1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.12 2007/10/21 17:03:37 degroote Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.12 2007/10/21 17:03:37 degroote Exp $"); 26 27 #include "bpfilter.h" 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/proc.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <machine/endian.h> 42 43 #if NBPFILTER > 0 44 #include <net/bpf.h> 45 #endif 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_netbsd.h> 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <dev/firmload.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include <dev/usb/usbdevs.h> 69 70 #include <dev/usb/if_zydreg.h> 71 72 #ifdef USB_DEBUG 73 #define ZYD_DEBUG 74 #endif 75 76 #ifdef ZYD_DEBUG 77 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 79 int zyddebug = 0; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 87 88 /* various supported device vendors/products */ 89 #define ZYD_ZD1211_DEV(v, p) \ 90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 91 #define ZYD_ZD1211B_DEV(v, p) \ 92 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 93 static const struct zyd_type { 94 struct usb_devno dev; 95 uint8_t rev; 96 #define ZYD_ZD1211 0 97 #define ZYD_ZD1211B 1 98 } zyd_devs[] = { 99 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 100 ZYD_ZD1211_DEV(ABOCOM, WL54), 101 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 102 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 103 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 104 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 105 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 106 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 107 ZYD_ZD1211_DEV(SAGEM, XG760A), 108 ZYD_ZD1211_DEV(SENAO, NUB8301), 109 ZYD_ZD1211_DEV(SITECOMEU, WL113), 110 ZYD_ZD1211_DEV(SWEEX, ZD1211), 111 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 113 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 114 ZYD_ZD1211_DEV(TWINMOS, G240), 115 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 117 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 118 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 119 ZYD_ZD1211_DEV(ZCOM, ZD1211), 120 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 121 ZYD_ZD1211_DEV(ZYXEL, AG225H), 122 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 123 124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 126 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 131 ZYD_ZD1211B_DEV(MELCO, KG54L), 132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 133 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 134 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 135 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 136 #if 0 /* Shall we needs? */ 137 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 139 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 140 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 141 #endif 142 ZYD_ZD1211B_DEV(USR, USR5423), 143 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 146 ZYD_ZD1211B_DEV(ZYXEL, M202), 147 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 148 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 149 }; 150 #define zyd_lookup(v, p) \ 151 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 152 153 USB_DECLARE_DRIVER(zyd); 154 155 Static int zyd_attachhook(void *); 156 Static int zyd_complete_attach(struct zyd_softc *); 157 Static int zyd_open_pipes(struct zyd_softc *); 158 Static void zyd_close_pipes(struct zyd_softc *); 159 Static int zyd_alloc_tx_list(struct zyd_softc *); 160 Static void zyd_free_tx_list(struct zyd_softc *); 161 Static int zyd_alloc_rx_list(struct zyd_softc *); 162 Static void zyd_free_rx_list(struct zyd_softc *); 163 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 164 Static int zyd_media_change(struct ifnet *); 165 Static void zyd_next_scan(void *); 166 Static void zyd_task(void *); 167 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 168 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 169 void *, int, u_int); 170 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 171 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 172 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 173 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 174 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 175 Static void zyd_lock_phy(struct zyd_softc *); 176 Static void zyd_unlock_phy(struct zyd_softc *); 177 Static int zyd_rfmd_init(struct zyd_rf *); 178 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 179 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 180 Static int zyd_al2230_init(struct zyd_rf *); 181 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 182 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 183 Static int zyd_al2230_init_b(struct zyd_rf *); 184 Static int zyd_al7230B_init(struct zyd_rf *); 185 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 186 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 187 Static int zyd_al2210_init(struct zyd_rf *); 188 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 189 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 190 Static int zyd_gct_init(struct zyd_rf *); 191 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 192 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 193 Static int zyd_maxim_init(struct zyd_rf *); 194 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 195 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 196 Static int zyd_maxim2_init(struct zyd_rf *); 197 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 198 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 199 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 200 Static const char *zyd_rf_name(uint8_t); 201 Static int zyd_hw_init(struct zyd_softc *); 202 Static int zyd_read_eeprom(struct zyd_softc *); 203 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 204 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 205 Static int zyd_switch_radio(struct zyd_softc *, int); 206 Static void zyd_set_led(struct zyd_softc *, int, int); 207 Static int zyd_set_rxfilter(struct zyd_softc *); 208 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 209 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 210 Static uint8_t zyd_plcp_signal(int); 211 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 212 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 213 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 214 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 215 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 216 struct ieee80211_node *); 217 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 218 struct ieee80211_node *); 219 Static void zyd_start(struct ifnet *); 220 Static void zyd_watchdog(struct ifnet *); 221 Static int zyd_ioctl(struct ifnet *, u_long, void *); 222 Static int zyd_init(struct ifnet *); 223 Static void zyd_stop(struct ifnet *, int); 224 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 225 Static void zyd_iter_func(void *, struct ieee80211_node *); 226 Static void zyd_amrr_timeout(void *); 227 Static void zyd_newassoc(struct ieee80211_node *, int); 228 229 static const struct ieee80211_rateset zyd_rateset_11b = 230 { 4, { 2, 4, 11, 22 } }; 231 232 static const struct ieee80211_rateset zyd_rateset_11g = 233 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 234 235 USB_MATCH(zyd) 236 { 237 USB_MATCH_START(zyd, uaa); 238 239 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 240 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 241 } 242 243 Static int 244 zyd_attachhook(void *xsc) 245 { 246 struct zyd_softc *sc = xsc; 247 firmware_handle_t fwh; 248 const char *fwname; 249 u_char *fw; 250 size_t size; 251 int error; 252 253 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 254 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 255 printf("%s: failed to open firmware %s (error=%d)\n", 256 USBDEVNAME(sc->sc_dev), fwname, error); 257 return error; 258 } 259 size = firmware_get_size(fwh); 260 fw = firmware_malloc(size); 261 if (fw == NULL) { 262 printf("%s: failed to allocate firmware memory\n", 263 USBDEVNAME(sc->sc_dev)); 264 firmware_close(fwh); 265 return ENOMEM;; 266 } 267 error = firmware_read(fwh, 0, fw, size); 268 firmware_close(fwh); 269 if (error != 0) { 270 printf("%s: failed to read firmware (error %d)\n", 271 USBDEVNAME(sc->sc_dev), error); 272 firmware_free(fw, 0); 273 return error; 274 } 275 276 error = zyd_loadfirmware(sc, fw, size); 277 if (error != 0) { 278 printf("%s: could not load firmware (error=%d)\n", 279 USBDEVNAME(sc->sc_dev), error); 280 firmware_free(fw, 0); 281 return ENXIO; 282 } 283 284 firmware_free(fw, 0); 285 sc->sc_flags |= ZD1211_FWLOADED; 286 287 /* complete the attach process */ 288 if ((error = zyd_complete_attach(sc)) == 0) 289 sc->attached = 1; 290 return error; 291 } 292 293 USB_ATTACH(zyd) 294 { 295 USB_ATTACH_START(zyd, sc, uaa); 296 char *devinfop; 297 usb_device_descriptor_t* ddesc; 298 struct ifnet *ifp = &sc->sc_if; 299 300 sc->sc_udev = uaa->device; 301 sc->sc_flags = 0; 302 303 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 304 USB_ATTACH_SETUP; 305 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop); 306 usbd_devinfo_free(devinfop); 307 308 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 309 310 ddesc = usbd_get_device_descriptor(sc->sc_udev); 311 if (UGETW(ddesc->bcdDevice) < 0x4330) { 312 printf("%s: device version mismatch: 0x%x " 313 "(only >= 43.30 supported)\n", USBDEVNAME(sc->sc_dev), 314 UGETW(ddesc->bcdDevice)); 315 USB_ATTACH_ERROR_RETURN; 316 } 317 318 ifp->if_softc = sc; 319 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 320 ifp->if_init = zyd_init; 321 ifp->if_ioctl = zyd_ioctl; 322 ifp->if_start = zyd_start; 323 ifp->if_watchdog = zyd_watchdog; 324 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 325 IFQ_SET_READY(&ifp->if_snd); 326 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 327 328 if_attach(ifp); 329 /* XXXX: alloc temporarily until the layer2 can be configured. */ 330 if_alloc_sadl(ifp); 331 332 SIMPLEQ_INIT(&sc->sc_rqh); 333 334 USB_ATTACH_SUCCESS_RETURN; 335 } 336 337 Static int 338 zyd_complete_attach(struct zyd_softc *sc) 339 { 340 struct ieee80211com *ic = &sc->sc_ic; 341 struct ifnet *ifp = &sc->sc_if; 342 usbd_status error; 343 int i; 344 345 usb_init_task(&sc->sc_task, zyd_task, sc); 346 usb_callout_init(sc->sc_scan_ch); 347 348 sc->amrr.amrr_min_success_threshold = 1; 349 sc->amrr.amrr_max_success_threshold = 10; 350 usb_callout_init(sc->sc_amrr_ch); 351 352 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 353 if (error != 0) { 354 printf("%s: setting config no failed\n", 355 USBDEVNAME(sc->sc_dev)); 356 goto fail; 357 } 358 359 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 360 &sc->sc_iface); 361 if (error != 0) { 362 printf("%s: getting interface handle failed\n", 363 USBDEVNAME(sc->sc_dev)); 364 goto fail; 365 } 366 367 if ((error = zyd_open_pipes(sc)) != 0) { 368 printf("%s: could not open pipes\n", USBDEVNAME(sc->sc_dev)); 369 goto fail; 370 } 371 372 if ((error = zyd_read_eeprom(sc)) != 0) { 373 printf("%s: could not read EEPROM\n", USBDEVNAME(sc->sc_dev)); 374 goto fail; 375 } 376 377 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 378 printf("%s: could not attach RF\n", USBDEVNAME(sc->sc_dev)); 379 goto fail; 380 } 381 382 if ((error = zyd_hw_init(sc)) != 0) { 383 printf("%s: hardware initialization failed\n", 384 USBDEVNAME(sc->sc_dev)); 385 goto fail; 386 } 387 388 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 389 USBDEVNAME(sc->sc_dev), (sc->mac_rev == ZYD_ZD1211) ? "": "B", 390 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 391 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 392 393 ic->ic_ifp = ifp; 394 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 395 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 396 ic->ic_state = IEEE80211_S_INIT; 397 398 /* set device capabilities */ 399 ic->ic_caps = 400 IEEE80211_C_MONITOR | /* monitor mode supported */ 401 IEEE80211_C_TXPMGT | /* tx power management */ 402 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 403 IEEE80211_C_WEP; /* s/w WEP */ 404 405 /* set supported .11b and .11g rates */ 406 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 407 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 408 409 /* set supported .11b and .11g channels (1 through 14) */ 410 for (i = 1; i <= 14; i++) { 411 ic->ic_channels[i].ic_freq = 412 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 413 ic->ic_channels[i].ic_flags = 414 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 415 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 416 } 417 418 if_free_sadl(ifp); 419 ieee80211_ifattach(ic); 420 ic->ic_node_alloc = zyd_node_alloc; 421 ic->ic_newassoc = zyd_newassoc; 422 423 /* override state transition machine */ 424 sc->sc_newstate = ic->ic_newstate; 425 ic->ic_newstate = zyd_newstate; 426 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 427 428 #if NBPFILTER > 0 429 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 430 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 431 &sc->sc_drvbpf); 432 433 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 434 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 435 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 436 437 sc->sc_txtap_len = sizeof sc->sc_txtapu; 438 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 439 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 440 #endif 441 442 ieee80211_announce(ic); 443 444 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 445 USBDEV(sc->sc_dev)); 446 447 fail: return error; 448 } 449 450 USB_DETACH(zyd) 451 { 452 USB_DETACH_START(zyd, sc); 453 struct ieee80211com *ic = &sc->sc_ic; 454 struct ifnet *ifp = &sc->sc_if; 455 int s; 456 457 if (!sc->attached) { 458 if_free_sadl(ifp); 459 if_detach(ifp); 460 return 0; 461 } 462 463 s = splusb(); 464 465 zyd_stop(ifp, 1); 466 usb_rem_task(sc->sc_udev, &sc->sc_task); 467 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc); 468 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc); 469 470 zyd_close_pipes(sc); 471 472 sc->attached = 0; 473 474 #if NBPFILTER > 0 475 bpfdetach(ifp); 476 #endif 477 ieee80211_ifdetach(ic); 478 if_detach(ifp); 479 480 splx(s); 481 482 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 483 USBDEV(sc->sc_dev)); 484 485 return 0; 486 } 487 488 Static int 489 zyd_open_pipes(struct zyd_softc *sc) 490 { 491 usb_endpoint_descriptor_t *edesc; 492 int isize; 493 usbd_status error; 494 495 /* interrupt in */ 496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 497 if (edesc == NULL) 498 return EINVAL; 499 500 isize = UGETW(edesc->wMaxPacketSize); 501 if (isize == 0) /* should not happen */ 502 return EINVAL; 503 504 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 505 if (sc->ibuf == NULL) 506 return ENOMEM; 507 508 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 509 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 510 USBD_DEFAULT_INTERVAL); 511 if (error != 0) { 512 printf("%s: open rx intr pipe failed: %s\n", 513 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 514 goto fail; 515 } 516 517 /* interrupt out (not necessarily an interrupt pipe) */ 518 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 519 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 520 if (error != 0) { 521 printf("%s: open tx intr pipe failed: %s\n", 522 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 523 goto fail; 524 } 525 526 /* bulk in */ 527 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 528 &sc->zyd_ep[ZYD_ENDPT_BIN]); 529 if (error != 0) { 530 printf("%s: open rx pipe failed: %s\n", 531 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 532 goto fail; 533 } 534 535 /* bulk out */ 536 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 537 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 538 if (error != 0) { 539 printf("%s: open tx pipe failed: %s\n", 540 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 541 goto fail; 542 } 543 544 return 0; 545 546 fail: zyd_close_pipes(sc); 547 return error; 548 } 549 550 Static void 551 zyd_close_pipes(struct zyd_softc *sc) 552 { 553 int i; 554 555 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 556 if (sc->zyd_ep[i] != NULL) { 557 usbd_abort_pipe(sc->zyd_ep[i]); 558 usbd_close_pipe(sc->zyd_ep[i]); 559 sc->zyd_ep[i] = NULL; 560 } 561 } 562 if (sc->ibuf != NULL) { 563 free(sc->ibuf, M_USBDEV); 564 sc->ibuf = NULL; 565 } 566 } 567 568 Static int 569 zyd_alloc_tx_list(struct zyd_softc *sc) 570 { 571 int i, error; 572 573 sc->tx_queued = 0; 574 575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 576 struct zyd_tx_data *data = &sc->tx_data[i]; 577 578 data->sc = sc; /* backpointer for callbacks */ 579 580 data->xfer = usbd_alloc_xfer(sc->sc_udev); 581 if (data->xfer == NULL) { 582 printf("%s: could not allocate tx xfer\n", 583 USBDEVNAME(sc->sc_dev)); 584 error = ENOMEM; 585 goto fail; 586 } 587 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 588 if (data->buf == NULL) { 589 printf("%s: could not allocate tx buffer\n", 590 USBDEVNAME(sc->sc_dev)); 591 error = ENOMEM; 592 goto fail; 593 } 594 595 /* clear Tx descriptor */ 596 bzero(data->buf, sizeof (struct zyd_tx_desc)); 597 } 598 return 0; 599 600 fail: zyd_free_tx_list(sc); 601 return error; 602 } 603 604 Static void 605 zyd_free_tx_list(struct zyd_softc *sc) 606 { 607 int i; 608 609 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 610 struct zyd_tx_data *data = &sc->tx_data[i]; 611 612 if (data->xfer != NULL) { 613 usbd_free_xfer(data->xfer); 614 data->xfer = NULL; 615 } 616 if (data->ni != NULL) { 617 ieee80211_free_node(data->ni); 618 data->ni = NULL; 619 } 620 } 621 } 622 623 Static int 624 zyd_alloc_rx_list(struct zyd_softc *sc) 625 { 626 int i, error; 627 628 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 629 struct zyd_rx_data *data = &sc->rx_data[i]; 630 631 data->sc = sc; /* backpointer for callbacks */ 632 633 data->xfer = usbd_alloc_xfer(sc->sc_udev); 634 if (data->xfer == NULL) { 635 printf("%s: could not allocate rx xfer\n", 636 USBDEVNAME(sc->sc_dev)); 637 error = ENOMEM; 638 goto fail; 639 } 640 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 641 if (data->buf == NULL) { 642 printf("%s: could not allocate rx buffer\n", 643 USBDEVNAME(sc->sc_dev)); 644 error = ENOMEM; 645 goto fail; 646 } 647 } 648 return 0; 649 650 fail: zyd_free_rx_list(sc); 651 return error; 652 } 653 654 Static void 655 zyd_free_rx_list(struct zyd_softc *sc) 656 { 657 int i; 658 659 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 660 struct zyd_rx_data *data = &sc->rx_data[i]; 661 662 if (data->xfer != NULL) { 663 usbd_free_xfer(data->xfer); 664 data->xfer = NULL; 665 } 666 } 667 } 668 669 /* ARGUSED */ 670 Static struct ieee80211_node * 671 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 672 { 673 struct zyd_node *zn; 674 675 zn = malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT); 676 if (zn != NULL) 677 bzero(zn, sizeof (struct zyd_node)); 678 return (struct ieee80211_node *)zn; 679 } 680 681 Static int 682 zyd_media_change(struct ifnet *ifp) 683 { 684 int error; 685 686 error = ieee80211_media_change(ifp); 687 if (error != ENETRESET) 688 return error; 689 690 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 691 zyd_init(ifp); 692 693 return 0; 694 } 695 696 /* 697 * This function is called periodically (every 200ms) during scanning to 698 * switch from one channel to another. 699 */ 700 Static void 701 zyd_next_scan(void *arg) 702 { 703 struct zyd_softc *sc = arg; 704 struct ieee80211com *ic = &sc->sc_ic; 705 706 if (ic->ic_state == IEEE80211_S_SCAN) 707 ieee80211_next_scan(ic); 708 } 709 710 Static void 711 zyd_task(void *arg) 712 { 713 struct zyd_softc *sc = arg; 714 struct ieee80211com *ic = &sc->sc_ic; 715 enum ieee80211_state ostate; 716 717 ostate = ic->ic_state; 718 719 switch (sc->sc_state) { 720 case IEEE80211_S_INIT: 721 if (ostate == IEEE80211_S_RUN) { 722 /* turn link LED off */ 723 zyd_set_led(sc, ZYD_LED1, 0); 724 725 /* stop data LED from blinking */ 726 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 727 } 728 break; 729 730 case IEEE80211_S_SCAN: 731 zyd_set_chan(sc, ic->ic_curchan); 732 usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 733 break; 734 735 case IEEE80211_S_AUTH: 736 case IEEE80211_S_ASSOC: 737 zyd_set_chan(sc, ic->ic_curchan); 738 break; 739 740 case IEEE80211_S_RUN: 741 { 742 struct ieee80211_node *ni = ic->ic_bss; 743 744 zyd_set_chan(sc, ic->ic_curchan); 745 746 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 747 /* turn link LED on */ 748 zyd_set_led(sc, ZYD_LED1, 1); 749 750 /* make data LED blink upon Tx */ 751 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 752 753 zyd_set_bssid(sc, ni->ni_bssid); 754 } 755 756 if (ic->ic_opmode == IEEE80211_M_STA) { 757 /* fake a join to init the tx rate */ 758 zyd_newassoc(ni, 1); 759 } 760 761 /* start automatic rate control timer */ 762 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 763 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 764 765 break; 766 } 767 } 768 769 sc->sc_newstate(ic, sc->sc_state, -1); 770 } 771 772 Static int 773 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 774 { 775 struct zyd_softc *sc = ic->ic_ifp->if_softc; 776 777 usb_rem_task(sc->sc_udev, &sc->sc_task); 778 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc); 779 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc); 780 781 /* do it in a process context */ 782 sc->sc_state = nstate; 783 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 784 785 return 0; 786 } 787 788 Static int 789 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 790 void *odata, int olen, u_int flags) 791 { 792 usbd_xfer_handle xfer; 793 struct zyd_cmd cmd; 794 struct rq rq; 795 uint16_t xferflags; 796 usbd_status error; 797 int s = 0; 798 799 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 800 return ENOMEM; 801 802 cmd.code = htole16(code); 803 bcopy(idata, cmd.data, ilen); 804 805 xferflags = USBD_FORCE_SHORT_XFER; 806 if (!(flags & ZYD_CMD_FLAG_READ)) 807 xferflags |= USBD_SYNCHRONOUS; 808 else { 809 s = splusb(); 810 rq.idata = idata; 811 rq.odata = odata; 812 rq.len = olen / sizeof (struct zyd_pair); 813 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 814 } 815 816 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 817 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 818 error = usbd_transfer(xfer); 819 if (error != USBD_IN_PROGRESS && error != 0) { 820 if (flags & ZYD_CMD_FLAG_READ) 821 splx(s); 822 printf("%s: could not send command (error=%s)\n", 823 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 824 (void)usbd_free_xfer(xfer); 825 return EIO; 826 } 827 if (!(flags & ZYD_CMD_FLAG_READ)) { 828 (void)usbd_free_xfer(xfer); 829 return 0; /* write: don't wait for reply */ 830 } 831 /* wait at most one second for command reply */ 832 error = tsleep(odata, PCATCH, "zydcmd", hz); 833 if (error == EWOULDBLOCK) 834 printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev)); 835 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 836 splx(s); 837 838 (void)usbd_free_xfer(xfer); 839 return error; 840 } 841 842 Static int 843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 844 { 845 struct zyd_pair tmp; 846 int error; 847 848 reg = htole16(reg); 849 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 850 ZYD_CMD_FLAG_READ); 851 if (error == 0) 852 *val = le16toh(tmp.val); 853 return error; 854 } 855 856 Static int 857 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 858 { 859 struct zyd_pair tmp[2]; 860 uint16_t regs[2]; 861 int error; 862 863 regs[0] = htole16(ZYD_REG32_HI(reg)); 864 regs[1] = htole16(ZYD_REG32_LO(reg)); 865 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 866 ZYD_CMD_FLAG_READ); 867 if (error == 0) 868 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 869 return error; 870 } 871 872 Static int 873 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 874 { 875 struct zyd_pair pair; 876 877 pair.reg = htole16(reg); 878 pair.val = htole16(val); 879 880 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 881 } 882 883 Static int 884 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 885 { 886 struct zyd_pair pair[2]; 887 888 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 889 pair[0].val = htole16(val >> 16); 890 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 891 pair[1].val = htole16(val & 0xffff); 892 893 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 894 } 895 896 Static int 897 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 898 { 899 struct zyd_rf *rf = &sc->sc_rf; 900 struct zyd_rfwrite req; 901 uint16_t cr203; 902 int i; 903 904 (void)zyd_read16(sc, ZYD_CR203, &cr203); 905 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 906 907 req.code = htole16(2); 908 req.width = htole16(rf->width); 909 for (i = 0; i < rf->width; i++) { 910 req.bit[i] = htole16(cr203); 911 if (val & (1 << (rf->width - 1 - i))) 912 req.bit[i] |= htole16(ZYD_RF_DATA); 913 } 914 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 915 } 916 917 Static void 918 zyd_lock_phy(struct zyd_softc *sc) 919 { 920 uint32_t tmp; 921 922 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 923 tmp &= ~ZYD_UNLOCK_PHY_REGS; 924 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 925 } 926 927 Static void 928 zyd_unlock_phy(struct zyd_softc *sc) 929 { 930 uint32_t tmp; 931 932 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 933 tmp |= ZYD_UNLOCK_PHY_REGS; 934 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 935 } 936 937 /* 938 * RFMD RF methods. 939 */ 940 Static int 941 zyd_rfmd_init(struct zyd_rf *rf) 942 { 943 #define N(a) (sizeof (a) / sizeof ((a)[0])) 944 struct zyd_softc *sc = rf->rf_sc; 945 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 946 static const uint32_t rfini[] = ZYD_RFMD_RF; 947 int i, error; 948 949 /* init RF-dependent PHY registers */ 950 for (i = 0; i < N(phyini); i++) { 951 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 952 if (error != 0) 953 return error; 954 } 955 956 /* init RFMD radio */ 957 for (i = 0; i < N(rfini); i++) { 958 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 959 return error; 960 } 961 return 0; 962 #undef N 963 } 964 965 Static int 966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 967 { 968 struct zyd_softc *sc = rf->rf_sc; 969 970 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 971 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 972 973 return 0; 974 } 975 976 Static int 977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 978 { 979 struct zyd_softc *sc = rf->rf_sc; 980 static const struct { 981 uint32_t r1, r2; 982 } rfprog[] = ZYD_RFMD_CHANTABLE; 983 984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 986 987 return 0; 988 } 989 990 /* 991 * AL2230 RF methods. 992 */ 993 Static int 994 zyd_al2230_init(struct zyd_rf *rf) 995 { 996 #define N(a) (sizeof (a) / sizeof ((a)[0])) 997 struct zyd_softc *sc = rf->rf_sc; 998 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 999 static const uint32_t rfini[] = ZYD_AL2230_RF; 1000 int i, error; 1001 1002 /* init RF-dependent PHY registers */ 1003 for (i = 0; i < N(phyini); i++) { 1004 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1005 if (error != 0) 1006 return error; 1007 } 1008 1009 /* init AL2230 radio */ 1010 for (i = 0; i < N(rfini); i++) { 1011 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1012 return error; 1013 } 1014 return 0; 1015 #undef N 1016 } 1017 1018 Static int 1019 zyd_al2230_init_b(struct zyd_rf *rf) 1020 { 1021 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1022 struct zyd_softc *sc = rf->rf_sc; 1023 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1024 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1025 int i, error; 1026 1027 /* init RF-dependent PHY registers */ 1028 for (i = 0; i < N(phyini); i++) { 1029 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1030 if (error != 0) 1031 return error; 1032 } 1033 1034 /* init AL2230 radio */ 1035 for (i = 0; i < N(rfini); i++) { 1036 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1037 return error; 1038 } 1039 return 0; 1040 #undef N 1041 } 1042 1043 Static int 1044 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1045 { 1046 struct zyd_softc *sc = rf->rf_sc; 1047 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1048 1049 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1050 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1051 1052 return 0; 1053 } 1054 1055 Static int 1056 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1057 { 1058 struct zyd_softc *sc = rf->rf_sc; 1059 static const struct { 1060 uint32_t r1, r2, r3; 1061 } rfprog[] = ZYD_AL2230_CHANTABLE; 1062 1063 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1064 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1065 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1066 1067 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1068 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1069 1070 return 0; 1071 } 1072 1073 /* 1074 * AL7230B RF methods. 1075 */ 1076 Static int 1077 zyd_al7230B_init(struct zyd_rf *rf) 1078 { 1079 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1080 struct zyd_softc *sc = rf->rf_sc; 1081 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1082 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1083 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1084 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1085 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1086 int i, error; 1087 1088 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1089 1090 /* init RF-dependent PHY registers, part one */ 1091 for (i = 0; i < N(phyini_1); i++) { 1092 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1093 if (error != 0) 1094 return error; 1095 } 1096 /* init AL7230B radio, part one */ 1097 for (i = 0; i < N(rfini_1); i++) { 1098 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1099 return error; 1100 } 1101 /* init RF-dependent PHY registers, part two */ 1102 for (i = 0; i < N(phyini_2); i++) { 1103 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1104 if (error != 0) 1105 return error; 1106 } 1107 /* init AL7230B radio, part two */ 1108 for (i = 0; i < N(rfini_2); i++) { 1109 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1110 return error; 1111 } 1112 /* init RF-dependent PHY registers, part three */ 1113 for (i = 0; i < N(phyini_3); i++) { 1114 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1115 if (error != 0) 1116 return error; 1117 } 1118 1119 return 0; 1120 #undef N 1121 } 1122 1123 Static int 1124 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1125 { 1126 struct zyd_softc *sc = rf->rf_sc; 1127 1128 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1129 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1130 1131 return 0; 1132 } 1133 1134 Static int 1135 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1136 { 1137 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1138 struct zyd_softc *sc = rf->rf_sc; 1139 static const struct { 1140 uint32_t r1, r2; 1141 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1142 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1143 int i, error; 1144 1145 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1146 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1147 1148 for (i = 0; i < N(rfsc); i++) { 1149 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1150 return error; 1151 } 1152 1153 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1154 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1155 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1156 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1157 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1158 1159 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1160 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1161 (void)zyd_rfwrite(sc, 0x3c9000); 1162 1163 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1164 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1165 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1166 1167 return 0; 1168 #undef N 1169 } 1170 1171 /* 1172 * AL2210 RF methods. 1173 */ 1174 Static int 1175 zyd_al2210_init(struct zyd_rf *rf) 1176 { 1177 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1178 struct zyd_softc *sc = rf->rf_sc; 1179 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1180 static const uint32_t rfini[] = ZYD_AL2210_RF; 1181 uint32_t tmp; 1182 int i, error; 1183 1184 (void)zyd_write32(sc, ZYD_CR18, 2); 1185 1186 /* init RF-dependent PHY registers */ 1187 for (i = 0; i < N(phyini); i++) { 1188 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1189 if (error != 0) 1190 return error; 1191 } 1192 /* init AL2210 radio */ 1193 for (i = 0; i < N(rfini); i++) { 1194 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1195 return error; 1196 } 1197 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1198 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1199 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1200 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1201 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1202 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1204 (void)zyd_write32(sc, ZYD_CR18, 3); 1205 1206 return 0; 1207 #undef N 1208 } 1209 1210 Static int 1211 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1212 { 1213 /* vendor driver does nothing for this RF chip */ 1214 1215 return 0; 1216 } 1217 1218 Static int 1219 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1220 { 1221 struct zyd_softc *sc = rf->rf_sc; 1222 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1223 uint32_t tmp; 1224 1225 (void)zyd_write32(sc, ZYD_CR18, 2); 1226 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1227 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1228 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1229 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1230 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1231 1232 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1233 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1234 1235 /* actually set the channel */ 1236 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1237 1238 (void)zyd_write32(sc, ZYD_CR18, 3); 1239 1240 return 0; 1241 } 1242 1243 /* 1244 * GCT RF methods. 1245 */ 1246 Static int 1247 zyd_gct_init(struct zyd_rf *rf) 1248 { 1249 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1250 struct zyd_softc *sc = rf->rf_sc; 1251 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1252 static const uint32_t rfini[] = ZYD_GCT_RF; 1253 int i, error; 1254 1255 /* init RF-dependent PHY registers */ 1256 for (i = 0; i < N(phyini); i++) { 1257 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1258 if (error != 0) 1259 return error; 1260 } 1261 /* init cgt radio */ 1262 for (i = 0; i < N(rfini); i++) { 1263 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1264 return error; 1265 } 1266 return 0; 1267 #undef N 1268 } 1269 1270 Static int 1271 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1272 { 1273 /* vendor driver does nothing for this RF chip */ 1274 1275 return 0; 1276 } 1277 1278 Static int 1279 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1280 { 1281 struct zyd_softc *sc = rf->rf_sc; 1282 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1283 1284 (void)zyd_rfwrite(sc, 0x1c0000); 1285 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1286 (void)zyd_rfwrite(sc, 0x1c0008); 1287 1288 return 0; 1289 } 1290 1291 /* 1292 * Maxim RF methods. 1293 */ 1294 Static int 1295 zyd_maxim_init(struct zyd_rf *rf) 1296 { 1297 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1298 struct zyd_softc *sc = rf->rf_sc; 1299 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1300 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1301 uint16_t tmp; 1302 int i, error; 1303 1304 /* init RF-dependent PHY registers */ 1305 for (i = 0; i < N(phyini); i++) { 1306 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1307 if (error != 0) 1308 return error; 1309 } 1310 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1311 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1312 1313 /* init maxim radio */ 1314 for (i = 0; i < N(rfini); i++) { 1315 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1316 return error; 1317 } 1318 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1319 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1320 1321 return 0; 1322 #undef N 1323 } 1324 1325 Static int 1326 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1327 { 1328 /* vendor driver does nothing for this RF chip */ 1329 1330 return 0; 1331 } 1332 1333 Static int 1334 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1335 { 1336 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1337 struct zyd_softc *sc = rf->rf_sc; 1338 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1339 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1340 static const struct { 1341 uint32_t r1, r2; 1342 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1343 uint16_t tmp; 1344 int i, error; 1345 1346 /* 1347 * Do the same as we do when initializing it, except for the channel 1348 * values coming from the two channel tables. 1349 */ 1350 1351 /* init RF-dependent PHY registers */ 1352 for (i = 0; i < N(phyini); i++) { 1353 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1354 if (error != 0) 1355 return error; 1356 } 1357 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1358 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1359 1360 /* first two values taken from the chantables */ 1361 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1362 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1363 1364 /* init maxim radio - skipping the two first values */ 1365 for (i = 2; i < N(rfini); i++) { 1366 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1367 return error; 1368 } 1369 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1370 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1371 1372 return 0; 1373 #undef N 1374 } 1375 1376 /* 1377 * Maxim2 RF methods. 1378 */ 1379 Static int 1380 zyd_maxim2_init(struct zyd_rf *rf) 1381 { 1382 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1383 struct zyd_softc *sc = rf->rf_sc; 1384 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1385 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1386 uint16_t tmp; 1387 int i, error; 1388 1389 /* init RF-dependent PHY registers */ 1390 for (i = 0; i < N(phyini); i++) { 1391 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1392 if (error != 0) 1393 return error; 1394 } 1395 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1396 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1397 1398 /* init maxim2 radio */ 1399 for (i = 0; i < N(rfini); i++) { 1400 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1401 return error; 1402 } 1403 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1404 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1405 1406 return 0; 1407 #undef N 1408 } 1409 1410 Static int 1411 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1412 { 1413 /* vendor driver does nothing for this RF chip */ 1414 1415 return 0; 1416 } 1417 1418 Static int 1419 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1420 { 1421 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1422 struct zyd_softc *sc = rf->rf_sc; 1423 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1424 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1425 static const struct { 1426 uint32_t r1, r2; 1427 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1428 uint16_t tmp; 1429 int i, error; 1430 1431 /* 1432 * Do the same as we do when initializing it, except for the channel 1433 * values coming from the two channel tables. 1434 */ 1435 1436 /* init RF-dependent PHY registers */ 1437 for (i = 0; i < N(phyini); i++) { 1438 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1439 if (error != 0) 1440 return error; 1441 } 1442 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1443 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1444 1445 /* first two values taken from the chantables */ 1446 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1448 1449 /* init maxim2 radio - skipping the two first values */ 1450 for (i = 2; i < N(rfini); i++) { 1451 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1452 return error; 1453 } 1454 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1455 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1456 1457 return 0; 1458 #undef N 1459 } 1460 1461 Static int 1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1463 { 1464 struct zyd_rf *rf = &sc->sc_rf; 1465 1466 rf->rf_sc = sc; 1467 1468 switch (type) { 1469 case ZYD_RF_RFMD: 1470 rf->init = zyd_rfmd_init; 1471 rf->switch_radio = zyd_rfmd_switch_radio; 1472 rf->set_channel = zyd_rfmd_set_channel; 1473 rf->width = 24; /* 24-bit RF values */ 1474 break; 1475 case ZYD_RF_AL2230: 1476 if (sc->mac_rev == ZYD_ZD1211B) 1477 rf->init = zyd_al2230_init_b; 1478 else 1479 rf->init = zyd_al2230_init; 1480 rf->switch_radio = zyd_al2230_switch_radio; 1481 rf->set_channel = zyd_al2230_set_channel; 1482 rf->width = 24; /* 24-bit RF values */ 1483 break; 1484 case ZYD_RF_AL7230B: 1485 rf->init = zyd_al7230B_init; 1486 rf->switch_radio = zyd_al7230B_switch_radio; 1487 rf->set_channel = zyd_al7230B_set_channel; 1488 rf->width = 24; /* 24-bit RF values */ 1489 break; 1490 case ZYD_RF_AL2210: 1491 rf->init = zyd_al2210_init; 1492 rf->switch_radio = zyd_al2210_switch_radio; 1493 rf->set_channel = zyd_al2210_set_channel; 1494 rf->width = 24; /* 24-bit RF values */ 1495 break; 1496 case ZYD_RF_GCT: 1497 rf->init = zyd_gct_init; 1498 rf->switch_radio = zyd_gct_switch_radio; 1499 rf->set_channel = zyd_gct_set_channel; 1500 rf->width = 21; /* 21-bit RF values */ 1501 break; 1502 case ZYD_RF_MAXIM_NEW: 1503 rf->init = zyd_maxim_init; 1504 rf->switch_radio = zyd_maxim_switch_radio; 1505 rf->set_channel = zyd_maxim_set_channel; 1506 rf->width = 18; /* 18-bit RF values */ 1507 break; 1508 case ZYD_RF_MAXIM_NEW2: 1509 rf->init = zyd_maxim2_init; 1510 rf->switch_radio = zyd_maxim2_switch_radio; 1511 rf->set_channel = zyd_maxim2_set_channel; 1512 rf->width = 18; /* 18-bit RF values */ 1513 break; 1514 default: 1515 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1516 USBDEVNAME(sc->sc_dev), zyd_rf_name(type)); 1517 return EINVAL; 1518 } 1519 return 0; 1520 } 1521 1522 Static const char * 1523 zyd_rf_name(uint8_t type) 1524 { 1525 static const char * const zyd_rfs[] = { 1526 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1527 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1528 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1529 "PHILIPS" 1530 }; 1531 1532 return zyd_rfs[(type > 15) ? 0 : type]; 1533 } 1534 1535 Static int 1536 zyd_hw_init(struct zyd_softc *sc) 1537 { 1538 struct zyd_rf *rf = &sc->sc_rf; 1539 const struct zyd_phy_pair *phyp; 1540 int error; 1541 1542 /* specify that the plug and play is finished */ 1543 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1544 1545 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1546 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1547 1548 /* retrieve firmware revision number */ 1549 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1550 1551 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1552 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1553 1554 /* disable interrupts */ 1555 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1556 1557 /* PHY init */ 1558 zyd_lock_phy(sc); 1559 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1560 for (; phyp->reg != 0; phyp++) { 1561 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1562 goto fail; 1563 } 1564 zyd_unlock_phy(sc); 1565 1566 /* HMAC init */ 1567 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1568 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1569 1570 if (sc->mac_rev == ZYD_ZD1211) { 1571 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1572 } else { 1573 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1574 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1578 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1580 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1581 } 1582 1583 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1584 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1585 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1586 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1587 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1588 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1589 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1590 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1591 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1592 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1593 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1594 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1595 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1596 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1597 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1598 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1599 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1600 1601 /* RF chip init */ 1602 zyd_lock_phy(sc); 1603 error = (*rf->init)(rf); 1604 zyd_unlock_phy(sc); 1605 if (error != 0) { 1606 printf("%s: radio initialization failed\n", 1607 USBDEVNAME(sc->sc_dev)); 1608 goto fail; 1609 } 1610 1611 /* init beacon interval to 100ms */ 1612 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1613 goto fail; 1614 1615 fail: return error; 1616 } 1617 1618 Static int 1619 zyd_read_eeprom(struct zyd_softc *sc) 1620 { 1621 struct ieee80211com *ic = &sc->sc_ic; 1622 uint32_t tmp; 1623 uint16_t val; 1624 int i; 1625 1626 /* read MAC address */ 1627 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1628 ic->ic_myaddr[0] = tmp & 0xff; 1629 ic->ic_myaddr[1] = tmp >> 8; 1630 ic->ic_myaddr[2] = tmp >> 16; 1631 ic->ic_myaddr[3] = tmp >> 24; 1632 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1633 ic->ic_myaddr[4] = tmp & 0xff; 1634 ic->ic_myaddr[5] = tmp >> 8; 1635 1636 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1637 sc->rf_rev = tmp & 0x0f; 1638 sc->pa_rev = (tmp >> 16) & 0x0f; 1639 1640 /* read regulatory domain (currently unused) */ 1641 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1642 sc->regdomain = tmp >> 16; 1643 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1644 1645 /* read Tx power calibration tables */ 1646 for (i = 0; i < 7; i++) { 1647 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1648 sc->pwr_cal[i * 2] = val >> 8; 1649 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1650 1651 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1652 sc->pwr_int[i * 2] = val >> 8; 1653 sc->pwr_int[i * 2 + 1] = val & 0xff; 1654 1655 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1656 sc->ofdm36_cal[i * 2] = val >> 8; 1657 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1658 1659 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1660 sc->ofdm48_cal[i * 2] = val >> 8; 1661 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1662 1663 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1664 sc->ofdm54_cal[i * 2] = val >> 8; 1665 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1666 } 1667 return 0; 1668 } 1669 1670 Static int 1671 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1672 { 1673 uint32_t tmp; 1674 1675 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1676 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1677 1678 tmp = addr[5] << 8 | addr[4]; 1679 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1680 1681 return 0; 1682 } 1683 1684 Static int 1685 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1686 { 1687 uint32_t tmp; 1688 1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1690 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1691 1692 tmp = addr[5] << 8 | addr[4]; 1693 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1694 1695 return 0; 1696 } 1697 1698 Static int 1699 zyd_switch_radio(struct zyd_softc *sc, int on) 1700 { 1701 struct zyd_rf *rf = &sc->sc_rf; 1702 int error; 1703 1704 zyd_lock_phy(sc); 1705 error = (*rf->switch_radio)(rf, on); 1706 zyd_unlock_phy(sc); 1707 1708 return error; 1709 } 1710 1711 Static void 1712 zyd_set_led(struct zyd_softc *sc, int which, int on) 1713 { 1714 uint32_t tmp; 1715 1716 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1717 tmp &= ~which; 1718 if (on) 1719 tmp |= which; 1720 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1721 } 1722 1723 Static int 1724 zyd_set_rxfilter(struct zyd_softc *sc) 1725 { 1726 uint32_t rxfilter; 1727 1728 switch (sc->sc_ic.ic_opmode) { 1729 case IEEE80211_M_STA: 1730 rxfilter = ZYD_FILTER_BSS; 1731 break; 1732 case IEEE80211_M_IBSS: 1733 case IEEE80211_M_HOSTAP: 1734 rxfilter = ZYD_FILTER_HOSTAP; 1735 break; 1736 case IEEE80211_M_MONITOR: 1737 rxfilter = ZYD_FILTER_MONITOR; 1738 break; 1739 default: 1740 /* should not get there */ 1741 return EINVAL; 1742 } 1743 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1744 } 1745 1746 Static void 1747 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1748 { 1749 struct ieee80211com *ic = &sc->sc_ic; 1750 struct zyd_rf *rf = &sc->sc_rf; 1751 u_int chan; 1752 1753 chan = ieee80211_chan2ieee(ic, c); 1754 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1755 return; 1756 1757 zyd_lock_phy(sc); 1758 1759 (*rf->set_channel)(rf, chan); 1760 1761 /* update Tx power */ 1762 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1763 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1764 1765 if (sc->mac_rev == ZYD_ZD1211B) { 1766 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1767 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1768 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1769 1770 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1771 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1772 } 1773 1774 zyd_unlock_phy(sc); 1775 } 1776 1777 Static int 1778 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1779 { 1780 /* XXX this is probably broken.. */ 1781 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1782 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1783 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1784 1785 return 0; 1786 } 1787 1788 Static uint8_t 1789 zyd_plcp_signal(int rate) 1790 { 1791 switch (rate) { 1792 /* CCK rates (returned values are device-dependent) */ 1793 case 2: return 0x0; 1794 case 4: return 0x1; 1795 case 11: return 0x2; 1796 case 22: return 0x3; 1797 1798 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1799 case 12: return 0xb; 1800 case 18: return 0xf; 1801 case 24: return 0xa; 1802 case 36: return 0xe; 1803 case 48: return 0x9; 1804 case 72: return 0xd; 1805 case 96: return 0x8; 1806 case 108: return 0xc; 1807 1808 /* unsupported rates (should not get there) */ 1809 default: return 0xff; 1810 } 1811 } 1812 1813 Static void 1814 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1815 { 1816 struct zyd_softc *sc = (struct zyd_softc *)priv; 1817 struct zyd_cmd *cmd; 1818 uint32_t datalen; 1819 1820 if (status != USBD_NORMAL_COMPLETION) { 1821 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1822 return; 1823 1824 if (status == USBD_STALLED) { 1825 usbd_clear_endpoint_stall_async( 1826 sc->zyd_ep[ZYD_ENDPT_IIN]); 1827 } 1828 return; 1829 } 1830 1831 cmd = (struct zyd_cmd *)sc->ibuf; 1832 1833 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1834 struct zyd_notif_retry *retry = 1835 (struct zyd_notif_retry *)cmd->data; 1836 struct ieee80211com *ic = &sc->sc_ic; 1837 struct ifnet *ifp = &sc->sc_if; 1838 struct ieee80211_node *ni; 1839 1840 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1841 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1842 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1843 1844 /* 1845 * Find the node to which the packet was sent and update its 1846 * retry statistics. In BSS mode, this node is the AP we're 1847 * associated to so no lookup is actually needed. 1848 */ 1849 if (ic->ic_opmode != IEEE80211_M_STA) { 1850 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1851 if (ni == NULL) 1852 return; /* just ignore */ 1853 } else 1854 ni = ic->ic_bss; 1855 1856 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1857 1858 if (le16toh(retry->count) & 0x100) 1859 ifp->if_oerrors++; /* too many retries */ 1860 1861 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1862 struct rq *rqp; 1863 1864 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1865 return; /* HMAC interrupt */ 1866 1867 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1868 datalen -= sizeof(cmd->code); 1869 datalen -= 2; /* XXX: padding? */ 1870 1871 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1872 int i; 1873 1874 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1875 continue; 1876 for (i = 0; i < rqp->len; i++) { 1877 if (*(((const uint16_t *)rqp->idata) + i) != 1878 (((struct zyd_pair *)cmd->data) + i)->reg) 1879 break; 1880 } 1881 if (i != rqp->len) 1882 continue; 1883 1884 /* copy answer into caller-supplied buffer */ 1885 bcopy(cmd->data, rqp->odata, 1886 sizeof(struct zyd_pair) * rqp->len); 1887 wakeup(rqp->odata); /* wakeup caller */ 1888 1889 return; 1890 } 1891 return; /* unexpected IORD notification */ 1892 } else { 1893 printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev), 1894 le16toh(cmd->code)); 1895 } 1896 } 1897 1898 Static void 1899 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1900 { 1901 struct ieee80211com *ic = &sc->sc_ic; 1902 struct ifnet *ifp = &sc->sc_if; 1903 struct ieee80211_node *ni; 1904 struct ieee80211_frame *wh; 1905 const struct zyd_plcphdr *plcp; 1906 const struct zyd_rx_stat *stat; 1907 struct mbuf *m; 1908 int rlen, s; 1909 1910 if (len < ZYD_MIN_FRAGSZ) { 1911 printf("%s: frame too short (length=%d)\n", 1912 USBDEVNAME(sc->sc_dev), len); 1913 ifp->if_ierrors++; 1914 return; 1915 } 1916 1917 plcp = (const struct zyd_plcphdr *)buf; 1918 stat = (const struct zyd_rx_stat *) 1919 (buf + len - sizeof (struct zyd_rx_stat)); 1920 1921 if (stat->flags & ZYD_RX_ERROR) { 1922 DPRINTF(("%s: RX status indicated error (%x)\n", 1923 USBDEVNAME(sc->sc_dev), stat->flags)); 1924 ifp->if_ierrors++; 1925 return; 1926 } 1927 1928 /* compute actual frame length */ 1929 rlen = len - sizeof (struct zyd_plcphdr) - 1930 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1931 1932 /* allocate a mbuf to store the frame */ 1933 MGETHDR(m, M_DONTWAIT, MT_DATA); 1934 if (m == NULL) { 1935 printf("%s: could not allocate rx mbuf\n", 1936 USBDEVNAME(sc->sc_dev)); 1937 ifp->if_ierrors++; 1938 return; 1939 } 1940 if (rlen > MHLEN) { 1941 MCLGET(m, M_DONTWAIT); 1942 if (!(m->m_flags & M_EXT)) { 1943 printf("%s: could not allocate rx mbuf cluster\n", 1944 USBDEVNAME(sc->sc_dev)); 1945 m_freem(m); 1946 ifp->if_ierrors++; 1947 return; 1948 } 1949 } 1950 m->m_pkthdr.rcvif = ifp; 1951 m->m_pkthdr.len = m->m_len = rlen; 1952 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); 1953 1954 s = splnet(); 1955 1956 #if NBPFILTER > 0 1957 if (sc->sc_drvbpf != NULL) { 1958 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1959 static const uint8_t rates[] = { 1960 /* reverse function of zyd_plcp_signal() */ 1961 2, 4, 11, 22, 0, 0, 0, 0, 1962 96, 48, 24, 12, 108, 72, 36, 18 1963 }; 1964 1965 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1966 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1967 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1968 tap->wr_rssi = stat->rssi; 1969 tap->wr_rate = rates[plcp->signal & 0xf]; 1970 1971 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1972 } 1973 #endif 1974 1975 wh = mtod(m, struct ieee80211_frame *); 1976 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1977 ieee80211_input(ic, m, ni, stat->rssi, 0); 1978 1979 /* node is no longer needed */ 1980 ieee80211_free_node(ni); 1981 1982 splx(s); 1983 } 1984 1985 Static void 1986 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1987 { 1988 struct zyd_rx_data *data = priv; 1989 struct zyd_softc *sc = data->sc; 1990 struct ifnet *ifp = &sc->sc_if; 1991 const struct zyd_rx_desc *desc; 1992 int len; 1993 1994 if (status != USBD_NORMAL_COMPLETION) { 1995 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1996 return; 1997 1998 if (status == USBD_STALLED) 1999 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2000 2001 goto skip; 2002 } 2003 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2004 2005 if (len < ZYD_MIN_RXBUFSZ) { 2006 printf("%s: xfer too short (length=%d)\n", 2007 USBDEVNAME(sc->sc_dev), len); 2008 ifp->if_ierrors++; 2009 goto skip; 2010 } 2011 2012 desc = (const struct zyd_rx_desc *) 2013 (data->buf + len - sizeof (struct zyd_rx_desc)); 2014 2015 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2016 const uint8_t *p = data->buf, *end = p + len; 2017 int i; 2018 2019 DPRINTFN(3, ("received multi-frame transfer\n")); 2020 2021 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2022 const uint16_t len16 = UGETW(desc->len[i]); 2023 2024 if (len16 == 0 || p + len16 > end) 2025 break; 2026 2027 zyd_rx_data(sc, p, len16); 2028 /* next frame is aligned on a 32-bit boundary */ 2029 p += (len16 + 3) & ~3; 2030 } 2031 } else { 2032 DPRINTFN(3, ("received single-frame transfer\n")); 2033 2034 zyd_rx_data(sc, data->buf, len); 2035 } 2036 2037 skip: /* setup a new transfer */ 2038 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2039 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2040 USBD_NO_TIMEOUT, zyd_rxeof); 2041 (void)usbd_transfer(xfer); 2042 } 2043 2044 Static int 2045 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2046 { 2047 struct ieee80211com *ic = &sc->sc_ic; 2048 struct ifnet *ifp = &sc->sc_if; 2049 struct zyd_tx_desc *desc; 2050 struct zyd_tx_data *data; 2051 struct ieee80211_frame *wh; 2052 struct ieee80211_key *k; 2053 int xferlen, totlen, rate; 2054 uint16_t pktlen; 2055 usbd_status error; 2056 2057 data = &sc->tx_data[0]; 2058 desc = (struct zyd_tx_desc *)data->buf; 2059 2060 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2061 2062 wh = mtod(m0, struct ieee80211_frame *); 2063 2064 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2065 k = ieee80211_crypto_encap(ic, ni, m0); 2066 if (k == NULL) { 2067 m_freem(m0); 2068 return ENOBUFS; 2069 } 2070 } 2071 2072 data->ni = ni; 2073 2074 wh = mtod(m0, struct ieee80211_frame *); 2075 2076 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2077 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2078 2079 /* fill Tx descriptor */ 2080 desc->len = htole16(totlen); 2081 2082 desc->flags = ZYD_TX_FLAG_BACKOFF; 2083 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2084 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2085 if (totlen > ic->ic_rtsthreshold) { 2086 desc->flags |= ZYD_TX_FLAG_RTS; 2087 } else if (ZYD_RATE_IS_OFDM(rate) && 2088 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2089 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2090 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2091 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2092 desc->flags |= ZYD_TX_FLAG_RTS; 2093 } 2094 } else 2095 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2096 2097 if ((wh->i_fc[0] & 2098 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2099 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2100 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2101 2102 desc->phy = zyd_plcp_signal(rate); 2103 if (ZYD_RATE_IS_OFDM(rate)) { 2104 desc->phy |= ZYD_TX_PHY_OFDM; 2105 if (ic->ic_curmode == IEEE80211_MODE_11A) 2106 desc->phy |= ZYD_TX_PHY_5GHZ; 2107 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2108 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2109 2110 /* actual transmit length (XXX why +10?) */ 2111 pktlen = sizeof (struct zyd_tx_desc) + 10; 2112 if (sc->mac_rev == ZYD_ZD1211) 2113 pktlen += totlen; 2114 desc->pktlen = htole16(pktlen); 2115 2116 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2117 desc->plcp_service = 0; 2118 if (rate == 22) { 2119 const int remainder = (16 * totlen) % 22; 2120 if (remainder != 0 && remainder < 7) 2121 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2122 } 2123 2124 #if NBPFILTER > 0 2125 if (sc->sc_drvbpf != NULL) { 2126 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2127 2128 tap->wt_flags = 0; 2129 tap->wt_rate = rate; 2130 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2131 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2132 2133 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2134 } 2135 #endif 2136 2137 m_copydata(m0, 0, m0->m_pkthdr.len, 2138 data->buf + sizeof (struct zyd_tx_desc)); 2139 2140 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2141 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2142 2143 m_freem(m0); /* mbuf no longer needed */ 2144 2145 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2146 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2147 ZYD_TX_TIMEOUT, zyd_txeof); 2148 error = usbd_transfer(data->xfer); 2149 if (error != USBD_IN_PROGRESS && error != 0) { 2150 ifp->if_oerrors++; 2151 return EIO; 2152 } 2153 sc->tx_queued++; 2154 2155 return 0; 2156 } 2157 2158 Static void 2159 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2160 { 2161 struct zyd_tx_data *data = priv; 2162 struct zyd_softc *sc = data->sc; 2163 struct ifnet *ifp = &sc->sc_if; 2164 int s; 2165 2166 if (status != USBD_NORMAL_COMPLETION) { 2167 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2168 return; 2169 2170 printf("%s: could not transmit buffer: %s\n", 2171 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 2172 2173 if (status == USBD_STALLED) { 2174 usbd_clear_endpoint_stall_async( 2175 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2176 } 2177 ifp->if_oerrors++; 2178 return; 2179 } 2180 2181 s = splnet(); 2182 2183 /* update rate control statistics */ 2184 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2185 2186 ieee80211_free_node(data->ni); 2187 data->ni = NULL; 2188 2189 sc->tx_queued--; 2190 ifp->if_opackets++; 2191 2192 sc->tx_timer = 0; 2193 ifp->if_flags &= ~IFF_OACTIVE; 2194 zyd_start(ifp); 2195 2196 splx(s); 2197 } 2198 2199 Static int 2200 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2201 { 2202 struct ieee80211com *ic = &sc->sc_ic; 2203 struct ifnet *ifp = &sc->sc_if; 2204 struct zyd_tx_desc *desc; 2205 struct zyd_tx_data *data; 2206 struct ieee80211_frame *wh; 2207 struct ieee80211_key *k; 2208 int xferlen, totlen, rate; 2209 uint16_t pktlen; 2210 usbd_status error; 2211 2212 wh = mtod(m0, struct ieee80211_frame *); 2213 2214 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2215 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2216 else 2217 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2218 rate &= IEEE80211_RATE_VAL; 2219 2220 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2221 k = ieee80211_crypto_encap(ic, ni, m0); 2222 if (k == NULL) { 2223 m_freem(m0); 2224 return ENOBUFS; 2225 } 2226 2227 /* packet header may have moved, reset our local pointer */ 2228 wh = mtod(m0, struct ieee80211_frame *); 2229 } 2230 2231 data = &sc->tx_data[0]; 2232 desc = (struct zyd_tx_desc *)data->buf; 2233 2234 data->ni = ni; 2235 2236 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2237 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2238 2239 /* fill Tx descriptor */ 2240 desc->len = htole16(totlen); 2241 2242 desc->flags = ZYD_TX_FLAG_BACKOFF; 2243 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2244 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2245 if (totlen > ic->ic_rtsthreshold) { 2246 desc->flags |= ZYD_TX_FLAG_RTS; 2247 } else if (ZYD_RATE_IS_OFDM(rate) && 2248 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2249 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2250 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2251 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2252 desc->flags |= ZYD_TX_FLAG_RTS; 2253 } 2254 } else 2255 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2256 2257 if ((wh->i_fc[0] & 2258 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2259 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2260 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2261 2262 desc->phy = zyd_plcp_signal(rate); 2263 if (ZYD_RATE_IS_OFDM(rate)) { 2264 desc->phy |= ZYD_TX_PHY_OFDM; 2265 if (ic->ic_curmode == IEEE80211_MODE_11A) 2266 desc->phy |= ZYD_TX_PHY_5GHZ; 2267 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2268 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2269 2270 /* actual transmit length (XXX why +10?) */ 2271 pktlen = sizeof (struct zyd_tx_desc) + 10; 2272 if (sc->mac_rev == ZYD_ZD1211) 2273 pktlen += totlen; 2274 desc->pktlen = htole16(pktlen); 2275 2276 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2277 desc->plcp_service = 0; 2278 if (rate == 22) { 2279 const int remainder = (16 * totlen) % 22; 2280 if (remainder != 0 && remainder < 7) 2281 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2282 } 2283 2284 #if NBPFILTER > 0 2285 if (sc->sc_drvbpf != NULL) { 2286 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2287 2288 tap->wt_flags = 0; 2289 tap->wt_rate = rate; 2290 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2291 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2292 2293 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2294 } 2295 #endif 2296 2297 m_copydata(m0, 0, m0->m_pkthdr.len, 2298 data->buf + sizeof (struct zyd_tx_desc)); 2299 2300 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2301 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2302 2303 m_freem(m0); /* mbuf no longer needed */ 2304 2305 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2306 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2307 ZYD_TX_TIMEOUT, zyd_txeof); 2308 error = usbd_transfer(data->xfer); 2309 if (error != USBD_IN_PROGRESS && error != 0) { 2310 ifp->if_oerrors++; 2311 return EIO; 2312 } 2313 sc->tx_queued++; 2314 2315 return 0; 2316 } 2317 2318 Static void 2319 zyd_start(struct ifnet *ifp) 2320 { 2321 struct zyd_softc *sc = ifp->if_softc; 2322 struct ieee80211com *ic = &sc->sc_ic; 2323 struct ether_header *eh; 2324 struct ieee80211_node *ni; 2325 struct mbuf *m0; 2326 2327 for (;;) { 2328 IF_POLL(&ic->ic_mgtq, m0); 2329 if (m0 != NULL) { 2330 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2331 ifp->if_flags |= IFF_OACTIVE; 2332 break; 2333 } 2334 IF_DEQUEUE(&ic->ic_mgtq, m0); 2335 2336 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2337 m0->m_pkthdr.rcvif = NULL; 2338 #if NBPFILTER > 0 2339 if (ic->ic_rawbpf != NULL) 2340 bpf_mtap(ic->ic_rawbpf, m0); 2341 #endif 2342 if (zyd_tx_mgt(sc, m0, ni) != 0) 2343 break; 2344 } else { 2345 if (ic->ic_state != IEEE80211_S_RUN) 2346 break; 2347 IFQ_POLL(&ifp->if_snd, m0); 2348 if (m0 == NULL) 2349 break; 2350 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2351 ifp->if_flags |= IFF_OACTIVE; 2352 break; 2353 } 2354 IFQ_DEQUEUE(&ifp->if_snd, m0); 2355 2356 if (m0->m_len < sizeof(struct ether_header) && 2357 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2358 continue; 2359 2360 eh = mtod(m0, struct ether_header *); 2361 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2362 if (ni == NULL) { 2363 m_freem(m0); 2364 continue; 2365 } 2366 #if NBPFILTER > 0 2367 if (ifp->if_bpf != NULL) 2368 bpf_mtap(ifp->if_bpf, m0); 2369 #endif 2370 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2371 ieee80211_free_node(ni); 2372 ifp->if_oerrors++; 2373 continue; 2374 } 2375 #if NBPFILTER > 0 2376 if (ic->ic_rawbpf != NULL) 2377 bpf_mtap(ic->ic_rawbpf, m0); 2378 #endif 2379 if (zyd_tx_data(sc, m0, ni) != 0) { 2380 ieee80211_free_node(ni); 2381 ifp->if_oerrors++; 2382 break; 2383 } 2384 } 2385 2386 sc->tx_timer = 5; 2387 ifp->if_timer = 1; 2388 } 2389 } 2390 2391 Static void 2392 zyd_watchdog(struct ifnet *ifp) 2393 { 2394 struct zyd_softc *sc = ifp->if_softc; 2395 struct ieee80211com *ic = &sc->sc_ic; 2396 2397 ifp->if_timer = 0; 2398 2399 if (sc->tx_timer > 0) { 2400 if (--sc->tx_timer == 0) { 2401 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 2402 /* zyd_init(ifp); XXX needs a process context ? */ 2403 ifp->if_oerrors++; 2404 return; 2405 } 2406 ifp->if_timer = 1; 2407 } 2408 2409 ieee80211_watchdog(ic); 2410 } 2411 2412 Static int 2413 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2414 { 2415 struct zyd_softc *sc = ifp->if_softc; 2416 struct ieee80211com *ic = &sc->sc_ic; 2417 int s, error = 0; 2418 2419 s = splnet(); 2420 2421 switch (cmd) { 2422 case SIOCSIFFLAGS: 2423 if (ifp->if_flags & IFF_UP) { 2424 if (!(ifp->if_flags & IFF_RUNNING)) 2425 zyd_init(ifp); 2426 } else { 2427 if (ifp->if_flags & IFF_RUNNING) 2428 zyd_stop(ifp, 1); 2429 } 2430 break; 2431 2432 default: 2433 if (!sc->attached) 2434 error = ENOTTY; 2435 else 2436 error = ieee80211_ioctl(ic, cmd, data); 2437 } 2438 2439 if (error == ENETRESET) { 2440 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2441 (IFF_RUNNING | IFF_UP)) 2442 zyd_init(ifp); 2443 error = 0; 2444 } 2445 2446 splx(s); 2447 2448 return error; 2449 } 2450 2451 Static int 2452 zyd_init(struct ifnet *ifp) 2453 { 2454 struct zyd_softc *sc = ifp->if_softc; 2455 struct ieee80211com *ic = &sc->sc_ic; 2456 int i, error; 2457 2458 if ((sc->sc_flags & ZD1211_FWLOADED) == 0) 2459 if ((error = zyd_attachhook(sc)) != 0) 2460 return error; 2461 2462 zyd_stop(ifp, 0); 2463 2464 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2465 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2466 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2467 if (error != 0) 2468 return error; 2469 2470 /* we'll do software WEP decryption for now */ 2471 DPRINTF(("setting encryption type\n")); 2472 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2473 if (error != 0) 2474 return error; 2475 2476 /* promiscuous mode */ 2477 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2478 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2479 2480 (void)zyd_set_rxfilter(sc); 2481 2482 /* switch radio transmitter ON */ 2483 (void)zyd_switch_radio(sc, 1); 2484 2485 /* set basic rates */ 2486 if (ic->ic_curmode == IEEE80211_MODE_11B) 2487 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2488 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2489 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2490 else /* assumes 802.11b/g */ 2491 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2492 2493 /* set mandatory rates */ 2494 if (ic->ic_curmode == IEEE80211_MODE_11B) 2495 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2496 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2497 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2498 else /* assumes 802.11b/g */ 2499 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2500 2501 /* set default BSS channel */ 2502 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2503 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2504 2505 /* enable interrupts */ 2506 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2507 2508 /* 2509 * Allocate Tx and Rx xfer queues. 2510 */ 2511 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2512 printf("%s: could not allocate Tx list\n", 2513 USBDEVNAME(sc->sc_dev)); 2514 goto fail; 2515 } 2516 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2517 printf("%s: could not allocate Rx list\n", 2518 USBDEVNAME(sc->sc_dev)); 2519 goto fail; 2520 } 2521 2522 /* 2523 * Start up the receive pipe. 2524 */ 2525 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2526 struct zyd_rx_data *data = &sc->rx_data[i]; 2527 2528 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2529 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2530 USBD_NO_TIMEOUT, zyd_rxeof); 2531 error = usbd_transfer(data->xfer); 2532 if (error != USBD_IN_PROGRESS && error != 0) { 2533 printf("%s: could not queue Rx transfer\n", 2534 USBDEVNAME(sc->sc_dev)); 2535 goto fail; 2536 } 2537 } 2538 2539 ifp->if_flags &= ~IFF_OACTIVE; 2540 ifp->if_flags |= IFF_RUNNING; 2541 2542 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2543 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2544 else 2545 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2546 2547 return 0; 2548 2549 fail: zyd_stop(ifp, 1); 2550 return error; 2551 } 2552 2553 Static void 2554 zyd_stop(struct ifnet *ifp, int disable) 2555 { 2556 struct zyd_softc *sc = ifp->if_softc; 2557 struct ieee80211com *ic = &sc->sc_ic; 2558 2559 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2560 2561 sc->tx_timer = 0; 2562 ifp->if_timer = 0; 2563 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2564 2565 /* switch radio transmitter OFF */ 2566 (void)zyd_switch_radio(sc, 0); 2567 2568 /* disable Rx */ 2569 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2570 2571 /* disable interrupts */ 2572 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2573 2574 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2575 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2576 2577 zyd_free_rx_list(sc); 2578 zyd_free_tx_list(sc); 2579 } 2580 2581 Static int 2582 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2583 { 2584 usb_device_request_t req; 2585 uint16_t addr; 2586 uint8_t stat; 2587 2588 DPRINTF(("firmware size=%zu\n", size)); 2589 2590 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2591 req.bRequest = ZYD_DOWNLOADREQ; 2592 USETW(req.wIndex, 0); 2593 2594 addr = ZYD_FIRMWARE_START_ADDR; 2595 while (size > 0) { 2596 #if 0 2597 const int mlen = min(size, 4096); 2598 #else 2599 /* 2600 * XXXX: When the transfer size is 4096 bytes, it is not 2601 * likely to be able to transfer it. 2602 * The cause is port or machine or chip? 2603 */ 2604 const int mlen = min(size, 64); 2605 #endif 2606 2607 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2608 addr)); 2609 2610 USETW(req.wValue, addr); 2611 USETW(req.wLength, mlen); 2612 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2613 return EIO; 2614 2615 addr += mlen / 2; 2616 fw += mlen; 2617 size -= mlen; 2618 } 2619 2620 /* check whether the upload succeeded */ 2621 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2622 req.bRequest = ZYD_DOWNLOADSTS; 2623 USETW(req.wValue, 0); 2624 USETW(req.wIndex, 0); 2625 USETW(req.wLength, sizeof stat); 2626 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2627 return EIO; 2628 2629 return (stat & 0x80) ? EIO : 0; 2630 } 2631 2632 Static void 2633 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2634 { 2635 struct zyd_softc *sc = arg; 2636 struct zyd_node *zn = (struct zyd_node *)ni; 2637 2638 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2639 } 2640 2641 Static void 2642 zyd_amrr_timeout(void *arg) 2643 { 2644 struct zyd_softc *sc = arg; 2645 struct ieee80211com *ic = &sc->sc_ic; 2646 int s; 2647 2648 s = splnet(); 2649 if (ic->ic_opmode == IEEE80211_M_STA) 2650 zyd_iter_func(sc, ic->ic_bss); 2651 else 2652 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2653 splx(s); 2654 2655 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2656 } 2657 2658 Static void 2659 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2660 { 2661 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2662 int i; 2663 2664 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2665 2666 /* set rate to some reasonable initial value */ 2667 for (i = ni->ni_rates.rs_nrates - 1; 2668 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2669 i--); 2670 ni->ni_txrate = i; 2671 } 2672 2673 int 2674 zyd_activate(device_ptr_t self, enum devact act) 2675 { 2676 struct zyd_softc *sc = (struct zyd_softc *)self; 2677 2678 switch (act) { 2679 case DVACT_ACTIVATE: 2680 break; 2681 2682 case DVACT_DEACTIVATE: 2683 if_deactivate(&sc->sc_if); 2684 break; 2685 } 2686 return 0; 2687 } 2688