xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.29 2011/07/18 05:57:40 jruoho Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.29 2011/07/18 05:57:40 jruoho Exp $");
26 
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54 
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/firmload.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66 
67 #include <dev/usb/if_zydreg.h>
68 
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72 
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84 
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p)	\
87 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p)	\
89 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 	struct usb_devno	dev;
92 	uint8_t			rev;
93 #define ZYD_ZD1211	0
94 #define ZYD_ZD1211B	1
95 } zyd_devs[] = {
96 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
97 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
98 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
99 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
100 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
101 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
102 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
103 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
104 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
105 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
106 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
107 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
108 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
109 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
110 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
111 	ZYD_ZD1211_DEV(TWINMOS,		G240),
112 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
113 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
114 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
115 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
116 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
117 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
118 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
119 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
120 
121 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
122 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
123 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
124 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
125 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
126 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
127 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
128 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
129 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
130 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
131 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
132 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
133 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
134 #if 0	/* Shall we needs? */
135 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
136 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
137 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
138 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
139 #endif
140 	ZYD_ZD1211B_DEV(USR,		USR5423),
141 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
142 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
143 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
144 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
145 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
146 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
147 };
148 #define zyd_lookup(v, p)	\
149 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
150 
151 int zyd_match(device_t, cfdata_t, void *);
152 void zyd_attach(device_t, device_t, void *);
153 int zyd_detach(device_t, int);
154 int zyd_activate(device_t, enum devact);
155 extern struct cfdriver zyd_cd;
156 
157 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
158     zyd_attach, zyd_detach, zyd_activate);
159 
160 Static void	zyd_attachhook(device_t);
161 Static int	zyd_complete_attach(struct zyd_softc *);
162 Static int	zyd_open_pipes(struct zyd_softc *);
163 Static void	zyd_close_pipes(struct zyd_softc *);
164 Static int	zyd_alloc_tx_list(struct zyd_softc *);
165 Static void	zyd_free_tx_list(struct zyd_softc *);
166 Static int	zyd_alloc_rx_list(struct zyd_softc *);
167 Static void	zyd_free_rx_list(struct zyd_softc *);
168 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
169 Static int	zyd_media_change(struct ifnet *);
170 Static void	zyd_next_scan(void *);
171 Static void	zyd_task(void *);
172 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
174 		    void *, int, u_int);
175 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
176 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
177 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
178 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
179 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
180 Static void	zyd_lock_phy(struct zyd_softc *);
181 Static void	zyd_unlock_phy(struct zyd_softc *);
182 Static int	zyd_rfmd_init(struct zyd_rf *);
183 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
184 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
185 Static int	zyd_al2230_init(struct zyd_rf *);
186 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
187 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
188 Static int	zyd_al2230_init_b(struct zyd_rf *);
189 Static int	zyd_al7230B_init(struct zyd_rf *);
190 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
191 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
192 Static int	zyd_al2210_init(struct zyd_rf *);
193 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
194 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
195 Static int	zyd_gct_init(struct zyd_rf *);
196 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
197 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
198 Static int	zyd_maxim_init(struct zyd_rf *);
199 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
200 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
201 Static int	zyd_maxim2_init(struct zyd_rf *);
202 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
203 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
204 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
205 Static const char *zyd_rf_name(uint8_t);
206 Static int	zyd_hw_init(struct zyd_softc *);
207 Static int	zyd_read_eeprom(struct zyd_softc *);
208 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
209 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
210 Static int	zyd_switch_radio(struct zyd_softc *, int);
211 Static void	zyd_set_led(struct zyd_softc *, int, int);
212 Static int	zyd_set_rxfilter(struct zyd_softc *);
213 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
214 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
215 Static uint8_t	zyd_plcp_signal(int);
216 Static void	zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
217 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
218 Static void	zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
219 Static void	zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
220 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
221 		    struct ieee80211_node *);
222 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
223 		    struct ieee80211_node *);
224 Static void	zyd_start(struct ifnet *);
225 Static void	zyd_watchdog(struct ifnet *);
226 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
227 Static int	zyd_init(struct ifnet *);
228 Static void	zyd_stop(struct ifnet *, int);
229 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
230 Static void	zyd_iter_func(void *, struct ieee80211_node *);
231 Static void	zyd_amrr_timeout(void *);
232 Static void	zyd_newassoc(struct ieee80211_node *, int);
233 
234 static const struct ieee80211_rateset zyd_rateset_11b =
235 	{ 4, { 2, 4, 11, 22 } };
236 
237 static const struct ieee80211_rateset zyd_rateset_11g =
238 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
239 
240 int
241 zyd_match(device_t parent, cfdata_t match, void *aux)
242 {
243 	struct usb_attach_arg *uaa = aux;
244 
245 	return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
246 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
247 }
248 
249 Static void
250 zyd_attachhook(device_t self)
251 {
252 	struct zyd_softc *sc = device_private(self);
253 	firmware_handle_t fwh;
254 	const char *fwname;
255 	u_char *fw;
256 	size_t size;
257 	int error;
258 
259 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
260 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
261 		aprint_error_dev(sc->sc_dev,
262 		    "failed to open firmware %s (error=%d)\n", fwname, error);
263 		return;
264 	}
265 	size = firmware_get_size(fwh);
266 	fw = firmware_malloc(size);
267 	if (fw == NULL) {
268 		aprint_error_dev(sc->sc_dev,
269 		    "failed to allocate firmware memory\n");
270 		firmware_close(fwh);
271 		return;
272 	}
273 	error = firmware_read(fwh, 0, fw, size);
274 	firmware_close(fwh);
275 	if (error != 0) {
276 		aprint_error_dev(sc->sc_dev,
277 		    "failed to read firmware (error %d)\n", error);
278 		firmware_free(fw, 0);
279 		return;
280 	}
281 
282 	error = zyd_loadfirmware(sc, fw, size);
283 	if (error != 0) {
284 		aprint_error_dev(sc->sc_dev,
285 		    "could not load firmware (error=%d)\n", error);
286 		firmware_free(fw, 0);
287 		return;
288 	}
289 
290 	firmware_free(fw, 0);
291 	sc->sc_flags |= ZD1211_FWLOADED;
292 
293 	/* complete the attach process */
294 	if ((error = zyd_complete_attach(sc)) == 0)
295 		sc->attached = 1;
296 	return;
297 }
298 
299 void
300 zyd_attach(device_t parent, device_t self, void *aux)
301 {
302 	struct zyd_softc *sc = device_private(self);
303 	struct usb_attach_arg *uaa = aux;
304 	char *devinfop;
305 	usb_device_descriptor_t* ddesc;
306 	struct ifnet *ifp = &sc->sc_if;
307 
308 	sc->sc_dev = self;
309 	sc->sc_udev = uaa->device;
310 	sc->sc_flags = 0;
311 
312 	aprint_naive("\n");
313 	aprint_normal("\n");
314 
315 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
316 	aprint_normal_dev(self, "%s\n", devinfop);
317 	usbd_devinfo_free(devinfop);
318 
319 	sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
320 
321 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 		aprint_error_dev(self, "device version mismatch: 0x%x "
324 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 		return;
326 	}
327 
328 	ifp->if_softc = sc;
329 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 	ifp->if_init = zyd_init;
331 	ifp->if_ioctl = zyd_ioctl;
332 	ifp->if_start = zyd_start;
333 	ifp->if_watchdog = zyd_watchdog;
334 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 	IFQ_SET_READY(&ifp->if_snd);
336 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337 
338 	SIMPLEQ_INIT(&sc->sc_rqh);
339 
340 	/* defer configrations after file system is ready to load firmware */
341 	config_mountroot(self, zyd_attachhook);
342 }
343 
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_if;
349 	usbd_status error;
350 	int i;
351 
352 	usb_init_task(&sc->sc_task, zyd_task, sc);
353 	callout_init(&(sc->sc_scan_ch), 0);
354 
355 	sc->amrr.amrr_min_success_threshold =  1;
356 	sc->amrr.amrr_max_success_threshold = 10;
357 	callout_init(&sc->sc_amrr_ch, 0);
358 
359 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 	if (error != 0) {
361 		aprint_error_dev(sc->sc_dev, "setting config no failed\n");
362 		goto fail;
363 	}
364 
365 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
366 	    &sc->sc_iface);
367 	if (error != 0) {
368 		aprint_error_dev(sc->sc_dev,
369 		    "getting interface handle failed\n");
370 		goto fail;
371 	}
372 
373 	if ((error = zyd_open_pipes(sc)) != 0) {
374 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
375 		goto fail;
376 	}
377 
378 	if ((error = zyd_read_eeprom(sc)) != 0) {
379 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
380 		goto fail;
381 	}
382 
383 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
384 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
385 		goto fail;
386 	}
387 
388 	if ((error = zyd_hw_init(sc)) != 0) {
389 		aprint_error_dev(sc->sc_dev,
390 		    "hardware initialization failed\n");
391 		goto fail;
392 	}
393 
394 	aprint_normal_dev(sc->sc_dev,
395 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
396 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
397 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
398 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
399 
400 	ic->ic_ifp = ifp;
401 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
402 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
403 	ic->ic_state = IEEE80211_S_INIT;
404 
405 	/* set device capabilities */
406 	ic->ic_caps =
407 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
408 	    IEEE80211_C_TXPMGT |	/* tx power management */
409 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
410 	    IEEE80211_C_WEP;		/* s/w WEP */
411 
412 	/* set supported .11b and .11g rates */
413 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
414 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
415 
416 	/* set supported .11b and .11g channels (1 through 14) */
417 	for (i = 1; i <= 14; i++) {
418 		ic->ic_channels[i].ic_freq =
419 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
420 		ic->ic_channels[i].ic_flags =
421 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
422 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
423 	}
424 
425 	if_attach(ifp);
426 	ieee80211_ifattach(ic);
427 	ic->ic_node_alloc = zyd_node_alloc;
428 	ic->ic_newassoc = zyd_newassoc;
429 
430 	/* override state transition machine */
431 	sc->sc_newstate = ic->ic_newstate;
432 	ic->ic_newstate = zyd_newstate;
433 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
434 
435 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
436 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
437 	    &sc->sc_drvbpf);
438 
439 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
440 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
441 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
442 
443 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
444 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
445 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
446 
447 	ieee80211_announce(ic);
448 
449 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
450 
451 fail:	return error;
452 }
453 
454 int
455 zyd_detach(device_t self, int flags)
456 {
457 	struct zyd_softc *sc = device_private(self);
458 	struct ieee80211com *ic = &sc->sc_ic;
459 	struct ifnet *ifp = &sc->sc_if;
460 	int s;
461 
462 	if (!sc->attached)
463 		return 0;
464 
465 	s = splusb();
466 
467 	zyd_stop(ifp, 1);
468 	usb_rem_task(sc->sc_udev, &sc->sc_task);
469 	callout_stop(&sc->sc_scan_ch);
470 	callout_stop(&sc->sc_amrr_ch);
471 
472 	zyd_close_pipes(sc);
473 
474 	sc->attached = 0;
475 
476 	bpf_detach(ifp);
477 	ieee80211_ifdetach(ic);
478 	if_detach(ifp);
479 
480 	splx(s);
481 
482 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 	    sc->sc_dev);
484 
485 	return 0;
486 }
487 
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 	usb_endpoint_descriptor_t *edesc;
492 	int isize;
493 	usbd_status error;
494 
495 	/* interrupt in */
496 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 	if (edesc == NULL)
498 		return EINVAL;
499 
500 	isize = UGETW(edesc->wMaxPacketSize);
501 	if (isize == 0)	/* should not happen */
502 		return EINVAL;
503 
504 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 	if (sc->ibuf == NULL)
506 		return ENOMEM;
507 
508 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 	    USBD_DEFAULT_INTERVAL);
511 	if (error != 0) {
512 		printf("%s: open rx intr pipe failed: %s\n",
513 		    device_xname(sc->sc_dev), usbd_errstr(error));
514 		goto fail;
515 	}
516 
517 	/* interrupt out (not necessarily an interrupt pipe) */
518 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 	if (error != 0) {
521 		printf("%s: open tx intr pipe failed: %s\n",
522 		    device_xname(sc->sc_dev), usbd_errstr(error));
523 		goto fail;
524 	}
525 
526 	/* bulk in */
527 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 	if (error != 0) {
530 		printf("%s: open rx pipe failed: %s\n",
531 		    device_xname(sc->sc_dev), usbd_errstr(error));
532 		goto fail;
533 	}
534 
535 	/* bulk out */
536 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 	if (error != 0) {
539 		printf("%s: open tx pipe failed: %s\n",
540 		    device_xname(sc->sc_dev), usbd_errstr(error));
541 		goto fail;
542 	}
543 
544 	return 0;
545 
546 fail:	zyd_close_pipes(sc);
547 	return error;
548 }
549 
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 	int i;
554 
555 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 		if (sc->zyd_ep[i] != NULL) {
557 			usbd_abort_pipe(sc->zyd_ep[i]);
558 			usbd_close_pipe(sc->zyd_ep[i]);
559 			sc->zyd_ep[i] = NULL;
560 		}
561 	}
562 	if (sc->ibuf != NULL) {
563 		free(sc->ibuf, M_USBDEV);
564 		sc->ibuf = NULL;
565 	}
566 }
567 
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 	int i, error;
572 
573 	sc->tx_queued = 0;
574 
575 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 		struct zyd_tx_data *data = &sc->tx_data[i];
577 
578 		data->sc = sc;	/* backpointer for callbacks */
579 
580 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 		if (data->xfer == NULL) {
582 			printf("%s: could not allocate tx xfer\n",
583 			    device_xname(sc->sc_dev));
584 			error = ENOMEM;
585 			goto fail;
586 		}
587 		data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 		if (data->buf == NULL) {
589 			printf("%s: could not allocate tx buffer\n",
590 			    device_xname(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		/* clear Tx descriptor */
596 		memset(data->buf, 0, sizeof (struct zyd_tx_desc));
597 	}
598 	return 0;
599 
600 fail:	zyd_free_tx_list(sc);
601 	return error;
602 }
603 
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 	int i;
608 
609 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 		struct zyd_tx_data *data = &sc->tx_data[i];
611 
612 		if (data->xfer != NULL) {
613 			usbd_free_xfer(data->xfer);
614 			data->xfer = NULL;
615 		}
616 		if (data->ni != NULL) {
617 			ieee80211_free_node(data->ni);
618 			data->ni = NULL;
619 		}
620 	}
621 }
622 
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 	int i, error;
627 
628 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 		struct zyd_rx_data *data = &sc->rx_data[i];
630 
631 		data->sc = sc;	/* backpointer for callbacks */
632 
633 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 		if (data->xfer == NULL) {
635 			printf("%s: could not allocate rx xfer\n",
636 			    device_xname(sc->sc_dev));
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 		data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 		if (data->buf == NULL) {
642 			printf("%s: could not allocate rx buffer\n",
643 			    device_xname(sc->sc_dev));
644 			error = ENOMEM;
645 			goto fail;
646 		}
647 	}
648 	return 0;
649 
650 fail:	zyd_free_rx_list(sc);
651 	return error;
652 }
653 
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 	int i;
658 
659 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 		struct zyd_rx_data *data = &sc->rx_data[i];
661 
662 		if (data->xfer != NULL) {
663 			usbd_free_xfer(data->xfer);
664 			data->xfer = NULL;
665 		}
666 	}
667 }
668 
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 	struct zyd_node *zn;
674 
675 	zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
676 
677 	return &zn->ni;
678 }
679 
680 Static int
681 zyd_media_change(struct ifnet *ifp)
682 {
683 	int error;
684 
685 	error = ieee80211_media_change(ifp);
686 	if (error != ENETRESET)
687 		return error;
688 
689 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 		zyd_init(ifp);
691 
692 	return 0;
693 }
694 
695 /*
696  * This function is called periodically (every 200ms) during scanning to
697  * switch from one channel to another.
698  */
699 Static void
700 zyd_next_scan(void *arg)
701 {
702 	struct zyd_softc *sc = arg;
703 	struct ieee80211com *ic = &sc->sc_ic;
704 
705 	if (ic->ic_state == IEEE80211_S_SCAN)
706 		ieee80211_next_scan(ic);
707 }
708 
709 Static void
710 zyd_task(void *arg)
711 {
712 	struct zyd_softc *sc = arg;
713 	struct ieee80211com *ic = &sc->sc_ic;
714 	enum ieee80211_state ostate;
715 
716 	ostate = ic->ic_state;
717 
718 	switch (sc->sc_state) {
719 	case IEEE80211_S_INIT:
720 		if (ostate == IEEE80211_S_RUN) {
721 			/* turn link LED off */
722 			zyd_set_led(sc, ZYD_LED1, 0);
723 
724 			/* stop data LED from blinking */
725 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
726 		}
727 		break;
728 
729 	case IEEE80211_S_SCAN:
730 		zyd_set_chan(sc, ic->ic_curchan);
731 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
732 		break;
733 
734 	case IEEE80211_S_AUTH:
735 	case IEEE80211_S_ASSOC:
736 		zyd_set_chan(sc, ic->ic_curchan);
737 		break;
738 
739 	case IEEE80211_S_RUN:
740 	{
741 		struct ieee80211_node *ni = ic->ic_bss;
742 
743 		zyd_set_chan(sc, ic->ic_curchan);
744 
745 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
746 			/* turn link LED on */
747 			zyd_set_led(sc, ZYD_LED1, 1);
748 
749 			/* make data LED blink upon Tx */
750 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
751 
752 			zyd_set_bssid(sc, ni->ni_bssid);
753 		}
754 
755 		if (ic->ic_opmode == IEEE80211_M_STA) {
756 			/* fake a join to init the tx rate */
757 			zyd_newassoc(ni, 1);
758 		}
759 
760 		/* start automatic rate control timer */
761 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
763 
764 		break;
765 	}
766 	}
767 
768 	sc->sc_newstate(ic, sc->sc_state, -1);
769 }
770 
771 Static int
772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
775 
776 	if (!sc->attached)
777 		return ENXIO;
778 
779 	usb_rem_task(sc->sc_udev, &sc->sc_task);
780 	callout_stop(&sc->sc_scan_ch);
781 	callout_stop(&sc->sc_amrr_ch);
782 
783 	/* do it in a process context */
784 	sc->sc_state = nstate;
785 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
786 
787 	return 0;
788 }
789 
790 Static int
791 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
792     void *odata, int olen, u_int flags)
793 {
794 	usbd_xfer_handle xfer;
795 	struct zyd_cmd cmd;
796 	struct rq rq;
797 	uint16_t xferflags;
798 	usbd_status error;
799 	int s = 0;
800 
801 	if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
802 		return ENOMEM;
803 
804 	cmd.code = htole16(code);
805 	bcopy(idata, cmd.data, ilen);
806 
807 	xferflags = USBD_FORCE_SHORT_XFER;
808 	if (!(flags & ZYD_CMD_FLAG_READ))
809 		xferflags |= USBD_SYNCHRONOUS;
810 	else {
811 		s = splusb();
812 		rq.idata = idata;
813 		rq.odata = odata;
814 		rq.len = olen / sizeof (struct zyd_pair);
815 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
816 	}
817 
818 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
819 	    sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
820 	error = usbd_transfer(xfer);
821 	if (error != USBD_IN_PROGRESS && error != 0) {
822 		if (flags & ZYD_CMD_FLAG_READ)
823 			splx(s);
824 		printf("%s: could not send command (error=%s)\n",
825 		    device_xname(sc->sc_dev), usbd_errstr(error));
826 		(void)usbd_free_xfer(xfer);
827 		return EIO;
828 	}
829 	if (!(flags & ZYD_CMD_FLAG_READ)) {
830 		(void)usbd_free_xfer(xfer);
831 		return 0;	/* write: don't wait for reply */
832 	}
833 	/* wait at most one second for command reply */
834 	error = tsleep(odata, PCATCH, "zydcmd", hz);
835 	if (error == EWOULDBLOCK)
836 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
837 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
838 	splx(s);
839 
840 	(void)usbd_free_xfer(xfer);
841 	return error;
842 }
843 
844 Static int
845 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
846 {
847 	struct zyd_pair tmp;
848 	int error;
849 
850 	reg = htole16(reg);
851 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
852 	    ZYD_CMD_FLAG_READ);
853 	if (error == 0)
854 		*val = le16toh(tmp.val);
855 	return error;
856 }
857 
858 Static int
859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
860 {
861 	struct zyd_pair tmp[2];
862 	uint16_t regs[2];
863 	int error;
864 
865 	regs[0] = htole16(ZYD_REG32_HI(reg));
866 	regs[1] = htole16(ZYD_REG32_LO(reg));
867 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
868 	    ZYD_CMD_FLAG_READ);
869 	if (error == 0)
870 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
871 	return error;
872 }
873 
874 Static int
875 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
876 {
877 	struct zyd_pair pair;
878 
879 	pair.reg = htole16(reg);
880 	pair.val = htole16(val);
881 
882 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
883 }
884 
885 Static int
886 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
887 {
888 	struct zyd_pair pair[2];
889 
890 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
891 	pair[0].val = htole16(val >> 16);
892 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
893 	pair[1].val = htole16(val & 0xffff);
894 
895 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
896 }
897 
898 Static int
899 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
900 {
901 	struct zyd_rf *rf = &sc->sc_rf;
902 	struct zyd_rfwrite req;
903 	uint16_t cr203;
904 	int i;
905 
906 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
907 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
908 
909 	req.code  = htole16(2);
910 	req.width = htole16(rf->width);
911 	for (i = 0; i < rf->width; i++) {
912 		req.bit[i] = htole16(cr203);
913 		if (val & (1 << (rf->width - 1 - i)))
914 			req.bit[i] |= htole16(ZYD_RF_DATA);
915 	}
916 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
917 }
918 
919 Static void
920 zyd_lock_phy(struct zyd_softc *sc)
921 {
922 	uint32_t tmp;
923 
924 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
925 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
926 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
927 }
928 
929 Static void
930 zyd_unlock_phy(struct zyd_softc *sc)
931 {
932 	uint32_t tmp;
933 
934 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
935 	tmp |= ZYD_UNLOCK_PHY_REGS;
936 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
937 }
938 
939 /*
940  * RFMD RF methods.
941  */
942 Static int
943 zyd_rfmd_init(struct zyd_rf *rf)
944 {
945 	struct zyd_softc *sc = rf->rf_sc;
946 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
947 	static const uint32_t rfini[] = ZYD_RFMD_RF;
948 	int error;
949 	size_t i;
950 
951 	/* init RF-dependent PHY registers */
952 	for (i = 0; i < __arraycount(phyini); i++) {
953 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
954 		if (error != 0)
955 			return error;
956 	}
957 
958 	/* init RFMD radio */
959 	for (i = 0; i < __arraycount(rfini); i++) {
960 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
961 			return error;
962 	}
963 	return 0;
964 }
965 
966 Static int
967 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
968 {
969 	struct zyd_softc *sc = rf->rf_sc;
970 
971 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
972 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
973 
974 	return 0;
975 }
976 
977 Static int
978 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
979 {
980 	struct zyd_softc *sc = rf->rf_sc;
981 	static const struct {
982 		uint32_t	r1, r2;
983 	} rfprog[] = ZYD_RFMD_CHANTABLE;
984 
985 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
986 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
987 
988 	return 0;
989 }
990 
991 /*
992  * AL2230 RF methods.
993  */
994 Static int
995 zyd_al2230_init(struct zyd_rf *rf)
996 {
997 	struct zyd_softc *sc = rf->rf_sc;
998 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
999 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1000 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1001 	int error;
1002 	size_t i;
1003 
1004 	/* init RF-dependent PHY registers */
1005 	for (i = 0; i < __arraycount(phyini); i++) {
1006 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1007 		if (error != 0)
1008 			return error;
1009 	}
1010 
1011 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1012 		for (i = 0; i < __arraycount(phy2230s); i++) {
1013 			error = zyd_write16(sc, phy2230s[i].reg,
1014 			    phy2230s[i].val);
1015 			if (error != 0)
1016 				return error;
1017 		}
1018 	}
1019 
1020 	/* init AL2230 radio */
1021 	for (i = 0; i < __arraycount(rfini); i++) {
1022 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1023 			return error;
1024 	}
1025 	return 0;
1026 }
1027 
1028 Static int
1029 zyd_al2230_init_b(struct zyd_rf *rf)
1030 {
1031 	struct zyd_softc *sc = rf->rf_sc;
1032 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1033 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1034 	int error;
1035 	size_t i;
1036 
1037 	/* init RF-dependent PHY registers */
1038 	for (i = 0; i < __arraycount(phyini); i++) {
1039 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1040 		if (error != 0)
1041 			return error;
1042 	}
1043 
1044 	/* init AL2230 radio */
1045 	for (i = 0; i < __arraycount(rfini); i++) {
1046 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1047 			return error;
1048 	}
1049 	return 0;
1050 }
1051 
1052 Static int
1053 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1054 {
1055 	struct zyd_softc *sc = rf->rf_sc;
1056 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1057 
1058 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1059 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1060 
1061 	return 0;
1062 }
1063 
1064 Static int
1065 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1066 {
1067 	struct zyd_softc *sc = rf->rf_sc;
1068 	static const struct {
1069 		uint32_t	r1, r2, r3;
1070 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1071 
1072 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1073 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1074 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1075 
1076 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1077 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1078 
1079 	return 0;
1080 }
1081 
1082 /*
1083  * AL7230B RF methods.
1084  */
1085 Static int
1086 zyd_al7230B_init(struct zyd_rf *rf)
1087 {
1088 	struct zyd_softc *sc = rf->rf_sc;
1089 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1090 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1091 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1092 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1093 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1094 	int error;
1095 	size_t i;
1096 
1097 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1098 
1099 	/* init RF-dependent PHY registers, part one */
1100 	for (i = 0; i < __arraycount(phyini_1); i++) {
1101 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1102 		if (error != 0)
1103 			return error;
1104 	}
1105 	/* init AL7230B radio, part one */
1106 	for (i = 0; i < __arraycount(rfini_1); i++) {
1107 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1108 			return error;
1109 	}
1110 	/* init RF-dependent PHY registers, part two */
1111 	for (i = 0; i < __arraycount(phyini_2); i++) {
1112 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1113 		if (error != 0)
1114 			return error;
1115 	}
1116 	/* init AL7230B radio, part two */
1117 	for (i = 0; i < __arraycount(rfini_2); i++) {
1118 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1119 			return error;
1120 	}
1121 	/* init RF-dependent PHY registers, part three */
1122 	for (i = 0; i < __arraycount(phyini_3); i++) {
1123 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1124 		if (error != 0)
1125 			return error;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 Static int
1132 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1133 {
1134 	struct zyd_softc *sc = rf->rf_sc;
1135 
1136 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1137 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1138 
1139 	return 0;
1140 }
1141 
1142 Static int
1143 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1144 {
1145 	struct zyd_softc *sc = rf->rf_sc;
1146 	static const struct {
1147 		uint32_t	r1, r2;
1148 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1149 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1150 	int error;
1151 	size_t i;
1152 
1153 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1154 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1155 
1156 	for (i = 0; i < __arraycount(rfsc); i++) {
1157 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1158 			return error;
1159 	}
1160 
1161 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1162 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1163 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1164 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1165 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1166 
1167 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1168 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1169 	(void)zyd_rfwrite(sc, 0x3c9000);
1170 
1171 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1172 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1173 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * AL2210 RF methods.
1180  */
1181 Static int
1182 zyd_al2210_init(struct zyd_rf *rf)
1183 {
1184 	struct zyd_softc *sc = rf->rf_sc;
1185 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1186 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1187 	uint32_t tmp;
1188 	int error;
1189 	size_t i;
1190 
1191 	(void)zyd_write32(sc, ZYD_CR18, 2);
1192 
1193 	/* init RF-dependent PHY registers */
1194 	for (i = 0; i < __arraycount(phyini); i++) {
1195 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1196 		if (error != 0)
1197 			return error;
1198 	}
1199 	/* init AL2210 radio */
1200 	for (i = 0; i < __arraycount(rfini); i++) {
1201 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1202 			return error;
1203 	}
1204 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1205 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1206 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1207 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1208 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1209 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1210 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1211 	(void)zyd_write32(sc, ZYD_CR18, 3);
1212 
1213 	return 0;
1214 }
1215 
1216 Static int
1217 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1218 {
1219 	/* vendor driver does nothing for this RF chip */
1220 
1221 	return 0;
1222 }
1223 
1224 Static int
1225 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1226 {
1227 	struct zyd_softc *sc = rf->rf_sc;
1228 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1229 	uint32_t tmp;
1230 
1231 	(void)zyd_write32(sc, ZYD_CR18, 2);
1232 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1233 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1234 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1235 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1236 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1237 
1238 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1239 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1240 
1241 	/* actually set the channel */
1242 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1243 
1244 	(void)zyd_write32(sc, ZYD_CR18, 3);
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  * GCT RF methods.
1251  */
1252 Static int
1253 zyd_gct_init(struct zyd_rf *rf)
1254 {
1255 	struct zyd_softc *sc = rf->rf_sc;
1256 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1257 	static const uint32_t rfini[] = ZYD_GCT_RF;
1258 	int error;
1259 	size_t i;
1260 
1261 	/* init RF-dependent PHY registers */
1262 	for (i = 0; i < __arraycount(phyini); i++) {
1263 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1264 		if (error != 0)
1265 			return error;
1266 	}
1267 	/* init cgt radio */
1268 	for (i = 0; i < __arraycount(rfini); i++) {
1269 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1270 			return error;
1271 	}
1272 	return 0;
1273 }
1274 
1275 Static int
1276 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1277 {
1278 	/* vendor driver does nothing for this RF chip */
1279 
1280 	return 0;
1281 }
1282 
1283 Static int
1284 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1285 {
1286 	struct zyd_softc *sc = rf->rf_sc;
1287 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1288 
1289 	(void)zyd_rfwrite(sc, 0x1c0000);
1290 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1291 	(void)zyd_rfwrite(sc, 0x1c0008);
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Maxim RF methods.
1298  */
1299 Static int
1300 zyd_maxim_init(struct zyd_rf *rf)
1301 {
1302 	struct zyd_softc *sc = rf->rf_sc;
1303 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1304 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1305 	uint16_t tmp;
1306 	int error;
1307 	size_t i;
1308 
1309 	/* init RF-dependent PHY registers */
1310 	for (i = 0; i < __arraycount(phyini); i++) {
1311 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1312 		if (error != 0)
1313 			return error;
1314 	}
1315 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1316 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1317 
1318 	/* init maxim radio */
1319 	for (i = 0; i < __arraycount(rfini); i++) {
1320 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1321 			return error;
1322 	}
1323 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1324 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1325 
1326 	return 0;
1327 }
1328 
1329 Static int
1330 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1331 {
1332 	/* vendor driver does nothing for this RF chip */
1333 
1334 	return 0;
1335 }
1336 
1337 Static int
1338 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1339 {
1340 	struct zyd_softc *sc = rf->rf_sc;
1341 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1342 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1343 	static const struct {
1344 		uint32_t	r1, r2;
1345 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1346 	uint16_t tmp;
1347 	int error;
1348 	size_t i;
1349 
1350 	/*
1351 	 * Do the same as we do when initializing it, except for the channel
1352 	 * values coming from the two channel tables.
1353 	 */
1354 
1355 	/* init RF-dependent PHY registers */
1356 	for (i = 0; i < __arraycount(phyini); i++) {
1357 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1358 		if (error != 0)
1359 			return error;
1360 	}
1361 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1362 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1363 
1364 	/* first two values taken from the chantables */
1365 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1366 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1367 
1368 	/* init maxim radio - skipping the two first values */
1369 	for (i = 2; i < __arraycount(rfini); i++) {
1370 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1371 			return error;
1372 	}
1373 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1374 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1375 
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Maxim2 RF methods.
1381  */
1382 Static int
1383 zyd_maxim2_init(struct zyd_rf *rf)
1384 {
1385 	struct zyd_softc *sc = rf->rf_sc;
1386 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1387 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1388 	uint16_t tmp;
1389 	int error;
1390 	size_t i;
1391 
1392 	/* init RF-dependent PHY registers */
1393 	for (i = 0; i < __arraycount(phyini); i++) {
1394 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1395 		if (error != 0)
1396 			return error;
1397 	}
1398 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1399 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1400 
1401 	/* init maxim2 radio */
1402 	for (i = 0; i < __arraycount(rfini); i++) {
1403 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1404 			return error;
1405 	}
1406 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1407 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1408 
1409 	return 0;
1410 }
1411 
1412 Static int
1413 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1414 {
1415 	/* vendor driver does nothing for this RF chip */
1416 
1417 	return 0;
1418 }
1419 
1420 Static int
1421 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1422 {
1423 	struct zyd_softc *sc = rf->rf_sc;
1424 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1425 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1426 	static const struct {
1427 		uint32_t	r1, r2;
1428 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1429 	uint16_t tmp;
1430 	int error;
1431 	size_t i;
1432 
1433 	/*
1434 	 * Do the same as we do when initializing it, except for the channel
1435 	 * values coming from the two channel tables.
1436 	 */
1437 
1438 	/* init RF-dependent PHY registers */
1439 	for (i = 0; i < __arraycount(phyini); i++) {
1440 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1441 		if (error != 0)
1442 			return error;
1443 	}
1444 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1445 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1446 
1447 	/* first two values taken from the chantables */
1448 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1449 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1450 
1451 	/* init maxim2 radio - skipping the two first values */
1452 	for (i = 2; i < __arraycount(rfini); i++) {
1453 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1454 			return error;
1455 	}
1456 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1457 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1458 
1459 	return 0;
1460 }
1461 
1462 Static int
1463 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1464 {
1465 	struct zyd_rf *rf = &sc->sc_rf;
1466 
1467 	rf->rf_sc = sc;
1468 
1469 	switch (type) {
1470 	case ZYD_RF_RFMD:
1471 		rf->init         = zyd_rfmd_init;
1472 		rf->switch_radio = zyd_rfmd_switch_radio;
1473 		rf->set_channel  = zyd_rfmd_set_channel;
1474 		rf->width        = 24;	/* 24-bit RF values */
1475 		break;
1476 	case ZYD_RF_AL2230:
1477 	case ZYD_RF_AL2230S:
1478 		if (sc->mac_rev == ZYD_ZD1211B)
1479 			rf->init = zyd_al2230_init_b;
1480 		else
1481 			rf->init = zyd_al2230_init;
1482 		rf->switch_radio = zyd_al2230_switch_radio;
1483 		rf->set_channel  = zyd_al2230_set_channel;
1484 		rf->width        = 24;	/* 24-bit RF values */
1485 		break;
1486 	case ZYD_RF_AL7230B:
1487 		rf->init         = zyd_al7230B_init;
1488 		rf->switch_radio = zyd_al7230B_switch_radio;
1489 		rf->set_channel  = zyd_al7230B_set_channel;
1490 		rf->width        = 24;	/* 24-bit RF values */
1491 		break;
1492 	case ZYD_RF_AL2210:
1493 		rf->init         = zyd_al2210_init;
1494 		rf->switch_radio = zyd_al2210_switch_radio;
1495 		rf->set_channel  = zyd_al2210_set_channel;
1496 		rf->width        = 24;	/* 24-bit RF values */
1497 		break;
1498 	case ZYD_RF_GCT:
1499 		rf->init         = zyd_gct_init;
1500 		rf->switch_radio = zyd_gct_switch_radio;
1501 		rf->set_channel  = zyd_gct_set_channel;
1502 		rf->width        = 21;	/* 21-bit RF values */
1503 		break;
1504 	case ZYD_RF_MAXIM_NEW:
1505 		rf->init         = zyd_maxim_init;
1506 		rf->switch_radio = zyd_maxim_switch_radio;
1507 		rf->set_channel  = zyd_maxim_set_channel;
1508 		rf->width        = 18;	/* 18-bit RF values */
1509 		break;
1510 	case ZYD_RF_MAXIM_NEW2:
1511 		rf->init         = zyd_maxim2_init;
1512 		rf->switch_radio = zyd_maxim2_switch_radio;
1513 		rf->set_channel  = zyd_maxim2_set_channel;
1514 		rf->width        = 18;	/* 18-bit RF values */
1515 		break;
1516 	default:
1517 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1518 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1519 		return EINVAL;
1520 	}
1521 	return 0;
1522 }
1523 
1524 Static const char *
1525 zyd_rf_name(uint8_t type)
1526 {
1527 	static const char * const zyd_rfs[] = {
1528 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1529 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1530 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1531 		"PHILIPS"
1532 	};
1533 
1534 	return zyd_rfs[(type > 15) ? 0 : type];
1535 }
1536 
1537 Static int
1538 zyd_hw_init(struct zyd_softc *sc)
1539 {
1540 	struct zyd_rf *rf = &sc->sc_rf;
1541 	const struct zyd_phy_pair *phyp;
1542 	int error;
1543 
1544 	/* specify that the plug and play is finished */
1545 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1546 
1547 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1548 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1549 
1550 	/* retrieve firmware revision number */
1551 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1552 
1553 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1554 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1555 
1556 	/* disable interrupts */
1557 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1558 
1559 	/* PHY init */
1560 	zyd_lock_phy(sc);
1561 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1562 	for (; phyp->reg != 0; phyp++) {
1563 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1564 			goto fail;
1565 	}
1566 	zyd_unlock_phy(sc);
1567 
1568 	/* HMAC init */
1569 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1570 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1571 
1572 	if (sc->mac_rev == ZYD_ZD1211) {
1573 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1574 	} else {
1575 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1576 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1577 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1578 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1579 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1580 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1581 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1582 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1583 	}
1584 
1585 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1586 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1587 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1588 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1589 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1590 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1591 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1592 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1593 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1594 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1595 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1596 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1597 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1598 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1599 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1600 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1601 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1602 
1603 	/* RF chip init */
1604 	zyd_lock_phy(sc);
1605 	error = (*rf->init)(rf);
1606 	zyd_unlock_phy(sc);
1607 	if (error != 0) {
1608 		printf("%s: radio initialization failed\n",
1609 		    device_xname(sc->sc_dev));
1610 		goto fail;
1611 	}
1612 
1613 	/* init beacon interval to 100ms */
1614 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1615 		goto fail;
1616 
1617 fail:	return error;
1618 }
1619 
1620 Static int
1621 zyd_read_eeprom(struct zyd_softc *sc)
1622 {
1623 	struct ieee80211com *ic = &sc->sc_ic;
1624 	uint32_t tmp;
1625 	uint16_t val;
1626 	int i;
1627 
1628 	/* read MAC address */
1629 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1630 	ic->ic_myaddr[0] = tmp & 0xff;
1631 	ic->ic_myaddr[1] = tmp >>  8;
1632 	ic->ic_myaddr[2] = tmp >> 16;
1633 	ic->ic_myaddr[3] = tmp >> 24;
1634 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1635 	ic->ic_myaddr[4] = tmp & 0xff;
1636 	ic->ic_myaddr[5] = tmp >>  8;
1637 
1638 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1639 	sc->rf_rev = tmp & 0x0f;
1640 	sc->pa_rev = (tmp >> 16) & 0x0f;
1641 
1642 	/* read regulatory domain (currently unused) */
1643 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1644 	sc->regdomain = tmp >> 16;
1645 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1646 
1647 	/* read Tx power calibration tables */
1648 	for (i = 0; i < 7; i++) {
1649 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1650 		sc->pwr_cal[i * 2] = val >> 8;
1651 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1652 
1653 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1654 		sc->pwr_int[i * 2] = val >> 8;
1655 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1656 
1657 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1658 		sc->ofdm36_cal[i * 2] = val >> 8;
1659 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1660 
1661 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1662 		sc->ofdm48_cal[i * 2] = val >> 8;
1663 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1664 
1665 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1666 		sc->ofdm54_cal[i * 2] = val >> 8;
1667 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1668 	}
1669 	return 0;
1670 }
1671 
1672 Static int
1673 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1674 {
1675 	uint32_t tmp;
1676 
1677 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1678 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1679 
1680 	tmp = addr[5] << 8 | addr[4];
1681 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1682 
1683 	return 0;
1684 }
1685 
1686 Static int
1687 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1688 {
1689 	uint32_t tmp;
1690 
1691 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1692 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1693 
1694 	tmp = addr[5] << 8 | addr[4];
1695 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1696 
1697 	return 0;
1698 }
1699 
1700 Static int
1701 zyd_switch_radio(struct zyd_softc *sc, int on)
1702 {
1703 	struct zyd_rf *rf = &sc->sc_rf;
1704 	int error;
1705 
1706 	zyd_lock_phy(sc);
1707 	error = (*rf->switch_radio)(rf, on);
1708 	zyd_unlock_phy(sc);
1709 
1710 	return error;
1711 }
1712 
1713 Static void
1714 zyd_set_led(struct zyd_softc *sc, int which, int on)
1715 {
1716 	uint32_t tmp;
1717 
1718 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1719 	tmp &= ~which;
1720 	if (on)
1721 		tmp |= which;
1722 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1723 }
1724 
1725 Static int
1726 zyd_set_rxfilter(struct zyd_softc *sc)
1727 {
1728 	uint32_t rxfilter;
1729 
1730 	switch (sc->sc_ic.ic_opmode) {
1731 	case IEEE80211_M_STA:
1732 		rxfilter = ZYD_FILTER_BSS;
1733 		break;
1734 	case IEEE80211_M_IBSS:
1735 	case IEEE80211_M_HOSTAP:
1736 		rxfilter = ZYD_FILTER_HOSTAP;
1737 		break;
1738 	case IEEE80211_M_MONITOR:
1739 		rxfilter = ZYD_FILTER_MONITOR;
1740 		break;
1741 	default:
1742 		/* should not get there */
1743 		return EINVAL;
1744 	}
1745 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1746 }
1747 
1748 Static void
1749 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1750 {
1751 	struct ieee80211com *ic = &sc->sc_ic;
1752 	struct zyd_rf *rf = &sc->sc_rf;
1753 	u_int chan;
1754 
1755 	chan = ieee80211_chan2ieee(ic, c);
1756 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1757 		return;
1758 
1759 	zyd_lock_phy(sc);
1760 
1761 	(*rf->set_channel)(rf, chan);
1762 
1763 	/* update Tx power */
1764 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1765 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1766 
1767 	if (sc->mac_rev == ZYD_ZD1211B) {
1768 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1769 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1770 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1771 
1772 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1773 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1774 	}
1775 
1776 	zyd_unlock_phy(sc);
1777 }
1778 
1779 Static int
1780 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1781 {
1782 	/* XXX this is probably broken.. */
1783 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1784 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1785 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1786 
1787 	return 0;
1788 }
1789 
1790 Static uint8_t
1791 zyd_plcp_signal(int rate)
1792 {
1793 	switch (rate) {
1794 	/* CCK rates (returned values are device-dependent) */
1795 	case 2:		return 0x0;
1796 	case 4:		return 0x1;
1797 	case 11:	return 0x2;
1798 	case 22:	return 0x3;
1799 
1800 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1801 	case 12:	return 0xb;
1802 	case 18:	return 0xf;
1803 	case 24:	return 0xa;
1804 	case 36:	return 0xe;
1805 	case 48:	return 0x9;
1806 	case 72:	return 0xd;
1807 	case 96:	return 0x8;
1808 	case 108:	return 0xc;
1809 
1810 	/* unsupported rates (should not get there) */
1811 	default:	return 0xff;
1812 	}
1813 }
1814 
1815 Static void
1816 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1817 {
1818 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1819 	struct zyd_cmd *cmd;
1820 	uint32_t datalen;
1821 
1822 	if (status != USBD_NORMAL_COMPLETION) {
1823 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1824 			return;
1825 
1826 		if (status == USBD_STALLED) {
1827 			usbd_clear_endpoint_stall_async(
1828 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1829 		}
1830 		return;
1831 	}
1832 
1833 	cmd = (struct zyd_cmd *)sc->ibuf;
1834 
1835 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1836 		struct zyd_notif_retry *retry =
1837 		    (struct zyd_notif_retry *)cmd->data;
1838 		struct ieee80211com *ic = &sc->sc_ic;
1839 		struct ifnet *ifp = &sc->sc_if;
1840 		struct ieee80211_node *ni;
1841 
1842 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1843 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1844 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1845 
1846 		/*
1847 		 * Find the node to which the packet was sent and update its
1848 		 * retry statistics.  In BSS mode, this node is the AP we're
1849 		 * associated to so no lookup is actually needed.
1850 		 */
1851 		if (ic->ic_opmode != IEEE80211_M_STA) {
1852 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1853 			if (ni == NULL)
1854 				return;	/* just ignore */
1855 		} else
1856 			ni = ic->ic_bss;
1857 
1858 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1859 
1860 		if (le16toh(retry->count) & 0x100)
1861 			ifp->if_oerrors++;	/* too many retries */
1862 
1863 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1864 		struct rq *rqp;
1865 
1866 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1867 			return;	/* HMAC interrupt */
1868 
1869 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1870 		datalen -= sizeof(cmd->code);
1871 		datalen -= 2;	/* XXX: padding? */
1872 
1873 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1874 			int i;
1875 
1876 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1877 				continue;
1878 			for (i = 0; i < rqp->len; i++) {
1879 				if (*(((const uint16_t *)rqp->idata) + i) !=
1880 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1881 					break;
1882 			}
1883 			if (i != rqp->len)
1884 				continue;
1885 
1886 			/* copy answer into caller-supplied buffer */
1887 			bcopy(cmd->data, rqp->odata,
1888 			    sizeof(struct zyd_pair) * rqp->len);
1889 			wakeup(rqp->odata);	/* wakeup caller */
1890 
1891 			return;
1892 		}
1893 		return;	/* unexpected IORD notification */
1894 	} else {
1895 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1896 		    le16toh(cmd->code));
1897 	}
1898 }
1899 
1900 Static void
1901 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1902 {
1903 	struct ieee80211com *ic = &sc->sc_ic;
1904 	struct ifnet *ifp = &sc->sc_if;
1905 	struct ieee80211_node *ni;
1906 	struct ieee80211_frame *wh;
1907 	const struct zyd_plcphdr *plcp;
1908 	const struct zyd_rx_stat *stat;
1909 	struct mbuf *m;
1910 	int rlen, s;
1911 
1912 	if (len < ZYD_MIN_FRAGSZ) {
1913 		printf("%s: frame too short (length=%d)\n",
1914 		    device_xname(sc->sc_dev), len);
1915 		ifp->if_ierrors++;
1916 		return;
1917 	}
1918 
1919 	plcp = (const struct zyd_plcphdr *)buf;
1920 	stat = (const struct zyd_rx_stat *)
1921 	    (buf + len - sizeof (struct zyd_rx_stat));
1922 
1923 	if (stat->flags & ZYD_RX_ERROR) {
1924 		DPRINTF(("%s: RX status indicated error (%x)\n",
1925 		    device_xname(sc->sc_dev), stat->flags));
1926 		ifp->if_ierrors++;
1927 		return;
1928 	}
1929 
1930 	/* compute actual frame length */
1931 	rlen = len - sizeof (struct zyd_plcphdr) -
1932 	    sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1933 
1934 	/* allocate a mbuf to store the frame */
1935 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1936 	if (m == NULL) {
1937 		printf("%s: could not allocate rx mbuf\n",
1938 		    device_xname(sc->sc_dev));
1939 		ifp->if_ierrors++;
1940 		return;
1941 	}
1942 	if (rlen > MHLEN) {
1943 		MCLGET(m, M_DONTWAIT);
1944 		if (!(m->m_flags & M_EXT)) {
1945 			printf("%s: could not allocate rx mbuf cluster\n",
1946 			    device_xname(sc->sc_dev));
1947 			m_freem(m);
1948 			ifp->if_ierrors++;
1949 			return;
1950 		}
1951 	}
1952 	m->m_pkthdr.rcvif = ifp;
1953 	m->m_pkthdr.len = m->m_len = rlen;
1954 	bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1955 
1956 	s = splnet();
1957 
1958 	if (sc->sc_drvbpf != NULL) {
1959 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1960 		static const uint8_t rates[] = {
1961 			/* reverse function of zyd_plcp_signal() */
1962 			2, 4, 11, 22, 0, 0, 0, 0,
1963 			96, 48, 24, 12, 108, 72, 36, 18
1964 		};
1965 
1966 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1967 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1968 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1969 		tap->wr_rssi = stat->rssi;
1970 		tap->wr_rate = rates[plcp->signal & 0xf];
1971 
1972 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1973 	}
1974 
1975 	wh = mtod(m, struct ieee80211_frame *);
1976 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1977 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1978 
1979 	/* node is no longer needed */
1980 	ieee80211_free_node(ni);
1981 
1982 	splx(s);
1983 }
1984 
1985 Static void
1986 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1987 {
1988 	struct zyd_rx_data *data = priv;
1989 	struct zyd_softc *sc = data->sc;
1990 	struct ifnet *ifp = &sc->sc_if;
1991 	const struct zyd_rx_desc *desc;
1992 	int len;
1993 
1994 	if (status != USBD_NORMAL_COMPLETION) {
1995 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1996 			return;
1997 
1998 		if (status == USBD_STALLED)
1999 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2000 
2001 		goto skip;
2002 	}
2003 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2004 
2005 	if (len < ZYD_MIN_RXBUFSZ) {
2006 		printf("%s: xfer too short (length=%d)\n",
2007 		    device_xname(sc->sc_dev), len);
2008 		ifp->if_ierrors++;
2009 		goto skip;
2010 	}
2011 
2012 	desc = (const struct zyd_rx_desc *)
2013 	    (data->buf + len - sizeof (struct zyd_rx_desc));
2014 
2015 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2016 		const uint8_t *p = data->buf, *end = p + len;
2017 		int i;
2018 
2019 		DPRINTFN(3, ("received multi-frame transfer\n"));
2020 
2021 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2022 			const uint16_t len16 = UGETW(desc->len[i]);
2023 
2024 			if (len16 == 0 || p + len16 > end)
2025 				break;
2026 
2027 			zyd_rx_data(sc, p, len16);
2028 			/* next frame is aligned on a 32-bit boundary */
2029 			p += (len16 + 3) & ~3;
2030 		}
2031 	} else {
2032 		DPRINTFN(3, ("received single-frame transfer\n"));
2033 
2034 		zyd_rx_data(sc, data->buf, len);
2035 	}
2036 
2037 skip:	/* setup a new transfer */
2038 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2039 	    ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2040 	    USBD_NO_TIMEOUT, zyd_rxeof);
2041 	(void)usbd_transfer(xfer);
2042 }
2043 
2044 Static int
2045 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2046 {
2047 	struct ieee80211com *ic = &sc->sc_ic;
2048 	struct ifnet *ifp = &sc->sc_if;
2049 	struct zyd_tx_desc *desc;
2050 	struct zyd_tx_data *data;
2051 	struct ieee80211_frame *wh;
2052 	struct ieee80211_key *k;
2053 	int xferlen, totlen, rate;
2054 	uint16_t pktlen;
2055 	usbd_status error;
2056 
2057 	data = &sc->tx_data[0];
2058 	desc = (struct zyd_tx_desc *)data->buf;
2059 
2060 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2061 
2062 	wh = mtod(m0, struct ieee80211_frame *);
2063 
2064 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2065 		k = ieee80211_crypto_encap(ic, ni, m0);
2066 		if (k == NULL) {
2067 			m_freem(m0);
2068 			return ENOBUFS;
2069 		}
2070 	}
2071 
2072 	data->ni = ni;
2073 
2074 	wh = mtod(m0, struct ieee80211_frame *);
2075 
2076 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2077 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2078 
2079 	/* fill Tx descriptor */
2080 	desc->len = htole16(totlen);
2081 
2082 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2083 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2084 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2085 		if (totlen > ic->ic_rtsthreshold) {
2086 			desc->flags |= ZYD_TX_FLAG_RTS;
2087 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2088 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2089 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2090 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2091 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2092 				desc->flags |= ZYD_TX_FLAG_RTS;
2093 		}
2094 	} else
2095 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2096 
2097 	if ((wh->i_fc[0] &
2098 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2099 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2100 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2101 
2102 	desc->phy = zyd_plcp_signal(rate);
2103 	if (ZYD_RATE_IS_OFDM(rate)) {
2104 		desc->phy |= ZYD_TX_PHY_OFDM;
2105 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2106 			desc->phy |= ZYD_TX_PHY_5GHZ;
2107 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2108 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2109 
2110 	/* actual transmit length (XXX why +10?) */
2111 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2112 	if (sc->mac_rev == ZYD_ZD1211)
2113 		pktlen += totlen;
2114 	desc->pktlen = htole16(pktlen);
2115 
2116 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2117 	desc->plcp_service = 0;
2118 	if (rate == 22) {
2119 		const int remainder = (16 * totlen) % 22;
2120 		if (remainder != 0 && remainder < 7)
2121 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2122 	}
2123 
2124 	if (sc->sc_drvbpf != NULL) {
2125 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2126 
2127 		tap->wt_flags = 0;
2128 		tap->wt_rate = rate;
2129 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2130 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2131 
2132 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2133 	}
2134 
2135 	m_copydata(m0, 0, m0->m_pkthdr.len,
2136 	    data->buf + sizeof (struct zyd_tx_desc));
2137 
2138 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2139 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2140 
2141 	m_freem(m0);	/* mbuf no longer needed */
2142 
2143 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2144 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2145 	    ZYD_TX_TIMEOUT, zyd_txeof);
2146 	error = usbd_transfer(data->xfer);
2147 	if (error != USBD_IN_PROGRESS && error != 0) {
2148 		ifp->if_oerrors++;
2149 		return EIO;
2150 	}
2151 	sc->tx_queued++;
2152 
2153 	return 0;
2154 }
2155 
2156 Static void
2157 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2158 {
2159 	struct zyd_tx_data *data = priv;
2160 	struct zyd_softc *sc = data->sc;
2161 	struct ifnet *ifp = &sc->sc_if;
2162 	int s;
2163 
2164 	if (status != USBD_NORMAL_COMPLETION) {
2165 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2166 			return;
2167 
2168 		printf("%s: could not transmit buffer: %s\n",
2169 		    device_xname(sc->sc_dev), usbd_errstr(status));
2170 
2171 		if (status == USBD_STALLED) {
2172 			usbd_clear_endpoint_stall_async(
2173 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2174 		}
2175 		ifp->if_oerrors++;
2176 		return;
2177 	}
2178 
2179 	s = splnet();
2180 
2181 	/* update rate control statistics */
2182 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2183 
2184 	ieee80211_free_node(data->ni);
2185 	data->ni = NULL;
2186 
2187 	sc->tx_queued--;
2188 	ifp->if_opackets++;
2189 
2190 	sc->tx_timer = 0;
2191 	ifp->if_flags &= ~IFF_OACTIVE;
2192 	zyd_start(ifp);
2193 
2194 	splx(s);
2195 }
2196 
2197 Static int
2198 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2199 {
2200 	struct ieee80211com *ic = &sc->sc_ic;
2201 	struct ifnet *ifp = &sc->sc_if;
2202 	struct zyd_tx_desc *desc;
2203 	struct zyd_tx_data *data;
2204 	struct ieee80211_frame *wh;
2205 	struct ieee80211_key *k;
2206 	int xferlen, totlen, rate;
2207 	uint16_t pktlen;
2208 	usbd_status error;
2209 
2210 	wh = mtod(m0, struct ieee80211_frame *);
2211 
2212 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2213 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2214 	else
2215 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2216 	rate &= IEEE80211_RATE_VAL;
2217 
2218 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2219 		k = ieee80211_crypto_encap(ic, ni, m0);
2220 		if (k == NULL) {
2221 			m_freem(m0);
2222 			return ENOBUFS;
2223 		}
2224 
2225 		/* packet header may have moved, reset our local pointer */
2226 		wh = mtod(m0, struct ieee80211_frame *);
2227 	}
2228 
2229 	data = &sc->tx_data[0];
2230 	desc = (struct zyd_tx_desc *)data->buf;
2231 
2232 	data->ni = ni;
2233 
2234 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2235 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2236 
2237 	/* fill Tx descriptor */
2238 	desc->len = htole16(totlen);
2239 
2240 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2241 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2242 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2243 		if (totlen > ic->ic_rtsthreshold) {
2244 			desc->flags |= ZYD_TX_FLAG_RTS;
2245 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2246 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2247 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2248 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2249 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2250 				desc->flags |= ZYD_TX_FLAG_RTS;
2251 		}
2252 	} else
2253 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2254 
2255 	if ((wh->i_fc[0] &
2256 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2257 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2258 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2259 
2260 	desc->phy = zyd_plcp_signal(rate);
2261 	if (ZYD_RATE_IS_OFDM(rate)) {
2262 		desc->phy |= ZYD_TX_PHY_OFDM;
2263 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2264 			desc->phy |= ZYD_TX_PHY_5GHZ;
2265 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2266 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2267 
2268 	/* actual transmit length (XXX why +10?) */
2269 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2270 	if (sc->mac_rev == ZYD_ZD1211)
2271 		pktlen += totlen;
2272 	desc->pktlen = htole16(pktlen);
2273 
2274 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2275 	desc->plcp_service = 0;
2276 	if (rate == 22) {
2277 		const int remainder = (16 * totlen) % 22;
2278 		if (remainder != 0 && remainder < 7)
2279 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2280 	}
2281 
2282 	if (sc->sc_drvbpf != NULL) {
2283 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2284 
2285 		tap->wt_flags = 0;
2286 		tap->wt_rate = rate;
2287 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2288 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2289 
2290 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2291 	}
2292 
2293 	m_copydata(m0, 0, m0->m_pkthdr.len,
2294 	    data->buf + sizeof (struct zyd_tx_desc));
2295 
2296 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2297 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2298 
2299 	m_freem(m0);	/* mbuf no longer needed */
2300 
2301 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2302 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2303 	    ZYD_TX_TIMEOUT, zyd_txeof);
2304 	error = usbd_transfer(data->xfer);
2305 	if (error != USBD_IN_PROGRESS && error != 0) {
2306 		ifp->if_oerrors++;
2307 		return EIO;
2308 	}
2309 	sc->tx_queued++;
2310 
2311 	return 0;
2312 }
2313 
2314 Static void
2315 zyd_start(struct ifnet *ifp)
2316 {
2317 	struct zyd_softc *sc = ifp->if_softc;
2318 	struct ieee80211com *ic = &sc->sc_ic;
2319 	struct ether_header *eh;
2320 	struct ieee80211_node *ni;
2321 	struct mbuf *m0;
2322 
2323 	for (;;) {
2324 		IF_POLL(&ic->ic_mgtq, m0);
2325 		if (m0 != NULL) {
2326 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2327 				ifp->if_flags |= IFF_OACTIVE;
2328 				break;
2329 			}
2330 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2331 
2332 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2333 			m0->m_pkthdr.rcvif = NULL;
2334 			bpf_mtap3(ic->ic_rawbpf, m0);
2335 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2336 				break;
2337 		} else {
2338 			if (ic->ic_state != IEEE80211_S_RUN)
2339 				break;
2340 			IFQ_POLL(&ifp->if_snd, m0);
2341 			if (m0 == NULL)
2342 				break;
2343 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2344 				ifp->if_flags |= IFF_OACTIVE;
2345 				break;
2346 			}
2347 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2348 
2349 			if (m0->m_len < sizeof(struct ether_header) &&
2350 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2351 				continue;
2352 
2353 			eh = mtod(m0, struct ether_header *);
2354 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2355 			if (ni == NULL) {
2356 				m_freem(m0);
2357 				continue;
2358 			}
2359 			bpf_mtap(ifp, m0);
2360 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2361 				ieee80211_free_node(ni);
2362 				ifp->if_oerrors++;
2363 				continue;
2364 			}
2365 			bpf_mtap3(ic->ic_rawbpf, m0);
2366 			if (zyd_tx_data(sc, m0, ni) != 0) {
2367 				ieee80211_free_node(ni);
2368 				ifp->if_oerrors++;
2369 				break;
2370 			}
2371 		}
2372 
2373 		sc->tx_timer = 5;
2374 		ifp->if_timer = 1;
2375 	}
2376 }
2377 
2378 Static void
2379 zyd_watchdog(struct ifnet *ifp)
2380 {
2381 	struct zyd_softc *sc = ifp->if_softc;
2382 	struct ieee80211com *ic = &sc->sc_ic;
2383 
2384 	ifp->if_timer = 0;
2385 
2386 	if (sc->tx_timer > 0) {
2387 		if (--sc->tx_timer == 0) {
2388 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2389 			/* zyd_init(ifp); XXX needs a process context ? */
2390 			ifp->if_oerrors++;
2391 			return;
2392 		}
2393 		ifp->if_timer = 1;
2394 	}
2395 
2396 	ieee80211_watchdog(ic);
2397 }
2398 
2399 Static int
2400 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2401 {
2402 	struct zyd_softc *sc = ifp->if_softc;
2403 	struct ieee80211com *ic = &sc->sc_ic;
2404 	int s, error = 0;
2405 
2406 	s = splnet();
2407 
2408 	switch (cmd) {
2409 	case SIOCSIFFLAGS:
2410 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2411 			break;
2412 		/* XXX re-use ether_ioctl() */
2413 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2414 		case IFF_UP:
2415 			zyd_init(ifp);
2416 			break;
2417 		case IFF_RUNNING:
2418 			zyd_stop(ifp, 1);
2419 			break;
2420 		default:
2421 			break;
2422 		}
2423 		break;
2424 
2425 	default:
2426 		error = ieee80211_ioctl(ic, cmd, data);
2427 	}
2428 
2429 	if (error == ENETRESET) {
2430 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2431 		    (IFF_RUNNING | IFF_UP))
2432 			zyd_init(ifp);
2433 		error = 0;
2434 	}
2435 
2436 	splx(s);
2437 
2438 	return error;
2439 }
2440 
2441 Static int
2442 zyd_init(struct ifnet *ifp)
2443 {
2444 	struct zyd_softc *sc = ifp->if_softc;
2445 	struct ieee80211com *ic = &sc->sc_ic;
2446 	int i, error;
2447 
2448 	zyd_stop(ifp, 0);
2449 
2450 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2451 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2452 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2453 	if (error != 0)
2454 		return error;
2455 
2456 	/* we'll do software WEP decryption for now */
2457 	DPRINTF(("setting encryption type\n"));
2458 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2459 	if (error != 0)
2460 		return error;
2461 
2462 	/* promiscuous mode */
2463 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2464 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2465 
2466 	(void)zyd_set_rxfilter(sc);
2467 
2468 	/* switch radio transmitter ON */
2469 	(void)zyd_switch_radio(sc, 1);
2470 
2471 	/* set basic rates */
2472 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2473 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2474 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2475 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2476 	else	/* assumes 802.11b/g */
2477 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2478 
2479 	/* set mandatory rates */
2480 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2481 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2482 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2483 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2484 	else	/* assumes 802.11b/g */
2485 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2486 
2487 	/* set default BSS channel */
2488 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2489 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2490 
2491 	/* enable interrupts */
2492 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2493 
2494 	/*
2495 	 * Allocate Tx and Rx xfer queues.
2496 	 */
2497 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2498 		printf("%s: could not allocate Tx list\n",
2499 		    device_xname(sc->sc_dev));
2500 		goto fail;
2501 	}
2502 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2503 		printf("%s: could not allocate Rx list\n",
2504 		    device_xname(sc->sc_dev));
2505 		goto fail;
2506 	}
2507 
2508 	/*
2509 	 * Start up the receive pipe.
2510 	 */
2511 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2512 		struct zyd_rx_data *data = &sc->rx_data[i];
2513 
2514 		usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2515 		    NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2516 		    USBD_NO_TIMEOUT, zyd_rxeof);
2517 		error = usbd_transfer(data->xfer);
2518 		if (error != USBD_IN_PROGRESS && error != 0) {
2519 			printf("%s: could not queue Rx transfer\n",
2520 			    device_xname(sc->sc_dev));
2521 			goto fail;
2522 		}
2523 	}
2524 
2525 	ifp->if_flags &= ~IFF_OACTIVE;
2526 	ifp->if_flags |= IFF_RUNNING;
2527 
2528 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2529 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2530 	else
2531 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2532 
2533 	return 0;
2534 
2535 fail:	zyd_stop(ifp, 1);
2536 	return error;
2537 }
2538 
2539 Static void
2540 zyd_stop(struct ifnet *ifp, int disable)
2541 {
2542 	struct zyd_softc *sc = ifp->if_softc;
2543 	struct ieee80211com *ic = &sc->sc_ic;
2544 
2545 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2546 
2547 	sc->tx_timer = 0;
2548 	ifp->if_timer = 0;
2549 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2550 
2551 	/* switch radio transmitter OFF */
2552 	(void)zyd_switch_radio(sc, 0);
2553 
2554 	/* disable Rx */
2555 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2556 
2557 	/* disable interrupts */
2558 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2559 
2560 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2561 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2562 
2563 	zyd_free_rx_list(sc);
2564 	zyd_free_tx_list(sc);
2565 }
2566 
2567 Static int
2568 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2569 {
2570 	usb_device_request_t req;
2571 	uint16_t addr;
2572 	uint8_t stat;
2573 
2574 	DPRINTF(("firmware size=%zu\n", size));
2575 
2576 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2577 	req.bRequest = ZYD_DOWNLOADREQ;
2578 	USETW(req.wIndex, 0);
2579 
2580 	addr = ZYD_FIRMWARE_START_ADDR;
2581 	while (size > 0) {
2582 #if 0
2583 		const int mlen = min(size, 4096);
2584 #else
2585 		/*
2586 		 * XXXX: When the transfer size is 4096 bytes, it is not
2587 		 * likely to be able to transfer it.
2588 		 * The cause is port or machine or chip?
2589 		 */
2590 		const int mlen = min(size, 64);
2591 #endif
2592 
2593 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2594 		    addr));
2595 
2596 		USETW(req.wValue, addr);
2597 		USETW(req.wLength, mlen);
2598 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2599 			return EIO;
2600 
2601 		addr += mlen / 2;
2602 		fw   += mlen;
2603 		size -= mlen;
2604 	}
2605 
2606 	/* check whether the upload succeeded */
2607 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2608 	req.bRequest = ZYD_DOWNLOADSTS;
2609 	USETW(req.wValue, 0);
2610 	USETW(req.wIndex, 0);
2611 	USETW(req.wLength, sizeof stat);
2612 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2613 		return EIO;
2614 
2615 	return (stat & 0x80) ? EIO : 0;
2616 }
2617 
2618 Static void
2619 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2620 {
2621 	struct zyd_softc *sc = arg;
2622 	struct zyd_node *zn = (struct zyd_node *)ni;
2623 
2624 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2625 }
2626 
2627 Static void
2628 zyd_amrr_timeout(void *arg)
2629 {
2630 	struct zyd_softc *sc = arg;
2631 	struct ieee80211com *ic = &sc->sc_ic;
2632 	int s;
2633 
2634 	s = splnet();
2635 	if (ic->ic_opmode == IEEE80211_M_STA)
2636 		zyd_iter_func(sc, ic->ic_bss);
2637 	else
2638 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2639 	splx(s);
2640 
2641 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2642 }
2643 
2644 Static void
2645 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2646 {
2647 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2648 	int i;
2649 
2650 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2651 
2652 	/* set rate to some reasonable initial value */
2653 	for (i = ni->ni_rates.rs_nrates - 1;
2654 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2655 	     i--);
2656 	ni->ni_txrate = i;
2657 }
2658 
2659 int
2660 zyd_activate(device_t self, enum devact act)
2661 {
2662 	struct zyd_softc *sc = device_private(self);
2663 
2664 	switch (act) {
2665 	case DVACT_DEACTIVATE:
2666 		if_deactivate(&sc->sc_if);
2667 		return 0;
2668 	default:
2669 		return EOPNOTSUPP;
2670 	}
2671 }
2672