xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.48 2018/06/26 06:48:02 msaitoh Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.48 2018/06/26 06:48:02 msaitoh Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/firmload.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71 
72 #include <dev/usb/if_zydreg.h>
73 
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82 
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85 
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p)	\
88 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 	struct usb_devno	dev;
93 	uint8_t			rev;
94 #define ZYD_ZD1211	0
95 #define ZYD_ZD1211B	1
96 } zyd_devs[] = {
97 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
98 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
99 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
100 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
101 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
102 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
103 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
104 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
106 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
107 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
108 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
109 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
110 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
111 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
113 	ZYD_ZD1211_DEV(TWINMOS,		G240),
114 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
115 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
117 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
118 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
119 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
121 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
122 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
126 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
127 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
128 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
129 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
130 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
131 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
132 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
133 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
134 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
135 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
136 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
137 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
138 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
139 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
140 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
141 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
142 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
143 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
144 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
145 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
146 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
147 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
148 	ZYD_ZD1211B_DEV(USR,		USR5423),
149 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
150 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
151 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
152 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
153 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
154 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
155 };
156 #define zyd_lookup(v, p)	\
157 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158 
159 int zyd_match(device_t, cfdata_t, void *);
160 void zyd_attach(device_t, device_t, void *);
161 int zyd_detach(device_t, int);
162 int zyd_activate(device_t, enum devact);
163 extern struct cfdriver zyd_cd;
164 
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166     zyd_attach, zyd_detach, zyd_activate);
167 
168 Static void	zyd_attachhook(device_t);
169 Static int	zyd_complete_attach(struct zyd_softc *);
170 Static int	zyd_open_pipes(struct zyd_softc *);
171 Static void	zyd_close_pipes(struct zyd_softc *);
172 Static int	zyd_alloc_tx_list(struct zyd_softc *);
173 Static void	zyd_free_tx_list(struct zyd_softc *);
174 Static int	zyd_alloc_rx_list(struct zyd_softc *);
175 Static void	zyd_free_rx_list(struct zyd_softc *);
176 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int	zyd_media_change(struct ifnet *);
178 Static void	zyd_next_scan(void *);
179 Static void	zyd_task(void *);
180 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 		    void *, int, u_int);
183 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void	zyd_lock_phy(struct zyd_softc *);
189 Static void	zyd_unlock_phy(struct zyd_softc *);
190 Static int	zyd_rfmd_init(struct zyd_rf *);
191 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int	zyd_al2230_init(struct zyd_rf *);
194 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_al2230_init_b(struct zyd_rf *);
197 Static int	zyd_al7230B_init(struct zyd_rf *);
198 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int	zyd_al2210_init(struct zyd_rf *);
201 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int	zyd_gct_init(struct zyd_rf *);
204 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int	zyd_maxim_init(struct zyd_rf *);
207 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int	zyd_maxim2_init(struct zyd_rf *);
210 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int	zyd_hw_init(struct zyd_softc *);
215 Static int	zyd_read_eeprom(struct zyd_softc *);
216 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int	zyd_switch_radio(struct zyd_softc *, int);
219 Static void	zyd_set_led(struct zyd_softc *, int, int);
220 Static int	zyd_set_rxfilter(struct zyd_softc *);
221 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t	zyd_plcp_signal(int);
224 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 		    struct ieee80211_node *);
230 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 Static void	zyd_start(struct ifnet *);
233 Static void	zyd_watchdog(struct ifnet *);
234 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int	zyd_init(struct ifnet *);
236 Static void	zyd_stop(struct ifnet *, int);
237 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void	zyd_iter_func(void *, struct ieee80211_node *);
239 Static void	zyd_amrr_timeout(void *);
240 Static void	zyd_newassoc(struct ieee80211_node *, int);
241 
242 int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 	struct usb_attach_arg *uaa = aux;
246 
247 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250 
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 	struct zyd_softc *sc = device_private(self);
255 	firmware_handle_t fwh;
256 	const char *fwname;
257 	u_char *fw;
258 	size_t size;
259 	int error;
260 
261 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 		aprint_error_dev(sc->sc_dev,
264 		    "failed to open firmware %s (error=%d)\n", fwname, error);
265 		return;
266 	}
267 	size = firmware_get_size(fwh);
268 	fw = firmware_malloc(size);
269 	if (fw == NULL) {
270 		aprint_error_dev(sc->sc_dev,
271 		    "failed to allocate firmware memory\n");
272 		firmware_close(fwh);
273 		return;
274 	}
275 	error = firmware_read(fwh, 0, fw, size);
276 	firmware_close(fwh);
277 	if (error != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "failed to read firmware (error %d)\n", error);
280 		firmware_free(fw, size);
281 		return;
282 	}
283 
284 	error = zyd_loadfirmware(sc, fw, size);
285 	if (error != 0) {
286 		aprint_error_dev(sc->sc_dev,
287 		    "could not load firmware (error=%d)\n", error);
288 		firmware_free(fw, size);
289 		return;
290 	}
291 
292 	firmware_free(fw, size);
293 
294 	/* complete the attach process */
295 	if ((error = zyd_complete_attach(sc)) == 0)
296 		sc->attached = 1;
297 	return;
298 }
299 
300 void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 	struct zyd_softc *sc = device_private(self);
304 	struct usb_attach_arg *uaa = aux;
305 	char *devinfop;
306 	usb_device_descriptor_t* ddesc;
307 	struct ifnet *ifp = &sc->sc_if;
308 
309 	sc->sc_dev = self;
310 	sc->sc_udev = uaa->uaa_device;
311 
312 	aprint_naive("\n");
313 	aprint_normal("\n");
314 
315 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 	aprint_normal_dev(self, "%s\n", devinfop);
317 	usbd_devinfo_free(devinfop);
318 
319 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320 
321 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 		aprint_error_dev(self, "device version mismatch: 0x%x "
324 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 		return;
326 	}
327 
328 	ifp->if_softc = sc;
329 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 	ifp->if_init = zyd_init;
331 	ifp->if_ioctl = zyd_ioctl;
332 	ifp->if_start = zyd_start;
333 	ifp->if_watchdog = zyd_watchdog;
334 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 	IFQ_SET_READY(&ifp->if_snd);
336 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337 
338 	SIMPLEQ_INIT(&sc->sc_rqh);
339 
340 	/* defer configrations after file system is ready to load firmware */
341 	config_mountroot(self, zyd_attachhook);
342 }
343 
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_if;
349 	usbd_status error;
350 	int i;
351 
352 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
353 	callout_init(&(sc->sc_scan_ch), 0);
354 
355 	sc->amrr.amrr_min_success_threshold =  1;
356 	sc->amrr.amrr_max_success_threshold = 10;
357 	callout_init(&sc->sc_amrr_ch, 0);
358 
359 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 	if (error != 0) {
361 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
362 		    ", err=%s\n", usbd_errstr(error));
363 		goto fail;
364 	}
365 
366 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
367 	    &sc->sc_iface);
368 	if (error != 0) {
369 		aprint_error_dev(sc->sc_dev,
370 		    "getting interface handle failed\n");
371 		goto fail;
372 	}
373 
374 	if ((error = zyd_open_pipes(sc)) != 0) {
375 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
376 		goto fail;
377 	}
378 
379 	if ((error = zyd_read_eeprom(sc)) != 0) {
380 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
381 		goto fail;
382 	}
383 
384 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
385 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
386 		goto fail;
387 	}
388 
389 	if ((error = zyd_hw_init(sc)) != 0) {
390 		aprint_error_dev(sc->sc_dev,
391 		    "hardware initialization failed\n");
392 		goto fail;
393 	}
394 
395 	aprint_normal_dev(sc->sc_dev,
396 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
397 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
398 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
399 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
400 
401 	ic->ic_ifp = ifp;
402 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
403 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
404 	ic->ic_state = IEEE80211_S_INIT;
405 
406 	/* set device capabilities */
407 	ic->ic_caps =
408 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
409 	    IEEE80211_C_TXPMGT |	/* tx power management */
410 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
411 	    IEEE80211_C_WEP;		/* s/w WEP */
412 
413 	/* set supported .11b and .11g rates */
414 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
415 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
416 
417 	/* set supported .11b and .11g channels (1 through 14) */
418 	for (i = 1; i <= 14; i++) {
419 		ic->ic_channels[i].ic_freq =
420 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
421 		ic->ic_channels[i].ic_flags =
422 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
423 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
424 	}
425 
426 	if_attach(ifp);
427 	ieee80211_ifattach(ic);
428 	ic->ic_node_alloc = zyd_node_alloc;
429 	ic->ic_newassoc = zyd_newassoc;
430 
431 	/* override state transition machine */
432 	sc->sc_newstate = ic->ic_newstate;
433 	ic->ic_newstate = zyd_newstate;
434 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
435 
436 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
437 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
438 	    &sc->sc_drvbpf);
439 
440 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
441 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
443 
444 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
445 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
447 
448 	ieee80211_announce(ic);
449 
450 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
451 
452 fail:	return error;
453 }
454 
455 int
456 zyd_detach(device_t self, int flags)
457 {
458 	struct zyd_softc *sc = device_private(self);
459 	struct ieee80211com *ic = &sc->sc_ic;
460 	struct ifnet *ifp = &sc->sc_if;
461 	int s;
462 
463 	if (!sc->attached)
464 		return 0;
465 
466 	s = splusb();
467 
468 	zyd_stop(ifp, 1);
469 	usb_rem_task(sc->sc_udev, &sc->sc_task);
470 	callout_stop(&sc->sc_scan_ch);
471 	callout_stop(&sc->sc_amrr_ch);
472 
473 	/* Abort, etc. done by zyd_stop */
474 	zyd_close_pipes(sc);
475 
476 	sc->attached = 0;
477 
478 	bpf_detach(ifp);
479 	ieee80211_ifdetach(ic);
480 	if_detach(ifp);
481 
482 	splx(s);
483 
484 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
485 
486 	return 0;
487 }
488 
489 Static int
490 zyd_open_pipes(struct zyd_softc *sc)
491 {
492 	usb_endpoint_descriptor_t *edesc;
493 	usbd_status error;
494 
495 	/* interrupt in */
496 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 	if (edesc == NULL)
498 		return EINVAL;
499 
500 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
501 	if (sc->ibuf_size == 0)	/* should not happen */
502 		return EINVAL;
503 
504 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
505 
506 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
507 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
508 	    USBD_DEFAULT_INTERVAL);
509 	if (error != 0) {
510 		printf("%s: open rx intr pipe failed: %s\n",
511 		    device_xname(sc->sc_dev), usbd_errstr(error));
512 		goto fail;
513 	}
514 
515 	/* interrupt out (not necessarily an interrupt pipe) */
516 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
517 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
518 	if (error != 0) {
519 		printf("%s: open tx intr pipe failed: %s\n",
520 		    device_xname(sc->sc_dev), usbd_errstr(error));
521 		goto fail;
522 	}
523 
524 	/* bulk in */
525 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
526 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
527 	if (error != 0) {
528 		printf("%s: open rx pipe failed: %s\n",
529 		    device_xname(sc->sc_dev), usbd_errstr(error));
530 		goto fail;
531 	}
532 
533 	/* bulk out */
534 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
535 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
536 	if (error != 0) {
537 		printf("%s: open tx pipe failed: %s\n",
538 		    device_xname(sc->sc_dev), usbd_errstr(error));
539 		goto fail;
540 	}
541 
542 	return 0;
543 
544 fail:	zyd_close_pipes(sc);
545 	return error;
546 }
547 
548 Static void
549 zyd_close_pipes(struct zyd_softc *sc)
550 {
551 	int i;
552 
553 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
554 		if (sc->zyd_ep[i] != NULL) {
555 			usbd_close_pipe(sc->zyd_ep[i]);
556 			sc->zyd_ep[i] = NULL;
557 		}
558 	}
559 	if (sc->ibuf != NULL) {
560 		kmem_free(sc->ibuf, sc->ibuf_size);
561 		sc->ibuf = NULL;
562 	}
563 }
564 
565 Static int
566 zyd_alloc_tx_list(struct zyd_softc *sc)
567 {
568 	int i, error;
569 
570 	sc->tx_queued = 0;
571 
572 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
573 		struct zyd_tx_data *data = &sc->tx_data[i];
574 
575 		data->sc = sc;	/* backpointer for callbacks */
576 
577 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
578 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
579 		if (error) {
580 			printf("%s: could not allocate tx xfer\n",
581 			    device_xname(sc->sc_dev));
582 			goto fail;
583 		}
584 		data->buf = usbd_get_buffer(data->xfer);
585 
586 		/* clear Tx descriptor */
587 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
588 	}
589 	return 0;
590 
591 fail:	zyd_free_tx_list(sc);
592 	return error;
593 }
594 
595 Static void
596 zyd_free_tx_list(struct zyd_softc *sc)
597 {
598 	int i;
599 
600 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
601 		struct zyd_tx_data *data = &sc->tx_data[i];
602 
603 		if (data->xfer != NULL) {
604 			usbd_destroy_xfer(data->xfer);
605 			data->xfer = NULL;
606 		}
607 		if (data->ni != NULL) {
608 			ieee80211_free_node(data->ni);
609 			data->ni = NULL;
610 		}
611 	}
612 }
613 
614 Static int
615 zyd_alloc_rx_list(struct zyd_softc *sc)
616 {
617 	int i, error;
618 
619 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
620 		struct zyd_rx_data *data = &sc->rx_data[i];
621 
622 		data->sc = sc;	/* backpointer for callbacks */
623 
624 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
625 		    ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
626 		if (error) {
627 			printf("%s: could not allocate rx xfer\n",
628 			    device_xname(sc->sc_dev));
629 			goto fail;
630 		}
631 		data->buf = usbd_get_buffer(data->xfer);
632 	}
633 	return 0;
634 
635 fail:	zyd_free_rx_list(sc);
636 	return error;
637 }
638 
639 Static void
640 zyd_free_rx_list(struct zyd_softc *sc)
641 {
642 	int i;
643 
644 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
645 		struct zyd_rx_data *data = &sc->rx_data[i];
646 
647 		if (data->xfer != NULL) {
648 			usbd_destroy_xfer(data->xfer);
649 			data->xfer = NULL;
650 		}
651 	}
652 }
653 
654 /* ARGUSED */
655 Static struct ieee80211_node *
656 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
657 {
658 	struct zyd_node *zn;
659 
660 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
661 
662 	return &zn->ni;
663 }
664 
665 Static int
666 zyd_media_change(struct ifnet *ifp)
667 {
668 	int error;
669 
670 	error = ieee80211_media_change(ifp);
671 	if (error != ENETRESET)
672 		return error;
673 
674 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
675 		zyd_init(ifp);
676 
677 	return 0;
678 }
679 
680 /*
681  * This function is called periodically (every 200ms) during scanning to
682  * switch from one channel to another.
683  */
684 Static void
685 zyd_next_scan(void *arg)
686 {
687 	struct zyd_softc *sc = arg;
688 	struct ieee80211com *ic = &sc->sc_ic;
689 
690 	if (ic->ic_state == IEEE80211_S_SCAN)
691 		ieee80211_next_scan(ic);
692 }
693 
694 Static void
695 zyd_task(void *arg)
696 {
697 	struct zyd_softc *sc = arg;
698 	struct ieee80211com *ic = &sc->sc_ic;
699 	enum ieee80211_state ostate;
700 
701 	ostate = ic->ic_state;
702 
703 	switch (sc->sc_state) {
704 	case IEEE80211_S_INIT:
705 		if (ostate == IEEE80211_S_RUN) {
706 			/* turn link LED off */
707 			zyd_set_led(sc, ZYD_LED1, 0);
708 
709 			/* stop data LED from blinking */
710 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
711 		}
712 		break;
713 
714 	case IEEE80211_S_SCAN:
715 		zyd_set_chan(sc, ic->ic_curchan);
716 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
717 		break;
718 
719 	case IEEE80211_S_AUTH:
720 	case IEEE80211_S_ASSOC:
721 		zyd_set_chan(sc, ic->ic_curchan);
722 		break;
723 
724 	case IEEE80211_S_RUN:
725 	{
726 		struct ieee80211_node *ni = ic->ic_bss;
727 
728 		zyd_set_chan(sc, ic->ic_curchan);
729 
730 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
731 			/* turn link LED on */
732 			zyd_set_led(sc, ZYD_LED1, 1);
733 
734 			/* make data LED blink upon Tx */
735 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
736 
737 			zyd_set_bssid(sc, ni->ni_bssid);
738 		}
739 
740 		if (ic->ic_opmode == IEEE80211_M_STA) {
741 			/* fake a join to init the tx rate */
742 			zyd_newassoc(ni, 1);
743 		}
744 
745 		/* start automatic rate control timer */
746 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
747 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
748 
749 		break;
750 	}
751 	}
752 
753 	sc->sc_newstate(ic, sc->sc_state, -1);
754 }
755 
756 Static int
757 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
758 {
759 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
760 
761 	if (!sc->attached)
762 		return ENXIO;
763 
764 	usb_rem_task(sc->sc_udev, &sc->sc_task);
765 	callout_stop(&sc->sc_scan_ch);
766 	callout_stop(&sc->sc_amrr_ch);
767 
768 	/* do it in a process context */
769 	sc->sc_state = nstate;
770 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
771 
772 	return 0;
773 }
774 
775 Static int
776 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
777     void *odata, int olen, u_int flags)
778 {
779 	struct usbd_xfer *xfer;
780 	struct zyd_cmd cmd;
781 	struct rq rq;
782 	uint16_t xferflags;
783 	int error;
784 	usbd_status uerror;
785 	int s = 0;
786 
787 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
788 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
789 	if (error)
790 		return error;
791 
792 	cmd.code = htole16(code);
793 	memcpy(cmd.data, idata, ilen);
794 
795 	xferflags = USBD_FORCE_SHORT_XFER;
796 	if (!(flags & ZYD_CMD_FLAG_READ))
797 		xferflags |= USBD_SYNCHRONOUS;
798 	else {
799 		s = splusb();
800 		rq.idata = idata;
801 		rq.odata = odata;
802 		rq.len = olen / sizeof(struct zyd_pair);
803 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
804 	}
805 
806 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
807 	    ZYD_INTR_TIMEOUT, NULL);
808 	uerror = usbd_transfer(xfer);
809 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
810 		if (flags & ZYD_CMD_FLAG_READ)
811 			splx(s);
812 		printf("%s: could not send command (error=%s)\n",
813 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
814 		(void)usbd_destroy_xfer(xfer);
815 		return EIO;
816 	}
817 	if (!(flags & ZYD_CMD_FLAG_READ)) {
818 		(void)usbd_destroy_xfer(xfer);
819 		return 0;	/* write: don't wait for reply */
820 	}
821 	/* wait at most one second for command reply */
822 	error = tsleep(odata, PCATCH, "zydcmd", hz);
823 	if (error == EWOULDBLOCK)
824 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
825 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
826 	splx(s);
827 
828 	(void)usbd_destroy_xfer(xfer);
829 	return error;
830 }
831 
832 Static int
833 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
834 {
835 	struct zyd_pair tmp;
836 	int error;
837 
838 	reg = htole16(reg);
839 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
840 	    ZYD_CMD_FLAG_READ);
841 	if (error == 0)
842 		*val = le16toh(tmp.val);
843 	else
844 		*val = 0;
845 	return error;
846 }
847 
848 Static int
849 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
850 {
851 	struct zyd_pair tmp[2];
852 	uint16_t regs[2];
853 	int error;
854 
855 	regs[0] = htole16(ZYD_REG32_HI(reg));
856 	regs[1] = htole16(ZYD_REG32_LO(reg));
857 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
858 	    ZYD_CMD_FLAG_READ);
859 	if (error == 0)
860 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
861 	else
862 		*val = 0;
863 	return error;
864 }
865 
866 Static int
867 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
868 {
869 	struct zyd_pair pair;
870 
871 	pair.reg = htole16(reg);
872 	pair.val = htole16(val);
873 
874 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
875 }
876 
877 Static int
878 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
879 {
880 	struct zyd_pair pair[2];
881 
882 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
883 	pair[0].val = htole16(val >> 16);
884 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
885 	pair[1].val = htole16(val & 0xffff);
886 
887 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
888 }
889 
890 Static int
891 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
892 {
893 	struct zyd_rf *rf = &sc->sc_rf;
894 	struct zyd_rfwrite req;
895 	uint16_t cr203;
896 	int i;
897 
898 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
899 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
900 
901 	req.code  = htole16(2);
902 	req.width = htole16(rf->width);
903 	for (i = 0; i < rf->width; i++) {
904 		req.bit[i] = htole16(cr203);
905 		if (val & (1 << (rf->width - 1 - i)))
906 			req.bit[i] |= htole16(ZYD_RF_DATA);
907 	}
908 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
909 }
910 
911 Static void
912 zyd_lock_phy(struct zyd_softc *sc)
913 {
914 	uint32_t tmp;
915 
916 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
917 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
918 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
919 }
920 
921 Static void
922 zyd_unlock_phy(struct zyd_softc *sc)
923 {
924 	uint32_t tmp;
925 
926 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
927 	tmp |= ZYD_UNLOCK_PHY_REGS;
928 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
929 }
930 
931 /*
932  * RFMD RF methods.
933  */
934 Static int
935 zyd_rfmd_init(struct zyd_rf *rf)
936 {
937 	struct zyd_softc *sc = rf->rf_sc;
938 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
939 	static const uint32_t rfini[] = ZYD_RFMD_RF;
940 	int error;
941 	size_t i;
942 
943 	/* init RF-dependent PHY registers */
944 	for (i = 0; i < __arraycount(phyini); i++) {
945 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
946 		if (error != 0)
947 			return error;
948 	}
949 
950 	/* init RFMD radio */
951 	for (i = 0; i < __arraycount(rfini); i++) {
952 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
953 			return error;
954 	}
955 	return 0;
956 }
957 
958 Static int
959 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
960 {
961 	struct zyd_softc *sc = rf->rf_sc;
962 
963 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
964 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
965 
966 	return 0;
967 }
968 
969 Static int
970 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
971 {
972 	struct zyd_softc *sc = rf->rf_sc;
973 	static const struct {
974 		uint32_t	r1, r2;
975 	} rfprog[] = ZYD_RFMD_CHANTABLE;
976 
977 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
978 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
979 
980 	return 0;
981 }
982 
983 /*
984  * AL2230 RF methods.
985  */
986 Static int
987 zyd_al2230_init(struct zyd_rf *rf)
988 {
989 	struct zyd_softc *sc = rf->rf_sc;
990 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
991 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
992 	static const uint32_t rfini[] = ZYD_AL2230_RF;
993 	int error;
994 	size_t i;
995 
996 	/* init RF-dependent PHY registers */
997 	for (i = 0; i < __arraycount(phyini); i++) {
998 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
999 		if (error != 0)
1000 			return error;
1001 	}
1002 
1003 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1004 		for (i = 0; i < __arraycount(phy2230s); i++) {
1005 			error = zyd_write16(sc, phy2230s[i].reg,
1006 			    phy2230s[i].val);
1007 			if (error != 0)
1008 				return error;
1009 		}
1010 	}
1011 
1012 	/* init AL2230 radio */
1013 	for (i = 0; i < __arraycount(rfini); i++) {
1014 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1015 			return error;
1016 	}
1017 	return 0;
1018 }
1019 
1020 Static int
1021 zyd_al2230_init_b(struct zyd_rf *rf)
1022 {
1023 	struct zyd_softc *sc = rf->rf_sc;
1024 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1025 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1026 	int error;
1027 	size_t i;
1028 
1029 	/* init RF-dependent PHY registers */
1030 	for (i = 0; i < __arraycount(phyini); i++) {
1031 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1032 		if (error != 0)
1033 			return error;
1034 	}
1035 
1036 	/* init AL2230 radio */
1037 	for (i = 0; i < __arraycount(rfini); i++) {
1038 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1039 			return error;
1040 	}
1041 	return 0;
1042 }
1043 
1044 Static int
1045 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1046 {
1047 	struct zyd_softc *sc = rf->rf_sc;
1048 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1049 
1050 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1051 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1052 
1053 	return 0;
1054 }
1055 
1056 Static int
1057 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1058 {
1059 	struct zyd_softc *sc = rf->rf_sc;
1060 	static const struct {
1061 		uint32_t	r1, r2, r3;
1062 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1063 
1064 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1065 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1066 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1067 
1068 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1069 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  * AL7230B RF methods.
1076  */
1077 Static int
1078 zyd_al7230B_init(struct zyd_rf *rf)
1079 {
1080 	struct zyd_softc *sc = rf->rf_sc;
1081 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1082 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1083 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1084 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1085 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1086 	int error;
1087 	size_t i;
1088 
1089 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1090 
1091 	/* init RF-dependent PHY registers, part one */
1092 	for (i = 0; i < __arraycount(phyini_1); i++) {
1093 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1094 		if (error != 0)
1095 			return error;
1096 	}
1097 	/* init AL7230B radio, part one */
1098 	for (i = 0; i < __arraycount(rfini_1); i++) {
1099 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1100 			return error;
1101 	}
1102 	/* init RF-dependent PHY registers, part two */
1103 	for (i = 0; i < __arraycount(phyini_2); i++) {
1104 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1105 		if (error != 0)
1106 			return error;
1107 	}
1108 	/* init AL7230B radio, part two */
1109 	for (i = 0; i < __arraycount(rfini_2); i++) {
1110 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1111 			return error;
1112 	}
1113 	/* init RF-dependent PHY registers, part three */
1114 	for (i = 0; i < __arraycount(phyini_3); i++) {
1115 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1116 		if (error != 0)
1117 			return error;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 Static int
1124 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1125 {
1126 	struct zyd_softc *sc = rf->rf_sc;
1127 
1128 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1129 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1130 
1131 	return 0;
1132 }
1133 
1134 Static int
1135 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1136 {
1137 	struct zyd_softc *sc = rf->rf_sc;
1138 	static const struct {
1139 		uint32_t	r1, r2;
1140 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1141 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1142 	int error;
1143 	size_t i;
1144 
1145 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1146 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1147 
1148 	for (i = 0; i < __arraycount(rfsc); i++) {
1149 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1150 			return error;
1151 	}
1152 
1153 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1154 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1155 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1156 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1157 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1158 
1159 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1160 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1161 	(void)zyd_rfwrite(sc, 0x3c9000);
1162 
1163 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1164 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1165 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * AL2210 RF methods.
1172  */
1173 Static int
1174 zyd_al2210_init(struct zyd_rf *rf)
1175 {
1176 	struct zyd_softc *sc = rf->rf_sc;
1177 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1178 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1179 	uint32_t tmp;
1180 	int error;
1181 	size_t i;
1182 
1183 	(void)zyd_write32(sc, ZYD_CR18, 2);
1184 
1185 	/* init RF-dependent PHY registers */
1186 	for (i = 0; i < __arraycount(phyini); i++) {
1187 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1188 		if (error != 0)
1189 			return error;
1190 	}
1191 	/* init AL2210 radio */
1192 	for (i = 0; i < __arraycount(rfini); i++) {
1193 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1194 			return error;
1195 	}
1196 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1197 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1198 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1199 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1200 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1201 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1202 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1203 	(void)zyd_write32(sc, ZYD_CR18, 3);
1204 
1205 	return 0;
1206 }
1207 
1208 Static int
1209 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1210 {
1211 	/* vendor driver does nothing for this RF chip */
1212 
1213 	return 0;
1214 }
1215 
1216 Static int
1217 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1218 {
1219 	struct zyd_softc *sc = rf->rf_sc;
1220 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1221 	uint32_t tmp;
1222 
1223 	(void)zyd_write32(sc, ZYD_CR18, 2);
1224 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1225 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1226 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1227 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1228 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1229 
1230 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1231 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1232 
1233 	/* actually set the channel */
1234 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1235 
1236 	(void)zyd_write32(sc, ZYD_CR18, 3);
1237 
1238 	return 0;
1239 }
1240 
1241 /*
1242  * GCT RF methods.
1243  */
1244 Static int
1245 zyd_gct_init(struct zyd_rf *rf)
1246 {
1247 	struct zyd_softc *sc = rf->rf_sc;
1248 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1249 	static const uint32_t rfini[] = ZYD_GCT_RF;
1250 	int error;
1251 	size_t i;
1252 
1253 	/* init RF-dependent PHY registers */
1254 	for (i = 0; i < __arraycount(phyini); i++) {
1255 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1256 		if (error != 0)
1257 			return error;
1258 	}
1259 	/* init cgt radio */
1260 	for (i = 0; i < __arraycount(rfini); i++) {
1261 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1262 			return error;
1263 	}
1264 	return 0;
1265 }
1266 
1267 Static int
1268 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1269 {
1270 	/* vendor driver does nothing for this RF chip */
1271 
1272 	return 0;
1273 }
1274 
1275 Static int
1276 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1277 {
1278 	struct zyd_softc *sc = rf->rf_sc;
1279 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1280 
1281 	(void)zyd_rfwrite(sc, 0x1c0000);
1282 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1283 	(void)zyd_rfwrite(sc, 0x1c0008);
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Maxim RF methods.
1290  */
1291 Static int
1292 zyd_maxim_init(struct zyd_rf *rf)
1293 {
1294 	struct zyd_softc *sc = rf->rf_sc;
1295 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1296 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1297 	uint16_t tmp;
1298 	int error;
1299 	size_t i;
1300 
1301 	/* init RF-dependent PHY registers */
1302 	for (i = 0; i < __arraycount(phyini); i++) {
1303 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1304 		if (error != 0)
1305 			return error;
1306 	}
1307 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1308 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1309 
1310 	/* init maxim radio */
1311 	for (i = 0; i < __arraycount(rfini); i++) {
1312 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1313 			return error;
1314 	}
1315 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1316 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1317 
1318 	return 0;
1319 }
1320 
1321 Static int
1322 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1323 {
1324 	/* vendor driver does nothing for this RF chip */
1325 
1326 	return 0;
1327 }
1328 
1329 Static int
1330 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1331 {
1332 	struct zyd_softc *sc = rf->rf_sc;
1333 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1334 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1335 	static const struct {
1336 		uint32_t	r1, r2;
1337 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1338 	uint16_t tmp;
1339 	int error;
1340 	size_t i;
1341 
1342 	/*
1343 	 * Do the same as we do when initializing it, except for the channel
1344 	 * values coming from the two channel tables.
1345 	 */
1346 
1347 	/* init RF-dependent PHY registers */
1348 	for (i = 0; i < __arraycount(phyini); i++) {
1349 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1350 		if (error != 0)
1351 			return error;
1352 	}
1353 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1354 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1355 
1356 	/* first two values taken from the chantables */
1357 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1358 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1359 
1360 	/* init maxim radio - skipping the two first values */
1361 	for (i = 2; i < __arraycount(rfini); i++) {
1362 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1363 			return error;
1364 	}
1365 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1366 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Maxim2 RF methods.
1373  */
1374 Static int
1375 zyd_maxim2_init(struct zyd_rf *rf)
1376 {
1377 	struct zyd_softc *sc = rf->rf_sc;
1378 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1379 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1380 	uint16_t tmp;
1381 	int error;
1382 	size_t i;
1383 
1384 	/* init RF-dependent PHY registers */
1385 	for (i = 0; i < __arraycount(phyini); i++) {
1386 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1387 		if (error != 0)
1388 			return error;
1389 	}
1390 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1391 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1392 
1393 	/* init maxim2 radio */
1394 	for (i = 0; i < __arraycount(rfini); i++) {
1395 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1396 			return error;
1397 	}
1398 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1399 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1400 
1401 	return 0;
1402 }
1403 
1404 Static int
1405 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1406 {
1407 	/* vendor driver does nothing for this RF chip */
1408 
1409 	return 0;
1410 }
1411 
1412 Static int
1413 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1414 {
1415 	struct zyd_softc *sc = rf->rf_sc;
1416 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1417 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1418 	static const struct {
1419 		uint32_t	r1, r2;
1420 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1421 	uint16_t tmp;
1422 	int error;
1423 	size_t i;
1424 
1425 	/*
1426 	 * Do the same as we do when initializing it, except for the channel
1427 	 * values coming from the two channel tables.
1428 	 */
1429 
1430 	/* init RF-dependent PHY registers */
1431 	for (i = 0; i < __arraycount(phyini); i++) {
1432 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1433 		if (error != 0)
1434 			return error;
1435 	}
1436 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1437 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1438 
1439 	/* first two values taken from the chantables */
1440 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1441 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1442 
1443 	/* init maxim2 radio - skipping the two first values */
1444 	for (i = 2; i < __arraycount(rfini); i++) {
1445 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1446 			return error;
1447 	}
1448 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1449 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1450 
1451 	return 0;
1452 }
1453 
1454 Static int
1455 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1456 {
1457 	struct zyd_rf *rf = &sc->sc_rf;
1458 
1459 	rf->rf_sc = sc;
1460 
1461 	switch (type) {
1462 	case ZYD_RF_RFMD:
1463 		rf->init         = zyd_rfmd_init;
1464 		rf->switch_radio = zyd_rfmd_switch_radio;
1465 		rf->set_channel  = zyd_rfmd_set_channel;
1466 		rf->width        = 24;	/* 24-bit RF values */
1467 		break;
1468 	case ZYD_RF_AL2230:
1469 	case ZYD_RF_AL2230S:
1470 		if (sc->mac_rev == ZYD_ZD1211B)
1471 			rf->init = zyd_al2230_init_b;
1472 		else
1473 			rf->init = zyd_al2230_init;
1474 		rf->switch_radio = zyd_al2230_switch_radio;
1475 		rf->set_channel  = zyd_al2230_set_channel;
1476 		rf->width        = 24;	/* 24-bit RF values */
1477 		break;
1478 	case ZYD_RF_AL7230B:
1479 		rf->init         = zyd_al7230B_init;
1480 		rf->switch_radio = zyd_al7230B_switch_radio;
1481 		rf->set_channel  = zyd_al7230B_set_channel;
1482 		rf->width        = 24;	/* 24-bit RF values */
1483 		break;
1484 	case ZYD_RF_AL2210:
1485 		rf->init         = zyd_al2210_init;
1486 		rf->switch_radio = zyd_al2210_switch_radio;
1487 		rf->set_channel  = zyd_al2210_set_channel;
1488 		rf->width        = 24;	/* 24-bit RF values */
1489 		break;
1490 	case ZYD_RF_GCT:
1491 		rf->init         = zyd_gct_init;
1492 		rf->switch_radio = zyd_gct_switch_radio;
1493 		rf->set_channel  = zyd_gct_set_channel;
1494 		rf->width        = 21;	/* 21-bit RF values */
1495 		break;
1496 	case ZYD_RF_MAXIM_NEW:
1497 		rf->init         = zyd_maxim_init;
1498 		rf->switch_radio = zyd_maxim_switch_radio;
1499 		rf->set_channel  = zyd_maxim_set_channel;
1500 		rf->width        = 18;	/* 18-bit RF values */
1501 		break;
1502 	case ZYD_RF_MAXIM_NEW2:
1503 		rf->init         = zyd_maxim2_init;
1504 		rf->switch_radio = zyd_maxim2_switch_radio;
1505 		rf->set_channel  = zyd_maxim2_set_channel;
1506 		rf->width        = 18;	/* 18-bit RF values */
1507 		break;
1508 	default:
1509 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1510 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1511 		return EINVAL;
1512 	}
1513 	return 0;
1514 }
1515 
1516 Static const char *
1517 zyd_rf_name(uint8_t type)
1518 {
1519 	static const char * const zyd_rfs[] = {
1520 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1521 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1522 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1523 		"PHILIPS"
1524 	};
1525 
1526 	return zyd_rfs[(type > 15) ? 0 : type];
1527 }
1528 
1529 Static int
1530 zyd_hw_init(struct zyd_softc *sc)
1531 {
1532 	struct zyd_rf *rf = &sc->sc_rf;
1533 	const struct zyd_phy_pair *phyp;
1534 	int error;
1535 
1536 	/* specify that the plug and play is finished */
1537 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1538 
1539 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1540 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1541 
1542 	/* retrieve firmware revision number */
1543 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1544 
1545 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1546 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1547 
1548 	/* disable interrupts */
1549 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1550 
1551 	/* PHY init */
1552 	zyd_lock_phy(sc);
1553 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1554 	for (; phyp->reg != 0; phyp++) {
1555 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1556 			goto fail;
1557 	}
1558 	zyd_unlock_phy(sc);
1559 
1560 	/* HMAC init */
1561 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1562 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1563 
1564 	if (sc->mac_rev == ZYD_ZD1211) {
1565 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1566 	} else {
1567 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1568 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1569 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1570 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1571 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1572 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1573 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1574 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1575 	}
1576 
1577 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1578 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1579 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1580 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1581 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1582 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1583 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1584 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1585 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1586 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1587 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1588 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1589 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1590 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1591 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1592 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1593 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1594 
1595 	/* RF chip init */
1596 	zyd_lock_phy(sc);
1597 	error = (*rf->init)(rf);
1598 	zyd_unlock_phy(sc);
1599 	if (error != 0) {
1600 		printf("%s: radio initialization failed\n",
1601 		    device_xname(sc->sc_dev));
1602 		goto fail;
1603 	}
1604 
1605 	/* init beacon interval to 100ms */
1606 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1607 		goto fail;
1608 
1609 fail:	return error;
1610 }
1611 
1612 Static int
1613 zyd_read_eeprom(struct zyd_softc *sc)
1614 {
1615 	struct ieee80211com *ic = &sc->sc_ic;
1616 	uint32_t tmp;
1617 	uint16_t val;
1618 	int i;
1619 
1620 	/* read MAC address */
1621 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1622 	ic->ic_myaddr[0] = tmp & 0xff;
1623 	ic->ic_myaddr[1] = tmp >>  8;
1624 	ic->ic_myaddr[2] = tmp >> 16;
1625 	ic->ic_myaddr[3] = tmp >> 24;
1626 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1627 	ic->ic_myaddr[4] = tmp & 0xff;
1628 	ic->ic_myaddr[5] = tmp >>  8;
1629 
1630 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1631 	sc->rf_rev = tmp & 0x0f;
1632 	sc->pa_rev = (tmp >> 16) & 0x0f;
1633 
1634 	/* read regulatory domain (currently unused) */
1635 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1636 	sc->regdomain = tmp >> 16;
1637 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1638 
1639 	/* read Tx power calibration tables */
1640 	for (i = 0; i < 7; i++) {
1641 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1642 		sc->pwr_cal[i * 2] = val >> 8;
1643 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1644 
1645 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1646 		sc->pwr_int[i * 2] = val >> 8;
1647 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1648 
1649 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1650 		sc->ofdm36_cal[i * 2] = val >> 8;
1651 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1652 
1653 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1654 		sc->ofdm48_cal[i * 2] = val >> 8;
1655 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1656 
1657 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1658 		sc->ofdm54_cal[i * 2] = val >> 8;
1659 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1660 	}
1661 	return 0;
1662 }
1663 
1664 Static int
1665 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1666 {
1667 	uint32_t tmp;
1668 
1669 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1670 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1671 
1672 	tmp = addr[5] << 8 | addr[4];
1673 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1674 
1675 	return 0;
1676 }
1677 
1678 Static int
1679 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1680 {
1681 	uint32_t tmp;
1682 
1683 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1684 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1685 
1686 	tmp = addr[5] << 8 | addr[4];
1687 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1688 
1689 	return 0;
1690 }
1691 
1692 Static int
1693 zyd_switch_radio(struct zyd_softc *sc, int on)
1694 {
1695 	struct zyd_rf *rf = &sc->sc_rf;
1696 	int error;
1697 
1698 	zyd_lock_phy(sc);
1699 	error = (*rf->switch_radio)(rf, on);
1700 	zyd_unlock_phy(sc);
1701 
1702 	return error;
1703 }
1704 
1705 Static void
1706 zyd_set_led(struct zyd_softc *sc, int which, int on)
1707 {
1708 	uint32_t tmp;
1709 
1710 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1711 	tmp &= ~which;
1712 	if (on)
1713 		tmp |= which;
1714 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1715 }
1716 
1717 Static int
1718 zyd_set_rxfilter(struct zyd_softc *sc)
1719 {
1720 	uint32_t rxfilter;
1721 
1722 	switch (sc->sc_ic.ic_opmode) {
1723 	case IEEE80211_M_STA:
1724 		rxfilter = ZYD_FILTER_BSS;
1725 		break;
1726 	case IEEE80211_M_IBSS:
1727 	case IEEE80211_M_HOSTAP:
1728 		rxfilter = ZYD_FILTER_HOSTAP;
1729 		break;
1730 	case IEEE80211_M_MONITOR:
1731 		rxfilter = ZYD_FILTER_MONITOR;
1732 		break;
1733 	default:
1734 		/* should not get there */
1735 		return EINVAL;
1736 	}
1737 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1738 }
1739 
1740 Static void
1741 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1742 {
1743 	struct ieee80211com *ic = &sc->sc_ic;
1744 	struct zyd_rf *rf = &sc->sc_rf;
1745 	u_int chan;
1746 
1747 	chan = ieee80211_chan2ieee(ic, c);
1748 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1749 		return;
1750 
1751 	zyd_lock_phy(sc);
1752 
1753 	(*rf->set_channel)(rf, chan);
1754 
1755 	/* update Tx power */
1756 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1757 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1758 
1759 	if (sc->mac_rev == ZYD_ZD1211B) {
1760 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1761 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1762 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1763 
1764 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1765 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1766 	}
1767 
1768 	zyd_unlock_phy(sc);
1769 }
1770 
1771 Static int
1772 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1773 {
1774 	/* XXX this is probably broken.. */
1775 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1776 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1777 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1778 
1779 	return 0;
1780 }
1781 
1782 Static uint8_t
1783 zyd_plcp_signal(int rate)
1784 {
1785 	switch (rate) {
1786 	/* CCK rates (returned values are device-dependent) */
1787 	case 2:		return 0x0;
1788 	case 4:		return 0x1;
1789 	case 11:	return 0x2;
1790 	case 22:	return 0x3;
1791 
1792 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1793 	case 12:	return 0xb;
1794 	case 18:	return 0xf;
1795 	case 24:	return 0xa;
1796 	case 36:	return 0xe;
1797 	case 48:	return 0x9;
1798 	case 72:	return 0xd;
1799 	case 96:	return 0x8;
1800 	case 108:	return 0xc;
1801 
1802 	/* unsupported rates (should not get there) */
1803 	default:	return 0xff;
1804 	}
1805 }
1806 
1807 Static void
1808 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1809 {
1810 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1811 	struct zyd_cmd *cmd;
1812 	uint32_t datalen;
1813 
1814 	if (status != USBD_NORMAL_COMPLETION) {
1815 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1816 			return;
1817 
1818 		if (status == USBD_STALLED) {
1819 			usbd_clear_endpoint_stall_async(
1820 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1821 		}
1822 		return;
1823 	}
1824 
1825 	cmd = (struct zyd_cmd *)sc->ibuf;
1826 
1827 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1828 		struct zyd_notif_retry *retry =
1829 		    (struct zyd_notif_retry *)cmd->data;
1830 		struct ieee80211com *ic = &sc->sc_ic;
1831 		struct ifnet *ifp = &sc->sc_if;
1832 		struct ieee80211_node *ni;
1833 
1834 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1835 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1836 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1837 
1838 		/*
1839 		 * Find the node to which the packet was sent and update its
1840 		 * retry statistics.  In BSS mode, this node is the AP we're
1841 		 * associated to so no lookup is actually needed.
1842 		 */
1843 		if (ic->ic_opmode != IEEE80211_M_STA) {
1844 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1845 			if (ni == NULL)
1846 				return;	/* just ignore */
1847 		} else
1848 			ni = ic->ic_bss;
1849 
1850 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1851 
1852 		if (le16toh(retry->count) & 0x100)
1853 			ifp->if_oerrors++;	/* too many retries */
1854 
1855 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1856 		struct rq *rqp;
1857 
1858 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1859 			return;	/* HMAC interrupt */
1860 
1861 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1862 		datalen -= sizeof(cmd->code);
1863 		datalen -= 2;	/* XXX: padding? */
1864 
1865 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1866 			int i;
1867 
1868 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1869 				continue;
1870 			for (i = 0; i < rqp->len; i++) {
1871 				if (*(((const uint16_t *)rqp->idata) + i) !=
1872 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1873 					break;
1874 			}
1875 			if (i != rqp->len)
1876 				continue;
1877 
1878 			/* copy answer into caller-supplied buffer */
1879 			memcpy(rqp->odata, cmd->data,
1880 			    sizeof(struct zyd_pair) * rqp->len);
1881 			wakeup(rqp->odata);	/* wakeup caller */
1882 
1883 			return;
1884 		}
1885 		return;	/* unexpected IORD notification */
1886 	} else {
1887 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1888 		    le16toh(cmd->code));
1889 	}
1890 }
1891 
1892 Static void
1893 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1894 {
1895 	struct ieee80211com *ic = &sc->sc_ic;
1896 	struct ifnet *ifp = &sc->sc_if;
1897 	struct ieee80211_node *ni;
1898 	struct ieee80211_frame *wh;
1899 	const struct zyd_plcphdr *plcp;
1900 	const struct zyd_rx_stat *stat;
1901 	struct mbuf *m;
1902 	int rlen, s;
1903 
1904 	if (len < ZYD_MIN_FRAGSZ) {
1905 		printf("%s: frame too short (length=%d)\n",
1906 		    device_xname(sc->sc_dev), len);
1907 		ifp->if_ierrors++;
1908 		return;
1909 	}
1910 
1911 	plcp = (const struct zyd_plcphdr *)buf;
1912 	stat = (const struct zyd_rx_stat *)
1913 	    (buf + len - sizeof(struct zyd_rx_stat));
1914 
1915 	if (stat->flags & ZYD_RX_ERROR) {
1916 		DPRINTF(("%s: RX status indicated error (%x)\n",
1917 		    device_xname(sc->sc_dev), stat->flags));
1918 		ifp->if_ierrors++;
1919 		return;
1920 	}
1921 
1922 	/* compute actual frame length */
1923 	rlen = len - sizeof(struct zyd_plcphdr) -
1924 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1925 
1926 	/* allocate a mbuf to store the frame */
1927 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1928 	if (m == NULL) {
1929 		printf("%s: could not allocate rx mbuf\n",
1930 		    device_xname(sc->sc_dev));
1931 		ifp->if_ierrors++;
1932 		return;
1933 	}
1934 	if (rlen > MHLEN) {
1935 		MCLGET(m, M_DONTWAIT);
1936 		if (!(m->m_flags & M_EXT)) {
1937 			printf("%s: could not allocate rx mbuf cluster\n",
1938 			    device_xname(sc->sc_dev));
1939 			m_freem(m);
1940 			ifp->if_ierrors++;
1941 			return;
1942 		}
1943 	}
1944 	m_set_rcvif(m, ifp);
1945 	m->m_pkthdr.len = m->m_len = rlen;
1946 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1947 
1948 	s = splnet();
1949 
1950 	if (sc->sc_drvbpf != NULL) {
1951 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1952 		static const uint8_t rates[] = {
1953 			/* reverse function of zyd_plcp_signal() */
1954 			2, 4, 11, 22, 0, 0, 0, 0,
1955 			96, 48, 24, 12, 108, 72, 36, 18
1956 		};
1957 
1958 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1959 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1960 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1961 		tap->wr_rssi = stat->rssi;
1962 		tap->wr_rate = rates[plcp->signal & 0xf];
1963 
1964 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1965 	}
1966 
1967 	wh = mtod(m, struct ieee80211_frame *);
1968 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1969 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1970 
1971 	/* node is no longer needed */
1972 	ieee80211_free_node(ni);
1973 
1974 	splx(s);
1975 }
1976 
1977 Static void
1978 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1979 {
1980 	struct zyd_rx_data *data = priv;
1981 	struct zyd_softc *sc = data->sc;
1982 	struct ifnet *ifp = &sc->sc_if;
1983 	const struct zyd_rx_desc *desc;
1984 	int len;
1985 
1986 	if (status != USBD_NORMAL_COMPLETION) {
1987 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1988 			return;
1989 
1990 		if (status == USBD_STALLED)
1991 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1992 
1993 		goto skip;
1994 	}
1995 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1996 
1997 	if (len < ZYD_MIN_RXBUFSZ) {
1998 		printf("%s: xfer too short (length=%d)\n",
1999 		    device_xname(sc->sc_dev), len);
2000 		ifp->if_ierrors++;
2001 		goto skip;
2002 	}
2003 
2004 	desc = (const struct zyd_rx_desc *)
2005 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2006 
2007 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2008 		const uint8_t *p = data->buf, *end = p + len;
2009 		int i;
2010 
2011 		DPRINTFN(3, ("received multi-frame transfer\n"));
2012 
2013 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2014 			const uint16_t len16 = UGETW(desc->len[i]);
2015 
2016 			if (len16 == 0 || p + len16 > end)
2017 				break;
2018 
2019 			zyd_rx_data(sc, p, len16);
2020 			/* next frame is aligned on a 32-bit boundary */
2021 			p += (len16 + 3) & ~3;
2022 		}
2023 	} else {
2024 		DPRINTFN(3, ("received single-frame transfer\n"));
2025 
2026 		zyd_rx_data(sc, data->buf, len);
2027 	}
2028 
2029 skip:	/* setup a new transfer */
2030 
2031 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2032 	    USBD_NO_TIMEOUT, zyd_rxeof);
2033 	(void)usbd_transfer(xfer);
2034 }
2035 
2036 Static int
2037 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2038 {
2039 	struct ieee80211com *ic = &sc->sc_ic;
2040 	struct ifnet *ifp = &sc->sc_if;
2041 	struct zyd_tx_desc *desc;
2042 	struct zyd_tx_data *data;
2043 	struct ieee80211_frame *wh;
2044 	struct ieee80211_key *k;
2045 	int xferlen, totlen, rate;
2046 	uint16_t pktlen;
2047 	usbd_status error;
2048 
2049 	data = &sc->tx_data[0];
2050 	desc = (struct zyd_tx_desc *)data->buf;
2051 
2052 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2053 
2054 	wh = mtod(m0, struct ieee80211_frame *);
2055 
2056 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2057 		k = ieee80211_crypto_encap(ic, ni, m0);
2058 		if (k == NULL) {
2059 			m_freem(m0);
2060 			return ENOBUFS;
2061 		}
2062 	}
2063 
2064 	data->ni = ni;
2065 
2066 	wh = mtod(m0, struct ieee80211_frame *);
2067 
2068 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2069 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2070 
2071 	/* fill Tx descriptor */
2072 	desc->len = htole16(totlen);
2073 
2074 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2075 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2076 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2077 		if (totlen > ic->ic_rtsthreshold) {
2078 			desc->flags |= ZYD_TX_FLAG_RTS;
2079 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2080 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2081 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2082 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2083 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2084 				desc->flags |= ZYD_TX_FLAG_RTS;
2085 		}
2086 	} else
2087 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2088 
2089 	if ((wh->i_fc[0] &
2090 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2091 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2092 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2093 
2094 	desc->phy = zyd_plcp_signal(rate);
2095 	if (ZYD_RATE_IS_OFDM(rate)) {
2096 		desc->phy |= ZYD_TX_PHY_OFDM;
2097 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2098 			desc->phy |= ZYD_TX_PHY_5GHZ;
2099 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2100 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2101 
2102 	/* actual transmit length (XXX why +10?) */
2103 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2104 	if (sc->mac_rev == ZYD_ZD1211)
2105 		pktlen += totlen;
2106 	desc->pktlen = htole16(pktlen);
2107 
2108 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2109 	desc->plcp_service = 0;
2110 	if (rate == 22) {
2111 		const int remainder = (16 * totlen) % 22;
2112 		if (remainder != 0 && remainder < 7)
2113 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2114 	}
2115 
2116 	if (sc->sc_drvbpf != NULL) {
2117 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2118 
2119 		tap->wt_flags = 0;
2120 		tap->wt_rate = rate;
2121 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2122 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2123 
2124 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2125 	}
2126 
2127 	m_copydata(m0, 0, m0->m_pkthdr.len,
2128 	    data->buf + sizeof(struct zyd_tx_desc));
2129 
2130 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2131 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2132 
2133 	m_freem(m0);	/* mbuf no longer needed */
2134 
2135 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2136 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2137 	error = usbd_transfer(data->xfer);
2138 	if (error != USBD_IN_PROGRESS && error != 0) {
2139 		ifp->if_oerrors++;
2140 		return EIO;
2141 	}
2142 	sc->tx_queued++;
2143 
2144 	return 0;
2145 }
2146 
2147 Static void
2148 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2149 {
2150 	struct zyd_tx_data *data = priv;
2151 	struct zyd_softc *sc = data->sc;
2152 	struct ifnet *ifp = &sc->sc_if;
2153 	int s;
2154 
2155 	if (status != USBD_NORMAL_COMPLETION) {
2156 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2157 			return;
2158 
2159 		printf("%s: could not transmit buffer: %s\n",
2160 		    device_xname(sc->sc_dev), usbd_errstr(status));
2161 
2162 		if (status == USBD_STALLED) {
2163 			usbd_clear_endpoint_stall_async(
2164 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2165 		}
2166 		ifp->if_oerrors++;
2167 		return;
2168 	}
2169 
2170 	s = splnet();
2171 
2172 	/* update rate control statistics */
2173 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2174 
2175 	ieee80211_free_node(data->ni);
2176 	data->ni = NULL;
2177 
2178 	sc->tx_queued--;
2179 	ifp->if_opackets++;
2180 
2181 	sc->tx_timer = 0;
2182 	ifp->if_flags &= ~IFF_OACTIVE;
2183 	zyd_start(ifp);
2184 
2185 	splx(s);
2186 }
2187 
2188 Static int
2189 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2190 {
2191 	struct ieee80211com *ic = &sc->sc_ic;
2192 	struct ifnet *ifp = &sc->sc_if;
2193 	struct zyd_tx_desc *desc;
2194 	struct zyd_tx_data *data;
2195 	struct ieee80211_frame *wh;
2196 	struct ieee80211_key *k;
2197 	int xferlen, totlen, rate;
2198 	uint16_t pktlen;
2199 	usbd_status error;
2200 
2201 	wh = mtod(m0, struct ieee80211_frame *);
2202 
2203 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2204 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2205 	else
2206 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2207 	rate &= IEEE80211_RATE_VAL;
2208 
2209 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2210 		k = ieee80211_crypto_encap(ic, ni, m0);
2211 		if (k == NULL) {
2212 			m_freem(m0);
2213 			return ENOBUFS;
2214 		}
2215 
2216 		/* packet header may have moved, reset our local pointer */
2217 		wh = mtod(m0, struct ieee80211_frame *);
2218 	}
2219 
2220 	data = &sc->tx_data[0];
2221 	desc = (struct zyd_tx_desc *)data->buf;
2222 
2223 	data->ni = ni;
2224 
2225 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2226 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2227 
2228 	/* fill Tx descriptor */
2229 	desc->len = htole16(totlen);
2230 
2231 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2232 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2233 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2234 		if (totlen > ic->ic_rtsthreshold) {
2235 			desc->flags |= ZYD_TX_FLAG_RTS;
2236 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2237 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2238 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2239 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2240 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2241 				desc->flags |= ZYD_TX_FLAG_RTS;
2242 		}
2243 	} else
2244 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2245 
2246 	if ((wh->i_fc[0] &
2247 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2248 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2249 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2250 
2251 	desc->phy = zyd_plcp_signal(rate);
2252 	if (ZYD_RATE_IS_OFDM(rate)) {
2253 		desc->phy |= ZYD_TX_PHY_OFDM;
2254 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2255 			desc->phy |= ZYD_TX_PHY_5GHZ;
2256 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2257 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2258 
2259 	/* actual transmit length (XXX why +10?) */
2260 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2261 	if (sc->mac_rev == ZYD_ZD1211)
2262 		pktlen += totlen;
2263 	desc->pktlen = htole16(pktlen);
2264 
2265 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2266 	desc->plcp_service = 0;
2267 	if (rate == 22) {
2268 		const int remainder = (16 * totlen) % 22;
2269 		if (remainder != 0 && remainder < 7)
2270 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2271 	}
2272 
2273 	if (sc->sc_drvbpf != NULL) {
2274 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2275 
2276 		tap->wt_flags = 0;
2277 		tap->wt_rate = rate;
2278 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2279 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2280 
2281 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2282 	}
2283 
2284 	m_copydata(m0, 0, m0->m_pkthdr.len,
2285 	    data->buf + sizeof(struct zyd_tx_desc));
2286 
2287 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2288 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2289 
2290 	m_freem(m0);	/* mbuf no longer needed */
2291 
2292 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2293 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2294 	error = usbd_transfer(data->xfer);
2295 	if (error != USBD_IN_PROGRESS && error != 0) {
2296 		ifp->if_oerrors++;
2297 		return EIO;
2298 	}
2299 	sc->tx_queued++;
2300 
2301 	return 0;
2302 }
2303 
2304 Static void
2305 zyd_start(struct ifnet *ifp)
2306 {
2307 	struct zyd_softc *sc = ifp->if_softc;
2308 	struct ieee80211com *ic = &sc->sc_ic;
2309 	struct ether_header *eh;
2310 	struct ieee80211_node *ni;
2311 	struct mbuf *m0;
2312 
2313 	for (;;) {
2314 		IF_POLL(&ic->ic_mgtq, m0);
2315 		if (m0 != NULL) {
2316 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2317 				ifp->if_flags |= IFF_OACTIVE;
2318 				break;
2319 			}
2320 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2321 
2322 			ni = M_GETCTX(m0, struct ieee80211_node *);
2323 			M_CLEARCTX(m0);
2324 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2325 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2326 				break;
2327 		} else {
2328 			if (ic->ic_state != IEEE80211_S_RUN)
2329 				break;
2330 			IFQ_POLL(&ifp->if_snd, m0);
2331 			if (m0 == NULL)
2332 				break;
2333 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2334 				ifp->if_flags |= IFF_OACTIVE;
2335 				break;
2336 			}
2337 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2338 
2339 			if (m0->m_len < sizeof(struct ether_header) &&
2340 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2341 				continue;
2342 
2343 			eh = mtod(m0, struct ether_header *);
2344 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2345 			if (ni == NULL) {
2346 				m_freem(m0);
2347 				continue;
2348 			}
2349 			bpf_mtap(ifp, m0, BPF_D_OUT);
2350 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2351 				ieee80211_free_node(ni);
2352 				ifp->if_oerrors++;
2353 				continue;
2354 			}
2355 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2356 			if (zyd_tx_data(sc, m0, ni) != 0) {
2357 				ieee80211_free_node(ni);
2358 				ifp->if_oerrors++;
2359 				break;
2360 			}
2361 		}
2362 
2363 		sc->tx_timer = 5;
2364 		ifp->if_timer = 1;
2365 	}
2366 }
2367 
2368 Static void
2369 zyd_watchdog(struct ifnet *ifp)
2370 {
2371 	struct zyd_softc *sc = ifp->if_softc;
2372 	struct ieee80211com *ic = &sc->sc_ic;
2373 
2374 	ifp->if_timer = 0;
2375 
2376 	if (sc->tx_timer > 0) {
2377 		if (--sc->tx_timer == 0) {
2378 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2379 			/* zyd_init(ifp); XXX needs a process context ? */
2380 			ifp->if_oerrors++;
2381 			return;
2382 		}
2383 		ifp->if_timer = 1;
2384 	}
2385 
2386 	ieee80211_watchdog(ic);
2387 }
2388 
2389 Static int
2390 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2391 {
2392 	struct zyd_softc *sc = ifp->if_softc;
2393 	struct ieee80211com *ic = &sc->sc_ic;
2394 	int s, error = 0;
2395 
2396 	s = splnet();
2397 
2398 	switch (cmd) {
2399 	case SIOCSIFFLAGS:
2400 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2401 			break;
2402 		/* XXX re-use ether_ioctl() */
2403 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2404 		case IFF_UP:
2405 			zyd_init(ifp);
2406 			break;
2407 		case IFF_RUNNING:
2408 			zyd_stop(ifp, 1);
2409 			break;
2410 		default:
2411 			break;
2412 		}
2413 		break;
2414 
2415 	default:
2416 		error = ieee80211_ioctl(ic, cmd, data);
2417 	}
2418 
2419 	if (error == ENETRESET) {
2420 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2421 		    (IFF_RUNNING | IFF_UP))
2422 			zyd_init(ifp);
2423 		error = 0;
2424 	}
2425 
2426 	splx(s);
2427 
2428 	return error;
2429 }
2430 
2431 Static int
2432 zyd_init(struct ifnet *ifp)
2433 {
2434 	struct zyd_softc *sc = ifp->if_softc;
2435 	struct ieee80211com *ic = &sc->sc_ic;
2436 	int i, error;
2437 
2438 	zyd_stop(ifp, 0);
2439 
2440 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2441 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2442 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2443 	if (error != 0)
2444 		return error;
2445 
2446 	/* we'll do software WEP decryption for now */
2447 	DPRINTF(("setting encryption type\n"));
2448 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2449 	if (error != 0)
2450 		return error;
2451 
2452 	/* promiscuous mode */
2453 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2454 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2455 
2456 	(void)zyd_set_rxfilter(sc);
2457 
2458 	/* switch radio transmitter ON */
2459 	(void)zyd_switch_radio(sc, 1);
2460 
2461 	/* set basic rates */
2462 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2463 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2464 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2465 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2466 	else	/* assumes 802.11b/g */
2467 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2468 
2469 	/* set mandatory rates */
2470 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2471 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2472 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2473 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2474 	else	/* assumes 802.11b/g */
2475 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2476 
2477 	/* set default BSS channel */
2478 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2479 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2480 
2481 	/* enable interrupts */
2482 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2483 
2484 	/*
2485 	 * Allocate Tx and Rx xfer queues.
2486 	 */
2487 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2488 		printf("%s: could not allocate Tx list\n",
2489 		    device_xname(sc->sc_dev));
2490 		goto fail;
2491 	}
2492 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2493 		printf("%s: could not allocate Rx list\n",
2494 		    device_xname(sc->sc_dev));
2495 		goto fail;
2496 	}
2497 
2498 	/*
2499 	 * Start up the receive pipe.
2500 	 */
2501 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2502 		struct zyd_rx_data *data = &sc->rx_data[i];
2503 
2504 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2505 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2506 		error = usbd_transfer(data->xfer);
2507 		if (error != USBD_IN_PROGRESS && error != 0) {
2508 			printf("%s: could not queue Rx transfer\n",
2509 			    device_xname(sc->sc_dev));
2510 			goto fail;
2511 		}
2512 	}
2513 
2514 	ifp->if_flags &= ~IFF_OACTIVE;
2515 	ifp->if_flags |= IFF_RUNNING;
2516 
2517 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2518 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2519 	else
2520 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2521 
2522 	return 0;
2523 
2524 fail:	zyd_stop(ifp, 1);
2525 	return error;
2526 }
2527 
2528 Static void
2529 zyd_stop(struct ifnet *ifp, int disable)
2530 {
2531 	struct zyd_softc *sc = ifp->if_softc;
2532 	struct ieee80211com *ic = &sc->sc_ic;
2533 
2534 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2535 
2536 	sc->tx_timer = 0;
2537 	ifp->if_timer = 0;
2538 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2539 
2540 	/* switch radio transmitter OFF */
2541 	(void)zyd_switch_radio(sc, 0);
2542 
2543 	/* disable Rx */
2544 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2545 
2546 	/* disable interrupts */
2547 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2548 
2549 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2550 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2551 
2552 	zyd_free_rx_list(sc);
2553 	zyd_free_tx_list(sc);
2554 }
2555 
2556 Static int
2557 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2558 {
2559 	usb_device_request_t req;
2560 	uint16_t addr;
2561 	uint8_t stat;
2562 
2563 	DPRINTF(("firmware size=%zu\n", size));
2564 
2565 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2566 	req.bRequest = ZYD_DOWNLOADREQ;
2567 	USETW(req.wIndex, 0);
2568 
2569 	addr = ZYD_FIRMWARE_START_ADDR;
2570 	while (size > 0) {
2571 #if 0
2572 		const int mlen = min(size, 4096);
2573 #else
2574 		/*
2575 		 * XXXX: When the transfer size is 4096 bytes, it is not
2576 		 * likely to be able to transfer it.
2577 		 * The cause is port or machine or chip?
2578 		 */
2579 		const int mlen = min(size, 64);
2580 #endif
2581 
2582 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2583 		    addr));
2584 
2585 		USETW(req.wValue, addr);
2586 		USETW(req.wLength, mlen);
2587 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2588 			return EIO;
2589 
2590 		addr += mlen / 2;
2591 		fw   += mlen;
2592 		size -= mlen;
2593 	}
2594 
2595 	/* check whether the upload succeeded */
2596 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2597 	req.bRequest = ZYD_DOWNLOADSTS;
2598 	USETW(req.wValue, 0);
2599 	USETW(req.wIndex, 0);
2600 	USETW(req.wLength, sizeof(stat));
2601 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2602 		return EIO;
2603 
2604 	return (stat & 0x80) ? EIO : 0;
2605 }
2606 
2607 Static void
2608 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2609 {
2610 	struct zyd_softc *sc = arg;
2611 	struct zyd_node *zn = (struct zyd_node *)ni;
2612 
2613 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2614 }
2615 
2616 Static void
2617 zyd_amrr_timeout(void *arg)
2618 {
2619 	struct zyd_softc *sc = arg;
2620 	struct ieee80211com *ic = &sc->sc_ic;
2621 	int s;
2622 
2623 	s = splnet();
2624 	if (ic->ic_opmode == IEEE80211_M_STA)
2625 		zyd_iter_func(sc, ic->ic_bss);
2626 	else
2627 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2628 	splx(s);
2629 
2630 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2631 }
2632 
2633 Static void
2634 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2635 {
2636 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2637 	int i;
2638 
2639 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2640 
2641 	/* set rate to some reasonable initial value */
2642 	for (i = ni->ni_rates.rs_nrates - 1;
2643 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2644 	     i--);
2645 	ni->ni_txrate = i;
2646 }
2647 
2648 int
2649 zyd_activate(device_t self, enum devact act)
2650 {
2651 	struct zyd_softc *sc = device_private(self);
2652 
2653 	switch (act) {
2654 	case DVACT_DEACTIVATE:
2655 		if_deactivate(&sc->sc_if);
2656 		return 0;
2657 	default:
2658 		return EOPNOTSUPP;
2659 	}
2660 }
2661