1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.40 2016/05/26 05:04:46 ozaki-r Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.40 2016/05/26 05:04:46 ozaki-r Exp $"); 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/kmem.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <machine/endian.h> 42 43 #include <net/bpf.h> 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/if_dl.h> 47 #include <net/if_ether.h> 48 #include <net/if_media.h> 49 #include <net/if_types.h> 50 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 56 #include <net80211/ieee80211_netbsd.h> 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/firmload.h> 62 63 #include <dev/usb/usb.h> 64 #include <dev/usb/usbdi.h> 65 #include <dev/usb/usbdi_util.h> 66 #include <dev/usb/usbdevs.h> 67 68 #include <dev/usb/if_zydreg.h> 69 70 #ifdef ZYD_DEBUG 71 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 72 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 73 int zyddebug = 0; 74 #else 75 #define DPRINTF(x) 76 #define DPRINTFN(n, x) 77 #endif 78 79 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 80 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 81 82 /* various supported device vendors/products */ 83 #define ZYD_ZD1211_DEV(v, p) \ 84 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 85 #define ZYD_ZD1211B_DEV(v, p) \ 86 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 87 static const struct zyd_type { 88 struct usb_devno dev; 89 uint8_t rev; 90 #define ZYD_ZD1211 0 91 #define ZYD_ZD1211B 1 92 } zyd_devs[] = { 93 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 94 ZYD_ZD1211_DEV(ABOCOM, WL54), 95 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 96 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 97 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 98 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 99 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 100 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 101 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 102 ZYD_ZD1211_DEV(SAGEM, XG760A), 103 ZYD_ZD1211_DEV(SENAO, NUB8301), 104 ZYD_ZD1211_DEV(SITECOMEU, WL113), 105 ZYD_ZD1211_DEV(SWEEX, ZD1211), 106 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 107 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 108 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 109 ZYD_ZD1211_DEV(TWINMOS, G240), 110 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 111 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 112 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 113 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 114 ZYD_ZD1211_DEV(ZCOM, ZD1211), 115 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 116 ZYD_ZD1211_DEV(ZYXEL, AG225H), 117 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 118 ZYD_ZD1211_DEV(ZYXEL, G200V2), 119 120 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 121 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 122 ZYD_ZD1211B_DEV(ACCTON, WUS201), 123 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 124 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 125 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 126 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 127 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 128 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 129 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 131 ZYD_ZD1211B_DEV(MELCO, KG54L), 132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 133 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 134 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 135 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 136 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 137 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 138 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 139 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 140 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 141 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 142 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 143 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 144 ZYD_ZD1211B_DEV(USR, USR5423), 145 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 146 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 147 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 148 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 149 ZYD_ZD1211B_DEV(ZYXEL, M202), 150 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 151 }; 152 #define zyd_lookup(v, p) \ 153 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 154 155 int zyd_match(device_t, cfdata_t, void *); 156 void zyd_attach(device_t, device_t, void *); 157 int zyd_detach(device_t, int); 158 int zyd_activate(device_t, enum devact); 159 extern struct cfdriver zyd_cd; 160 161 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 162 zyd_attach, zyd_detach, zyd_activate); 163 164 Static void zyd_attachhook(device_t); 165 Static int zyd_complete_attach(struct zyd_softc *); 166 Static int zyd_open_pipes(struct zyd_softc *); 167 Static void zyd_close_pipes(struct zyd_softc *); 168 Static int zyd_alloc_tx_list(struct zyd_softc *); 169 Static void zyd_free_tx_list(struct zyd_softc *); 170 Static int zyd_alloc_rx_list(struct zyd_softc *); 171 Static void zyd_free_rx_list(struct zyd_softc *); 172 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 173 Static int zyd_media_change(struct ifnet *); 174 Static void zyd_next_scan(void *); 175 Static void zyd_task(void *); 176 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 177 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 178 void *, int, u_int); 179 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 180 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 181 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 182 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 183 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 184 Static void zyd_lock_phy(struct zyd_softc *); 185 Static void zyd_unlock_phy(struct zyd_softc *); 186 Static int zyd_rfmd_init(struct zyd_rf *); 187 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 188 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 189 Static int zyd_al2230_init(struct zyd_rf *); 190 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 191 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 192 Static int zyd_al2230_init_b(struct zyd_rf *); 193 Static int zyd_al7230B_init(struct zyd_rf *); 194 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 195 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 196 Static int zyd_al2210_init(struct zyd_rf *); 197 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 198 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 199 Static int zyd_gct_init(struct zyd_rf *); 200 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 201 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 202 Static int zyd_maxim_init(struct zyd_rf *); 203 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 204 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 205 Static int zyd_maxim2_init(struct zyd_rf *); 206 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 207 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 208 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 209 Static const char *zyd_rf_name(uint8_t); 210 Static int zyd_hw_init(struct zyd_softc *); 211 Static int zyd_read_eeprom(struct zyd_softc *); 212 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 213 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 214 Static int zyd_switch_radio(struct zyd_softc *, int); 215 Static void zyd_set_led(struct zyd_softc *, int, int); 216 Static int zyd_set_rxfilter(struct zyd_softc *); 217 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 218 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 219 Static uint8_t zyd_plcp_signal(int); 220 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status); 221 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 222 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status); 223 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status); 224 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 225 struct ieee80211_node *); 226 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 227 struct ieee80211_node *); 228 Static void zyd_start(struct ifnet *); 229 Static void zyd_watchdog(struct ifnet *); 230 Static int zyd_ioctl(struct ifnet *, u_long, void *); 231 Static int zyd_init(struct ifnet *); 232 Static void zyd_stop(struct ifnet *, int); 233 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 234 Static void zyd_iter_func(void *, struct ieee80211_node *); 235 Static void zyd_amrr_timeout(void *); 236 Static void zyd_newassoc(struct ieee80211_node *, int); 237 238 static const struct ieee80211_rateset zyd_rateset_11b = 239 { 4, { 2, 4, 11, 22 } }; 240 241 static const struct ieee80211_rateset zyd_rateset_11g = 242 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 243 244 int 245 zyd_match(device_t parent, cfdata_t match, void *aux) 246 { 247 struct usb_attach_arg *uaa = aux; 248 249 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 250 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 251 } 252 253 Static void 254 zyd_attachhook(device_t self) 255 { 256 struct zyd_softc *sc = device_private(self); 257 firmware_handle_t fwh; 258 const char *fwname; 259 u_char *fw; 260 size_t size; 261 int error; 262 263 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 264 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 265 aprint_error_dev(sc->sc_dev, 266 "failed to open firmware %s (error=%d)\n", fwname, error); 267 return; 268 } 269 size = firmware_get_size(fwh); 270 fw = firmware_malloc(size); 271 if (fw == NULL) { 272 aprint_error_dev(sc->sc_dev, 273 "failed to allocate firmware memory\n"); 274 firmware_close(fwh); 275 return; 276 } 277 error = firmware_read(fwh, 0, fw, size); 278 firmware_close(fwh); 279 if (error != 0) { 280 aprint_error_dev(sc->sc_dev, 281 "failed to read firmware (error %d)\n", error); 282 firmware_free(fw, size); 283 return; 284 } 285 286 error = zyd_loadfirmware(sc, fw, size); 287 if (error != 0) { 288 aprint_error_dev(sc->sc_dev, 289 "could not load firmware (error=%d)\n", error); 290 firmware_free(fw, size); 291 return; 292 } 293 294 firmware_free(fw, size); 295 sc->sc_flags |= ZD1211_FWLOADED; 296 297 /* complete the attach process */ 298 if ((error = zyd_complete_attach(sc)) == 0) 299 sc->attached = 1; 300 return; 301 } 302 303 void 304 zyd_attach(device_t parent, device_t self, void *aux) 305 { 306 struct zyd_softc *sc = device_private(self); 307 struct usb_attach_arg *uaa = aux; 308 char *devinfop; 309 usb_device_descriptor_t* ddesc; 310 struct ifnet *ifp = &sc->sc_if; 311 312 sc->sc_dev = self; 313 sc->sc_udev = uaa->uaa_device; 314 sc->sc_flags = 0; 315 316 aprint_naive("\n"); 317 aprint_normal("\n"); 318 319 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0); 320 aprint_normal_dev(self, "%s\n", devinfop); 321 usbd_devinfo_free(devinfop); 322 323 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev; 324 325 ddesc = usbd_get_device_descriptor(sc->sc_udev); 326 if (UGETW(ddesc->bcdDevice) < 0x4330) { 327 aprint_error_dev(self, "device version mismatch: 0x%x " 328 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 329 return; 330 } 331 332 ifp->if_softc = sc; 333 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 334 ifp->if_init = zyd_init; 335 ifp->if_ioctl = zyd_ioctl; 336 ifp->if_start = zyd_start; 337 ifp->if_watchdog = zyd_watchdog; 338 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 339 IFQ_SET_READY(&ifp->if_snd); 340 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 341 342 SIMPLEQ_INIT(&sc->sc_rqh); 343 344 /* defer configrations after file system is ready to load firmware */ 345 config_mountroot(self, zyd_attachhook); 346 } 347 348 Static int 349 zyd_complete_attach(struct zyd_softc *sc) 350 { 351 struct ieee80211com *ic = &sc->sc_ic; 352 struct ifnet *ifp = &sc->sc_if; 353 usbd_status error; 354 int i; 355 356 usb_init_task(&sc->sc_task, zyd_task, sc, 0); 357 callout_init(&(sc->sc_scan_ch), 0); 358 359 sc->amrr.amrr_min_success_threshold = 1; 360 sc->amrr.amrr_max_success_threshold = 10; 361 callout_init(&sc->sc_amrr_ch, 0); 362 363 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 364 if (error != 0) { 365 aprint_error_dev(sc->sc_dev, "failed to set configuration" 366 ", err=%s\n", usbd_errstr(error)); 367 goto fail; 368 } 369 370 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 371 &sc->sc_iface); 372 if (error != 0) { 373 aprint_error_dev(sc->sc_dev, 374 "getting interface handle failed\n"); 375 goto fail; 376 } 377 378 if ((error = zyd_open_pipes(sc)) != 0) { 379 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 380 goto fail; 381 } 382 383 if ((error = zyd_read_eeprom(sc)) != 0) { 384 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 385 goto fail; 386 } 387 388 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 389 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 390 goto fail; 391 } 392 393 if ((error = zyd_hw_init(sc)) != 0) { 394 aprint_error_dev(sc->sc_dev, 395 "hardware initialization failed\n"); 396 goto fail; 397 } 398 399 aprint_normal_dev(sc->sc_dev, 400 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 401 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 402 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 403 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 404 405 ic->ic_ifp = ifp; 406 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 407 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 408 ic->ic_state = IEEE80211_S_INIT; 409 410 /* set device capabilities */ 411 ic->ic_caps = 412 IEEE80211_C_MONITOR | /* monitor mode supported */ 413 IEEE80211_C_TXPMGT | /* tx power management */ 414 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 415 IEEE80211_C_WEP; /* s/w WEP */ 416 417 /* set supported .11b and .11g rates */ 418 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 419 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 420 421 /* set supported .11b and .11g channels (1 through 14) */ 422 for (i = 1; i <= 14; i++) { 423 ic->ic_channels[i].ic_freq = 424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 425 ic->ic_channels[i].ic_flags = 426 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 427 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 428 } 429 430 if_attach(ifp); 431 ieee80211_ifattach(ic); 432 ic->ic_node_alloc = zyd_node_alloc; 433 ic->ic_newassoc = zyd_newassoc; 434 435 /* override state transition machine */ 436 sc->sc_newstate = ic->ic_newstate; 437 ic->ic_newstate = zyd_newstate; 438 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 439 440 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 441 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 442 &sc->sc_drvbpf); 443 444 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 445 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 446 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 447 448 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 449 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 450 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 451 452 ieee80211_announce(ic); 453 454 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 455 456 fail: return error; 457 } 458 459 int 460 zyd_detach(device_t self, int flags) 461 { 462 struct zyd_softc *sc = device_private(self); 463 struct ieee80211com *ic = &sc->sc_ic; 464 struct ifnet *ifp = &sc->sc_if; 465 int s; 466 467 if (!sc->attached) 468 return 0; 469 470 s = splusb(); 471 472 zyd_stop(ifp, 1); 473 usb_rem_task(sc->sc_udev, &sc->sc_task); 474 callout_stop(&sc->sc_scan_ch); 475 callout_stop(&sc->sc_amrr_ch); 476 477 /* Abort, etc. done by zyd_stop */ 478 zyd_close_pipes(sc); 479 480 sc->attached = 0; 481 482 bpf_detach(ifp); 483 ieee80211_ifdetach(ic); 484 if_detach(ifp); 485 486 splx(s); 487 488 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 489 sc->sc_dev); 490 491 return 0; 492 } 493 494 Static int 495 zyd_open_pipes(struct zyd_softc *sc) 496 { 497 usb_endpoint_descriptor_t *edesc; 498 usbd_status error; 499 500 /* interrupt in */ 501 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 502 if (edesc == NULL) 503 return EINVAL; 504 505 sc->ibuf_size = UGETW(edesc->wMaxPacketSize); 506 if (sc->ibuf_size == 0) /* should not happen */ 507 return EINVAL; 508 509 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP); 510 if (sc->ibuf == NULL) 511 return ENOMEM; 512 513 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 514 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr, 515 USBD_DEFAULT_INTERVAL); 516 if (error != 0) { 517 printf("%s: open rx intr pipe failed: %s\n", 518 device_xname(sc->sc_dev), usbd_errstr(error)); 519 goto fail; 520 } 521 522 /* interrupt out (not necessarily an interrupt pipe) */ 523 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 524 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 525 if (error != 0) { 526 printf("%s: open tx intr pipe failed: %s\n", 527 device_xname(sc->sc_dev), usbd_errstr(error)); 528 goto fail; 529 } 530 531 /* bulk in */ 532 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 533 &sc->zyd_ep[ZYD_ENDPT_BIN]); 534 if (error != 0) { 535 printf("%s: open rx pipe failed: %s\n", 536 device_xname(sc->sc_dev), usbd_errstr(error)); 537 goto fail; 538 } 539 540 /* bulk out */ 541 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 542 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 543 if (error != 0) { 544 printf("%s: open tx pipe failed: %s\n", 545 device_xname(sc->sc_dev), usbd_errstr(error)); 546 goto fail; 547 } 548 549 return 0; 550 551 fail: zyd_close_pipes(sc); 552 return error; 553 } 554 555 Static void 556 zyd_close_pipes(struct zyd_softc *sc) 557 { 558 int i; 559 560 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 561 if (sc->zyd_ep[i] != NULL) { 562 usbd_close_pipe(sc->zyd_ep[i]); 563 sc->zyd_ep[i] = NULL; 564 } 565 } 566 if (sc->ibuf != NULL) { 567 kmem_free(sc->ibuf, sc->ibuf_size); 568 sc->ibuf = NULL; 569 } 570 } 571 572 Static int 573 zyd_alloc_tx_list(struct zyd_softc *sc) 574 { 575 int i, error; 576 577 sc->tx_queued = 0; 578 579 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 580 struct zyd_tx_data *data = &sc->tx_data[i]; 581 582 data->sc = sc; /* backpointer for callbacks */ 583 584 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT], 585 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer); 586 if (error) { 587 printf("%s: could not allocate tx xfer\n", 588 device_xname(sc->sc_dev)); 589 goto fail; 590 } 591 data->buf = usbd_get_buffer(data->xfer); 592 593 /* clear Tx descriptor */ 594 memset(data->buf, 0, sizeof(struct zyd_tx_desc)); 595 } 596 return 0; 597 598 fail: zyd_free_tx_list(sc); 599 return error; 600 } 601 602 Static void 603 zyd_free_tx_list(struct zyd_softc *sc) 604 { 605 int i; 606 607 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 608 struct zyd_tx_data *data = &sc->tx_data[i]; 609 610 if (data->xfer != NULL) { 611 usbd_destroy_xfer(data->xfer); 612 data->xfer = NULL; 613 } 614 if (data->ni != NULL) { 615 ieee80211_free_node(data->ni); 616 data->ni = NULL; 617 } 618 } 619 } 620 621 Static int 622 zyd_alloc_rx_list(struct zyd_softc *sc) 623 { 624 int i, error; 625 626 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 627 struct zyd_rx_data *data = &sc->rx_data[i]; 628 629 data->sc = sc; /* backpointer for callbacks */ 630 631 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN], 632 ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer); 633 if (error) { 634 printf("%s: could not allocate rx xfer\n", 635 device_xname(sc->sc_dev)); 636 goto fail; 637 } 638 data->buf = usbd_get_buffer(data->xfer); 639 } 640 return 0; 641 642 fail: zyd_free_rx_list(sc); 643 return error; 644 } 645 646 Static void 647 zyd_free_rx_list(struct zyd_softc *sc) 648 { 649 int i; 650 651 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 652 struct zyd_rx_data *data = &sc->rx_data[i]; 653 654 if (data->xfer != NULL) { 655 usbd_destroy_xfer(data->xfer); 656 data->xfer = NULL; 657 } 658 } 659 } 660 661 /* ARGUSED */ 662 Static struct ieee80211_node * 663 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 664 { 665 struct zyd_node *zn; 666 667 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 668 669 return &zn->ni; 670 } 671 672 Static int 673 zyd_media_change(struct ifnet *ifp) 674 { 675 int error; 676 677 error = ieee80211_media_change(ifp); 678 if (error != ENETRESET) 679 return error; 680 681 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 682 zyd_init(ifp); 683 684 return 0; 685 } 686 687 /* 688 * This function is called periodically (every 200ms) during scanning to 689 * switch from one channel to another. 690 */ 691 Static void 692 zyd_next_scan(void *arg) 693 { 694 struct zyd_softc *sc = arg; 695 struct ieee80211com *ic = &sc->sc_ic; 696 697 if (ic->ic_state == IEEE80211_S_SCAN) 698 ieee80211_next_scan(ic); 699 } 700 701 Static void 702 zyd_task(void *arg) 703 { 704 struct zyd_softc *sc = arg; 705 struct ieee80211com *ic = &sc->sc_ic; 706 enum ieee80211_state ostate; 707 708 ostate = ic->ic_state; 709 710 switch (sc->sc_state) { 711 case IEEE80211_S_INIT: 712 if (ostate == IEEE80211_S_RUN) { 713 /* turn link LED off */ 714 zyd_set_led(sc, ZYD_LED1, 0); 715 716 /* stop data LED from blinking */ 717 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 718 } 719 break; 720 721 case IEEE80211_S_SCAN: 722 zyd_set_chan(sc, ic->ic_curchan); 723 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 724 break; 725 726 case IEEE80211_S_AUTH: 727 case IEEE80211_S_ASSOC: 728 zyd_set_chan(sc, ic->ic_curchan); 729 break; 730 731 case IEEE80211_S_RUN: 732 { 733 struct ieee80211_node *ni = ic->ic_bss; 734 735 zyd_set_chan(sc, ic->ic_curchan); 736 737 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 738 /* turn link LED on */ 739 zyd_set_led(sc, ZYD_LED1, 1); 740 741 /* make data LED blink upon Tx */ 742 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 743 744 zyd_set_bssid(sc, ni->ni_bssid); 745 } 746 747 if (ic->ic_opmode == IEEE80211_M_STA) { 748 /* fake a join to init the tx rate */ 749 zyd_newassoc(ni, 1); 750 } 751 752 /* start automatic rate control timer */ 753 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 754 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 755 756 break; 757 } 758 } 759 760 sc->sc_newstate(ic, sc->sc_state, -1); 761 } 762 763 Static int 764 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 765 { 766 struct zyd_softc *sc = ic->ic_ifp->if_softc; 767 768 if (!sc->attached) 769 return ENXIO; 770 771 usb_rem_task(sc->sc_udev, &sc->sc_task); 772 callout_stop(&sc->sc_scan_ch); 773 callout_stop(&sc->sc_amrr_ch); 774 775 /* do it in a process context */ 776 sc->sc_state = nstate; 777 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 778 779 return 0; 780 } 781 782 Static int 783 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 784 void *odata, int olen, u_int flags) 785 { 786 struct usbd_xfer *xfer; 787 struct zyd_cmd cmd; 788 struct rq rq; 789 uint16_t xferflags; 790 int error; 791 usbd_status uerror; 792 int s = 0; 793 794 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT], 795 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer); 796 if (error) 797 return error; 798 799 cmd.code = htole16(code); 800 memcpy(cmd.data, idata, ilen); 801 802 xferflags = USBD_FORCE_SHORT_XFER; 803 if (!(flags & ZYD_CMD_FLAG_READ)) 804 xferflags |= USBD_SYNCHRONOUS; 805 else { 806 s = splusb(); 807 rq.idata = idata; 808 rq.odata = odata; 809 rq.len = olen / sizeof(struct zyd_pair); 810 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 811 } 812 813 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags, 814 ZYD_INTR_TIMEOUT, NULL); 815 uerror = usbd_transfer(xfer); 816 if (uerror != USBD_IN_PROGRESS && uerror != 0) { 817 if (flags & ZYD_CMD_FLAG_READ) 818 splx(s); 819 printf("%s: could not send command (error=%s)\n", 820 device_xname(sc->sc_dev), usbd_errstr(uerror)); 821 (void)usbd_destroy_xfer(xfer); 822 return EIO; 823 } 824 if (!(flags & ZYD_CMD_FLAG_READ)) { 825 (void)usbd_destroy_xfer(xfer); 826 return 0; /* write: don't wait for reply */ 827 } 828 /* wait at most one second for command reply */ 829 error = tsleep(odata, PCATCH, "zydcmd", hz); 830 if (error == EWOULDBLOCK) 831 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 832 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 833 splx(s); 834 835 (void)usbd_destroy_xfer(xfer); 836 return error; 837 } 838 839 Static int 840 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 841 { 842 struct zyd_pair tmp; 843 int error; 844 845 reg = htole16(reg); 846 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 847 ZYD_CMD_FLAG_READ); 848 if (error == 0) 849 *val = le16toh(tmp.val); 850 else 851 *val = 0; 852 return error; 853 } 854 855 Static int 856 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 857 { 858 struct zyd_pair tmp[2]; 859 uint16_t regs[2]; 860 int error; 861 862 regs[0] = htole16(ZYD_REG32_HI(reg)); 863 regs[1] = htole16(ZYD_REG32_LO(reg)); 864 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 865 ZYD_CMD_FLAG_READ); 866 if (error == 0) 867 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 868 else 869 *val = 0; 870 return error; 871 } 872 873 Static int 874 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 875 { 876 struct zyd_pair pair; 877 878 pair.reg = htole16(reg); 879 pair.val = htole16(val); 880 881 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 882 } 883 884 Static int 885 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 886 { 887 struct zyd_pair pair[2]; 888 889 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 890 pair[0].val = htole16(val >> 16); 891 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 892 pair[1].val = htole16(val & 0xffff); 893 894 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 895 } 896 897 Static int 898 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 899 { 900 struct zyd_rf *rf = &sc->sc_rf; 901 struct zyd_rfwrite req; 902 uint16_t cr203; 903 int i; 904 905 (void)zyd_read16(sc, ZYD_CR203, &cr203); 906 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 907 908 req.code = htole16(2); 909 req.width = htole16(rf->width); 910 for (i = 0; i < rf->width; i++) { 911 req.bit[i] = htole16(cr203); 912 if (val & (1 << (rf->width - 1 - i))) 913 req.bit[i] |= htole16(ZYD_RF_DATA); 914 } 915 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 916 } 917 918 Static void 919 zyd_lock_phy(struct zyd_softc *sc) 920 { 921 uint32_t tmp; 922 923 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 924 tmp &= ~ZYD_UNLOCK_PHY_REGS; 925 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 926 } 927 928 Static void 929 zyd_unlock_phy(struct zyd_softc *sc) 930 { 931 uint32_t tmp; 932 933 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 934 tmp |= ZYD_UNLOCK_PHY_REGS; 935 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 936 } 937 938 /* 939 * RFMD RF methods. 940 */ 941 Static int 942 zyd_rfmd_init(struct zyd_rf *rf) 943 { 944 struct zyd_softc *sc = rf->rf_sc; 945 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 946 static const uint32_t rfini[] = ZYD_RFMD_RF; 947 int error; 948 size_t i; 949 950 /* init RF-dependent PHY registers */ 951 for (i = 0; i < __arraycount(phyini); i++) { 952 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 953 if (error != 0) 954 return error; 955 } 956 957 /* init RFMD radio */ 958 for (i = 0; i < __arraycount(rfini); i++) { 959 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 960 return error; 961 } 962 return 0; 963 } 964 965 Static int 966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 967 { 968 struct zyd_softc *sc = rf->rf_sc; 969 970 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 971 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 972 973 return 0; 974 } 975 976 Static int 977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 978 { 979 struct zyd_softc *sc = rf->rf_sc; 980 static const struct { 981 uint32_t r1, r2; 982 } rfprog[] = ZYD_RFMD_CHANTABLE; 983 984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 986 987 return 0; 988 } 989 990 /* 991 * AL2230 RF methods. 992 */ 993 Static int 994 zyd_al2230_init(struct zyd_rf *rf) 995 { 996 struct zyd_softc *sc = rf->rf_sc; 997 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 998 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 999 static const uint32_t rfini[] = ZYD_AL2230_RF; 1000 int error; 1001 size_t i; 1002 1003 /* init RF-dependent PHY registers */ 1004 for (i = 0; i < __arraycount(phyini); i++) { 1005 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1006 if (error != 0) 1007 return error; 1008 } 1009 1010 if (sc->rf_rev == ZYD_RF_AL2230S) { 1011 for (i = 0; i < __arraycount(phy2230s); i++) { 1012 error = zyd_write16(sc, phy2230s[i].reg, 1013 phy2230s[i].val); 1014 if (error != 0) 1015 return error; 1016 } 1017 } 1018 1019 /* init AL2230 radio */ 1020 for (i = 0; i < __arraycount(rfini); i++) { 1021 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1022 return error; 1023 } 1024 return 0; 1025 } 1026 1027 Static int 1028 zyd_al2230_init_b(struct zyd_rf *rf) 1029 { 1030 struct zyd_softc *sc = rf->rf_sc; 1031 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1032 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1033 int error; 1034 size_t i; 1035 1036 /* init RF-dependent PHY registers */ 1037 for (i = 0; i < __arraycount(phyini); i++) { 1038 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1039 if (error != 0) 1040 return error; 1041 } 1042 1043 /* init AL2230 radio */ 1044 for (i = 0; i < __arraycount(rfini); i++) { 1045 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1046 return error; 1047 } 1048 return 0; 1049 } 1050 1051 Static int 1052 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1053 { 1054 struct zyd_softc *sc = rf->rf_sc; 1055 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1056 1057 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1058 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1059 1060 return 0; 1061 } 1062 1063 Static int 1064 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1065 { 1066 struct zyd_softc *sc = rf->rf_sc; 1067 static const struct { 1068 uint32_t r1, r2, r3; 1069 } rfprog[] = ZYD_AL2230_CHANTABLE; 1070 1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1073 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1074 1075 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1076 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1077 1078 return 0; 1079 } 1080 1081 /* 1082 * AL7230B RF methods. 1083 */ 1084 Static int 1085 zyd_al7230B_init(struct zyd_rf *rf) 1086 { 1087 struct zyd_softc *sc = rf->rf_sc; 1088 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1089 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1090 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1091 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1092 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1093 int error; 1094 size_t i; 1095 1096 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1097 1098 /* init RF-dependent PHY registers, part one */ 1099 for (i = 0; i < __arraycount(phyini_1); i++) { 1100 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1101 if (error != 0) 1102 return error; 1103 } 1104 /* init AL7230B radio, part one */ 1105 for (i = 0; i < __arraycount(rfini_1); i++) { 1106 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1107 return error; 1108 } 1109 /* init RF-dependent PHY registers, part two */ 1110 for (i = 0; i < __arraycount(phyini_2); i++) { 1111 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1112 if (error != 0) 1113 return error; 1114 } 1115 /* init AL7230B radio, part two */ 1116 for (i = 0; i < __arraycount(rfini_2); i++) { 1117 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1118 return error; 1119 } 1120 /* init RF-dependent PHY registers, part three */ 1121 for (i = 0; i < __arraycount(phyini_3); i++) { 1122 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1123 if (error != 0) 1124 return error; 1125 } 1126 1127 return 0; 1128 } 1129 1130 Static int 1131 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1132 { 1133 struct zyd_softc *sc = rf->rf_sc; 1134 1135 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1136 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1137 1138 return 0; 1139 } 1140 1141 Static int 1142 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1143 { 1144 struct zyd_softc *sc = rf->rf_sc; 1145 static const struct { 1146 uint32_t r1, r2; 1147 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1148 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1149 int error; 1150 size_t i; 1151 1152 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1153 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1154 1155 for (i = 0; i < __arraycount(rfsc); i++) { 1156 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1157 return error; 1158 } 1159 1160 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1161 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1162 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1163 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1164 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1165 1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1168 (void)zyd_rfwrite(sc, 0x3c9000); 1169 1170 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1171 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1172 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1173 1174 return 0; 1175 } 1176 1177 /* 1178 * AL2210 RF methods. 1179 */ 1180 Static int 1181 zyd_al2210_init(struct zyd_rf *rf) 1182 { 1183 struct zyd_softc *sc = rf->rf_sc; 1184 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1185 static const uint32_t rfini[] = ZYD_AL2210_RF; 1186 uint32_t tmp; 1187 int error; 1188 size_t i; 1189 1190 (void)zyd_write32(sc, ZYD_CR18, 2); 1191 1192 /* init RF-dependent PHY registers */ 1193 for (i = 0; i < __arraycount(phyini); i++) { 1194 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1195 if (error != 0) 1196 return error; 1197 } 1198 /* init AL2210 radio */ 1199 for (i = 0; i < __arraycount(rfini); i++) { 1200 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1201 return error; 1202 } 1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1204 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1205 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1207 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1209 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1210 (void)zyd_write32(sc, ZYD_CR18, 3); 1211 1212 return 0; 1213 } 1214 1215 Static int 1216 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1217 { 1218 /* vendor driver does nothing for this RF chip */ 1219 1220 return 0; 1221 } 1222 1223 Static int 1224 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1225 { 1226 struct zyd_softc *sc = rf->rf_sc; 1227 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1228 uint32_t tmp; 1229 1230 (void)zyd_write32(sc, ZYD_CR18, 2); 1231 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1232 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1233 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1234 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1235 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1236 1237 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1238 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1239 1240 /* actually set the channel */ 1241 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1242 1243 (void)zyd_write32(sc, ZYD_CR18, 3); 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * GCT RF methods. 1250 */ 1251 Static int 1252 zyd_gct_init(struct zyd_rf *rf) 1253 { 1254 struct zyd_softc *sc = rf->rf_sc; 1255 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1256 static const uint32_t rfini[] = ZYD_GCT_RF; 1257 int error; 1258 size_t i; 1259 1260 /* init RF-dependent PHY registers */ 1261 for (i = 0; i < __arraycount(phyini); i++) { 1262 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1263 if (error != 0) 1264 return error; 1265 } 1266 /* init cgt radio */ 1267 for (i = 0; i < __arraycount(rfini); i++) { 1268 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1269 return error; 1270 } 1271 return 0; 1272 } 1273 1274 Static int 1275 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1276 { 1277 /* vendor driver does nothing for this RF chip */ 1278 1279 return 0; 1280 } 1281 1282 Static int 1283 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1284 { 1285 struct zyd_softc *sc = rf->rf_sc; 1286 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1287 1288 (void)zyd_rfwrite(sc, 0x1c0000); 1289 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1290 (void)zyd_rfwrite(sc, 0x1c0008); 1291 1292 return 0; 1293 } 1294 1295 /* 1296 * Maxim RF methods. 1297 */ 1298 Static int 1299 zyd_maxim_init(struct zyd_rf *rf) 1300 { 1301 struct zyd_softc *sc = rf->rf_sc; 1302 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1303 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1304 uint16_t tmp; 1305 int error; 1306 size_t i; 1307 1308 /* init RF-dependent PHY registers */ 1309 for (i = 0; i < __arraycount(phyini); i++) { 1310 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1311 if (error != 0) 1312 return error; 1313 } 1314 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1315 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1316 1317 /* init maxim radio */ 1318 for (i = 0; i < __arraycount(rfini); i++) { 1319 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1320 return error; 1321 } 1322 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1323 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1324 1325 return 0; 1326 } 1327 1328 Static int 1329 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1330 { 1331 /* vendor driver does nothing for this RF chip */ 1332 1333 return 0; 1334 } 1335 1336 Static int 1337 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1338 { 1339 struct zyd_softc *sc = rf->rf_sc; 1340 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1341 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1342 static const struct { 1343 uint32_t r1, r2; 1344 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1345 uint16_t tmp; 1346 int error; 1347 size_t i; 1348 1349 /* 1350 * Do the same as we do when initializing it, except for the channel 1351 * values coming from the two channel tables. 1352 */ 1353 1354 /* init RF-dependent PHY registers */ 1355 for (i = 0; i < __arraycount(phyini); i++) { 1356 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1357 if (error != 0) 1358 return error; 1359 } 1360 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1361 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1362 1363 /* first two values taken from the chantables */ 1364 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1365 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1366 1367 /* init maxim radio - skipping the two first values */ 1368 for (i = 2; i < __arraycount(rfini); i++) { 1369 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1370 return error; 1371 } 1372 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1373 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1374 1375 return 0; 1376 } 1377 1378 /* 1379 * Maxim2 RF methods. 1380 */ 1381 Static int 1382 zyd_maxim2_init(struct zyd_rf *rf) 1383 { 1384 struct zyd_softc *sc = rf->rf_sc; 1385 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1386 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1387 uint16_t tmp; 1388 int error; 1389 size_t i; 1390 1391 /* init RF-dependent PHY registers */ 1392 for (i = 0; i < __arraycount(phyini); i++) { 1393 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1394 if (error != 0) 1395 return error; 1396 } 1397 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1398 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1399 1400 /* init maxim2 radio */ 1401 for (i = 0; i < __arraycount(rfini); i++) { 1402 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1403 return error; 1404 } 1405 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1406 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1407 1408 return 0; 1409 } 1410 1411 Static int 1412 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1413 { 1414 /* vendor driver does nothing for this RF chip */ 1415 1416 return 0; 1417 } 1418 1419 Static int 1420 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1421 { 1422 struct zyd_softc *sc = rf->rf_sc; 1423 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1424 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1425 static const struct { 1426 uint32_t r1, r2; 1427 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1428 uint16_t tmp; 1429 int error; 1430 size_t i; 1431 1432 /* 1433 * Do the same as we do when initializing it, except for the channel 1434 * values coming from the two channel tables. 1435 */ 1436 1437 /* init RF-dependent PHY registers */ 1438 for (i = 0; i < __arraycount(phyini); i++) { 1439 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1440 if (error != 0) 1441 return error; 1442 } 1443 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1444 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1445 1446 /* first two values taken from the chantables */ 1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1448 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1449 1450 /* init maxim2 radio - skipping the two first values */ 1451 for (i = 2; i < __arraycount(rfini); i++) { 1452 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1453 return error; 1454 } 1455 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1456 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1457 1458 return 0; 1459 } 1460 1461 Static int 1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1463 { 1464 struct zyd_rf *rf = &sc->sc_rf; 1465 1466 rf->rf_sc = sc; 1467 1468 switch (type) { 1469 case ZYD_RF_RFMD: 1470 rf->init = zyd_rfmd_init; 1471 rf->switch_radio = zyd_rfmd_switch_radio; 1472 rf->set_channel = zyd_rfmd_set_channel; 1473 rf->width = 24; /* 24-bit RF values */ 1474 break; 1475 case ZYD_RF_AL2230: 1476 case ZYD_RF_AL2230S: 1477 if (sc->mac_rev == ZYD_ZD1211B) 1478 rf->init = zyd_al2230_init_b; 1479 else 1480 rf->init = zyd_al2230_init; 1481 rf->switch_radio = zyd_al2230_switch_radio; 1482 rf->set_channel = zyd_al2230_set_channel; 1483 rf->width = 24; /* 24-bit RF values */ 1484 break; 1485 case ZYD_RF_AL7230B: 1486 rf->init = zyd_al7230B_init; 1487 rf->switch_radio = zyd_al7230B_switch_radio; 1488 rf->set_channel = zyd_al7230B_set_channel; 1489 rf->width = 24; /* 24-bit RF values */ 1490 break; 1491 case ZYD_RF_AL2210: 1492 rf->init = zyd_al2210_init; 1493 rf->switch_radio = zyd_al2210_switch_radio; 1494 rf->set_channel = zyd_al2210_set_channel; 1495 rf->width = 24; /* 24-bit RF values */ 1496 break; 1497 case ZYD_RF_GCT: 1498 rf->init = zyd_gct_init; 1499 rf->switch_radio = zyd_gct_switch_radio; 1500 rf->set_channel = zyd_gct_set_channel; 1501 rf->width = 21; /* 21-bit RF values */ 1502 break; 1503 case ZYD_RF_MAXIM_NEW: 1504 rf->init = zyd_maxim_init; 1505 rf->switch_radio = zyd_maxim_switch_radio; 1506 rf->set_channel = zyd_maxim_set_channel; 1507 rf->width = 18; /* 18-bit RF values */ 1508 break; 1509 case ZYD_RF_MAXIM_NEW2: 1510 rf->init = zyd_maxim2_init; 1511 rf->switch_radio = zyd_maxim2_switch_radio; 1512 rf->set_channel = zyd_maxim2_set_channel; 1513 rf->width = 18; /* 18-bit RF values */ 1514 break; 1515 default: 1516 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1517 device_xname(sc->sc_dev), zyd_rf_name(type)); 1518 return EINVAL; 1519 } 1520 return 0; 1521 } 1522 1523 Static const char * 1524 zyd_rf_name(uint8_t type) 1525 { 1526 static const char * const zyd_rfs[] = { 1527 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1528 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1529 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1530 "PHILIPS" 1531 }; 1532 1533 return zyd_rfs[(type > 15) ? 0 : type]; 1534 } 1535 1536 Static int 1537 zyd_hw_init(struct zyd_softc *sc) 1538 { 1539 struct zyd_rf *rf = &sc->sc_rf; 1540 const struct zyd_phy_pair *phyp; 1541 int error; 1542 1543 /* specify that the plug and play is finished */ 1544 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1545 1546 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1547 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1548 1549 /* retrieve firmware revision number */ 1550 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1551 1552 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1553 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1554 1555 /* disable interrupts */ 1556 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1557 1558 /* PHY init */ 1559 zyd_lock_phy(sc); 1560 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1561 for (; phyp->reg != 0; phyp++) { 1562 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1563 goto fail; 1564 } 1565 zyd_unlock_phy(sc); 1566 1567 /* HMAC init */ 1568 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1569 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1570 1571 if (sc->mac_rev == ZYD_ZD1211) { 1572 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1573 } else { 1574 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1580 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1581 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1582 } 1583 1584 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1585 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1586 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1587 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1588 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1589 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1590 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1591 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1592 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1593 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1594 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1595 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1596 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1597 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1598 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1599 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1600 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1601 1602 /* RF chip init */ 1603 zyd_lock_phy(sc); 1604 error = (*rf->init)(rf); 1605 zyd_unlock_phy(sc); 1606 if (error != 0) { 1607 printf("%s: radio initialization failed\n", 1608 device_xname(sc->sc_dev)); 1609 goto fail; 1610 } 1611 1612 /* init beacon interval to 100ms */ 1613 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1614 goto fail; 1615 1616 fail: return error; 1617 } 1618 1619 Static int 1620 zyd_read_eeprom(struct zyd_softc *sc) 1621 { 1622 struct ieee80211com *ic = &sc->sc_ic; 1623 uint32_t tmp; 1624 uint16_t val; 1625 int i; 1626 1627 /* read MAC address */ 1628 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1629 ic->ic_myaddr[0] = tmp & 0xff; 1630 ic->ic_myaddr[1] = tmp >> 8; 1631 ic->ic_myaddr[2] = tmp >> 16; 1632 ic->ic_myaddr[3] = tmp >> 24; 1633 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1634 ic->ic_myaddr[4] = tmp & 0xff; 1635 ic->ic_myaddr[5] = tmp >> 8; 1636 1637 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1638 sc->rf_rev = tmp & 0x0f; 1639 sc->pa_rev = (tmp >> 16) & 0x0f; 1640 1641 /* read regulatory domain (currently unused) */ 1642 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1643 sc->regdomain = tmp >> 16; 1644 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1645 1646 /* read Tx power calibration tables */ 1647 for (i = 0; i < 7; i++) { 1648 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1649 sc->pwr_cal[i * 2] = val >> 8; 1650 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1651 1652 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1653 sc->pwr_int[i * 2] = val >> 8; 1654 sc->pwr_int[i * 2 + 1] = val & 0xff; 1655 1656 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1657 sc->ofdm36_cal[i * 2] = val >> 8; 1658 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1659 1660 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1661 sc->ofdm48_cal[i * 2] = val >> 8; 1662 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1663 1664 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1665 sc->ofdm54_cal[i * 2] = val >> 8; 1666 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1667 } 1668 return 0; 1669 } 1670 1671 Static int 1672 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1673 { 1674 uint32_t tmp; 1675 1676 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1677 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1678 1679 tmp = addr[5] << 8 | addr[4]; 1680 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1681 1682 return 0; 1683 } 1684 1685 Static int 1686 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1687 { 1688 uint32_t tmp; 1689 1690 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1691 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1692 1693 tmp = addr[5] << 8 | addr[4]; 1694 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1695 1696 return 0; 1697 } 1698 1699 Static int 1700 zyd_switch_radio(struct zyd_softc *sc, int on) 1701 { 1702 struct zyd_rf *rf = &sc->sc_rf; 1703 int error; 1704 1705 zyd_lock_phy(sc); 1706 error = (*rf->switch_radio)(rf, on); 1707 zyd_unlock_phy(sc); 1708 1709 return error; 1710 } 1711 1712 Static void 1713 zyd_set_led(struct zyd_softc *sc, int which, int on) 1714 { 1715 uint32_t tmp; 1716 1717 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1718 tmp &= ~which; 1719 if (on) 1720 tmp |= which; 1721 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1722 } 1723 1724 Static int 1725 zyd_set_rxfilter(struct zyd_softc *sc) 1726 { 1727 uint32_t rxfilter; 1728 1729 switch (sc->sc_ic.ic_opmode) { 1730 case IEEE80211_M_STA: 1731 rxfilter = ZYD_FILTER_BSS; 1732 break; 1733 case IEEE80211_M_IBSS: 1734 case IEEE80211_M_HOSTAP: 1735 rxfilter = ZYD_FILTER_HOSTAP; 1736 break; 1737 case IEEE80211_M_MONITOR: 1738 rxfilter = ZYD_FILTER_MONITOR; 1739 break; 1740 default: 1741 /* should not get there */ 1742 return EINVAL; 1743 } 1744 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1745 } 1746 1747 Static void 1748 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1749 { 1750 struct ieee80211com *ic = &sc->sc_ic; 1751 struct zyd_rf *rf = &sc->sc_rf; 1752 u_int chan; 1753 1754 chan = ieee80211_chan2ieee(ic, c); 1755 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1756 return; 1757 1758 zyd_lock_phy(sc); 1759 1760 (*rf->set_channel)(rf, chan); 1761 1762 /* update Tx power */ 1763 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1764 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1765 1766 if (sc->mac_rev == ZYD_ZD1211B) { 1767 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1768 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1769 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1770 1771 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1772 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1773 } 1774 1775 zyd_unlock_phy(sc); 1776 } 1777 1778 Static int 1779 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1780 { 1781 /* XXX this is probably broken.. */ 1782 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1783 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1784 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1785 1786 return 0; 1787 } 1788 1789 Static uint8_t 1790 zyd_plcp_signal(int rate) 1791 { 1792 switch (rate) { 1793 /* CCK rates (returned values are device-dependent) */ 1794 case 2: return 0x0; 1795 case 4: return 0x1; 1796 case 11: return 0x2; 1797 case 22: return 0x3; 1798 1799 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1800 case 12: return 0xb; 1801 case 18: return 0xf; 1802 case 24: return 0xa; 1803 case 36: return 0xe; 1804 case 48: return 0x9; 1805 case 72: return 0xd; 1806 case 96: return 0x8; 1807 case 108: return 0xc; 1808 1809 /* unsupported rates (should not get there) */ 1810 default: return 0xff; 1811 } 1812 } 1813 1814 Static void 1815 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status) 1816 { 1817 struct zyd_softc *sc = (struct zyd_softc *)priv; 1818 struct zyd_cmd *cmd; 1819 uint32_t datalen; 1820 1821 if (status != USBD_NORMAL_COMPLETION) { 1822 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1823 return; 1824 1825 if (status == USBD_STALLED) { 1826 usbd_clear_endpoint_stall_async( 1827 sc->zyd_ep[ZYD_ENDPT_IIN]); 1828 } 1829 return; 1830 } 1831 1832 cmd = (struct zyd_cmd *)sc->ibuf; 1833 1834 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1835 struct zyd_notif_retry *retry = 1836 (struct zyd_notif_retry *)cmd->data; 1837 struct ieee80211com *ic = &sc->sc_ic; 1838 struct ifnet *ifp = &sc->sc_if; 1839 struct ieee80211_node *ni; 1840 1841 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1842 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1843 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1844 1845 /* 1846 * Find the node to which the packet was sent and update its 1847 * retry statistics. In BSS mode, this node is the AP we're 1848 * associated to so no lookup is actually needed. 1849 */ 1850 if (ic->ic_opmode != IEEE80211_M_STA) { 1851 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1852 if (ni == NULL) 1853 return; /* just ignore */ 1854 } else 1855 ni = ic->ic_bss; 1856 1857 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1858 1859 if (le16toh(retry->count) & 0x100) 1860 ifp->if_oerrors++; /* too many retries */ 1861 1862 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1863 struct rq *rqp; 1864 1865 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1866 return; /* HMAC interrupt */ 1867 1868 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1869 datalen -= sizeof(cmd->code); 1870 datalen -= 2; /* XXX: padding? */ 1871 1872 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1873 int i; 1874 1875 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1876 continue; 1877 for (i = 0; i < rqp->len; i++) { 1878 if (*(((const uint16_t *)rqp->idata) + i) != 1879 (((struct zyd_pair *)cmd->data) + i)->reg) 1880 break; 1881 } 1882 if (i != rqp->len) 1883 continue; 1884 1885 /* copy answer into caller-supplied buffer */ 1886 memcpy(rqp->odata, cmd->data, 1887 sizeof(struct zyd_pair) * rqp->len); 1888 wakeup(rqp->odata); /* wakeup caller */ 1889 1890 return; 1891 } 1892 return; /* unexpected IORD notification */ 1893 } else { 1894 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1895 le16toh(cmd->code)); 1896 } 1897 } 1898 1899 Static void 1900 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1901 { 1902 struct ieee80211com *ic = &sc->sc_ic; 1903 struct ifnet *ifp = &sc->sc_if; 1904 struct ieee80211_node *ni; 1905 struct ieee80211_frame *wh; 1906 const struct zyd_plcphdr *plcp; 1907 const struct zyd_rx_stat *stat; 1908 struct mbuf *m; 1909 int rlen, s; 1910 1911 if (len < ZYD_MIN_FRAGSZ) { 1912 printf("%s: frame too short (length=%d)\n", 1913 device_xname(sc->sc_dev), len); 1914 ifp->if_ierrors++; 1915 return; 1916 } 1917 1918 plcp = (const struct zyd_plcphdr *)buf; 1919 stat = (const struct zyd_rx_stat *) 1920 (buf + len - sizeof(struct zyd_rx_stat)); 1921 1922 if (stat->flags & ZYD_RX_ERROR) { 1923 DPRINTF(("%s: RX status indicated error (%x)\n", 1924 device_xname(sc->sc_dev), stat->flags)); 1925 ifp->if_ierrors++; 1926 return; 1927 } 1928 1929 /* compute actual frame length */ 1930 rlen = len - sizeof(struct zyd_plcphdr) - 1931 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1932 1933 /* allocate a mbuf to store the frame */ 1934 MGETHDR(m, M_DONTWAIT, MT_DATA); 1935 if (m == NULL) { 1936 printf("%s: could not allocate rx mbuf\n", 1937 device_xname(sc->sc_dev)); 1938 ifp->if_ierrors++; 1939 return; 1940 } 1941 if (rlen > MHLEN) { 1942 MCLGET(m, M_DONTWAIT); 1943 if (!(m->m_flags & M_EXT)) { 1944 printf("%s: could not allocate rx mbuf cluster\n", 1945 device_xname(sc->sc_dev)); 1946 m_freem(m); 1947 ifp->if_ierrors++; 1948 return; 1949 } 1950 } 1951 m->m_pkthdr.rcvif = ifp; 1952 m->m_pkthdr.len = m->m_len = rlen; 1953 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen); 1954 1955 s = splnet(); 1956 1957 if (sc->sc_drvbpf != NULL) { 1958 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1959 static const uint8_t rates[] = { 1960 /* reverse function of zyd_plcp_signal() */ 1961 2, 4, 11, 22, 0, 0, 0, 0, 1962 96, 48, 24, 12, 108, 72, 36, 18 1963 }; 1964 1965 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1966 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1967 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1968 tap->wr_rssi = stat->rssi; 1969 tap->wr_rate = rates[plcp->signal & 0xf]; 1970 1971 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1972 } 1973 1974 wh = mtod(m, struct ieee80211_frame *); 1975 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1976 ieee80211_input(ic, m, ni, stat->rssi, 0); 1977 1978 /* node is no longer needed */ 1979 ieee80211_free_node(ni); 1980 1981 splx(s); 1982 } 1983 1984 Static void 1985 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 1986 { 1987 struct zyd_rx_data *data = priv; 1988 struct zyd_softc *sc = data->sc; 1989 struct ifnet *ifp = &sc->sc_if; 1990 const struct zyd_rx_desc *desc; 1991 int len; 1992 1993 if (status != USBD_NORMAL_COMPLETION) { 1994 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1995 return; 1996 1997 if (status == USBD_STALLED) 1998 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 1999 2000 goto skip; 2001 } 2002 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2003 2004 if (len < ZYD_MIN_RXBUFSZ) { 2005 printf("%s: xfer too short (length=%d)\n", 2006 device_xname(sc->sc_dev), len); 2007 ifp->if_ierrors++; 2008 goto skip; 2009 } 2010 2011 desc = (const struct zyd_rx_desc *) 2012 (data->buf + len - sizeof(struct zyd_rx_desc)); 2013 2014 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2015 const uint8_t *p = data->buf, *end = p + len; 2016 int i; 2017 2018 DPRINTFN(3, ("received multi-frame transfer\n")); 2019 2020 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2021 const uint16_t len16 = UGETW(desc->len[i]); 2022 2023 if (len16 == 0 || p + len16 > end) 2024 break; 2025 2026 zyd_rx_data(sc, p, len16); 2027 /* next frame is aligned on a 32-bit boundary */ 2028 p += (len16 + 3) & ~3; 2029 } 2030 } else { 2031 DPRINTFN(3, ("received single-frame transfer\n")); 2032 2033 zyd_rx_data(sc, data->buf, len); 2034 } 2035 2036 skip: /* setup a new transfer */ 2037 2038 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 2039 USBD_NO_TIMEOUT, zyd_rxeof); 2040 (void)usbd_transfer(xfer); 2041 } 2042 2043 Static int 2044 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2045 { 2046 struct ieee80211com *ic = &sc->sc_ic; 2047 struct ifnet *ifp = &sc->sc_if; 2048 struct zyd_tx_desc *desc; 2049 struct zyd_tx_data *data; 2050 struct ieee80211_frame *wh; 2051 struct ieee80211_key *k; 2052 int xferlen, totlen, rate; 2053 uint16_t pktlen; 2054 usbd_status error; 2055 2056 data = &sc->tx_data[0]; 2057 desc = (struct zyd_tx_desc *)data->buf; 2058 2059 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2060 2061 wh = mtod(m0, struct ieee80211_frame *); 2062 2063 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2064 k = ieee80211_crypto_encap(ic, ni, m0); 2065 if (k == NULL) { 2066 m_freem(m0); 2067 return ENOBUFS; 2068 } 2069 } 2070 2071 data->ni = ni; 2072 2073 wh = mtod(m0, struct ieee80211_frame *); 2074 2075 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; 2076 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2077 2078 /* fill Tx descriptor */ 2079 desc->len = htole16(totlen); 2080 2081 desc->flags = ZYD_TX_FLAG_BACKOFF; 2082 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2083 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2084 if (totlen > ic->ic_rtsthreshold) { 2085 desc->flags |= ZYD_TX_FLAG_RTS; 2086 } else if (ZYD_RATE_IS_OFDM(rate) && 2087 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2088 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2089 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2090 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2091 desc->flags |= ZYD_TX_FLAG_RTS; 2092 } 2093 } else 2094 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2095 2096 if ((wh->i_fc[0] & 2097 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2098 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2099 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2100 2101 desc->phy = zyd_plcp_signal(rate); 2102 if (ZYD_RATE_IS_OFDM(rate)) { 2103 desc->phy |= ZYD_TX_PHY_OFDM; 2104 if (ic->ic_curmode == IEEE80211_MODE_11A) 2105 desc->phy |= ZYD_TX_PHY_5GHZ; 2106 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2107 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2108 2109 /* actual transmit length (XXX why +10?) */ 2110 pktlen = sizeof(struct zyd_tx_desc) + 10; 2111 if (sc->mac_rev == ZYD_ZD1211) 2112 pktlen += totlen; 2113 desc->pktlen = htole16(pktlen); 2114 2115 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2116 desc->plcp_service = 0; 2117 if (rate == 22) { 2118 const int remainder = (16 * totlen) % 22; 2119 if (remainder != 0 && remainder < 7) 2120 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2121 } 2122 2123 if (sc->sc_drvbpf != NULL) { 2124 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2125 2126 tap->wt_flags = 0; 2127 tap->wt_rate = rate; 2128 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2129 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2130 2131 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2132 } 2133 2134 m_copydata(m0, 0, m0->m_pkthdr.len, 2135 data->buf + sizeof(struct zyd_tx_desc)); 2136 2137 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2138 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2139 2140 m_freem(m0); /* mbuf no longer needed */ 2141 2142 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 2143 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); 2144 error = usbd_transfer(data->xfer); 2145 if (error != USBD_IN_PROGRESS && error != 0) { 2146 ifp->if_oerrors++; 2147 return EIO; 2148 } 2149 sc->tx_queued++; 2150 2151 return 0; 2152 } 2153 2154 Static void 2155 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 2156 { 2157 struct zyd_tx_data *data = priv; 2158 struct zyd_softc *sc = data->sc; 2159 struct ifnet *ifp = &sc->sc_if; 2160 int s; 2161 2162 if (status != USBD_NORMAL_COMPLETION) { 2163 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2164 return; 2165 2166 printf("%s: could not transmit buffer: %s\n", 2167 device_xname(sc->sc_dev), usbd_errstr(status)); 2168 2169 if (status == USBD_STALLED) { 2170 usbd_clear_endpoint_stall_async( 2171 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2172 } 2173 ifp->if_oerrors++; 2174 return; 2175 } 2176 2177 s = splnet(); 2178 2179 /* update rate control statistics */ 2180 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2181 2182 ieee80211_free_node(data->ni); 2183 data->ni = NULL; 2184 2185 sc->tx_queued--; 2186 ifp->if_opackets++; 2187 2188 sc->tx_timer = 0; 2189 ifp->if_flags &= ~IFF_OACTIVE; 2190 zyd_start(ifp); 2191 2192 splx(s); 2193 } 2194 2195 Static int 2196 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2197 { 2198 struct ieee80211com *ic = &sc->sc_ic; 2199 struct ifnet *ifp = &sc->sc_if; 2200 struct zyd_tx_desc *desc; 2201 struct zyd_tx_data *data; 2202 struct ieee80211_frame *wh; 2203 struct ieee80211_key *k; 2204 int xferlen, totlen, rate; 2205 uint16_t pktlen; 2206 usbd_status error; 2207 2208 wh = mtod(m0, struct ieee80211_frame *); 2209 2210 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2211 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2212 else 2213 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2214 rate &= IEEE80211_RATE_VAL; 2215 2216 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2217 k = ieee80211_crypto_encap(ic, ni, m0); 2218 if (k == NULL) { 2219 m_freem(m0); 2220 return ENOBUFS; 2221 } 2222 2223 /* packet header may have moved, reset our local pointer */ 2224 wh = mtod(m0, struct ieee80211_frame *); 2225 } 2226 2227 data = &sc->tx_data[0]; 2228 desc = (struct zyd_tx_desc *)data->buf; 2229 2230 data->ni = ni; 2231 2232 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; 2233 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2234 2235 /* fill Tx descriptor */ 2236 desc->len = htole16(totlen); 2237 2238 desc->flags = ZYD_TX_FLAG_BACKOFF; 2239 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2240 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2241 if (totlen > ic->ic_rtsthreshold) { 2242 desc->flags |= ZYD_TX_FLAG_RTS; 2243 } else if (ZYD_RATE_IS_OFDM(rate) && 2244 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2245 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2246 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2247 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2248 desc->flags |= ZYD_TX_FLAG_RTS; 2249 } 2250 } else 2251 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2252 2253 if ((wh->i_fc[0] & 2254 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2255 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2256 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2257 2258 desc->phy = zyd_plcp_signal(rate); 2259 if (ZYD_RATE_IS_OFDM(rate)) { 2260 desc->phy |= ZYD_TX_PHY_OFDM; 2261 if (ic->ic_curmode == IEEE80211_MODE_11A) 2262 desc->phy |= ZYD_TX_PHY_5GHZ; 2263 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2264 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2265 2266 /* actual transmit length (XXX why +10?) */ 2267 pktlen = sizeof(struct zyd_tx_desc) + 10; 2268 if (sc->mac_rev == ZYD_ZD1211) 2269 pktlen += totlen; 2270 desc->pktlen = htole16(pktlen); 2271 2272 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2273 desc->plcp_service = 0; 2274 if (rate == 22) { 2275 const int remainder = (16 * totlen) % 22; 2276 if (remainder != 0 && remainder < 7) 2277 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2278 } 2279 2280 if (sc->sc_drvbpf != NULL) { 2281 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2282 2283 tap->wt_flags = 0; 2284 tap->wt_rate = rate; 2285 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2286 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2287 2288 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2289 } 2290 2291 m_copydata(m0, 0, m0->m_pkthdr.len, 2292 data->buf + sizeof(struct zyd_tx_desc)); 2293 2294 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2295 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2296 2297 m_freem(m0); /* mbuf no longer needed */ 2298 2299 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 2300 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); 2301 error = usbd_transfer(data->xfer); 2302 if (error != USBD_IN_PROGRESS && error != 0) { 2303 ifp->if_oerrors++; 2304 return EIO; 2305 } 2306 sc->tx_queued++; 2307 2308 return 0; 2309 } 2310 2311 Static void 2312 zyd_start(struct ifnet *ifp) 2313 { 2314 struct zyd_softc *sc = ifp->if_softc; 2315 struct ieee80211com *ic = &sc->sc_ic; 2316 struct ether_header *eh; 2317 struct ieee80211_node *ni; 2318 struct mbuf *m0; 2319 2320 for (;;) { 2321 IF_POLL(&ic->ic_mgtq, m0); 2322 if (m0 != NULL) { 2323 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2324 ifp->if_flags |= IFF_OACTIVE; 2325 break; 2326 } 2327 IF_DEQUEUE(&ic->ic_mgtq, m0); 2328 2329 ni = M_GETCTX(m0, struct ieee80211_node *); 2330 M_CLEARCTX(m0); 2331 bpf_mtap3(ic->ic_rawbpf, m0); 2332 if (zyd_tx_mgt(sc, m0, ni) != 0) 2333 break; 2334 } else { 2335 if (ic->ic_state != IEEE80211_S_RUN) 2336 break; 2337 IFQ_POLL(&ifp->if_snd, m0); 2338 if (m0 == NULL) 2339 break; 2340 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2341 ifp->if_flags |= IFF_OACTIVE; 2342 break; 2343 } 2344 IFQ_DEQUEUE(&ifp->if_snd, m0); 2345 2346 if (m0->m_len < sizeof(struct ether_header) && 2347 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2348 continue; 2349 2350 eh = mtod(m0, struct ether_header *); 2351 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2352 if (ni == NULL) { 2353 m_freem(m0); 2354 continue; 2355 } 2356 bpf_mtap(ifp, m0); 2357 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2358 ieee80211_free_node(ni); 2359 ifp->if_oerrors++; 2360 continue; 2361 } 2362 bpf_mtap3(ic->ic_rawbpf, m0); 2363 if (zyd_tx_data(sc, m0, ni) != 0) { 2364 ieee80211_free_node(ni); 2365 ifp->if_oerrors++; 2366 break; 2367 } 2368 } 2369 2370 sc->tx_timer = 5; 2371 ifp->if_timer = 1; 2372 } 2373 } 2374 2375 Static void 2376 zyd_watchdog(struct ifnet *ifp) 2377 { 2378 struct zyd_softc *sc = ifp->if_softc; 2379 struct ieee80211com *ic = &sc->sc_ic; 2380 2381 ifp->if_timer = 0; 2382 2383 if (sc->tx_timer > 0) { 2384 if (--sc->tx_timer == 0) { 2385 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2386 /* zyd_init(ifp); XXX needs a process context ? */ 2387 ifp->if_oerrors++; 2388 return; 2389 } 2390 ifp->if_timer = 1; 2391 } 2392 2393 ieee80211_watchdog(ic); 2394 } 2395 2396 Static int 2397 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2398 { 2399 struct zyd_softc *sc = ifp->if_softc; 2400 struct ieee80211com *ic = &sc->sc_ic; 2401 int s, error = 0; 2402 2403 s = splnet(); 2404 2405 switch (cmd) { 2406 case SIOCSIFFLAGS: 2407 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2408 break; 2409 /* XXX re-use ether_ioctl() */ 2410 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2411 case IFF_UP: 2412 zyd_init(ifp); 2413 break; 2414 case IFF_RUNNING: 2415 zyd_stop(ifp, 1); 2416 break; 2417 default: 2418 break; 2419 } 2420 break; 2421 2422 default: 2423 error = ieee80211_ioctl(ic, cmd, data); 2424 } 2425 2426 if (error == ENETRESET) { 2427 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2428 (IFF_RUNNING | IFF_UP)) 2429 zyd_init(ifp); 2430 error = 0; 2431 } 2432 2433 splx(s); 2434 2435 return error; 2436 } 2437 2438 Static int 2439 zyd_init(struct ifnet *ifp) 2440 { 2441 struct zyd_softc *sc = ifp->if_softc; 2442 struct ieee80211com *ic = &sc->sc_ic; 2443 int i, error; 2444 2445 zyd_stop(ifp, 0); 2446 2447 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2448 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2449 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2450 if (error != 0) 2451 return error; 2452 2453 /* we'll do software WEP decryption for now */ 2454 DPRINTF(("setting encryption type\n")); 2455 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2456 if (error != 0) 2457 return error; 2458 2459 /* promiscuous mode */ 2460 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2461 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2462 2463 (void)zyd_set_rxfilter(sc); 2464 2465 /* switch radio transmitter ON */ 2466 (void)zyd_switch_radio(sc, 1); 2467 2468 /* set basic rates */ 2469 if (ic->ic_curmode == IEEE80211_MODE_11B) 2470 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2471 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2472 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2473 else /* assumes 802.11b/g */ 2474 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2475 2476 /* set mandatory rates */ 2477 if (ic->ic_curmode == IEEE80211_MODE_11B) 2478 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2479 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2480 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2481 else /* assumes 802.11b/g */ 2482 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2483 2484 /* set default BSS channel */ 2485 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2486 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2487 2488 /* enable interrupts */ 2489 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2490 2491 /* 2492 * Allocate Tx and Rx xfer queues. 2493 */ 2494 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2495 printf("%s: could not allocate Tx list\n", 2496 device_xname(sc->sc_dev)); 2497 goto fail; 2498 } 2499 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2500 printf("%s: could not allocate Rx list\n", 2501 device_xname(sc->sc_dev)); 2502 goto fail; 2503 } 2504 2505 /* 2506 * Start up the receive pipe. 2507 */ 2508 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2509 struct zyd_rx_data *data = &sc->rx_data[i]; 2510 2511 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ, 2512 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); 2513 error = usbd_transfer(data->xfer); 2514 if (error != USBD_IN_PROGRESS && error != 0) { 2515 printf("%s: could not queue Rx transfer\n", 2516 device_xname(sc->sc_dev)); 2517 goto fail; 2518 } 2519 } 2520 2521 ifp->if_flags &= ~IFF_OACTIVE; 2522 ifp->if_flags |= IFF_RUNNING; 2523 2524 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2525 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2526 else 2527 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2528 2529 return 0; 2530 2531 fail: zyd_stop(ifp, 1); 2532 return error; 2533 } 2534 2535 Static void 2536 zyd_stop(struct ifnet *ifp, int disable) 2537 { 2538 struct zyd_softc *sc = ifp->if_softc; 2539 struct ieee80211com *ic = &sc->sc_ic; 2540 2541 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2542 2543 sc->tx_timer = 0; 2544 ifp->if_timer = 0; 2545 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2546 2547 /* switch radio transmitter OFF */ 2548 (void)zyd_switch_radio(sc, 0); 2549 2550 /* disable Rx */ 2551 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2552 2553 /* disable interrupts */ 2554 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2555 2556 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2557 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2558 2559 zyd_free_rx_list(sc); 2560 zyd_free_tx_list(sc); 2561 } 2562 2563 Static int 2564 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2565 { 2566 usb_device_request_t req; 2567 uint16_t addr; 2568 uint8_t stat; 2569 2570 DPRINTF(("firmware size=%zu\n", size)); 2571 2572 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2573 req.bRequest = ZYD_DOWNLOADREQ; 2574 USETW(req.wIndex, 0); 2575 2576 addr = ZYD_FIRMWARE_START_ADDR; 2577 while (size > 0) { 2578 #if 0 2579 const int mlen = min(size, 4096); 2580 #else 2581 /* 2582 * XXXX: When the transfer size is 4096 bytes, it is not 2583 * likely to be able to transfer it. 2584 * The cause is port or machine or chip? 2585 */ 2586 const int mlen = min(size, 64); 2587 #endif 2588 2589 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2590 addr)); 2591 2592 USETW(req.wValue, addr); 2593 USETW(req.wLength, mlen); 2594 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2595 return EIO; 2596 2597 addr += mlen / 2; 2598 fw += mlen; 2599 size -= mlen; 2600 } 2601 2602 /* check whether the upload succeeded */ 2603 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2604 req.bRequest = ZYD_DOWNLOADSTS; 2605 USETW(req.wValue, 0); 2606 USETW(req.wIndex, 0); 2607 USETW(req.wLength, sizeof(stat)); 2608 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2609 return EIO; 2610 2611 return (stat & 0x80) ? EIO : 0; 2612 } 2613 2614 Static void 2615 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2616 { 2617 struct zyd_softc *sc = arg; 2618 struct zyd_node *zn = (struct zyd_node *)ni; 2619 2620 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2621 } 2622 2623 Static void 2624 zyd_amrr_timeout(void *arg) 2625 { 2626 struct zyd_softc *sc = arg; 2627 struct ieee80211com *ic = &sc->sc_ic; 2628 int s; 2629 2630 s = splnet(); 2631 if (ic->ic_opmode == IEEE80211_M_STA) 2632 zyd_iter_func(sc, ic->ic_bss); 2633 else 2634 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2635 splx(s); 2636 2637 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2638 } 2639 2640 Static void 2641 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2642 { 2643 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2644 int i; 2645 2646 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2647 2648 /* set rate to some reasonable initial value */ 2649 for (i = ni->ni_rates.rs_nrates - 1; 2650 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2651 i--); 2652 ni->ni_txrate = i; 2653 } 2654 2655 int 2656 zyd_activate(device_t self, enum devact act) 2657 { 2658 struct zyd_softc *sc = device_private(self); 2659 2660 switch (act) { 2661 case DVACT_DEACTIVATE: 2662 if_deactivate(&sc->sc_if); 2663 return 0; 2664 default: 2665 return EOPNOTSUPP; 2666 } 2667 } 2668