xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.28 2011/01/16 09:08:29 tsutsui Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.28 2011/01/16 09:08:29 tsutsui Exp $");
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54 
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/firmload.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66 
67 #include <dev/usb/if_zydreg.h>
68 
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72 
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84 
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p)	\
87 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p)	\
89 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 	struct usb_devno	dev;
92 	uint8_t			rev;
93 #define ZYD_ZD1211	0
94 #define ZYD_ZD1211B	1
95 } zyd_devs[] = {
96 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
97 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
98 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
99 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
100 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
101 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
102 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
103 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
104 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
105 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
106 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
107 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
108 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
109 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
110 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
111 	ZYD_ZD1211_DEV(TWINMOS,		G240),
112 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
113 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
114 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
115 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
116 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
117 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
118 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
119 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
120 
121 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
122 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
123 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
124 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
125 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
126 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
127 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
128 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
129 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
130 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
131 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
132 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
133 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
134 #if 0	/* Shall we needs? */
135 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
136 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
137 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
138 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
139 #endif
140 	ZYD_ZD1211B_DEV(USR,		USR5423),
141 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
142 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
143 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
144 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
145 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
146 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
147 };
148 #define zyd_lookup(v, p)	\
149 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
150 
151 int zyd_match(device_t, cfdata_t, void *);
152 void zyd_attach(device_t, device_t, void *);
153 int zyd_detach(device_t, int);
154 int zyd_activate(device_t, enum devact);
155 extern struct cfdriver zyd_cd;
156 
157 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
158     zyd_attach, zyd_detach, zyd_activate);
159 
160 Static void	zyd_attachhook(device_t);
161 Static int	zyd_complete_attach(struct zyd_softc *);
162 Static int	zyd_open_pipes(struct zyd_softc *);
163 Static void	zyd_close_pipes(struct zyd_softc *);
164 Static int	zyd_alloc_tx_list(struct zyd_softc *);
165 Static void	zyd_free_tx_list(struct zyd_softc *);
166 Static int	zyd_alloc_rx_list(struct zyd_softc *);
167 Static void	zyd_free_rx_list(struct zyd_softc *);
168 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
169 Static int	zyd_media_change(struct ifnet *);
170 Static void	zyd_next_scan(void *);
171 Static void	zyd_task(void *);
172 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
174 		    void *, int, u_int);
175 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
176 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
177 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
178 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
179 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
180 Static void	zyd_lock_phy(struct zyd_softc *);
181 Static void	zyd_unlock_phy(struct zyd_softc *);
182 Static int	zyd_rfmd_init(struct zyd_rf *);
183 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
184 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
185 Static int	zyd_al2230_init(struct zyd_rf *);
186 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
187 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
188 Static int	zyd_al2230_init_b(struct zyd_rf *);
189 Static int	zyd_al7230B_init(struct zyd_rf *);
190 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
191 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
192 Static int	zyd_al2210_init(struct zyd_rf *);
193 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
194 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
195 Static int	zyd_gct_init(struct zyd_rf *);
196 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
197 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
198 Static int	zyd_maxim_init(struct zyd_rf *);
199 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
200 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
201 Static int	zyd_maxim2_init(struct zyd_rf *);
202 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
203 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
204 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
205 Static const char *zyd_rf_name(uint8_t);
206 Static int	zyd_hw_init(struct zyd_softc *);
207 Static int	zyd_read_eeprom(struct zyd_softc *);
208 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
209 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
210 Static int	zyd_switch_radio(struct zyd_softc *, int);
211 Static void	zyd_set_led(struct zyd_softc *, int, int);
212 Static int	zyd_set_rxfilter(struct zyd_softc *);
213 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
214 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
215 Static uint8_t	zyd_plcp_signal(int);
216 Static void	zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
217 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
218 Static void	zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
219 Static void	zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
220 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
221 		    struct ieee80211_node *);
222 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
223 		    struct ieee80211_node *);
224 Static void	zyd_start(struct ifnet *);
225 Static void	zyd_watchdog(struct ifnet *);
226 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
227 Static int	zyd_init(struct ifnet *);
228 Static void	zyd_stop(struct ifnet *, int);
229 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
230 Static void	zyd_iter_func(void *, struct ieee80211_node *);
231 Static void	zyd_amrr_timeout(void *);
232 Static void	zyd_newassoc(struct ieee80211_node *, int);
233 
234 static const struct ieee80211_rateset zyd_rateset_11b =
235 	{ 4, { 2, 4, 11, 22 } };
236 
237 static const struct ieee80211_rateset zyd_rateset_11g =
238 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
239 
240 int
241 zyd_match(device_t parent, cfdata_t match, void *aux)
242 {
243 	struct usb_attach_arg *uaa = aux;
244 
245 	return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
246 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
247 }
248 
249 Static void
250 zyd_attachhook(device_t self)
251 {
252 	struct zyd_softc *sc = device_private(self);
253 	firmware_handle_t fwh;
254 	const char *fwname;
255 	u_char *fw;
256 	size_t size;
257 	int error;
258 
259 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
260 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
261 		aprint_error_dev(sc->sc_dev,
262 		    "failed to open firmware %s (error=%d)\n", fwname, error);
263 		return;
264 	}
265 	size = firmware_get_size(fwh);
266 	fw = firmware_malloc(size);
267 	if (fw == NULL) {
268 		aprint_error_dev(sc->sc_dev,
269 		    "failed to allocate firmware memory\n");
270 		firmware_close(fwh);
271 		return;
272 	}
273 	error = firmware_read(fwh, 0, fw, size);
274 	firmware_close(fwh);
275 	if (error != 0) {
276 		aprint_error_dev(sc->sc_dev,
277 		    "failed to read firmware (error %d)\n", error);
278 		firmware_free(fw, 0);
279 		return;
280 	}
281 
282 	error = zyd_loadfirmware(sc, fw, size);
283 	if (error != 0) {
284 		aprint_error_dev(sc->sc_dev,
285 		    "could not load firmware (error=%d)\n", error);
286 		firmware_free(fw, 0);
287 		return;
288 	}
289 
290 	firmware_free(fw, 0);
291 	sc->sc_flags |= ZD1211_FWLOADED;
292 
293 	/* complete the attach process */
294 	if ((error = zyd_complete_attach(sc)) == 0)
295 		sc->attached = 1;
296 	return;
297 }
298 
299 void
300 zyd_attach(device_t parent, device_t self, void *aux)
301 {
302 	struct zyd_softc *sc = device_private(self);
303 	struct usb_attach_arg *uaa = aux;
304 	char *devinfop;
305 	usb_device_descriptor_t* ddesc;
306 	struct ifnet *ifp = &sc->sc_if;
307 
308 	sc->sc_dev = self;
309 	sc->sc_udev = uaa->device;
310 	sc->sc_flags = 0;
311 
312 	aprint_naive("\n");
313 	aprint_normal("\n");
314 
315 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
316 	aprint_normal_dev(self, "%s\n", devinfop);
317 	usbd_devinfo_free(devinfop);
318 
319 	sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
320 
321 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 		aprint_error_dev(self, "device version mismatch: 0x%x "
324 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 		return;
326 	}
327 
328 	ifp->if_softc = sc;
329 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 	ifp->if_init = zyd_init;
331 	ifp->if_ioctl = zyd_ioctl;
332 	ifp->if_start = zyd_start;
333 	ifp->if_watchdog = zyd_watchdog;
334 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 	IFQ_SET_READY(&ifp->if_snd);
336 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337 
338 	SIMPLEQ_INIT(&sc->sc_rqh);
339 
340 	/* defer configrations after file system is ready to load firmware */
341 	config_mountroot(self, zyd_attachhook);
342 }
343 
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_if;
349 	usbd_status error;
350 	int i;
351 
352 	usb_init_task(&sc->sc_task, zyd_task, sc);
353 	callout_init(&(sc->sc_scan_ch), 0);
354 
355 	sc->amrr.amrr_min_success_threshold =  1;
356 	sc->amrr.amrr_max_success_threshold = 10;
357 	callout_init(&sc->sc_amrr_ch, 0);
358 
359 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 	if (error != 0) {
361 		aprint_error_dev(sc->sc_dev, "setting config no failed\n");
362 		goto fail;
363 	}
364 
365 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
366 	    &sc->sc_iface);
367 	if (error != 0) {
368 		aprint_error_dev(sc->sc_dev,
369 		    "getting interface handle failed\n");
370 		goto fail;
371 	}
372 
373 	if ((error = zyd_open_pipes(sc)) != 0) {
374 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
375 		goto fail;
376 	}
377 
378 	if ((error = zyd_read_eeprom(sc)) != 0) {
379 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
380 		goto fail;
381 	}
382 
383 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
384 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
385 		goto fail;
386 	}
387 
388 	if ((error = zyd_hw_init(sc)) != 0) {
389 		aprint_error_dev(sc->sc_dev,
390 		    "hardware initialization failed\n");
391 		goto fail;
392 	}
393 
394 	aprint_normal_dev(sc->sc_dev,
395 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
396 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
397 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
398 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
399 
400 	ic->ic_ifp = ifp;
401 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
402 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
403 	ic->ic_state = IEEE80211_S_INIT;
404 
405 	/* set device capabilities */
406 	ic->ic_caps =
407 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
408 	    IEEE80211_C_TXPMGT |	/* tx power management */
409 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
410 	    IEEE80211_C_WEP;		/* s/w WEP */
411 
412 	/* set supported .11b and .11g rates */
413 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
414 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
415 
416 	/* set supported .11b and .11g channels (1 through 14) */
417 	for (i = 1; i <= 14; i++) {
418 		ic->ic_channels[i].ic_freq =
419 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
420 		ic->ic_channels[i].ic_flags =
421 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
422 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
423 	}
424 
425 	if_attach(ifp);
426 	ieee80211_ifattach(ic);
427 	ic->ic_node_alloc = zyd_node_alloc;
428 	ic->ic_newassoc = zyd_newassoc;
429 
430 	/* override state transition machine */
431 	sc->sc_newstate = ic->ic_newstate;
432 	ic->ic_newstate = zyd_newstate;
433 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
434 
435 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
436 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
437 	    &sc->sc_drvbpf);
438 
439 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
440 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
441 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
442 
443 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
444 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
445 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
446 
447 	ieee80211_announce(ic);
448 
449 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
450 
451 fail:	return error;
452 }
453 
454 int
455 zyd_detach(device_t self, int flags)
456 {
457 	struct zyd_softc *sc = device_private(self);
458 	struct ieee80211com *ic = &sc->sc_ic;
459 	struct ifnet *ifp = &sc->sc_if;
460 	int s;
461 
462 	if (!sc->attached)
463 		return 0;
464 
465 	s = splusb();
466 
467 	zyd_stop(ifp, 1);
468 	usb_rem_task(sc->sc_udev, &sc->sc_task);
469 	callout_stop(&sc->sc_scan_ch);
470 	callout_stop(&sc->sc_amrr_ch);
471 
472 	zyd_close_pipes(sc);
473 
474 	sc->attached = 0;
475 
476 	bpf_detach(ifp);
477 	ieee80211_ifdetach(ic);
478 	if_detach(ifp);
479 
480 	splx(s);
481 
482 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 	    sc->sc_dev);
484 
485 	return 0;
486 }
487 
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 	usb_endpoint_descriptor_t *edesc;
492 	int isize;
493 	usbd_status error;
494 
495 	/* interrupt in */
496 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 	if (edesc == NULL)
498 		return EINVAL;
499 
500 	isize = UGETW(edesc->wMaxPacketSize);
501 	if (isize == 0)	/* should not happen */
502 		return EINVAL;
503 
504 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 	if (sc->ibuf == NULL)
506 		return ENOMEM;
507 
508 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 	    USBD_DEFAULT_INTERVAL);
511 	if (error != 0) {
512 		printf("%s: open rx intr pipe failed: %s\n",
513 		    device_xname(sc->sc_dev), usbd_errstr(error));
514 		goto fail;
515 	}
516 
517 	/* interrupt out (not necessarily an interrupt pipe) */
518 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 	if (error != 0) {
521 		printf("%s: open tx intr pipe failed: %s\n",
522 		    device_xname(sc->sc_dev), usbd_errstr(error));
523 		goto fail;
524 	}
525 
526 	/* bulk in */
527 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 	if (error != 0) {
530 		printf("%s: open rx pipe failed: %s\n",
531 		    device_xname(sc->sc_dev), usbd_errstr(error));
532 		goto fail;
533 	}
534 
535 	/* bulk out */
536 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 	if (error != 0) {
539 		printf("%s: open tx pipe failed: %s\n",
540 		    device_xname(sc->sc_dev), usbd_errstr(error));
541 		goto fail;
542 	}
543 
544 	return 0;
545 
546 fail:	zyd_close_pipes(sc);
547 	return error;
548 }
549 
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 	int i;
554 
555 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 		if (sc->zyd_ep[i] != NULL) {
557 			usbd_abort_pipe(sc->zyd_ep[i]);
558 			usbd_close_pipe(sc->zyd_ep[i]);
559 			sc->zyd_ep[i] = NULL;
560 		}
561 	}
562 	if (sc->ibuf != NULL) {
563 		free(sc->ibuf, M_USBDEV);
564 		sc->ibuf = NULL;
565 	}
566 }
567 
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 	int i, error;
572 
573 	sc->tx_queued = 0;
574 
575 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 		struct zyd_tx_data *data = &sc->tx_data[i];
577 
578 		data->sc = sc;	/* backpointer for callbacks */
579 
580 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 		if (data->xfer == NULL) {
582 			printf("%s: could not allocate tx xfer\n",
583 			    device_xname(sc->sc_dev));
584 			error = ENOMEM;
585 			goto fail;
586 		}
587 		data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 		if (data->buf == NULL) {
589 			printf("%s: could not allocate tx buffer\n",
590 			    device_xname(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		/* clear Tx descriptor */
596 		memset(data->buf, 0, sizeof (struct zyd_tx_desc));
597 	}
598 	return 0;
599 
600 fail:	zyd_free_tx_list(sc);
601 	return error;
602 }
603 
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 	int i;
608 
609 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 		struct zyd_tx_data *data = &sc->tx_data[i];
611 
612 		if (data->xfer != NULL) {
613 			usbd_free_xfer(data->xfer);
614 			data->xfer = NULL;
615 		}
616 		if (data->ni != NULL) {
617 			ieee80211_free_node(data->ni);
618 			data->ni = NULL;
619 		}
620 	}
621 }
622 
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 	int i, error;
627 
628 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 		struct zyd_rx_data *data = &sc->rx_data[i];
630 
631 		data->sc = sc;	/* backpointer for callbacks */
632 
633 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 		if (data->xfer == NULL) {
635 			printf("%s: could not allocate rx xfer\n",
636 			    device_xname(sc->sc_dev));
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 		data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 		if (data->buf == NULL) {
642 			printf("%s: could not allocate rx buffer\n",
643 			    device_xname(sc->sc_dev));
644 			error = ENOMEM;
645 			goto fail;
646 		}
647 	}
648 	return 0;
649 
650 fail:	zyd_free_rx_list(sc);
651 	return error;
652 }
653 
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 	int i;
658 
659 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 		struct zyd_rx_data *data = &sc->rx_data[i];
661 
662 		if (data->xfer != NULL) {
663 			usbd_free_xfer(data->xfer);
664 			data->xfer = NULL;
665 		}
666 	}
667 }
668 
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 	struct zyd_node *zn;
674 
675 	zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
676 
677 	return &zn->ni;
678 }
679 
680 Static int
681 zyd_media_change(struct ifnet *ifp)
682 {
683 	int error;
684 
685 	error = ieee80211_media_change(ifp);
686 	if (error != ENETRESET)
687 		return error;
688 
689 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 		zyd_init(ifp);
691 
692 	return 0;
693 }
694 
695 /*
696  * This function is called periodically (every 200ms) during scanning to
697  * switch from one channel to another.
698  */
699 Static void
700 zyd_next_scan(void *arg)
701 {
702 	struct zyd_softc *sc = arg;
703 	struct ieee80211com *ic = &sc->sc_ic;
704 
705 	if (ic->ic_state == IEEE80211_S_SCAN)
706 		ieee80211_next_scan(ic);
707 }
708 
709 Static void
710 zyd_task(void *arg)
711 {
712 	struct zyd_softc *sc = arg;
713 	struct ieee80211com *ic = &sc->sc_ic;
714 	enum ieee80211_state ostate;
715 
716 	ostate = ic->ic_state;
717 
718 	switch (sc->sc_state) {
719 	case IEEE80211_S_INIT:
720 		if (ostate == IEEE80211_S_RUN) {
721 			/* turn link LED off */
722 			zyd_set_led(sc, ZYD_LED1, 0);
723 
724 			/* stop data LED from blinking */
725 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
726 		}
727 		break;
728 
729 	case IEEE80211_S_SCAN:
730 		zyd_set_chan(sc, ic->ic_curchan);
731 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
732 		break;
733 
734 	case IEEE80211_S_AUTH:
735 	case IEEE80211_S_ASSOC:
736 		zyd_set_chan(sc, ic->ic_curchan);
737 		break;
738 
739 	case IEEE80211_S_RUN:
740 	{
741 		struct ieee80211_node *ni = ic->ic_bss;
742 
743 		zyd_set_chan(sc, ic->ic_curchan);
744 
745 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
746 			/* turn link LED on */
747 			zyd_set_led(sc, ZYD_LED1, 1);
748 
749 			/* make data LED blink upon Tx */
750 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
751 
752 			zyd_set_bssid(sc, ni->ni_bssid);
753 		}
754 
755 		if (ic->ic_opmode == IEEE80211_M_STA) {
756 			/* fake a join to init the tx rate */
757 			zyd_newassoc(ni, 1);
758 		}
759 
760 		/* start automatic rate control timer */
761 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
763 
764 		break;
765 	}
766 	}
767 
768 	sc->sc_newstate(ic, sc->sc_state, -1);
769 }
770 
771 Static int
772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
775 
776 	if (!sc->attached)
777 		return ENXIO;
778 
779 	usb_rem_task(sc->sc_udev, &sc->sc_task);
780 	callout_stop(&sc->sc_scan_ch);
781 	callout_stop(&sc->sc_amrr_ch);
782 
783 	/* do it in a process context */
784 	sc->sc_state = nstate;
785 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
786 
787 	return 0;
788 }
789 
790 Static int
791 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
792     void *odata, int olen, u_int flags)
793 {
794 	usbd_xfer_handle xfer;
795 	struct zyd_cmd cmd;
796 	struct rq rq;
797 	uint16_t xferflags;
798 	usbd_status error;
799 	int s = 0;
800 
801 	if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
802 		return ENOMEM;
803 
804 	cmd.code = htole16(code);
805 	bcopy(idata, cmd.data, ilen);
806 
807 	xferflags = USBD_FORCE_SHORT_XFER;
808 	if (!(flags & ZYD_CMD_FLAG_READ))
809 		xferflags |= USBD_SYNCHRONOUS;
810 	else {
811 		s = splusb();
812 		rq.idata = idata;
813 		rq.odata = odata;
814 		rq.len = olen / sizeof (struct zyd_pair);
815 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
816 	}
817 
818 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
819 	    sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
820 	error = usbd_transfer(xfer);
821 	if (error != USBD_IN_PROGRESS && error != 0) {
822 		if (flags & ZYD_CMD_FLAG_READ)
823 			splx(s);
824 		printf("%s: could not send command (error=%s)\n",
825 		    device_xname(sc->sc_dev), usbd_errstr(error));
826 		(void)usbd_free_xfer(xfer);
827 		return EIO;
828 	}
829 	if (!(flags & ZYD_CMD_FLAG_READ)) {
830 		(void)usbd_free_xfer(xfer);
831 		return 0;	/* write: don't wait for reply */
832 	}
833 	/* wait at most one second for command reply */
834 	error = tsleep(odata, PCATCH, "zydcmd", hz);
835 	if (error == EWOULDBLOCK)
836 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
837 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
838 	splx(s);
839 
840 	(void)usbd_free_xfer(xfer);
841 	return error;
842 }
843 
844 Static int
845 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
846 {
847 	struct zyd_pair tmp;
848 	int error;
849 
850 	reg = htole16(reg);
851 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
852 	    ZYD_CMD_FLAG_READ);
853 	if (error == 0)
854 		*val = le16toh(tmp.val);
855 	return error;
856 }
857 
858 Static int
859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
860 {
861 	struct zyd_pair tmp[2];
862 	uint16_t regs[2];
863 	int error;
864 
865 	regs[0] = htole16(ZYD_REG32_HI(reg));
866 	regs[1] = htole16(ZYD_REG32_LO(reg));
867 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
868 	    ZYD_CMD_FLAG_READ);
869 	if (error == 0)
870 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
871 	return error;
872 }
873 
874 Static int
875 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
876 {
877 	struct zyd_pair pair;
878 
879 	pair.reg = htole16(reg);
880 	pair.val = htole16(val);
881 
882 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
883 }
884 
885 Static int
886 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
887 {
888 	struct zyd_pair pair[2];
889 
890 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
891 	pair[0].val = htole16(val >> 16);
892 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
893 	pair[1].val = htole16(val & 0xffff);
894 
895 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
896 }
897 
898 Static int
899 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
900 {
901 	struct zyd_rf *rf = &sc->sc_rf;
902 	struct zyd_rfwrite req;
903 	uint16_t cr203;
904 	int i;
905 
906 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
907 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
908 
909 	req.code  = htole16(2);
910 	req.width = htole16(rf->width);
911 	for (i = 0; i < rf->width; i++) {
912 		req.bit[i] = htole16(cr203);
913 		if (val & (1 << (rf->width - 1 - i)))
914 			req.bit[i] |= htole16(ZYD_RF_DATA);
915 	}
916 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
917 }
918 
919 Static void
920 zyd_lock_phy(struct zyd_softc *sc)
921 {
922 	uint32_t tmp;
923 
924 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
925 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
926 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
927 }
928 
929 Static void
930 zyd_unlock_phy(struct zyd_softc *sc)
931 {
932 	uint32_t tmp;
933 
934 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
935 	tmp |= ZYD_UNLOCK_PHY_REGS;
936 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
937 }
938 
939 /*
940  * RFMD RF methods.
941  */
942 Static int
943 zyd_rfmd_init(struct zyd_rf *rf)
944 {
945 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
946 	struct zyd_softc *sc = rf->rf_sc;
947 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
948 	static const uint32_t rfini[] = ZYD_RFMD_RF;
949 	int i, error;
950 
951 	/* init RF-dependent PHY registers */
952 	for (i = 0; i < N(phyini); i++) {
953 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
954 		if (error != 0)
955 			return error;
956 	}
957 
958 	/* init RFMD radio */
959 	for (i = 0; i < N(rfini); i++) {
960 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
961 			return error;
962 	}
963 	return 0;
964 #undef N
965 }
966 
967 Static int
968 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
969 {
970 	struct zyd_softc *sc = rf->rf_sc;
971 
972 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
973 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
974 
975 	return 0;
976 }
977 
978 Static int
979 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
980 {
981 	struct zyd_softc *sc = rf->rf_sc;
982 	static const struct {
983 		uint32_t	r1, r2;
984 	} rfprog[] = ZYD_RFMD_CHANTABLE;
985 
986 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
987 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
988 
989 	return 0;
990 }
991 
992 /*
993  * AL2230 RF methods.
994  */
995 Static int
996 zyd_al2230_init(struct zyd_rf *rf)
997 {
998 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
999 	struct zyd_softc *sc = rf->rf_sc;
1000 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1001 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1002 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1003 	int i, error;
1004 
1005 	/* init RF-dependent PHY registers */
1006 	for (i = 0; i < N(phyini); i++) {
1007 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1008 		if (error != 0)
1009 			return error;
1010 	}
1011 
1012 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1013 		for (i = 0; i < N(phy2230s); i++) {
1014 			error = zyd_write16(sc, phy2230s[i].reg,
1015 			    phy2230s[i].val);
1016 			if (error != 0)
1017 				return error;
1018 		}
1019 	}
1020 
1021 	/* init AL2230 radio */
1022 	for (i = 0; i < N(rfini); i++) {
1023 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1024 			return error;
1025 	}
1026 	return 0;
1027 #undef N
1028 }
1029 
1030 Static int
1031 zyd_al2230_init_b(struct zyd_rf *rf)
1032 {
1033 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1034 	struct zyd_softc *sc = rf->rf_sc;
1035 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1036 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1037 	int i, error;
1038 
1039 	/* init RF-dependent PHY registers */
1040 	for (i = 0; i < N(phyini); i++) {
1041 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1042 		if (error != 0)
1043 			return error;
1044 	}
1045 
1046 	/* init AL2230 radio */
1047 	for (i = 0; i < N(rfini); i++) {
1048 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1049 			return error;
1050 	}
1051 	return 0;
1052 #undef N
1053 }
1054 
1055 Static int
1056 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1057 {
1058 	struct zyd_softc *sc = rf->rf_sc;
1059 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1060 
1061 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1062 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1063 
1064 	return 0;
1065 }
1066 
1067 Static int
1068 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1069 {
1070 	struct zyd_softc *sc = rf->rf_sc;
1071 	static const struct {
1072 		uint32_t	r1, r2, r3;
1073 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1074 
1075 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1076 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1077 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1078 
1079 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1080 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1081 
1082 	return 0;
1083 }
1084 
1085 /*
1086  * AL7230B RF methods.
1087  */
1088 Static int
1089 zyd_al7230B_init(struct zyd_rf *rf)
1090 {
1091 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1092 	struct zyd_softc *sc = rf->rf_sc;
1093 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1094 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1095 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1096 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1097 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1098 	int i, error;
1099 
1100 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1101 
1102 	/* init RF-dependent PHY registers, part one */
1103 	for (i = 0; i < N(phyini_1); i++) {
1104 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1105 		if (error != 0)
1106 			return error;
1107 	}
1108 	/* init AL7230B radio, part one */
1109 	for (i = 0; i < N(rfini_1); i++) {
1110 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1111 			return error;
1112 	}
1113 	/* init RF-dependent PHY registers, part two */
1114 	for (i = 0; i < N(phyini_2); i++) {
1115 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1116 		if (error != 0)
1117 			return error;
1118 	}
1119 	/* init AL7230B radio, part two */
1120 	for (i = 0; i < N(rfini_2); i++) {
1121 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1122 			return error;
1123 	}
1124 	/* init RF-dependent PHY registers, part three */
1125 	for (i = 0; i < N(phyini_3); i++) {
1126 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1127 		if (error != 0)
1128 			return error;
1129 	}
1130 
1131 	return 0;
1132 #undef N
1133 }
1134 
1135 Static int
1136 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1137 {
1138 	struct zyd_softc *sc = rf->rf_sc;
1139 
1140 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1141 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1142 
1143 	return 0;
1144 }
1145 
1146 Static int
1147 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1148 {
1149 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1150 	struct zyd_softc *sc = rf->rf_sc;
1151 	static const struct {
1152 		uint32_t	r1, r2;
1153 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1154 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1155 	int i, error;
1156 
1157 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1158 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1159 
1160 	for (i = 0; i < N(rfsc); i++) {
1161 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1162 			return error;
1163 	}
1164 
1165 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1166 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1167 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1168 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1169 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1170 
1171 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1172 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1173 	(void)zyd_rfwrite(sc, 0x3c9000);
1174 
1175 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1176 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1177 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1178 
1179 	return 0;
1180 #undef N
1181 }
1182 
1183 /*
1184  * AL2210 RF methods.
1185  */
1186 Static int
1187 zyd_al2210_init(struct zyd_rf *rf)
1188 {
1189 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1190 	struct zyd_softc *sc = rf->rf_sc;
1191 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1192 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1193 	uint32_t tmp;
1194 	int i, error;
1195 
1196 	(void)zyd_write32(sc, ZYD_CR18, 2);
1197 
1198 	/* init RF-dependent PHY registers */
1199 	for (i = 0; i < N(phyini); i++) {
1200 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1201 		if (error != 0)
1202 			return error;
1203 	}
1204 	/* init AL2210 radio */
1205 	for (i = 0; i < N(rfini); i++) {
1206 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1207 			return error;
1208 	}
1209 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1210 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1211 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1212 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1213 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1214 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1215 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1216 	(void)zyd_write32(sc, ZYD_CR18, 3);
1217 
1218 	return 0;
1219 #undef N
1220 }
1221 
1222 Static int
1223 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1224 {
1225 	/* vendor driver does nothing for this RF chip */
1226 
1227 	return 0;
1228 }
1229 
1230 Static int
1231 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1232 {
1233 	struct zyd_softc *sc = rf->rf_sc;
1234 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1235 	uint32_t tmp;
1236 
1237 	(void)zyd_write32(sc, ZYD_CR18, 2);
1238 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1239 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1240 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1241 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1242 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1243 
1244 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1245 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1246 
1247 	/* actually set the channel */
1248 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1249 
1250 	(void)zyd_write32(sc, ZYD_CR18, 3);
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * GCT RF methods.
1257  */
1258 Static int
1259 zyd_gct_init(struct zyd_rf *rf)
1260 {
1261 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1262 	struct zyd_softc *sc = rf->rf_sc;
1263 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1264 	static const uint32_t rfini[] = ZYD_GCT_RF;
1265 	int i, error;
1266 
1267 	/* init RF-dependent PHY registers */
1268 	for (i = 0; i < N(phyini); i++) {
1269 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1270 		if (error != 0)
1271 			return error;
1272 	}
1273 	/* init cgt radio */
1274 	for (i = 0; i < N(rfini); i++) {
1275 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1276 			return error;
1277 	}
1278 	return 0;
1279 #undef N
1280 }
1281 
1282 Static int
1283 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1284 {
1285 	/* vendor driver does nothing for this RF chip */
1286 
1287 	return 0;
1288 }
1289 
1290 Static int
1291 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1292 {
1293 	struct zyd_softc *sc = rf->rf_sc;
1294 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1295 
1296 	(void)zyd_rfwrite(sc, 0x1c0000);
1297 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1298 	(void)zyd_rfwrite(sc, 0x1c0008);
1299 
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Maxim RF methods.
1305  */
1306 Static int
1307 zyd_maxim_init(struct zyd_rf *rf)
1308 {
1309 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1310 	struct zyd_softc *sc = rf->rf_sc;
1311 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1312 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1313 	uint16_t tmp;
1314 	int i, error;
1315 
1316 	/* init RF-dependent PHY registers */
1317 	for (i = 0; i < N(phyini); i++) {
1318 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1319 		if (error != 0)
1320 			return error;
1321 	}
1322 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1323 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1324 
1325 	/* init maxim radio */
1326 	for (i = 0; i < N(rfini); i++) {
1327 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1328 			return error;
1329 	}
1330 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1331 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1332 
1333 	return 0;
1334 #undef N
1335 }
1336 
1337 Static int
1338 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1339 {
1340 	/* vendor driver does nothing for this RF chip */
1341 
1342 	return 0;
1343 }
1344 
1345 Static int
1346 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1347 {
1348 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1349 	struct zyd_softc *sc = rf->rf_sc;
1350 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1351 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1352 	static const struct {
1353 		uint32_t	r1, r2;
1354 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1355 	uint16_t tmp;
1356 	int i, error;
1357 
1358 	/*
1359 	 * Do the same as we do when initializing it, except for the channel
1360 	 * values coming from the two channel tables.
1361 	 */
1362 
1363 	/* init RF-dependent PHY registers */
1364 	for (i = 0; i < N(phyini); i++) {
1365 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1366 		if (error != 0)
1367 			return error;
1368 	}
1369 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1370 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1371 
1372 	/* first two values taken from the chantables */
1373 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1374 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1375 
1376 	/* init maxim radio - skipping the two first values */
1377 	for (i = 2; i < N(rfini); i++) {
1378 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1379 			return error;
1380 	}
1381 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1382 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1383 
1384 	return 0;
1385 #undef N
1386 }
1387 
1388 /*
1389  * Maxim2 RF methods.
1390  */
1391 Static int
1392 zyd_maxim2_init(struct zyd_rf *rf)
1393 {
1394 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1395 	struct zyd_softc *sc = rf->rf_sc;
1396 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1397 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1398 	uint16_t tmp;
1399 	int i, error;
1400 
1401 	/* init RF-dependent PHY registers */
1402 	for (i = 0; i < N(phyini); i++) {
1403 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1404 		if (error != 0)
1405 			return error;
1406 	}
1407 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1408 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1409 
1410 	/* init maxim2 radio */
1411 	for (i = 0; i < N(rfini); i++) {
1412 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1413 			return error;
1414 	}
1415 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1416 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1417 
1418 	return 0;
1419 #undef N
1420 }
1421 
1422 Static int
1423 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1424 {
1425 	/* vendor driver does nothing for this RF chip */
1426 
1427 	return 0;
1428 }
1429 
1430 Static int
1431 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1432 {
1433 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1434 	struct zyd_softc *sc = rf->rf_sc;
1435 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1436 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1437 	static const struct {
1438 		uint32_t	r1, r2;
1439 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1440 	uint16_t tmp;
1441 	int i, error;
1442 
1443 	/*
1444 	 * Do the same as we do when initializing it, except for the channel
1445 	 * values coming from the two channel tables.
1446 	 */
1447 
1448 	/* init RF-dependent PHY registers */
1449 	for (i = 0; i < N(phyini); i++) {
1450 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1451 		if (error != 0)
1452 			return error;
1453 	}
1454 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1455 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1456 
1457 	/* first two values taken from the chantables */
1458 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1459 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1460 
1461 	/* init maxim2 radio - skipping the two first values */
1462 	for (i = 2; i < N(rfini); i++) {
1463 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1464 			return error;
1465 	}
1466 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1467 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1468 
1469 	return 0;
1470 #undef N
1471 }
1472 
1473 Static int
1474 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1475 {
1476 	struct zyd_rf *rf = &sc->sc_rf;
1477 
1478 	rf->rf_sc = sc;
1479 
1480 	switch (type) {
1481 	case ZYD_RF_RFMD:
1482 		rf->init         = zyd_rfmd_init;
1483 		rf->switch_radio = zyd_rfmd_switch_radio;
1484 		rf->set_channel  = zyd_rfmd_set_channel;
1485 		rf->width        = 24;	/* 24-bit RF values */
1486 		break;
1487 	case ZYD_RF_AL2230:
1488 	case ZYD_RF_AL2230S:
1489 		if (sc->mac_rev == ZYD_ZD1211B)
1490 			rf->init = zyd_al2230_init_b;
1491 		else
1492 			rf->init = zyd_al2230_init;
1493 		rf->switch_radio = zyd_al2230_switch_radio;
1494 		rf->set_channel  = zyd_al2230_set_channel;
1495 		rf->width        = 24;	/* 24-bit RF values */
1496 		break;
1497 	case ZYD_RF_AL7230B:
1498 		rf->init         = zyd_al7230B_init;
1499 		rf->switch_radio = zyd_al7230B_switch_radio;
1500 		rf->set_channel  = zyd_al7230B_set_channel;
1501 		rf->width        = 24;	/* 24-bit RF values */
1502 		break;
1503 	case ZYD_RF_AL2210:
1504 		rf->init         = zyd_al2210_init;
1505 		rf->switch_radio = zyd_al2210_switch_radio;
1506 		rf->set_channel  = zyd_al2210_set_channel;
1507 		rf->width        = 24;	/* 24-bit RF values */
1508 		break;
1509 	case ZYD_RF_GCT:
1510 		rf->init         = zyd_gct_init;
1511 		rf->switch_radio = zyd_gct_switch_radio;
1512 		rf->set_channel  = zyd_gct_set_channel;
1513 		rf->width        = 21;	/* 21-bit RF values */
1514 		break;
1515 	case ZYD_RF_MAXIM_NEW:
1516 		rf->init         = zyd_maxim_init;
1517 		rf->switch_radio = zyd_maxim_switch_radio;
1518 		rf->set_channel  = zyd_maxim_set_channel;
1519 		rf->width        = 18;	/* 18-bit RF values */
1520 		break;
1521 	case ZYD_RF_MAXIM_NEW2:
1522 		rf->init         = zyd_maxim2_init;
1523 		rf->switch_radio = zyd_maxim2_switch_radio;
1524 		rf->set_channel  = zyd_maxim2_set_channel;
1525 		rf->width        = 18;	/* 18-bit RF values */
1526 		break;
1527 	default:
1528 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1529 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1530 		return EINVAL;
1531 	}
1532 	return 0;
1533 }
1534 
1535 Static const char *
1536 zyd_rf_name(uint8_t type)
1537 {
1538 	static const char * const zyd_rfs[] = {
1539 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1540 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1541 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1542 		"PHILIPS"
1543 	};
1544 
1545 	return zyd_rfs[(type > 15) ? 0 : type];
1546 }
1547 
1548 Static int
1549 zyd_hw_init(struct zyd_softc *sc)
1550 {
1551 	struct zyd_rf *rf = &sc->sc_rf;
1552 	const struct zyd_phy_pair *phyp;
1553 	int error;
1554 
1555 	/* specify that the plug and play is finished */
1556 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1557 
1558 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1559 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1560 
1561 	/* retrieve firmware revision number */
1562 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1563 
1564 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1565 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1566 
1567 	/* disable interrupts */
1568 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1569 
1570 	/* PHY init */
1571 	zyd_lock_phy(sc);
1572 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1573 	for (; phyp->reg != 0; phyp++) {
1574 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1575 			goto fail;
1576 	}
1577 	zyd_unlock_phy(sc);
1578 
1579 	/* HMAC init */
1580 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1581 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1582 
1583 	if (sc->mac_rev == ZYD_ZD1211) {
1584 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1585 	} else {
1586 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1587 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1588 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1589 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1590 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1591 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1592 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1593 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1594 	}
1595 
1596 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1597 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1598 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1599 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1600 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1601 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1602 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1603 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1604 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1605 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1606 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1607 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1608 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1609 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1610 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1611 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1612 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1613 
1614 	/* RF chip init */
1615 	zyd_lock_phy(sc);
1616 	error = (*rf->init)(rf);
1617 	zyd_unlock_phy(sc);
1618 	if (error != 0) {
1619 		printf("%s: radio initialization failed\n",
1620 		    device_xname(sc->sc_dev));
1621 		goto fail;
1622 	}
1623 
1624 	/* init beacon interval to 100ms */
1625 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1626 		goto fail;
1627 
1628 fail:	return error;
1629 }
1630 
1631 Static int
1632 zyd_read_eeprom(struct zyd_softc *sc)
1633 {
1634 	struct ieee80211com *ic = &sc->sc_ic;
1635 	uint32_t tmp;
1636 	uint16_t val;
1637 	int i;
1638 
1639 	/* read MAC address */
1640 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1641 	ic->ic_myaddr[0] = tmp & 0xff;
1642 	ic->ic_myaddr[1] = tmp >>  8;
1643 	ic->ic_myaddr[2] = tmp >> 16;
1644 	ic->ic_myaddr[3] = tmp >> 24;
1645 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1646 	ic->ic_myaddr[4] = tmp & 0xff;
1647 	ic->ic_myaddr[5] = tmp >>  8;
1648 
1649 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1650 	sc->rf_rev = tmp & 0x0f;
1651 	sc->pa_rev = (tmp >> 16) & 0x0f;
1652 
1653 	/* read regulatory domain (currently unused) */
1654 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1655 	sc->regdomain = tmp >> 16;
1656 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1657 
1658 	/* read Tx power calibration tables */
1659 	for (i = 0; i < 7; i++) {
1660 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1661 		sc->pwr_cal[i * 2] = val >> 8;
1662 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1663 
1664 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1665 		sc->pwr_int[i * 2] = val >> 8;
1666 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1667 
1668 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1669 		sc->ofdm36_cal[i * 2] = val >> 8;
1670 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1671 
1672 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1673 		sc->ofdm48_cal[i * 2] = val >> 8;
1674 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1675 
1676 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1677 		sc->ofdm54_cal[i * 2] = val >> 8;
1678 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1679 	}
1680 	return 0;
1681 }
1682 
1683 Static int
1684 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1685 {
1686 	uint32_t tmp;
1687 
1688 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1689 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1690 
1691 	tmp = addr[5] << 8 | addr[4];
1692 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1693 
1694 	return 0;
1695 }
1696 
1697 Static int
1698 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1699 {
1700 	uint32_t tmp;
1701 
1702 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1703 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1704 
1705 	tmp = addr[5] << 8 | addr[4];
1706 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1707 
1708 	return 0;
1709 }
1710 
1711 Static int
1712 zyd_switch_radio(struct zyd_softc *sc, int on)
1713 {
1714 	struct zyd_rf *rf = &sc->sc_rf;
1715 	int error;
1716 
1717 	zyd_lock_phy(sc);
1718 	error = (*rf->switch_radio)(rf, on);
1719 	zyd_unlock_phy(sc);
1720 
1721 	return error;
1722 }
1723 
1724 Static void
1725 zyd_set_led(struct zyd_softc *sc, int which, int on)
1726 {
1727 	uint32_t tmp;
1728 
1729 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1730 	tmp &= ~which;
1731 	if (on)
1732 		tmp |= which;
1733 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1734 }
1735 
1736 Static int
1737 zyd_set_rxfilter(struct zyd_softc *sc)
1738 {
1739 	uint32_t rxfilter;
1740 
1741 	switch (sc->sc_ic.ic_opmode) {
1742 	case IEEE80211_M_STA:
1743 		rxfilter = ZYD_FILTER_BSS;
1744 		break;
1745 	case IEEE80211_M_IBSS:
1746 	case IEEE80211_M_HOSTAP:
1747 		rxfilter = ZYD_FILTER_HOSTAP;
1748 		break;
1749 	case IEEE80211_M_MONITOR:
1750 		rxfilter = ZYD_FILTER_MONITOR;
1751 		break;
1752 	default:
1753 		/* should not get there */
1754 		return EINVAL;
1755 	}
1756 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1757 }
1758 
1759 Static void
1760 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1761 {
1762 	struct ieee80211com *ic = &sc->sc_ic;
1763 	struct zyd_rf *rf = &sc->sc_rf;
1764 	u_int chan;
1765 
1766 	chan = ieee80211_chan2ieee(ic, c);
1767 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1768 		return;
1769 
1770 	zyd_lock_phy(sc);
1771 
1772 	(*rf->set_channel)(rf, chan);
1773 
1774 	/* update Tx power */
1775 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1776 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1777 
1778 	if (sc->mac_rev == ZYD_ZD1211B) {
1779 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1780 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1781 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1782 
1783 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1784 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1785 	}
1786 
1787 	zyd_unlock_phy(sc);
1788 }
1789 
1790 Static int
1791 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1792 {
1793 	/* XXX this is probably broken.. */
1794 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1795 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1796 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1797 
1798 	return 0;
1799 }
1800 
1801 Static uint8_t
1802 zyd_plcp_signal(int rate)
1803 {
1804 	switch (rate) {
1805 	/* CCK rates (returned values are device-dependent) */
1806 	case 2:		return 0x0;
1807 	case 4:		return 0x1;
1808 	case 11:	return 0x2;
1809 	case 22:	return 0x3;
1810 
1811 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1812 	case 12:	return 0xb;
1813 	case 18:	return 0xf;
1814 	case 24:	return 0xa;
1815 	case 36:	return 0xe;
1816 	case 48:	return 0x9;
1817 	case 72:	return 0xd;
1818 	case 96:	return 0x8;
1819 	case 108:	return 0xc;
1820 
1821 	/* unsupported rates (should not get there) */
1822 	default:	return 0xff;
1823 	}
1824 }
1825 
1826 Static void
1827 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1828 {
1829 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1830 	struct zyd_cmd *cmd;
1831 	uint32_t datalen;
1832 
1833 	if (status != USBD_NORMAL_COMPLETION) {
1834 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1835 			return;
1836 
1837 		if (status == USBD_STALLED) {
1838 			usbd_clear_endpoint_stall_async(
1839 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1840 		}
1841 		return;
1842 	}
1843 
1844 	cmd = (struct zyd_cmd *)sc->ibuf;
1845 
1846 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1847 		struct zyd_notif_retry *retry =
1848 		    (struct zyd_notif_retry *)cmd->data;
1849 		struct ieee80211com *ic = &sc->sc_ic;
1850 		struct ifnet *ifp = &sc->sc_if;
1851 		struct ieee80211_node *ni;
1852 
1853 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1854 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1855 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1856 
1857 		/*
1858 		 * Find the node to which the packet was sent and update its
1859 		 * retry statistics.  In BSS mode, this node is the AP we're
1860 		 * associated to so no lookup is actually needed.
1861 		 */
1862 		if (ic->ic_opmode != IEEE80211_M_STA) {
1863 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1864 			if (ni == NULL)
1865 				return;	/* just ignore */
1866 		} else
1867 			ni = ic->ic_bss;
1868 
1869 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1870 
1871 		if (le16toh(retry->count) & 0x100)
1872 			ifp->if_oerrors++;	/* too many retries */
1873 
1874 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1875 		struct rq *rqp;
1876 
1877 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1878 			return;	/* HMAC interrupt */
1879 
1880 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1881 		datalen -= sizeof(cmd->code);
1882 		datalen -= 2;	/* XXX: padding? */
1883 
1884 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1885 			int i;
1886 
1887 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1888 				continue;
1889 			for (i = 0; i < rqp->len; i++) {
1890 				if (*(((const uint16_t *)rqp->idata) + i) !=
1891 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1892 					break;
1893 			}
1894 			if (i != rqp->len)
1895 				continue;
1896 
1897 			/* copy answer into caller-supplied buffer */
1898 			bcopy(cmd->data, rqp->odata,
1899 			    sizeof(struct zyd_pair) * rqp->len);
1900 			wakeup(rqp->odata);	/* wakeup caller */
1901 
1902 			return;
1903 		}
1904 		return;	/* unexpected IORD notification */
1905 	} else {
1906 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1907 		    le16toh(cmd->code));
1908 	}
1909 }
1910 
1911 Static void
1912 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1913 {
1914 	struct ieee80211com *ic = &sc->sc_ic;
1915 	struct ifnet *ifp = &sc->sc_if;
1916 	struct ieee80211_node *ni;
1917 	struct ieee80211_frame *wh;
1918 	const struct zyd_plcphdr *plcp;
1919 	const struct zyd_rx_stat *stat;
1920 	struct mbuf *m;
1921 	int rlen, s;
1922 
1923 	if (len < ZYD_MIN_FRAGSZ) {
1924 		printf("%s: frame too short (length=%d)\n",
1925 		    device_xname(sc->sc_dev), len);
1926 		ifp->if_ierrors++;
1927 		return;
1928 	}
1929 
1930 	plcp = (const struct zyd_plcphdr *)buf;
1931 	stat = (const struct zyd_rx_stat *)
1932 	    (buf + len - sizeof (struct zyd_rx_stat));
1933 
1934 	if (stat->flags & ZYD_RX_ERROR) {
1935 		DPRINTF(("%s: RX status indicated error (%x)\n",
1936 		    device_xname(sc->sc_dev), stat->flags));
1937 		ifp->if_ierrors++;
1938 		return;
1939 	}
1940 
1941 	/* compute actual frame length */
1942 	rlen = len - sizeof (struct zyd_plcphdr) -
1943 	    sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1944 
1945 	/* allocate a mbuf to store the frame */
1946 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1947 	if (m == NULL) {
1948 		printf("%s: could not allocate rx mbuf\n",
1949 		    device_xname(sc->sc_dev));
1950 		ifp->if_ierrors++;
1951 		return;
1952 	}
1953 	if (rlen > MHLEN) {
1954 		MCLGET(m, M_DONTWAIT);
1955 		if (!(m->m_flags & M_EXT)) {
1956 			printf("%s: could not allocate rx mbuf cluster\n",
1957 			    device_xname(sc->sc_dev));
1958 			m_freem(m);
1959 			ifp->if_ierrors++;
1960 			return;
1961 		}
1962 	}
1963 	m->m_pkthdr.rcvif = ifp;
1964 	m->m_pkthdr.len = m->m_len = rlen;
1965 	bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1966 
1967 	s = splnet();
1968 
1969 	if (sc->sc_drvbpf != NULL) {
1970 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1971 		static const uint8_t rates[] = {
1972 			/* reverse function of zyd_plcp_signal() */
1973 			2, 4, 11, 22, 0, 0, 0, 0,
1974 			96, 48, 24, 12, 108, 72, 36, 18
1975 		};
1976 
1977 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1978 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1979 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1980 		tap->wr_rssi = stat->rssi;
1981 		tap->wr_rate = rates[plcp->signal & 0xf];
1982 
1983 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1984 	}
1985 
1986 	wh = mtod(m, struct ieee80211_frame *);
1987 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1988 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1989 
1990 	/* node is no longer needed */
1991 	ieee80211_free_node(ni);
1992 
1993 	splx(s);
1994 }
1995 
1996 Static void
1997 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1998 {
1999 	struct zyd_rx_data *data = priv;
2000 	struct zyd_softc *sc = data->sc;
2001 	struct ifnet *ifp = &sc->sc_if;
2002 	const struct zyd_rx_desc *desc;
2003 	int len;
2004 
2005 	if (status != USBD_NORMAL_COMPLETION) {
2006 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2007 			return;
2008 
2009 		if (status == USBD_STALLED)
2010 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2011 
2012 		goto skip;
2013 	}
2014 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2015 
2016 	if (len < ZYD_MIN_RXBUFSZ) {
2017 		printf("%s: xfer too short (length=%d)\n",
2018 		    device_xname(sc->sc_dev), len);
2019 		ifp->if_ierrors++;
2020 		goto skip;
2021 	}
2022 
2023 	desc = (const struct zyd_rx_desc *)
2024 	    (data->buf + len - sizeof (struct zyd_rx_desc));
2025 
2026 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2027 		const uint8_t *p = data->buf, *end = p + len;
2028 		int i;
2029 
2030 		DPRINTFN(3, ("received multi-frame transfer\n"));
2031 
2032 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2033 			const uint16_t len16 = UGETW(desc->len[i]);
2034 
2035 			if (len16 == 0 || p + len16 > end)
2036 				break;
2037 
2038 			zyd_rx_data(sc, p, len16);
2039 			/* next frame is aligned on a 32-bit boundary */
2040 			p += (len16 + 3) & ~3;
2041 		}
2042 	} else {
2043 		DPRINTFN(3, ("received single-frame transfer\n"));
2044 
2045 		zyd_rx_data(sc, data->buf, len);
2046 	}
2047 
2048 skip:	/* setup a new transfer */
2049 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2050 	    ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2051 	    USBD_NO_TIMEOUT, zyd_rxeof);
2052 	(void)usbd_transfer(xfer);
2053 }
2054 
2055 Static int
2056 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2057 {
2058 	struct ieee80211com *ic = &sc->sc_ic;
2059 	struct ifnet *ifp = &sc->sc_if;
2060 	struct zyd_tx_desc *desc;
2061 	struct zyd_tx_data *data;
2062 	struct ieee80211_frame *wh;
2063 	struct ieee80211_key *k;
2064 	int xferlen, totlen, rate;
2065 	uint16_t pktlen;
2066 	usbd_status error;
2067 
2068 	data = &sc->tx_data[0];
2069 	desc = (struct zyd_tx_desc *)data->buf;
2070 
2071 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2072 
2073 	wh = mtod(m0, struct ieee80211_frame *);
2074 
2075 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2076 		k = ieee80211_crypto_encap(ic, ni, m0);
2077 		if (k == NULL) {
2078 			m_freem(m0);
2079 			return ENOBUFS;
2080 		}
2081 	}
2082 
2083 	data->ni = ni;
2084 
2085 	wh = mtod(m0, struct ieee80211_frame *);
2086 
2087 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2088 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2089 
2090 	/* fill Tx descriptor */
2091 	desc->len = htole16(totlen);
2092 
2093 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2094 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2095 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2096 		if (totlen > ic->ic_rtsthreshold) {
2097 			desc->flags |= ZYD_TX_FLAG_RTS;
2098 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2099 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2100 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2101 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2102 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2103 				desc->flags |= ZYD_TX_FLAG_RTS;
2104 		}
2105 	} else
2106 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2107 
2108 	if ((wh->i_fc[0] &
2109 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2110 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2111 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2112 
2113 	desc->phy = zyd_plcp_signal(rate);
2114 	if (ZYD_RATE_IS_OFDM(rate)) {
2115 		desc->phy |= ZYD_TX_PHY_OFDM;
2116 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2117 			desc->phy |= ZYD_TX_PHY_5GHZ;
2118 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2119 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2120 
2121 	/* actual transmit length (XXX why +10?) */
2122 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2123 	if (sc->mac_rev == ZYD_ZD1211)
2124 		pktlen += totlen;
2125 	desc->pktlen = htole16(pktlen);
2126 
2127 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2128 	desc->plcp_service = 0;
2129 	if (rate == 22) {
2130 		const int remainder = (16 * totlen) % 22;
2131 		if (remainder != 0 && remainder < 7)
2132 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2133 	}
2134 
2135 	if (sc->sc_drvbpf != NULL) {
2136 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2137 
2138 		tap->wt_flags = 0;
2139 		tap->wt_rate = rate;
2140 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2141 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2142 
2143 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2144 	}
2145 
2146 	m_copydata(m0, 0, m0->m_pkthdr.len,
2147 	    data->buf + sizeof (struct zyd_tx_desc));
2148 
2149 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2150 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2151 
2152 	m_freem(m0);	/* mbuf no longer needed */
2153 
2154 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2155 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2156 	    ZYD_TX_TIMEOUT, zyd_txeof);
2157 	error = usbd_transfer(data->xfer);
2158 	if (error != USBD_IN_PROGRESS && error != 0) {
2159 		ifp->if_oerrors++;
2160 		return EIO;
2161 	}
2162 	sc->tx_queued++;
2163 
2164 	return 0;
2165 }
2166 
2167 Static void
2168 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2169 {
2170 	struct zyd_tx_data *data = priv;
2171 	struct zyd_softc *sc = data->sc;
2172 	struct ifnet *ifp = &sc->sc_if;
2173 	int s;
2174 
2175 	if (status != USBD_NORMAL_COMPLETION) {
2176 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2177 			return;
2178 
2179 		printf("%s: could not transmit buffer: %s\n",
2180 		    device_xname(sc->sc_dev), usbd_errstr(status));
2181 
2182 		if (status == USBD_STALLED) {
2183 			usbd_clear_endpoint_stall_async(
2184 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2185 		}
2186 		ifp->if_oerrors++;
2187 		return;
2188 	}
2189 
2190 	s = splnet();
2191 
2192 	/* update rate control statistics */
2193 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2194 
2195 	ieee80211_free_node(data->ni);
2196 	data->ni = NULL;
2197 
2198 	sc->tx_queued--;
2199 	ifp->if_opackets++;
2200 
2201 	sc->tx_timer = 0;
2202 	ifp->if_flags &= ~IFF_OACTIVE;
2203 	zyd_start(ifp);
2204 
2205 	splx(s);
2206 }
2207 
2208 Static int
2209 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2210 {
2211 	struct ieee80211com *ic = &sc->sc_ic;
2212 	struct ifnet *ifp = &sc->sc_if;
2213 	struct zyd_tx_desc *desc;
2214 	struct zyd_tx_data *data;
2215 	struct ieee80211_frame *wh;
2216 	struct ieee80211_key *k;
2217 	int xferlen, totlen, rate;
2218 	uint16_t pktlen;
2219 	usbd_status error;
2220 
2221 	wh = mtod(m0, struct ieee80211_frame *);
2222 
2223 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2224 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2225 	else
2226 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2227 	rate &= IEEE80211_RATE_VAL;
2228 
2229 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2230 		k = ieee80211_crypto_encap(ic, ni, m0);
2231 		if (k == NULL) {
2232 			m_freem(m0);
2233 			return ENOBUFS;
2234 		}
2235 
2236 		/* packet header may have moved, reset our local pointer */
2237 		wh = mtod(m0, struct ieee80211_frame *);
2238 	}
2239 
2240 	data = &sc->tx_data[0];
2241 	desc = (struct zyd_tx_desc *)data->buf;
2242 
2243 	data->ni = ni;
2244 
2245 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2246 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2247 
2248 	/* fill Tx descriptor */
2249 	desc->len = htole16(totlen);
2250 
2251 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2252 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2253 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2254 		if (totlen > ic->ic_rtsthreshold) {
2255 			desc->flags |= ZYD_TX_FLAG_RTS;
2256 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2257 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2258 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2259 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2260 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2261 				desc->flags |= ZYD_TX_FLAG_RTS;
2262 		}
2263 	} else
2264 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2265 
2266 	if ((wh->i_fc[0] &
2267 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2268 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2269 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2270 
2271 	desc->phy = zyd_plcp_signal(rate);
2272 	if (ZYD_RATE_IS_OFDM(rate)) {
2273 		desc->phy |= ZYD_TX_PHY_OFDM;
2274 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2275 			desc->phy |= ZYD_TX_PHY_5GHZ;
2276 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2277 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2278 
2279 	/* actual transmit length (XXX why +10?) */
2280 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2281 	if (sc->mac_rev == ZYD_ZD1211)
2282 		pktlen += totlen;
2283 	desc->pktlen = htole16(pktlen);
2284 
2285 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2286 	desc->plcp_service = 0;
2287 	if (rate == 22) {
2288 		const int remainder = (16 * totlen) % 22;
2289 		if (remainder != 0 && remainder < 7)
2290 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2291 	}
2292 
2293 	if (sc->sc_drvbpf != NULL) {
2294 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2295 
2296 		tap->wt_flags = 0;
2297 		tap->wt_rate = rate;
2298 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2299 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2300 
2301 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2302 	}
2303 
2304 	m_copydata(m0, 0, m0->m_pkthdr.len,
2305 	    data->buf + sizeof (struct zyd_tx_desc));
2306 
2307 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2308 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2309 
2310 	m_freem(m0);	/* mbuf no longer needed */
2311 
2312 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2313 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2314 	    ZYD_TX_TIMEOUT, zyd_txeof);
2315 	error = usbd_transfer(data->xfer);
2316 	if (error != USBD_IN_PROGRESS && error != 0) {
2317 		ifp->if_oerrors++;
2318 		return EIO;
2319 	}
2320 	sc->tx_queued++;
2321 
2322 	return 0;
2323 }
2324 
2325 Static void
2326 zyd_start(struct ifnet *ifp)
2327 {
2328 	struct zyd_softc *sc = ifp->if_softc;
2329 	struct ieee80211com *ic = &sc->sc_ic;
2330 	struct ether_header *eh;
2331 	struct ieee80211_node *ni;
2332 	struct mbuf *m0;
2333 
2334 	for (;;) {
2335 		IF_POLL(&ic->ic_mgtq, m0);
2336 		if (m0 != NULL) {
2337 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2338 				ifp->if_flags |= IFF_OACTIVE;
2339 				break;
2340 			}
2341 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2342 
2343 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2344 			m0->m_pkthdr.rcvif = NULL;
2345 			bpf_mtap3(ic->ic_rawbpf, m0);
2346 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2347 				break;
2348 		} else {
2349 			if (ic->ic_state != IEEE80211_S_RUN)
2350 				break;
2351 			IFQ_POLL(&ifp->if_snd, m0);
2352 			if (m0 == NULL)
2353 				break;
2354 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2355 				ifp->if_flags |= IFF_OACTIVE;
2356 				break;
2357 			}
2358 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2359 
2360 			if (m0->m_len < sizeof(struct ether_header) &&
2361 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2362 				continue;
2363 
2364 			eh = mtod(m0, struct ether_header *);
2365 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2366 			if (ni == NULL) {
2367 				m_freem(m0);
2368 				continue;
2369 			}
2370 			bpf_mtap(ifp, m0);
2371 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2372 				ieee80211_free_node(ni);
2373 				ifp->if_oerrors++;
2374 				continue;
2375 			}
2376 			bpf_mtap3(ic->ic_rawbpf, m0);
2377 			if (zyd_tx_data(sc, m0, ni) != 0) {
2378 				ieee80211_free_node(ni);
2379 				ifp->if_oerrors++;
2380 				break;
2381 			}
2382 		}
2383 
2384 		sc->tx_timer = 5;
2385 		ifp->if_timer = 1;
2386 	}
2387 }
2388 
2389 Static void
2390 zyd_watchdog(struct ifnet *ifp)
2391 {
2392 	struct zyd_softc *sc = ifp->if_softc;
2393 	struct ieee80211com *ic = &sc->sc_ic;
2394 
2395 	ifp->if_timer = 0;
2396 
2397 	if (sc->tx_timer > 0) {
2398 		if (--sc->tx_timer == 0) {
2399 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2400 			/* zyd_init(ifp); XXX needs a process context ? */
2401 			ifp->if_oerrors++;
2402 			return;
2403 		}
2404 		ifp->if_timer = 1;
2405 	}
2406 
2407 	ieee80211_watchdog(ic);
2408 }
2409 
2410 Static int
2411 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2412 {
2413 	struct zyd_softc *sc = ifp->if_softc;
2414 	struct ieee80211com *ic = &sc->sc_ic;
2415 	int s, error = 0;
2416 
2417 	s = splnet();
2418 
2419 	switch (cmd) {
2420 	case SIOCSIFFLAGS:
2421 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2422 			break;
2423 		/* XXX re-use ether_ioctl() */
2424 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2425 		case IFF_UP:
2426 			zyd_init(ifp);
2427 			break;
2428 		case IFF_RUNNING:
2429 			zyd_stop(ifp, 1);
2430 			break;
2431 		default:
2432 			break;
2433 		}
2434 		break;
2435 
2436 	default:
2437 		error = ieee80211_ioctl(ic, cmd, data);
2438 	}
2439 
2440 	if (error == ENETRESET) {
2441 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2442 		    (IFF_RUNNING | IFF_UP))
2443 			zyd_init(ifp);
2444 		error = 0;
2445 	}
2446 
2447 	splx(s);
2448 
2449 	return error;
2450 }
2451 
2452 Static int
2453 zyd_init(struct ifnet *ifp)
2454 {
2455 	struct zyd_softc *sc = ifp->if_softc;
2456 	struct ieee80211com *ic = &sc->sc_ic;
2457 	int i, error;
2458 
2459 	zyd_stop(ifp, 0);
2460 
2461 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2462 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2463 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2464 	if (error != 0)
2465 		return error;
2466 
2467 	/* we'll do software WEP decryption for now */
2468 	DPRINTF(("setting encryption type\n"));
2469 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2470 	if (error != 0)
2471 		return error;
2472 
2473 	/* promiscuous mode */
2474 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2475 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2476 
2477 	(void)zyd_set_rxfilter(sc);
2478 
2479 	/* switch radio transmitter ON */
2480 	(void)zyd_switch_radio(sc, 1);
2481 
2482 	/* set basic rates */
2483 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2484 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2485 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2486 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2487 	else	/* assumes 802.11b/g */
2488 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2489 
2490 	/* set mandatory rates */
2491 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2492 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2493 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2494 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2495 	else	/* assumes 802.11b/g */
2496 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2497 
2498 	/* set default BSS channel */
2499 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2500 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2501 
2502 	/* enable interrupts */
2503 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2504 
2505 	/*
2506 	 * Allocate Tx and Rx xfer queues.
2507 	 */
2508 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2509 		printf("%s: could not allocate Tx list\n",
2510 		    device_xname(sc->sc_dev));
2511 		goto fail;
2512 	}
2513 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2514 		printf("%s: could not allocate Rx list\n",
2515 		    device_xname(sc->sc_dev));
2516 		goto fail;
2517 	}
2518 
2519 	/*
2520 	 * Start up the receive pipe.
2521 	 */
2522 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2523 		struct zyd_rx_data *data = &sc->rx_data[i];
2524 
2525 		usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2526 		    NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2527 		    USBD_NO_TIMEOUT, zyd_rxeof);
2528 		error = usbd_transfer(data->xfer);
2529 		if (error != USBD_IN_PROGRESS && error != 0) {
2530 			printf("%s: could not queue Rx transfer\n",
2531 			    device_xname(sc->sc_dev));
2532 			goto fail;
2533 		}
2534 	}
2535 
2536 	ifp->if_flags &= ~IFF_OACTIVE;
2537 	ifp->if_flags |= IFF_RUNNING;
2538 
2539 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2540 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2541 	else
2542 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2543 
2544 	return 0;
2545 
2546 fail:	zyd_stop(ifp, 1);
2547 	return error;
2548 }
2549 
2550 Static void
2551 zyd_stop(struct ifnet *ifp, int disable)
2552 {
2553 	struct zyd_softc *sc = ifp->if_softc;
2554 	struct ieee80211com *ic = &sc->sc_ic;
2555 
2556 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2557 
2558 	sc->tx_timer = 0;
2559 	ifp->if_timer = 0;
2560 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2561 
2562 	/* switch radio transmitter OFF */
2563 	(void)zyd_switch_radio(sc, 0);
2564 
2565 	/* disable Rx */
2566 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2567 
2568 	/* disable interrupts */
2569 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2570 
2571 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2572 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2573 
2574 	zyd_free_rx_list(sc);
2575 	zyd_free_tx_list(sc);
2576 }
2577 
2578 Static int
2579 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2580 {
2581 	usb_device_request_t req;
2582 	uint16_t addr;
2583 	uint8_t stat;
2584 
2585 	DPRINTF(("firmware size=%zu\n", size));
2586 
2587 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2588 	req.bRequest = ZYD_DOWNLOADREQ;
2589 	USETW(req.wIndex, 0);
2590 
2591 	addr = ZYD_FIRMWARE_START_ADDR;
2592 	while (size > 0) {
2593 #if 0
2594 		const int mlen = min(size, 4096);
2595 #else
2596 		/*
2597 		 * XXXX: When the transfer size is 4096 bytes, it is not
2598 		 * likely to be able to transfer it.
2599 		 * The cause is port or machine or chip?
2600 		 */
2601 		const int mlen = min(size, 64);
2602 #endif
2603 
2604 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2605 		    addr));
2606 
2607 		USETW(req.wValue, addr);
2608 		USETW(req.wLength, mlen);
2609 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2610 			return EIO;
2611 
2612 		addr += mlen / 2;
2613 		fw   += mlen;
2614 		size -= mlen;
2615 	}
2616 
2617 	/* check whether the upload succeeded */
2618 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2619 	req.bRequest = ZYD_DOWNLOADSTS;
2620 	USETW(req.wValue, 0);
2621 	USETW(req.wIndex, 0);
2622 	USETW(req.wLength, sizeof stat);
2623 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2624 		return EIO;
2625 
2626 	return (stat & 0x80) ? EIO : 0;
2627 }
2628 
2629 Static void
2630 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2631 {
2632 	struct zyd_softc *sc = arg;
2633 	struct zyd_node *zn = (struct zyd_node *)ni;
2634 
2635 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2636 }
2637 
2638 Static void
2639 zyd_amrr_timeout(void *arg)
2640 {
2641 	struct zyd_softc *sc = arg;
2642 	struct ieee80211com *ic = &sc->sc_ic;
2643 	int s;
2644 
2645 	s = splnet();
2646 	if (ic->ic_opmode == IEEE80211_M_STA)
2647 		zyd_iter_func(sc, ic->ic_bss);
2648 	else
2649 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2650 	splx(s);
2651 
2652 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2653 }
2654 
2655 Static void
2656 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2657 {
2658 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2659 	int i;
2660 
2661 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2662 
2663 	/* set rate to some reasonable initial value */
2664 	for (i = ni->ni_rates.rs_nrates - 1;
2665 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2666 	     i--);
2667 	ni->ni_txrate = i;
2668 }
2669 
2670 int
2671 zyd_activate(device_t self, enum devact act)
2672 {
2673 	struct zyd_softc *sc = device_private(self);
2674 
2675 	switch (act) {
2676 	case DVACT_DEACTIVATE:
2677 		if_deactivate(&sc->sc_if);
2678 		return 0;
2679 	default:
2680 		return EOPNOTSUPP;
2681 	}
2682 }
2683