xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.12 2007/10/21 17:03:37 degroote Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.12 2007/10/21 17:03:37 degroote Exp $");
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/firmload.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_zydreg.h>
71 
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
75 
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
87 
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p)	\
92 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 	struct usb_devno	dev;
95 	uint8_t			rev;
96 #define ZYD_ZD1211	0
97 #define ZYD_ZD1211B	1
98 } zyd_devs[] = {
99 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
100 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
101 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
102 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
103 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
104 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
106 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
107 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
108 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
109 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
110 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
111 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
113 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
114 	ZYD_ZD1211_DEV(TWINMOS,		G240),
115 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
117 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
118 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
119 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
121 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
122 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
126 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
127 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
128 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
129 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
130 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
131 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
132 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
133 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
134 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
135 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
136 #if 0	/* Shall we needs? */
137 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
138 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
139 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
140 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
141 #endif
142 	ZYD_ZD1211B_DEV(USR,		USR5423),
143 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
144 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
145 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
146 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
147 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
148 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
149 };
150 #define zyd_lookup(v, p)	\
151 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
152 
153 USB_DECLARE_DRIVER(zyd);
154 
155 Static int	zyd_attachhook(void *);
156 Static int	zyd_complete_attach(struct zyd_softc *);
157 Static int	zyd_open_pipes(struct zyd_softc *);
158 Static void	zyd_close_pipes(struct zyd_softc *);
159 Static int	zyd_alloc_tx_list(struct zyd_softc *);
160 Static void	zyd_free_tx_list(struct zyd_softc *);
161 Static int	zyd_alloc_rx_list(struct zyd_softc *);
162 Static void	zyd_free_rx_list(struct zyd_softc *);
163 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
164 Static int	zyd_media_change(struct ifnet *);
165 Static void	zyd_next_scan(void *);
166 Static void	zyd_task(void *);
167 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
169 		    void *, int, u_int);
170 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
171 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
172 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
173 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
174 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
175 Static void	zyd_lock_phy(struct zyd_softc *);
176 Static void	zyd_unlock_phy(struct zyd_softc *);
177 Static int	zyd_rfmd_init(struct zyd_rf *);
178 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
179 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
180 Static int	zyd_al2230_init(struct zyd_rf *);
181 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
182 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
183 Static int	zyd_al2230_init_b(struct zyd_rf *);
184 Static int	zyd_al7230B_init(struct zyd_rf *);
185 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 Static int	zyd_al2210_init(struct zyd_rf *);
188 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
189 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 Static int	zyd_gct_init(struct zyd_rf *);
191 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
192 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 Static int	zyd_maxim_init(struct zyd_rf *);
194 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_maxim2_init(struct zyd_rf *);
197 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
200 Static const char *zyd_rf_name(uint8_t);
201 Static int	zyd_hw_init(struct zyd_softc *);
202 Static int	zyd_read_eeprom(struct zyd_softc *);
203 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
204 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
205 Static int	zyd_switch_radio(struct zyd_softc *, int);
206 Static void	zyd_set_led(struct zyd_softc *, int, int);
207 Static int	zyd_set_rxfilter(struct zyd_softc *);
208 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
209 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
210 Static uint8_t	zyd_plcp_signal(int);
211 Static void	zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
212 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
213 Static void	zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
214 Static void	zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
215 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
216 		    struct ieee80211_node *);
217 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
218 		    struct ieee80211_node *);
219 Static void	zyd_start(struct ifnet *);
220 Static void	zyd_watchdog(struct ifnet *);
221 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
222 Static int	zyd_init(struct ifnet *);
223 Static void	zyd_stop(struct ifnet *, int);
224 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
225 Static void	zyd_iter_func(void *, struct ieee80211_node *);
226 Static void	zyd_amrr_timeout(void *);
227 Static void	zyd_newassoc(struct ieee80211_node *, int);
228 
229 static const struct ieee80211_rateset zyd_rateset_11b =
230 	{ 4, { 2, 4, 11, 22 } };
231 
232 static const struct ieee80211_rateset zyd_rateset_11g =
233 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
234 
235 USB_MATCH(zyd)
236 {
237 	USB_MATCH_START(zyd, uaa);
238 
239 	return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
240 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242 
243 Static int
244 zyd_attachhook(void *xsc)
245 {
246 	struct zyd_softc *sc = xsc;
247 	firmware_handle_t fwh;
248 	const char *fwname;
249 	u_char *fw;
250 	size_t size;
251 	int error;
252 
253 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
254 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
255 		printf("%s: failed to open firmware %s (error=%d)\n",
256 		    USBDEVNAME(sc->sc_dev), fwname, error);
257 		return error;
258 	}
259 	size = firmware_get_size(fwh);
260 	fw = firmware_malloc(size);
261 	if (fw == NULL) {
262 		printf("%s: failed to allocate firmware memory\n",
263 		    USBDEVNAME(sc->sc_dev));
264 		firmware_close(fwh);
265 		return ENOMEM;;
266 	}
267 	error = firmware_read(fwh, 0, fw, size);
268 	firmware_close(fwh);
269 	if (error != 0) {
270 		printf("%s: failed to read firmware (error %d)\n",
271 		    USBDEVNAME(sc->sc_dev), error);
272 		firmware_free(fw, 0);
273 		return error;
274 	}
275 
276 	error = zyd_loadfirmware(sc, fw, size);
277 	if (error != 0) {
278 		printf("%s: could not load firmware (error=%d)\n",
279 		    USBDEVNAME(sc->sc_dev), error);
280 		firmware_free(fw, 0);
281 		return ENXIO;
282 	}
283 
284 	firmware_free(fw, 0);
285 	sc->sc_flags |= ZD1211_FWLOADED;
286 
287 	/* complete the attach process */
288 	if ((error = zyd_complete_attach(sc)) == 0)
289 		sc->attached = 1;
290 	return error;
291 }
292 
293 USB_ATTACH(zyd)
294 {
295 	USB_ATTACH_START(zyd, sc, uaa);
296 	char *devinfop;
297 	usb_device_descriptor_t* ddesc;
298 	struct ifnet *ifp = &sc->sc_if;
299 
300 	sc->sc_udev = uaa->device;
301 	sc->sc_flags = 0;
302 
303 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
304 	USB_ATTACH_SETUP;
305 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
306 	usbd_devinfo_free(devinfop);
307 
308 	sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
309 
310 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
311 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
312 		printf("%s: device version mismatch: 0x%x "
313 		    "(only >= 43.30 supported)\n", USBDEVNAME(sc->sc_dev),
314 		    UGETW(ddesc->bcdDevice));
315 		USB_ATTACH_ERROR_RETURN;
316 	}
317 
318 	ifp->if_softc = sc;
319 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 	ifp->if_init = zyd_init;
321 	ifp->if_ioctl = zyd_ioctl;
322 	ifp->if_start = zyd_start;
323 	ifp->if_watchdog = zyd_watchdog;
324 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
325 	IFQ_SET_READY(&ifp->if_snd);
326 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
327 
328 	if_attach(ifp);
329 	/* XXXX: alloc temporarily until the layer2 can be configured. */
330 	if_alloc_sadl(ifp);
331 
332 	SIMPLEQ_INIT(&sc->sc_rqh);
333 
334 	USB_ATTACH_SUCCESS_RETURN;
335 }
336 
337 Static int
338 zyd_complete_attach(struct zyd_softc *sc)
339 {
340 	struct ieee80211com *ic = &sc->sc_ic;
341 	struct ifnet *ifp = &sc->sc_if;
342 	usbd_status error;
343 	int i;
344 
345 	usb_init_task(&sc->sc_task, zyd_task, sc);
346 	usb_callout_init(sc->sc_scan_ch);
347 
348 	sc->amrr.amrr_min_success_threshold =  1;
349 	sc->amrr.amrr_max_success_threshold = 10;
350 	usb_callout_init(sc->sc_amrr_ch);
351 
352 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
353 	if (error != 0) {
354 		printf("%s: setting config no failed\n",
355 		    USBDEVNAME(sc->sc_dev));
356 		goto fail;
357 	}
358 
359 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
360 	    &sc->sc_iface);
361 	if (error != 0) {
362 		printf("%s: getting interface handle failed\n",
363 		    USBDEVNAME(sc->sc_dev));
364 		goto fail;
365 	}
366 
367 	if ((error = zyd_open_pipes(sc)) != 0) {
368 		printf("%s: could not open pipes\n", USBDEVNAME(sc->sc_dev));
369 		goto fail;
370 	}
371 
372 	if ((error = zyd_read_eeprom(sc)) != 0) {
373 		printf("%s: could not read EEPROM\n", USBDEVNAME(sc->sc_dev));
374 		goto fail;
375 	}
376 
377 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
378 		printf("%s: could not attach RF\n", USBDEVNAME(sc->sc_dev));
379 		goto fail;
380 	}
381 
382 	if ((error = zyd_hw_init(sc)) != 0) {
383 		printf("%s: hardware initialization failed\n",
384 		    USBDEVNAME(sc->sc_dev));
385 		goto fail;
386 	}
387 
388 	printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
389 	    USBDEVNAME(sc->sc_dev), (sc->mac_rev == ZYD_ZD1211) ? "": "B",
390 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
391 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
392 
393 	ic->ic_ifp = ifp;
394 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
395 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
396 	ic->ic_state = IEEE80211_S_INIT;
397 
398 	/* set device capabilities */
399 	ic->ic_caps =
400 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
401 	    IEEE80211_C_TXPMGT |	/* tx power management */
402 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
403 	    IEEE80211_C_WEP;		/* s/w WEP */
404 
405 	/* set supported .11b and .11g rates */
406 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
407 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
408 
409 	/* set supported .11b and .11g channels (1 through 14) */
410 	for (i = 1; i <= 14; i++) {
411 		ic->ic_channels[i].ic_freq =
412 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
413 		ic->ic_channels[i].ic_flags =
414 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
415 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
416 	}
417 
418 	if_free_sadl(ifp);
419 	ieee80211_ifattach(ic);
420 	ic->ic_node_alloc = zyd_node_alloc;
421 	ic->ic_newassoc = zyd_newassoc;
422 
423 	/* override state transition machine */
424 	sc->sc_newstate = ic->ic_newstate;
425 	ic->ic_newstate = zyd_newstate;
426 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
427 
428 #if NBPFILTER > 0
429 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
430 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431 	    &sc->sc_drvbpf);
432 
433 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
436 
437 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
438 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
440 #endif
441 
442 	ieee80211_announce(ic);
443 
444 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
445 	    USBDEV(sc->sc_dev));
446 
447 fail:	return error;
448 }
449 
450 USB_DETACH(zyd)
451 {
452 	USB_DETACH_START(zyd, sc);
453 	struct ieee80211com *ic = &sc->sc_ic;
454 	struct ifnet *ifp = &sc->sc_if;
455 	int s;
456 
457 	if (!sc->attached) {
458 		if_free_sadl(ifp);
459 		if_detach(ifp);
460 		return 0;
461 	}
462 
463 	s = splusb();
464 
465 	zyd_stop(ifp, 1);
466 	usb_rem_task(sc->sc_udev, &sc->sc_task);
467 	usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
468 	usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
469 
470 	zyd_close_pipes(sc);
471 
472 	sc->attached = 0;
473 
474 #if NBPFILTER > 0
475 	bpfdetach(ifp);
476 #endif
477 	ieee80211_ifdetach(ic);
478 	if_detach(ifp);
479 
480 	splx(s);
481 
482 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 	    USBDEV(sc->sc_dev));
484 
485 	return 0;
486 }
487 
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 	usb_endpoint_descriptor_t *edesc;
492 	int isize;
493 	usbd_status error;
494 
495 	/* interrupt in */
496 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 	if (edesc == NULL)
498 		return EINVAL;
499 
500 	isize = UGETW(edesc->wMaxPacketSize);
501 	if (isize == 0)	/* should not happen */
502 		return EINVAL;
503 
504 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 	if (sc->ibuf == NULL)
506 		return ENOMEM;
507 
508 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 	    USBD_DEFAULT_INTERVAL);
511 	if (error != 0) {
512 		printf("%s: open rx intr pipe failed: %s\n",
513 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
514 		goto fail;
515 	}
516 
517 	/* interrupt out (not necessarily an interrupt pipe) */
518 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 	if (error != 0) {
521 		printf("%s: open tx intr pipe failed: %s\n",
522 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
523 		goto fail;
524 	}
525 
526 	/* bulk in */
527 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 	if (error != 0) {
530 		printf("%s: open rx pipe failed: %s\n",
531 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
532 		goto fail;
533 	}
534 
535 	/* bulk out */
536 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 	if (error != 0) {
539 		printf("%s: open tx pipe failed: %s\n",
540 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
541 		goto fail;
542 	}
543 
544 	return 0;
545 
546 fail:	zyd_close_pipes(sc);
547 	return error;
548 }
549 
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 	int i;
554 
555 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 		if (sc->zyd_ep[i] != NULL) {
557 			usbd_abort_pipe(sc->zyd_ep[i]);
558 			usbd_close_pipe(sc->zyd_ep[i]);
559 			sc->zyd_ep[i] = NULL;
560 		}
561 	}
562 	if (sc->ibuf != NULL) {
563 		free(sc->ibuf, M_USBDEV);
564 		sc->ibuf = NULL;
565 	}
566 }
567 
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 	int i, error;
572 
573 	sc->tx_queued = 0;
574 
575 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 		struct zyd_tx_data *data = &sc->tx_data[i];
577 
578 		data->sc = sc;	/* backpointer for callbacks */
579 
580 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 		if (data->xfer == NULL) {
582 			printf("%s: could not allocate tx xfer\n",
583 			    USBDEVNAME(sc->sc_dev));
584 			error = ENOMEM;
585 			goto fail;
586 		}
587 		data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 		if (data->buf == NULL) {
589 			printf("%s: could not allocate tx buffer\n",
590 			    USBDEVNAME(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		/* clear Tx descriptor */
596 		bzero(data->buf, sizeof (struct zyd_tx_desc));
597 	}
598 	return 0;
599 
600 fail:	zyd_free_tx_list(sc);
601 	return error;
602 }
603 
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 	int i;
608 
609 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 		struct zyd_tx_data *data = &sc->tx_data[i];
611 
612 		if (data->xfer != NULL) {
613 			usbd_free_xfer(data->xfer);
614 			data->xfer = NULL;
615 		}
616 		if (data->ni != NULL) {
617 			ieee80211_free_node(data->ni);
618 			data->ni = NULL;
619 		}
620 	}
621 }
622 
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 	int i, error;
627 
628 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 		struct zyd_rx_data *data = &sc->rx_data[i];
630 
631 		data->sc = sc;	/* backpointer for callbacks */
632 
633 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 		if (data->xfer == NULL) {
635 			printf("%s: could not allocate rx xfer\n",
636 			    USBDEVNAME(sc->sc_dev));
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 		data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 		if (data->buf == NULL) {
642 			printf("%s: could not allocate rx buffer\n",
643 			    USBDEVNAME(sc->sc_dev));
644 			error = ENOMEM;
645 			goto fail;
646 		}
647 	}
648 	return 0;
649 
650 fail:	zyd_free_rx_list(sc);
651 	return error;
652 }
653 
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 	int i;
658 
659 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 		struct zyd_rx_data *data = &sc->rx_data[i];
661 
662 		if (data->xfer != NULL) {
663 			usbd_free_xfer(data->xfer);
664 			data->xfer = NULL;
665 		}
666 	}
667 }
668 
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 	struct zyd_node *zn;
674 
675 	zn = malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT);
676 	if (zn != NULL)
677 		bzero(zn, sizeof (struct zyd_node));
678 	return (struct ieee80211_node *)zn;
679 }
680 
681 Static int
682 zyd_media_change(struct ifnet *ifp)
683 {
684 	int error;
685 
686 	error = ieee80211_media_change(ifp);
687 	if (error != ENETRESET)
688 		return error;
689 
690 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
691 		zyd_init(ifp);
692 
693 	return 0;
694 }
695 
696 /*
697  * This function is called periodically (every 200ms) during scanning to
698  * switch from one channel to another.
699  */
700 Static void
701 zyd_next_scan(void *arg)
702 {
703 	struct zyd_softc *sc = arg;
704 	struct ieee80211com *ic = &sc->sc_ic;
705 
706 	if (ic->ic_state == IEEE80211_S_SCAN)
707 		ieee80211_next_scan(ic);
708 }
709 
710 Static void
711 zyd_task(void *arg)
712 {
713 	struct zyd_softc *sc = arg;
714 	struct ieee80211com *ic = &sc->sc_ic;
715 	enum ieee80211_state ostate;
716 
717 	ostate = ic->ic_state;
718 
719 	switch (sc->sc_state) {
720 	case IEEE80211_S_INIT:
721 		if (ostate == IEEE80211_S_RUN) {
722 			/* turn link LED off */
723 			zyd_set_led(sc, ZYD_LED1, 0);
724 
725 			/* stop data LED from blinking */
726 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
727 		}
728 		break;
729 
730 	case IEEE80211_S_SCAN:
731 		zyd_set_chan(sc, ic->ic_curchan);
732 		usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
733 		break;
734 
735 	case IEEE80211_S_AUTH:
736 	case IEEE80211_S_ASSOC:
737 		zyd_set_chan(sc, ic->ic_curchan);
738 		break;
739 
740 	case IEEE80211_S_RUN:
741 	{
742 		struct ieee80211_node *ni = ic->ic_bss;
743 
744 		zyd_set_chan(sc, ic->ic_curchan);
745 
746 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
747 			/* turn link LED on */
748 			zyd_set_led(sc, ZYD_LED1, 1);
749 
750 			/* make data LED blink upon Tx */
751 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
752 
753 			zyd_set_bssid(sc, ni->ni_bssid);
754 		}
755 
756 		if (ic->ic_opmode == IEEE80211_M_STA) {
757 			/* fake a join to init the tx rate */
758 			zyd_newassoc(ni, 1);
759 		}
760 
761 		/* start automatic rate control timer */
762 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
763 			usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
764 
765 		break;
766 	}
767 	}
768 
769 	sc->sc_newstate(ic, sc->sc_state, -1);
770 }
771 
772 Static int
773 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
774 {
775 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
776 
777 	usb_rem_task(sc->sc_udev, &sc->sc_task);
778 	usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
779 	usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
780 
781 	/* do it in a process context */
782 	sc->sc_state = nstate;
783 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
784 
785 	return 0;
786 }
787 
788 Static int
789 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
790     void *odata, int olen, u_int flags)
791 {
792 	usbd_xfer_handle xfer;
793 	struct zyd_cmd cmd;
794 	struct rq rq;
795 	uint16_t xferflags;
796 	usbd_status error;
797 	int s = 0;
798 
799 	if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
800 		return ENOMEM;
801 
802 	cmd.code = htole16(code);
803 	bcopy(idata, cmd.data, ilen);
804 
805 	xferflags = USBD_FORCE_SHORT_XFER;
806 	if (!(flags & ZYD_CMD_FLAG_READ))
807 		xferflags |= USBD_SYNCHRONOUS;
808 	else {
809 		s = splusb();
810 		rq.idata = idata;
811 		rq.odata = odata;
812 		rq.len = olen / sizeof (struct zyd_pair);
813 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
814 	}
815 
816 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
817 	    sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
818 	error = usbd_transfer(xfer);
819 	if (error != USBD_IN_PROGRESS && error != 0) {
820 		if (flags & ZYD_CMD_FLAG_READ)
821 			splx(s);
822 		printf("%s: could not send command (error=%s)\n",
823 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
824 		(void)usbd_free_xfer(xfer);
825 		return EIO;
826 	}
827 	if (!(flags & ZYD_CMD_FLAG_READ)) {
828 		(void)usbd_free_xfer(xfer);
829 		return 0;	/* write: don't wait for reply */
830 	}
831 	/* wait at most one second for command reply */
832 	error = tsleep(odata, PCATCH, "zydcmd", hz);
833 	if (error == EWOULDBLOCK)
834 		printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev));
835 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
836 	splx(s);
837 
838 	(void)usbd_free_xfer(xfer);
839 	return error;
840 }
841 
842 Static int
843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
844 {
845 	struct zyd_pair tmp;
846 	int error;
847 
848 	reg = htole16(reg);
849 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
850 	    ZYD_CMD_FLAG_READ);
851 	if (error == 0)
852 		*val = le16toh(tmp.val);
853 	return error;
854 }
855 
856 Static int
857 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
858 {
859 	struct zyd_pair tmp[2];
860 	uint16_t regs[2];
861 	int error;
862 
863 	regs[0] = htole16(ZYD_REG32_HI(reg));
864 	regs[1] = htole16(ZYD_REG32_LO(reg));
865 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
866 	    ZYD_CMD_FLAG_READ);
867 	if (error == 0)
868 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
869 	return error;
870 }
871 
872 Static int
873 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
874 {
875 	struct zyd_pair pair;
876 
877 	pair.reg = htole16(reg);
878 	pair.val = htole16(val);
879 
880 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
881 }
882 
883 Static int
884 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
885 {
886 	struct zyd_pair pair[2];
887 
888 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
889 	pair[0].val = htole16(val >> 16);
890 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
891 	pair[1].val = htole16(val & 0xffff);
892 
893 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
894 }
895 
896 Static int
897 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
898 {
899 	struct zyd_rf *rf = &sc->sc_rf;
900 	struct zyd_rfwrite req;
901 	uint16_t cr203;
902 	int i;
903 
904 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
905 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
906 
907 	req.code  = htole16(2);
908 	req.width = htole16(rf->width);
909 	for (i = 0; i < rf->width; i++) {
910 		req.bit[i] = htole16(cr203);
911 		if (val & (1 << (rf->width - 1 - i)))
912 			req.bit[i] |= htole16(ZYD_RF_DATA);
913 	}
914 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
915 }
916 
917 Static void
918 zyd_lock_phy(struct zyd_softc *sc)
919 {
920 	uint32_t tmp;
921 
922 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
923 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
924 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
925 }
926 
927 Static void
928 zyd_unlock_phy(struct zyd_softc *sc)
929 {
930 	uint32_t tmp;
931 
932 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
933 	tmp |= ZYD_UNLOCK_PHY_REGS;
934 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
935 }
936 
937 /*
938  * RFMD RF methods.
939  */
940 Static int
941 zyd_rfmd_init(struct zyd_rf *rf)
942 {
943 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
944 	struct zyd_softc *sc = rf->rf_sc;
945 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
946 	static const uint32_t rfini[] = ZYD_RFMD_RF;
947 	int i, error;
948 
949 	/* init RF-dependent PHY registers */
950 	for (i = 0; i < N(phyini); i++) {
951 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
952 		if (error != 0)
953 			return error;
954 	}
955 
956 	/* init RFMD radio */
957 	for (i = 0; i < N(rfini); i++) {
958 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
959 			return error;
960 	}
961 	return 0;
962 #undef N
963 }
964 
965 Static int
966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
967 {
968 	struct zyd_softc *sc = rf->rf_sc;
969 
970 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
971 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
972 
973 	return 0;
974 }
975 
976 Static int
977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
978 {
979 	struct zyd_softc *sc = rf->rf_sc;
980 	static const struct {
981 		uint32_t	r1, r2;
982 	} rfprog[] = ZYD_RFMD_CHANTABLE;
983 
984 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
985 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
986 
987 	return 0;
988 }
989 
990 /*
991  * AL2230 RF methods.
992  */
993 Static int
994 zyd_al2230_init(struct zyd_rf *rf)
995 {
996 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
997 	struct zyd_softc *sc = rf->rf_sc;
998 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
999 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1000 	int i, error;
1001 
1002 	/* init RF-dependent PHY registers */
1003 	for (i = 0; i < N(phyini); i++) {
1004 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1005 		if (error != 0)
1006 			return error;
1007 	}
1008 
1009 	/* init AL2230 radio */
1010 	for (i = 0; i < N(rfini); i++) {
1011 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1012 			return error;
1013 	}
1014 	return 0;
1015 #undef N
1016 }
1017 
1018 Static int
1019 zyd_al2230_init_b(struct zyd_rf *rf)
1020 {
1021 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1022 	struct zyd_softc *sc = rf->rf_sc;
1023 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1024 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1025 	int i, error;
1026 
1027 	/* init RF-dependent PHY registers */
1028 	for (i = 0; i < N(phyini); i++) {
1029 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1030 		if (error != 0)
1031 			return error;
1032 	}
1033 
1034 	/* init AL2230 radio */
1035 	for (i = 0; i < N(rfini); i++) {
1036 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1037 			return error;
1038 	}
1039 	return 0;
1040 #undef N
1041 }
1042 
1043 Static int
1044 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1045 {
1046 	struct zyd_softc *sc = rf->rf_sc;
1047 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1048 
1049 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1050 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1051 
1052 	return 0;
1053 }
1054 
1055 Static int
1056 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1057 {
1058 	struct zyd_softc *sc = rf->rf_sc;
1059 	static const struct {
1060 		uint32_t	r1, r2, r3;
1061 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1062 
1063 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1064 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1065 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1066 
1067 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1068 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1069 
1070 	return 0;
1071 }
1072 
1073 /*
1074  * AL7230B RF methods.
1075  */
1076 Static int
1077 zyd_al7230B_init(struct zyd_rf *rf)
1078 {
1079 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1080 	struct zyd_softc *sc = rf->rf_sc;
1081 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1082 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1083 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1084 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1085 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1086 	int i, error;
1087 
1088 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1089 
1090 	/* init RF-dependent PHY registers, part one */
1091 	for (i = 0; i < N(phyini_1); i++) {
1092 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1093 		if (error != 0)
1094 			return error;
1095 	}
1096 	/* init AL7230B radio, part one */
1097 	for (i = 0; i < N(rfini_1); i++) {
1098 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1099 			return error;
1100 	}
1101 	/* init RF-dependent PHY registers, part two */
1102 	for (i = 0; i < N(phyini_2); i++) {
1103 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1104 		if (error != 0)
1105 			return error;
1106 	}
1107 	/* init AL7230B radio, part two */
1108 	for (i = 0; i < N(rfini_2); i++) {
1109 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1110 			return error;
1111 	}
1112 	/* init RF-dependent PHY registers, part three */
1113 	for (i = 0; i < N(phyini_3); i++) {
1114 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1115 		if (error != 0)
1116 			return error;
1117 	}
1118 
1119 	return 0;
1120 #undef N
1121 }
1122 
1123 Static int
1124 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1125 {
1126 	struct zyd_softc *sc = rf->rf_sc;
1127 
1128 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1129 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1130 
1131 	return 0;
1132 }
1133 
1134 Static int
1135 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1136 {
1137 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1138 	struct zyd_softc *sc = rf->rf_sc;
1139 	static const struct {
1140 		uint32_t	r1, r2;
1141 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1142 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1143 	int i, error;
1144 
1145 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1146 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1147 
1148 	for (i = 0; i < N(rfsc); i++) {
1149 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1150 			return error;
1151 	}
1152 
1153 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1154 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1155 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1156 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1157 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1158 
1159 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1160 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1161 	(void)zyd_rfwrite(sc, 0x3c9000);
1162 
1163 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1164 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1165 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1166 
1167 	return 0;
1168 #undef N
1169 }
1170 
1171 /*
1172  * AL2210 RF methods.
1173  */
1174 Static int
1175 zyd_al2210_init(struct zyd_rf *rf)
1176 {
1177 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1178 	struct zyd_softc *sc = rf->rf_sc;
1179 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1180 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1181 	uint32_t tmp;
1182 	int i, error;
1183 
1184 	(void)zyd_write32(sc, ZYD_CR18, 2);
1185 
1186 	/* init RF-dependent PHY registers */
1187 	for (i = 0; i < N(phyini); i++) {
1188 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1189 		if (error != 0)
1190 			return error;
1191 	}
1192 	/* init AL2210 radio */
1193 	for (i = 0; i < N(rfini); i++) {
1194 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1195 			return error;
1196 	}
1197 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1198 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1199 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1200 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1201 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1202 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1203 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1204 	(void)zyd_write32(sc, ZYD_CR18, 3);
1205 
1206 	return 0;
1207 #undef N
1208 }
1209 
1210 Static int
1211 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1212 {
1213 	/* vendor driver does nothing for this RF chip */
1214 
1215 	return 0;
1216 }
1217 
1218 Static int
1219 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1220 {
1221 	struct zyd_softc *sc = rf->rf_sc;
1222 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1223 	uint32_t tmp;
1224 
1225 	(void)zyd_write32(sc, ZYD_CR18, 2);
1226 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1227 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1228 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1229 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1230 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1231 
1232 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1233 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1234 
1235 	/* actually set the channel */
1236 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1237 
1238 	(void)zyd_write32(sc, ZYD_CR18, 3);
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  * GCT RF methods.
1245  */
1246 Static int
1247 zyd_gct_init(struct zyd_rf *rf)
1248 {
1249 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1250 	struct zyd_softc *sc = rf->rf_sc;
1251 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1252 	static const uint32_t rfini[] = ZYD_GCT_RF;
1253 	int i, error;
1254 
1255 	/* init RF-dependent PHY registers */
1256 	for (i = 0; i < N(phyini); i++) {
1257 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1258 		if (error != 0)
1259 			return error;
1260 	}
1261 	/* init cgt radio */
1262 	for (i = 0; i < N(rfini); i++) {
1263 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1264 			return error;
1265 	}
1266 	return 0;
1267 #undef N
1268 }
1269 
1270 Static int
1271 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1272 {
1273 	/* vendor driver does nothing for this RF chip */
1274 
1275 	return 0;
1276 }
1277 
1278 Static int
1279 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1280 {
1281 	struct zyd_softc *sc = rf->rf_sc;
1282 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1283 
1284 	(void)zyd_rfwrite(sc, 0x1c0000);
1285 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1286 	(void)zyd_rfwrite(sc, 0x1c0008);
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Maxim RF methods.
1293  */
1294 Static int
1295 zyd_maxim_init(struct zyd_rf *rf)
1296 {
1297 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1298 	struct zyd_softc *sc = rf->rf_sc;
1299 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1300 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1301 	uint16_t tmp;
1302 	int i, error;
1303 
1304 	/* init RF-dependent PHY registers */
1305 	for (i = 0; i < N(phyini); i++) {
1306 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1307 		if (error != 0)
1308 			return error;
1309 	}
1310 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1311 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1312 
1313 	/* init maxim radio */
1314 	for (i = 0; i < N(rfini); i++) {
1315 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1316 			return error;
1317 	}
1318 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1319 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1320 
1321 	return 0;
1322 #undef N
1323 }
1324 
1325 Static int
1326 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1327 {
1328 	/* vendor driver does nothing for this RF chip */
1329 
1330 	return 0;
1331 }
1332 
1333 Static int
1334 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1335 {
1336 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1337 	struct zyd_softc *sc = rf->rf_sc;
1338 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1339 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1340 	static const struct {
1341 		uint32_t	r1, r2;
1342 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1343 	uint16_t tmp;
1344 	int i, error;
1345 
1346 	/*
1347 	 * Do the same as we do when initializing it, except for the channel
1348 	 * values coming from the two channel tables.
1349 	 */
1350 
1351 	/* init RF-dependent PHY registers */
1352 	for (i = 0; i < N(phyini); i++) {
1353 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1354 		if (error != 0)
1355 			return error;
1356 	}
1357 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1358 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1359 
1360 	/* first two values taken from the chantables */
1361 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1362 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1363 
1364 	/* init maxim radio - skipping the two first values */
1365 	for (i = 2; i < N(rfini); i++) {
1366 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1367 			return error;
1368 	}
1369 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1370 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1371 
1372 	return 0;
1373 #undef N
1374 }
1375 
1376 /*
1377  * Maxim2 RF methods.
1378  */
1379 Static int
1380 zyd_maxim2_init(struct zyd_rf *rf)
1381 {
1382 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1383 	struct zyd_softc *sc = rf->rf_sc;
1384 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1385 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1386 	uint16_t tmp;
1387 	int i, error;
1388 
1389 	/* init RF-dependent PHY registers */
1390 	for (i = 0; i < N(phyini); i++) {
1391 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1392 		if (error != 0)
1393 			return error;
1394 	}
1395 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1396 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1397 
1398 	/* init maxim2 radio */
1399 	for (i = 0; i < N(rfini); i++) {
1400 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1401 			return error;
1402 	}
1403 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1404 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1405 
1406 	return 0;
1407 #undef N
1408 }
1409 
1410 Static int
1411 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1412 {
1413 	/* vendor driver does nothing for this RF chip */
1414 
1415 	return 0;
1416 }
1417 
1418 Static int
1419 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1420 {
1421 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1422 	struct zyd_softc *sc = rf->rf_sc;
1423 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1424 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1425 	static const struct {
1426 		uint32_t	r1, r2;
1427 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1428 	uint16_t tmp;
1429 	int i, error;
1430 
1431 	/*
1432 	 * Do the same as we do when initializing it, except for the channel
1433 	 * values coming from the two channel tables.
1434 	 */
1435 
1436 	/* init RF-dependent PHY registers */
1437 	for (i = 0; i < N(phyini); i++) {
1438 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1439 		if (error != 0)
1440 			return error;
1441 	}
1442 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1443 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1444 
1445 	/* first two values taken from the chantables */
1446 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1447 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1448 
1449 	/* init maxim2 radio - skipping the two first values */
1450 	for (i = 2; i < N(rfini); i++) {
1451 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1452 			return error;
1453 	}
1454 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1455 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1456 
1457 	return 0;
1458 #undef N
1459 }
1460 
1461 Static int
1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1463 {
1464 	struct zyd_rf *rf = &sc->sc_rf;
1465 
1466 	rf->rf_sc = sc;
1467 
1468 	switch (type) {
1469 	case ZYD_RF_RFMD:
1470 		rf->init         = zyd_rfmd_init;
1471 		rf->switch_radio = zyd_rfmd_switch_radio;
1472 		rf->set_channel  = zyd_rfmd_set_channel;
1473 		rf->width        = 24;	/* 24-bit RF values */
1474 		break;
1475 	case ZYD_RF_AL2230:
1476 		if (sc->mac_rev == ZYD_ZD1211B)
1477 			rf->init = zyd_al2230_init_b;
1478 		else
1479 			rf->init = zyd_al2230_init;
1480 		rf->switch_radio = zyd_al2230_switch_radio;
1481 		rf->set_channel  = zyd_al2230_set_channel;
1482 		rf->width        = 24;	/* 24-bit RF values */
1483 		break;
1484 	case ZYD_RF_AL7230B:
1485 		rf->init         = zyd_al7230B_init;
1486 		rf->switch_radio = zyd_al7230B_switch_radio;
1487 		rf->set_channel  = zyd_al7230B_set_channel;
1488 		rf->width        = 24;	/* 24-bit RF values */
1489 		break;
1490 	case ZYD_RF_AL2210:
1491 		rf->init         = zyd_al2210_init;
1492 		rf->switch_radio = zyd_al2210_switch_radio;
1493 		rf->set_channel  = zyd_al2210_set_channel;
1494 		rf->width        = 24;	/* 24-bit RF values */
1495 		break;
1496 	case ZYD_RF_GCT:
1497 		rf->init         = zyd_gct_init;
1498 		rf->switch_radio = zyd_gct_switch_radio;
1499 		rf->set_channel  = zyd_gct_set_channel;
1500 		rf->width        = 21;	/* 21-bit RF values */
1501 		break;
1502 	case ZYD_RF_MAXIM_NEW:
1503 		rf->init         = zyd_maxim_init;
1504 		rf->switch_radio = zyd_maxim_switch_radio;
1505 		rf->set_channel  = zyd_maxim_set_channel;
1506 		rf->width        = 18;	/* 18-bit RF values */
1507 		break;
1508 	case ZYD_RF_MAXIM_NEW2:
1509 		rf->init         = zyd_maxim2_init;
1510 		rf->switch_radio = zyd_maxim2_switch_radio;
1511 		rf->set_channel  = zyd_maxim2_set_channel;
1512 		rf->width        = 18;	/* 18-bit RF values */
1513 		break;
1514 	default:
1515 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1516 		    USBDEVNAME(sc->sc_dev), zyd_rf_name(type));
1517 		return EINVAL;
1518 	}
1519 	return 0;
1520 }
1521 
1522 Static const char *
1523 zyd_rf_name(uint8_t type)
1524 {
1525 	static const char * const zyd_rfs[] = {
1526 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1527 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1528 		"PV2000",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1529 		"PHILIPS"
1530 	};
1531 
1532 	return zyd_rfs[(type > 15) ? 0 : type];
1533 }
1534 
1535 Static int
1536 zyd_hw_init(struct zyd_softc *sc)
1537 {
1538 	struct zyd_rf *rf = &sc->sc_rf;
1539 	const struct zyd_phy_pair *phyp;
1540 	int error;
1541 
1542 	/* specify that the plug and play is finished */
1543 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1544 
1545 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1546 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1547 
1548 	/* retrieve firmware revision number */
1549 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1550 
1551 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1552 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1553 
1554 	/* disable interrupts */
1555 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1556 
1557 	/* PHY init */
1558 	zyd_lock_phy(sc);
1559 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1560 	for (; phyp->reg != 0; phyp++) {
1561 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1562 			goto fail;
1563 	}
1564 	zyd_unlock_phy(sc);
1565 
1566 	/* HMAC init */
1567 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1568 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1569 
1570 	if (sc->mac_rev == ZYD_ZD1211) {
1571 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1572 	} else {
1573 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1574 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1575 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1576 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1577 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1578 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1579 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1580 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1581 	}
1582 
1583 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1584 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1585 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1586 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1587 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1588 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1589 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1590 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1591 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1592 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1593 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1594 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1595 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1596 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1597 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1598 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1599 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1600 
1601 	/* RF chip init */
1602 	zyd_lock_phy(sc);
1603 	error = (*rf->init)(rf);
1604 	zyd_unlock_phy(sc);
1605 	if (error != 0) {
1606 		printf("%s: radio initialization failed\n",
1607 		    USBDEVNAME(sc->sc_dev));
1608 		goto fail;
1609 	}
1610 
1611 	/* init beacon interval to 100ms */
1612 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1613 		goto fail;
1614 
1615 fail:	return error;
1616 }
1617 
1618 Static int
1619 zyd_read_eeprom(struct zyd_softc *sc)
1620 {
1621 	struct ieee80211com *ic = &sc->sc_ic;
1622 	uint32_t tmp;
1623 	uint16_t val;
1624 	int i;
1625 
1626 	/* read MAC address */
1627 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1628 	ic->ic_myaddr[0] = tmp & 0xff;
1629 	ic->ic_myaddr[1] = tmp >>  8;
1630 	ic->ic_myaddr[2] = tmp >> 16;
1631 	ic->ic_myaddr[3] = tmp >> 24;
1632 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1633 	ic->ic_myaddr[4] = tmp & 0xff;
1634 	ic->ic_myaddr[5] = tmp >>  8;
1635 
1636 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1637 	sc->rf_rev = tmp & 0x0f;
1638 	sc->pa_rev = (tmp >> 16) & 0x0f;
1639 
1640 	/* read regulatory domain (currently unused) */
1641 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1642 	sc->regdomain = tmp >> 16;
1643 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1644 
1645 	/* read Tx power calibration tables */
1646 	for (i = 0; i < 7; i++) {
1647 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1648 		sc->pwr_cal[i * 2] = val >> 8;
1649 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1650 
1651 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1652 		sc->pwr_int[i * 2] = val >> 8;
1653 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1654 
1655 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1656 		sc->ofdm36_cal[i * 2] = val >> 8;
1657 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1658 
1659 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1660 		sc->ofdm48_cal[i * 2] = val >> 8;
1661 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1662 
1663 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1664 		sc->ofdm54_cal[i * 2] = val >> 8;
1665 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1666 	}
1667 	return 0;
1668 }
1669 
1670 Static int
1671 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1672 {
1673 	uint32_t tmp;
1674 
1675 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1676 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1677 
1678 	tmp = addr[5] << 8 | addr[4];
1679 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1680 
1681 	return 0;
1682 }
1683 
1684 Static int
1685 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1686 {
1687 	uint32_t tmp;
1688 
1689 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1691 
1692 	tmp = addr[5] << 8 | addr[4];
1693 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1694 
1695 	return 0;
1696 }
1697 
1698 Static int
1699 zyd_switch_radio(struct zyd_softc *sc, int on)
1700 {
1701 	struct zyd_rf *rf = &sc->sc_rf;
1702 	int error;
1703 
1704 	zyd_lock_phy(sc);
1705 	error = (*rf->switch_radio)(rf, on);
1706 	zyd_unlock_phy(sc);
1707 
1708 	return error;
1709 }
1710 
1711 Static void
1712 zyd_set_led(struct zyd_softc *sc, int which, int on)
1713 {
1714 	uint32_t tmp;
1715 
1716 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1717 	tmp &= ~which;
1718 	if (on)
1719 		tmp |= which;
1720 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1721 }
1722 
1723 Static int
1724 zyd_set_rxfilter(struct zyd_softc *sc)
1725 {
1726 	uint32_t rxfilter;
1727 
1728 	switch (sc->sc_ic.ic_opmode) {
1729 	case IEEE80211_M_STA:
1730 		rxfilter = ZYD_FILTER_BSS;
1731 		break;
1732 	case IEEE80211_M_IBSS:
1733 	case IEEE80211_M_HOSTAP:
1734 		rxfilter = ZYD_FILTER_HOSTAP;
1735 		break;
1736 	case IEEE80211_M_MONITOR:
1737 		rxfilter = ZYD_FILTER_MONITOR;
1738 		break;
1739 	default:
1740 		/* should not get there */
1741 		return EINVAL;
1742 	}
1743 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1744 }
1745 
1746 Static void
1747 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1748 {
1749 	struct ieee80211com *ic = &sc->sc_ic;
1750 	struct zyd_rf *rf = &sc->sc_rf;
1751 	u_int chan;
1752 
1753 	chan = ieee80211_chan2ieee(ic, c);
1754 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1755 		return;
1756 
1757 	zyd_lock_phy(sc);
1758 
1759 	(*rf->set_channel)(rf, chan);
1760 
1761 	/* update Tx power */
1762 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1763 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1764 
1765 	if (sc->mac_rev == ZYD_ZD1211B) {
1766 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1767 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1768 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1769 
1770 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1771 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1772 	}
1773 
1774 	zyd_unlock_phy(sc);
1775 }
1776 
1777 Static int
1778 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1779 {
1780 	/* XXX this is probably broken.. */
1781 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1782 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1783 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1784 
1785 	return 0;
1786 }
1787 
1788 Static uint8_t
1789 zyd_plcp_signal(int rate)
1790 {
1791 	switch (rate) {
1792 	/* CCK rates (returned values are device-dependent) */
1793 	case 2:		return 0x0;
1794 	case 4:		return 0x1;
1795 	case 11:	return 0x2;
1796 	case 22:	return 0x3;
1797 
1798 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1799 	case 12:	return 0xb;
1800 	case 18:	return 0xf;
1801 	case 24:	return 0xa;
1802 	case 36:	return 0xe;
1803 	case 48:	return 0x9;
1804 	case 72:	return 0xd;
1805 	case 96:	return 0x8;
1806 	case 108:	return 0xc;
1807 
1808 	/* unsupported rates (should not get there) */
1809 	default:	return 0xff;
1810 	}
1811 }
1812 
1813 Static void
1814 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1815 {
1816 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1817 	struct zyd_cmd *cmd;
1818 	uint32_t datalen;
1819 
1820 	if (status != USBD_NORMAL_COMPLETION) {
1821 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1822 			return;
1823 
1824 		if (status == USBD_STALLED) {
1825 			usbd_clear_endpoint_stall_async(
1826 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1827 		}
1828 		return;
1829 	}
1830 
1831 	cmd = (struct zyd_cmd *)sc->ibuf;
1832 
1833 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1834 		struct zyd_notif_retry *retry =
1835 		    (struct zyd_notif_retry *)cmd->data;
1836 		struct ieee80211com *ic = &sc->sc_ic;
1837 		struct ifnet *ifp = &sc->sc_if;
1838 		struct ieee80211_node *ni;
1839 
1840 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1841 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1842 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1843 
1844 		/*
1845 		 * Find the node to which the packet was sent and update its
1846 		 * retry statistics.  In BSS mode, this node is the AP we're
1847 		 * associated to so no lookup is actually needed.
1848 		 */
1849 		if (ic->ic_opmode != IEEE80211_M_STA) {
1850 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1851 			if (ni == NULL)
1852 				return;	/* just ignore */
1853 		} else
1854 			ni = ic->ic_bss;
1855 
1856 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1857 
1858 		if (le16toh(retry->count) & 0x100)
1859 			ifp->if_oerrors++;	/* too many retries */
1860 
1861 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1862 		struct rq *rqp;
1863 
1864 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1865 			return;	/* HMAC interrupt */
1866 
1867 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1868 		datalen -= sizeof(cmd->code);
1869 		datalen -= 2;	/* XXX: padding? */
1870 
1871 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1872 			int i;
1873 
1874 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1875 				continue;
1876 			for (i = 0; i < rqp->len; i++) {
1877 				if (*(((const uint16_t *)rqp->idata) + i) !=
1878 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1879 					break;
1880 			}
1881 			if (i != rqp->len)
1882 				continue;
1883 
1884 			/* copy answer into caller-supplied buffer */
1885 			bcopy(cmd->data, rqp->odata,
1886 			    sizeof(struct zyd_pair) * rqp->len);
1887 			wakeup(rqp->odata);	/* wakeup caller */
1888 
1889 			return;
1890 		}
1891 		return;	/* unexpected IORD notification */
1892 	} else {
1893 		printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev),
1894 		    le16toh(cmd->code));
1895 	}
1896 }
1897 
1898 Static void
1899 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1900 {
1901 	struct ieee80211com *ic = &sc->sc_ic;
1902 	struct ifnet *ifp = &sc->sc_if;
1903 	struct ieee80211_node *ni;
1904 	struct ieee80211_frame *wh;
1905 	const struct zyd_plcphdr *plcp;
1906 	const struct zyd_rx_stat *stat;
1907 	struct mbuf *m;
1908 	int rlen, s;
1909 
1910 	if (len < ZYD_MIN_FRAGSZ) {
1911 		printf("%s: frame too short (length=%d)\n",
1912 		    USBDEVNAME(sc->sc_dev), len);
1913 		ifp->if_ierrors++;
1914 		return;
1915 	}
1916 
1917 	plcp = (const struct zyd_plcphdr *)buf;
1918 	stat = (const struct zyd_rx_stat *)
1919 	    (buf + len - sizeof (struct zyd_rx_stat));
1920 
1921 	if (stat->flags & ZYD_RX_ERROR) {
1922 		DPRINTF(("%s: RX status indicated error (%x)\n",
1923 		    USBDEVNAME(sc->sc_dev), stat->flags));
1924 		ifp->if_ierrors++;
1925 		return;
1926 	}
1927 
1928 	/* compute actual frame length */
1929 	rlen = len - sizeof (struct zyd_plcphdr) -
1930 	    sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1931 
1932 	/* allocate a mbuf to store the frame */
1933 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1934 	if (m == NULL) {
1935 		printf("%s: could not allocate rx mbuf\n",
1936 		    USBDEVNAME(sc->sc_dev));
1937 		ifp->if_ierrors++;
1938 		return;
1939 	}
1940 	if (rlen > MHLEN) {
1941 		MCLGET(m, M_DONTWAIT);
1942 		if (!(m->m_flags & M_EXT)) {
1943 			printf("%s: could not allocate rx mbuf cluster\n",
1944 			    USBDEVNAME(sc->sc_dev));
1945 			m_freem(m);
1946 			ifp->if_ierrors++;
1947 			return;
1948 		}
1949 	}
1950 	m->m_pkthdr.rcvif = ifp;
1951 	m->m_pkthdr.len = m->m_len = rlen;
1952 	bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1953 
1954 	s = splnet();
1955 
1956 #if NBPFILTER > 0
1957 	if (sc->sc_drvbpf != NULL) {
1958 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1959 		static const uint8_t rates[] = {
1960 			/* reverse function of zyd_plcp_signal() */
1961 			2, 4, 11, 22, 0, 0, 0, 0,
1962 			96, 48, 24, 12, 108, 72, 36, 18
1963 		};
1964 
1965 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1966 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1967 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1968 		tap->wr_rssi = stat->rssi;
1969 		tap->wr_rate = rates[plcp->signal & 0xf];
1970 
1971 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1972 	}
1973 #endif
1974 
1975 	wh = mtod(m, struct ieee80211_frame *);
1976 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1977 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1978 
1979 	/* node is no longer needed */
1980 	ieee80211_free_node(ni);
1981 
1982 	splx(s);
1983 }
1984 
1985 Static void
1986 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1987 {
1988 	struct zyd_rx_data *data = priv;
1989 	struct zyd_softc *sc = data->sc;
1990 	struct ifnet *ifp = &sc->sc_if;
1991 	const struct zyd_rx_desc *desc;
1992 	int len;
1993 
1994 	if (status != USBD_NORMAL_COMPLETION) {
1995 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1996 			return;
1997 
1998 		if (status == USBD_STALLED)
1999 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2000 
2001 		goto skip;
2002 	}
2003 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2004 
2005 	if (len < ZYD_MIN_RXBUFSZ) {
2006 		printf("%s: xfer too short (length=%d)\n",
2007 		    USBDEVNAME(sc->sc_dev), len);
2008 		ifp->if_ierrors++;
2009 		goto skip;
2010 	}
2011 
2012 	desc = (const struct zyd_rx_desc *)
2013 	    (data->buf + len - sizeof (struct zyd_rx_desc));
2014 
2015 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2016 		const uint8_t *p = data->buf, *end = p + len;
2017 		int i;
2018 
2019 		DPRINTFN(3, ("received multi-frame transfer\n"));
2020 
2021 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2022 			const uint16_t len16 = UGETW(desc->len[i]);
2023 
2024 			if (len16 == 0 || p + len16 > end)
2025 				break;
2026 
2027 			zyd_rx_data(sc, p, len16);
2028 			/* next frame is aligned on a 32-bit boundary */
2029 			p += (len16 + 3) & ~3;
2030 		}
2031 	} else {
2032 		DPRINTFN(3, ("received single-frame transfer\n"));
2033 
2034 		zyd_rx_data(sc, data->buf, len);
2035 	}
2036 
2037 skip:	/* setup a new transfer */
2038 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2039 	    ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2040 	    USBD_NO_TIMEOUT, zyd_rxeof);
2041 	(void)usbd_transfer(xfer);
2042 }
2043 
2044 Static int
2045 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2046 {
2047 	struct ieee80211com *ic = &sc->sc_ic;
2048 	struct ifnet *ifp = &sc->sc_if;
2049 	struct zyd_tx_desc *desc;
2050 	struct zyd_tx_data *data;
2051 	struct ieee80211_frame *wh;
2052 	struct ieee80211_key *k;
2053 	int xferlen, totlen, rate;
2054 	uint16_t pktlen;
2055 	usbd_status error;
2056 
2057 	data = &sc->tx_data[0];
2058 	desc = (struct zyd_tx_desc *)data->buf;
2059 
2060 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2061 
2062 	wh = mtod(m0, struct ieee80211_frame *);
2063 
2064 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2065 		k = ieee80211_crypto_encap(ic, ni, m0);
2066 		if (k == NULL) {
2067 			m_freem(m0);
2068 			return ENOBUFS;
2069 		}
2070 	}
2071 
2072 	data->ni = ni;
2073 
2074 	wh = mtod(m0, struct ieee80211_frame *);
2075 
2076 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2077 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2078 
2079 	/* fill Tx descriptor */
2080 	desc->len = htole16(totlen);
2081 
2082 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2083 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2084 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2085 		if (totlen > ic->ic_rtsthreshold) {
2086 			desc->flags |= ZYD_TX_FLAG_RTS;
2087 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2088 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2089 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2090 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2091 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2092 				desc->flags |= ZYD_TX_FLAG_RTS;
2093 		}
2094 	} else
2095 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2096 
2097 	if ((wh->i_fc[0] &
2098 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2099 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2100 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2101 
2102 	desc->phy = zyd_plcp_signal(rate);
2103 	if (ZYD_RATE_IS_OFDM(rate)) {
2104 		desc->phy |= ZYD_TX_PHY_OFDM;
2105 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2106 			desc->phy |= ZYD_TX_PHY_5GHZ;
2107 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2108 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2109 
2110 	/* actual transmit length (XXX why +10?) */
2111 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2112 	if (sc->mac_rev == ZYD_ZD1211)
2113 		pktlen += totlen;
2114 	desc->pktlen = htole16(pktlen);
2115 
2116 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2117 	desc->plcp_service = 0;
2118 	if (rate == 22) {
2119 		const int remainder = (16 * totlen) % 22;
2120 		if (remainder != 0 && remainder < 7)
2121 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2122 	}
2123 
2124 #if NBPFILTER > 0
2125 	if (sc->sc_drvbpf != NULL) {
2126 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2127 
2128 		tap->wt_flags = 0;
2129 		tap->wt_rate = rate;
2130 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2131 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2132 
2133 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2134 	}
2135 #endif
2136 
2137 	m_copydata(m0, 0, m0->m_pkthdr.len,
2138 	    data->buf + sizeof (struct zyd_tx_desc));
2139 
2140 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2141 	    USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2142 
2143 	m_freem(m0);	/* mbuf no longer needed */
2144 
2145 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2146 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2147 	    ZYD_TX_TIMEOUT, zyd_txeof);
2148 	error = usbd_transfer(data->xfer);
2149 	if (error != USBD_IN_PROGRESS && error != 0) {
2150 		ifp->if_oerrors++;
2151 		return EIO;
2152 	}
2153 	sc->tx_queued++;
2154 
2155 	return 0;
2156 }
2157 
2158 Static void
2159 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2160 {
2161 	struct zyd_tx_data *data = priv;
2162 	struct zyd_softc *sc = data->sc;
2163 	struct ifnet *ifp = &sc->sc_if;
2164 	int s;
2165 
2166 	if (status != USBD_NORMAL_COMPLETION) {
2167 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2168 			return;
2169 
2170 		printf("%s: could not transmit buffer: %s\n",
2171 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
2172 
2173 		if (status == USBD_STALLED) {
2174 			usbd_clear_endpoint_stall_async(
2175 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2176 		}
2177 		ifp->if_oerrors++;
2178 		return;
2179 	}
2180 
2181 	s = splnet();
2182 
2183 	/* update rate control statistics */
2184 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2185 
2186 	ieee80211_free_node(data->ni);
2187 	data->ni = NULL;
2188 
2189 	sc->tx_queued--;
2190 	ifp->if_opackets++;
2191 
2192 	sc->tx_timer = 0;
2193 	ifp->if_flags &= ~IFF_OACTIVE;
2194 	zyd_start(ifp);
2195 
2196 	splx(s);
2197 }
2198 
2199 Static int
2200 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2201 {
2202 	struct ieee80211com *ic = &sc->sc_ic;
2203 	struct ifnet *ifp = &sc->sc_if;
2204 	struct zyd_tx_desc *desc;
2205 	struct zyd_tx_data *data;
2206 	struct ieee80211_frame *wh;
2207 	struct ieee80211_key *k;
2208 	int xferlen, totlen, rate;
2209 	uint16_t pktlen;
2210 	usbd_status error;
2211 
2212 	wh = mtod(m0, struct ieee80211_frame *);
2213 
2214 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2215 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2216 	else
2217 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2218 	rate &= IEEE80211_RATE_VAL;
2219 
2220 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2221 		k = ieee80211_crypto_encap(ic, ni, m0);
2222 		if (k == NULL) {
2223 			m_freem(m0);
2224 			return ENOBUFS;
2225 		}
2226 
2227 		/* packet header may have moved, reset our local pointer */
2228 		wh = mtod(m0, struct ieee80211_frame *);
2229 	}
2230 
2231 	data = &sc->tx_data[0];
2232 	desc = (struct zyd_tx_desc *)data->buf;
2233 
2234 	data->ni = ni;
2235 
2236 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2237 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2238 
2239 	/* fill Tx descriptor */
2240 	desc->len = htole16(totlen);
2241 
2242 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2243 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2244 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2245 		if (totlen > ic->ic_rtsthreshold) {
2246 			desc->flags |= ZYD_TX_FLAG_RTS;
2247 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2248 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2249 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2250 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2251 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2252 				desc->flags |= ZYD_TX_FLAG_RTS;
2253 		}
2254 	} else
2255 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2256 
2257 	if ((wh->i_fc[0] &
2258 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2259 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2260 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2261 
2262 	desc->phy = zyd_plcp_signal(rate);
2263 	if (ZYD_RATE_IS_OFDM(rate)) {
2264 		desc->phy |= ZYD_TX_PHY_OFDM;
2265 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2266 			desc->phy |= ZYD_TX_PHY_5GHZ;
2267 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2268 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2269 
2270 	/* actual transmit length (XXX why +10?) */
2271 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2272 	if (sc->mac_rev == ZYD_ZD1211)
2273 		pktlen += totlen;
2274 	desc->pktlen = htole16(pktlen);
2275 
2276 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2277 	desc->plcp_service = 0;
2278 	if (rate == 22) {
2279 		const int remainder = (16 * totlen) % 22;
2280 		if (remainder != 0 && remainder < 7)
2281 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2282 	}
2283 
2284 #if NBPFILTER > 0
2285 	if (sc->sc_drvbpf != NULL) {
2286 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2287 
2288 		tap->wt_flags = 0;
2289 		tap->wt_rate = rate;
2290 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2291 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2292 
2293 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2294 	}
2295 #endif
2296 
2297 	m_copydata(m0, 0, m0->m_pkthdr.len,
2298 	    data->buf + sizeof (struct zyd_tx_desc));
2299 
2300 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2301 	    USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2302 
2303 	m_freem(m0);	/* mbuf no longer needed */
2304 
2305 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2306 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2307 	    ZYD_TX_TIMEOUT, zyd_txeof);
2308 	error = usbd_transfer(data->xfer);
2309 	if (error != USBD_IN_PROGRESS && error != 0) {
2310 		ifp->if_oerrors++;
2311 		return EIO;
2312 	}
2313 	sc->tx_queued++;
2314 
2315 	return 0;
2316 }
2317 
2318 Static void
2319 zyd_start(struct ifnet *ifp)
2320 {
2321 	struct zyd_softc *sc = ifp->if_softc;
2322 	struct ieee80211com *ic = &sc->sc_ic;
2323 	struct ether_header *eh;
2324 	struct ieee80211_node *ni;
2325 	struct mbuf *m0;
2326 
2327 	for (;;) {
2328 		IF_POLL(&ic->ic_mgtq, m0);
2329 		if (m0 != NULL) {
2330 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2331 				ifp->if_flags |= IFF_OACTIVE;
2332 				break;
2333 			}
2334 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2335 
2336 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2337 			m0->m_pkthdr.rcvif = NULL;
2338 #if NBPFILTER > 0
2339 			if (ic->ic_rawbpf != NULL)
2340 				bpf_mtap(ic->ic_rawbpf, m0);
2341 #endif
2342 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2343 				break;
2344 		} else {
2345 			if (ic->ic_state != IEEE80211_S_RUN)
2346 				break;
2347 			IFQ_POLL(&ifp->if_snd, m0);
2348 			if (m0 == NULL)
2349 				break;
2350 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2351 				ifp->if_flags |= IFF_OACTIVE;
2352 				break;
2353 			}
2354 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2355 
2356 			if (m0->m_len < sizeof(struct ether_header) &&
2357 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2358 				continue;
2359 
2360 			eh = mtod(m0, struct ether_header *);
2361 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2362 			if (ni == NULL) {
2363 				m_freem(m0);
2364 				continue;
2365 			}
2366 #if NBPFILTER > 0
2367 			if (ifp->if_bpf != NULL)
2368 				bpf_mtap(ifp->if_bpf, m0);
2369 #endif
2370 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2371 				ieee80211_free_node(ni);
2372 				ifp->if_oerrors++;
2373 				continue;
2374 			}
2375 #if NBPFILTER > 0
2376 			if (ic->ic_rawbpf != NULL)
2377 				bpf_mtap(ic->ic_rawbpf, m0);
2378 #endif
2379 			if (zyd_tx_data(sc, m0, ni) != 0) {
2380 				ieee80211_free_node(ni);
2381 				ifp->if_oerrors++;
2382 				break;
2383 			}
2384 		}
2385 
2386 		sc->tx_timer = 5;
2387 		ifp->if_timer = 1;
2388 	}
2389 }
2390 
2391 Static void
2392 zyd_watchdog(struct ifnet *ifp)
2393 {
2394 	struct zyd_softc *sc = ifp->if_softc;
2395 	struct ieee80211com *ic = &sc->sc_ic;
2396 
2397 	ifp->if_timer = 0;
2398 
2399 	if (sc->tx_timer > 0) {
2400 		if (--sc->tx_timer == 0) {
2401 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
2402 			/* zyd_init(ifp); XXX needs a process context ? */
2403 			ifp->if_oerrors++;
2404 			return;
2405 		}
2406 		ifp->if_timer = 1;
2407 	}
2408 
2409 	ieee80211_watchdog(ic);
2410 }
2411 
2412 Static int
2413 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2414 {
2415 	struct zyd_softc *sc = ifp->if_softc;
2416 	struct ieee80211com *ic = &sc->sc_ic;
2417 	int s, error = 0;
2418 
2419 	s = splnet();
2420 
2421 	switch (cmd) {
2422 	case SIOCSIFFLAGS:
2423 		if (ifp->if_flags & IFF_UP) {
2424 			if (!(ifp->if_flags & IFF_RUNNING))
2425 				zyd_init(ifp);
2426 		} else {
2427 			if (ifp->if_flags & IFF_RUNNING)
2428 				zyd_stop(ifp, 1);
2429 		}
2430 		break;
2431 
2432 	default:
2433 		if (!sc->attached)
2434 			error = ENOTTY;
2435 		else
2436 			error = ieee80211_ioctl(ic, cmd, data);
2437 	}
2438 
2439 	if (error == ENETRESET) {
2440 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2441 		    (IFF_RUNNING | IFF_UP))
2442 			zyd_init(ifp);
2443 		error = 0;
2444 	}
2445 
2446 	splx(s);
2447 
2448 	return error;
2449 }
2450 
2451 Static int
2452 zyd_init(struct ifnet *ifp)
2453 {
2454 	struct zyd_softc *sc = ifp->if_softc;
2455 	struct ieee80211com *ic = &sc->sc_ic;
2456 	int i, error;
2457 
2458 	if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2459 		if ((error = zyd_attachhook(sc)) != 0)
2460 			return error;
2461 
2462 	zyd_stop(ifp, 0);
2463 
2464 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2465 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2466 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2467 	if (error != 0)
2468 		return error;
2469 
2470 	/* we'll do software WEP decryption for now */
2471 	DPRINTF(("setting encryption type\n"));
2472 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2473 	if (error != 0)
2474 		return error;
2475 
2476 	/* promiscuous mode */
2477 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2478 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2479 
2480 	(void)zyd_set_rxfilter(sc);
2481 
2482 	/* switch radio transmitter ON */
2483 	(void)zyd_switch_radio(sc, 1);
2484 
2485 	/* set basic rates */
2486 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2487 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2488 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2489 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2490 	else	/* assumes 802.11b/g */
2491 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2492 
2493 	/* set mandatory rates */
2494 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2495 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2496 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2497 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2498 	else	/* assumes 802.11b/g */
2499 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2500 
2501 	/* set default BSS channel */
2502 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2503 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2504 
2505 	/* enable interrupts */
2506 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2507 
2508 	/*
2509 	 * Allocate Tx and Rx xfer queues.
2510 	 */
2511 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2512 		printf("%s: could not allocate Tx list\n",
2513 		    USBDEVNAME(sc->sc_dev));
2514 		goto fail;
2515 	}
2516 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2517 		printf("%s: could not allocate Rx list\n",
2518 		    USBDEVNAME(sc->sc_dev));
2519 		goto fail;
2520 	}
2521 
2522 	/*
2523 	 * Start up the receive pipe.
2524 	 */
2525 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2526 		struct zyd_rx_data *data = &sc->rx_data[i];
2527 
2528 		usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2529 		    NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2530 		    USBD_NO_TIMEOUT, zyd_rxeof);
2531 		error = usbd_transfer(data->xfer);
2532 		if (error != USBD_IN_PROGRESS && error != 0) {
2533 			printf("%s: could not queue Rx transfer\n",
2534 			    USBDEVNAME(sc->sc_dev));
2535 			goto fail;
2536 		}
2537 	}
2538 
2539 	ifp->if_flags &= ~IFF_OACTIVE;
2540 	ifp->if_flags |= IFF_RUNNING;
2541 
2542 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2543 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2544 	else
2545 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2546 
2547 	return 0;
2548 
2549 fail:	zyd_stop(ifp, 1);
2550 	return error;
2551 }
2552 
2553 Static void
2554 zyd_stop(struct ifnet *ifp, int disable)
2555 {
2556 	struct zyd_softc *sc = ifp->if_softc;
2557 	struct ieee80211com *ic = &sc->sc_ic;
2558 
2559 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2560 
2561 	sc->tx_timer = 0;
2562 	ifp->if_timer = 0;
2563 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2564 
2565 	/* switch radio transmitter OFF */
2566 	(void)zyd_switch_radio(sc, 0);
2567 
2568 	/* disable Rx */
2569 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2570 
2571 	/* disable interrupts */
2572 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2573 
2574 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2575 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2576 
2577 	zyd_free_rx_list(sc);
2578 	zyd_free_tx_list(sc);
2579 }
2580 
2581 Static int
2582 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2583 {
2584 	usb_device_request_t req;
2585 	uint16_t addr;
2586 	uint8_t stat;
2587 
2588 	DPRINTF(("firmware size=%zu\n", size));
2589 
2590 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2591 	req.bRequest = ZYD_DOWNLOADREQ;
2592 	USETW(req.wIndex, 0);
2593 
2594 	addr = ZYD_FIRMWARE_START_ADDR;
2595 	while (size > 0) {
2596 #if 0
2597 		const int mlen = min(size, 4096);
2598 #else
2599 		/*
2600 		 * XXXX: When the transfer size is 4096 bytes, it is not
2601 		 * likely to be able to transfer it.
2602 		 * The cause is port or machine or chip?
2603 		 */
2604 		const int mlen = min(size, 64);
2605 #endif
2606 
2607 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2608 		    addr));
2609 
2610 		USETW(req.wValue, addr);
2611 		USETW(req.wLength, mlen);
2612 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2613 			return EIO;
2614 
2615 		addr += mlen / 2;
2616 		fw   += mlen;
2617 		size -= mlen;
2618 	}
2619 
2620 	/* check whether the upload succeeded */
2621 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2622 	req.bRequest = ZYD_DOWNLOADSTS;
2623 	USETW(req.wValue, 0);
2624 	USETW(req.wIndex, 0);
2625 	USETW(req.wLength, sizeof stat);
2626 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2627 		return EIO;
2628 
2629 	return (stat & 0x80) ? EIO : 0;
2630 }
2631 
2632 Static void
2633 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2634 {
2635 	struct zyd_softc *sc = arg;
2636 	struct zyd_node *zn = (struct zyd_node *)ni;
2637 
2638 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2639 }
2640 
2641 Static void
2642 zyd_amrr_timeout(void *arg)
2643 {
2644 	struct zyd_softc *sc = arg;
2645 	struct ieee80211com *ic = &sc->sc_ic;
2646 	int s;
2647 
2648 	s = splnet();
2649 	if (ic->ic_opmode == IEEE80211_M_STA)
2650 		zyd_iter_func(sc, ic->ic_bss);
2651 	else
2652 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2653 	splx(s);
2654 
2655 	usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2656 }
2657 
2658 Static void
2659 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2660 {
2661 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2662 	int i;
2663 
2664 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2665 
2666 	/* set rate to some reasonable initial value */
2667 	for (i = ni->ni_rates.rs_nrates - 1;
2668 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2669 	     i--);
2670 	ni->ni_txrate = i;
2671 }
2672 
2673 int
2674 zyd_activate(device_ptr_t self, enum devact act)
2675 {
2676 	struct zyd_softc *sc = (struct zyd_softc *)self;
2677 
2678 	switch (act) {
2679 	case DVACT_ACTIVATE:
2680 		break;
2681 
2682 	case DVACT_DEACTIVATE:
2683 		if_deactivate(&sc->sc_if);
2684 		break;
2685 	}
2686 	return 0;
2687 }
2688