1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.29 2011/07/18 05:57:40 jruoho Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.29 2011/07/18 05:57:40 jruoho Exp $"); 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <machine/endian.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/in_systm.h> 52 #include <netinet/in_var.h> 53 #include <netinet/ip.h> 54 55 #include <net80211/ieee80211_netbsd.h> 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/firmload.h> 61 62 #include <dev/usb/usb.h> 63 #include <dev/usb/usbdi.h> 64 #include <dev/usb/usbdi_util.h> 65 #include <dev/usb/usbdevs.h> 66 67 #include <dev/usb/if_zydreg.h> 68 69 #ifdef USB_DEBUG 70 #define ZYD_DEBUG 71 #endif 72 73 #ifdef ZYD_DEBUG 74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 76 int zyddebug = 0; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 84 85 /* various supported device vendors/products */ 86 #define ZYD_ZD1211_DEV(v, p) \ 87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 88 #define ZYD_ZD1211B_DEV(v, p) \ 89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 90 static const struct zyd_type { 91 struct usb_devno dev; 92 uint8_t rev; 93 #define ZYD_ZD1211 0 94 #define ZYD_ZD1211B 1 95 } zyd_devs[] = { 96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 97 ZYD_ZD1211_DEV(ABOCOM, WL54), 98 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 102 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 103 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 104 ZYD_ZD1211_DEV(SAGEM, XG760A), 105 ZYD_ZD1211_DEV(SENAO, NUB8301), 106 ZYD_ZD1211_DEV(SITECOMEU, WL113), 107 ZYD_ZD1211_DEV(SWEEX, ZD1211), 108 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 109 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 111 ZYD_ZD1211_DEV(TWINMOS, G240), 112 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 113 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 115 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 116 ZYD_ZD1211_DEV(ZCOM, ZD1211), 117 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 118 ZYD_ZD1211_DEV(ZYXEL, AG225H), 119 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 120 121 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 122 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 123 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 124 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 125 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 126 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 127 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 128 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 129 ZYD_ZD1211B_DEV(MELCO, KG54L), 130 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 131 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 132 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 133 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 134 #if 0 /* Shall we needs? */ 135 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 136 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 137 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 138 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 139 #endif 140 ZYD_ZD1211B_DEV(USR, USR5423), 141 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 142 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 143 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 144 ZYD_ZD1211B_DEV(ZYXEL, M202), 145 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 146 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 147 }; 148 #define zyd_lookup(v, p) \ 149 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 150 151 int zyd_match(device_t, cfdata_t, void *); 152 void zyd_attach(device_t, device_t, void *); 153 int zyd_detach(device_t, int); 154 int zyd_activate(device_t, enum devact); 155 extern struct cfdriver zyd_cd; 156 157 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 158 zyd_attach, zyd_detach, zyd_activate); 159 160 Static void zyd_attachhook(device_t); 161 Static int zyd_complete_attach(struct zyd_softc *); 162 Static int zyd_open_pipes(struct zyd_softc *); 163 Static void zyd_close_pipes(struct zyd_softc *); 164 Static int zyd_alloc_tx_list(struct zyd_softc *); 165 Static void zyd_free_tx_list(struct zyd_softc *); 166 Static int zyd_alloc_rx_list(struct zyd_softc *); 167 Static void zyd_free_rx_list(struct zyd_softc *); 168 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 169 Static int zyd_media_change(struct ifnet *); 170 Static void zyd_next_scan(void *); 171 Static void zyd_task(void *); 172 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 173 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 174 void *, int, u_int); 175 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 176 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 177 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 178 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 179 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 180 Static void zyd_lock_phy(struct zyd_softc *); 181 Static void zyd_unlock_phy(struct zyd_softc *); 182 Static int zyd_rfmd_init(struct zyd_rf *); 183 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 184 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 185 Static int zyd_al2230_init(struct zyd_rf *); 186 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 187 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 188 Static int zyd_al2230_init_b(struct zyd_rf *); 189 Static int zyd_al7230B_init(struct zyd_rf *); 190 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 191 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 192 Static int zyd_al2210_init(struct zyd_rf *); 193 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 194 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 195 Static int zyd_gct_init(struct zyd_rf *); 196 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 197 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 198 Static int zyd_maxim_init(struct zyd_rf *); 199 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 200 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 201 Static int zyd_maxim2_init(struct zyd_rf *); 202 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 203 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 204 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 205 Static const char *zyd_rf_name(uint8_t); 206 Static int zyd_hw_init(struct zyd_softc *); 207 Static int zyd_read_eeprom(struct zyd_softc *); 208 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 209 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 210 Static int zyd_switch_radio(struct zyd_softc *, int); 211 Static void zyd_set_led(struct zyd_softc *, int, int); 212 Static int zyd_set_rxfilter(struct zyd_softc *); 213 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 214 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 215 Static uint8_t zyd_plcp_signal(int); 216 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 217 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 218 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 219 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 220 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 221 struct ieee80211_node *); 222 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 223 struct ieee80211_node *); 224 Static void zyd_start(struct ifnet *); 225 Static void zyd_watchdog(struct ifnet *); 226 Static int zyd_ioctl(struct ifnet *, u_long, void *); 227 Static int zyd_init(struct ifnet *); 228 Static void zyd_stop(struct ifnet *, int); 229 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 230 Static void zyd_iter_func(void *, struct ieee80211_node *); 231 Static void zyd_amrr_timeout(void *); 232 Static void zyd_newassoc(struct ieee80211_node *, int); 233 234 static const struct ieee80211_rateset zyd_rateset_11b = 235 { 4, { 2, 4, 11, 22 } }; 236 237 static const struct ieee80211_rateset zyd_rateset_11g = 238 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 239 240 int 241 zyd_match(device_t parent, cfdata_t match, void *aux) 242 { 243 struct usb_attach_arg *uaa = aux; 244 245 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 246 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 247 } 248 249 Static void 250 zyd_attachhook(device_t self) 251 { 252 struct zyd_softc *sc = device_private(self); 253 firmware_handle_t fwh; 254 const char *fwname; 255 u_char *fw; 256 size_t size; 257 int error; 258 259 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 260 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 261 aprint_error_dev(sc->sc_dev, 262 "failed to open firmware %s (error=%d)\n", fwname, error); 263 return; 264 } 265 size = firmware_get_size(fwh); 266 fw = firmware_malloc(size); 267 if (fw == NULL) { 268 aprint_error_dev(sc->sc_dev, 269 "failed to allocate firmware memory\n"); 270 firmware_close(fwh); 271 return; 272 } 273 error = firmware_read(fwh, 0, fw, size); 274 firmware_close(fwh); 275 if (error != 0) { 276 aprint_error_dev(sc->sc_dev, 277 "failed to read firmware (error %d)\n", error); 278 firmware_free(fw, 0); 279 return; 280 } 281 282 error = zyd_loadfirmware(sc, fw, size); 283 if (error != 0) { 284 aprint_error_dev(sc->sc_dev, 285 "could not load firmware (error=%d)\n", error); 286 firmware_free(fw, 0); 287 return; 288 } 289 290 firmware_free(fw, 0); 291 sc->sc_flags |= ZD1211_FWLOADED; 292 293 /* complete the attach process */ 294 if ((error = zyd_complete_attach(sc)) == 0) 295 sc->attached = 1; 296 return; 297 } 298 299 void 300 zyd_attach(device_t parent, device_t self, void *aux) 301 { 302 struct zyd_softc *sc = device_private(self); 303 struct usb_attach_arg *uaa = aux; 304 char *devinfop; 305 usb_device_descriptor_t* ddesc; 306 struct ifnet *ifp = &sc->sc_if; 307 308 sc->sc_dev = self; 309 sc->sc_udev = uaa->device; 310 sc->sc_flags = 0; 311 312 aprint_naive("\n"); 313 aprint_normal("\n"); 314 315 devinfop = usbd_devinfo_alloc(uaa->device, 0); 316 aprint_normal_dev(self, "%s\n", devinfop); 317 usbd_devinfo_free(devinfop); 318 319 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 320 321 ddesc = usbd_get_device_descriptor(sc->sc_udev); 322 if (UGETW(ddesc->bcdDevice) < 0x4330) { 323 aprint_error_dev(self, "device version mismatch: 0x%x " 324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 325 return; 326 } 327 328 ifp->if_softc = sc; 329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 330 ifp->if_init = zyd_init; 331 ifp->if_ioctl = zyd_ioctl; 332 ifp->if_start = zyd_start; 333 ifp->if_watchdog = zyd_watchdog; 334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 335 IFQ_SET_READY(&ifp->if_snd); 336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 337 338 SIMPLEQ_INIT(&sc->sc_rqh); 339 340 /* defer configrations after file system is ready to load firmware */ 341 config_mountroot(self, zyd_attachhook); 342 } 343 344 Static int 345 zyd_complete_attach(struct zyd_softc *sc) 346 { 347 struct ieee80211com *ic = &sc->sc_ic; 348 struct ifnet *ifp = &sc->sc_if; 349 usbd_status error; 350 int i; 351 352 usb_init_task(&sc->sc_task, zyd_task, sc); 353 callout_init(&(sc->sc_scan_ch), 0); 354 355 sc->amrr.amrr_min_success_threshold = 1; 356 sc->amrr.amrr_max_success_threshold = 10; 357 callout_init(&sc->sc_amrr_ch, 0); 358 359 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 360 if (error != 0) { 361 aprint_error_dev(sc->sc_dev, "setting config no failed\n"); 362 goto fail; 363 } 364 365 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 366 &sc->sc_iface); 367 if (error != 0) { 368 aprint_error_dev(sc->sc_dev, 369 "getting interface handle failed\n"); 370 goto fail; 371 } 372 373 if ((error = zyd_open_pipes(sc)) != 0) { 374 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 375 goto fail; 376 } 377 378 if ((error = zyd_read_eeprom(sc)) != 0) { 379 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 380 goto fail; 381 } 382 383 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 384 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 385 goto fail; 386 } 387 388 if ((error = zyd_hw_init(sc)) != 0) { 389 aprint_error_dev(sc->sc_dev, 390 "hardware initialization failed\n"); 391 goto fail; 392 } 393 394 aprint_normal_dev(sc->sc_dev, 395 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 396 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 397 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 398 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 399 400 ic->ic_ifp = ifp; 401 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 402 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 403 ic->ic_state = IEEE80211_S_INIT; 404 405 /* set device capabilities */ 406 ic->ic_caps = 407 IEEE80211_C_MONITOR | /* monitor mode supported */ 408 IEEE80211_C_TXPMGT | /* tx power management */ 409 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 410 IEEE80211_C_WEP; /* s/w WEP */ 411 412 /* set supported .11b and .11g rates */ 413 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 414 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 415 416 /* set supported .11b and .11g channels (1 through 14) */ 417 for (i = 1; i <= 14; i++) { 418 ic->ic_channels[i].ic_freq = 419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 420 ic->ic_channels[i].ic_flags = 421 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 422 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 423 } 424 425 if_attach(ifp); 426 ieee80211_ifattach(ic); 427 ic->ic_node_alloc = zyd_node_alloc; 428 ic->ic_newassoc = zyd_newassoc; 429 430 /* override state transition machine */ 431 sc->sc_newstate = ic->ic_newstate; 432 ic->ic_newstate = zyd_newstate; 433 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 434 435 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 436 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 437 &sc->sc_drvbpf); 438 439 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 440 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 441 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 442 443 sc->sc_txtap_len = sizeof sc->sc_txtapu; 444 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 445 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 446 447 ieee80211_announce(ic); 448 449 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 450 451 fail: return error; 452 } 453 454 int 455 zyd_detach(device_t self, int flags) 456 { 457 struct zyd_softc *sc = device_private(self); 458 struct ieee80211com *ic = &sc->sc_ic; 459 struct ifnet *ifp = &sc->sc_if; 460 int s; 461 462 if (!sc->attached) 463 return 0; 464 465 s = splusb(); 466 467 zyd_stop(ifp, 1); 468 usb_rem_task(sc->sc_udev, &sc->sc_task); 469 callout_stop(&sc->sc_scan_ch); 470 callout_stop(&sc->sc_amrr_ch); 471 472 zyd_close_pipes(sc); 473 474 sc->attached = 0; 475 476 bpf_detach(ifp); 477 ieee80211_ifdetach(ic); 478 if_detach(ifp); 479 480 splx(s); 481 482 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 483 sc->sc_dev); 484 485 return 0; 486 } 487 488 Static int 489 zyd_open_pipes(struct zyd_softc *sc) 490 { 491 usb_endpoint_descriptor_t *edesc; 492 int isize; 493 usbd_status error; 494 495 /* interrupt in */ 496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 497 if (edesc == NULL) 498 return EINVAL; 499 500 isize = UGETW(edesc->wMaxPacketSize); 501 if (isize == 0) /* should not happen */ 502 return EINVAL; 503 504 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 505 if (sc->ibuf == NULL) 506 return ENOMEM; 507 508 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 509 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 510 USBD_DEFAULT_INTERVAL); 511 if (error != 0) { 512 printf("%s: open rx intr pipe failed: %s\n", 513 device_xname(sc->sc_dev), usbd_errstr(error)); 514 goto fail; 515 } 516 517 /* interrupt out (not necessarily an interrupt pipe) */ 518 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 519 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 520 if (error != 0) { 521 printf("%s: open tx intr pipe failed: %s\n", 522 device_xname(sc->sc_dev), usbd_errstr(error)); 523 goto fail; 524 } 525 526 /* bulk in */ 527 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 528 &sc->zyd_ep[ZYD_ENDPT_BIN]); 529 if (error != 0) { 530 printf("%s: open rx pipe failed: %s\n", 531 device_xname(sc->sc_dev), usbd_errstr(error)); 532 goto fail; 533 } 534 535 /* bulk out */ 536 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 537 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 538 if (error != 0) { 539 printf("%s: open tx pipe failed: %s\n", 540 device_xname(sc->sc_dev), usbd_errstr(error)); 541 goto fail; 542 } 543 544 return 0; 545 546 fail: zyd_close_pipes(sc); 547 return error; 548 } 549 550 Static void 551 zyd_close_pipes(struct zyd_softc *sc) 552 { 553 int i; 554 555 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 556 if (sc->zyd_ep[i] != NULL) { 557 usbd_abort_pipe(sc->zyd_ep[i]); 558 usbd_close_pipe(sc->zyd_ep[i]); 559 sc->zyd_ep[i] = NULL; 560 } 561 } 562 if (sc->ibuf != NULL) { 563 free(sc->ibuf, M_USBDEV); 564 sc->ibuf = NULL; 565 } 566 } 567 568 Static int 569 zyd_alloc_tx_list(struct zyd_softc *sc) 570 { 571 int i, error; 572 573 sc->tx_queued = 0; 574 575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 576 struct zyd_tx_data *data = &sc->tx_data[i]; 577 578 data->sc = sc; /* backpointer for callbacks */ 579 580 data->xfer = usbd_alloc_xfer(sc->sc_udev); 581 if (data->xfer == NULL) { 582 printf("%s: could not allocate tx xfer\n", 583 device_xname(sc->sc_dev)); 584 error = ENOMEM; 585 goto fail; 586 } 587 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 588 if (data->buf == NULL) { 589 printf("%s: could not allocate tx buffer\n", 590 device_xname(sc->sc_dev)); 591 error = ENOMEM; 592 goto fail; 593 } 594 595 /* clear Tx descriptor */ 596 memset(data->buf, 0, sizeof (struct zyd_tx_desc)); 597 } 598 return 0; 599 600 fail: zyd_free_tx_list(sc); 601 return error; 602 } 603 604 Static void 605 zyd_free_tx_list(struct zyd_softc *sc) 606 { 607 int i; 608 609 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 610 struct zyd_tx_data *data = &sc->tx_data[i]; 611 612 if (data->xfer != NULL) { 613 usbd_free_xfer(data->xfer); 614 data->xfer = NULL; 615 } 616 if (data->ni != NULL) { 617 ieee80211_free_node(data->ni); 618 data->ni = NULL; 619 } 620 } 621 } 622 623 Static int 624 zyd_alloc_rx_list(struct zyd_softc *sc) 625 { 626 int i, error; 627 628 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 629 struct zyd_rx_data *data = &sc->rx_data[i]; 630 631 data->sc = sc; /* backpointer for callbacks */ 632 633 data->xfer = usbd_alloc_xfer(sc->sc_udev); 634 if (data->xfer == NULL) { 635 printf("%s: could not allocate rx xfer\n", 636 device_xname(sc->sc_dev)); 637 error = ENOMEM; 638 goto fail; 639 } 640 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 641 if (data->buf == NULL) { 642 printf("%s: could not allocate rx buffer\n", 643 device_xname(sc->sc_dev)); 644 error = ENOMEM; 645 goto fail; 646 } 647 } 648 return 0; 649 650 fail: zyd_free_rx_list(sc); 651 return error; 652 } 653 654 Static void 655 zyd_free_rx_list(struct zyd_softc *sc) 656 { 657 int i; 658 659 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 660 struct zyd_rx_data *data = &sc->rx_data[i]; 661 662 if (data->xfer != NULL) { 663 usbd_free_xfer(data->xfer); 664 data->xfer = NULL; 665 } 666 } 667 } 668 669 /* ARGUSED */ 670 Static struct ieee80211_node * 671 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 672 { 673 struct zyd_node *zn; 674 675 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 676 677 return &zn->ni; 678 } 679 680 Static int 681 zyd_media_change(struct ifnet *ifp) 682 { 683 int error; 684 685 error = ieee80211_media_change(ifp); 686 if (error != ENETRESET) 687 return error; 688 689 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 690 zyd_init(ifp); 691 692 return 0; 693 } 694 695 /* 696 * This function is called periodically (every 200ms) during scanning to 697 * switch from one channel to another. 698 */ 699 Static void 700 zyd_next_scan(void *arg) 701 { 702 struct zyd_softc *sc = arg; 703 struct ieee80211com *ic = &sc->sc_ic; 704 705 if (ic->ic_state == IEEE80211_S_SCAN) 706 ieee80211_next_scan(ic); 707 } 708 709 Static void 710 zyd_task(void *arg) 711 { 712 struct zyd_softc *sc = arg; 713 struct ieee80211com *ic = &sc->sc_ic; 714 enum ieee80211_state ostate; 715 716 ostate = ic->ic_state; 717 718 switch (sc->sc_state) { 719 case IEEE80211_S_INIT: 720 if (ostate == IEEE80211_S_RUN) { 721 /* turn link LED off */ 722 zyd_set_led(sc, ZYD_LED1, 0); 723 724 /* stop data LED from blinking */ 725 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 726 } 727 break; 728 729 case IEEE80211_S_SCAN: 730 zyd_set_chan(sc, ic->ic_curchan); 731 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 732 break; 733 734 case IEEE80211_S_AUTH: 735 case IEEE80211_S_ASSOC: 736 zyd_set_chan(sc, ic->ic_curchan); 737 break; 738 739 case IEEE80211_S_RUN: 740 { 741 struct ieee80211_node *ni = ic->ic_bss; 742 743 zyd_set_chan(sc, ic->ic_curchan); 744 745 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 746 /* turn link LED on */ 747 zyd_set_led(sc, ZYD_LED1, 1); 748 749 /* make data LED blink upon Tx */ 750 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 751 752 zyd_set_bssid(sc, ni->ni_bssid); 753 } 754 755 if (ic->ic_opmode == IEEE80211_M_STA) { 756 /* fake a join to init the tx rate */ 757 zyd_newassoc(ni, 1); 758 } 759 760 /* start automatic rate control timer */ 761 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 762 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 763 764 break; 765 } 766 } 767 768 sc->sc_newstate(ic, sc->sc_state, -1); 769 } 770 771 Static int 772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 773 { 774 struct zyd_softc *sc = ic->ic_ifp->if_softc; 775 776 if (!sc->attached) 777 return ENXIO; 778 779 usb_rem_task(sc->sc_udev, &sc->sc_task); 780 callout_stop(&sc->sc_scan_ch); 781 callout_stop(&sc->sc_amrr_ch); 782 783 /* do it in a process context */ 784 sc->sc_state = nstate; 785 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 786 787 return 0; 788 } 789 790 Static int 791 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 792 void *odata, int olen, u_int flags) 793 { 794 usbd_xfer_handle xfer; 795 struct zyd_cmd cmd; 796 struct rq rq; 797 uint16_t xferflags; 798 usbd_status error; 799 int s = 0; 800 801 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 802 return ENOMEM; 803 804 cmd.code = htole16(code); 805 bcopy(idata, cmd.data, ilen); 806 807 xferflags = USBD_FORCE_SHORT_XFER; 808 if (!(flags & ZYD_CMD_FLAG_READ)) 809 xferflags |= USBD_SYNCHRONOUS; 810 else { 811 s = splusb(); 812 rq.idata = idata; 813 rq.odata = odata; 814 rq.len = olen / sizeof (struct zyd_pair); 815 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 816 } 817 818 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 819 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 820 error = usbd_transfer(xfer); 821 if (error != USBD_IN_PROGRESS && error != 0) { 822 if (flags & ZYD_CMD_FLAG_READ) 823 splx(s); 824 printf("%s: could not send command (error=%s)\n", 825 device_xname(sc->sc_dev), usbd_errstr(error)); 826 (void)usbd_free_xfer(xfer); 827 return EIO; 828 } 829 if (!(flags & ZYD_CMD_FLAG_READ)) { 830 (void)usbd_free_xfer(xfer); 831 return 0; /* write: don't wait for reply */ 832 } 833 /* wait at most one second for command reply */ 834 error = tsleep(odata, PCATCH, "zydcmd", hz); 835 if (error == EWOULDBLOCK) 836 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 837 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 838 splx(s); 839 840 (void)usbd_free_xfer(xfer); 841 return error; 842 } 843 844 Static int 845 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 846 { 847 struct zyd_pair tmp; 848 int error; 849 850 reg = htole16(reg); 851 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 852 ZYD_CMD_FLAG_READ); 853 if (error == 0) 854 *val = le16toh(tmp.val); 855 return error; 856 } 857 858 Static int 859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 860 { 861 struct zyd_pair tmp[2]; 862 uint16_t regs[2]; 863 int error; 864 865 regs[0] = htole16(ZYD_REG32_HI(reg)); 866 regs[1] = htole16(ZYD_REG32_LO(reg)); 867 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 868 ZYD_CMD_FLAG_READ); 869 if (error == 0) 870 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 871 return error; 872 } 873 874 Static int 875 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 876 { 877 struct zyd_pair pair; 878 879 pair.reg = htole16(reg); 880 pair.val = htole16(val); 881 882 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 883 } 884 885 Static int 886 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 887 { 888 struct zyd_pair pair[2]; 889 890 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 891 pair[0].val = htole16(val >> 16); 892 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 893 pair[1].val = htole16(val & 0xffff); 894 895 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 896 } 897 898 Static int 899 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 900 { 901 struct zyd_rf *rf = &sc->sc_rf; 902 struct zyd_rfwrite req; 903 uint16_t cr203; 904 int i; 905 906 (void)zyd_read16(sc, ZYD_CR203, &cr203); 907 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 908 909 req.code = htole16(2); 910 req.width = htole16(rf->width); 911 for (i = 0; i < rf->width; i++) { 912 req.bit[i] = htole16(cr203); 913 if (val & (1 << (rf->width - 1 - i))) 914 req.bit[i] |= htole16(ZYD_RF_DATA); 915 } 916 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 917 } 918 919 Static void 920 zyd_lock_phy(struct zyd_softc *sc) 921 { 922 uint32_t tmp; 923 924 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 925 tmp &= ~ZYD_UNLOCK_PHY_REGS; 926 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 927 } 928 929 Static void 930 zyd_unlock_phy(struct zyd_softc *sc) 931 { 932 uint32_t tmp; 933 934 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 935 tmp |= ZYD_UNLOCK_PHY_REGS; 936 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 937 } 938 939 /* 940 * RFMD RF methods. 941 */ 942 Static int 943 zyd_rfmd_init(struct zyd_rf *rf) 944 { 945 struct zyd_softc *sc = rf->rf_sc; 946 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 947 static const uint32_t rfini[] = ZYD_RFMD_RF; 948 int error; 949 size_t i; 950 951 /* init RF-dependent PHY registers */ 952 for (i = 0; i < __arraycount(phyini); i++) { 953 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 954 if (error != 0) 955 return error; 956 } 957 958 /* init RFMD radio */ 959 for (i = 0; i < __arraycount(rfini); i++) { 960 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 961 return error; 962 } 963 return 0; 964 } 965 966 Static int 967 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 968 { 969 struct zyd_softc *sc = rf->rf_sc; 970 971 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 972 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 973 974 return 0; 975 } 976 977 Static int 978 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 979 { 980 struct zyd_softc *sc = rf->rf_sc; 981 static const struct { 982 uint32_t r1, r2; 983 } rfprog[] = ZYD_RFMD_CHANTABLE; 984 985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 986 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 987 988 return 0; 989 } 990 991 /* 992 * AL2230 RF methods. 993 */ 994 Static int 995 zyd_al2230_init(struct zyd_rf *rf) 996 { 997 struct zyd_softc *sc = rf->rf_sc; 998 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 999 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1000 static const uint32_t rfini[] = ZYD_AL2230_RF; 1001 int error; 1002 size_t i; 1003 1004 /* init RF-dependent PHY registers */ 1005 for (i = 0; i < __arraycount(phyini); i++) { 1006 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1007 if (error != 0) 1008 return error; 1009 } 1010 1011 if (sc->rf_rev == ZYD_RF_AL2230S) { 1012 for (i = 0; i < __arraycount(phy2230s); i++) { 1013 error = zyd_write16(sc, phy2230s[i].reg, 1014 phy2230s[i].val); 1015 if (error != 0) 1016 return error; 1017 } 1018 } 1019 1020 /* init AL2230 radio */ 1021 for (i = 0; i < __arraycount(rfini); i++) { 1022 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1023 return error; 1024 } 1025 return 0; 1026 } 1027 1028 Static int 1029 zyd_al2230_init_b(struct zyd_rf *rf) 1030 { 1031 struct zyd_softc *sc = rf->rf_sc; 1032 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1033 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1034 int error; 1035 size_t i; 1036 1037 /* init RF-dependent PHY registers */ 1038 for (i = 0; i < __arraycount(phyini); i++) { 1039 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1040 if (error != 0) 1041 return error; 1042 } 1043 1044 /* init AL2230 radio */ 1045 for (i = 0; i < __arraycount(rfini); i++) { 1046 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1047 return error; 1048 } 1049 return 0; 1050 } 1051 1052 Static int 1053 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1054 { 1055 struct zyd_softc *sc = rf->rf_sc; 1056 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1057 1058 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1059 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1060 1061 return 0; 1062 } 1063 1064 Static int 1065 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1066 { 1067 struct zyd_softc *sc = rf->rf_sc; 1068 static const struct { 1069 uint32_t r1, r2, r3; 1070 } rfprog[] = ZYD_AL2230_CHANTABLE; 1071 1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1073 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1074 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1075 1076 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1077 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1078 1079 return 0; 1080 } 1081 1082 /* 1083 * AL7230B RF methods. 1084 */ 1085 Static int 1086 zyd_al7230B_init(struct zyd_rf *rf) 1087 { 1088 struct zyd_softc *sc = rf->rf_sc; 1089 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1090 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1091 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1092 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1093 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1094 int error; 1095 size_t i; 1096 1097 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1098 1099 /* init RF-dependent PHY registers, part one */ 1100 for (i = 0; i < __arraycount(phyini_1); i++) { 1101 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1102 if (error != 0) 1103 return error; 1104 } 1105 /* init AL7230B radio, part one */ 1106 for (i = 0; i < __arraycount(rfini_1); i++) { 1107 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1108 return error; 1109 } 1110 /* init RF-dependent PHY registers, part two */ 1111 for (i = 0; i < __arraycount(phyini_2); i++) { 1112 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1113 if (error != 0) 1114 return error; 1115 } 1116 /* init AL7230B radio, part two */ 1117 for (i = 0; i < __arraycount(rfini_2); i++) { 1118 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1119 return error; 1120 } 1121 /* init RF-dependent PHY registers, part three */ 1122 for (i = 0; i < __arraycount(phyini_3); i++) { 1123 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1124 if (error != 0) 1125 return error; 1126 } 1127 1128 return 0; 1129 } 1130 1131 Static int 1132 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1133 { 1134 struct zyd_softc *sc = rf->rf_sc; 1135 1136 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1137 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1138 1139 return 0; 1140 } 1141 1142 Static int 1143 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1144 { 1145 struct zyd_softc *sc = rf->rf_sc; 1146 static const struct { 1147 uint32_t r1, r2; 1148 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1149 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1150 int error; 1151 size_t i; 1152 1153 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1154 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1155 1156 for (i = 0; i < __arraycount(rfsc); i++) { 1157 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1158 return error; 1159 } 1160 1161 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1162 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1163 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1164 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1165 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1166 1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1168 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1169 (void)zyd_rfwrite(sc, 0x3c9000); 1170 1171 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1172 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1173 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * AL2210 RF methods. 1180 */ 1181 Static int 1182 zyd_al2210_init(struct zyd_rf *rf) 1183 { 1184 struct zyd_softc *sc = rf->rf_sc; 1185 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1186 static const uint32_t rfini[] = ZYD_AL2210_RF; 1187 uint32_t tmp; 1188 int error; 1189 size_t i; 1190 1191 (void)zyd_write32(sc, ZYD_CR18, 2); 1192 1193 /* init RF-dependent PHY registers */ 1194 for (i = 0; i < __arraycount(phyini); i++) { 1195 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1196 if (error != 0) 1197 return error; 1198 } 1199 /* init AL2210 radio */ 1200 for (i = 0; i < __arraycount(rfini); i++) { 1201 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1202 return error; 1203 } 1204 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1205 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1207 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1209 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1210 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1211 (void)zyd_write32(sc, ZYD_CR18, 3); 1212 1213 return 0; 1214 } 1215 1216 Static int 1217 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1218 { 1219 /* vendor driver does nothing for this RF chip */ 1220 1221 return 0; 1222 } 1223 1224 Static int 1225 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1226 { 1227 struct zyd_softc *sc = rf->rf_sc; 1228 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1229 uint32_t tmp; 1230 1231 (void)zyd_write32(sc, ZYD_CR18, 2); 1232 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1233 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1234 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1235 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1236 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1237 1238 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1239 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1240 1241 /* actually set the channel */ 1242 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1243 1244 (void)zyd_write32(sc, ZYD_CR18, 3); 1245 1246 return 0; 1247 } 1248 1249 /* 1250 * GCT RF methods. 1251 */ 1252 Static int 1253 zyd_gct_init(struct zyd_rf *rf) 1254 { 1255 struct zyd_softc *sc = rf->rf_sc; 1256 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1257 static const uint32_t rfini[] = ZYD_GCT_RF; 1258 int error; 1259 size_t i; 1260 1261 /* init RF-dependent PHY registers */ 1262 for (i = 0; i < __arraycount(phyini); i++) { 1263 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1264 if (error != 0) 1265 return error; 1266 } 1267 /* init cgt radio */ 1268 for (i = 0; i < __arraycount(rfini); i++) { 1269 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1270 return error; 1271 } 1272 return 0; 1273 } 1274 1275 Static int 1276 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1277 { 1278 /* vendor driver does nothing for this RF chip */ 1279 1280 return 0; 1281 } 1282 1283 Static int 1284 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1285 { 1286 struct zyd_softc *sc = rf->rf_sc; 1287 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1288 1289 (void)zyd_rfwrite(sc, 0x1c0000); 1290 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1291 (void)zyd_rfwrite(sc, 0x1c0008); 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * Maxim RF methods. 1298 */ 1299 Static int 1300 zyd_maxim_init(struct zyd_rf *rf) 1301 { 1302 struct zyd_softc *sc = rf->rf_sc; 1303 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1304 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1305 uint16_t tmp; 1306 int error; 1307 size_t i; 1308 1309 /* init RF-dependent PHY registers */ 1310 for (i = 0; i < __arraycount(phyini); i++) { 1311 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1312 if (error != 0) 1313 return error; 1314 } 1315 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1316 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1317 1318 /* init maxim radio */ 1319 for (i = 0; i < __arraycount(rfini); i++) { 1320 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1321 return error; 1322 } 1323 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1324 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1325 1326 return 0; 1327 } 1328 1329 Static int 1330 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1331 { 1332 /* vendor driver does nothing for this RF chip */ 1333 1334 return 0; 1335 } 1336 1337 Static int 1338 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1339 { 1340 struct zyd_softc *sc = rf->rf_sc; 1341 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1342 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1343 static const struct { 1344 uint32_t r1, r2; 1345 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1346 uint16_t tmp; 1347 int error; 1348 size_t i; 1349 1350 /* 1351 * Do the same as we do when initializing it, except for the channel 1352 * values coming from the two channel tables. 1353 */ 1354 1355 /* init RF-dependent PHY registers */ 1356 for (i = 0; i < __arraycount(phyini); i++) { 1357 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1358 if (error != 0) 1359 return error; 1360 } 1361 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1362 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1363 1364 /* first two values taken from the chantables */ 1365 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1366 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1367 1368 /* init maxim radio - skipping the two first values */ 1369 for (i = 2; i < __arraycount(rfini); i++) { 1370 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1371 return error; 1372 } 1373 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1374 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1375 1376 return 0; 1377 } 1378 1379 /* 1380 * Maxim2 RF methods. 1381 */ 1382 Static int 1383 zyd_maxim2_init(struct zyd_rf *rf) 1384 { 1385 struct zyd_softc *sc = rf->rf_sc; 1386 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1387 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1388 uint16_t tmp; 1389 int error; 1390 size_t i; 1391 1392 /* init RF-dependent PHY registers */ 1393 for (i = 0; i < __arraycount(phyini); i++) { 1394 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1395 if (error != 0) 1396 return error; 1397 } 1398 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1399 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1400 1401 /* init maxim2 radio */ 1402 for (i = 0; i < __arraycount(rfini); i++) { 1403 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1404 return error; 1405 } 1406 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1407 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1408 1409 return 0; 1410 } 1411 1412 Static int 1413 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1414 { 1415 /* vendor driver does nothing for this RF chip */ 1416 1417 return 0; 1418 } 1419 1420 Static int 1421 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1422 { 1423 struct zyd_softc *sc = rf->rf_sc; 1424 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1425 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1426 static const struct { 1427 uint32_t r1, r2; 1428 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1429 uint16_t tmp; 1430 int error; 1431 size_t i; 1432 1433 /* 1434 * Do the same as we do when initializing it, except for the channel 1435 * values coming from the two channel tables. 1436 */ 1437 1438 /* init RF-dependent PHY registers */ 1439 for (i = 0; i < __arraycount(phyini); i++) { 1440 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1441 if (error != 0) 1442 return error; 1443 } 1444 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1445 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1446 1447 /* first two values taken from the chantables */ 1448 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1449 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1450 1451 /* init maxim2 radio - skipping the two first values */ 1452 for (i = 2; i < __arraycount(rfini); i++) { 1453 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1454 return error; 1455 } 1456 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1457 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1458 1459 return 0; 1460 } 1461 1462 Static int 1463 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1464 { 1465 struct zyd_rf *rf = &sc->sc_rf; 1466 1467 rf->rf_sc = sc; 1468 1469 switch (type) { 1470 case ZYD_RF_RFMD: 1471 rf->init = zyd_rfmd_init; 1472 rf->switch_radio = zyd_rfmd_switch_radio; 1473 rf->set_channel = zyd_rfmd_set_channel; 1474 rf->width = 24; /* 24-bit RF values */ 1475 break; 1476 case ZYD_RF_AL2230: 1477 case ZYD_RF_AL2230S: 1478 if (sc->mac_rev == ZYD_ZD1211B) 1479 rf->init = zyd_al2230_init_b; 1480 else 1481 rf->init = zyd_al2230_init; 1482 rf->switch_radio = zyd_al2230_switch_radio; 1483 rf->set_channel = zyd_al2230_set_channel; 1484 rf->width = 24; /* 24-bit RF values */ 1485 break; 1486 case ZYD_RF_AL7230B: 1487 rf->init = zyd_al7230B_init; 1488 rf->switch_radio = zyd_al7230B_switch_radio; 1489 rf->set_channel = zyd_al7230B_set_channel; 1490 rf->width = 24; /* 24-bit RF values */ 1491 break; 1492 case ZYD_RF_AL2210: 1493 rf->init = zyd_al2210_init; 1494 rf->switch_radio = zyd_al2210_switch_radio; 1495 rf->set_channel = zyd_al2210_set_channel; 1496 rf->width = 24; /* 24-bit RF values */ 1497 break; 1498 case ZYD_RF_GCT: 1499 rf->init = zyd_gct_init; 1500 rf->switch_radio = zyd_gct_switch_radio; 1501 rf->set_channel = zyd_gct_set_channel; 1502 rf->width = 21; /* 21-bit RF values */ 1503 break; 1504 case ZYD_RF_MAXIM_NEW: 1505 rf->init = zyd_maxim_init; 1506 rf->switch_radio = zyd_maxim_switch_radio; 1507 rf->set_channel = zyd_maxim_set_channel; 1508 rf->width = 18; /* 18-bit RF values */ 1509 break; 1510 case ZYD_RF_MAXIM_NEW2: 1511 rf->init = zyd_maxim2_init; 1512 rf->switch_radio = zyd_maxim2_switch_radio; 1513 rf->set_channel = zyd_maxim2_set_channel; 1514 rf->width = 18; /* 18-bit RF values */ 1515 break; 1516 default: 1517 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1518 device_xname(sc->sc_dev), zyd_rf_name(type)); 1519 return EINVAL; 1520 } 1521 return 0; 1522 } 1523 1524 Static const char * 1525 zyd_rf_name(uint8_t type) 1526 { 1527 static const char * const zyd_rfs[] = { 1528 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1529 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1530 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1531 "PHILIPS" 1532 }; 1533 1534 return zyd_rfs[(type > 15) ? 0 : type]; 1535 } 1536 1537 Static int 1538 zyd_hw_init(struct zyd_softc *sc) 1539 { 1540 struct zyd_rf *rf = &sc->sc_rf; 1541 const struct zyd_phy_pair *phyp; 1542 int error; 1543 1544 /* specify that the plug and play is finished */ 1545 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1546 1547 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1548 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1549 1550 /* retrieve firmware revision number */ 1551 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1552 1553 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1554 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1555 1556 /* disable interrupts */ 1557 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1558 1559 /* PHY init */ 1560 zyd_lock_phy(sc); 1561 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1562 for (; phyp->reg != 0; phyp++) { 1563 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1564 goto fail; 1565 } 1566 zyd_unlock_phy(sc); 1567 1568 /* HMAC init */ 1569 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1570 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1571 1572 if (sc->mac_rev == ZYD_ZD1211) { 1573 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1574 } else { 1575 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1579 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1580 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1581 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1582 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1583 } 1584 1585 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1586 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1587 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1588 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1589 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1590 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1591 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1592 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1593 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1594 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1595 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1596 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1597 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1598 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1599 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1600 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1601 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1602 1603 /* RF chip init */ 1604 zyd_lock_phy(sc); 1605 error = (*rf->init)(rf); 1606 zyd_unlock_phy(sc); 1607 if (error != 0) { 1608 printf("%s: radio initialization failed\n", 1609 device_xname(sc->sc_dev)); 1610 goto fail; 1611 } 1612 1613 /* init beacon interval to 100ms */ 1614 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1615 goto fail; 1616 1617 fail: return error; 1618 } 1619 1620 Static int 1621 zyd_read_eeprom(struct zyd_softc *sc) 1622 { 1623 struct ieee80211com *ic = &sc->sc_ic; 1624 uint32_t tmp; 1625 uint16_t val; 1626 int i; 1627 1628 /* read MAC address */ 1629 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1630 ic->ic_myaddr[0] = tmp & 0xff; 1631 ic->ic_myaddr[1] = tmp >> 8; 1632 ic->ic_myaddr[2] = tmp >> 16; 1633 ic->ic_myaddr[3] = tmp >> 24; 1634 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1635 ic->ic_myaddr[4] = tmp & 0xff; 1636 ic->ic_myaddr[5] = tmp >> 8; 1637 1638 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1639 sc->rf_rev = tmp & 0x0f; 1640 sc->pa_rev = (tmp >> 16) & 0x0f; 1641 1642 /* read regulatory domain (currently unused) */ 1643 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1644 sc->regdomain = tmp >> 16; 1645 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1646 1647 /* read Tx power calibration tables */ 1648 for (i = 0; i < 7; i++) { 1649 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1650 sc->pwr_cal[i * 2] = val >> 8; 1651 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1652 1653 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1654 sc->pwr_int[i * 2] = val >> 8; 1655 sc->pwr_int[i * 2 + 1] = val & 0xff; 1656 1657 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1658 sc->ofdm36_cal[i * 2] = val >> 8; 1659 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1660 1661 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1662 sc->ofdm48_cal[i * 2] = val >> 8; 1663 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1664 1665 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1666 sc->ofdm54_cal[i * 2] = val >> 8; 1667 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1668 } 1669 return 0; 1670 } 1671 1672 Static int 1673 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1674 { 1675 uint32_t tmp; 1676 1677 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1678 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1679 1680 tmp = addr[5] << 8 | addr[4]; 1681 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1682 1683 return 0; 1684 } 1685 1686 Static int 1687 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1688 { 1689 uint32_t tmp; 1690 1691 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1692 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1693 1694 tmp = addr[5] << 8 | addr[4]; 1695 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1696 1697 return 0; 1698 } 1699 1700 Static int 1701 zyd_switch_radio(struct zyd_softc *sc, int on) 1702 { 1703 struct zyd_rf *rf = &sc->sc_rf; 1704 int error; 1705 1706 zyd_lock_phy(sc); 1707 error = (*rf->switch_radio)(rf, on); 1708 zyd_unlock_phy(sc); 1709 1710 return error; 1711 } 1712 1713 Static void 1714 zyd_set_led(struct zyd_softc *sc, int which, int on) 1715 { 1716 uint32_t tmp; 1717 1718 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1719 tmp &= ~which; 1720 if (on) 1721 tmp |= which; 1722 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1723 } 1724 1725 Static int 1726 zyd_set_rxfilter(struct zyd_softc *sc) 1727 { 1728 uint32_t rxfilter; 1729 1730 switch (sc->sc_ic.ic_opmode) { 1731 case IEEE80211_M_STA: 1732 rxfilter = ZYD_FILTER_BSS; 1733 break; 1734 case IEEE80211_M_IBSS: 1735 case IEEE80211_M_HOSTAP: 1736 rxfilter = ZYD_FILTER_HOSTAP; 1737 break; 1738 case IEEE80211_M_MONITOR: 1739 rxfilter = ZYD_FILTER_MONITOR; 1740 break; 1741 default: 1742 /* should not get there */ 1743 return EINVAL; 1744 } 1745 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1746 } 1747 1748 Static void 1749 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1750 { 1751 struct ieee80211com *ic = &sc->sc_ic; 1752 struct zyd_rf *rf = &sc->sc_rf; 1753 u_int chan; 1754 1755 chan = ieee80211_chan2ieee(ic, c); 1756 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1757 return; 1758 1759 zyd_lock_phy(sc); 1760 1761 (*rf->set_channel)(rf, chan); 1762 1763 /* update Tx power */ 1764 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1765 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1766 1767 if (sc->mac_rev == ZYD_ZD1211B) { 1768 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1769 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1770 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1771 1772 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1773 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1774 } 1775 1776 zyd_unlock_phy(sc); 1777 } 1778 1779 Static int 1780 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1781 { 1782 /* XXX this is probably broken.. */ 1783 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1784 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1785 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1786 1787 return 0; 1788 } 1789 1790 Static uint8_t 1791 zyd_plcp_signal(int rate) 1792 { 1793 switch (rate) { 1794 /* CCK rates (returned values are device-dependent) */ 1795 case 2: return 0x0; 1796 case 4: return 0x1; 1797 case 11: return 0x2; 1798 case 22: return 0x3; 1799 1800 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1801 case 12: return 0xb; 1802 case 18: return 0xf; 1803 case 24: return 0xa; 1804 case 36: return 0xe; 1805 case 48: return 0x9; 1806 case 72: return 0xd; 1807 case 96: return 0x8; 1808 case 108: return 0xc; 1809 1810 /* unsupported rates (should not get there) */ 1811 default: return 0xff; 1812 } 1813 } 1814 1815 Static void 1816 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1817 { 1818 struct zyd_softc *sc = (struct zyd_softc *)priv; 1819 struct zyd_cmd *cmd; 1820 uint32_t datalen; 1821 1822 if (status != USBD_NORMAL_COMPLETION) { 1823 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1824 return; 1825 1826 if (status == USBD_STALLED) { 1827 usbd_clear_endpoint_stall_async( 1828 sc->zyd_ep[ZYD_ENDPT_IIN]); 1829 } 1830 return; 1831 } 1832 1833 cmd = (struct zyd_cmd *)sc->ibuf; 1834 1835 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1836 struct zyd_notif_retry *retry = 1837 (struct zyd_notif_retry *)cmd->data; 1838 struct ieee80211com *ic = &sc->sc_ic; 1839 struct ifnet *ifp = &sc->sc_if; 1840 struct ieee80211_node *ni; 1841 1842 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1843 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1844 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1845 1846 /* 1847 * Find the node to which the packet was sent and update its 1848 * retry statistics. In BSS mode, this node is the AP we're 1849 * associated to so no lookup is actually needed. 1850 */ 1851 if (ic->ic_opmode != IEEE80211_M_STA) { 1852 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1853 if (ni == NULL) 1854 return; /* just ignore */ 1855 } else 1856 ni = ic->ic_bss; 1857 1858 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1859 1860 if (le16toh(retry->count) & 0x100) 1861 ifp->if_oerrors++; /* too many retries */ 1862 1863 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1864 struct rq *rqp; 1865 1866 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1867 return; /* HMAC interrupt */ 1868 1869 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1870 datalen -= sizeof(cmd->code); 1871 datalen -= 2; /* XXX: padding? */ 1872 1873 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1874 int i; 1875 1876 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1877 continue; 1878 for (i = 0; i < rqp->len; i++) { 1879 if (*(((const uint16_t *)rqp->idata) + i) != 1880 (((struct zyd_pair *)cmd->data) + i)->reg) 1881 break; 1882 } 1883 if (i != rqp->len) 1884 continue; 1885 1886 /* copy answer into caller-supplied buffer */ 1887 bcopy(cmd->data, rqp->odata, 1888 sizeof(struct zyd_pair) * rqp->len); 1889 wakeup(rqp->odata); /* wakeup caller */ 1890 1891 return; 1892 } 1893 return; /* unexpected IORD notification */ 1894 } else { 1895 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1896 le16toh(cmd->code)); 1897 } 1898 } 1899 1900 Static void 1901 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1902 { 1903 struct ieee80211com *ic = &sc->sc_ic; 1904 struct ifnet *ifp = &sc->sc_if; 1905 struct ieee80211_node *ni; 1906 struct ieee80211_frame *wh; 1907 const struct zyd_plcphdr *plcp; 1908 const struct zyd_rx_stat *stat; 1909 struct mbuf *m; 1910 int rlen, s; 1911 1912 if (len < ZYD_MIN_FRAGSZ) { 1913 printf("%s: frame too short (length=%d)\n", 1914 device_xname(sc->sc_dev), len); 1915 ifp->if_ierrors++; 1916 return; 1917 } 1918 1919 plcp = (const struct zyd_plcphdr *)buf; 1920 stat = (const struct zyd_rx_stat *) 1921 (buf + len - sizeof (struct zyd_rx_stat)); 1922 1923 if (stat->flags & ZYD_RX_ERROR) { 1924 DPRINTF(("%s: RX status indicated error (%x)\n", 1925 device_xname(sc->sc_dev), stat->flags)); 1926 ifp->if_ierrors++; 1927 return; 1928 } 1929 1930 /* compute actual frame length */ 1931 rlen = len - sizeof (struct zyd_plcphdr) - 1932 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1933 1934 /* allocate a mbuf to store the frame */ 1935 MGETHDR(m, M_DONTWAIT, MT_DATA); 1936 if (m == NULL) { 1937 printf("%s: could not allocate rx mbuf\n", 1938 device_xname(sc->sc_dev)); 1939 ifp->if_ierrors++; 1940 return; 1941 } 1942 if (rlen > MHLEN) { 1943 MCLGET(m, M_DONTWAIT); 1944 if (!(m->m_flags & M_EXT)) { 1945 printf("%s: could not allocate rx mbuf cluster\n", 1946 device_xname(sc->sc_dev)); 1947 m_freem(m); 1948 ifp->if_ierrors++; 1949 return; 1950 } 1951 } 1952 m->m_pkthdr.rcvif = ifp; 1953 m->m_pkthdr.len = m->m_len = rlen; 1954 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); 1955 1956 s = splnet(); 1957 1958 if (sc->sc_drvbpf != NULL) { 1959 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1960 static const uint8_t rates[] = { 1961 /* reverse function of zyd_plcp_signal() */ 1962 2, 4, 11, 22, 0, 0, 0, 0, 1963 96, 48, 24, 12, 108, 72, 36, 18 1964 }; 1965 1966 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1967 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1968 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1969 tap->wr_rssi = stat->rssi; 1970 tap->wr_rate = rates[plcp->signal & 0xf]; 1971 1972 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1973 } 1974 1975 wh = mtod(m, struct ieee80211_frame *); 1976 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1977 ieee80211_input(ic, m, ni, stat->rssi, 0); 1978 1979 /* node is no longer needed */ 1980 ieee80211_free_node(ni); 1981 1982 splx(s); 1983 } 1984 1985 Static void 1986 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1987 { 1988 struct zyd_rx_data *data = priv; 1989 struct zyd_softc *sc = data->sc; 1990 struct ifnet *ifp = &sc->sc_if; 1991 const struct zyd_rx_desc *desc; 1992 int len; 1993 1994 if (status != USBD_NORMAL_COMPLETION) { 1995 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1996 return; 1997 1998 if (status == USBD_STALLED) 1999 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2000 2001 goto skip; 2002 } 2003 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2004 2005 if (len < ZYD_MIN_RXBUFSZ) { 2006 printf("%s: xfer too short (length=%d)\n", 2007 device_xname(sc->sc_dev), len); 2008 ifp->if_ierrors++; 2009 goto skip; 2010 } 2011 2012 desc = (const struct zyd_rx_desc *) 2013 (data->buf + len - sizeof (struct zyd_rx_desc)); 2014 2015 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2016 const uint8_t *p = data->buf, *end = p + len; 2017 int i; 2018 2019 DPRINTFN(3, ("received multi-frame transfer\n")); 2020 2021 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2022 const uint16_t len16 = UGETW(desc->len[i]); 2023 2024 if (len16 == 0 || p + len16 > end) 2025 break; 2026 2027 zyd_rx_data(sc, p, len16); 2028 /* next frame is aligned on a 32-bit boundary */ 2029 p += (len16 + 3) & ~3; 2030 } 2031 } else { 2032 DPRINTFN(3, ("received single-frame transfer\n")); 2033 2034 zyd_rx_data(sc, data->buf, len); 2035 } 2036 2037 skip: /* setup a new transfer */ 2038 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2039 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2040 USBD_NO_TIMEOUT, zyd_rxeof); 2041 (void)usbd_transfer(xfer); 2042 } 2043 2044 Static int 2045 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2046 { 2047 struct ieee80211com *ic = &sc->sc_ic; 2048 struct ifnet *ifp = &sc->sc_if; 2049 struct zyd_tx_desc *desc; 2050 struct zyd_tx_data *data; 2051 struct ieee80211_frame *wh; 2052 struct ieee80211_key *k; 2053 int xferlen, totlen, rate; 2054 uint16_t pktlen; 2055 usbd_status error; 2056 2057 data = &sc->tx_data[0]; 2058 desc = (struct zyd_tx_desc *)data->buf; 2059 2060 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2061 2062 wh = mtod(m0, struct ieee80211_frame *); 2063 2064 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2065 k = ieee80211_crypto_encap(ic, ni, m0); 2066 if (k == NULL) { 2067 m_freem(m0); 2068 return ENOBUFS; 2069 } 2070 } 2071 2072 data->ni = ni; 2073 2074 wh = mtod(m0, struct ieee80211_frame *); 2075 2076 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2077 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2078 2079 /* fill Tx descriptor */ 2080 desc->len = htole16(totlen); 2081 2082 desc->flags = ZYD_TX_FLAG_BACKOFF; 2083 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2084 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2085 if (totlen > ic->ic_rtsthreshold) { 2086 desc->flags |= ZYD_TX_FLAG_RTS; 2087 } else if (ZYD_RATE_IS_OFDM(rate) && 2088 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2089 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2090 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2091 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2092 desc->flags |= ZYD_TX_FLAG_RTS; 2093 } 2094 } else 2095 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2096 2097 if ((wh->i_fc[0] & 2098 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2099 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2100 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2101 2102 desc->phy = zyd_plcp_signal(rate); 2103 if (ZYD_RATE_IS_OFDM(rate)) { 2104 desc->phy |= ZYD_TX_PHY_OFDM; 2105 if (ic->ic_curmode == IEEE80211_MODE_11A) 2106 desc->phy |= ZYD_TX_PHY_5GHZ; 2107 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2108 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2109 2110 /* actual transmit length (XXX why +10?) */ 2111 pktlen = sizeof (struct zyd_tx_desc) + 10; 2112 if (sc->mac_rev == ZYD_ZD1211) 2113 pktlen += totlen; 2114 desc->pktlen = htole16(pktlen); 2115 2116 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2117 desc->plcp_service = 0; 2118 if (rate == 22) { 2119 const int remainder = (16 * totlen) % 22; 2120 if (remainder != 0 && remainder < 7) 2121 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2122 } 2123 2124 if (sc->sc_drvbpf != NULL) { 2125 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2126 2127 tap->wt_flags = 0; 2128 tap->wt_rate = rate; 2129 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2130 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2131 2132 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2133 } 2134 2135 m_copydata(m0, 0, m0->m_pkthdr.len, 2136 data->buf + sizeof (struct zyd_tx_desc)); 2137 2138 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2139 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2140 2141 m_freem(m0); /* mbuf no longer needed */ 2142 2143 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2144 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2145 ZYD_TX_TIMEOUT, zyd_txeof); 2146 error = usbd_transfer(data->xfer); 2147 if (error != USBD_IN_PROGRESS && error != 0) { 2148 ifp->if_oerrors++; 2149 return EIO; 2150 } 2151 sc->tx_queued++; 2152 2153 return 0; 2154 } 2155 2156 Static void 2157 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2158 { 2159 struct zyd_tx_data *data = priv; 2160 struct zyd_softc *sc = data->sc; 2161 struct ifnet *ifp = &sc->sc_if; 2162 int s; 2163 2164 if (status != USBD_NORMAL_COMPLETION) { 2165 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2166 return; 2167 2168 printf("%s: could not transmit buffer: %s\n", 2169 device_xname(sc->sc_dev), usbd_errstr(status)); 2170 2171 if (status == USBD_STALLED) { 2172 usbd_clear_endpoint_stall_async( 2173 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2174 } 2175 ifp->if_oerrors++; 2176 return; 2177 } 2178 2179 s = splnet(); 2180 2181 /* update rate control statistics */ 2182 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2183 2184 ieee80211_free_node(data->ni); 2185 data->ni = NULL; 2186 2187 sc->tx_queued--; 2188 ifp->if_opackets++; 2189 2190 sc->tx_timer = 0; 2191 ifp->if_flags &= ~IFF_OACTIVE; 2192 zyd_start(ifp); 2193 2194 splx(s); 2195 } 2196 2197 Static int 2198 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2199 { 2200 struct ieee80211com *ic = &sc->sc_ic; 2201 struct ifnet *ifp = &sc->sc_if; 2202 struct zyd_tx_desc *desc; 2203 struct zyd_tx_data *data; 2204 struct ieee80211_frame *wh; 2205 struct ieee80211_key *k; 2206 int xferlen, totlen, rate; 2207 uint16_t pktlen; 2208 usbd_status error; 2209 2210 wh = mtod(m0, struct ieee80211_frame *); 2211 2212 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2213 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2214 else 2215 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2216 rate &= IEEE80211_RATE_VAL; 2217 2218 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2219 k = ieee80211_crypto_encap(ic, ni, m0); 2220 if (k == NULL) { 2221 m_freem(m0); 2222 return ENOBUFS; 2223 } 2224 2225 /* packet header may have moved, reset our local pointer */ 2226 wh = mtod(m0, struct ieee80211_frame *); 2227 } 2228 2229 data = &sc->tx_data[0]; 2230 desc = (struct zyd_tx_desc *)data->buf; 2231 2232 data->ni = ni; 2233 2234 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2235 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2236 2237 /* fill Tx descriptor */ 2238 desc->len = htole16(totlen); 2239 2240 desc->flags = ZYD_TX_FLAG_BACKOFF; 2241 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2242 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2243 if (totlen > ic->ic_rtsthreshold) { 2244 desc->flags |= ZYD_TX_FLAG_RTS; 2245 } else if (ZYD_RATE_IS_OFDM(rate) && 2246 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2247 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2248 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2249 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2250 desc->flags |= ZYD_TX_FLAG_RTS; 2251 } 2252 } else 2253 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2254 2255 if ((wh->i_fc[0] & 2256 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2257 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2258 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2259 2260 desc->phy = zyd_plcp_signal(rate); 2261 if (ZYD_RATE_IS_OFDM(rate)) { 2262 desc->phy |= ZYD_TX_PHY_OFDM; 2263 if (ic->ic_curmode == IEEE80211_MODE_11A) 2264 desc->phy |= ZYD_TX_PHY_5GHZ; 2265 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2266 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2267 2268 /* actual transmit length (XXX why +10?) */ 2269 pktlen = sizeof (struct zyd_tx_desc) + 10; 2270 if (sc->mac_rev == ZYD_ZD1211) 2271 pktlen += totlen; 2272 desc->pktlen = htole16(pktlen); 2273 2274 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2275 desc->plcp_service = 0; 2276 if (rate == 22) { 2277 const int remainder = (16 * totlen) % 22; 2278 if (remainder != 0 && remainder < 7) 2279 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2280 } 2281 2282 if (sc->sc_drvbpf != NULL) { 2283 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2284 2285 tap->wt_flags = 0; 2286 tap->wt_rate = rate; 2287 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2288 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2289 2290 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2291 } 2292 2293 m_copydata(m0, 0, m0->m_pkthdr.len, 2294 data->buf + sizeof (struct zyd_tx_desc)); 2295 2296 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2297 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2298 2299 m_freem(m0); /* mbuf no longer needed */ 2300 2301 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2302 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2303 ZYD_TX_TIMEOUT, zyd_txeof); 2304 error = usbd_transfer(data->xfer); 2305 if (error != USBD_IN_PROGRESS && error != 0) { 2306 ifp->if_oerrors++; 2307 return EIO; 2308 } 2309 sc->tx_queued++; 2310 2311 return 0; 2312 } 2313 2314 Static void 2315 zyd_start(struct ifnet *ifp) 2316 { 2317 struct zyd_softc *sc = ifp->if_softc; 2318 struct ieee80211com *ic = &sc->sc_ic; 2319 struct ether_header *eh; 2320 struct ieee80211_node *ni; 2321 struct mbuf *m0; 2322 2323 for (;;) { 2324 IF_POLL(&ic->ic_mgtq, m0); 2325 if (m0 != NULL) { 2326 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2327 ifp->if_flags |= IFF_OACTIVE; 2328 break; 2329 } 2330 IF_DEQUEUE(&ic->ic_mgtq, m0); 2331 2332 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2333 m0->m_pkthdr.rcvif = NULL; 2334 bpf_mtap3(ic->ic_rawbpf, m0); 2335 if (zyd_tx_mgt(sc, m0, ni) != 0) 2336 break; 2337 } else { 2338 if (ic->ic_state != IEEE80211_S_RUN) 2339 break; 2340 IFQ_POLL(&ifp->if_snd, m0); 2341 if (m0 == NULL) 2342 break; 2343 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2344 ifp->if_flags |= IFF_OACTIVE; 2345 break; 2346 } 2347 IFQ_DEQUEUE(&ifp->if_snd, m0); 2348 2349 if (m0->m_len < sizeof(struct ether_header) && 2350 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2351 continue; 2352 2353 eh = mtod(m0, struct ether_header *); 2354 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2355 if (ni == NULL) { 2356 m_freem(m0); 2357 continue; 2358 } 2359 bpf_mtap(ifp, m0); 2360 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2361 ieee80211_free_node(ni); 2362 ifp->if_oerrors++; 2363 continue; 2364 } 2365 bpf_mtap3(ic->ic_rawbpf, m0); 2366 if (zyd_tx_data(sc, m0, ni) != 0) { 2367 ieee80211_free_node(ni); 2368 ifp->if_oerrors++; 2369 break; 2370 } 2371 } 2372 2373 sc->tx_timer = 5; 2374 ifp->if_timer = 1; 2375 } 2376 } 2377 2378 Static void 2379 zyd_watchdog(struct ifnet *ifp) 2380 { 2381 struct zyd_softc *sc = ifp->if_softc; 2382 struct ieee80211com *ic = &sc->sc_ic; 2383 2384 ifp->if_timer = 0; 2385 2386 if (sc->tx_timer > 0) { 2387 if (--sc->tx_timer == 0) { 2388 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2389 /* zyd_init(ifp); XXX needs a process context ? */ 2390 ifp->if_oerrors++; 2391 return; 2392 } 2393 ifp->if_timer = 1; 2394 } 2395 2396 ieee80211_watchdog(ic); 2397 } 2398 2399 Static int 2400 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2401 { 2402 struct zyd_softc *sc = ifp->if_softc; 2403 struct ieee80211com *ic = &sc->sc_ic; 2404 int s, error = 0; 2405 2406 s = splnet(); 2407 2408 switch (cmd) { 2409 case SIOCSIFFLAGS: 2410 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2411 break; 2412 /* XXX re-use ether_ioctl() */ 2413 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2414 case IFF_UP: 2415 zyd_init(ifp); 2416 break; 2417 case IFF_RUNNING: 2418 zyd_stop(ifp, 1); 2419 break; 2420 default: 2421 break; 2422 } 2423 break; 2424 2425 default: 2426 error = ieee80211_ioctl(ic, cmd, data); 2427 } 2428 2429 if (error == ENETRESET) { 2430 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2431 (IFF_RUNNING | IFF_UP)) 2432 zyd_init(ifp); 2433 error = 0; 2434 } 2435 2436 splx(s); 2437 2438 return error; 2439 } 2440 2441 Static int 2442 zyd_init(struct ifnet *ifp) 2443 { 2444 struct zyd_softc *sc = ifp->if_softc; 2445 struct ieee80211com *ic = &sc->sc_ic; 2446 int i, error; 2447 2448 zyd_stop(ifp, 0); 2449 2450 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2451 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2452 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2453 if (error != 0) 2454 return error; 2455 2456 /* we'll do software WEP decryption for now */ 2457 DPRINTF(("setting encryption type\n")); 2458 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2459 if (error != 0) 2460 return error; 2461 2462 /* promiscuous mode */ 2463 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2464 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2465 2466 (void)zyd_set_rxfilter(sc); 2467 2468 /* switch radio transmitter ON */ 2469 (void)zyd_switch_radio(sc, 1); 2470 2471 /* set basic rates */ 2472 if (ic->ic_curmode == IEEE80211_MODE_11B) 2473 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2474 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2475 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2476 else /* assumes 802.11b/g */ 2477 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2478 2479 /* set mandatory rates */ 2480 if (ic->ic_curmode == IEEE80211_MODE_11B) 2481 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2482 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2483 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2484 else /* assumes 802.11b/g */ 2485 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2486 2487 /* set default BSS channel */ 2488 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2489 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2490 2491 /* enable interrupts */ 2492 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2493 2494 /* 2495 * Allocate Tx and Rx xfer queues. 2496 */ 2497 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2498 printf("%s: could not allocate Tx list\n", 2499 device_xname(sc->sc_dev)); 2500 goto fail; 2501 } 2502 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2503 printf("%s: could not allocate Rx list\n", 2504 device_xname(sc->sc_dev)); 2505 goto fail; 2506 } 2507 2508 /* 2509 * Start up the receive pipe. 2510 */ 2511 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2512 struct zyd_rx_data *data = &sc->rx_data[i]; 2513 2514 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2515 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2516 USBD_NO_TIMEOUT, zyd_rxeof); 2517 error = usbd_transfer(data->xfer); 2518 if (error != USBD_IN_PROGRESS && error != 0) { 2519 printf("%s: could not queue Rx transfer\n", 2520 device_xname(sc->sc_dev)); 2521 goto fail; 2522 } 2523 } 2524 2525 ifp->if_flags &= ~IFF_OACTIVE; 2526 ifp->if_flags |= IFF_RUNNING; 2527 2528 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2529 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2530 else 2531 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2532 2533 return 0; 2534 2535 fail: zyd_stop(ifp, 1); 2536 return error; 2537 } 2538 2539 Static void 2540 zyd_stop(struct ifnet *ifp, int disable) 2541 { 2542 struct zyd_softc *sc = ifp->if_softc; 2543 struct ieee80211com *ic = &sc->sc_ic; 2544 2545 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2546 2547 sc->tx_timer = 0; 2548 ifp->if_timer = 0; 2549 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2550 2551 /* switch radio transmitter OFF */ 2552 (void)zyd_switch_radio(sc, 0); 2553 2554 /* disable Rx */ 2555 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2556 2557 /* disable interrupts */ 2558 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2559 2560 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2561 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2562 2563 zyd_free_rx_list(sc); 2564 zyd_free_tx_list(sc); 2565 } 2566 2567 Static int 2568 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2569 { 2570 usb_device_request_t req; 2571 uint16_t addr; 2572 uint8_t stat; 2573 2574 DPRINTF(("firmware size=%zu\n", size)); 2575 2576 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2577 req.bRequest = ZYD_DOWNLOADREQ; 2578 USETW(req.wIndex, 0); 2579 2580 addr = ZYD_FIRMWARE_START_ADDR; 2581 while (size > 0) { 2582 #if 0 2583 const int mlen = min(size, 4096); 2584 #else 2585 /* 2586 * XXXX: When the transfer size is 4096 bytes, it is not 2587 * likely to be able to transfer it. 2588 * The cause is port or machine or chip? 2589 */ 2590 const int mlen = min(size, 64); 2591 #endif 2592 2593 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2594 addr)); 2595 2596 USETW(req.wValue, addr); 2597 USETW(req.wLength, mlen); 2598 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2599 return EIO; 2600 2601 addr += mlen / 2; 2602 fw += mlen; 2603 size -= mlen; 2604 } 2605 2606 /* check whether the upload succeeded */ 2607 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2608 req.bRequest = ZYD_DOWNLOADSTS; 2609 USETW(req.wValue, 0); 2610 USETW(req.wIndex, 0); 2611 USETW(req.wLength, sizeof stat); 2612 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2613 return EIO; 2614 2615 return (stat & 0x80) ? EIO : 0; 2616 } 2617 2618 Static void 2619 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2620 { 2621 struct zyd_softc *sc = arg; 2622 struct zyd_node *zn = (struct zyd_node *)ni; 2623 2624 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2625 } 2626 2627 Static void 2628 zyd_amrr_timeout(void *arg) 2629 { 2630 struct zyd_softc *sc = arg; 2631 struct ieee80211com *ic = &sc->sc_ic; 2632 int s; 2633 2634 s = splnet(); 2635 if (ic->ic_opmode == IEEE80211_M_STA) 2636 zyd_iter_func(sc, ic->ic_bss); 2637 else 2638 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2639 splx(s); 2640 2641 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2642 } 2643 2644 Static void 2645 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2646 { 2647 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2648 int i; 2649 2650 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2651 2652 /* set rate to some reasonable initial value */ 2653 for (i = ni->ni_rates.rs_nrates - 1; 2654 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2655 i--); 2656 ni->ni_txrate = i; 2657 } 2658 2659 int 2660 zyd_activate(device_t self, enum devact act) 2661 { 2662 struct zyd_softc *sc = device_private(self); 2663 2664 switch (act) { 2665 case DVACT_DEACTIVATE: 2666 if_deactivate(&sc->sc_if); 2667 return 0; 2668 default: 2669 return EOPNOTSUPP; 2670 } 2671 } 2672