 	struct ifnet *ifp = &sc->sc_if;
1903 	struct ieee80211_node *ni;
1904 	struct ieee80211_frame *wh;
1905 	const struct zyd_plcphdr *plcp;
1906 	const struct zyd_rx_stat *stat;
1907 	struct mbuf *m;
1908 	int rlen, s;
1909 
1910 	if (len < ZYD_MIN_FRAGSZ) {
1911 		printf("%s: frame too short (length=%d)\n",
1912 		    device_xname(sc->sc_dev), len);
1913 		ifp->if_ierrors++;
1914 		return;
1915 	}
1916 
1917 	plcp = (const struct zyd_plcphdr *)buf;
1918 	stat = (const struct zyd_rx_stat *)
1919 	    (buf + len - sizeof(struct zyd_rx_stat));
1920 
1921 	if (stat->flags & ZYD_RX_ERROR) {
1922 		DPRINTF(("%s: RX status indicated error (%x)\n",
1923 		    device_xname(sc->sc_dev), stat->flags));
1924 		ifp->if_ierrors++;
1925 		return;
1926 	}
1927 
1928 	/* compute actual frame length */
1929 	rlen = len - sizeof(struct zyd_plcphdr) -
1930 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1931 
1932 	/* allocate a mbuf to store the frame */
1933 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1934 	if (m == NULL) {
1935 		printf("%s: could not allocate rx mbuf\n",
1936 		    device_xname(sc->sc_dev));
1937 		ifp->if_ierrors++;
1938 		return;
1939 	}
1940 	if (rlen > MHLEN) {
1941 		MCLGET(m, M_DONTWAIT);
1942 		if (!(m->m_flags & M_EXT)) {
1943 			printf("%s: could not allocate rx mbuf cluster\n",
1944 			    device_xname(sc->sc_dev));
1945 			m_freem(m);
1946 			ifp->if_ierrors++;
1947 			return;
1948 		}
1949 	}
1950 	m_set_rcvif(m, ifp);
1951 	m->m_pkthdr.len = m->m_len = rlen;
1952 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1953 
1954 	s = splnet();
1955 
1956 	if (sc->sc_drvbpf != NULL) {
1957 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1958 		static const uint8_t rates[] = {
1959 			/* reverse function of zyd_plcp_signal() */
1960 			2, 4, 11, 22, 0, 0, 0, 0,
1961 			96, 48, 24, 12, 108, 72, 36, 18
1962 		};
1963 
1964 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1965 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1966 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1967 		tap->wr_rssi = stat->rssi;
1968 		tap->wr_rate = rates[plcp->signal & 0xf];
1969 
1970 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1971 	}
1972 
1973 	wh = mtod(m, struct ieee80211_frame *);
1974 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1975 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1976 
1977 	/* node is no longer needed */
1978 	ieee80211_free_node(ni);
1979 
1980 	splx(s);
1981 }
1982 
1983 Static void
1984 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1985 {
1986 	struct zyd_rx_data *data = priv;
1987 	struct zyd_softc *sc = data->sc;
1988 	struct ifnet *ifp = &sc->sc_if;
1989 	const struct zyd_rx_desc *desc;
1990 	int len;
1991 
1992 	if (status != USBD_NORMAL_COMPLETION) {
1993 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1994 			return;
1995 
1996 		if (status == USBD_STALLED)
1997 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1998 
1999 		goto skip;
2000 	}
2001 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2002 
2003 	if (len < ZYD_MIN_RXBUFSZ) {
2004 		printf("%s: xfer too short (length=%d)\n",
2005 		    device_xname(sc->sc_dev), len);
2006 		ifp->if_ierrors++;
2007 		goto skip;
2008 	}
2009 
2010 	desc = (const struct zyd_rx_desc *)
2011 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2012 
2013 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2014 		const uint8_t *p = data->buf, *end = p + len;
2015 		int i;
2016 
2017 		DPRINTFN(3, ("received multi-frame transfer\n"));
2018 
2019 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2020 			const uint16_t len16 = UGETW(desc->len[i]);
2021 
2022 			if (len16 == 0 || p + len16 > end)
2023 				break;
2024 
2025 			zyd_rx_data(sc, p, len16);
2026 			/* next frame is aligned on a 32-bit boundary */
2027 			p += (len16 + 3) & ~3;
2028 		}
2029 	} else {
2030 		DPRINTFN(3, ("received single-frame transfer\n"));
2031 
2032 		zyd_rx_data(sc, data->buf, len);
2033 	}
2034 
2035 skip:	/* setup a new transfer */
2036 
2037 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2038 	    USBD_NO_TIMEOUT, zyd_rxeof);
2039 	(void)usbd_transfer(xfer);
2040 }
2041 
2042 Static int
2043 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2044 {
2045 	struct ieee80211com *ic = &sc->sc_ic;
2046 	struct ifnet *ifp = &sc->sc_if;
2047 	struct zyd_tx_desc *desc;
2048 	struct zyd_tx_data *data;
2049 	struct ieee80211_frame *wh;
2050 	struct ieee80211_key *k;
2051 	int xferlen, totlen, rate;
2052 	uint16_t pktlen;
2053 	usbd_status error;
2054 
2055 	data = &sc->tx_data[0];
2056 	desc = (struct zyd_tx_desc *)data->buf;
2057 
2058 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2059 
2060 	wh = mtod(m0, struct ieee80211_frame *);
2061 
2062 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2063 		k = ieee80211_crypto_encap(ic, ni, m0);
2064 		if (k == NULL) {
2065 			m_freem(m0);
2066 			return ENOBUFS;
2067 		}
2068 	}
2069 
2070 	data->ni = ni;
2071 
2072 	wh = mtod(m0, struct ieee80211_frame *);
2073 
2074 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2075 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2076 
2077 	/* fill Tx descriptor */
2078 	desc->len = htole16(totlen);
2079 
2080 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2081 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2082 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2083 		if (totlen > ic->ic_rtsthreshold) {
2084 			desc->flags |= ZYD_TX_FLAG_RTS;
2085 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2086 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2087 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2088 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2089 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2090 				desc->flags |= ZYD_TX_FLAG_RTS;
2091 		}
2092 	} else
2093 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2094 
2095 	if ((wh->i_fc[0] &
2096 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2097 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2098 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2099 
2100 	desc->phy = zyd_plcp_signal(rate);
2101 	if (ZYD_RATE_IS_OFDM(rate)) {
2102 		desc->phy |= ZYD_TX_PHY_OFDM;
2103 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2104 			desc->phy |= ZYD_TX_PHY_5GHZ;
2105 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2106 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2107 
2108 	/* actual transmit length (XXX why +10?) */
2109 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2110 	if (sc->mac_rev == ZYD_ZD1211)
2111 		pktlen += totlen;
2112 	desc->pktlen = htole16(pktlen);
2113 
2114 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2115 	desc->plcp_service = 0;
2116 	if (rate == 22) {
2117 		const int remainder = (16 * totlen) % 22;
2118 		if (remainder != 0 && remainder < 7)
2119 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2120 	}
2121 
2122 	if (sc->sc_drvbpf != NULL) {
2123 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2124 
2125 		tap->wt_flags = 0;
2126 		tap->wt_rate = rate;
2127 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2128 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2129 
2130 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2131 	}
2132 
2133 	m_copydata(m0, 0, m0->m_pkthdr.len,
2134 	    data->buf + sizeof(struct zyd_tx_desc));
2135 
2136 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2137 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2138 
2139 	m_freem(m0);	/* mbuf no longer needed */
2140 
2141 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2142 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2143 	error = usbd_transfer(data->xfer);
2144 	if (error != USBD_IN_PROGRESS && error != 0) {
2145 		ifp->if_oerrors++;
2146 		return EIO;
2147 	}
2148 	sc->tx_queued++;
2149 
2150 	return 0;
2151 }
2152 
2153 Static void
2154 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2155 {
2156 	struct zyd_tx_data *data = priv;
2157 	struct zyd_softc *sc = data->sc;
2158 	struct ifnet *ifp = &sc->sc_if;
2159 	int s;
2160 
2161 	if (status != USBD_NORMAL_COMPLETION) {
2162 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2163 			return;
2164 
2165 		printf("%s: could not transmit buffer: %s\n",
2166 		    device_xname(sc->sc_dev), usbd_errstr(status));
2167 
2168 		if (status == USBD_STALLED) {
2169 			usbd_clear_endpoint_stall_async(
2170 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2171 		}
2172 		ifp->if_oerrors++;
2173 		return;
2174 	}
2175 
2176 	s = splnet();
2177 
2178 	/* update rate control statistics */
2179 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2180 
2181 	ieee80211_free_node(data->ni);
2182 	data->ni = NULL;
2183 
2184 	sc->tx_queued--;
2185 	ifp->if_opackets++;
2186 
2187 	sc->tx_timer = 0;
2188 	ifp->if_flags &= ~IFF_OACTIVE;
2189 	zyd_start(ifp);
2190 
2191 	splx(s);
2192 }
2193 
2194 Static int
2195 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2196 {
2197 	struct ieee80211com *ic = &sc->sc_ic;
2198 	struct ifnet *ifp = &sc->sc_if;
2199 	struct zyd_tx_desc *desc;
2200 	struct zyd_tx_data *data;
2201 	struct ieee80211_frame *wh;
2202 	struct ieee80211_key *k;
2203 	int xferlen, totlen, rate;
2204 	uint16_t pktlen;
2205 	usbd_status error;
2206 
2207 	wh = mtod(m0, struct ieee80211_frame *);
2208 
2209 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2210 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2211 	else
2212 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2213 	rate &= IEEE80211_RATE_VAL;
2214 
2215 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2216 		k = ieee80211_crypto_encap(ic, ni, m0);
2217 		if (k == NULL) {
2218 			m_freem(m0);
2219 			return ENOBUFS;
2220 		}
2221 
2222 		/* packet header may have moved, reset our local pointer */
2223 		wh = mtod(m0, struct ieee80211_frame *);
2224 	}
2225 
2226 	data = &sc->tx_data[0];
2227 	desc = (struct zyd_tx_desc *)data->buf;
2228 
2229 	data->ni = ni;
2230 
2231 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2232 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2233 
2234 	/* fill Tx descriptor */
2235 	desc->len = htole16(totlen);
2236 
2237 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2238 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2239 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2240 		if (totlen > ic->ic_rtsthreshold) {
2241 			desc->flags |= ZYD_TX_FLAG_RTS;
2242 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2243 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2244 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2245 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2246 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2247 				desc->flags |= ZYD_TX_FLAG_RTS;
2248 		}
2249 	} else
2250 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2251 
2252 	if ((wh->i_fc[0] &
2253 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2254 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2255 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2256 
2257 	desc->phy = zyd_plcp_signal(rate);
2258 	if (ZYD_RATE_IS_OFDM(rate)) {
2259 		desc->phy |= ZYD_TX_PHY_OFDM;
2260 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2261 			desc->phy |= ZYD_TX_PHY_5GHZ;
2262 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2263 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2264 
2265 	/* actual transmit length (XXX why +10?) */
2266 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2267 	if (sc->mac_rev == ZYD_ZD1211)
2268 		pktlen += totlen;
2269 	desc->pktlen = htole16(pktlen);
2270 
2271 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2272 	desc->plcp_service = 0;
2273 	if (rate == 22) {
2274 		const int remainder = (16 * totlen) % 22;
2275 		if (remainder != 0 && remainder < 7)
2276 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2277 	}
2278 
2279 	if (sc->sc_drvbpf != NULL) {
2280 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2281 
2282 		tap->wt_flags = 0;
2283 		tap->wt_rate = rate;
2284 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2285 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2286 
2287 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2288 	}
2289 
2290 	m_copydata(m0, 0, m0->m_pkthdr.len,
2291 	    data->buf + sizeof(struct zyd_tx_desc));
2292 
2293 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2294 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2295 
2296 	m_freem(m0);	/* mbuf no longer needed */
2297 
2298 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2299 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2300 	error = usbd_transfer(data->xfer);
2301 	if (error != USBD_IN_PROGRESS && error != 0) {
2302 		ifp->if_oerrors++;
2303 		return EIO;
2304 	}
2305 	sc->tx_queued++;
2306 
2307 	return 0;
2308 }
2309 
2310 Static void
2311 zyd_start(struct ifnet *ifp)
2312 {
2313 	struct zyd_softc *sc = ifp->if_softc;
2314 	struct ieee80211com *ic = &sc->sc_ic;
2315 	struct ether_header *eh;
2316 	struct ieee80211_node *ni;
2317 	struct mbuf *m0;
2318 
2319 	for (;;) {
2320 		IF_POLL(&ic->ic_mgtq, m0);
2321 		if (m0 != NULL) {
2322 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2323 				ifp->if_flags |= IFF_OACTIVE;
2324 				break;
2325 			}
2326 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2327 
2328 			ni = M_GETCTX(m0, struct ieee80211_node *);
2329 			M_CLEARCTX(m0);
2330 			bpf_mtap3(ic->ic_rawbpf, m0);
2331 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2332 				break;
2333 		} else {
2334 			if (ic->ic_state != IEEE80211_S_RUN)
2335 				break;
2336 			IFQ_POLL(&ifp->if_snd, m0);
2337 			if (m0 == NULL)
2338 				break;
2339 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2340 				ifp->if_flags |= IFF_OACTIVE;
2341 				break;
2342 			}
2343 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2344 
2345 			if (m0->m_len < sizeof(struct ether_header) &&
2346 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2347 				continue;
2348 
2349 			eh = mtod(m0, struct ether_header *);
2350 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2351 			if (ni == NULL) {
2352 				m_freem(m0);
2353 				continue;
2354 			}
2355 			bpf_mtap(ifp, m0);
2356 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2357 				ieee80211_free_node(ni);
2358 				ifp->if_oerrors++;
2359 				continue;
2360 			}
2361 			bpf_mtap3(ic->ic_rawbpf, m0);
2362 			if (zyd_tx_data(sc, m0, ni) != 0) {
2363 				ieee80211_free_node(ni);
2364 				ifp->if_oerrors++;
2365 				break;
2366 			}
2367 		}
2368 
2369 		sc->tx_timer = 5;
2370 		ifp->if_timer = 1;
2371 	}
2372 }
2373 
2374 Static void
2375 zyd_watchdog(struct ifnet *ifp)
2376 {
2377 	struct zyd_softc *sc = ifp->if_softc;
2378 	struct ieee80211com *ic = &sc->sc_ic;
2379 
2380 	ifp->if_timer = 0;
2381 
2382 	if (sc->tx_timer > 0) {
2383 		if (--sc->tx_timer == 0) {
2384 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2385 			/* zyd_init(ifp); XXX needs a process context ? */
2386 			ifp->if_oerrors++;
2387 			return;
2388 		}
2389 		ifp->if_timer = 1;
2390 	}
2391 
2392 	ieee80211_watchdog(ic);
2393 }
2394 
2395 Static int
2396 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2397 {
2398 	struct zyd_softc *sc = ifp->if_softc;
2399 	struct ieee80211com *ic = &sc->sc_ic;
2400 	int s, error = 0;
2401 
2402 	s = splnet();
2403 
2404 	switch (cmd) {
2405 	case SIOCSIFFLAGS:
2406 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2407 			break;
2408 		/* XXX re-use ether_ioctl() */
2409 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2410 		case IFF_UP:
2411 			zyd_init(ifp);
2412 			break;
2413 		case IFF_RUNNING:
2414 			zyd_stop(ifp, 1);
2415 			break;
2416 		default:
2417 			break;
2418 		}
2419 		break;
2420 
2421 	default:
2422 		error = ieee80211_ioctl(ic, cmd, data);
2423 	}
2424 
2425 	if (error == ENETRESET) {
2426 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2427 		    (IFF_RUNNING | IFF_UP))
2428 			zyd_init(ifp);
2429 		error = 0;
2430 	}
2431 
2432 	splx(s);
2433 
2434 	return error;
2435 }
2436 
2437 Static int
2438 zyd_init(struct ifnet *ifp)
2439 {
2440 	struct zyd_softc *sc = ifp->if_softc;
2441 	struct ieee80211com *ic = &sc->sc_ic;
2442 	int i, error;
2443 
2444 	zyd_stop(ifp, 0);
2445 
2446 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2447 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2448 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2449 	if (error != 0)
2450 		return error;
2451 
2452 	/* we'll do software WEP decryption for now */
2453 	DPRINTF(("setting encryption type\n"));
2454 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2455 	if (error != 0)
2456 		return error;
2457 
2458 	/* promiscuous mode */
2459 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2460 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2461 
2462 	(void)zyd_set_rxfilter(sc);
2463 
2464 	/* switch radio transmitter ON */
2465 	(void)zyd_switch_radio(sc, 1);
2466 
2467 	/* set basic rates */
2468 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2469 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2470 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2471 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2472 	else	/* assumes 802.11b/g */
2473 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2474 
2475 	/* set mandatory rates */
2476 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2477 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2478 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2479 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2480 	else	/* assumes 802.11b/g */
2481 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2482 
2483 	/* set default BSS channel */
2484 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2485 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2486 
2487 	/* enable interrupts */
2488 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2489 
2490 	/*
2491 	 * Allocate Tx and Rx xfer queues.
2492 	 */
2493 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2494 		printf("%s: could not allocate Tx list\n",
2495 		    device_xname(sc->sc_dev));
2496 		goto fail;
2497 	}
2498 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2499 		printf("%s: could not allocate Rx list\n",
2500 		    device_xname(sc->sc_dev));
2501 		goto fail;
2502 	}
2503 
2504 	/*
2505 	 * Start up the receive pipe.
2506 	 */
2507 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2508 		struct zyd_rx_data *data = &sc->rx_data[i];
2509 
2510 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2511 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2512 		error = usbd_transfer(data->xfer);
2513 		if (error != USBD_IN_PROGRESS && error != 0) {
2514 			printf("%s: could not queue Rx transfer\n",
2515 			    device_xname(sc->sc_dev));
2516 			goto fail;
2517 		}
2518 	}
2519 
2520 	ifp->if_flags &= ~IFF_OACTIVE;
2521 	ifp->if_flags |= IFF_RUNNING;
2522 
2523 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2524 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2525 	else
2526 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2527 
2528 	return 0;
2529 
2530 fail:	zyd_stop(ifp, 1);
2531 	return error;
2532 }
2533 
2534 Static void
2535 zyd_stop(struct ifnet *ifp, int disable)
2536 {
2537 	struct zyd_softc *sc = ifp->if_softc;
2538 	struct ieee80211com *ic = &sc->sc_ic;
2539 
2540 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2541 
2542 	sc->tx_timer = 0;
2543 	ifp->if_timer = 0;
2544 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2545 
2546 	/* switch radio transmitter OFF */
2547 	(void)zyd_switch_radio(sc, 0);
2548 
2549 	/* disable Rx */
2550 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2551 
2552 	/* disable interrupts */
2553 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2554 
2555 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2556 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2557 
2558 	zyd_free_rx_list(sc);
2559 	zyd_free_tx_list(sc);
2560 }
2561 
2562 Static int
2563 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2564 {
2565 	usb_device_request_t req;
2566 	uint16_t addr;
2567 	uint8_t stat;
2568 
2569 	DPRINTF(("firmware size=%zu\n", size));
2570 
2571 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2572 	req.bRequest = ZYD_DOWNLOADREQ;
2573 	USETW(req.wIndex, 0);
2574 
2575 	addr = ZYD_FIRMWARE_START_ADDR;
2576 	while (size > 0) {
2577 #if 0
2578 		const int mlen = min(size, 4096);
2579 #else
2580 		/*
2581 		 * XXXX: When the transfer size is 4096 bytes, it is not
2582 		 * likely to be able to transfer it.
2583 		 * The cause is port or machine or chip?
2584 		 */
2585 		const int mlen = min(size, 64);
2586 #endif
2587 
2588 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2589 		    addr));
2590 
2591 		USETW(req.wValue, addr);
2592 		USETW(req.wLength, mlen);
2593 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2594 			return EIO;
2595 
2596 		addr += mlen / 2;
2597 		fw   += mlen;
2598 		size -= mlen;
2599 	}
2600 
2601 	/* check whether the upload succeeded */
2602 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2603 	req.bRequest = ZYD_DOWNLOADSTS;
2604 	USETW(req.wValue, 0);
2605 	USETW(req.wIndex, 0);
2606 	USETW(req.wLength, sizeof(stat));
2607 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2608 		return EIO;
2609 
2610 	return (stat & 0x80) ? EIO : 0;
2611 }
2612 
2613 Static void
2614 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2615 {
2616 	struct zyd_softc *sc = arg;
2617 	struct zyd_node *zn = (struct zyd_node *)ni;
2618 
2619 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2620 }
2621 
2622 Static void
2623 zyd_amrr_timeout(void *arg)
2624 {
2625 	struct zyd_softc *sc = arg;
2626 	struct ieee80211com *ic = &sc->sc_ic;
2627 	int s;
2628 
2629 	s = splnet();
2630 	if (ic->ic_opmode == IEEE80211_M_STA)
2631 		zyd_iter_func(sc, ic->ic_bss);
2632 	else
2633 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2634 	splx(s);
2635 
2636 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2637 }
2638 
2639 Static void
2640 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2641 {
2642 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2643 	int i;
2644 
2645 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2646 
2647 	/* set rate to some reasonable initial value */
2648 	for (i = ni->ni_rates.rs_nrates - 1;
2649 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2650 	     i--);
2651 	ni->ni_txrate = i;
2652 }
2653 
2654 int
2655 zyd_activate(device_t self, enum devact act)
2656 {
2657 	struct zyd_softc *sc = device_private(self);
2658 
2659 	switch (act) {
2660 	case DVACT_DEACTIVATE:
2661 		if_deactivate(&sc->sc_if);
2662 		return 0;
2663 	default:
2664 		return EOPNOTSUPP;
2665 	}
2666 }
2667