xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.40 2016/05/26 05:04:46 ozaki-r Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.40 2016/05/26 05:04:46 ozaki-r Exp $");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/kmem.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/firmload.h>
62 
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67 
68 #include <dev/usb/if_zydreg.h>
69 
70 #ifdef ZYD_DEBUG
71 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
72 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
73 int zyddebug = 0;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78 
79 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
80 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
81 
82 /* various supported device vendors/products */
83 #define ZYD_ZD1211_DEV(v, p)	\
84 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
85 #define ZYD_ZD1211B_DEV(v, p)	\
86 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
87 static const struct zyd_type {
88 	struct usb_devno	dev;
89 	uint8_t			rev;
90 #define ZYD_ZD1211	0
91 #define ZYD_ZD1211B	1
92 } zyd_devs[] = {
93 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
94 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
95 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
96 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
97 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
98 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
99 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
100 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
101 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
102 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
103 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
104 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
105 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
106 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
107 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
108 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
109 	ZYD_ZD1211_DEV(TWINMOS,		G240),
110 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
111 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
112 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
113 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
114 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
115 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
116 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
117 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
118 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
119 
120 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
121 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
122 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
123 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
124 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
125 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
126 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
127 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
128 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
129 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
130 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
131 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
132 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
133 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
134 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
135 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
136 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
137 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
138 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
139 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
140 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
141 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
142 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
143 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
144 	ZYD_ZD1211B_DEV(USR,		USR5423),
145 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
146 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
147 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
148 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
149 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
150 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
151 };
152 #define zyd_lookup(v, p)	\
153 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
154 
155 int zyd_match(device_t, cfdata_t, void *);
156 void zyd_attach(device_t, device_t, void *);
157 int zyd_detach(device_t, int);
158 int zyd_activate(device_t, enum devact);
159 extern struct cfdriver zyd_cd;
160 
161 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
162     zyd_attach, zyd_detach, zyd_activate);
163 
164 Static void	zyd_attachhook(device_t);
165 Static int	zyd_complete_attach(struct zyd_softc *);
166 Static int	zyd_open_pipes(struct zyd_softc *);
167 Static void	zyd_close_pipes(struct zyd_softc *);
168 Static int	zyd_alloc_tx_list(struct zyd_softc *);
169 Static void	zyd_free_tx_list(struct zyd_softc *);
170 Static int	zyd_alloc_rx_list(struct zyd_softc *);
171 Static void	zyd_free_rx_list(struct zyd_softc *);
172 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
173 Static int	zyd_media_change(struct ifnet *);
174 Static void	zyd_next_scan(void *);
175 Static void	zyd_task(void *);
176 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
177 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
178 		    void *, int, u_int);
179 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
180 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
181 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
182 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
183 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
184 Static void	zyd_lock_phy(struct zyd_softc *);
185 Static void	zyd_unlock_phy(struct zyd_softc *);
186 Static int	zyd_rfmd_init(struct zyd_rf *);
187 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
188 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
189 Static int	zyd_al2230_init(struct zyd_rf *);
190 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
191 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
192 Static int	zyd_al2230_init_b(struct zyd_rf *);
193 Static int	zyd_al7230B_init(struct zyd_rf *);
194 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_al2210_init(struct zyd_rf *);
197 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
198 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
199 Static int	zyd_gct_init(struct zyd_rf *);
200 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
201 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
202 Static int	zyd_maxim_init(struct zyd_rf *);
203 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
204 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
205 Static int	zyd_maxim2_init(struct zyd_rf *);
206 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
207 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
208 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
209 Static const char *zyd_rf_name(uint8_t);
210 Static int	zyd_hw_init(struct zyd_softc *);
211 Static int	zyd_read_eeprom(struct zyd_softc *);
212 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
213 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
214 Static int	zyd_switch_radio(struct zyd_softc *, int);
215 Static void	zyd_set_led(struct zyd_softc *, int, int);
216 Static int	zyd_set_rxfilter(struct zyd_softc *);
217 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
218 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
219 Static uint8_t	zyd_plcp_signal(int);
220 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
221 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
222 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
223 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
224 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
225 		    struct ieee80211_node *);
226 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
227 		    struct ieee80211_node *);
228 Static void	zyd_start(struct ifnet *);
229 Static void	zyd_watchdog(struct ifnet *);
230 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
231 Static int	zyd_init(struct ifnet *);
232 Static void	zyd_stop(struct ifnet *, int);
233 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
234 Static void	zyd_iter_func(void *, struct ieee80211_node *);
235 Static void	zyd_amrr_timeout(void *);
236 Static void	zyd_newassoc(struct ieee80211_node *, int);
237 
238 static const struct ieee80211_rateset zyd_rateset_11b =
239 	{ 4, { 2, 4, 11, 22 } };
240 
241 static const struct ieee80211_rateset zyd_rateset_11g =
242 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
243 
244 int
245 zyd_match(device_t parent, cfdata_t match, void *aux)
246 {
247 	struct usb_attach_arg *uaa = aux;
248 
249 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
250 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251 }
252 
253 Static void
254 zyd_attachhook(device_t self)
255 {
256 	struct zyd_softc *sc = device_private(self);
257 	firmware_handle_t fwh;
258 	const char *fwname;
259 	u_char *fw;
260 	size_t size;
261 	int error;
262 
263 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
264 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
265 		aprint_error_dev(sc->sc_dev,
266 		    "failed to open firmware %s (error=%d)\n", fwname, error);
267 		return;
268 	}
269 	size = firmware_get_size(fwh);
270 	fw = firmware_malloc(size);
271 	if (fw == NULL) {
272 		aprint_error_dev(sc->sc_dev,
273 		    "failed to allocate firmware memory\n");
274 		firmware_close(fwh);
275 		return;
276 	}
277 	error = firmware_read(fwh, 0, fw, size);
278 	firmware_close(fwh);
279 	if (error != 0) {
280 		aprint_error_dev(sc->sc_dev,
281 		    "failed to read firmware (error %d)\n", error);
282 		firmware_free(fw, size);
283 		return;
284 	}
285 
286 	error = zyd_loadfirmware(sc, fw, size);
287 	if (error != 0) {
288 		aprint_error_dev(sc->sc_dev,
289 		    "could not load firmware (error=%d)\n", error);
290 		firmware_free(fw, size);
291 		return;
292 	}
293 
294 	firmware_free(fw, size);
295 	sc->sc_flags |= ZD1211_FWLOADED;
296 
297 	/* complete the attach process */
298 	if ((error = zyd_complete_attach(sc)) == 0)
299 		sc->attached = 1;
300 	return;
301 }
302 
303 void
304 zyd_attach(device_t parent, device_t self, void *aux)
305 {
306 	struct zyd_softc *sc = device_private(self);
307 	struct usb_attach_arg *uaa = aux;
308 	char *devinfop;
309 	usb_device_descriptor_t* ddesc;
310 	struct ifnet *ifp = &sc->sc_if;
311 
312 	sc->sc_dev = self;
313 	sc->sc_udev = uaa->uaa_device;
314 	sc->sc_flags = 0;
315 
316 	aprint_naive("\n");
317 	aprint_normal("\n");
318 
319 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
320 	aprint_normal_dev(self, "%s\n", devinfop);
321 	usbd_devinfo_free(devinfop);
322 
323 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
324 
325 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
326 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
327 		aprint_error_dev(self, "device version mismatch: 0x%x "
328 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
329 		return;
330 	}
331 
332 	ifp->if_softc = sc;
333 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
334 	ifp->if_init = zyd_init;
335 	ifp->if_ioctl = zyd_ioctl;
336 	ifp->if_start = zyd_start;
337 	ifp->if_watchdog = zyd_watchdog;
338 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
339 	IFQ_SET_READY(&ifp->if_snd);
340 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
341 
342 	SIMPLEQ_INIT(&sc->sc_rqh);
343 
344 	/* defer configrations after file system is ready to load firmware */
345 	config_mountroot(self, zyd_attachhook);
346 }
347 
348 Static int
349 zyd_complete_attach(struct zyd_softc *sc)
350 {
351 	struct ieee80211com *ic = &sc->sc_ic;
352 	struct ifnet *ifp = &sc->sc_if;
353 	usbd_status error;
354 	int i;
355 
356 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
357 	callout_init(&(sc->sc_scan_ch), 0);
358 
359 	sc->amrr.amrr_min_success_threshold =  1;
360 	sc->amrr.amrr_max_success_threshold = 10;
361 	callout_init(&sc->sc_amrr_ch, 0);
362 
363 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
364 	if (error != 0) {
365 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
366 		    ", err=%s\n", usbd_errstr(error));
367 		goto fail;
368 	}
369 
370 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
371 	    &sc->sc_iface);
372 	if (error != 0) {
373 		aprint_error_dev(sc->sc_dev,
374 		    "getting interface handle failed\n");
375 		goto fail;
376 	}
377 
378 	if ((error = zyd_open_pipes(sc)) != 0) {
379 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
380 		goto fail;
381 	}
382 
383 	if ((error = zyd_read_eeprom(sc)) != 0) {
384 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
385 		goto fail;
386 	}
387 
388 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
389 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
390 		goto fail;
391 	}
392 
393 	if ((error = zyd_hw_init(sc)) != 0) {
394 		aprint_error_dev(sc->sc_dev,
395 		    "hardware initialization failed\n");
396 		goto fail;
397 	}
398 
399 	aprint_normal_dev(sc->sc_dev,
400 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
401 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
402 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
403 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
404 
405 	ic->ic_ifp = ifp;
406 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
407 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
408 	ic->ic_state = IEEE80211_S_INIT;
409 
410 	/* set device capabilities */
411 	ic->ic_caps =
412 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
413 	    IEEE80211_C_TXPMGT |	/* tx power management */
414 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
415 	    IEEE80211_C_WEP;		/* s/w WEP */
416 
417 	/* set supported .11b and .11g rates */
418 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
419 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
420 
421 	/* set supported .11b and .11g channels (1 through 14) */
422 	for (i = 1; i <= 14; i++) {
423 		ic->ic_channels[i].ic_freq =
424 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
425 		ic->ic_channels[i].ic_flags =
426 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
427 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
428 	}
429 
430 	if_attach(ifp);
431 	ieee80211_ifattach(ic);
432 	ic->ic_node_alloc = zyd_node_alloc;
433 	ic->ic_newassoc = zyd_newassoc;
434 
435 	/* override state transition machine */
436 	sc->sc_newstate = ic->ic_newstate;
437 	ic->ic_newstate = zyd_newstate;
438 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
439 
440 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
441 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
442 	    &sc->sc_drvbpf);
443 
444 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
445 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
446 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
447 
448 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
449 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
450 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
451 
452 	ieee80211_announce(ic);
453 
454 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
455 
456 fail:	return error;
457 }
458 
459 int
460 zyd_detach(device_t self, int flags)
461 {
462 	struct zyd_softc *sc = device_private(self);
463 	struct ieee80211com *ic = &sc->sc_ic;
464 	struct ifnet *ifp = &sc->sc_if;
465 	int s;
466 
467 	if (!sc->attached)
468 		return 0;
469 
470 	s = splusb();
471 
472 	zyd_stop(ifp, 1);
473 	usb_rem_task(sc->sc_udev, &sc->sc_task);
474 	callout_stop(&sc->sc_scan_ch);
475 	callout_stop(&sc->sc_amrr_ch);
476 
477 	/* Abort, etc. done by zyd_stop */
478 	zyd_close_pipes(sc);
479 
480 	sc->attached = 0;
481 
482 	bpf_detach(ifp);
483 	ieee80211_ifdetach(ic);
484 	if_detach(ifp);
485 
486 	splx(s);
487 
488 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
489 	    sc->sc_dev);
490 
491 	return 0;
492 }
493 
494 Static int
495 zyd_open_pipes(struct zyd_softc *sc)
496 {
497 	usb_endpoint_descriptor_t *edesc;
498 	usbd_status error;
499 
500 	/* interrupt in */
501 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
502 	if (edesc == NULL)
503 		return EINVAL;
504 
505 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
506 	if (sc->ibuf_size == 0)	/* should not happen */
507 		return EINVAL;
508 
509 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
510 	if (sc->ibuf == NULL)
511 		return ENOMEM;
512 
513 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
514 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
515 	    USBD_DEFAULT_INTERVAL);
516 	if (error != 0) {
517 		printf("%s: open rx intr pipe failed: %s\n",
518 		    device_xname(sc->sc_dev), usbd_errstr(error));
519 		goto fail;
520 	}
521 
522 	/* interrupt out (not necessarily an interrupt pipe) */
523 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
524 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
525 	if (error != 0) {
526 		printf("%s: open tx intr pipe failed: %s\n",
527 		    device_xname(sc->sc_dev), usbd_errstr(error));
528 		goto fail;
529 	}
530 
531 	/* bulk in */
532 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
533 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
534 	if (error != 0) {
535 		printf("%s: open rx pipe failed: %s\n",
536 		    device_xname(sc->sc_dev), usbd_errstr(error));
537 		goto fail;
538 	}
539 
540 	/* bulk out */
541 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
542 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
543 	if (error != 0) {
544 		printf("%s: open tx pipe failed: %s\n",
545 		    device_xname(sc->sc_dev), usbd_errstr(error));
546 		goto fail;
547 	}
548 
549 	return 0;
550 
551 fail:	zyd_close_pipes(sc);
552 	return error;
553 }
554 
555 Static void
556 zyd_close_pipes(struct zyd_softc *sc)
557 {
558 	int i;
559 
560 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
561 		if (sc->zyd_ep[i] != NULL) {
562 			usbd_close_pipe(sc->zyd_ep[i]);
563 			sc->zyd_ep[i] = NULL;
564 		}
565 	}
566 	if (sc->ibuf != NULL) {
567 		kmem_free(sc->ibuf, sc->ibuf_size);
568 		sc->ibuf = NULL;
569 	}
570 }
571 
572 Static int
573 zyd_alloc_tx_list(struct zyd_softc *sc)
574 {
575 	int i, error;
576 
577 	sc->tx_queued = 0;
578 
579 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
580 		struct zyd_tx_data *data = &sc->tx_data[i];
581 
582 		data->sc = sc;	/* backpointer for callbacks */
583 
584 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
585 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
586 		if (error) {
587 			printf("%s: could not allocate tx xfer\n",
588 			    device_xname(sc->sc_dev));
589 			goto fail;
590 		}
591 		data->buf = usbd_get_buffer(data->xfer);
592 
593 		/* clear Tx descriptor */
594 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
595 	}
596 	return 0;
597 
598 fail:	zyd_free_tx_list(sc);
599 	return error;
600 }
601 
602 Static void
603 zyd_free_tx_list(struct zyd_softc *sc)
604 {
605 	int i;
606 
607 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
608 		struct zyd_tx_data *data = &sc->tx_data[i];
609 
610 		if (data->xfer != NULL) {
611 			usbd_destroy_xfer(data->xfer);
612 			data->xfer = NULL;
613 		}
614 		if (data->ni != NULL) {
615 			ieee80211_free_node(data->ni);
616 			data->ni = NULL;
617 		}
618 	}
619 }
620 
621 Static int
622 zyd_alloc_rx_list(struct zyd_softc *sc)
623 {
624 	int i, error;
625 
626 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
627 		struct zyd_rx_data *data = &sc->rx_data[i];
628 
629 		data->sc = sc;	/* backpointer for callbacks */
630 
631 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
632 		    ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer);
633 		if (error) {
634 			printf("%s: could not allocate rx xfer\n",
635 			    device_xname(sc->sc_dev));
636 			goto fail;
637 		}
638 		data->buf = usbd_get_buffer(data->xfer);
639 	}
640 	return 0;
641 
642 fail:	zyd_free_rx_list(sc);
643 	return error;
644 }
645 
646 Static void
647 zyd_free_rx_list(struct zyd_softc *sc)
648 {
649 	int i;
650 
651 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
652 		struct zyd_rx_data *data = &sc->rx_data[i];
653 
654 		if (data->xfer != NULL) {
655 			usbd_destroy_xfer(data->xfer);
656 			data->xfer = NULL;
657 		}
658 	}
659 }
660 
661 /* ARGUSED */
662 Static struct ieee80211_node *
663 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
664 {
665 	struct zyd_node *zn;
666 
667 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
668 
669 	return &zn->ni;
670 }
671 
672 Static int
673 zyd_media_change(struct ifnet *ifp)
674 {
675 	int error;
676 
677 	error = ieee80211_media_change(ifp);
678 	if (error != ENETRESET)
679 		return error;
680 
681 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
682 		zyd_init(ifp);
683 
684 	return 0;
685 }
686 
687 /*
688  * This function is called periodically (every 200ms) during scanning to
689  * switch from one channel to another.
690  */
691 Static void
692 zyd_next_scan(void *arg)
693 {
694 	struct zyd_softc *sc = arg;
695 	struct ieee80211com *ic = &sc->sc_ic;
696 
697 	if (ic->ic_state == IEEE80211_S_SCAN)
698 		ieee80211_next_scan(ic);
699 }
700 
701 Static void
702 zyd_task(void *arg)
703 {
704 	struct zyd_softc *sc = arg;
705 	struct ieee80211com *ic = &sc->sc_ic;
706 	enum ieee80211_state ostate;
707 
708 	ostate = ic->ic_state;
709 
710 	switch (sc->sc_state) {
711 	case IEEE80211_S_INIT:
712 		if (ostate == IEEE80211_S_RUN) {
713 			/* turn link LED off */
714 			zyd_set_led(sc, ZYD_LED1, 0);
715 
716 			/* stop data LED from blinking */
717 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
718 		}
719 		break;
720 
721 	case IEEE80211_S_SCAN:
722 		zyd_set_chan(sc, ic->ic_curchan);
723 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
724 		break;
725 
726 	case IEEE80211_S_AUTH:
727 	case IEEE80211_S_ASSOC:
728 		zyd_set_chan(sc, ic->ic_curchan);
729 		break;
730 
731 	case IEEE80211_S_RUN:
732 	{
733 		struct ieee80211_node *ni = ic->ic_bss;
734 
735 		zyd_set_chan(sc, ic->ic_curchan);
736 
737 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
738 			/* turn link LED on */
739 			zyd_set_led(sc, ZYD_LED1, 1);
740 
741 			/* make data LED blink upon Tx */
742 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
743 
744 			zyd_set_bssid(sc, ni->ni_bssid);
745 		}
746 
747 		if (ic->ic_opmode == IEEE80211_M_STA) {
748 			/* fake a join to init the tx rate */
749 			zyd_newassoc(ni, 1);
750 		}
751 
752 		/* start automatic rate control timer */
753 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
754 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
755 
756 		break;
757 	}
758 	}
759 
760 	sc->sc_newstate(ic, sc->sc_state, -1);
761 }
762 
763 Static int
764 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
765 {
766 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
767 
768 	if (!sc->attached)
769 		return ENXIO;
770 
771 	usb_rem_task(sc->sc_udev, &sc->sc_task);
772 	callout_stop(&sc->sc_scan_ch);
773 	callout_stop(&sc->sc_amrr_ch);
774 
775 	/* do it in a process context */
776 	sc->sc_state = nstate;
777 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
778 
779 	return 0;
780 }
781 
782 Static int
783 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
784     void *odata, int olen, u_int flags)
785 {
786 	struct usbd_xfer *xfer;
787 	struct zyd_cmd cmd;
788 	struct rq rq;
789 	uint16_t xferflags;
790 	int error;
791 	usbd_status uerror;
792 	int s = 0;
793 
794 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
795 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
796 	if (error)
797 		return error;
798 
799 	cmd.code = htole16(code);
800 	memcpy(cmd.data, idata, ilen);
801 
802 	xferflags = USBD_FORCE_SHORT_XFER;
803 	if (!(flags & ZYD_CMD_FLAG_READ))
804 		xferflags |= USBD_SYNCHRONOUS;
805 	else {
806 		s = splusb();
807 		rq.idata = idata;
808 		rq.odata = odata;
809 		rq.len = olen / sizeof(struct zyd_pair);
810 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
811 	}
812 
813 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
814 	    ZYD_INTR_TIMEOUT, NULL);
815 	uerror = usbd_transfer(xfer);
816 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
817 		if (flags & ZYD_CMD_FLAG_READ)
818 			splx(s);
819 		printf("%s: could not send command (error=%s)\n",
820 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
821 		(void)usbd_destroy_xfer(xfer);
822 		return EIO;
823 	}
824 	if (!(flags & ZYD_CMD_FLAG_READ)) {
825 		(void)usbd_destroy_xfer(xfer);
826 		return 0;	/* write: don't wait for reply */
827 	}
828 	/* wait at most one second for command reply */
829 	error = tsleep(odata, PCATCH, "zydcmd", hz);
830 	if (error == EWOULDBLOCK)
831 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
832 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
833 	splx(s);
834 
835 	(void)usbd_destroy_xfer(xfer);
836 	return error;
837 }
838 
839 Static int
840 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
841 {
842 	struct zyd_pair tmp;
843 	int error;
844 
845 	reg = htole16(reg);
846 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
847 	    ZYD_CMD_FLAG_READ);
848 	if (error == 0)
849 		*val = le16toh(tmp.val);
850 	else
851 		*val = 0;
852 	return error;
853 }
854 
855 Static int
856 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
857 {
858 	struct zyd_pair tmp[2];
859 	uint16_t regs[2];
860 	int error;
861 
862 	regs[0] = htole16(ZYD_REG32_HI(reg));
863 	regs[1] = htole16(ZYD_REG32_LO(reg));
864 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
865 	    ZYD_CMD_FLAG_READ);
866 	if (error == 0)
867 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
868 	else
869 		*val = 0;
870 	return error;
871 }
872 
873 Static int
874 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
875 {
876 	struct zyd_pair pair;
877 
878 	pair.reg = htole16(reg);
879 	pair.val = htole16(val);
880 
881 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
882 }
883 
884 Static int
885 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
886 {
887 	struct zyd_pair pair[2];
888 
889 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
890 	pair[0].val = htole16(val >> 16);
891 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
892 	pair[1].val = htole16(val & 0xffff);
893 
894 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
895 }
896 
897 Static int
898 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
899 {
900 	struct zyd_rf *rf = &sc->sc_rf;
901 	struct zyd_rfwrite req;
902 	uint16_t cr203;
903 	int i;
904 
905 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
906 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
907 
908 	req.code  = htole16(2);
909 	req.width = htole16(rf->width);
910 	for (i = 0; i < rf->width; i++) {
911 		req.bit[i] = htole16(cr203);
912 		if (val & (1 << (rf->width - 1 - i)))
913 			req.bit[i] |= htole16(ZYD_RF_DATA);
914 	}
915 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
916 }
917 
918 Static void
919 zyd_lock_phy(struct zyd_softc *sc)
920 {
921 	uint32_t tmp;
922 
923 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
924 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
925 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
926 }
927 
928 Static void
929 zyd_unlock_phy(struct zyd_softc *sc)
930 {
931 	uint32_t tmp;
932 
933 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
934 	tmp |= ZYD_UNLOCK_PHY_REGS;
935 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
936 }
937 
938 /*
939  * RFMD RF methods.
940  */
941 Static int
942 zyd_rfmd_init(struct zyd_rf *rf)
943 {
944 	struct zyd_softc *sc = rf->rf_sc;
945 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
946 	static const uint32_t rfini[] = ZYD_RFMD_RF;
947 	int error;
948 	size_t i;
949 
950 	/* init RF-dependent PHY registers */
951 	for (i = 0; i < __arraycount(phyini); i++) {
952 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
953 		if (error != 0)
954 			return error;
955 	}
956 
957 	/* init RFMD radio */
958 	for (i = 0; i < __arraycount(rfini); i++) {
959 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
960 			return error;
961 	}
962 	return 0;
963 }
964 
965 Static int
966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
967 {
968 	struct zyd_softc *sc = rf->rf_sc;
969 
970 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
971 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
972 
973 	return 0;
974 }
975 
976 Static int
977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
978 {
979 	struct zyd_softc *sc = rf->rf_sc;
980 	static const struct {
981 		uint32_t	r1, r2;
982 	} rfprog[] = ZYD_RFMD_CHANTABLE;
983 
984 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
985 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
986 
987 	return 0;
988 }
989 
990 /*
991  * AL2230 RF methods.
992  */
993 Static int
994 zyd_al2230_init(struct zyd_rf *rf)
995 {
996 	struct zyd_softc *sc = rf->rf_sc;
997 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
998 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
999 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1000 	int error;
1001 	size_t i;
1002 
1003 	/* init RF-dependent PHY registers */
1004 	for (i = 0; i < __arraycount(phyini); i++) {
1005 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1006 		if (error != 0)
1007 			return error;
1008 	}
1009 
1010 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1011 		for (i = 0; i < __arraycount(phy2230s); i++) {
1012 			error = zyd_write16(sc, phy2230s[i].reg,
1013 			    phy2230s[i].val);
1014 			if (error != 0)
1015 				return error;
1016 		}
1017 	}
1018 
1019 	/* init AL2230 radio */
1020 	for (i = 0; i < __arraycount(rfini); i++) {
1021 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1022 			return error;
1023 	}
1024 	return 0;
1025 }
1026 
1027 Static int
1028 zyd_al2230_init_b(struct zyd_rf *rf)
1029 {
1030 	struct zyd_softc *sc = rf->rf_sc;
1031 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1032 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1033 	int error;
1034 	size_t i;
1035 
1036 	/* init RF-dependent PHY registers */
1037 	for (i = 0; i < __arraycount(phyini); i++) {
1038 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1039 		if (error != 0)
1040 			return error;
1041 	}
1042 
1043 	/* init AL2230 radio */
1044 	for (i = 0; i < __arraycount(rfini); i++) {
1045 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1046 			return error;
1047 	}
1048 	return 0;
1049 }
1050 
1051 Static int
1052 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1053 {
1054 	struct zyd_softc *sc = rf->rf_sc;
1055 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1056 
1057 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1058 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1059 
1060 	return 0;
1061 }
1062 
1063 Static int
1064 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1065 {
1066 	struct zyd_softc *sc = rf->rf_sc;
1067 	static const struct {
1068 		uint32_t	r1, r2, r3;
1069 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1070 
1071 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1072 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1073 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1074 
1075 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1076 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * AL7230B RF methods.
1083  */
1084 Static int
1085 zyd_al7230B_init(struct zyd_rf *rf)
1086 {
1087 	struct zyd_softc *sc = rf->rf_sc;
1088 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1089 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1090 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1091 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1092 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1093 	int error;
1094 	size_t i;
1095 
1096 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1097 
1098 	/* init RF-dependent PHY registers, part one */
1099 	for (i = 0; i < __arraycount(phyini_1); i++) {
1100 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1101 		if (error != 0)
1102 			return error;
1103 	}
1104 	/* init AL7230B radio, part one */
1105 	for (i = 0; i < __arraycount(rfini_1); i++) {
1106 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1107 			return error;
1108 	}
1109 	/* init RF-dependent PHY registers, part two */
1110 	for (i = 0; i < __arraycount(phyini_2); i++) {
1111 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1112 		if (error != 0)
1113 			return error;
1114 	}
1115 	/* init AL7230B radio, part two */
1116 	for (i = 0; i < __arraycount(rfini_2); i++) {
1117 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1118 			return error;
1119 	}
1120 	/* init RF-dependent PHY registers, part three */
1121 	for (i = 0; i < __arraycount(phyini_3); i++) {
1122 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1123 		if (error != 0)
1124 			return error;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 Static int
1131 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1132 {
1133 	struct zyd_softc *sc = rf->rf_sc;
1134 
1135 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1136 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1137 
1138 	return 0;
1139 }
1140 
1141 Static int
1142 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1143 {
1144 	struct zyd_softc *sc = rf->rf_sc;
1145 	static const struct {
1146 		uint32_t	r1, r2;
1147 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1148 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1149 	int error;
1150 	size_t i;
1151 
1152 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1153 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1154 
1155 	for (i = 0; i < __arraycount(rfsc); i++) {
1156 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1157 			return error;
1158 	}
1159 
1160 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1161 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1162 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1163 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1164 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1165 
1166 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1167 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1168 	(void)zyd_rfwrite(sc, 0x3c9000);
1169 
1170 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1171 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1172 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * AL2210 RF methods.
1179  */
1180 Static int
1181 zyd_al2210_init(struct zyd_rf *rf)
1182 {
1183 	struct zyd_softc *sc = rf->rf_sc;
1184 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1185 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1186 	uint32_t tmp;
1187 	int error;
1188 	size_t i;
1189 
1190 	(void)zyd_write32(sc, ZYD_CR18, 2);
1191 
1192 	/* init RF-dependent PHY registers */
1193 	for (i = 0; i < __arraycount(phyini); i++) {
1194 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1195 		if (error != 0)
1196 			return error;
1197 	}
1198 	/* init AL2210 radio */
1199 	for (i = 0; i < __arraycount(rfini); i++) {
1200 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1201 			return error;
1202 	}
1203 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1204 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1205 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1206 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1207 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1208 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1209 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1210 	(void)zyd_write32(sc, ZYD_CR18, 3);
1211 
1212 	return 0;
1213 }
1214 
1215 Static int
1216 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1217 {
1218 	/* vendor driver does nothing for this RF chip */
1219 
1220 	return 0;
1221 }
1222 
1223 Static int
1224 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1225 {
1226 	struct zyd_softc *sc = rf->rf_sc;
1227 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1228 	uint32_t tmp;
1229 
1230 	(void)zyd_write32(sc, ZYD_CR18, 2);
1231 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1232 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1233 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1234 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1235 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1236 
1237 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1238 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1239 
1240 	/* actually set the channel */
1241 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1242 
1243 	(void)zyd_write32(sc, ZYD_CR18, 3);
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * GCT RF methods.
1250  */
1251 Static int
1252 zyd_gct_init(struct zyd_rf *rf)
1253 {
1254 	struct zyd_softc *sc = rf->rf_sc;
1255 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1256 	static const uint32_t rfini[] = ZYD_GCT_RF;
1257 	int error;
1258 	size_t i;
1259 
1260 	/* init RF-dependent PHY registers */
1261 	for (i = 0; i < __arraycount(phyini); i++) {
1262 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1263 		if (error != 0)
1264 			return error;
1265 	}
1266 	/* init cgt radio */
1267 	for (i = 0; i < __arraycount(rfini); i++) {
1268 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1269 			return error;
1270 	}
1271 	return 0;
1272 }
1273 
1274 Static int
1275 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1276 {
1277 	/* vendor driver does nothing for this RF chip */
1278 
1279 	return 0;
1280 }
1281 
1282 Static int
1283 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1284 {
1285 	struct zyd_softc *sc = rf->rf_sc;
1286 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1287 
1288 	(void)zyd_rfwrite(sc, 0x1c0000);
1289 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1290 	(void)zyd_rfwrite(sc, 0x1c0008);
1291 
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Maxim RF methods.
1297  */
1298 Static int
1299 zyd_maxim_init(struct zyd_rf *rf)
1300 {
1301 	struct zyd_softc *sc = rf->rf_sc;
1302 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1303 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1304 	uint16_t tmp;
1305 	int error;
1306 	size_t i;
1307 
1308 	/* init RF-dependent PHY registers */
1309 	for (i = 0; i < __arraycount(phyini); i++) {
1310 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1311 		if (error != 0)
1312 			return error;
1313 	}
1314 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1315 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1316 
1317 	/* init maxim radio */
1318 	for (i = 0; i < __arraycount(rfini); i++) {
1319 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1320 			return error;
1321 	}
1322 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1323 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1324 
1325 	return 0;
1326 }
1327 
1328 Static int
1329 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1330 {
1331 	/* vendor driver does nothing for this RF chip */
1332 
1333 	return 0;
1334 }
1335 
1336 Static int
1337 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1338 {
1339 	struct zyd_softc *sc = rf->rf_sc;
1340 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1341 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1342 	static const struct {
1343 		uint32_t	r1, r2;
1344 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1345 	uint16_t tmp;
1346 	int error;
1347 	size_t i;
1348 
1349 	/*
1350 	 * Do the same as we do when initializing it, except for the channel
1351 	 * values coming from the two channel tables.
1352 	 */
1353 
1354 	/* init RF-dependent PHY registers */
1355 	for (i = 0; i < __arraycount(phyini); i++) {
1356 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1357 		if (error != 0)
1358 			return error;
1359 	}
1360 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1361 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1362 
1363 	/* first two values taken from the chantables */
1364 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1365 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1366 
1367 	/* init maxim radio - skipping the two first values */
1368 	for (i = 2; i < __arraycount(rfini); i++) {
1369 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1370 			return error;
1371 	}
1372 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1373 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1374 
1375 	return 0;
1376 }
1377 
1378 /*
1379  * Maxim2 RF methods.
1380  */
1381 Static int
1382 zyd_maxim2_init(struct zyd_rf *rf)
1383 {
1384 	struct zyd_softc *sc = rf->rf_sc;
1385 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1386 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1387 	uint16_t tmp;
1388 	int error;
1389 	size_t i;
1390 
1391 	/* init RF-dependent PHY registers */
1392 	for (i = 0; i < __arraycount(phyini); i++) {
1393 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1394 		if (error != 0)
1395 			return error;
1396 	}
1397 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1398 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1399 
1400 	/* init maxim2 radio */
1401 	for (i = 0; i < __arraycount(rfini); i++) {
1402 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1403 			return error;
1404 	}
1405 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1406 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1407 
1408 	return 0;
1409 }
1410 
1411 Static int
1412 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1413 {
1414 	/* vendor driver does nothing for this RF chip */
1415 
1416 	return 0;
1417 }
1418 
1419 Static int
1420 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1421 {
1422 	struct zyd_softc *sc = rf->rf_sc;
1423 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1424 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1425 	static const struct {
1426 		uint32_t	r1, r2;
1427 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1428 	uint16_t tmp;
1429 	int error;
1430 	size_t i;
1431 
1432 	/*
1433 	 * Do the same as we do when initializing it, except for the channel
1434 	 * values coming from the two channel tables.
1435 	 */
1436 
1437 	/* init RF-dependent PHY registers */
1438 	for (i = 0; i < __arraycount(phyini); i++) {
1439 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1440 		if (error != 0)
1441 			return error;
1442 	}
1443 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1444 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1445 
1446 	/* first two values taken from the chantables */
1447 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1448 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1449 
1450 	/* init maxim2 radio - skipping the two first values */
1451 	for (i = 2; i < __arraycount(rfini); i++) {
1452 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1453 			return error;
1454 	}
1455 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1456 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1457 
1458 	return 0;
1459 }
1460 
1461 Static int
1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1463 {
1464 	struct zyd_rf *rf = &sc->sc_rf;
1465 
1466 	rf->rf_sc = sc;
1467 
1468 	switch (type) {
1469 	case ZYD_RF_RFMD:
1470 		rf->init         = zyd_rfmd_init;
1471 		rf->switch_radio = zyd_rfmd_switch_radio;
1472 		rf->set_channel  = zyd_rfmd_set_channel;
1473 		rf->width        = 24;	/* 24-bit RF values */
1474 		break;
1475 	case ZYD_RF_AL2230:
1476 	case ZYD_RF_AL2230S:
1477 		if (sc->mac_rev == ZYD_ZD1211B)
1478 			rf->init = zyd_al2230_init_b;
1479 		else
1480 			rf->init = zyd_al2230_init;
1481 		rf->switch_radio = zyd_al2230_switch_radio;
1482 		rf->set_channel  = zyd_al2230_set_channel;
1483 		rf->width        = 24;	/* 24-bit RF values */
1484 		break;
1485 	case ZYD_RF_AL7230B:
1486 		rf->init         = zyd_al7230B_init;
1487 		rf->switch_radio = zyd_al7230B_switch_radio;
1488 		rf->set_channel  = zyd_al7230B_set_channel;
1489 		rf->width        = 24;	/* 24-bit RF values */
1490 		break;
1491 	case ZYD_RF_AL2210:
1492 		rf->init         = zyd_al2210_init;
1493 		rf->switch_radio = zyd_al2210_switch_radio;
1494 		rf->set_channel  = zyd_al2210_set_channel;
1495 		rf->width        = 24;	/* 24-bit RF values */
1496 		break;
1497 	case ZYD_RF_GCT:
1498 		rf->init         = zyd_gct_init;
1499 		rf->switch_radio = zyd_gct_switch_radio;
1500 		rf->set_channel  = zyd_gct_set_channel;
1501 		rf->width        = 21;	/* 21-bit RF values */
1502 		break;
1503 	case ZYD_RF_MAXIM_NEW:
1504 		rf->init         = zyd_maxim_init;
1505 		rf->switch_radio = zyd_maxim_switch_radio;
1506 		rf->set_channel  = zyd_maxim_set_channel;
1507 		rf->width        = 18;	/* 18-bit RF values */
1508 		break;
1509 	case ZYD_RF_MAXIM_NEW2:
1510 		rf->init         = zyd_maxim2_init;
1511 		rf->switch_radio = zyd_maxim2_switch_radio;
1512 		rf->set_channel  = zyd_maxim2_set_channel;
1513 		rf->width        = 18;	/* 18-bit RF values */
1514 		break;
1515 	default:
1516 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1517 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1518 		return EINVAL;
1519 	}
1520 	return 0;
1521 }
1522 
1523 Static const char *
1524 zyd_rf_name(uint8_t type)
1525 {
1526 	static const char * const zyd_rfs[] = {
1527 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1528 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1529 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1530 		"PHILIPS"
1531 	};
1532 
1533 	return zyd_rfs[(type > 15) ? 0 : type];
1534 }
1535 
1536 Static int
1537 zyd_hw_init(struct zyd_softc *sc)
1538 {
1539 	struct zyd_rf *rf = &sc->sc_rf;
1540 	const struct zyd_phy_pair *phyp;
1541 	int error;
1542 
1543 	/* specify that the plug and play is finished */
1544 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1545 
1546 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1547 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1548 
1549 	/* retrieve firmware revision number */
1550 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1551 
1552 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1553 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1554 
1555 	/* disable interrupts */
1556 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1557 
1558 	/* PHY init */
1559 	zyd_lock_phy(sc);
1560 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1561 	for (; phyp->reg != 0; phyp++) {
1562 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1563 			goto fail;
1564 	}
1565 	zyd_unlock_phy(sc);
1566 
1567 	/* HMAC init */
1568 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1569 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1570 
1571 	if (sc->mac_rev == ZYD_ZD1211) {
1572 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1573 	} else {
1574 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1575 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1576 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1577 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1578 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1579 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1580 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1581 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1582 	}
1583 
1584 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1585 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1586 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1587 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1588 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1589 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1590 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1591 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1592 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1593 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1594 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1595 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1596 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1597 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1598 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1599 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1600 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1601 
1602 	/* RF chip init */
1603 	zyd_lock_phy(sc);
1604 	error = (*rf->init)(rf);
1605 	zyd_unlock_phy(sc);
1606 	if (error != 0) {
1607 		printf("%s: radio initialization failed\n",
1608 		    device_xname(sc->sc_dev));
1609 		goto fail;
1610 	}
1611 
1612 	/* init beacon interval to 100ms */
1613 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1614 		goto fail;
1615 
1616 fail:	return error;
1617 }
1618 
1619 Static int
1620 zyd_read_eeprom(struct zyd_softc *sc)
1621 {
1622 	struct ieee80211com *ic = &sc->sc_ic;
1623 	uint32_t tmp;
1624 	uint16_t val;
1625 	int i;
1626 
1627 	/* read MAC address */
1628 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1629 	ic->ic_myaddr[0] = tmp & 0xff;
1630 	ic->ic_myaddr[1] = tmp >>  8;
1631 	ic->ic_myaddr[2] = tmp >> 16;
1632 	ic->ic_myaddr[3] = tmp >> 24;
1633 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1634 	ic->ic_myaddr[4] = tmp & 0xff;
1635 	ic->ic_myaddr[5] = tmp >>  8;
1636 
1637 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1638 	sc->rf_rev = tmp & 0x0f;
1639 	sc->pa_rev = (tmp >> 16) & 0x0f;
1640 
1641 	/* read regulatory domain (currently unused) */
1642 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1643 	sc->regdomain = tmp >> 16;
1644 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1645 
1646 	/* read Tx power calibration tables */
1647 	for (i = 0; i < 7; i++) {
1648 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1649 		sc->pwr_cal[i * 2] = val >> 8;
1650 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1651 
1652 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1653 		sc->pwr_int[i * 2] = val >> 8;
1654 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1655 
1656 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1657 		sc->ofdm36_cal[i * 2] = val >> 8;
1658 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1659 
1660 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1661 		sc->ofdm48_cal[i * 2] = val >> 8;
1662 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1663 
1664 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1665 		sc->ofdm54_cal[i * 2] = val >> 8;
1666 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1667 	}
1668 	return 0;
1669 }
1670 
1671 Static int
1672 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1673 {
1674 	uint32_t tmp;
1675 
1676 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1677 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1678 
1679 	tmp = addr[5] << 8 | addr[4];
1680 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1681 
1682 	return 0;
1683 }
1684 
1685 Static int
1686 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1687 {
1688 	uint32_t tmp;
1689 
1690 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1691 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1692 
1693 	tmp = addr[5] << 8 | addr[4];
1694 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1695 
1696 	return 0;
1697 }
1698 
1699 Static int
1700 zyd_switch_radio(struct zyd_softc *sc, int on)
1701 {
1702 	struct zyd_rf *rf = &sc->sc_rf;
1703 	int error;
1704 
1705 	zyd_lock_phy(sc);
1706 	error = (*rf->switch_radio)(rf, on);
1707 	zyd_unlock_phy(sc);
1708 
1709 	return error;
1710 }
1711 
1712 Static void
1713 zyd_set_led(struct zyd_softc *sc, int which, int on)
1714 {
1715 	uint32_t tmp;
1716 
1717 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1718 	tmp &= ~which;
1719 	if (on)
1720 		tmp |= which;
1721 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1722 }
1723 
1724 Static int
1725 zyd_set_rxfilter(struct zyd_softc *sc)
1726 {
1727 	uint32_t rxfilter;
1728 
1729 	switch (sc->sc_ic.ic_opmode) {
1730 	case IEEE80211_M_STA:
1731 		rxfilter = ZYD_FILTER_BSS;
1732 		break;
1733 	case IEEE80211_M_IBSS:
1734 	case IEEE80211_M_HOSTAP:
1735 		rxfilter = ZYD_FILTER_HOSTAP;
1736 		break;
1737 	case IEEE80211_M_MONITOR:
1738 		rxfilter = ZYD_FILTER_MONITOR;
1739 		break;
1740 	default:
1741 		/* should not get there */
1742 		return EINVAL;
1743 	}
1744 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1745 }
1746 
1747 Static void
1748 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1749 {
1750 	struct ieee80211com *ic = &sc->sc_ic;
1751 	struct zyd_rf *rf = &sc->sc_rf;
1752 	u_int chan;
1753 
1754 	chan = ieee80211_chan2ieee(ic, c);
1755 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1756 		return;
1757 
1758 	zyd_lock_phy(sc);
1759 
1760 	(*rf->set_channel)(rf, chan);
1761 
1762 	/* update Tx power */
1763 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1764 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1765 
1766 	if (sc->mac_rev == ZYD_ZD1211B) {
1767 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1768 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1769 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1770 
1771 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1772 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1773 	}
1774 
1775 	zyd_unlock_phy(sc);
1776 }
1777 
1778 Static int
1779 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1780 {
1781 	/* XXX this is probably broken.. */
1782 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1783 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1784 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1785 
1786 	return 0;
1787 }
1788 
1789 Static uint8_t
1790 zyd_plcp_signal(int rate)
1791 {
1792 	switch (rate) {
1793 	/* CCK rates (returned values are device-dependent) */
1794 	case 2:		return 0x0;
1795 	case 4:		return 0x1;
1796 	case 11:	return 0x2;
1797 	case 22:	return 0x3;
1798 
1799 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1800 	case 12:	return 0xb;
1801 	case 18:	return 0xf;
1802 	case 24:	return 0xa;
1803 	case 36:	return 0xe;
1804 	case 48:	return 0x9;
1805 	case 72:	return 0xd;
1806 	case 96:	return 0x8;
1807 	case 108:	return 0xc;
1808 
1809 	/* unsupported rates (should not get there) */
1810 	default:	return 0xff;
1811 	}
1812 }
1813 
1814 Static void
1815 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1816 {
1817 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1818 	struct zyd_cmd *cmd;
1819 	uint32_t datalen;
1820 
1821 	if (status != USBD_NORMAL_COMPLETION) {
1822 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1823 			return;
1824 
1825 		if (status == USBD_STALLED) {
1826 			usbd_clear_endpoint_stall_async(
1827 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1828 		}
1829 		return;
1830 	}
1831 
1832 	cmd = (struct zyd_cmd *)sc->ibuf;
1833 
1834 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1835 		struct zyd_notif_retry *retry =
1836 		    (struct zyd_notif_retry *)cmd->data;
1837 		struct ieee80211com *ic = &sc->sc_ic;
1838 		struct ifnet *ifp = &sc->sc_if;
1839 		struct ieee80211_node *ni;
1840 
1841 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1842 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1843 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1844 
1845 		/*
1846 		 * Find the node to which the packet was sent and update its
1847 		 * retry statistics.  In BSS mode, this node is the AP we're
1848 		 * associated to so no lookup is actually needed.
1849 		 */
1850 		if (ic->ic_opmode != IEEE80211_M_STA) {
1851 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1852 			if (ni == NULL)
1853 				return;	/* just ignore */
1854 		} else
1855 			ni = ic->ic_bss;
1856 
1857 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1858 
1859 		if (le16toh(retry->count) & 0x100)
1860 			ifp->if_oerrors++;	/* too many retries */
1861 
1862 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1863 		struct rq *rqp;
1864 
1865 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1866 			return;	/* HMAC interrupt */
1867 
1868 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1869 		datalen -= sizeof(cmd->code);
1870 		datalen -= 2;	/* XXX: padding? */
1871 
1872 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1873 			int i;
1874 
1875 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1876 				continue;
1877 			for (i = 0; i < rqp->len; i++) {
1878 				if (*(((const uint16_t *)rqp->idata) + i) !=
1879 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1880 					break;
1881 			}
1882 			if (i != rqp->len)
1883 				continue;
1884 
1885 			/* copy answer into caller-supplied buffer */
1886 			memcpy(rqp->odata, cmd->data,
1887 			    sizeof(struct zyd_pair) * rqp->len);
1888 			wakeup(rqp->odata);	/* wakeup caller */
1889 
1890 			return;
1891 		}
1892 		return;	/* unexpected IORD notification */
1893 	} else {
1894 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1895 		    le16toh(cmd->code));
1896 	}
1897 }
1898 
1899 Static void
1900 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1901 {
1902 	struct ieee80211com *ic = &sc->sc_ic;
1903 	struct ifnet *ifp = &sc->sc_if;
1904 	struct ieee80211_node *ni;
1905 	struct ieee80211_frame *wh;
1906 	const struct zyd_plcphdr *plcp;
1907 	const struct zyd_rx_stat *stat;
1908 	struct mbuf *m;
1909 	int rlen, s;
1910 
1911 	if (len < ZYD_MIN_FRAGSZ) {
1912 		printf("%s: frame too short (length=%d)\n",
1913 		    device_xname(sc->sc_dev), len);
1914 		ifp->if_ierrors++;
1915 		return;
1916 	}
1917 
1918 	plcp = (const struct zyd_plcphdr *)buf;
1919 	stat = (const struct zyd_rx_stat *)
1920 	    (buf + len - sizeof(struct zyd_rx_stat));
1921 
1922 	if (stat->flags & ZYD_RX_ERROR) {
1923 		DPRINTF(("%s: RX status indicated error (%x)\n",
1924 		    device_xname(sc->sc_dev), stat->flags));
1925 		ifp->if_ierrors++;
1926 		return;
1927 	}
1928 
1929 	/* compute actual frame length */
1930 	rlen = len - sizeof(struct zyd_plcphdr) -
1931 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1932 
1933 	/* allocate a mbuf to store the frame */
1934 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1935 	if (m == NULL) {
1936 		printf("%s: could not allocate rx mbuf\n",
1937 		    device_xname(sc->sc_dev));
1938 		ifp->if_ierrors++;
1939 		return;
1940 	}
1941 	if (rlen > MHLEN) {
1942 		MCLGET(m, M_DONTWAIT);
1943 		if (!(m->m_flags & M_EXT)) {
1944 			printf("%s: could not allocate rx mbuf cluster\n",
1945 			    device_xname(sc->sc_dev));
1946 			m_freem(m);
1947 			ifp->if_ierrors++;
1948 			return;
1949 		}
1950 	}
1951 	m->m_pkthdr.rcvif = ifp;
1952 	m->m_pkthdr.len = m->m_len = rlen;
1953 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1954 
1955 	s = splnet();
1956 
1957 	if (sc->sc_drvbpf != NULL) {
1958 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1959 		static const uint8_t rates[] = {
1960 			/* reverse function of zyd_plcp_signal() */
1961 			2, 4, 11, 22, 0, 0, 0, 0,
1962 			96, 48, 24, 12, 108, 72, 36, 18
1963 		};
1964 
1965 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1966 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1967 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1968 		tap->wr_rssi = stat->rssi;
1969 		tap->wr_rate = rates[plcp->signal & 0xf];
1970 
1971 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1972 	}
1973 
1974 	wh = mtod(m, struct ieee80211_frame *);
1975 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1976 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1977 
1978 	/* node is no longer needed */
1979 	ieee80211_free_node(ni);
1980 
1981 	splx(s);
1982 }
1983 
1984 Static void
1985 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1986 {
1987 	struct zyd_rx_data *data = priv;
1988 	struct zyd_softc *sc = data->sc;
1989 	struct ifnet *ifp = &sc->sc_if;
1990 	const struct zyd_rx_desc *desc;
1991 	int len;
1992 
1993 	if (status != USBD_NORMAL_COMPLETION) {
1994 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1995 			return;
1996 
1997 		if (status == USBD_STALLED)
1998 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1999 
2000 		goto skip;
2001 	}
2002 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2003 
2004 	if (len < ZYD_MIN_RXBUFSZ) {
2005 		printf("%s: xfer too short (length=%d)\n",
2006 		    device_xname(sc->sc_dev), len);
2007 		ifp->if_ierrors++;
2008 		goto skip;
2009 	}
2010 
2011 	desc = (const struct zyd_rx_desc *)
2012 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2013 
2014 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2015 		const uint8_t *p = data->buf, *end = p + len;
2016 		int i;
2017 
2018 		DPRINTFN(3, ("received multi-frame transfer\n"));
2019 
2020 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2021 			const uint16_t len16 = UGETW(desc->len[i]);
2022 
2023 			if (len16 == 0 || p + len16 > end)
2024 				break;
2025 
2026 			zyd_rx_data(sc, p, len16);
2027 			/* next frame is aligned on a 32-bit boundary */
2028 			p += (len16 + 3) & ~3;
2029 		}
2030 	} else {
2031 		DPRINTFN(3, ("received single-frame transfer\n"));
2032 
2033 		zyd_rx_data(sc, data->buf, len);
2034 	}
2035 
2036 skip:	/* setup a new transfer */
2037 
2038 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2039 	    USBD_NO_TIMEOUT, zyd_rxeof);
2040 	(void)usbd_transfer(xfer);
2041 }
2042 
2043 Static int
2044 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2045 {
2046 	struct ieee80211com *ic = &sc->sc_ic;
2047 	struct ifnet *ifp = &sc->sc_if;
2048 	struct zyd_tx_desc *desc;
2049 	struct zyd_tx_data *data;
2050 	struct ieee80211_frame *wh;
2051 	struct ieee80211_key *k;
2052 	int xferlen, totlen, rate;
2053 	uint16_t pktlen;
2054 	usbd_status error;
2055 
2056 	data = &sc->tx_data[0];
2057 	desc = (struct zyd_tx_desc *)data->buf;
2058 
2059 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2060 
2061 	wh = mtod(m0, struct ieee80211_frame *);
2062 
2063 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2064 		k = ieee80211_crypto_encap(ic, ni, m0);
2065 		if (k == NULL) {
2066 			m_freem(m0);
2067 			return ENOBUFS;
2068 		}
2069 	}
2070 
2071 	data->ni = ni;
2072 
2073 	wh = mtod(m0, struct ieee80211_frame *);
2074 
2075 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2076 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2077 
2078 	/* fill Tx descriptor */
2079 	desc->len = htole16(totlen);
2080 
2081 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2082 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2083 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2084 		if (totlen > ic->ic_rtsthreshold) {
2085 			desc->flags |= ZYD_TX_FLAG_RTS;
2086 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2087 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2088 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2089 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2090 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2091 				desc->flags |= ZYD_TX_FLAG_RTS;
2092 		}
2093 	} else
2094 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2095 
2096 	if ((wh->i_fc[0] &
2097 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2098 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2099 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2100 
2101 	desc->phy = zyd_plcp_signal(rate);
2102 	if (ZYD_RATE_IS_OFDM(rate)) {
2103 		desc->phy |= ZYD_TX_PHY_OFDM;
2104 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2105 			desc->phy |= ZYD_TX_PHY_5GHZ;
2106 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2107 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2108 
2109 	/* actual transmit length (XXX why +10?) */
2110 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2111 	if (sc->mac_rev == ZYD_ZD1211)
2112 		pktlen += totlen;
2113 	desc->pktlen = htole16(pktlen);
2114 
2115 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2116 	desc->plcp_service = 0;
2117 	if (rate == 22) {
2118 		const int remainder = (16 * totlen) % 22;
2119 		if (remainder != 0 && remainder < 7)
2120 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2121 	}
2122 
2123 	if (sc->sc_drvbpf != NULL) {
2124 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2125 
2126 		tap->wt_flags = 0;
2127 		tap->wt_rate = rate;
2128 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2129 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2130 
2131 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2132 	}
2133 
2134 	m_copydata(m0, 0, m0->m_pkthdr.len,
2135 	    data->buf + sizeof(struct zyd_tx_desc));
2136 
2137 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2138 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2139 
2140 	m_freem(m0);	/* mbuf no longer needed */
2141 
2142 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2143 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2144 	error = usbd_transfer(data->xfer);
2145 	if (error != USBD_IN_PROGRESS && error != 0) {
2146 		ifp->if_oerrors++;
2147 		return EIO;
2148 	}
2149 	sc->tx_queued++;
2150 
2151 	return 0;
2152 }
2153 
2154 Static void
2155 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2156 {
2157 	struct zyd_tx_data *data = priv;
2158 	struct zyd_softc *sc = data->sc;
2159 	struct ifnet *ifp = &sc->sc_if;
2160 	int s;
2161 
2162 	if (status != USBD_NORMAL_COMPLETION) {
2163 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2164 			return;
2165 
2166 		printf("%s: could not transmit buffer: %s\n",
2167 		    device_xname(sc->sc_dev), usbd_errstr(status));
2168 
2169 		if (status == USBD_STALLED) {
2170 			usbd_clear_endpoint_stall_async(
2171 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2172 		}
2173 		ifp->if_oerrors++;
2174 		return;
2175 	}
2176 
2177 	s = splnet();
2178 
2179 	/* update rate control statistics */
2180 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2181 
2182 	ieee80211_free_node(data->ni);
2183 	data->ni = NULL;
2184 
2185 	sc->tx_queued--;
2186 	ifp->if_opackets++;
2187 
2188 	sc->tx_timer = 0;
2189 	ifp->if_flags &= ~IFF_OACTIVE;
2190 	zyd_start(ifp);
2191 
2192 	splx(s);
2193 }
2194 
2195 Static int
2196 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2197 {
2198 	struct ieee80211com *ic = &sc->sc_ic;
2199 	struct ifnet *ifp = &sc->sc_if;
2200 	struct zyd_tx_desc *desc;
2201 	struct zyd_tx_data *data;
2202 	struct ieee80211_frame *wh;
2203 	struct ieee80211_key *k;
2204 	int xferlen, totlen, rate;
2205 	uint16_t pktlen;
2206 	usbd_status error;
2207 
2208 	wh = mtod(m0, struct ieee80211_frame *);
2209 
2210 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2211 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2212 	else
2213 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2214 	rate &= IEEE80211_RATE_VAL;
2215 
2216 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2217 		k = ieee80211_crypto_encap(ic, ni, m0);
2218 		if (k == NULL) {
2219 			m_freem(m0);
2220 			return ENOBUFS;
2221 		}
2222 
2223 		/* packet header may have moved, reset our local pointer */
2224 		wh = mtod(m0, struct ieee80211_frame *);
2225 	}
2226 
2227 	data = &sc->tx_data[0];
2228 	desc = (struct zyd_tx_desc *)data->buf;
2229 
2230 	data->ni = ni;
2231 
2232 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2233 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2234 
2235 	/* fill Tx descriptor */
2236 	desc->len = htole16(totlen);
2237 
2238 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2239 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2240 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2241 		if (totlen > ic->ic_rtsthreshold) {
2242 			desc->flags |= ZYD_TX_FLAG_RTS;
2243 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2244 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2245 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2246 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2247 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2248 				desc->flags |= ZYD_TX_FLAG_RTS;
2249 		}
2250 	} else
2251 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2252 
2253 	if ((wh->i_fc[0] &
2254 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2255 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2256 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2257 
2258 	desc->phy = zyd_plcp_signal(rate);
2259 	if (ZYD_RATE_IS_OFDM(rate)) {
2260 		desc->phy |= ZYD_TX_PHY_OFDM;
2261 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2262 			desc->phy |= ZYD_TX_PHY_5GHZ;
2263 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2264 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2265 
2266 	/* actual transmit length (XXX why +10?) */
2267 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2268 	if (sc->mac_rev == ZYD_ZD1211)
2269 		pktlen += totlen;
2270 	desc->pktlen = htole16(pktlen);
2271 
2272 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2273 	desc->plcp_service = 0;
2274 	if (rate == 22) {
2275 		const int remainder = (16 * totlen) % 22;
2276 		if (remainder != 0 && remainder < 7)
2277 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2278 	}
2279 
2280 	if (sc->sc_drvbpf != NULL) {
2281 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2282 
2283 		tap->wt_flags = 0;
2284 		tap->wt_rate = rate;
2285 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2286 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2287 
2288 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2289 	}
2290 
2291 	m_copydata(m0, 0, m0->m_pkthdr.len,
2292 	    data->buf + sizeof(struct zyd_tx_desc));
2293 
2294 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2295 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2296 
2297 	m_freem(m0);	/* mbuf no longer needed */
2298 
2299 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2300 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2301 	error = usbd_transfer(data->xfer);
2302 	if (error != USBD_IN_PROGRESS && error != 0) {
2303 		ifp->if_oerrors++;
2304 		return EIO;
2305 	}
2306 	sc->tx_queued++;
2307 
2308 	return 0;
2309 }
2310 
2311 Static void
2312 zyd_start(struct ifnet *ifp)
2313 {
2314 	struct zyd_softc *sc = ifp->if_softc;
2315 	struct ieee80211com *ic = &sc->sc_ic;
2316 	struct ether_header *eh;
2317 	struct ieee80211_node *ni;
2318 	struct mbuf *m0;
2319 
2320 	for (;;) {
2321 		IF_POLL(&ic->ic_mgtq, m0);
2322 		if (m0 != NULL) {
2323 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2324 				ifp->if_flags |= IFF_OACTIVE;
2325 				break;
2326 			}
2327 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2328 
2329 			ni = M_GETCTX(m0, struct ieee80211_node *);
2330 			M_CLEARCTX(m0);
2331 			bpf_mtap3(ic->ic_rawbpf, m0);
2332 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2333 				break;
2334 		} else {
2335 			if (ic->ic_state != IEEE80211_S_RUN)
2336 				break;
2337 			IFQ_POLL(&ifp->if_snd, m0);
2338 			if (m0 == NULL)
2339 				break;
2340 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2341 				ifp->if_flags |= IFF_OACTIVE;
2342 				break;
2343 			}
2344 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2345 
2346 			if (m0->m_len < sizeof(struct ether_header) &&
2347 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2348 				continue;
2349 
2350 			eh = mtod(m0, struct ether_header *);
2351 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2352 			if (ni == NULL) {
2353 				m_freem(m0);
2354 				continue;
2355 			}
2356 			bpf_mtap(ifp, m0);
2357 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2358 				ieee80211_free_node(ni);
2359 				ifp->if_oerrors++;
2360 				continue;
2361 			}
2362 			bpf_mtap3(ic->ic_rawbpf, m0);
2363 			if (zyd_tx_data(sc, m0, ni) != 0) {
2364 				ieee80211_free_node(ni);
2365 				ifp->if_oerrors++;
2366 				break;
2367 			}
2368 		}
2369 
2370 		sc->tx_timer = 5;
2371 		ifp->if_timer = 1;
2372 	}
2373 }
2374 
2375 Static void
2376 zyd_watchdog(struct ifnet *ifp)
2377 {
2378 	struct zyd_softc *sc = ifp->if_softc;
2379 	struct ieee80211com *ic = &sc->sc_ic;
2380 
2381 	ifp->if_timer = 0;
2382 
2383 	if (sc->tx_timer > 0) {
2384 		if (--sc->tx_timer == 0) {
2385 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2386 			/* zyd_init(ifp); XXX needs a process context ? */
2387 			ifp->if_oerrors++;
2388 			return;
2389 		}
2390 		ifp->if_timer = 1;
2391 	}
2392 
2393 	ieee80211_watchdog(ic);
2394 }
2395 
2396 Static int
2397 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2398 {
2399 	struct zyd_softc *sc = ifp->if_softc;
2400 	struct ieee80211com *ic = &sc->sc_ic;
2401 	int s, error = 0;
2402 
2403 	s = splnet();
2404 
2405 	switch (cmd) {
2406 	case SIOCSIFFLAGS:
2407 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2408 			break;
2409 		/* XXX re-use ether_ioctl() */
2410 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2411 		case IFF_UP:
2412 			zyd_init(ifp);
2413 			break;
2414 		case IFF_RUNNING:
2415 			zyd_stop(ifp, 1);
2416 			break;
2417 		default:
2418 			break;
2419 		}
2420 		break;
2421 
2422 	default:
2423 		error = ieee80211_ioctl(ic, cmd, data);
2424 	}
2425 
2426 	if (error == ENETRESET) {
2427 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2428 		    (IFF_RUNNING | IFF_UP))
2429 			zyd_init(ifp);
2430 		error = 0;
2431 	}
2432 
2433 	splx(s);
2434 
2435 	return error;
2436 }
2437 
2438 Static int
2439 zyd_init(struct ifnet *ifp)
2440 {
2441 	struct zyd_softc *sc = ifp->if_softc;
2442 	struct ieee80211com *ic = &sc->sc_ic;
2443 	int i, error;
2444 
2445 	zyd_stop(ifp, 0);
2446 
2447 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2448 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2449 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2450 	if (error != 0)
2451 		return error;
2452 
2453 	/* we'll do software WEP decryption for now */
2454 	DPRINTF(("setting encryption type\n"));
2455 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2456 	if (error != 0)
2457 		return error;
2458 
2459 	/* promiscuous mode */
2460 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2461 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2462 
2463 	(void)zyd_set_rxfilter(sc);
2464 
2465 	/* switch radio transmitter ON */
2466 	(void)zyd_switch_radio(sc, 1);
2467 
2468 	/* set basic rates */
2469 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2470 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2471 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2472 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2473 	else	/* assumes 802.11b/g */
2474 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2475 
2476 	/* set mandatory rates */
2477 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2478 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2479 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2480 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2481 	else	/* assumes 802.11b/g */
2482 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2483 
2484 	/* set default BSS channel */
2485 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2486 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2487 
2488 	/* enable interrupts */
2489 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2490 
2491 	/*
2492 	 * Allocate Tx and Rx xfer queues.
2493 	 */
2494 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2495 		printf("%s: could not allocate Tx list\n",
2496 		    device_xname(sc->sc_dev));
2497 		goto fail;
2498 	}
2499 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2500 		printf("%s: could not allocate Rx list\n",
2501 		    device_xname(sc->sc_dev));
2502 		goto fail;
2503 	}
2504 
2505 	/*
2506 	 * Start up the receive pipe.
2507 	 */
2508 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2509 		struct zyd_rx_data *data = &sc->rx_data[i];
2510 
2511 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2512 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2513 		error = usbd_transfer(data->xfer);
2514 		if (error != USBD_IN_PROGRESS && error != 0) {
2515 			printf("%s: could not queue Rx transfer\n",
2516 			    device_xname(sc->sc_dev));
2517 			goto fail;
2518 		}
2519 	}
2520 
2521 	ifp->if_flags &= ~IFF_OACTIVE;
2522 	ifp->if_flags |= IFF_RUNNING;
2523 
2524 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2525 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2526 	else
2527 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2528 
2529 	return 0;
2530 
2531 fail:	zyd_stop(ifp, 1);
2532 	return error;
2533 }
2534 
2535 Static void
2536 zyd_stop(struct ifnet *ifp, int disable)
2537 {
2538 	struct zyd_softc *sc = ifp->if_softc;
2539 	struct ieee80211com *ic = &sc->sc_ic;
2540 
2541 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2542 
2543 	sc->tx_timer = 0;
2544 	ifp->if_timer = 0;
2545 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2546 
2547 	/* switch radio transmitter OFF */
2548 	(void)zyd_switch_radio(sc, 0);
2549 
2550 	/* disable Rx */
2551 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2552 
2553 	/* disable interrupts */
2554 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2555 
2556 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2557 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2558 
2559 	zyd_free_rx_list(sc);
2560 	zyd_free_tx_list(sc);
2561 }
2562 
2563 Static int
2564 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2565 {
2566 	usb_device_request_t req;
2567 	uint16_t addr;
2568 	uint8_t stat;
2569 
2570 	DPRINTF(("firmware size=%zu\n", size));
2571 
2572 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2573 	req.bRequest = ZYD_DOWNLOADREQ;
2574 	USETW(req.wIndex, 0);
2575 
2576 	addr = ZYD_FIRMWARE_START_ADDR;
2577 	while (size > 0) {
2578 #if 0
2579 		const int mlen = min(size, 4096);
2580 #else
2581 		/*
2582 		 * XXXX: When the transfer size is 4096 bytes, it is not
2583 		 * likely to be able to transfer it.
2584 		 * The cause is port or machine or chip?
2585 		 */
2586 		const int mlen = min(size, 64);
2587 #endif
2588 
2589 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2590 		    addr));
2591 
2592 		USETW(req.wValue, addr);
2593 		USETW(req.wLength, mlen);
2594 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2595 			return EIO;
2596 
2597 		addr += mlen / 2;
2598 		fw   += mlen;
2599 		size -= mlen;
2600 	}
2601 
2602 	/* check whether the upload succeeded */
2603 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2604 	req.bRequest = ZYD_DOWNLOADSTS;
2605 	USETW(req.wValue, 0);
2606 	USETW(req.wIndex, 0);
2607 	USETW(req.wLength, sizeof(stat));
2608 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2609 		return EIO;
2610 
2611 	return (stat & 0x80) ? EIO : 0;
2612 }
2613 
2614 Static void
2615 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2616 {
2617 	struct zyd_softc *sc = arg;
2618 	struct zyd_node *zn = (struct zyd_node *)ni;
2619 
2620 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2621 }
2622 
2623 Static void
2624 zyd_amrr_timeout(void *arg)
2625 {
2626 	struct zyd_softc *sc = arg;
2627 	struct ieee80211com *ic = &sc->sc_ic;
2628 	int s;
2629 
2630 	s = splnet();
2631 	if (ic->ic_opmode == IEEE80211_M_STA)
2632 		zyd_iter_func(sc, ic->ic_bss);
2633 	else
2634 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2635 	splx(s);
2636 
2637 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2638 }
2639 
2640 Static void
2641 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2642 {
2643 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2644 	int i;
2645 
2646 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2647 
2648 	/* set rate to some reasonable initial value */
2649 	for (i = ni->ni_rates.rs_nrates - 1;
2650 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2651 	     i--);
2652 	ni->ni_txrate = i;
2653 }
2654 
2655 int
2656 zyd_activate(device_t self, enum devact act)
2657 {
2658 	struct zyd_softc *sc = device_private(self);
2659 
2660 	switch (act) {
2661 	case DVACT_DEACTIVATE:
2662 		if_deactivate(&sc->sc_if);
2663 		return 0;
2664 	default:
2665 		return EOPNOTSUPP;
2666 	}
2667 }
2668