1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.28 2011/01/16 09:08:29 tsutsui Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.28 2011/01/16 09:08:29 tsutsui Exp $"); 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <machine/endian.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/in_systm.h> 52 #include <netinet/in_var.h> 53 #include <netinet/ip.h> 54 55 #include <net80211/ieee80211_netbsd.h> 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/firmload.h> 61 62 #include <dev/usb/usb.h> 63 #include <dev/usb/usbdi.h> 64 #include <dev/usb/usbdi_util.h> 65 #include <dev/usb/usbdevs.h> 66 67 #include <dev/usb/if_zydreg.h> 68 69 #ifdef USB_DEBUG 70 #define ZYD_DEBUG 71 #endif 72 73 #ifdef ZYD_DEBUG 74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 76 int zyddebug = 0; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 84 85 /* various supported device vendors/products */ 86 #define ZYD_ZD1211_DEV(v, p) \ 87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 88 #define ZYD_ZD1211B_DEV(v, p) \ 89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 90 static const struct zyd_type { 91 struct usb_devno dev; 92 uint8_t rev; 93 #define ZYD_ZD1211 0 94 #define ZYD_ZD1211B 1 95 } zyd_devs[] = { 96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 97 ZYD_ZD1211_DEV(ABOCOM, WL54), 98 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 102 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 103 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 104 ZYD_ZD1211_DEV(SAGEM, XG760A), 105 ZYD_ZD1211_DEV(SENAO, NUB8301), 106 ZYD_ZD1211_DEV(SITECOMEU, WL113), 107 ZYD_ZD1211_DEV(SWEEX, ZD1211), 108 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 109 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 111 ZYD_ZD1211_DEV(TWINMOS, G240), 112 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 113 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 115 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 116 ZYD_ZD1211_DEV(ZCOM, ZD1211), 117 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 118 ZYD_ZD1211_DEV(ZYXEL, AG225H), 119 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 120 121 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 122 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 123 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 124 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 125 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 126 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 127 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 128 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 129 ZYD_ZD1211B_DEV(MELCO, KG54L), 130 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 131 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 132 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 133 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 134 #if 0 /* Shall we needs? */ 135 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 136 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 137 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 138 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 139 #endif 140 ZYD_ZD1211B_DEV(USR, USR5423), 141 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 142 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 143 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 144 ZYD_ZD1211B_DEV(ZYXEL, M202), 145 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 146 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 147 }; 148 #define zyd_lookup(v, p) \ 149 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 150 151 int zyd_match(device_t, cfdata_t, void *); 152 void zyd_attach(device_t, device_t, void *); 153 int zyd_detach(device_t, int); 154 int zyd_activate(device_t, enum devact); 155 extern struct cfdriver zyd_cd; 156 157 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 158 zyd_attach, zyd_detach, zyd_activate); 159 160 Static void zyd_attachhook(device_t); 161 Static int zyd_complete_attach(struct zyd_softc *); 162 Static int zyd_open_pipes(struct zyd_softc *); 163 Static void zyd_close_pipes(struct zyd_softc *); 164 Static int zyd_alloc_tx_list(struct zyd_softc *); 165 Static void zyd_free_tx_list(struct zyd_softc *); 166 Static int zyd_alloc_rx_list(struct zyd_softc *); 167 Static void zyd_free_rx_list(struct zyd_softc *); 168 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 169 Static int zyd_media_change(struct ifnet *); 170 Static void zyd_next_scan(void *); 171 Static void zyd_task(void *); 172 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 173 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 174 void *, int, u_int); 175 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 176 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 177 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 178 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 179 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 180 Static void zyd_lock_phy(struct zyd_softc *); 181 Static void zyd_unlock_phy(struct zyd_softc *); 182 Static int zyd_rfmd_init(struct zyd_rf *); 183 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 184 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 185 Static int zyd_al2230_init(struct zyd_rf *); 186 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 187 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 188 Static int zyd_al2230_init_b(struct zyd_rf *); 189 Static int zyd_al7230B_init(struct zyd_rf *); 190 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 191 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 192 Static int zyd_al2210_init(struct zyd_rf *); 193 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 194 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 195 Static int zyd_gct_init(struct zyd_rf *); 196 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 197 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 198 Static int zyd_maxim_init(struct zyd_rf *); 199 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 200 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 201 Static int zyd_maxim2_init(struct zyd_rf *); 202 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 203 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 204 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 205 Static const char *zyd_rf_name(uint8_t); 206 Static int zyd_hw_init(struct zyd_softc *); 207 Static int zyd_read_eeprom(struct zyd_softc *); 208 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 209 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 210 Static int zyd_switch_radio(struct zyd_softc *, int); 211 Static void zyd_set_led(struct zyd_softc *, int, int); 212 Static int zyd_set_rxfilter(struct zyd_softc *); 213 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 214 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 215 Static uint8_t zyd_plcp_signal(int); 216 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 217 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 218 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 219 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 220 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 221 struct ieee80211_node *); 222 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 223 struct ieee80211_node *); 224 Static void zyd_start(struct ifnet *); 225 Static void zyd_watchdog(struct ifnet *); 226 Static int zyd_ioctl(struct ifnet *, u_long, void *); 227 Static int zyd_init(struct ifnet *); 228 Static void zyd_stop(struct ifnet *, int); 229 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 230 Static void zyd_iter_func(void *, struct ieee80211_node *); 231 Static void zyd_amrr_timeout(void *); 232 Static void zyd_newassoc(struct ieee80211_node *, int); 233 234 static const struct ieee80211_rateset zyd_rateset_11b = 235 { 4, { 2, 4, 11, 22 } }; 236 237 static const struct ieee80211_rateset zyd_rateset_11g = 238 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 239 240 int 241 zyd_match(device_t parent, cfdata_t match, void *aux) 242 { 243 struct usb_attach_arg *uaa = aux; 244 245 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 246 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 247 } 248 249 Static void 250 zyd_attachhook(device_t self) 251 { 252 struct zyd_softc *sc = device_private(self); 253 firmware_handle_t fwh; 254 const char *fwname; 255 u_char *fw; 256 size_t size; 257 int error; 258 259 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 260 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 261 aprint_error_dev(sc->sc_dev, 262 "failed to open firmware %s (error=%d)\n", fwname, error); 263 return; 264 } 265 size = firmware_get_size(fwh); 266 fw = firmware_malloc(size); 267 if (fw == NULL) { 268 aprint_error_dev(sc->sc_dev, 269 "failed to allocate firmware memory\n"); 270 firmware_close(fwh); 271 return; 272 } 273 error = firmware_read(fwh, 0, fw, size); 274 firmware_close(fwh); 275 if (error != 0) { 276 aprint_error_dev(sc->sc_dev, 277 "failed to read firmware (error %d)\n", error); 278 firmware_free(fw, 0); 279 return; 280 } 281 282 error = zyd_loadfirmware(sc, fw, size); 283 if (error != 0) { 284 aprint_error_dev(sc->sc_dev, 285 "could not load firmware (error=%d)\n", error); 286 firmware_free(fw, 0); 287 return; 288 } 289 290 firmware_free(fw, 0); 291 sc->sc_flags |= ZD1211_FWLOADED; 292 293 /* complete the attach process */ 294 if ((error = zyd_complete_attach(sc)) == 0) 295 sc->attached = 1; 296 return; 297 } 298 299 void 300 zyd_attach(device_t parent, device_t self, void *aux) 301 { 302 struct zyd_softc *sc = device_private(self); 303 struct usb_attach_arg *uaa = aux; 304 char *devinfop; 305 usb_device_descriptor_t* ddesc; 306 struct ifnet *ifp = &sc->sc_if; 307 308 sc->sc_dev = self; 309 sc->sc_udev = uaa->device; 310 sc->sc_flags = 0; 311 312 aprint_naive("\n"); 313 aprint_normal("\n"); 314 315 devinfop = usbd_devinfo_alloc(uaa->device, 0); 316 aprint_normal_dev(self, "%s\n", devinfop); 317 usbd_devinfo_free(devinfop); 318 319 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 320 321 ddesc = usbd_get_device_descriptor(sc->sc_udev); 322 if (UGETW(ddesc->bcdDevice) < 0x4330) { 323 aprint_error_dev(self, "device version mismatch: 0x%x " 324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 325 return; 326 } 327 328 ifp->if_softc = sc; 329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 330 ifp->if_init = zyd_init; 331 ifp->if_ioctl = zyd_ioctl; 332 ifp->if_start = zyd_start; 333 ifp->if_watchdog = zyd_watchdog; 334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 335 IFQ_SET_READY(&ifp->if_snd); 336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 337 338 SIMPLEQ_INIT(&sc->sc_rqh); 339 340 /* defer configrations after file system is ready to load firmware */ 341 config_mountroot(self, zyd_attachhook); 342 } 343 344 Static int 345 zyd_complete_attach(struct zyd_softc *sc) 346 { 347 struct ieee80211com *ic = &sc->sc_ic; 348 struct ifnet *ifp = &sc->sc_if; 349 usbd_status error; 350 int i; 351 352 usb_init_task(&sc->sc_task, zyd_task, sc); 353 callout_init(&(sc->sc_scan_ch), 0); 354 355 sc->amrr.amrr_min_success_threshold = 1; 356 sc->amrr.amrr_max_success_threshold = 10; 357 callout_init(&sc->sc_amrr_ch, 0); 358 359 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 360 if (error != 0) { 361 aprint_error_dev(sc->sc_dev, "setting config no failed\n"); 362 goto fail; 363 } 364 365 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 366 &sc->sc_iface); 367 if (error != 0) { 368 aprint_error_dev(sc->sc_dev, 369 "getting interface handle failed\n"); 370 goto fail; 371 } 372 373 if ((error = zyd_open_pipes(sc)) != 0) { 374 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 375 goto fail; 376 } 377 378 if ((error = zyd_read_eeprom(sc)) != 0) { 379 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 380 goto fail; 381 } 382 383 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 384 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 385 goto fail; 386 } 387 388 if ((error = zyd_hw_init(sc)) != 0) { 389 aprint_error_dev(sc->sc_dev, 390 "hardware initialization failed\n"); 391 goto fail; 392 } 393 394 aprint_normal_dev(sc->sc_dev, 395 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 396 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 397 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 398 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 399 400 ic->ic_ifp = ifp; 401 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 402 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 403 ic->ic_state = IEEE80211_S_INIT; 404 405 /* set device capabilities */ 406 ic->ic_caps = 407 IEEE80211_C_MONITOR | /* monitor mode supported */ 408 IEEE80211_C_TXPMGT | /* tx power management */ 409 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 410 IEEE80211_C_WEP; /* s/w WEP */ 411 412 /* set supported .11b and .11g rates */ 413 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 414 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 415 416 /* set supported .11b and .11g channels (1 through 14) */ 417 for (i = 1; i <= 14; i++) { 418 ic->ic_channels[i].ic_freq = 419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 420 ic->ic_channels[i].ic_flags = 421 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 422 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 423 } 424 425 if_attach(ifp); 426 ieee80211_ifattach(ic); 427 ic->ic_node_alloc = zyd_node_alloc; 428 ic->ic_newassoc = zyd_newassoc; 429 430 /* override state transition machine */ 431 sc->sc_newstate = ic->ic_newstate; 432 ic->ic_newstate = zyd_newstate; 433 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 434 435 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 436 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 437 &sc->sc_drvbpf); 438 439 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 440 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 441 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 442 443 sc->sc_txtap_len = sizeof sc->sc_txtapu; 444 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 445 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 446 447 ieee80211_announce(ic); 448 449 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 450 451 fail: return error; 452 } 453 454 int 455 zyd_detach(device_t self, int flags) 456 { 457 struct zyd_softc *sc = device_private(self); 458 struct ieee80211com *ic = &sc->sc_ic; 459 struct ifnet *ifp = &sc->sc_if; 460 int s; 461 462 if (!sc->attached) 463 return 0; 464 465 s = splusb(); 466 467 zyd_stop(ifp, 1); 468 usb_rem_task(sc->sc_udev, &sc->sc_task); 469 callout_stop(&sc->sc_scan_ch); 470 callout_stop(&sc->sc_amrr_ch); 471 472 zyd_close_pipes(sc); 473 474 sc->attached = 0; 475 476 bpf_detach(ifp); 477 ieee80211_ifdetach(ic); 478 if_detach(ifp); 479 480 splx(s); 481 482 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 483 sc->sc_dev); 484 485 return 0; 486 } 487 488 Static int 489 zyd_open_pipes(struct zyd_softc *sc) 490 { 491 usb_endpoint_descriptor_t *edesc; 492 int isize; 493 usbd_status error; 494 495 /* interrupt in */ 496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 497 if (edesc == NULL) 498 return EINVAL; 499 500 isize = UGETW(edesc->wMaxPacketSize); 501 if (isize == 0) /* should not happen */ 502 return EINVAL; 503 504 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 505 if (sc->ibuf == NULL) 506 return ENOMEM; 507 508 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 509 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 510 USBD_DEFAULT_INTERVAL); 511 if (error != 0) { 512 printf("%s: open rx intr pipe failed: %s\n", 513 device_xname(sc->sc_dev), usbd_errstr(error)); 514 goto fail; 515 } 516 517 /* interrupt out (not necessarily an interrupt pipe) */ 518 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 519 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 520 if (error != 0) { 521 printf("%s: open tx intr pipe failed: %s\n", 522 device_xname(sc->sc_dev), usbd_errstr(error)); 523 goto fail; 524 } 525 526 /* bulk in */ 527 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 528 &sc->zyd_ep[ZYD_ENDPT_BIN]); 529 if (error != 0) { 530 printf("%s: open rx pipe failed: %s\n", 531 device_xname(sc->sc_dev), usbd_errstr(error)); 532 goto fail; 533 } 534 535 /* bulk out */ 536 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 537 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 538 if (error != 0) { 539 printf("%s: open tx pipe failed: %s\n", 540 device_xname(sc->sc_dev), usbd_errstr(error)); 541 goto fail; 542 } 543 544 return 0; 545 546 fail: zyd_close_pipes(sc); 547 return error; 548 } 549 550 Static void 551 zyd_close_pipes(struct zyd_softc *sc) 552 { 553 int i; 554 555 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 556 if (sc->zyd_ep[i] != NULL) { 557 usbd_abort_pipe(sc->zyd_ep[i]); 558 usbd_close_pipe(sc->zyd_ep[i]); 559 sc->zyd_ep[i] = NULL; 560 } 561 } 562 if (sc->ibuf != NULL) { 563 free(sc->ibuf, M_USBDEV); 564 sc->ibuf = NULL; 565 } 566 } 567 568 Static int 569 zyd_alloc_tx_list(struct zyd_softc *sc) 570 { 571 int i, error; 572 573 sc->tx_queued = 0; 574 575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 576 struct zyd_tx_data *data = &sc->tx_data[i]; 577 578 data->sc = sc; /* backpointer for callbacks */ 579 580 data->xfer = usbd_alloc_xfer(sc->sc_udev); 581 if (data->xfer == NULL) { 582 printf("%s: could not allocate tx xfer\n", 583 device_xname(sc->sc_dev)); 584 error = ENOMEM; 585 goto fail; 586 } 587 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 588 if (data->buf == NULL) { 589 printf("%s: could not allocate tx buffer\n", 590 device_xname(sc->sc_dev)); 591 error = ENOMEM; 592 goto fail; 593 } 594 595 /* clear Tx descriptor */ 596 memset(data->buf, 0, sizeof (struct zyd_tx_desc)); 597 } 598 return 0; 599 600 fail: zyd_free_tx_list(sc); 601 return error; 602 } 603 604 Static void 605 zyd_free_tx_list(struct zyd_softc *sc) 606 { 607 int i; 608 609 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 610 struct zyd_tx_data *data = &sc->tx_data[i]; 611 612 if (data->xfer != NULL) { 613 usbd_free_xfer(data->xfer); 614 data->xfer = NULL; 615 } 616 if (data->ni != NULL) { 617 ieee80211_free_node(data->ni); 618 data->ni = NULL; 619 } 620 } 621 } 622 623 Static int 624 zyd_alloc_rx_list(struct zyd_softc *sc) 625 { 626 int i, error; 627 628 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 629 struct zyd_rx_data *data = &sc->rx_data[i]; 630 631 data->sc = sc; /* backpointer for callbacks */ 632 633 data->xfer = usbd_alloc_xfer(sc->sc_udev); 634 if (data->xfer == NULL) { 635 printf("%s: could not allocate rx xfer\n", 636 device_xname(sc->sc_dev)); 637 error = ENOMEM; 638 goto fail; 639 } 640 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 641 if (data->buf == NULL) { 642 printf("%s: could not allocate rx buffer\n", 643 device_xname(sc->sc_dev)); 644 error = ENOMEM; 645 goto fail; 646 } 647 } 648 return 0; 649 650 fail: zyd_free_rx_list(sc); 651 return error; 652 } 653 654 Static void 655 zyd_free_rx_list(struct zyd_softc *sc) 656 { 657 int i; 658 659 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 660 struct zyd_rx_data *data = &sc->rx_data[i]; 661 662 if (data->xfer != NULL) { 663 usbd_free_xfer(data->xfer); 664 data->xfer = NULL; 665 } 666 } 667 } 668 669 /* ARGUSED */ 670 Static struct ieee80211_node * 671 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 672 { 673 struct zyd_node *zn; 674 675 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 676 677 return &zn->ni; 678 } 679 680 Static int 681 zyd_media_change(struct ifnet *ifp) 682 { 683 int error; 684 685 error = ieee80211_media_change(ifp); 686 if (error != ENETRESET) 687 return error; 688 689 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 690 zyd_init(ifp); 691 692 return 0; 693 } 694 695 /* 696 * This function is called periodically (every 200ms) during scanning to 697 * switch from one channel to another. 698 */ 699 Static void 700 zyd_next_scan(void *arg) 701 { 702 struct zyd_softc *sc = arg; 703 struct ieee80211com *ic = &sc->sc_ic; 704 705 if (ic->ic_state == IEEE80211_S_SCAN) 706 ieee80211_next_scan(ic); 707 } 708 709 Static void 710 zyd_task(void *arg) 711 { 712 struct zyd_softc *sc = arg; 713 struct ieee80211com *ic = &sc->sc_ic; 714 enum ieee80211_state ostate; 715 716 ostate = ic->ic_state; 717 718 switch (sc->sc_state) { 719 case IEEE80211_S_INIT: 720 if (ostate == IEEE80211_S_RUN) { 721 /* turn link LED off */ 722 zyd_set_led(sc, ZYD_LED1, 0); 723 724 /* stop data LED from blinking */ 725 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 726 } 727 break; 728 729 case IEEE80211_S_SCAN: 730 zyd_set_chan(sc, ic->ic_curchan); 731 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 732 break; 733 734 case IEEE80211_S_AUTH: 735 case IEEE80211_S_ASSOC: 736 zyd_set_chan(sc, ic->ic_curchan); 737 break; 738 739 case IEEE80211_S_RUN: 740 { 741 struct ieee80211_node *ni = ic->ic_bss; 742 743 zyd_set_chan(sc, ic->ic_curchan); 744 745 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 746 /* turn link LED on */ 747 zyd_set_led(sc, ZYD_LED1, 1); 748 749 /* make data LED blink upon Tx */ 750 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 751 752 zyd_set_bssid(sc, ni->ni_bssid); 753 } 754 755 if (ic->ic_opmode == IEEE80211_M_STA) { 756 /* fake a join to init the tx rate */ 757 zyd_newassoc(ni, 1); 758 } 759 760 /* start automatic rate control timer */ 761 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 762 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 763 764 break; 765 } 766 } 767 768 sc->sc_newstate(ic, sc->sc_state, -1); 769 } 770 771 Static int 772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 773 { 774 struct zyd_softc *sc = ic->ic_ifp->if_softc; 775 776 if (!sc->attached) 777 return ENXIO; 778 779 usb_rem_task(sc->sc_udev, &sc->sc_task); 780 callout_stop(&sc->sc_scan_ch); 781 callout_stop(&sc->sc_amrr_ch); 782 783 /* do it in a process context */ 784 sc->sc_state = nstate; 785 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 786 787 return 0; 788 } 789 790 Static int 791 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 792 void *odata, int olen, u_int flags) 793 { 794 usbd_xfer_handle xfer; 795 struct zyd_cmd cmd; 796 struct rq rq; 797 uint16_t xferflags; 798 usbd_status error; 799 int s = 0; 800 801 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 802 return ENOMEM; 803 804 cmd.code = htole16(code); 805 bcopy(idata, cmd.data, ilen); 806 807 xferflags = USBD_FORCE_SHORT_XFER; 808 if (!(flags & ZYD_CMD_FLAG_READ)) 809 xferflags |= USBD_SYNCHRONOUS; 810 else { 811 s = splusb(); 812 rq.idata = idata; 813 rq.odata = odata; 814 rq.len = olen / sizeof (struct zyd_pair); 815 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 816 } 817 818 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 819 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 820 error = usbd_transfer(xfer); 821 if (error != USBD_IN_PROGRESS && error != 0) { 822 if (flags & ZYD_CMD_FLAG_READ) 823 splx(s); 824 printf("%s: could not send command (error=%s)\n", 825 device_xname(sc->sc_dev), usbd_errstr(error)); 826 (void)usbd_free_xfer(xfer); 827 return EIO; 828 } 829 if (!(flags & ZYD_CMD_FLAG_READ)) { 830 (void)usbd_free_xfer(xfer); 831 return 0; /* write: don't wait for reply */ 832 } 833 /* wait at most one second for command reply */ 834 error = tsleep(odata, PCATCH, "zydcmd", hz); 835 if (error == EWOULDBLOCK) 836 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 837 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 838 splx(s); 839 840 (void)usbd_free_xfer(xfer); 841 return error; 842 } 843 844 Static int 845 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 846 { 847 struct zyd_pair tmp; 848 int error; 849 850 reg = htole16(reg); 851 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 852 ZYD_CMD_FLAG_READ); 853 if (error == 0) 854 *val = le16toh(tmp.val); 855 return error; 856 } 857 858 Static int 859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 860 { 861 struct zyd_pair tmp[2]; 862 uint16_t regs[2]; 863 int error; 864 865 regs[0] = htole16(ZYD_REG32_HI(reg)); 866 regs[1] = htole16(ZYD_REG32_LO(reg)); 867 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 868 ZYD_CMD_FLAG_READ); 869 if (error == 0) 870 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 871 return error; 872 } 873 874 Static int 875 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 876 { 877 struct zyd_pair pair; 878 879 pair.reg = htole16(reg); 880 pair.val = htole16(val); 881 882 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 883 } 884 885 Static int 886 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 887 { 888 struct zyd_pair pair[2]; 889 890 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 891 pair[0].val = htole16(val >> 16); 892 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 893 pair[1].val = htole16(val & 0xffff); 894 895 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 896 } 897 898 Static int 899 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 900 { 901 struct zyd_rf *rf = &sc->sc_rf; 902 struct zyd_rfwrite req; 903 uint16_t cr203; 904 int i; 905 906 (void)zyd_read16(sc, ZYD_CR203, &cr203); 907 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 908 909 req.code = htole16(2); 910 req.width = htole16(rf->width); 911 for (i = 0; i < rf->width; i++) { 912 req.bit[i] = htole16(cr203); 913 if (val & (1 << (rf->width - 1 - i))) 914 req.bit[i] |= htole16(ZYD_RF_DATA); 915 } 916 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 917 } 918 919 Static void 920 zyd_lock_phy(struct zyd_softc *sc) 921 { 922 uint32_t tmp; 923 924 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 925 tmp &= ~ZYD_UNLOCK_PHY_REGS; 926 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 927 } 928 929 Static void 930 zyd_unlock_phy(struct zyd_softc *sc) 931 { 932 uint32_t tmp; 933 934 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 935 tmp |= ZYD_UNLOCK_PHY_REGS; 936 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 937 } 938 939 /* 940 * RFMD RF methods. 941 */ 942 Static int 943 zyd_rfmd_init(struct zyd_rf *rf) 944 { 945 #define N(a) (sizeof (a) / sizeof ((a)[0])) 946 struct zyd_softc *sc = rf->rf_sc; 947 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 948 static const uint32_t rfini[] = ZYD_RFMD_RF; 949 int i, error; 950 951 /* init RF-dependent PHY registers */ 952 for (i = 0; i < N(phyini); i++) { 953 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 954 if (error != 0) 955 return error; 956 } 957 958 /* init RFMD radio */ 959 for (i = 0; i < N(rfini); i++) { 960 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 961 return error; 962 } 963 return 0; 964 #undef N 965 } 966 967 Static int 968 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 969 { 970 struct zyd_softc *sc = rf->rf_sc; 971 972 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 973 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 974 975 return 0; 976 } 977 978 Static int 979 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 980 { 981 struct zyd_softc *sc = rf->rf_sc; 982 static const struct { 983 uint32_t r1, r2; 984 } rfprog[] = ZYD_RFMD_CHANTABLE; 985 986 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 987 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 988 989 return 0; 990 } 991 992 /* 993 * AL2230 RF methods. 994 */ 995 Static int 996 zyd_al2230_init(struct zyd_rf *rf) 997 { 998 #define N(a) (sizeof (a) / sizeof ((a)[0])) 999 struct zyd_softc *sc = rf->rf_sc; 1000 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1001 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1002 static const uint32_t rfini[] = ZYD_AL2230_RF; 1003 int i, error; 1004 1005 /* init RF-dependent PHY registers */ 1006 for (i = 0; i < N(phyini); i++) { 1007 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1008 if (error != 0) 1009 return error; 1010 } 1011 1012 if (sc->rf_rev == ZYD_RF_AL2230S) { 1013 for (i = 0; i < N(phy2230s); i++) { 1014 error = zyd_write16(sc, phy2230s[i].reg, 1015 phy2230s[i].val); 1016 if (error != 0) 1017 return error; 1018 } 1019 } 1020 1021 /* init AL2230 radio */ 1022 for (i = 0; i < N(rfini); i++) { 1023 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1024 return error; 1025 } 1026 return 0; 1027 #undef N 1028 } 1029 1030 Static int 1031 zyd_al2230_init_b(struct zyd_rf *rf) 1032 { 1033 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1034 struct zyd_softc *sc = rf->rf_sc; 1035 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1036 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1037 int i, error; 1038 1039 /* init RF-dependent PHY registers */ 1040 for (i = 0; i < N(phyini); i++) { 1041 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1042 if (error != 0) 1043 return error; 1044 } 1045 1046 /* init AL2230 radio */ 1047 for (i = 0; i < N(rfini); i++) { 1048 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1049 return error; 1050 } 1051 return 0; 1052 #undef N 1053 } 1054 1055 Static int 1056 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1057 { 1058 struct zyd_softc *sc = rf->rf_sc; 1059 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1060 1061 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1062 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1063 1064 return 0; 1065 } 1066 1067 Static int 1068 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1069 { 1070 struct zyd_softc *sc = rf->rf_sc; 1071 static const struct { 1072 uint32_t r1, r2, r3; 1073 } rfprog[] = ZYD_AL2230_CHANTABLE; 1074 1075 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1076 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1077 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1078 1079 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1080 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1081 1082 return 0; 1083 } 1084 1085 /* 1086 * AL7230B RF methods. 1087 */ 1088 Static int 1089 zyd_al7230B_init(struct zyd_rf *rf) 1090 { 1091 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1092 struct zyd_softc *sc = rf->rf_sc; 1093 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1094 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1095 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1096 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1097 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1098 int i, error; 1099 1100 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1101 1102 /* init RF-dependent PHY registers, part one */ 1103 for (i = 0; i < N(phyini_1); i++) { 1104 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1105 if (error != 0) 1106 return error; 1107 } 1108 /* init AL7230B radio, part one */ 1109 for (i = 0; i < N(rfini_1); i++) { 1110 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1111 return error; 1112 } 1113 /* init RF-dependent PHY registers, part two */ 1114 for (i = 0; i < N(phyini_2); i++) { 1115 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1116 if (error != 0) 1117 return error; 1118 } 1119 /* init AL7230B radio, part two */ 1120 for (i = 0; i < N(rfini_2); i++) { 1121 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1122 return error; 1123 } 1124 /* init RF-dependent PHY registers, part three */ 1125 for (i = 0; i < N(phyini_3); i++) { 1126 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1127 if (error != 0) 1128 return error; 1129 } 1130 1131 return 0; 1132 #undef N 1133 } 1134 1135 Static int 1136 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1137 { 1138 struct zyd_softc *sc = rf->rf_sc; 1139 1140 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1141 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1142 1143 return 0; 1144 } 1145 1146 Static int 1147 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1148 { 1149 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1150 struct zyd_softc *sc = rf->rf_sc; 1151 static const struct { 1152 uint32_t r1, r2; 1153 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1154 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1155 int i, error; 1156 1157 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1158 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1159 1160 for (i = 0; i < N(rfsc); i++) { 1161 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1162 return error; 1163 } 1164 1165 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1166 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1167 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1168 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1169 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1170 1171 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1172 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1173 (void)zyd_rfwrite(sc, 0x3c9000); 1174 1175 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1176 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1177 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1178 1179 return 0; 1180 #undef N 1181 } 1182 1183 /* 1184 * AL2210 RF methods. 1185 */ 1186 Static int 1187 zyd_al2210_init(struct zyd_rf *rf) 1188 { 1189 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1190 struct zyd_softc *sc = rf->rf_sc; 1191 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1192 static const uint32_t rfini[] = ZYD_AL2210_RF; 1193 uint32_t tmp; 1194 int i, error; 1195 1196 (void)zyd_write32(sc, ZYD_CR18, 2); 1197 1198 /* init RF-dependent PHY registers */ 1199 for (i = 0; i < N(phyini); i++) { 1200 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1201 if (error != 0) 1202 return error; 1203 } 1204 /* init AL2210 radio */ 1205 for (i = 0; i < N(rfini); i++) { 1206 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1207 return error; 1208 } 1209 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1210 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1211 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1212 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1213 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1214 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1215 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1216 (void)zyd_write32(sc, ZYD_CR18, 3); 1217 1218 return 0; 1219 #undef N 1220 } 1221 1222 Static int 1223 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1224 { 1225 /* vendor driver does nothing for this RF chip */ 1226 1227 return 0; 1228 } 1229 1230 Static int 1231 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1232 { 1233 struct zyd_softc *sc = rf->rf_sc; 1234 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1235 uint32_t tmp; 1236 1237 (void)zyd_write32(sc, ZYD_CR18, 2); 1238 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1239 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1240 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1241 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1242 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1243 1244 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1245 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1246 1247 /* actually set the channel */ 1248 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1249 1250 (void)zyd_write32(sc, ZYD_CR18, 3); 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * GCT RF methods. 1257 */ 1258 Static int 1259 zyd_gct_init(struct zyd_rf *rf) 1260 { 1261 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1262 struct zyd_softc *sc = rf->rf_sc; 1263 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1264 static const uint32_t rfini[] = ZYD_GCT_RF; 1265 int i, error; 1266 1267 /* init RF-dependent PHY registers */ 1268 for (i = 0; i < N(phyini); i++) { 1269 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1270 if (error != 0) 1271 return error; 1272 } 1273 /* init cgt radio */ 1274 for (i = 0; i < N(rfini); i++) { 1275 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1276 return error; 1277 } 1278 return 0; 1279 #undef N 1280 } 1281 1282 Static int 1283 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1284 { 1285 /* vendor driver does nothing for this RF chip */ 1286 1287 return 0; 1288 } 1289 1290 Static int 1291 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1292 { 1293 struct zyd_softc *sc = rf->rf_sc; 1294 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1295 1296 (void)zyd_rfwrite(sc, 0x1c0000); 1297 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1298 (void)zyd_rfwrite(sc, 0x1c0008); 1299 1300 return 0; 1301 } 1302 1303 /* 1304 * Maxim RF methods. 1305 */ 1306 Static int 1307 zyd_maxim_init(struct zyd_rf *rf) 1308 { 1309 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1310 struct zyd_softc *sc = rf->rf_sc; 1311 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1312 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1313 uint16_t tmp; 1314 int i, error; 1315 1316 /* init RF-dependent PHY registers */ 1317 for (i = 0; i < N(phyini); i++) { 1318 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1319 if (error != 0) 1320 return error; 1321 } 1322 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1323 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1324 1325 /* init maxim radio */ 1326 for (i = 0; i < N(rfini); i++) { 1327 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1328 return error; 1329 } 1330 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1331 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1332 1333 return 0; 1334 #undef N 1335 } 1336 1337 Static int 1338 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1339 { 1340 /* vendor driver does nothing for this RF chip */ 1341 1342 return 0; 1343 } 1344 1345 Static int 1346 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1347 { 1348 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1349 struct zyd_softc *sc = rf->rf_sc; 1350 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1351 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1352 static const struct { 1353 uint32_t r1, r2; 1354 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1355 uint16_t tmp; 1356 int i, error; 1357 1358 /* 1359 * Do the same as we do when initializing it, except for the channel 1360 * values coming from the two channel tables. 1361 */ 1362 1363 /* init RF-dependent PHY registers */ 1364 for (i = 0; i < N(phyini); i++) { 1365 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1366 if (error != 0) 1367 return error; 1368 } 1369 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1370 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1371 1372 /* first two values taken from the chantables */ 1373 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1374 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1375 1376 /* init maxim radio - skipping the two first values */ 1377 for (i = 2; i < N(rfini); i++) { 1378 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1379 return error; 1380 } 1381 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1382 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1383 1384 return 0; 1385 #undef N 1386 } 1387 1388 /* 1389 * Maxim2 RF methods. 1390 */ 1391 Static int 1392 zyd_maxim2_init(struct zyd_rf *rf) 1393 { 1394 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1395 struct zyd_softc *sc = rf->rf_sc; 1396 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1397 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1398 uint16_t tmp; 1399 int i, error; 1400 1401 /* init RF-dependent PHY registers */ 1402 for (i = 0; i < N(phyini); i++) { 1403 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1404 if (error != 0) 1405 return error; 1406 } 1407 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1408 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1409 1410 /* init maxim2 radio */ 1411 for (i = 0; i < N(rfini); i++) { 1412 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1413 return error; 1414 } 1415 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1416 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1417 1418 return 0; 1419 #undef N 1420 } 1421 1422 Static int 1423 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1424 { 1425 /* vendor driver does nothing for this RF chip */ 1426 1427 return 0; 1428 } 1429 1430 Static int 1431 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1432 { 1433 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1434 struct zyd_softc *sc = rf->rf_sc; 1435 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1436 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1437 static const struct { 1438 uint32_t r1, r2; 1439 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1440 uint16_t tmp; 1441 int i, error; 1442 1443 /* 1444 * Do the same as we do when initializing it, except for the channel 1445 * values coming from the two channel tables. 1446 */ 1447 1448 /* init RF-dependent PHY registers */ 1449 for (i = 0; i < N(phyini); i++) { 1450 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1451 if (error != 0) 1452 return error; 1453 } 1454 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1455 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1456 1457 /* first two values taken from the chantables */ 1458 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1459 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1460 1461 /* init maxim2 radio - skipping the two first values */ 1462 for (i = 2; i < N(rfini); i++) { 1463 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1464 return error; 1465 } 1466 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1467 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1468 1469 return 0; 1470 #undef N 1471 } 1472 1473 Static int 1474 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1475 { 1476 struct zyd_rf *rf = &sc->sc_rf; 1477 1478 rf->rf_sc = sc; 1479 1480 switch (type) { 1481 case ZYD_RF_RFMD: 1482 rf->init = zyd_rfmd_init; 1483 rf->switch_radio = zyd_rfmd_switch_radio; 1484 rf->set_channel = zyd_rfmd_set_channel; 1485 rf->width = 24; /* 24-bit RF values */ 1486 break; 1487 case ZYD_RF_AL2230: 1488 case ZYD_RF_AL2230S: 1489 if (sc->mac_rev == ZYD_ZD1211B) 1490 rf->init = zyd_al2230_init_b; 1491 else 1492 rf->init = zyd_al2230_init; 1493 rf->switch_radio = zyd_al2230_switch_radio; 1494 rf->set_channel = zyd_al2230_set_channel; 1495 rf->width = 24; /* 24-bit RF values */ 1496 break; 1497 case ZYD_RF_AL7230B: 1498 rf->init = zyd_al7230B_init; 1499 rf->switch_radio = zyd_al7230B_switch_radio; 1500 rf->set_channel = zyd_al7230B_set_channel; 1501 rf->width = 24; /* 24-bit RF values */ 1502 break; 1503 case ZYD_RF_AL2210: 1504 rf->init = zyd_al2210_init; 1505 rf->switch_radio = zyd_al2210_switch_radio; 1506 rf->set_channel = zyd_al2210_set_channel; 1507 rf->width = 24; /* 24-bit RF values */ 1508 break; 1509 case ZYD_RF_GCT: 1510 rf->init = zyd_gct_init; 1511 rf->switch_radio = zyd_gct_switch_radio; 1512 rf->set_channel = zyd_gct_set_channel; 1513 rf->width = 21; /* 21-bit RF values */ 1514 break; 1515 case ZYD_RF_MAXIM_NEW: 1516 rf->init = zyd_maxim_init; 1517 rf->switch_radio = zyd_maxim_switch_radio; 1518 rf->set_channel = zyd_maxim_set_channel; 1519 rf->width = 18; /* 18-bit RF values */ 1520 break; 1521 case ZYD_RF_MAXIM_NEW2: 1522 rf->init = zyd_maxim2_init; 1523 rf->switch_radio = zyd_maxim2_switch_radio; 1524 rf->set_channel = zyd_maxim2_set_channel; 1525 rf->width = 18; /* 18-bit RF values */ 1526 break; 1527 default: 1528 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1529 device_xname(sc->sc_dev), zyd_rf_name(type)); 1530 return EINVAL; 1531 } 1532 return 0; 1533 } 1534 1535 Static const char * 1536 zyd_rf_name(uint8_t type) 1537 { 1538 static const char * const zyd_rfs[] = { 1539 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1540 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1541 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1542 "PHILIPS" 1543 }; 1544 1545 return zyd_rfs[(type > 15) ? 0 : type]; 1546 } 1547 1548 Static int 1549 zyd_hw_init(struct zyd_softc *sc) 1550 { 1551 struct zyd_rf *rf = &sc->sc_rf; 1552 const struct zyd_phy_pair *phyp; 1553 int error; 1554 1555 /* specify that the plug and play is finished */ 1556 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1557 1558 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1559 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1560 1561 /* retrieve firmware revision number */ 1562 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1563 1564 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1565 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1566 1567 /* disable interrupts */ 1568 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1569 1570 /* PHY init */ 1571 zyd_lock_phy(sc); 1572 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1573 for (; phyp->reg != 0; phyp++) { 1574 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1575 goto fail; 1576 } 1577 zyd_unlock_phy(sc); 1578 1579 /* HMAC init */ 1580 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1581 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1582 1583 if (sc->mac_rev == ZYD_ZD1211) { 1584 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1585 } else { 1586 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1587 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1588 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1589 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1590 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1591 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1592 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1593 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1594 } 1595 1596 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1597 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1598 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1599 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1600 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1601 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1602 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1603 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1604 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1605 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1606 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1607 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1608 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1609 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1610 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1611 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1612 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1613 1614 /* RF chip init */ 1615 zyd_lock_phy(sc); 1616 error = (*rf->init)(rf); 1617 zyd_unlock_phy(sc); 1618 if (error != 0) { 1619 printf("%s: radio initialization failed\n", 1620 device_xname(sc->sc_dev)); 1621 goto fail; 1622 } 1623 1624 /* init beacon interval to 100ms */ 1625 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1626 goto fail; 1627 1628 fail: return error; 1629 } 1630 1631 Static int 1632 zyd_read_eeprom(struct zyd_softc *sc) 1633 { 1634 struct ieee80211com *ic = &sc->sc_ic; 1635 uint32_t tmp; 1636 uint16_t val; 1637 int i; 1638 1639 /* read MAC address */ 1640 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1641 ic->ic_myaddr[0] = tmp & 0xff; 1642 ic->ic_myaddr[1] = tmp >> 8; 1643 ic->ic_myaddr[2] = tmp >> 16; 1644 ic->ic_myaddr[3] = tmp >> 24; 1645 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1646 ic->ic_myaddr[4] = tmp & 0xff; 1647 ic->ic_myaddr[5] = tmp >> 8; 1648 1649 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1650 sc->rf_rev = tmp & 0x0f; 1651 sc->pa_rev = (tmp >> 16) & 0x0f; 1652 1653 /* read regulatory domain (currently unused) */ 1654 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1655 sc->regdomain = tmp >> 16; 1656 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1657 1658 /* read Tx power calibration tables */ 1659 for (i = 0; i < 7; i++) { 1660 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1661 sc->pwr_cal[i * 2] = val >> 8; 1662 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1663 1664 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1665 sc->pwr_int[i * 2] = val >> 8; 1666 sc->pwr_int[i * 2 + 1] = val & 0xff; 1667 1668 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1669 sc->ofdm36_cal[i * 2] = val >> 8; 1670 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1671 1672 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1673 sc->ofdm48_cal[i * 2] = val >> 8; 1674 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1675 1676 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1677 sc->ofdm54_cal[i * 2] = val >> 8; 1678 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1679 } 1680 return 0; 1681 } 1682 1683 Static int 1684 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1685 { 1686 uint32_t tmp; 1687 1688 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1689 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1690 1691 tmp = addr[5] << 8 | addr[4]; 1692 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1693 1694 return 0; 1695 } 1696 1697 Static int 1698 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1699 { 1700 uint32_t tmp; 1701 1702 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1703 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1704 1705 tmp = addr[5] << 8 | addr[4]; 1706 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1707 1708 return 0; 1709 } 1710 1711 Static int 1712 zyd_switch_radio(struct zyd_softc *sc, int on) 1713 { 1714 struct zyd_rf *rf = &sc->sc_rf; 1715 int error; 1716 1717 zyd_lock_phy(sc); 1718 error = (*rf->switch_radio)(rf, on); 1719 zyd_unlock_phy(sc); 1720 1721 return error; 1722 } 1723 1724 Static void 1725 zyd_set_led(struct zyd_softc *sc, int which, int on) 1726 { 1727 uint32_t tmp; 1728 1729 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1730 tmp &= ~which; 1731 if (on) 1732 tmp |= which; 1733 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1734 } 1735 1736 Static int 1737 zyd_set_rxfilter(struct zyd_softc *sc) 1738 { 1739 uint32_t rxfilter; 1740 1741 switch (sc->sc_ic.ic_opmode) { 1742 case IEEE80211_M_STA: 1743 rxfilter = ZYD_FILTER_BSS; 1744 break; 1745 case IEEE80211_M_IBSS: 1746 case IEEE80211_M_HOSTAP: 1747 rxfilter = ZYD_FILTER_HOSTAP; 1748 break; 1749 case IEEE80211_M_MONITOR: 1750 rxfilter = ZYD_FILTER_MONITOR; 1751 break; 1752 default: 1753 /* should not get there */ 1754 return EINVAL; 1755 } 1756 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1757 } 1758 1759 Static void 1760 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1761 { 1762 struct ieee80211com *ic = &sc->sc_ic; 1763 struct zyd_rf *rf = &sc->sc_rf; 1764 u_int chan; 1765 1766 chan = ieee80211_chan2ieee(ic, c); 1767 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1768 return; 1769 1770 zyd_lock_phy(sc); 1771 1772 (*rf->set_channel)(rf, chan); 1773 1774 /* update Tx power */ 1775 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1776 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1777 1778 if (sc->mac_rev == ZYD_ZD1211B) { 1779 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1780 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1781 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1782 1783 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1784 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1785 } 1786 1787 zyd_unlock_phy(sc); 1788 } 1789 1790 Static int 1791 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1792 { 1793 /* XXX this is probably broken.. */ 1794 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1795 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1796 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1797 1798 return 0; 1799 } 1800 1801 Static uint8_t 1802 zyd_plcp_signal(int rate) 1803 { 1804 switch (rate) { 1805 /* CCK rates (returned values are device-dependent) */ 1806 case 2: return 0x0; 1807 case 4: return 0x1; 1808 case 11: return 0x2; 1809 case 22: return 0x3; 1810 1811 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1812 case 12: return 0xb; 1813 case 18: return 0xf; 1814 case 24: return 0xa; 1815 case 36: return 0xe; 1816 case 48: return 0x9; 1817 case 72: return 0xd; 1818 case 96: return 0x8; 1819 case 108: return 0xc; 1820 1821 /* unsupported rates (should not get there) */ 1822 default: return 0xff; 1823 } 1824 } 1825 1826 Static void 1827 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1828 { 1829 struct zyd_softc *sc = (struct zyd_softc *)priv; 1830 struct zyd_cmd *cmd; 1831 uint32_t datalen; 1832 1833 if (status != USBD_NORMAL_COMPLETION) { 1834 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1835 return; 1836 1837 if (status == USBD_STALLED) { 1838 usbd_clear_endpoint_stall_async( 1839 sc->zyd_ep[ZYD_ENDPT_IIN]); 1840 } 1841 return; 1842 } 1843 1844 cmd = (struct zyd_cmd *)sc->ibuf; 1845 1846 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1847 struct zyd_notif_retry *retry = 1848 (struct zyd_notif_retry *)cmd->data; 1849 struct ieee80211com *ic = &sc->sc_ic; 1850 struct ifnet *ifp = &sc->sc_if; 1851 struct ieee80211_node *ni; 1852 1853 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1854 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1855 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1856 1857 /* 1858 * Find the node to which the packet was sent and update its 1859 * retry statistics. In BSS mode, this node is the AP we're 1860 * associated to so no lookup is actually needed. 1861 */ 1862 if (ic->ic_opmode != IEEE80211_M_STA) { 1863 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1864 if (ni == NULL) 1865 return; /* just ignore */ 1866 } else 1867 ni = ic->ic_bss; 1868 1869 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1870 1871 if (le16toh(retry->count) & 0x100) 1872 ifp->if_oerrors++; /* too many retries */ 1873 1874 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1875 struct rq *rqp; 1876 1877 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1878 return; /* HMAC interrupt */ 1879 1880 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1881 datalen -= sizeof(cmd->code); 1882 datalen -= 2; /* XXX: padding? */ 1883 1884 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1885 int i; 1886 1887 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1888 continue; 1889 for (i = 0; i < rqp->len; i++) { 1890 if (*(((const uint16_t *)rqp->idata) + i) != 1891 (((struct zyd_pair *)cmd->data) + i)->reg) 1892 break; 1893 } 1894 if (i != rqp->len) 1895 continue; 1896 1897 /* copy answer into caller-supplied buffer */ 1898 bcopy(cmd->data, rqp->odata, 1899 sizeof(struct zyd_pair) * rqp->len); 1900 wakeup(rqp->odata); /* wakeup caller */ 1901 1902 return; 1903 } 1904 return; /* unexpected IORD notification */ 1905 } else { 1906 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1907 le16toh(cmd->code)); 1908 } 1909 } 1910 1911 Static void 1912 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1913 { 1914 struct ieee80211com *ic = &sc->sc_ic; 1915 struct ifnet *ifp = &sc->sc_if; 1916 struct ieee80211_node *ni; 1917 struct ieee80211_frame *wh; 1918 const struct zyd_plcphdr *plcp; 1919 const struct zyd_rx_stat *stat; 1920 struct mbuf *m; 1921 int rlen, s; 1922 1923 if (len < ZYD_MIN_FRAGSZ) { 1924 printf("%s: frame too short (length=%d)\n", 1925 device_xname(sc->sc_dev), len); 1926 ifp->if_ierrors++; 1927 return; 1928 } 1929 1930 plcp = (const struct zyd_plcphdr *)buf; 1931 stat = (const struct zyd_rx_stat *) 1932 (buf + len - sizeof (struct zyd_rx_stat)); 1933 1934 if (stat->flags & ZYD_RX_ERROR) { 1935 DPRINTF(("%s: RX status indicated error (%x)\n", 1936 device_xname(sc->sc_dev), stat->flags)); 1937 ifp->if_ierrors++; 1938 return; 1939 } 1940 1941 /* compute actual frame length */ 1942 rlen = len - sizeof (struct zyd_plcphdr) - 1943 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1944 1945 /* allocate a mbuf to store the frame */ 1946 MGETHDR(m, M_DONTWAIT, MT_DATA); 1947 if (m == NULL) { 1948 printf("%s: could not allocate rx mbuf\n", 1949 device_xname(sc->sc_dev)); 1950 ifp->if_ierrors++; 1951 return; 1952 } 1953 if (rlen > MHLEN) { 1954 MCLGET(m, M_DONTWAIT); 1955 if (!(m->m_flags & M_EXT)) { 1956 printf("%s: could not allocate rx mbuf cluster\n", 1957 device_xname(sc->sc_dev)); 1958 m_freem(m); 1959 ifp->if_ierrors++; 1960 return; 1961 } 1962 } 1963 m->m_pkthdr.rcvif = ifp; 1964 m->m_pkthdr.len = m->m_len = rlen; 1965 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); 1966 1967 s = splnet(); 1968 1969 if (sc->sc_drvbpf != NULL) { 1970 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1971 static const uint8_t rates[] = { 1972 /* reverse function of zyd_plcp_signal() */ 1973 2, 4, 11, 22, 0, 0, 0, 0, 1974 96, 48, 24, 12, 108, 72, 36, 18 1975 }; 1976 1977 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1978 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1979 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1980 tap->wr_rssi = stat->rssi; 1981 tap->wr_rate = rates[plcp->signal & 0xf]; 1982 1983 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1984 } 1985 1986 wh = mtod(m, struct ieee80211_frame *); 1987 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1988 ieee80211_input(ic, m, ni, stat->rssi, 0); 1989 1990 /* node is no longer needed */ 1991 ieee80211_free_node(ni); 1992 1993 splx(s); 1994 } 1995 1996 Static void 1997 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1998 { 1999 struct zyd_rx_data *data = priv; 2000 struct zyd_softc *sc = data->sc; 2001 struct ifnet *ifp = &sc->sc_if; 2002 const struct zyd_rx_desc *desc; 2003 int len; 2004 2005 if (status != USBD_NORMAL_COMPLETION) { 2006 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2007 return; 2008 2009 if (status == USBD_STALLED) 2010 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2011 2012 goto skip; 2013 } 2014 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2015 2016 if (len < ZYD_MIN_RXBUFSZ) { 2017 printf("%s: xfer too short (length=%d)\n", 2018 device_xname(sc->sc_dev), len); 2019 ifp->if_ierrors++; 2020 goto skip; 2021 } 2022 2023 desc = (const struct zyd_rx_desc *) 2024 (data->buf + len - sizeof (struct zyd_rx_desc)); 2025 2026 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2027 const uint8_t *p = data->buf, *end = p + len; 2028 int i; 2029 2030 DPRINTFN(3, ("received multi-frame transfer\n")); 2031 2032 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2033 const uint16_t len16 = UGETW(desc->len[i]); 2034 2035 if (len16 == 0 || p + len16 > end) 2036 break; 2037 2038 zyd_rx_data(sc, p, len16); 2039 /* next frame is aligned on a 32-bit boundary */ 2040 p += (len16 + 3) & ~3; 2041 } 2042 } else { 2043 DPRINTFN(3, ("received single-frame transfer\n")); 2044 2045 zyd_rx_data(sc, data->buf, len); 2046 } 2047 2048 skip: /* setup a new transfer */ 2049 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2050 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2051 USBD_NO_TIMEOUT, zyd_rxeof); 2052 (void)usbd_transfer(xfer); 2053 } 2054 2055 Static int 2056 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2057 { 2058 struct ieee80211com *ic = &sc->sc_ic; 2059 struct ifnet *ifp = &sc->sc_if; 2060 struct zyd_tx_desc *desc; 2061 struct zyd_tx_data *data; 2062 struct ieee80211_frame *wh; 2063 struct ieee80211_key *k; 2064 int xferlen, totlen, rate; 2065 uint16_t pktlen; 2066 usbd_status error; 2067 2068 data = &sc->tx_data[0]; 2069 desc = (struct zyd_tx_desc *)data->buf; 2070 2071 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2072 2073 wh = mtod(m0, struct ieee80211_frame *); 2074 2075 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2076 k = ieee80211_crypto_encap(ic, ni, m0); 2077 if (k == NULL) { 2078 m_freem(m0); 2079 return ENOBUFS; 2080 } 2081 } 2082 2083 data->ni = ni; 2084 2085 wh = mtod(m0, struct ieee80211_frame *); 2086 2087 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2088 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2089 2090 /* fill Tx descriptor */ 2091 desc->len = htole16(totlen); 2092 2093 desc->flags = ZYD_TX_FLAG_BACKOFF; 2094 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2095 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2096 if (totlen > ic->ic_rtsthreshold) { 2097 desc->flags |= ZYD_TX_FLAG_RTS; 2098 } else if (ZYD_RATE_IS_OFDM(rate) && 2099 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2100 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2101 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2102 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2103 desc->flags |= ZYD_TX_FLAG_RTS; 2104 } 2105 } else 2106 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2107 2108 if ((wh->i_fc[0] & 2109 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2110 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2111 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2112 2113 desc->phy = zyd_plcp_signal(rate); 2114 if (ZYD_RATE_IS_OFDM(rate)) { 2115 desc->phy |= ZYD_TX_PHY_OFDM; 2116 if (ic->ic_curmode == IEEE80211_MODE_11A) 2117 desc->phy |= ZYD_TX_PHY_5GHZ; 2118 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2119 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2120 2121 /* actual transmit length (XXX why +10?) */ 2122 pktlen = sizeof (struct zyd_tx_desc) + 10; 2123 if (sc->mac_rev == ZYD_ZD1211) 2124 pktlen += totlen; 2125 desc->pktlen = htole16(pktlen); 2126 2127 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2128 desc->plcp_service = 0; 2129 if (rate == 22) { 2130 const int remainder = (16 * totlen) % 22; 2131 if (remainder != 0 && remainder < 7) 2132 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2133 } 2134 2135 if (sc->sc_drvbpf != NULL) { 2136 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2137 2138 tap->wt_flags = 0; 2139 tap->wt_rate = rate; 2140 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2141 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2142 2143 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2144 } 2145 2146 m_copydata(m0, 0, m0->m_pkthdr.len, 2147 data->buf + sizeof (struct zyd_tx_desc)); 2148 2149 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2150 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2151 2152 m_freem(m0); /* mbuf no longer needed */ 2153 2154 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2155 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2156 ZYD_TX_TIMEOUT, zyd_txeof); 2157 error = usbd_transfer(data->xfer); 2158 if (error != USBD_IN_PROGRESS && error != 0) { 2159 ifp->if_oerrors++; 2160 return EIO; 2161 } 2162 sc->tx_queued++; 2163 2164 return 0; 2165 } 2166 2167 Static void 2168 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2169 { 2170 struct zyd_tx_data *data = priv; 2171 struct zyd_softc *sc = data->sc; 2172 struct ifnet *ifp = &sc->sc_if; 2173 int s; 2174 2175 if (status != USBD_NORMAL_COMPLETION) { 2176 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2177 return; 2178 2179 printf("%s: could not transmit buffer: %s\n", 2180 device_xname(sc->sc_dev), usbd_errstr(status)); 2181 2182 if (status == USBD_STALLED) { 2183 usbd_clear_endpoint_stall_async( 2184 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2185 } 2186 ifp->if_oerrors++; 2187 return; 2188 } 2189 2190 s = splnet(); 2191 2192 /* update rate control statistics */ 2193 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2194 2195 ieee80211_free_node(data->ni); 2196 data->ni = NULL; 2197 2198 sc->tx_queued--; 2199 ifp->if_opackets++; 2200 2201 sc->tx_timer = 0; 2202 ifp->if_flags &= ~IFF_OACTIVE; 2203 zyd_start(ifp); 2204 2205 splx(s); 2206 } 2207 2208 Static int 2209 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2210 { 2211 struct ieee80211com *ic = &sc->sc_ic; 2212 struct ifnet *ifp = &sc->sc_if; 2213 struct zyd_tx_desc *desc; 2214 struct zyd_tx_data *data; 2215 struct ieee80211_frame *wh; 2216 struct ieee80211_key *k; 2217 int xferlen, totlen, rate; 2218 uint16_t pktlen; 2219 usbd_status error; 2220 2221 wh = mtod(m0, struct ieee80211_frame *); 2222 2223 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2224 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2225 else 2226 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2227 rate &= IEEE80211_RATE_VAL; 2228 2229 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2230 k = ieee80211_crypto_encap(ic, ni, m0); 2231 if (k == NULL) { 2232 m_freem(m0); 2233 return ENOBUFS; 2234 } 2235 2236 /* packet header may have moved, reset our local pointer */ 2237 wh = mtod(m0, struct ieee80211_frame *); 2238 } 2239 2240 data = &sc->tx_data[0]; 2241 desc = (struct zyd_tx_desc *)data->buf; 2242 2243 data->ni = ni; 2244 2245 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2246 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2247 2248 /* fill Tx descriptor */ 2249 desc->len = htole16(totlen); 2250 2251 desc->flags = ZYD_TX_FLAG_BACKOFF; 2252 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2253 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2254 if (totlen > ic->ic_rtsthreshold) { 2255 desc->flags |= ZYD_TX_FLAG_RTS; 2256 } else if (ZYD_RATE_IS_OFDM(rate) && 2257 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2258 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2259 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2260 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2261 desc->flags |= ZYD_TX_FLAG_RTS; 2262 } 2263 } else 2264 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2265 2266 if ((wh->i_fc[0] & 2267 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2268 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2269 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2270 2271 desc->phy = zyd_plcp_signal(rate); 2272 if (ZYD_RATE_IS_OFDM(rate)) { 2273 desc->phy |= ZYD_TX_PHY_OFDM; 2274 if (ic->ic_curmode == IEEE80211_MODE_11A) 2275 desc->phy |= ZYD_TX_PHY_5GHZ; 2276 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2277 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2278 2279 /* actual transmit length (XXX why +10?) */ 2280 pktlen = sizeof (struct zyd_tx_desc) + 10; 2281 if (sc->mac_rev == ZYD_ZD1211) 2282 pktlen += totlen; 2283 desc->pktlen = htole16(pktlen); 2284 2285 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2286 desc->plcp_service = 0; 2287 if (rate == 22) { 2288 const int remainder = (16 * totlen) % 22; 2289 if (remainder != 0 && remainder < 7) 2290 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2291 } 2292 2293 if (sc->sc_drvbpf != NULL) { 2294 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2295 2296 tap->wt_flags = 0; 2297 tap->wt_rate = rate; 2298 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2299 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2300 2301 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2302 } 2303 2304 m_copydata(m0, 0, m0->m_pkthdr.len, 2305 data->buf + sizeof (struct zyd_tx_desc)); 2306 2307 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2308 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2309 2310 m_freem(m0); /* mbuf no longer needed */ 2311 2312 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2313 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2314 ZYD_TX_TIMEOUT, zyd_txeof); 2315 error = usbd_transfer(data->xfer); 2316 if (error != USBD_IN_PROGRESS && error != 0) { 2317 ifp->if_oerrors++; 2318 return EIO; 2319 } 2320 sc->tx_queued++; 2321 2322 return 0; 2323 } 2324 2325 Static void 2326 zyd_start(struct ifnet *ifp) 2327 { 2328 struct zyd_softc *sc = ifp->if_softc; 2329 struct ieee80211com *ic = &sc->sc_ic; 2330 struct ether_header *eh; 2331 struct ieee80211_node *ni; 2332 struct mbuf *m0; 2333 2334 for (;;) { 2335 IF_POLL(&ic->ic_mgtq, m0); 2336 if (m0 != NULL) { 2337 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2338 ifp->if_flags |= IFF_OACTIVE; 2339 break; 2340 } 2341 IF_DEQUEUE(&ic->ic_mgtq, m0); 2342 2343 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2344 m0->m_pkthdr.rcvif = NULL; 2345 bpf_mtap3(ic->ic_rawbpf, m0); 2346 if (zyd_tx_mgt(sc, m0, ni) != 0) 2347 break; 2348 } else { 2349 if (ic->ic_state != IEEE80211_S_RUN) 2350 break; 2351 IFQ_POLL(&ifp->if_snd, m0); 2352 if (m0 == NULL) 2353 break; 2354 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2355 ifp->if_flags |= IFF_OACTIVE; 2356 break; 2357 } 2358 IFQ_DEQUEUE(&ifp->if_snd, m0); 2359 2360 if (m0->m_len < sizeof(struct ether_header) && 2361 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2362 continue; 2363 2364 eh = mtod(m0, struct ether_header *); 2365 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2366 if (ni == NULL) { 2367 m_freem(m0); 2368 continue; 2369 } 2370 bpf_mtap(ifp, m0); 2371 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2372 ieee80211_free_node(ni); 2373 ifp->if_oerrors++; 2374 continue; 2375 } 2376 bpf_mtap3(ic->ic_rawbpf, m0); 2377 if (zyd_tx_data(sc, m0, ni) != 0) { 2378 ieee80211_free_node(ni); 2379 ifp->if_oerrors++; 2380 break; 2381 } 2382 } 2383 2384 sc->tx_timer = 5; 2385 ifp->if_timer = 1; 2386 } 2387 } 2388 2389 Static void 2390 zyd_watchdog(struct ifnet *ifp) 2391 { 2392 struct zyd_softc *sc = ifp->if_softc; 2393 struct ieee80211com *ic = &sc->sc_ic; 2394 2395 ifp->if_timer = 0; 2396 2397 if (sc->tx_timer > 0) { 2398 if (--sc->tx_timer == 0) { 2399 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2400 /* zyd_init(ifp); XXX needs a process context ? */ 2401 ifp->if_oerrors++; 2402 return; 2403 } 2404 ifp->if_timer = 1; 2405 } 2406 2407 ieee80211_watchdog(ic); 2408 } 2409 2410 Static int 2411 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2412 { 2413 struct zyd_softc *sc = ifp->if_softc; 2414 struct ieee80211com *ic = &sc->sc_ic; 2415 int s, error = 0; 2416 2417 s = splnet(); 2418 2419 switch (cmd) { 2420 case SIOCSIFFLAGS: 2421 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2422 break; 2423 /* XXX re-use ether_ioctl() */ 2424 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2425 case IFF_UP: 2426 zyd_init(ifp); 2427 break; 2428 case IFF_RUNNING: 2429 zyd_stop(ifp, 1); 2430 break; 2431 default: 2432 break; 2433 } 2434 break; 2435 2436 default: 2437 error = ieee80211_ioctl(ic, cmd, data); 2438 } 2439 2440 if (error == ENETRESET) { 2441 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2442 (IFF_RUNNING | IFF_UP)) 2443 zyd_init(ifp); 2444 error = 0; 2445 } 2446 2447 splx(s); 2448 2449 return error; 2450 } 2451 2452 Static int 2453 zyd_init(struct ifnet *ifp) 2454 { 2455 struct zyd_softc *sc = ifp->if_softc; 2456 struct ieee80211com *ic = &sc->sc_ic; 2457 int i, error; 2458 2459 zyd_stop(ifp, 0); 2460 2461 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2462 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2463 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2464 if (error != 0) 2465 return error; 2466 2467 /* we'll do software WEP decryption for now */ 2468 DPRINTF(("setting encryption type\n")); 2469 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2470 if (error != 0) 2471 return error; 2472 2473 /* promiscuous mode */ 2474 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2475 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2476 2477 (void)zyd_set_rxfilter(sc); 2478 2479 /* switch radio transmitter ON */ 2480 (void)zyd_switch_radio(sc, 1); 2481 2482 /* set basic rates */ 2483 if (ic->ic_curmode == IEEE80211_MODE_11B) 2484 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2485 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2486 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2487 else /* assumes 802.11b/g */ 2488 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2489 2490 /* set mandatory rates */ 2491 if (ic->ic_curmode == IEEE80211_MODE_11B) 2492 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2493 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2494 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2495 else /* assumes 802.11b/g */ 2496 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2497 2498 /* set default BSS channel */ 2499 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2500 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2501 2502 /* enable interrupts */ 2503 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2504 2505 /* 2506 * Allocate Tx and Rx xfer queues. 2507 */ 2508 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2509 printf("%s: could not allocate Tx list\n", 2510 device_xname(sc->sc_dev)); 2511 goto fail; 2512 } 2513 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2514 printf("%s: could not allocate Rx list\n", 2515 device_xname(sc->sc_dev)); 2516 goto fail; 2517 } 2518 2519 /* 2520 * Start up the receive pipe. 2521 */ 2522 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2523 struct zyd_rx_data *data = &sc->rx_data[i]; 2524 2525 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2526 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2527 USBD_NO_TIMEOUT, zyd_rxeof); 2528 error = usbd_transfer(data->xfer); 2529 if (error != USBD_IN_PROGRESS && error != 0) { 2530 printf("%s: could not queue Rx transfer\n", 2531 device_xname(sc->sc_dev)); 2532 goto fail; 2533 } 2534 } 2535 2536 ifp->if_flags &= ~IFF_OACTIVE; 2537 ifp->if_flags |= IFF_RUNNING; 2538 2539 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2540 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2541 else 2542 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2543 2544 return 0; 2545 2546 fail: zyd_stop(ifp, 1); 2547 return error; 2548 } 2549 2550 Static void 2551 zyd_stop(struct ifnet *ifp, int disable) 2552 { 2553 struct zyd_softc *sc = ifp->if_softc; 2554 struct ieee80211com *ic = &sc->sc_ic; 2555 2556 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2557 2558 sc->tx_timer = 0; 2559 ifp->if_timer = 0; 2560 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2561 2562 /* switch radio transmitter OFF */ 2563 (void)zyd_switch_radio(sc, 0); 2564 2565 /* disable Rx */ 2566 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2567 2568 /* disable interrupts */ 2569 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2570 2571 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2572 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2573 2574 zyd_free_rx_list(sc); 2575 zyd_free_tx_list(sc); 2576 } 2577 2578 Static int 2579 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2580 { 2581 usb_device_request_t req; 2582 uint16_t addr; 2583 uint8_t stat; 2584 2585 DPRINTF(("firmware size=%zu\n", size)); 2586 2587 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2588 req.bRequest = ZYD_DOWNLOADREQ; 2589 USETW(req.wIndex, 0); 2590 2591 addr = ZYD_FIRMWARE_START_ADDR; 2592 while (size > 0) { 2593 #if 0 2594 const int mlen = min(size, 4096); 2595 #else 2596 /* 2597 * XXXX: When the transfer size is 4096 bytes, it is not 2598 * likely to be able to transfer it. 2599 * The cause is port or machine or chip? 2600 */ 2601 const int mlen = min(size, 64); 2602 #endif 2603 2604 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2605 addr)); 2606 2607 USETW(req.wValue, addr); 2608 USETW(req.wLength, mlen); 2609 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2610 return EIO; 2611 2612 addr += mlen / 2; 2613 fw += mlen; 2614 size -= mlen; 2615 } 2616 2617 /* check whether the upload succeeded */ 2618 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2619 req.bRequest = ZYD_DOWNLOADSTS; 2620 USETW(req.wValue, 0); 2621 USETW(req.wIndex, 0); 2622 USETW(req.wLength, sizeof stat); 2623 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2624 return EIO; 2625 2626 return (stat & 0x80) ? EIO : 0; 2627 } 2628 2629 Static void 2630 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2631 { 2632 struct zyd_softc *sc = arg; 2633 struct zyd_node *zn = (struct zyd_node *)ni; 2634 2635 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2636 } 2637 2638 Static void 2639 zyd_amrr_timeout(void *arg) 2640 { 2641 struct zyd_softc *sc = arg; 2642 struct ieee80211com *ic = &sc->sc_ic; 2643 int s; 2644 2645 s = splnet(); 2646 if (ic->ic_opmode == IEEE80211_M_STA) 2647 zyd_iter_func(sc, ic->ic_bss); 2648 else 2649 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2650 splx(s); 2651 2652 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2653 } 2654 2655 Static void 2656 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2657 { 2658 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2659 int i; 2660 2661 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2662 2663 /* set rate to some reasonable initial value */ 2664 for (i = ni->ni_rates.rs_nrates - 1; 2665 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2666 i--); 2667 ni->ni_txrate = i; 2668 } 2669 2670 int 2671 zyd_activate(device_t self, enum devact act) 2672 { 2673 struct zyd_softc *sc = device_private(self); 2674 2675 switch (act) { 2676 case DVACT_DEACTIVATE: 2677 if_deactivate(&sc->sc_if); 2678 return 0; 2679 default: 2680 return EOPNOTSUPP; 2681 } 2682 } 2683