1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.24 2010/01/19 22:07:44 pooka Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.24 2010/01/19 22:07:44 pooka Exp $"); 26 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <machine/endian.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/in_systm.h> 52 #include <netinet/in_var.h> 53 #include <netinet/ip.h> 54 55 #include <net80211/ieee80211_netbsd.h> 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/firmload.h> 61 62 #include <dev/usb/usb.h> 63 #include <dev/usb/usbdi.h> 64 #include <dev/usb/usbdi_util.h> 65 #include <dev/usb/usbdevs.h> 66 67 #include <dev/usb/if_zydreg.h> 68 69 #ifdef USB_DEBUG 70 #define ZYD_DEBUG 71 #endif 72 73 #ifdef ZYD_DEBUG 74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 76 int zyddebug = 0; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 84 85 /* various supported device vendors/products */ 86 #define ZYD_ZD1211_DEV(v, p) \ 87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 88 #define ZYD_ZD1211B_DEV(v, p) \ 89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 90 static const struct zyd_type { 91 struct usb_devno dev; 92 uint8_t rev; 93 #define ZYD_ZD1211 0 94 #define ZYD_ZD1211B 1 95 } zyd_devs[] = { 96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 97 ZYD_ZD1211_DEV(ABOCOM, WL54), 98 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 102 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 103 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 104 ZYD_ZD1211_DEV(SAGEM, XG760A), 105 ZYD_ZD1211_DEV(SENAO, NUB8301), 106 ZYD_ZD1211_DEV(SITECOMEU, WL113), 107 ZYD_ZD1211_DEV(SWEEX, ZD1211), 108 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 109 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 111 ZYD_ZD1211_DEV(TWINMOS, G240), 112 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 113 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 115 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 116 ZYD_ZD1211_DEV(ZCOM, ZD1211), 117 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 118 ZYD_ZD1211_DEV(ZYXEL, AG225H), 119 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 120 121 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 122 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 123 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 124 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 125 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 126 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 127 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 128 ZYD_ZD1211B_DEV(MELCO, KG54L), 129 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 130 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 131 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 132 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 133 #if 0 /* Shall we needs? */ 134 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 135 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 136 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 137 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 138 #endif 139 ZYD_ZD1211B_DEV(USR, USR5423), 140 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 141 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 142 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 143 ZYD_ZD1211B_DEV(ZYXEL, M202), 144 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 145 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 146 }; 147 #define zyd_lookup(v, p) \ 148 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 149 150 int zyd_match(device_t, cfdata_t, void *); 151 void zyd_attach(device_t, device_t, void *); 152 int zyd_detach(device_t, int); 153 int zyd_activate(device_t, enum devact); 154 extern struct cfdriver zyd_cd; 155 156 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 157 zyd_attach, zyd_detach, zyd_activate); 158 159 Static int zyd_attachhook(void *); 160 Static int zyd_complete_attach(struct zyd_softc *); 161 Static int zyd_open_pipes(struct zyd_softc *); 162 Static void zyd_close_pipes(struct zyd_softc *); 163 Static int zyd_alloc_tx_list(struct zyd_softc *); 164 Static void zyd_free_tx_list(struct zyd_softc *); 165 Static int zyd_alloc_rx_list(struct zyd_softc *); 166 Static void zyd_free_rx_list(struct zyd_softc *); 167 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 168 Static int zyd_media_change(struct ifnet *); 169 Static void zyd_next_scan(void *); 170 Static void zyd_task(void *); 171 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 172 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 173 void *, int, u_int); 174 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 175 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 176 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 177 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 178 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 179 Static void zyd_lock_phy(struct zyd_softc *); 180 Static void zyd_unlock_phy(struct zyd_softc *); 181 Static int zyd_rfmd_init(struct zyd_rf *); 182 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 183 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 184 Static int zyd_al2230_init(struct zyd_rf *); 185 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 186 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 187 Static int zyd_al2230_init_b(struct zyd_rf *); 188 Static int zyd_al7230B_init(struct zyd_rf *); 189 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 190 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 191 Static int zyd_al2210_init(struct zyd_rf *); 192 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 193 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 194 Static int zyd_gct_init(struct zyd_rf *); 195 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 196 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 197 Static int zyd_maxim_init(struct zyd_rf *); 198 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 199 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 200 Static int zyd_maxim2_init(struct zyd_rf *); 201 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 202 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 203 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 204 Static const char *zyd_rf_name(uint8_t); 205 Static int zyd_hw_init(struct zyd_softc *); 206 Static int zyd_read_eeprom(struct zyd_softc *); 207 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 208 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 209 Static int zyd_switch_radio(struct zyd_softc *, int); 210 Static void zyd_set_led(struct zyd_softc *, int, int); 211 Static int zyd_set_rxfilter(struct zyd_softc *); 212 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 213 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 214 Static uint8_t zyd_plcp_signal(int); 215 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 216 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 217 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 218 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 219 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 220 struct ieee80211_node *); 221 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 222 struct ieee80211_node *); 223 Static void zyd_start(struct ifnet *); 224 Static void zyd_watchdog(struct ifnet *); 225 Static int zyd_ioctl(struct ifnet *, u_long, void *); 226 Static int zyd_init(struct ifnet *); 227 Static void zyd_stop(struct ifnet *, int); 228 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 229 Static void zyd_iter_func(void *, struct ieee80211_node *); 230 Static void zyd_amrr_timeout(void *); 231 Static void zyd_newassoc(struct ieee80211_node *, int); 232 233 static const struct ieee80211_rateset zyd_rateset_11b = 234 { 4, { 2, 4, 11, 22 } }; 235 236 static const struct ieee80211_rateset zyd_rateset_11g = 237 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 238 239 int 240 zyd_match(device_t parent, cfdata_t match, void *aux) 241 { 242 struct usb_attach_arg *uaa = aux; 243 244 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 245 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 246 } 247 248 Static int 249 zyd_attachhook(void *xsc) 250 { 251 struct zyd_softc *sc = xsc; 252 firmware_handle_t fwh; 253 const char *fwname; 254 u_char *fw; 255 size_t size; 256 int error; 257 258 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 259 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 260 aprint_error_dev(sc->sc_dev, 261 "failed to open firmware %s (error=%d)\n", fwname, error); 262 return error; 263 } 264 size = firmware_get_size(fwh); 265 fw = firmware_malloc(size); 266 if (fw == NULL) { 267 aprint_error_dev(sc->sc_dev, 268 "failed to allocate firmware memory\n"); 269 firmware_close(fwh); 270 return ENOMEM; 271 } 272 error = firmware_read(fwh, 0, fw, size); 273 firmware_close(fwh); 274 if (error != 0) { 275 aprint_error_dev(sc->sc_dev, 276 "failed to read firmware (error %d)\n", error); 277 firmware_free(fw, 0); 278 return error; 279 } 280 281 error = zyd_loadfirmware(sc, fw, size); 282 if (error != 0) { 283 aprint_error_dev(sc->sc_dev, 284 "could not load firmware (error=%d)\n", error); 285 firmware_free(fw, 0); 286 return ENXIO; 287 } 288 289 firmware_free(fw, 0); 290 sc->sc_flags |= ZD1211_FWLOADED; 291 292 /* complete the attach process */ 293 if ((error = zyd_complete_attach(sc)) == 0) 294 sc->attached = 1; 295 return error; 296 } 297 298 void 299 zyd_attach(device_t parent, device_t self, void *aux) 300 { 301 struct zyd_softc *sc = device_private(self); 302 struct usb_attach_arg *uaa = aux; 303 char *devinfop; 304 usb_device_descriptor_t* ddesc; 305 struct ifnet *ifp = &sc->sc_if; 306 307 sc->sc_dev = self; 308 sc->sc_udev = uaa->device; 309 sc->sc_flags = 0; 310 311 aprint_naive("\n"); 312 aprint_normal("\n"); 313 314 devinfop = usbd_devinfo_alloc(uaa->device, 0); 315 aprint_normal_dev(self, "%s\n", devinfop); 316 usbd_devinfo_free(devinfop); 317 318 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 319 320 ddesc = usbd_get_device_descriptor(sc->sc_udev); 321 if (UGETW(ddesc->bcdDevice) < 0x4330) { 322 aprint_error_dev(self, "device version mismatch: 0x%x " 323 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 324 return; 325 } 326 327 ifp->if_softc = sc; 328 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 329 ifp->if_init = zyd_init; 330 ifp->if_ioctl = zyd_ioctl; 331 ifp->if_start = zyd_start; 332 ifp->if_watchdog = zyd_watchdog; 333 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 334 IFQ_SET_READY(&ifp->if_snd); 335 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 336 337 if_attach(ifp); 338 /* XXXX: alloc temporarily until the layer2 can be configured. */ 339 if_alloc_sadl(ifp); 340 341 SIMPLEQ_INIT(&sc->sc_rqh); 342 343 return; 344 } 345 346 Static int 347 zyd_complete_attach(struct zyd_softc *sc) 348 { 349 struct ieee80211com *ic = &sc->sc_ic; 350 struct ifnet *ifp = &sc->sc_if; 351 usbd_status error; 352 int i; 353 354 usb_init_task(&sc->sc_task, zyd_task, sc); 355 callout_init(&(sc->sc_scan_ch), 0); 356 357 sc->amrr.amrr_min_success_threshold = 1; 358 sc->amrr.amrr_max_success_threshold = 10; 359 callout_init(&sc->sc_amrr_ch, 0); 360 361 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 362 if (error != 0) { 363 aprint_error_dev(sc->sc_dev, "setting config no failed\n"); 364 goto fail; 365 } 366 367 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 368 &sc->sc_iface); 369 if (error != 0) { 370 aprint_error_dev(sc->sc_dev, 371 "getting interface handle failed\n"); 372 goto fail; 373 } 374 375 if ((error = zyd_open_pipes(sc)) != 0) { 376 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 377 goto fail; 378 } 379 380 if ((error = zyd_read_eeprom(sc)) != 0) { 381 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 382 goto fail; 383 } 384 385 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 386 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 387 goto fail; 388 } 389 390 if ((error = zyd_hw_init(sc)) != 0) { 391 aprint_error_dev(sc->sc_dev, 392 "hardware initialization failed\n"); 393 goto fail; 394 } 395 396 aprint_normal_dev(sc->sc_dev, 397 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 398 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 399 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 400 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 401 402 ic->ic_ifp = ifp; 403 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 404 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 405 ic->ic_state = IEEE80211_S_INIT; 406 407 /* set device capabilities */ 408 ic->ic_caps = 409 IEEE80211_C_MONITOR | /* monitor mode supported */ 410 IEEE80211_C_TXPMGT | /* tx power management */ 411 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 412 IEEE80211_C_WEP; /* s/w WEP */ 413 414 /* set supported .11b and .11g rates */ 415 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 416 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 417 418 /* set supported .11b and .11g channels (1 through 14) */ 419 for (i = 1; i <= 14; i++) { 420 ic->ic_channels[i].ic_freq = 421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 422 ic->ic_channels[i].ic_flags = 423 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 424 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 425 } 426 427 if_free_sadl(ifp); 428 ieee80211_ifattach(ic); 429 ic->ic_node_alloc = zyd_node_alloc; 430 ic->ic_newassoc = zyd_newassoc; 431 432 /* override state transition machine */ 433 sc->sc_newstate = ic->ic_newstate; 434 ic->ic_newstate = zyd_newstate; 435 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 436 437 bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO, 438 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 439 &sc->sc_drvbpf); 440 441 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 442 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 443 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 444 445 sc->sc_txtap_len = sizeof sc->sc_txtapu; 446 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 447 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 448 449 ieee80211_announce(ic); 450 451 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 452 453 fail: return error; 454 } 455 456 int 457 zyd_detach(device_t self, int flags) 458 { 459 struct zyd_softc *sc = device_private(self); 460 struct ieee80211com *ic = &sc->sc_ic; 461 struct ifnet *ifp = &sc->sc_if; 462 int s; 463 464 if (!sc->attached) { 465 if_free_sadl(ifp); 466 if_detach(ifp); 467 return 0; 468 } 469 470 s = splusb(); 471 472 zyd_stop(ifp, 1); 473 usb_rem_task(sc->sc_udev, &sc->sc_task); 474 callout_stop(&sc->sc_scan_ch); 475 callout_stop(&sc->sc_amrr_ch); 476 477 zyd_close_pipes(sc); 478 479 sc->attached = 0; 480 481 bpf_ops->bpf_detach(ifp); 482 ieee80211_ifdetach(ic); 483 if_detach(ifp); 484 485 splx(s); 486 487 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 488 USBDEV(sc->sc_dev)); 489 490 return 0; 491 } 492 493 Static int 494 zyd_open_pipes(struct zyd_softc *sc) 495 { 496 usb_endpoint_descriptor_t *edesc; 497 int isize; 498 usbd_status error; 499 500 /* interrupt in */ 501 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 502 if (edesc == NULL) 503 return EINVAL; 504 505 isize = UGETW(edesc->wMaxPacketSize); 506 if (isize == 0) /* should not happen */ 507 return EINVAL; 508 509 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 510 if (sc->ibuf == NULL) 511 return ENOMEM; 512 513 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 514 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 515 USBD_DEFAULT_INTERVAL); 516 if (error != 0) { 517 printf("%s: open rx intr pipe failed: %s\n", 518 device_xname(sc->sc_dev), usbd_errstr(error)); 519 goto fail; 520 } 521 522 /* interrupt out (not necessarily an interrupt pipe) */ 523 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 524 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 525 if (error != 0) { 526 printf("%s: open tx intr pipe failed: %s\n", 527 device_xname(sc->sc_dev), usbd_errstr(error)); 528 goto fail; 529 } 530 531 /* bulk in */ 532 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 533 &sc->zyd_ep[ZYD_ENDPT_BIN]); 534 if (error != 0) { 535 printf("%s: open rx pipe failed: %s\n", 536 device_xname(sc->sc_dev), usbd_errstr(error)); 537 goto fail; 538 } 539 540 /* bulk out */ 541 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 542 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 543 if (error != 0) { 544 printf("%s: open tx pipe failed: %s\n", 545 device_xname(sc->sc_dev), usbd_errstr(error)); 546 goto fail; 547 } 548 549 return 0; 550 551 fail: zyd_close_pipes(sc); 552 return error; 553 } 554 555 Static void 556 zyd_close_pipes(struct zyd_softc *sc) 557 { 558 int i; 559 560 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 561 if (sc->zyd_ep[i] != NULL) { 562 usbd_abort_pipe(sc->zyd_ep[i]); 563 usbd_close_pipe(sc->zyd_ep[i]); 564 sc->zyd_ep[i] = NULL; 565 } 566 } 567 if (sc->ibuf != NULL) { 568 free(sc->ibuf, M_USBDEV); 569 sc->ibuf = NULL; 570 } 571 } 572 573 Static int 574 zyd_alloc_tx_list(struct zyd_softc *sc) 575 { 576 int i, error; 577 578 sc->tx_queued = 0; 579 580 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 581 struct zyd_tx_data *data = &sc->tx_data[i]; 582 583 data->sc = sc; /* backpointer for callbacks */ 584 585 data->xfer = usbd_alloc_xfer(sc->sc_udev); 586 if (data->xfer == NULL) { 587 printf("%s: could not allocate tx xfer\n", 588 device_xname(sc->sc_dev)); 589 error = ENOMEM; 590 goto fail; 591 } 592 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 593 if (data->buf == NULL) { 594 printf("%s: could not allocate tx buffer\n", 595 device_xname(sc->sc_dev)); 596 error = ENOMEM; 597 goto fail; 598 } 599 600 /* clear Tx descriptor */ 601 memset(data->buf, 0, sizeof (struct zyd_tx_desc)); 602 } 603 return 0; 604 605 fail: zyd_free_tx_list(sc); 606 return error; 607 } 608 609 Static void 610 zyd_free_tx_list(struct zyd_softc *sc) 611 { 612 int i; 613 614 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 615 struct zyd_tx_data *data = &sc->tx_data[i]; 616 617 if (data->xfer != NULL) { 618 usbd_free_xfer(data->xfer); 619 data->xfer = NULL; 620 } 621 if (data->ni != NULL) { 622 ieee80211_free_node(data->ni); 623 data->ni = NULL; 624 } 625 } 626 } 627 628 Static int 629 zyd_alloc_rx_list(struct zyd_softc *sc) 630 { 631 int i, error; 632 633 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 634 struct zyd_rx_data *data = &sc->rx_data[i]; 635 636 data->sc = sc; /* backpointer for callbacks */ 637 638 data->xfer = usbd_alloc_xfer(sc->sc_udev); 639 if (data->xfer == NULL) { 640 printf("%s: could not allocate rx xfer\n", 641 device_xname(sc->sc_dev)); 642 error = ENOMEM; 643 goto fail; 644 } 645 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 646 if (data->buf == NULL) { 647 printf("%s: could not allocate rx buffer\n", 648 device_xname(sc->sc_dev)); 649 error = ENOMEM; 650 goto fail; 651 } 652 } 653 return 0; 654 655 fail: zyd_free_rx_list(sc); 656 return error; 657 } 658 659 Static void 660 zyd_free_rx_list(struct zyd_softc *sc) 661 { 662 int i; 663 664 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 665 struct zyd_rx_data *data = &sc->rx_data[i]; 666 667 if (data->xfer != NULL) { 668 usbd_free_xfer(data->xfer); 669 data->xfer = NULL; 670 } 671 } 672 } 673 674 /* ARGUSED */ 675 Static struct ieee80211_node * 676 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 677 { 678 struct zyd_node *zn; 679 680 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 681 682 return &zn->ni; 683 } 684 685 Static int 686 zyd_media_change(struct ifnet *ifp) 687 { 688 int error; 689 690 error = ieee80211_media_change(ifp); 691 if (error != ENETRESET) 692 return error; 693 694 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 695 zyd_init(ifp); 696 697 return 0; 698 } 699 700 /* 701 * This function is called periodically (every 200ms) during scanning to 702 * switch from one channel to another. 703 */ 704 Static void 705 zyd_next_scan(void *arg) 706 { 707 struct zyd_softc *sc = arg; 708 struct ieee80211com *ic = &sc->sc_ic; 709 710 if (ic->ic_state == IEEE80211_S_SCAN) 711 ieee80211_next_scan(ic); 712 } 713 714 Static void 715 zyd_task(void *arg) 716 { 717 struct zyd_softc *sc = arg; 718 struct ieee80211com *ic = &sc->sc_ic; 719 enum ieee80211_state ostate; 720 721 ostate = ic->ic_state; 722 723 switch (sc->sc_state) { 724 case IEEE80211_S_INIT: 725 if (ostate == IEEE80211_S_RUN) { 726 /* turn link LED off */ 727 zyd_set_led(sc, ZYD_LED1, 0); 728 729 /* stop data LED from blinking */ 730 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 731 } 732 break; 733 734 case IEEE80211_S_SCAN: 735 zyd_set_chan(sc, ic->ic_curchan); 736 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 737 break; 738 739 case IEEE80211_S_AUTH: 740 case IEEE80211_S_ASSOC: 741 zyd_set_chan(sc, ic->ic_curchan); 742 break; 743 744 case IEEE80211_S_RUN: 745 { 746 struct ieee80211_node *ni = ic->ic_bss; 747 748 zyd_set_chan(sc, ic->ic_curchan); 749 750 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 751 /* turn link LED on */ 752 zyd_set_led(sc, ZYD_LED1, 1); 753 754 /* make data LED blink upon Tx */ 755 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 756 757 zyd_set_bssid(sc, ni->ni_bssid); 758 } 759 760 if (ic->ic_opmode == IEEE80211_M_STA) { 761 /* fake a join to init the tx rate */ 762 zyd_newassoc(ni, 1); 763 } 764 765 /* start automatic rate control timer */ 766 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 767 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 768 769 break; 770 } 771 } 772 773 sc->sc_newstate(ic, sc->sc_state, -1); 774 } 775 776 Static int 777 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 778 { 779 struct zyd_softc *sc = ic->ic_ifp->if_softc; 780 781 if (!sc->attached) 782 return ENXIO; 783 784 usb_rem_task(sc->sc_udev, &sc->sc_task); 785 callout_stop(&sc->sc_scan_ch); 786 callout_stop(&sc->sc_amrr_ch); 787 788 /* do it in a process context */ 789 sc->sc_state = nstate; 790 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 791 792 return 0; 793 } 794 795 Static int 796 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 797 void *odata, int olen, u_int flags) 798 { 799 usbd_xfer_handle xfer; 800 struct zyd_cmd cmd; 801 struct rq rq; 802 uint16_t xferflags; 803 usbd_status error; 804 int s = 0; 805 806 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 807 return ENOMEM; 808 809 cmd.code = htole16(code); 810 bcopy(idata, cmd.data, ilen); 811 812 xferflags = USBD_FORCE_SHORT_XFER; 813 if (!(flags & ZYD_CMD_FLAG_READ)) 814 xferflags |= USBD_SYNCHRONOUS; 815 else { 816 s = splusb(); 817 rq.idata = idata; 818 rq.odata = odata; 819 rq.len = olen / sizeof (struct zyd_pair); 820 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 821 } 822 823 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 824 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 825 error = usbd_transfer(xfer); 826 if (error != USBD_IN_PROGRESS && error != 0) { 827 if (flags & ZYD_CMD_FLAG_READ) 828 splx(s); 829 printf("%s: could not send command (error=%s)\n", 830 device_xname(sc->sc_dev), usbd_errstr(error)); 831 (void)usbd_free_xfer(xfer); 832 return EIO; 833 } 834 if (!(flags & ZYD_CMD_FLAG_READ)) { 835 (void)usbd_free_xfer(xfer); 836 return 0; /* write: don't wait for reply */ 837 } 838 /* wait at most one second for command reply */ 839 error = tsleep(odata, PCATCH, "zydcmd", hz); 840 if (error == EWOULDBLOCK) 841 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 842 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 843 splx(s); 844 845 (void)usbd_free_xfer(xfer); 846 return error; 847 } 848 849 Static int 850 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 851 { 852 struct zyd_pair tmp; 853 int error; 854 855 reg = htole16(reg); 856 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 857 ZYD_CMD_FLAG_READ); 858 if (error == 0) 859 *val = le16toh(tmp.val); 860 return error; 861 } 862 863 Static int 864 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 865 { 866 struct zyd_pair tmp[2]; 867 uint16_t regs[2]; 868 int error; 869 870 regs[0] = htole16(ZYD_REG32_HI(reg)); 871 regs[1] = htole16(ZYD_REG32_LO(reg)); 872 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 873 ZYD_CMD_FLAG_READ); 874 if (error == 0) 875 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 876 return error; 877 } 878 879 Static int 880 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 881 { 882 struct zyd_pair pair; 883 884 pair.reg = htole16(reg); 885 pair.val = htole16(val); 886 887 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 888 } 889 890 Static int 891 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 892 { 893 struct zyd_pair pair[2]; 894 895 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 896 pair[0].val = htole16(val >> 16); 897 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 898 pair[1].val = htole16(val & 0xffff); 899 900 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 901 } 902 903 Static int 904 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 905 { 906 struct zyd_rf *rf = &sc->sc_rf; 907 struct zyd_rfwrite req; 908 uint16_t cr203; 909 int i; 910 911 (void)zyd_read16(sc, ZYD_CR203, &cr203); 912 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 913 914 req.code = htole16(2); 915 req.width = htole16(rf->width); 916 for (i = 0; i < rf->width; i++) { 917 req.bit[i] = htole16(cr203); 918 if (val & (1 << (rf->width - 1 - i))) 919 req.bit[i] |= htole16(ZYD_RF_DATA); 920 } 921 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 922 } 923 924 Static void 925 zyd_lock_phy(struct zyd_softc *sc) 926 { 927 uint32_t tmp; 928 929 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 930 tmp &= ~ZYD_UNLOCK_PHY_REGS; 931 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 932 } 933 934 Static void 935 zyd_unlock_phy(struct zyd_softc *sc) 936 { 937 uint32_t tmp; 938 939 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 940 tmp |= ZYD_UNLOCK_PHY_REGS; 941 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 942 } 943 944 /* 945 * RFMD RF methods. 946 */ 947 Static int 948 zyd_rfmd_init(struct zyd_rf *rf) 949 { 950 #define N(a) (sizeof (a) / sizeof ((a)[0])) 951 struct zyd_softc *sc = rf->rf_sc; 952 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 953 static const uint32_t rfini[] = ZYD_RFMD_RF; 954 int i, error; 955 956 /* init RF-dependent PHY registers */ 957 for (i = 0; i < N(phyini); i++) { 958 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 959 if (error != 0) 960 return error; 961 } 962 963 /* init RFMD radio */ 964 for (i = 0; i < N(rfini); i++) { 965 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 966 return error; 967 } 968 return 0; 969 #undef N 970 } 971 972 Static int 973 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 974 { 975 struct zyd_softc *sc = rf->rf_sc; 976 977 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 978 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 979 980 return 0; 981 } 982 983 Static int 984 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 985 { 986 struct zyd_softc *sc = rf->rf_sc; 987 static const struct { 988 uint32_t r1, r2; 989 } rfprog[] = ZYD_RFMD_CHANTABLE; 990 991 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 992 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 993 994 return 0; 995 } 996 997 /* 998 * AL2230 RF methods. 999 */ 1000 Static int 1001 zyd_al2230_init(struct zyd_rf *rf) 1002 { 1003 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1004 struct zyd_softc *sc = rf->rf_sc; 1005 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1006 static const uint32_t rfini[] = ZYD_AL2230_RF; 1007 int i, error; 1008 1009 /* init RF-dependent PHY registers */ 1010 for (i = 0; i < N(phyini); i++) { 1011 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1012 if (error != 0) 1013 return error; 1014 } 1015 1016 /* init AL2230 radio */ 1017 for (i = 0; i < N(rfini); i++) { 1018 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1019 return error; 1020 } 1021 return 0; 1022 #undef N 1023 } 1024 1025 Static int 1026 zyd_al2230_init_b(struct zyd_rf *rf) 1027 { 1028 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1029 struct zyd_softc *sc = rf->rf_sc; 1030 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1031 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1032 int i, error; 1033 1034 /* init RF-dependent PHY registers */ 1035 for (i = 0; i < N(phyini); i++) { 1036 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1037 if (error != 0) 1038 return error; 1039 } 1040 1041 /* init AL2230 radio */ 1042 for (i = 0; i < N(rfini); i++) { 1043 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1044 return error; 1045 } 1046 return 0; 1047 #undef N 1048 } 1049 1050 Static int 1051 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1052 { 1053 struct zyd_softc *sc = rf->rf_sc; 1054 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1055 1056 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1057 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1058 1059 return 0; 1060 } 1061 1062 Static int 1063 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1064 { 1065 struct zyd_softc *sc = rf->rf_sc; 1066 static const struct { 1067 uint32_t r1, r2, r3; 1068 } rfprog[] = ZYD_AL2230_CHANTABLE; 1069 1070 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1073 1074 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1075 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1076 1077 return 0; 1078 } 1079 1080 /* 1081 * AL7230B RF methods. 1082 */ 1083 Static int 1084 zyd_al7230B_init(struct zyd_rf *rf) 1085 { 1086 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1087 struct zyd_softc *sc = rf->rf_sc; 1088 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1089 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1090 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1091 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1092 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1093 int i, error; 1094 1095 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1096 1097 /* init RF-dependent PHY registers, part one */ 1098 for (i = 0; i < N(phyini_1); i++) { 1099 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1100 if (error != 0) 1101 return error; 1102 } 1103 /* init AL7230B radio, part one */ 1104 for (i = 0; i < N(rfini_1); i++) { 1105 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1106 return error; 1107 } 1108 /* init RF-dependent PHY registers, part two */ 1109 for (i = 0; i < N(phyini_2); i++) { 1110 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1111 if (error != 0) 1112 return error; 1113 } 1114 /* init AL7230B radio, part two */ 1115 for (i = 0; i < N(rfini_2); i++) { 1116 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1117 return error; 1118 } 1119 /* init RF-dependent PHY registers, part three */ 1120 for (i = 0; i < N(phyini_3); i++) { 1121 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1122 if (error != 0) 1123 return error; 1124 } 1125 1126 return 0; 1127 #undef N 1128 } 1129 1130 Static int 1131 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1132 { 1133 struct zyd_softc *sc = rf->rf_sc; 1134 1135 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1136 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1137 1138 return 0; 1139 } 1140 1141 Static int 1142 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1143 { 1144 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1145 struct zyd_softc *sc = rf->rf_sc; 1146 static const struct { 1147 uint32_t r1, r2; 1148 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1149 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1150 int i, error; 1151 1152 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1153 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1154 1155 for (i = 0; i < N(rfsc); i++) { 1156 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1157 return error; 1158 } 1159 1160 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1161 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1162 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1163 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1164 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1165 1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1168 (void)zyd_rfwrite(sc, 0x3c9000); 1169 1170 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1171 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1172 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1173 1174 return 0; 1175 #undef N 1176 } 1177 1178 /* 1179 * AL2210 RF methods. 1180 */ 1181 Static int 1182 zyd_al2210_init(struct zyd_rf *rf) 1183 { 1184 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1185 struct zyd_softc *sc = rf->rf_sc; 1186 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1187 static const uint32_t rfini[] = ZYD_AL2210_RF; 1188 uint32_t tmp; 1189 int i, error; 1190 1191 (void)zyd_write32(sc, ZYD_CR18, 2); 1192 1193 /* init RF-dependent PHY registers */ 1194 for (i = 0; i < N(phyini); i++) { 1195 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1196 if (error != 0) 1197 return error; 1198 } 1199 /* init AL2210 radio */ 1200 for (i = 0; i < N(rfini); i++) { 1201 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1202 return error; 1203 } 1204 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1205 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1207 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1209 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1210 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1211 (void)zyd_write32(sc, ZYD_CR18, 3); 1212 1213 return 0; 1214 #undef N 1215 } 1216 1217 Static int 1218 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1219 { 1220 /* vendor driver does nothing for this RF chip */ 1221 1222 return 0; 1223 } 1224 1225 Static int 1226 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1227 { 1228 struct zyd_softc *sc = rf->rf_sc; 1229 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1230 uint32_t tmp; 1231 1232 (void)zyd_write32(sc, ZYD_CR18, 2); 1233 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1234 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1235 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1236 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1237 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1238 1239 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1240 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1241 1242 /* actually set the channel */ 1243 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1244 1245 (void)zyd_write32(sc, ZYD_CR18, 3); 1246 1247 return 0; 1248 } 1249 1250 /* 1251 * GCT RF methods. 1252 */ 1253 Static int 1254 zyd_gct_init(struct zyd_rf *rf) 1255 { 1256 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1257 struct zyd_softc *sc = rf->rf_sc; 1258 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1259 static const uint32_t rfini[] = ZYD_GCT_RF; 1260 int i, error; 1261 1262 /* init RF-dependent PHY registers */ 1263 for (i = 0; i < N(phyini); i++) { 1264 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1265 if (error != 0) 1266 return error; 1267 } 1268 /* init cgt radio */ 1269 for (i = 0; i < N(rfini); i++) { 1270 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1271 return error; 1272 } 1273 return 0; 1274 #undef N 1275 } 1276 1277 Static int 1278 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1279 { 1280 /* vendor driver does nothing for this RF chip */ 1281 1282 return 0; 1283 } 1284 1285 Static int 1286 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1287 { 1288 struct zyd_softc *sc = rf->rf_sc; 1289 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1290 1291 (void)zyd_rfwrite(sc, 0x1c0000); 1292 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1293 (void)zyd_rfwrite(sc, 0x1c0008); 1294 1295 return 0; 1296 } 1297 1298 /* 1299 * Maxim RF methods. 1300 */ 1301 Static int 1302 zyd_maxim_init(struct zyd_rf *rf) 1303 { 1304 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1305 struct zyd_softc *sc = rf->rf_sc; 1306 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1307 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1308 uint16_t tmp; 1309 int i, error; 1310 1311 /* init RF-dependent PHY registers */ 1312 for (i = 0; i < N(phyini); i++) { 1313 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1314 if (error != 0) 1315 return error; 1316 } 1317 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1318 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1319 1320 /* init maxim radio */ 1321 for (i = 0; i < N(rfini); i++) { 1322 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1323 return error; 1324 } 1325 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1326 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1327 1328 return 0; 1329 #undef N 1330 } 1331 1332 Static int 1333 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1334 { 1335 /* vendor driver does nothing for this RF chip */ 1336 1337 return 0; 1338 } 1339 1340 Static int 1341 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1342 { 1343 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1344 struct zyd_softc *sc = rf->rf_sc; 1345 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1346 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1347 static const struct { 1348 uint32_t r1, r2; 1349 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1350 uint16_t tmp; 1351 int i, error; 1352 1353 /* 1354 * Do the same as we do when initializing it, except for the channel 1355 * values coming from the two channel tables. 1356 */ 1357 1358 /* init RF-dependent PHY registers */ 1359 for (i = 0; i < N(phyini); i++) { 1360 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1361 if (error != 0) 1362 return error; 1363 } 1364 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1365 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1366 1367 /* first two values taken from the chantables */ 1368 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1369 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1370 1371 /* init maxim radio - skipping the two first values */ 1372 for (i = 2; i < N(rfini); i++) { 1373 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1374 return error; 1375 } 1376 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1377 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1378 1379 return 0; 1380 #undef N 1381 } 1382 1383 /* 1384 * Maxim2 RF methods. 1385 */ 1386 Static int 1387 zyd_maxim2_init(struct zyd_rf *rf) 1388 { 1389 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1390 struct zyd_softc *sc = rf->rf_sc; 1391 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1392 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1393 uint16_t tmp; 1394 int i, error; 1395 1396 /* init RF-dependent PHY registers */ 1397 for (i = 0; i < N(phyini); i++) { 1398 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1399 if (error != 0) 1400 return error; 1401 } 1402 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1403 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1404 1405 /* init maxim2 radio */ 1406 for (i = 0; i < N(rfini); i++) { 1407 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1408 return error; 1409 } 1410 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1411 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1412 1413 return 0; 1414 #undef N 1415 } 1416 1417 Static int 1418 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1419 { 1420 /* vendor driver does nothing for this RF chip */ 1421 1422 return 0; 1423 } 1424 1425 Static int 1426 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1427 { 1428 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1429 struct zyd_softc *sc = rf->rf_sc; 1430 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1431 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1432 static const struct { 1433 uint32_t r1, r2; 1434 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1435 uint16_t tmp; 1436 int i, error; 1437 1438 /* 1439 * Do the same as we do when initializing it, except for the channel 1440 * values coming from the two channel tables. 1441 */ 1442 1443 /* init RF-dependent PHY registers */ 1444 for (i = 0; i < N(phyini); i++) { 1445 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1446 if (error != 0) 1447 return error; 1448 } 1449 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1450 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1451 1452 /* first two values taken from the chantables */ 1453 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1454 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1455 1456 /* init maxim2 radio - skipping the two first values */ 1457 for (i = 2; i < N(rfini); i++) { 1458 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1459 return error; 1460 } 1461 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1462 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1463 1464 return 0; 1465 #undef N 1466 } 1467 1468 Static int 1469 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1470 { 1471 struct zyd_rf *rf = &sc->sc_rf; 1472 1473 rf->rf_sc = sc; 1474 1475 switch (type) { 1476 case ZYD_RF_RFMD: 1477 rf->init = zyd_rfmd_init; 1478 rf->switch_radio = zyd_rfmd_switch_radio; 1479 rf->set_channel = zyd_rfmd_set_channel; 1480 rf->width = 24; /* 24-bit RF values */ 1481 break; 1482 case ZYD_RF_AL2230: 1483 if (sc->mac_rev == ZYD_ZD1211B) 1484 rf->init = zyd_al2230_init_b; 1485 else 1486 rf->init = zyd_al2230_init; 1487 rf->switch_radio = zyd_al2230_switch_radio; 1488 rf->set_channel = zyd_al2230_set_channel; 1489 rf->width = 24; /* 24-bit RF values */ 1490 break; 1491 case ZYD_RF_AL7230B: 1492 rf->init = zyd_al7230B_init; 1493 rf->switch_radio = zyd_al7230B_switch_radio; 1494 rf->set_channel = zyd_al7230B_set_channel; 1495 rf->width = 24; /* 24-bit RF values */ 1496 break; 1497 case ZYD_RF_AL2210: 1498 rf->init = zyd_al2210_init; 1499 rf->switch_radio = zyd_al2210_switch_radio; 1500 rf->set_channel = zyd_al2210_set_channel; 1501 rf->width = 24; /* 24-bit RF values */ 1502 break; 1503 case ZYD_RF_GCT: 1504 rf->init = zyd_gct_init; 1505 rf->switch_radio = zyd_gct_switch_radio; 1506 rf->set_channel = zyd_gct_set_channel; 1507 rf->width = 21; /* 21-bit RF values */ 1508 break; 1509 case ZYD_RF_MAXIM_NEW: 1510 rf->init = zyd_maxim_init; 1511 rf->switch_radio = zyd_maxim_switch_radio; 1512 rf->set_channel = zyd_maxim_set_channel; 1513 rf->width = 18; /* 18-bit RF values */ 1514 break; 1515 case ZYD_RF_MAXIM_NEW2: 1516 rf->init = zyd_maxim2_init; 1517 rf->switch_radio = zyd_maxim2_switch_radio; 1518 rf->set_channel = zyd_maxim2_set_channel; 1519 rf->width = 18; /* 18-bit RF values */ 1520 break; 1521 default: 1522 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1523 device_xname(sc->sc_dev), zyd_rf_name(type)); 1524 return EINVAL; 1525 } 1526 return 0; 1527 } 1528 1529 Static const char * 1530 zyd_rf_name(uint8_t type) 1531 { 1532 static const char * const zyd_rfs[] = { 1533 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1534 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1535 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1536 "PHILIPS" 1537 }; 1538 1539 return zyd_rfs[(type > 15) ? 0 : type]; 1540 } 1541 1542 Static int 1543 zyd_hw_init(struct zyd_softc *sc) 1544 { 1545 struct zyd_rf *rf = &sc->sc_rf; 1546 const struct zyd_phy_pair *phyp; 1547 int error; 1548 1549 /* specify that the plug and play is finished */ 1550 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1551 1552 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1553 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1554 1555 /* retrieve firmware revision number */ 1556 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1557 1558 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1559 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1560 1561 /* disable interrupts */ 1562 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1563 1564 /* PHY init */ 1565 zyd_lock_phy(sc); 1566 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1567 for (; phyp->reg != 0; phyp++) { 1568 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1569 goto fail; 1570 } 1571 zyd_unlock_phy(sc); 1572 1573 /* HMAC init */ 1574 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1575 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1576 1577 if (sc->mac_rev == ZYD_ZD1211) { 1578 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1579 } else { 1580 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1581 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1582 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1583 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1584 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1585 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1586 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1587 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1588 } 1589 1590 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1591 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1592 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1593 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1594 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1595 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1596 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1597 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1598 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1599 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1600 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1601 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1602 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1603 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1604 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1605 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1606 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1607 1608 /* RF chip init */ 1609 zyd_lock_phy(sc); 1610 error = (*rf->init)(rf); 1611 zyd_unlock_phy(sc); 1612 if (error != 0) { 1613 printf("%s: radio initialization failed\n", 1614 device_xname(sc->sc_dev)); 1615 goto fail; 1616 } 1617 1618 /* init beacon interval to 100ms */ 1619 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1620 goto fail; 1621 1622 fail: return error; 1623 } 1624 1625 Static int 1626 zyd_read_eeprom(struct zyd_softc *sc) 1627 { 1628 struct ieee80211com *ic = &sc->sc_ic; 1629 uint32_t tmp; 1630 uint16_t val; 1631 int i; 1632 1633 /* read MAC address */ 1634 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1635 ic->ic_myaddr[0] = tmp & 0xff; 1636 ic->ic_myaddr[1] = tmp >> 8; 1637 ic->ic_myaddr[2] = tmp >> 16; 1638 ic->ic_myaddr[3] = tmp >> 24; 1639 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1640 ic->ic_myaddr[4] = tmp & 0xff; 1641 ic->ic_myaddr[5] = tmp >> 8; 1642 1643 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1644 sc->rf_rev = tmp & 0x0f; 1645 sc->pa_rev = (tmp >> 16) & 0x0f; 1646 1647 /* read regulatory domain (currently unused) */ 1648 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1649 sc->regdomain = tmp >> 16; 1650 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1651 1652 /* read Tx power calibration tables */ 1653 for (i = 0; i < 7; i++) { 1654 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1655 sc->pwr_cal[i * 2] = val >> 8; 1656 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1657 1658 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1659 sc->pwr_int[i * 2] = val >> 8; 1660 sc->pwr_int[i * 2 + 1] = val & 0xff; 1661 1662 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1663 sc->ofdm36_cal[i * 2] = val >> 8; 1664 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1665 1666 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1667 sc->ofdm48_cal[i * 2] = val >> 8; 1668 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1669 1670 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1671 sc->ofdm54_cal[i * 2] = val >> 8; 1672 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1673 } 1674 return 0; 1675 } 1676 1677 Static int 1678 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1679 { 1680 uint32_t tmp; 1681 1682 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1683 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1684 1685 tmp = addr[5] << 8 | addr[4]; 1686 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1687 1688 return 0; 1689 } 1690 1691 Static int 1692 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1693 { 1694 uint32_t tmp; 1695 1696 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1697 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1698 1699 tmp = addr[5] << 8 | addr[4]; 1700 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1701 1702 return 0; 1703 } 1704 1705 Static int 1706 zyd_switch_radio(struct zyd_softc *sc, int on) 1707 { 1708 struct zyd_rf *rf = &sc->sc_rf; 1709 int error; 1710 1711 zyd_lock_phy(sc); 1712 error = (*rf->switch_radio)(rf, on); 1713 zyd_unlock_phy(sc); 1714 1715 return error; 1716 } 1717 1718 Static void 1719 zyd_set_led(struct zyd_softc *sc, int which, int on) 1720 { 1721 uint32_t tmp; 1722 1723 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1724 tmp &= ~which; 1725 if (on) 1726 tmp |= which; 1727 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1728 } 1729 1730 Static int 1731 zyd_set_rxfilter(struct zyd_softc *sc) 1732 { 1733 uint32_t rxfilter; 1734 1735 switch (sc->sc_ic.ic_opmode) { 1736 case IEEE80211_M_STA: 1737 rxfilter = ZYD_FILTER_BSS; 1738 break; 1739 case IEEE80211_M_IBSS: 1740 case IEEE80211_M_HOSTAP: 1741 rxfilter = ZYD_FILTER_HOSTAP; 1742 break; 1743 case IEEE80211_M_MONITOR: 1744 rxfilter = ZYD_FILTER_MONITOR; 1745 break; 1746 default: 1747 /* should not get there */ 1748 return EINVAL; 1749 } 1750 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1751 } 1752 1753 Static void 1754 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1755 { 1756 struct ieee80211com *ic = &sc->sc_ic; 1757 struct zyd_rf *rf = &sc->sc_rf; 1758 u_int chan; 1759 1760 chan = ieee80211_chan2ieee(ic, c); 1761 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1762 return; 1763 1764 zyd_lock_phy(sc); 1765 1766 (*rf->set_channel)(rf, chan); 1767 1768 /* update Tx power */ 1769 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1770 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1771 1772 if (sc->mac_rev == ZYD_ZD1211B) { 1773 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1774 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1775 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1776 1777 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1778 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1779 } 1780 1781 zyd_unlock_phy(sc); 1782 } 1783 1784 Static int 1785 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1786 { 1787 /* XXX this is probably broken.. */ 1788 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1789 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1790 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1791 1792 return 0; 1793 } 1794 1795 Static uint8_t 1796 zyd_plcp_signal(int rate) 1797 { 1798 switch (rate) { 1799 /* CCK rates (returned values are device-dependent) */ 1800 case 2: return 0x0; 1801 case 4: return 0x1; 1802 case 11: return 0x2; 1803 case 22: return 0x3; 1804 1805 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1806 case 12: return 0xb; 1807 case 18: return 0xf; 1808 case 24: return 0xa; 1809 case 36: return 0xe; 1810 case 48: return 0x9; 1811 case 72: return 0xd; 1812 case 96: return 0x8; 1813 case 108: return 0xc; 1814 1815 /* unsupported rates (should not get there) */ 1816 default: return 0xff; 1817 } 1818 } 1819 1820 Static void 1821 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1822 { 1823 struct zyd_softc *sc = (struct zyd_softc *)priv; 1824 struct zyd_cmd *cmd; 1825 uint32_t datalen; 1826 1827 if (status != USBD_NORMAL_COMPLETION) { 1828 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1829 return; 1830 1831 if (status == USBD_STALLED) { 1832 usbd_clear_endpoint_stall_async( 1833 sc->zyd_ep[ZYD_ENDPT_IIN]); 1834 } 1835 return; 1836 } 1837 1838 cmd = (struct zyd_cmd *)sc->ibuf; 1839 1840 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1841 struct zyd_notif_retry *retry = 1842 (struct zyd_notif_retry *)cmd->data; 1843 struct ieee80211com *ic = &sc->sc_ic; 1844 struct ifnet *ifp = &sc->sc_if; 1845 struct ieee80211_node *ni; 1846 1847 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1848 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1849 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1850 1851 /* 1852 * Find the node to which the packet was sent and update its 1853 * retry statistics. In BSS mode, this node is the AP we're 1854 * associated to so no lookup is actually needed. 1855 */ 1856 if (ic->ic_opmode != IEEE80211_M_STA) { 1857 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1858 if (ni == NULL) 1859 return; /* just ignore */ 1860 } else 1861 ni = ic->ic_bss; 1862 1863 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1864 1865 if (le16toh(retry->count) & 0x100) 1866 ifp->if_oerrors++; /* too many retries */ 1867 1868 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1869 struct rq *rqp; 1870 1871 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1872 return; /* HMAC interrupt */ 1873 1874 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1875 datalen -= sizeof(cmd->code); 1876 datalen -= 2; /* XXX: padding? */ 1877 1878 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1879 int i; 1880 1881 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1882 continue; 1883 for (i = 0; i < rqp->len; i++) { 1884 if (*(((const uint16_t *)rqp->idata) + i) != 1885 (((struct zyd_pair *)cmd->data) + i)->reg) 1886 break; 1887 } 1888 if (i != rqp->len) 1889 continue; 1890 1891 /* copy answer into caller-supplied buffer */ 1892 bcopy(cmd->data, rqp->odata, 1893 sizeof(struct zyd_pair) * rqp->len); 1894 wakeup(rqp->odata); /* wakeup caller */ 1895 1896 return; 1897 } 1898 return; /* unexpected IORD notification */ 1899 } else { 1900 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1901 le16toh(cmd->code)); 1902 } 1903 } 1904 1905 Static void 1906 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1907 { 1908 struct ieee80211com *ic = &sc->sc_ic; 1909 struct ifnet *ifp = &sc->sc_if; 1910 struct ieee80211_node *ni; 1911 struct ieee80211_frame *wh; 1912 const struct zyd_plcphdr *plcp; 1913 const struct zyd_rx_stat *stat; 1914 struct mbuf *m; 1915 int rlen, s; 1916 1917 if (len < ZYD_MIN_FRAGSZ) { 1918 printf("%s: frame too short (length=%d)\n", 1919 device_xname(sc->sc_dev), len); 1920 ifp->if_ierrors++; 1921 return; 1922 } 1923 1924 plcp = (const struct zyd_plcphdr *)buf; 1925 stat = (const struct zyd_rx_stat *) 1926 (buf + len - sizeof (struct zyd_rx_stat)); 1927 1928 if (stat->flags & ZYD_RX_ERROR) { 1929 DPRINTF(("%s: RX status indicated error (%x)\n", 1930 device_xname(sc->sc_dev), stat->flags)); 1931 ifp->if_ierrors++; 1932 return; 1933 } 1934 1935 /* compute actual frame length */ 1936 rlen = len - sizeof (struct zyd_plcphdr) - 1937 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1938 1939 /* allocate a mbuf to store the frame */ 1940 MGETHDR(m, M_DONTWAIT, MT_DATA); 1941 if (m == NULL) { 1942 printf("%s: could not allocate rx mbuf\n", 1943 device_xname(sc->sc_dev)); 1944 ifp->if_ierrors++; 1945 return; 1946 } 1947 if (rlen > MHLEN) { 1948 MCLGET(m, M_DONTWAIT); 1949 if (!(m->m_flags & M_EXT)) { 1950 printf("%s: could not allocate rx mbuf cluster\n", 1951 device_xname(sc->sc_dev)); 1952 m_freem(m); 1953 ifp->if_ierrors++; 1954 return; 1955 } 1956 } 1957 m->m_pkthdr.rcvif = ifp; 1958 m->m_pkthdr.len = m->m_len = rlen; 1959 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); 1960 1961 s = splnet(); 1962 1963 if (sc->sc_drvbpf != NULL) { 1964 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1965 static const uint8_t rates[] = { 1966 /* reverse function of zyd_plcp_signal() */ 1967 2, 4, 11, 22, 0, 0, 0, 0, 1968 96, 48, 24, 12, 108, 72, 36, 18 1969 }; 1970 1971 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1972 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1973 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1974 tap->wr_rssi = stat->rssi; 1975 tap->wr_rate = rates[plcp->signal & 0xf]; 1976 1977 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1978 } 1979 1980 wh = mtod(m, struct ieee80211_frame *); 1981 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1982 ieee80211_input(ic, m, ni, stat->rssi, 0); 1983 1984 /* node is no longer needed */ 1985 ieee80211_free_node(ni); 1986 1987 splx(s); 1988 } 1989 1990 Static void 1991 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1992 { 1993 struct zyd_rx_data *data = priv; 1994 struct zyd_softc *sc = data->sc; 1995 struct ifnet *ifp = &sc->sc_if; 1996 const struct zyd_rx_desc *desc; 1997 int len; 1998 1999 if (status != USBD_NORMAL_COMPLETION) { 2000 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2001 return; 2002 2003 if (status == USBD_STALLED) 2004 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2005 2006 goto skip; 2007 } 2008 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2009 2010 if (len < ZYD_MIN_RXBUFSZ) { 2011 printf("%s: xfer too short (length=%d)\n", 2012 device_xname(sc->sc_dev), len); 2013 ifp->if_ierrors++; 2014 goto skip; 2015 } 2016 2017 desc = (const struct zyd_rx_desc *) 2018 (data->buf + len - sizeof (struct zyd_rx_desc)); 2019 2020 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2021 const uint8_t *p = data->buf, *end = p + len; 2022 int i; 2023 2024 DPRINTFN(3, ("received multi-frame transfer\n")); 2025 2026 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2027 const uint16_t len16 = UGETW(desc->len[i]); 2028 2029 if (len16 == 0 || p + len16 > end) 2030 break; 2031 2032 zyd_rx_data(sc, p, len16); 2033 /* next frame is aligned on a 32-bit boundary */ 2034 p += (len16 + 3) & ~3; 2035 } 2036 } else { 2037 DPRINTFN(3, ("received single-frame transfer\n")); 2038 2039 zyd_rx_data(sc, data->buf, len); 2040 } 2041 2042 skip: /* setup a new transfer */ 2043 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2044 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2045 USBD_NO_TIMEOUT, zyd_rxeof); 2046 (void)usbd_transfer(xfer); 2047 } 2048 2049 Static int 2050 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2051 { 2052 struct ieee80211com *ic = &sc->sc_ic; 2053 struct ifnet *ifp = &sc->sc_if; 2054 struct zyd_tx_desc *desc; 2055 struct zyd_tx_data *data; 2056 struct ieee80211_frame *wh; 2057 struct ieee80211_key *k; 2058 int xferlen, totlen, rate; 2059 uint16_t pktlen; 2060 usbd_status error; 2061 2062 data = &sc->tx_data[0]; 2063 desc = (struct zyd_tx_desc *)data->buf; 2064 2065 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2066 2067 wh = mtod(m0, struct ieee80211_frame *); 2068 2069 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2070 k = ieee80211_crypto_encap(ic, ni, m0); 2071 if (k == NULL) { 2072 m_freem(m0); 2073 return ENOBUFS; 2074 } 2075 } 2076 2077 data->ni = ni; 2078 2079 wh = mtod(m0, struct ieee80211_frame *); 2080 2081 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2082 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2083 2084 /* fill Tx descriptor */ 2085 desc->len = htole16(totlen); 2086 2087 desc->flags = ZYD_TX_FLAG_BACKOFF; 2088 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2089 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2090 if (totlen > ic->ic_rtsthreshold) { 2091 desc->flags |= ZYD_TX_FLAG_RTS; 2092 } else if (ZYD_RATE_IS_OFDM(rate) && 2093 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2094 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2095 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2096 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2097 desc->flags |= ZYD_TX_FLAG_RTS; 2098 } 2099 } else 2100 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2101 2102 if ((wh->i_fc[0] & 2103 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2104 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2105 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2106 2107 desc->phy = zyd_plcp_signal(rate); 2108 if (ZYD_RATE_IS_OFDM(rate)) { 2109 desc->phy |= ZYD_TX_PHY_OFDM; 2110 if (ic->ic_curmode == IEEE80211_MODE_11A) 2111 desc->phy |= ZYD_TX_PHY_5GHZ; 2112 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2113 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2114 2115 /* actual transmit length (XXX why +10?) */ 2116 pktlen = sizeof (struct zyd_tx_desc) + 10; 2117 if (sc->mac_rev == ZYD_ZD1211) 2118 pktlen += totlen; 2119 desc->pktlen = htole16(pktlen); 2120 2121 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2122 desc->plcp_service = 0; 2123 if (rate == 22) { 2124 const int remainder = (16 * totlen) % 22; 2125 if (remainder != 0 && remainder < 7) 2126 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2127 } 2128 2129 if (sc->sc_drvbpf != NULL) { 2130 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2131 2132 tap->wt_flags = 0; 2133 tap->wt_rate = rate; 2134 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2135 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2136 2137 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2138 } 2139 2140 m_copydata(m0, 0, m0->m_pkthdr.len, 2141 data->buf + sizeof (struct zyd_tx_desc)); 2142 2143 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2144 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2145 2146 m_freem(m0); /* mbuf no longer needed */ 2147 2148 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2149 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2150 ZYD_TX_TIMEOUT, zyd_txeof); 2151 error = usbd_transfer(data->xfer); 2152 if (error != USBD_IN_PROGRESS && error != 0) { 2153 ifp->if_oerrors++; 2154 return EIO; 2155 } 2156 sc->tx_queued++; 2157 2158 return 0; 2159 } 2160 2161 Static void 2162 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2163 { 2164 struct zyd_tx_data *data = priv; 2165 struct zyd_softc *sc = data->sc; 2166 struct ifnet *ifp = &sc->sc_if; 2167 int s; 2168 2169 if (status != USBD_NORMAL_COMPLETION) { 2170 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2171 return; 2172 2173 printf("%s: could not transmit buffer: %s\n", 2174 device_xname(sc->sc_dev), usbd_errstr(status)); 2175 2176 if (status == USBD_STALLED) { 2177 usbd_clear_endpoint_stall_async( 2178 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2179 } 2180 ifp->if_oerrors++; 2181 return; 2182 } 2183 2184 s = splnet(); 2185 2186 /* update rate control statistics */ 2187 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2188 2189 ieee80211_free_node(data->ni); 2190 data->ni = NULL; 2191 2192 sc->tx_queued--; 2193 ifp->if_opackets++; 2194 2195 sc->tx_timer = 0; 2196 ifp->if_flags &= ~IFF_OACTIVE; 2197 zyd_start(ifp); 2198 2199 splx(s); 2200 } 2201 2202 Static int 2203 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2204 { 2205 struct ieee80211com *ic = &sc->sc_ic; 2206 struct ifnet *ifp = &sc->sc_if; 2207 struct zyd_tx_desc *desc; 2208 struct zyd_tx_data *data; 2209 struct ieee80211_frame *wh; 2210 struct ieee80211_key *k; 2211 int xferlen, totlen, rate; 2212 uint16_t pktlen; 2213 usbd_status error; 2214 2215 wh = mtod(m0, struct ieee80211_frame *); 2216 2217 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2218 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2219 else 2220 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2221 rate &= IEEE80211_RATE_VAL; 2222 2223 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2224 k = ieee80211_crypto_encap(ic, ni, m0); 2225 if (k == NULL) { 2226 m_freem(m0); 2227 return ENOBUFS; 2228 } 2229 2230 /* packet header may have moved, reset our local pointer */ 2231 wh = mtod(m0, struct ieee80211_frame *); 2232 } 2233 2234 data = &sc->tx_data[0]; 2235 desc = (struct zyd_tx_desc *)data->buf; 2236 2237 data->ni = ni; 2238 2239 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2240 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2241 2242 /* fill Tx descriptor */ 2243 desc->len = htole16(totlen); 2244 2245 desc->flags = ZYD_TX_FLAG_BACKOFF; 2246 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2247 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2248 if (totlen > ic->ic_rtsthreshold) { 2249 desc->flags |= ZYD_TX_FLAG_RTS; 2250 } else if (ZYD_RATE_IS_OFDM(rate) && 2251 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2252 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2253 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2254 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2255 desc->flags |= ZYD_TX_FLAG_RTS; 2256 } 2257 } else 2258 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2259 2260 if ((wh->i_fc[0] & 2261 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2262 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2263 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2264 2265 desc->phy = zyd_plcp_signal(rate); 2266 if (ZYD_RATE_IS_OFDM(rate)) { 2267 desc->phy |= ZYD_TX_PHY_OFDM; 2268 if (ic->ic_curmode == IEEE80211_MODE_11A) 2269 desc->phy |= ZYD_TX_PHY_5GHZ; 2270 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2271 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2272 2273 /* actual transmit length (XXX why +10?) */ 2274 pktlen = sizeof (struct zyd_tx_desc) + 10; 2275 if (sc->mac_rev == ZYD_ZD1211) 2276 pktlen += totlen; 2277 desc->pktlen = htole16(pktlen); 2278 2279 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2280 desc->plcp_service = 0; 2281 if (rate == 22) { 2282 const int remainder = (16 * totlen) % 22; 2283 if (remainder != 0 && remainder < 7) 2284 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2285 } 2286 2287 if (sc->sc_drvbpf != NULL) { 2288 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2289 2290 tap->wt_flags = 0; 2291 tap->wt_rate = rate; 2292 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2293 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2294 2295 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2296 } 2297 2298 m_copydata(m0, 0, m0->m_pkthdr.len, 2299 data->buf + sizeof (struct zyd_tx_desc)); 2300 2301 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2302 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2303 2304 m_freem(m0); /* mbuf no longer needed */ 2305 2306 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2307 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2308 ZYD_TX_TIMEOUT, zyd_txeof); 2309 error = usbd_transfer(data->xfer); 2310 if (error != USBD_IN_PROGRESS && error != 0) { 2311 ifp->if_oerrors++; 2312 return EIO; 2313 } 2314 sc->tx_queued++; 2315 2316 return 0; 2317 } 2318 2319 Static void 2320 zyd_start(struct ifnet *ifp) 2321 { 2322 struct zyd_softc *sc = ifp->if_softc; 2323 struct ieee80211com *ic = &sc->sc_ic; 2324 struct ether_header *eh; 2325 struct ieee80211_node *ni; 2326 struct mbuf *m0; 2327 2328 for (;;) { 2329 IF_POLL(&ic->ic_mgtq, m0); 2330 if (m0 != NULL) { 2331 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2332 ifp->if_flags |= IFF_OACTIVE; 2333 break; 2334 } 2335 IF_DEQUEUE(&ic->ic_mgtq, m0); 2336 2337 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2338 m0->m_pkthdr.rcvif = NULL; 2339 if (ic->ic_rawbpf != NULL) 2340 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0); 2341 if (zyd_tx_mgt(sc, m0, ni) != 0) 2342 break; 2343 } else { 2344 if (ic->ic_state != IEEE80211_S_RUN) 2345 break; 2346 IFQ_POLL(&ifp->if_snd, m0); 2347 if (m0 == NULL) 2348 break; 2349 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2350 ifp->if_flags |= IFF_OACTIVE; 2351 break; 2352 } 2353 IFQ_DEQUEUE(&ifp->if_snd, m0); 2354 2355 if (m0->m_len < sizeof(struct ether_header) && 2356 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2357 continue; 2358 2359 eh = mtod(m0, struct ether_header *); 2360 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2361 if (ni == NULL) { 2362 m_freem(m0); 2363 continue; 2364 } 2365 if (ifp->if_bpf != NULL) 2366 bpf_ops->bpf_mtap(ifp->if_bpf, m0); 2367 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2368 ieee80211_free_node(ni); 2369 ifp->if_oerrors++; 2370 continue; 2371 } 2372 if (ic->ic_rawbpf != NULL) 2373 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0); 2374 if (zyd_tx_data(sc, m0, ni) != 0) { 2375 ieee80211_free_node(ni); 2376 ifp->if_oerrors++; 2377 break; 2378 } 2379 } 2380 2381 sc->tx_timer = 5; 2382 ifp->if_timer = 1; 2383 } 2384 } 2385 2386 Static void 2387 zyd_watchdog(struct ifnet *ifp) 2388 { 2389 struct zyd_softc *sc = ifp->if_softc; 2390 struct ieee80211com *ic = &sc->sc_ic; 2391 2392 ifp->if_timer = 0; 2393 2394 if (sc->tx_timer > 0) { 2395 if (--sc->tx_timer == 0) { 2396 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2397 /* zyd_init(ifp); XXX needs a process context ? */ 2398 ifp->if_oerrors++; 2399 return; 2400 } 2401 ifp->if_timer = 1; 2402 } 2403 2404 ieee80211_watchdog(ic); 2405 } 2406 2407 Static int 2408 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2409 { 2410 struct zyd_softc *sc = ifp->if_softc; 2411 struct ieee80211com *ic = &sc->sc_ic; 2412 int s, error = 0; 2413 2414 s = splnet(); 2415 2416 switch (cmd) { 2417 case SIOCSIFFLAGS: 2418 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2419 break; 2420 /* XXX re-use ether_ioctl() */ 2421 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2422 case IFF_UP: 2423 zyd_init(ifp); 2424 break; 2425 case IFF_RUNNING: 2426 zyd_stop(ifp, 1); 2427 break; 2428 default: 2429 break; 2430 } 2431 break; 2432 2433 default: 2434 error = ieee80211_ioctl(ic, cmd, data); 2435 } 2436 2437 if (error == ENETRESET) { 2438 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2439 (IFF_RUNNING | IFF_UP)) 2440 zyd_init(ifp); 2441 error = 0; 2442 } 2443 2444 splx(s); 2445 2446 return error; 2447 } 2448 2449 Static int 2450 zyd_init(struct ifnet *ifp) 2451 { 2452 struct zyd_softc *sc = ifp->if_softc; 2453 struct ieee80211com *ic = &sc->sc_ic; 2454 int i, error; 2455 2456 if ((sc->sc_flags & ZD1211_FWLOADED) == 0) 2457 if ((error = zyd_attachhook(sc)) != 0) 2458 return error; 2459 2460 zyd_stop(ifp, 0); 2461 2462 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2463 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2464 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2465 if (error != 0) 2466 return error; 2467 2468 /* we'll do software WEP decryption for now */ 2469 DPRINTF(("setting encryption type\n")); 2470 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2471 if (error != 0) 2472 return error; 2473 2474 /* promiscuous mode */ 2475 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2476 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2477 2478 (void)zyd_set_rxfilter(sc); 2479 2480 /* switch radio transmitter ON */ 2481 (void)zyd_switch_radio(sc, 1); 2482 2483 /* set basic rates */ 2484 if (ic->ic_curmode == IEEE80211_MODE_11B) 2485 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2486 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2487 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2488 else /* assumes 802.11b/g */ 2489 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2490 2491 /* set mandatory rates */ 2492 if (ic->ic_curmode == IEEE80211_MODE_11B) 2493 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2494 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2495 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2496 else /* assumes 802.11b/g */ 2497 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2498 2499 /* set default BSS channel */ 2500 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2501 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2502 2503 /* enable interrupts */ 2504 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2505 2506 /* 2507 * Allocate Tx and Rx xfer queues. 2508 */ 2509 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2510 printf("%s: could not allocate Tx list\n", 2511 device_xname(sc->sc_dev)); 2512 goto fail; 2513 } 2514 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2515 printf("%s: could not allocate Rx list\n", 2516 device_xname(sc->sc_dev)); 2517 goto fail; 2518 } 2519 2520 /* 2521 * Start up the receive pipe. 2522 */ 2523 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2524 struct zyd_rx_data *data = &sc->rx_data[i]; 2525 2526 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2527 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2528 USBD_NO_TIMEOUT, zyd_rxeof); 2529 error = usbd_transfer(data->xfer); 2530 if (error != USBD_IN_PROGRESS && error != 0) { 2531 printf("%s: could not queue Rx transfer\n", 2532 device_xname(sc->sc_dev)); 2533 goto fail; 2534 } 2535 } 2536 2537 ifp->if_flags &= ~IFF_OACTIVE; 2538 ifp->if_flags |= IFF_RUNNING; 2539 2540 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2541 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2542 else 2543 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2544 2545 return 0; 2546 2547 fail: zyd_stop(ifp, 1); 2548 return error; 2549 } 2550 2551 Static void 2552 zyd_stop(struct ifnet *ifp, int disable) 2553 { 2554 struct zyd_softc *sc = ifp->if_softc; 2555 struct ieee80211com *ic = &sc->sc_ic; 2556 2557 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2558 2559 sc->tx_timer = 0; 2560 ifp->if_timer = 0; 2561 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2562 2563 /* switch radio transmitter OFF */ 2564 (void)zyd_switch_radio(sc, 0); 2565 2566 /* disable Rx */ 2567 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2568 2569 /* disable interrupts */ 2570 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2571 2572 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2573 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2574 2575 zyd_free_rx_list(sc); 2576 zyd_free_tx_list(sc); 2577 } 2578 2579 Static int 2580 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2581 { 2582 usb_device_request_t req; 2583 uint16_t addr; 2584 uint8_t stat; 2585 2586 DPRINTF(("firmware size=%zu\n", size)); 2587 2588 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2589 req.bRequest = ZYD_DOWNLOADREQ; 2590 USETW(req.wIndex, 0); 2591 2592 addr = ZYD_FIRMWARE_START_ADDR; 2593 while (size > 0) { 2594 #if 0 2595 const int mlen = min(size, 4096); 2596 #else 2597 /* 2598 * XXXX: When the transfer size is 4096 bytes, it is not 2599 * likely to be able to transfer it. 2600 * The cause is port or machine or chip? 2601 */ 2602 const int mlen = min(size, 64); 2603 #endif 2604 2605 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2606 addr)); 2607 2608 USETW(req.wValue, addr); 2609 USETW(req.wLength, mlen); 2610 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2611 return EIO; 2612 2613 addr += mlen / 2; 2614 fw += mlen; 2615 size -= mlen; 2616 } 2617 2618 /* check whether the upload succeeded */ 2619 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2620 req.bRequest = ZYD_DOWNLOADSTS; 2621 USETW(req.wValue, 0); 2622 USETW(req.wIndex, 0); 2623 USETW(req.wLength, sizeof stat); 2624 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2625 return EIO; 2626 2627 return (stat & 0x80) ? EIO : 0; 2628 } 2629 2630 Static void 2631 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2632 { 2633 struct zyd_softc *sc = arg; 2634 struct zyd_node *zn = (struct zyd_node *)ni; 2635 2636 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2637 } 2638 2639 Static void 2640 zyd_amrr_timeout(void *arg) 2641 { 2642 struct zyd_softc *sc = arg; 2643 struct ieee80211com *ic = &sc->sc_ic; 2644 int s; 2645 2646 s = splnet(); 2647 if (ic->ic_opmode == IEEE80211_M_STA) 2648 zyd_iter_func(sc, ic->ic_bss); 2649 else 2650 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2651 splx(s); 2652 2653 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2654 } 2655 2656 Static void 2657 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2658 { 2659 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2660 int i; 2661 2662 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2663 2664 /* set rate to some reasonable initial value */ 2665 for (i = ni->ni_rates.rs_nrates - 1; 2666 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2667 i--); 2668 ni->ni_txrate = i; 2669 } 2670 2671 int 2672 zyd_activate(device_ptr_t self, enum devact act) 2673 { 2674 struct zyd_softc *sc = device_private(self); 2675 2676 switch (act) { 2677 case DVACT_DEACTIVATE: 2678 if_deactivate(&sc->sc_if); 2679 return 0; 2680 default: 2681 return EOPNOTSUPP; 2682 } 2683 } 2684