xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.36 2013/01/22 12:40:43 jmcneill Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.36 2013/01/22 12:40:43 jmcneill Exp $");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54 
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/firmload.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66 
67 #include <dev/usb/if_zydreg.h>
68 
69 #ifdef ZYD_DEBUG
70 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
71 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
72 int zyddebug = 0;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77 
78 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
79 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
80 
81 /* various supported device vendors/products */
82 #define ZYD_ZD1211_DEV(v, p)	\
83 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
84 #define ZYD_ZD1211B_DEV(v, p)	\
85 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
86 static const struct zyd_type {
87 	struct usb_devno	dev;
88 	uint8_t			rev;
89 #define ZYD_ZD1211	0
90 #define ZYD_ZD1211B	1
91 } zyd_devs[] = {
92 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
93 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
94 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
95 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
96 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
97 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
98 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
99 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
100 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
101 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
102 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
103 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
104 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
105 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
106 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
107 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
108 	ZYD_ZD1211_DEV(TWINMOS,		G240),
109 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
110 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
111 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
112 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
113 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
114 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
115 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
116 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
117 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
118 
119 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
120 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
121 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
122 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
123 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
124 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
125 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
126 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
127 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
128 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
129 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
130 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
131 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
132 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
133 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
134 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
135 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
136 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
137 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
138 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
139 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
140 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
141 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
142 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
143 	ZYD_ZD1211B_DEV(USR,		USR5423),
144 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
145 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
146 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
147 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
148 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
149 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
150 };
151 #define zyd_lookup(v, p)	\
152 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
153 
154 int zyd_match(device_t, cfdata_t, void *);
155 void zyd_attach(device_t, device_t, void *);
156 int zyd_detach(device_t, int);
157 int zyd_activate(device_t, enum devact);
158 extern struct cfdriver zyd_cd;
159 
160 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
161     zyd_attach, zyd_detach, zyd_activate);
162 
163 Static void	zyd_attachhook(device_t);
164 Static int	zyd_complete_attach(struct zyd_softc *);
165 Static int	zyd_open_pipes(struct zyd_softc *);
166 Static void	zyd_close_pipes(struct zyd_softc *);
167 Static int	zyd_alloc_tx_list(struct zyd_softc *);
168 Static void	zyd_free_tx_list(struct zyd_softc *);
169 Static int	zyd_alloc_rx_list(struct zyd_softc *);
170 Static void	zyd_free_rx_list(struct zyd_softc *);
171 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
172 Static int	zyd_media_change(struct ifnet *);
173 Static void	zyd_next_scan(void *);
174 Static void	zyd_task(void *);
175 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
176 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
177 		    void *, int, u_int);
178 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
179 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
180 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
181 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
182 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
183 Static void	zyd_lock_phy(struct zyd_softc *);
184 Static void	zyd_unlock_phy(struct zyd_softc *);
185 Static int	zyd_rfmd_init(struct zyd_rf *);
186 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
187 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
188 Static int	zyd_al2230_init(struct zyd_rf *);
189 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
190 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
191 Static int	zyd_al2230_init_b(struct zyd_rf *);
192 Static int	zyd_al7230B_init(struct zyd_rf *);
193 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
194 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
195 Static int	zyd_al2210_init(struct zyd_rf *);
196 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
197 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
198 Static int	zyd_gct_init(struct zyd_rf *);
199 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
200 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
201 Static int	zyd_maxim_init(struct zyd_rf *);
202 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
203 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
204 Static int	zyd_maxim2_init(struct zyd_rf *);
205 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
206 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
207 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
208 Static const char *zyd_rf_name(uint8_t);
209 Static int	zyd_hw_init(struct zyd_softc *);
210 Static int	zyd_read_eeprom(struct zyd_softc *);
211 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
212 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
213 Static int	zyd_switch_radio(struct zyd_softc *, int);
214 Static void	zyd_set_led(struct zyd_softc *, int, int);
215 Static int	zyd_set_rxfilter(struct zyd_softc *);
216 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
217 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
218 Static uint8_t	zyd_plcp_signal(int);
219 Static void	zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
220 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
221 Static void	zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
222 Static void	zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
223 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
224 		    struct ieee80211_node *);
225 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
226 		    struct ieee80211_node *);
227 Static void	zyd_start(struct ifnet *);
228 Static void	zyd_watchdog(struct ifnet *);
229 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
230 Static int	zyd_init(struct ifnet *);
231 Static void	zyd_stop(struct ifnet *, int);
232 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
233 Static void	zyd_iter_func(void *, struct ieee80211_node *);
234 Static void	zyd_amrr_timeout(void *);
235 Static void	zyd_newassoc(struct ieee80211_node *, int);
236 
237 static const struct ieee80211_rateset zyd_rateset_11b =
238 	{ 4, { 2, 4, 11, 22 } };
239 
240 static const struct ieee80211_rateset zyd_rateset_11g =
241 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
242 
243 int
244 zyd_match(device_t parent, cfdata_t match, void *aux)
245 {
246 	struct usb_attach_arg *uaa = aux;
247 
248 	return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
249 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
250 }
251 
252 Static void
253 zyd_attachhook(device_t self)
254 {
255 	struct zyd_softc *sc = device_private(self);
256 	firmware_handle_t fwh;
257 	const char *fwname;
258 	u_char *fw;
259 	size_t size;
260 	int error;
261 
262 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
263 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
264 		aprint_error_dev(sc->sc_dev,
265 		    "failed to open firmware %s (error=%d)\n", fwname, error);
266 		return;
267 	}
268 	size = firmware_get_size(fwh);
269 	fw = firmware_malloc(size);
270 	if (fw == NULL) {
271 		aprint_error_dev(sc->sc_dev,
272 		    "failed to allocate firmware memory\n");
273 		firmware_close(fwh);
274 		return;
275 	}
276 	error = firmware_read(fwh, 0, fw, size);
277 	firmware_close(fwh);
278 	if (error != 0) {
279 		aprint_error_dev(sc->sc_dev,
280 		    "failed to read firmware (error %d)\n", error);
281 		firmware_free(fw, 0);
282 		return;
283 	}
284 
285 	error = zyd_loadfirmware(sc, fw, size);
286 	if (error != 0) {
287 		aprint_error_dev(sc->sc_dev,
288 		    "could not load firmware (error=%d)\n", error);
289 		firmware_free(fw, 0);
290 		return;
291 	}
292 
293 	firmware_free(fw, 0);
294 	sc->sc_flags |= ZD1211_FWLOADED;
295 
296 	/* complete the attach process */
297 	if ((error = zyd_complete_attach(sc)) == 0)
298 		sc->attached = 1;
299 	return;
300 }
301 
302 void
303 zyd_attach(device_t parent, device_t self, void *aux)
304 {
305 	struct zyd_softc *sc = device_private(self);
306 	struct usb_attach_arg *uaa = aux;
307 	char *devinfop;
308 	usb_device_descriptor_t* ddesc;
309 	struct ifnet *ifp = &sc->sc_if;
310 
311 	sc->sc_dev = self;
312 	sc->sc_udev = uaa->device;
313 	sc->sc_flags = 0;
314 
315 	aprint_naive("\n");
316 	aprint_normal("\n");
317 
318 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
319 	aprint_normal_dev(self, "%s\n", devinfop);
320 	usbd_devinfo_free(devinfop);
321 
322 	sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
323 
324 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
325 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
326 		aprint_error_dev(self, "device version mismatch: 0x%x "
327 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
328 		return;
329 	}
330 
331 	ifp->if_softc = sc;
332 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 	ifp->if_init = zyd_init;
334 	ifp->if_ioctl = zyd_ioctl;
335 	ifp->if_start = zyd_start;
336 	ifp->if_watchdog = zyd_watchdog;
337 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
338 	IFQ_SET_READY(&ifp->if_snd);
339 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
340 
341 	SIMPLEQ_INIT(&sc->sc_rqh);
342 
343 	/* defer configrations after file system is ready to load firmware */
344 	config_mountroot(self, zyd_attachhook);
345 }
346 
347 Static int
348 zyd_complete_attach(struct zyd_softc *sc)
349 {
350 	struct ieee80211com *ic = &sc->sc_ic;
351 	struct ifnet *ifp = &sc->sc_if;
352 	usbd_status error;
353 	int i;
354 
355 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
356 	callout_init(&(sc->sc_scan_ch), 0);
357 
358 	sc->amrr.amrr_min_success_threshold =  1;
359 	sc->amrr.amrr_max_success_threshold = 10;
360 	callout_init(&sc->sc_amrr_ch, 0);
361 
362 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
363 	if (error != 0) {
364 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
365 		    ", err=%s\n", usbd_errstr(error));
366 		goto fail;
367 	}
368 
369 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
370 	    &sc->sc_iface);
371 	if (error != 0) {
372 		aprint_error_dev(sc->sc_dev,
373 		    "getting interface handle failed\n");
374 		goto fail;
375 	}
376 
377 	if ((error = zyd_open_pipes(sc)) != 0) {
378 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
379 		goto fail;
380 	}
381 
382 	if ((error = zyd_read_eeprom(sc)) != 0) {
383 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
384 		goto fail;
385 	}
386 
387 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
388 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
389 		goto fail;
390 	}
391 
392 	if ((error = zyd_hw_init(sc)) != 0) {
393 		aprint_error_dev(sc->sc_dev,
394 		    "hardware initialization failed\n");
395 		goto fail;
396 	}
397 
398 	aprint_normal_dev(sc->sc_dev,
399 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
400 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
401 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
402 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
403 
404 	ic->ic_ifp = ifp;
405 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
406 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
407 	ic->ic_state = IEEE80211_S_INIT;
408 
409 	/* set device capabilities */
410 	ic->ic_caps =
411 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
412 	    IEEE80211_C_TXPMGT |	/* tx power management */
413 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
414 	    IEEE80211_C_WEP;		/* s/w WEP */
415 
416 	/* set supported .11b and .11g rates */
417 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
418 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
419 
420 	/* set supported .11b and .11g channels (1 through 14) */
421 	for (i = 1; i <= 14; i++) {
422 		ic->ic_channels[i].ic_freq =
423 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
424 		ic->ic_channels[i].ic_flags =
425 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
426 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 	}
428 
429 	if_attach(ifp);
430 	ieee80211_ifattach(ic);
431 	ic->ic_node_alloc = zyd_node_alloc;
432 	ic->ic_newassoc = zyd_newassoc;
433 
434 	/* override state transition machine */
435 	sc->sc_newstate = ic->ic_newstate;
436 	ic->ic_newstate = zyd_newstate;
437 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
438 
439 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
440 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
441 	    &sc->sc_drvbpf);
442 
443 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
444 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
445 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
446 
447 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
448 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
449 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
450 
451 	ieee80211_announce(ic);
452 
453 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
454 
455 fail:	return error;
456 }
457 
458 int
459 zyd_detach(device_t self, int flags)
460 {
461 	struct zyd_softc *sc = device_private(self);
462 	struct ieee80211com *ic = &sc->sc_ic;
463 	struct ifnet *ifp = &sc->sc_if;
464 	int s;
465 
466 	if (!sc->attached)
467 		return 0;
468 
469 	s = splusb();
470 
471 	zyd_stop(ifp, 1);
472 	usb_rem_task(sc->sc_udev, &sc->sc_task);
473 	callout_stop(&sc->sc_scan_ch);
474 	callout_stop(&sc->sc_amrr_ch);
475 
476 	zyd_close_pipes(sc);
477 
478 	sc->attached = 0;
479 
480 	bpf_detach(ifp);
481 	ieee80211_ifdetach(ic);
482 	if_detach(ifp);
483 
484 	splx(s);
485 
486 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
487 	    sc->sc_dev);
488 
489 	return 0;
490 }
491 
492 Static int
493 zyd_open_pipes(struct zyd_softc *sc)
494 {
495 	usb_endpoint_descriptor_t *edesc;
496 	int isize;
497 	usbd_status error;
498 
499 	/* interrupt in */
500 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
501 	if (edesc == NULL)
502 		return EINVAL;
503 
504 	isize = UGETW(edesc->wMaxPacketSize);
505 	if (isize == 0)	/* should not happen */
506 		return EINVAL;
507 
508 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
509 	if (sc->ibuf == NULL)
510 		return ENOMEM;
511 
512 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
513 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
514 	    USBD_DEFAULT_INTERVAL);
515 	if (error != 0) {
516 		printf("%s: open rx intr pipe failed: %s\n",
517 		    device_xname(sc->sc_dev), usbd_errstr(error));
518 		goto fail;
519 	}
520 
521 	/* interrupt out (not necessarily an interrupt pipe) */
522 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
523 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
524 	if (error != 0) {
525 		printf("%s: open tx intr pipe failed: %s\n",
526 		    device_xname(sc->sc_dev), usbd_errstr(error));
527 		goto fail;
528 	}
529 
530 	/* bulk in */
531 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
532 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
533 	if (error != 0) {
534 		printf("%s: open rx pipe failed: %s\n",
535 		    device_xname(sc->sc_dev), usbd_errstr(error));
536 		goto fail;
537 	}
538 
539 	/* bulk out */
540 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
541 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
542 	if (error != 0) {
543 		printf("%s: open tx pipe failed: %s\n",
544 		    device_xname(sc->sc_dev), usbd_errstr(error));
545 		goto fail;
546 	}
547 
548 	return 0;
549 
550 fail:	zyd_close_pipes(sc);
551 	return error;
552 }
553 
554 Static void
555 zyd_close_pipes(struct zyd_softc *sc)
556 {
557 	int i;
558 
559 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
560 		if (sc->zyd_ep[i] != NULL) {
561 			usbd_abort_pipe(sc->zyd_ep[i]);
562 			usbd_close_pipe(sc->zyd_ep[i]);
563 			sc->zyd_ep[i] = NULL;
564 		}
565 	}
566 	if (sc->ibuf != NULL) {
567 		free(sc->ibuf, M_USBDEV);
568 		sc->ibuf = NULL;
569 	}
570 }
571 
572 Static int
573 zyd_alloc_tx_list(struct zyd_softc *sc)
574 {
575 	int i, error;
576 
577 	sc->tx_queued = 0;
578 
579 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
580 		struct zyd_tx_data *data = &sc->tx_data[i];
581 
582 		data->sc = sc;	/* backpointer for callbacks */
583 
584 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
585 		if (data->xfer == NULL) {
586 			printf("%s: could not allocate tx xfer\n",
587 			    device_xname(sc->sc_dev));
588 			error = ENOMEM;
589 			goto fail;
590 		}
591 		data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
592 		if (data->buf == NULL) {
593 			printf("%s: could not allocate tx buffer\n",
594 			    device_xname(sc->sc_dev));
595 			error = ENOMEM;
596 			goto fail;
597 		}
598 
599 		/* clear Tx descriptor */
600 		memset(data->buf, 0, sizeof (struct zyd_tx_desc));
601 	}
602 	return 0;
603 
604 fail:	zyd_free_tx_list(sc);
605 	return error;
606 }
607 
608 Static void
609 zyd_free_tx_list(struct zyd_softc *sc)
610 {
611 	int i;
612 
613 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
614 		struct zyd_tx_data *data = &sc->tx_data[i];
615 
616 		if (data->xfer != NULL) {
617 			usbd_free_xfer(data->xfer);
618 			data->xfer = NULL;
619 		}
620 		if (data->ni != NULL) {
621 			ieee80211_free_node(data->ni);
622 			data->ni = NULL;
623 		}
624 	}
625 }
626 
627 Static int
628 zyd_alloc_rx_list(struct zyd_softc *sc)
629 {
630 	int i, error;
631 
632 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
633 		struct zyd_rx_data *data = &sc->rx_data[i];
634 
635 		data->sc = sc;	/* backpointer for callbacks */
636 
637 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
638 		if (data->xfer == NULL) {
639 			printf("%s: could not allocate rx xfer\n",
640 			    device_xname(sc->sc_dev));
641 			error = ENOMEM;
642 			goto fail;
643 		}
644 		data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
645 		if (data->buf == NULL) {
646 			printf("%s: could not allocate rx buffer\n",
647 			    device_xname(sc->sc_dev));
648 			error = ENOMEM;
649 			goto fail;
650 		}
651 	}
652 	return 0;
653 
654 fail:	zyd_free_rx_list(sc);
655 	return error;
656 }
657 
658 Static void
659 zyd_free_rx_list(struct zyd_softc *sc)
660 {
661 	int i;
662 
663 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
664 		struct zyd_rx_data *data = &sc->rx_data[i];
665 
666 		if (data->xfer != NULL) {
667 			usbd_free_xfer(data->xfer);
668 			data->xfer = NULL;
669 		}
670 	}
671 }
672 
673 /* ARGUSED */
674 Static struct ieee80211_node *
675 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
676 {
677 	struct zyd_node *zn;
678 
679 	zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
680 
681 	return &zn->ni;
682 }
683 
684 Static int
685 zyd_media_change(struct ifnet *ifp)
686 {
687 	int error;
688 
689 	error = ieee80211_media_change(ifp);
690 	if (error != ENETRESET)
691 		return error;
692 
693 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
694 		zyd_init(ifp);
695 
696 	return 0;
697 }
698 
699 /*
700  * This function is called periodically (every 200ms) during scanning to
701  * switch from one channel to another.
702  */
703 Static void
704 zyd_next_scan(void *arg)
705 {
706 	struct zyd_softc *sc = arg;
707 	struct ieee80211com *ic = &sc->sc_ic;
708 
709 	if (ic->ic_state == IEEE80211_S_SCAN)
710 		ieee80211_next_scan(ic);
711 }
712 
713 Static void
714 zyd_task(void *arg)
715 {
716 	struct zyd_softc *sc = arg;
717 	struct ieee80211com *ic = &sc->sc_ic;
718 	enum ieee80211_state ostate;
719 
720 	ostate = ic->ic_state;
721 
722 	switch (sc->sc_state) {
723 	case IEEE80211_S_INIT:
724 		if (ostate == IEEE80211_S_RUN) {
725 			/* turn link LED off */
726 			zyd_set_led(sc, ZYD_LED1, 0);
727 
728 			/* stop data LED from blinking */
729 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
730 		}
731 		break;
732 
733 	case IEEE80211_S_SCAN:
734 		zyd_set_chan(sc, ic->ic_curchan);
735 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
736 		break;
737 
738 	case IEEE80211_S_AUTH:
739 	case IEEE80211_S_ASSOC:
740 		zyd_set_chan(sc, ic->ic_curchan);
741 		break;
742 
743 	case IEEE80211_S_RUN:
744 	{
745 		struct ieee80211_node *ni = ic->ic_bss;
746 
747 		zyd_set_chan(sc, ic->ic_curchan);
748 
749 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
750 			/* turn link LED on */
751 			zyd_set_led(sc, ZYD_LED1, 1);
752 
753 			/* make data LED blink upon Tx */
754 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
755 
756 			zyd_set_bssid(sc, ni->ni_bssid);
757 		}
758 
759 		if (ic->ic_opmode == IEEE80211_M_STA) {
760 			/* fake a join to init the tx rate */
761 			zyd_newassoc(ni, 1);
762 		}
763 
764 		/* start automatic rate control timer */
765 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
766 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
767 
768 		break;
769 	}
770 	}
771 
772 	sc->sc_newstate(ic, sc->sc_state, -1);
773 }
774 
775 Static int
776 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
777 {
778 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
779 
780 	if (!sc->attached)
781 		return ENXIO;
782 
783 	usb_rem_task(sc->sc_udev, &sc->sc_task);
784 	callout_stop(&sc->sc_scan_ch);
785 	callout_stop(&sc->sc_amrr_ch);
786 
787 	/* do it in a process context */
788 	sc->sc_state = nstate;
789 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
790 
791 	return 0;
792 }
793 
794 Static int
795 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
796     void *odata, int olen, u_int flags)
797 {
798 	usbd_xfer_handle xfer;
799 	struct zyd_cmd cmd;
800 	struct rq rq;
801 	uint16_t xferflags;
802 	int error;
803 	usbd_status uerror;
804 	int s = 0;
805 
806 	if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
807 		return ENOMEM;
808 
809 	cmd.code = htole16(code);
810 	bcopy(idata, cmd.data, ilen);
811 
812 	xferflags = USBD_FORCE_SHORT_XFER;
813 	if (!(flags & ZYD_CMD_FLAG_READ))
814 		xferflags |= USBD_SYNCHRONOUS;
815 	else {
816 		s = splusb();
817 		rq.idata = idata;
818 		rq.odata = odata;
819 		rq.len = olen / sizeof (struct zyd_pair);
820 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
821 	}
822 
823 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
824 	    sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
825 	uerror = usbd_transfer(xfer);
826 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
827 		if (flags & ZYD_CMD_FLAG_READ)
828 			splx(s);
829 		printf("%s: could not send command (error=%s)\n",
830 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
831 		(void)usbd_free_xfer(xfer);
832 		return EIO;
833 	}
834 	if (!(flags & ZYD_CMD_FLAG_READ)) {
835 		(void)usbd_free_xfer(xfer);
836 		return 0;	/* write: don't wait for reply */
837 	}
838 	/* wait at most one second for command reply */
839 	error = tsleep(odata, PCATCH, "zydcmd", hz);
840 	if (error == EWOULDBLOCK)
841 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
842 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
843 	splx(s);
844 
845 	(void)usbd_free_xfer(xfer);
846 	return error;
847 }
848 
849 Static int
850 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
851 {
852 	struct zyd_pair tmp;
853 	int error;
854 
855 	reg = htole16(reg);
856 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
857 	    ZYD_CMD_FLAG_READ);
858 	if (error == 0)
859 		*val = le16toh(tmp.val);
860 	else
861 		*val = 0;
862 	return error;
863 }
864 
865 Static int
866 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
867 {
868 	struct zyd_pair tmp[2];
869 	uint16_t regs[2];
870 	int error;
871 
872 	regs[0] = htole16(ZYD_REG32_HI(reg));
873 	regs[1] = htole16(ZYD_REG32_LO(reg));
874 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
875 	    ZYD_CMD_FLAG_READ);
876 	if (error == 0)
877 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
878 	else
879 		*val = 0;
880 	return error;
881 }
882 
883 Static int
884 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
885 {
886 	struct zyd_pair pair;
887 
888 	pair.reg = htole16(reg);
889 	pair.val = htole16(val);
890 
891 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
892 }
893 
894 Static int
895 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
896 {
897 	struct zyd_pair pair[2];
898 
899 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
900 	pair[0].val = htole16(val >> 16);
901 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
902 	pair[1].val = htole16(val & 0xffff);
903 
904 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
905 }
906 
907 Static int
908 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
909 {
910 	struct zyd_rf *rf = &sc->sc_rf;
911 	struct zyd_rfwrite req;
912 	uint16_t cr203;
913 	int i;
914 
915 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
916 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
917 
918 	req.code  = htole16(2);
919 	req.width = htole16(rf->width);
920 	for (i = 0; i < rf->width; i++) {
921 		req.bit[i] = htole16(cr203);
922 		if (val & (1 << (rf->width - 1 - i)))
923 			req.bit[i] |= htole16(ZYD_RF_DATA);
924 	}
925 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
926 }
927 
928 Static void
929 zyd_lock_phy(struct zyd_softc *sc)
930 {
931 	uint32_t tmp;
932 
933 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
934 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
935 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
936 }
937 
938 Static void
939 zyd_unlock_phy(struct zyd_softc *sc)
940 {
941 	uint32_t tmp;
942 
943 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
944 	tmp |= ZYD_UNLOCK_PHY_REGS;
945 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
946 }
947 
948 /*
949  * RFMD RF methods.
950  */
951 Static int
952 zyd_rfmd_init(struct zyd_rf *rf)
953 {
954 	struct zyd_softc *sc = rf->rf_sc;
955 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
956 	static const uint32_t rfini[] = ZYD_RFMD_RF;
957 	int error;
958 	size_t i;
959 
960 	/* init RF-dependent PHY registers */
961 	for (i = 0; i < __arraycount(phyini); i++) {
962 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
963 		if (error != 0)
964 			return error;
965 	}
966 
967 	/* init RFMD radio */
968 	for (i = 0; i < __arraycount(rfini); i++) {
969 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
970 			return error;
971 	}
972 	return 0;
973 }
974 
975 Static int
976 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
977 {
978 	struct zyd_softc *sc = rf->rf_sc;
979 
980 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
981 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
982 
983 	return 0;
984 }
985 
986 Static int
987 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
988 {
989 	struct zyd_softc *sc = rf->rf_sc;
990 	static const struct {
991 		uint32_t	r1, r2;
992 	} rfprog[] = ZYD_RFMD_CHANTABLE;
993 
994 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
995 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
996 
997 	return 0;
998 }
999 
1000 /*
1001  * AL2230 RF methods.
1002  */
1003 Static int
1004 zyd_al2230_init(struct zyd_rf *rf)
1005 {
1006 	struct zyd_softc *sc = rf->rf_sc;
1007 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1008 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1009 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1010 	int error;
1011 	size_t i;
1012 
1013 	/* init RF-dependent PHY registers */
1014 	for (i = 0; i < __arraycount(phyini); i++) {
1015 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1016 		if (error != 0)
1017 			return error;
1018 	}
1019 
1020 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1021 		for (i = 0; i < __arraycount(phy2230s); i++) {
1022 			error = zyd_write16(sc, phy2230s[i].reg,
1023 			    phy2230s[i].val);
1024 			if (error != 0)
1025 				return error;
1026 		}
1027 	}
1028 
1029 	/* init AL2230 radio */
1030 	for (i = 0; i < __arraycount(rfini); i++) {
1031 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1032 			return error;
1033 	}
1034 	return 0;
1035 }
1036 
1037 Static int
1038 zyd_al2230_init_b(struct zyd_rf *rf)
1039 {
1040 	struct zyd_softc *sc = rf->rf_sc;
1041 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1042 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1043 	int error;
1044 	size_t i;
1045 
1046 	/* init RF-dependent PHY registers */
1047 	for (i = 0; i < __arraycount(phyini); i++) {
1048 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1049 		if (error != 0)
1050 			return error;
1051 	}
1052 
1053 	/* init AL2230 radio */
1054 	for (i = 0; i < __arraycount(rfini); i++) {
1055 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1056 			return error;
1057 	}
1058 	return 0;
1059 }
1060 
1061 Static int
1062 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1063 {
1064 	struct zyd_softc *sc = rf->rf_sc;
1065 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1066 
1067 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1068 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1069 
1070 	return 0;
1071 }
1072 
1073 Static int
1074 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1075 {
1076 	struct zyd_softc *sc = rf->rf_sc;
1077 	static const struct {
1078 		uint32_t	r1, r2, r3;
1079 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1080 
1081 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1082 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1083 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1084 
1085 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1086 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * AL7230B RF methods.
1093  */
1094 Static int
1095 zyd_al7230B_init(struct zyd_rf *rf)
1096 {
1097 	struct zyd_softc *sc = rf->rf_sc;
1098 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1099 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1100 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1101 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1102 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1103 	int error;
1104 	size_t i;
1105 
1106 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1107 
1108 	/* init RF-dependent PHY registers, part one */
1109 	for (i = 0; i < __arraycount(phyini_1); i++) {
1110 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1111 		if (error != 0)
1112 			return error;
1113 	}
1114 	/* init AL7230B radio, part one */
1115 	for (i = 0; i < __arraycount(rfini_1); i++) {
1116 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1117 			return error;
1118 	}
1119 	/* init RF-dependent PHY registers, part two */
1120 	for (i = 0; i < __arraycount(phyini_2); i++) {
1121 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1122 		if (error != 0)
1123 			return error;
1124 	}
1125 	/* init AL7230B radio, part two */
1126 	for (i = 0; i < __arraycount(rfini_2); i++) {
1127 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1128 			return error;
1129 	}
1130 	/* init RF-dependent PHY registers, part three */
1131 	for (i = 0; i < __arraycount(phyini_3); i++) {
1132 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1133 		if (error != 0)
1134 			return error;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 Static int
1141 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1142 {
1143 	struct zyd_softc *sc = rf->rf_sc;
1144 
1145 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1146 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1147 
1148 	return 0;
1149 }
1150 
1151 Static int
1152 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1153 {
1154 	struct zyd_softc *sc = rf->rf_sc;
1155 	static const struct {
1156 		uint32_t	r1, r2;
1157 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1158 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1159 	int error;
1160 	size_t i;
1161 
1162 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1163 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1164 
1165 	for (i = 0; i < __arraycount(rfsc); i++) {
1166 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1167 			return error;
1168 	}
1169 
1170 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1171 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1172 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1173 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1174 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1175 
1176 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1177 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1178 	(void)zyd_rfwrite(sc, 0x3c9000);
1179 
1180 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1181 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1182 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * AL2210 RF methods.
1189  */
1190 Static int
1191 zyd_al2210_init(struct zyd_rf *rf)
1192 {
1193 	struct zyd_softc *sc = rf->rf_sc;
1194 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1195 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1196 	uint32_t tmp;
1197 	int error;
1198 	size_t i;
1199 
1200 	(void)zyd_write32(sc, ZYD_CR18, 2);
1201 
1202 	/* init RF-dependent PHY registers */
1203 	for (i = 0; i < __arraycount(phyini); i++) {
1204 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1205 		if (error != 0)
1206 			return error;
1207 	}
1208 	/* init AL2210 radio */
1209 	for (i = 0; i < __arraycount(rfini); i++) {
1210 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1211 			return error;
1212 	}
1213 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1214 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1215 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1216 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1217 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1218 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1219 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1220 	(void)zyd_write32(sc, ZYD_CR18, 3);
1221 
1222 	return 0;
1223 }
1224 
1225 Static int
1226 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1227 {
1228 	/* vendor driver does nothing for this RF chip */
1229 
1230 	return 0;
1231 }
1232 
1233 Static int
1234 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1235 {
1236 	struct zyd_softc *sc = rf->rf_sc;
1237 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1238 	uint32_t tmp;
1239 
1240 	(void)zyd_write32(sc, ZYD_CR18, 2);
1241 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1242 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1243 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1244 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1245 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1246 
1247 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1248 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1249 
1250 	/* actually set the channel */
1251 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1252 
1253 	(void)zyd_write32(sc, ZYD_CR18, 3);
1254 
1255 	return 0;
1256 }
1257 
1258 /*
1259  * GCT RF methods.
1260  */
1261 Static int
1262 zyd_gct_init(struct zyd_rf *rf)
1263 {
1264 	struct zyd_softc *sc = rf->rf_sc;
1265 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1266 	static const uint32_t rfini[] = ZYD_GCT_RF;
1267 	int error;
1268 	size_t i;
1269 
1270 	/* init RF-dependent PHY registers */
1271 	for (i = 0; i < __arraycount(phyini); i++) {
1272 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1273 		if (error != 0)
1274 			return error;
1275 	}
1276 	/* init cgt radio */
1277 	for (i = 0; i < __arraycount(rfini); i++) {
1278 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1279 			return error;
1280 	}
1281 	return 0;
1282 }
1283 
1284 Static int
1285 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1286 {
1287 	/* vendor driver does nothing for this RF chip */
1288 
1289 	return 0;
1290 }
1291 
1292 Static int
1293 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1294 {
1295 	struct zyd_softc *sc = rf->rf_sc;
1296 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1297 
1298 	(void)zyd_rfwrite(sc, 0x1c0000);
1299 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1300 	(void)zyd_rfwrite(sc, 0x1c0008);
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Maxim RF methods.
1307  */
1308 Static int
1309 zyd_maxim_init(struct zyd_rf *rf)
1310 {
1311 	struct zyd_softc *sc = rf->rf_sc;
1312 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1313 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1314 	uint16_t tmp;
1315 	int error;
1316 	size_t i;
1317 
1318 	/* init RF-dependent PHY registers */
1319 	for (i = 0; i < __arraycount(phyini); i++) {
1320 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1321 		if (error != 0)
1322 			return error;
1323 	}
1324 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1325 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1326 
1327 	/* init maxim radio */
1328 	for (i = 0; i < __arraycount(rfini); i++) {
1329 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1330 			return error;
1331 	}
1332 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1333 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1334 
1335 	return 0;
1336 }
1337 
1338 Static int
1339 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1340 {
1341 	/* vendor driver does nothing for this RF chip */
1342 
1343 	return 0;
1344 }
1345 
1346 Static int
1347 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1348 {
1349 	struct zyd_softc *sc = rf->rf_sc;
1350 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1351 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1352 	static const struct {
1353 		uint32_t	r1, r2;
1354 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1355 	uint16_t tmp;
1356 	int error;
1357 	size_t i;
1358 
1359 	/*
1360 	 * Do the same as we do when initializing it, except for the channel
1361 	 * values coming from the two channel tables.
1362 	 */
1363 
1364 	/* init RF-dependent PHY registers */
1365 	for (i = 0; i < __arraycount(phyini); i++) {
1366 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1367 		if (error != 0)
1368 			return error;
1369 	}
1370 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1371 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1372 
1373 	/* first two values taken from the chantables */
1374 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1375 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1376 
1377 	/* init maxim radio - skipping the two first values */
1378 	for (i = 2; i < __arraycount(rfini); i++) {
1379 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1380 			return error;
1381 	}
1382 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1383 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Maxim2 RF methods.
1390  */
1391 Static int
1392 zyd_maxim2_init(struct zyd_rf *rf)
1393 {
1394 	struct zyd_softc *sc = rf->rf_sc;
1395 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1396 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1397 	uint16_t tmp;
1398 	int error;
1399 	size_t i;
1400 
1401 	/* init RF-dependent PHY registers */
1402 	for (i = 0; i < __arraycount(phyini); i++) {
1403 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1404 		if (error != 0)
1405 			return error;
1406 	}
1407 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1408 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1409 
1410 	/* init maxim2 radio */
1411 	for (i = 0; i < __arraycount(rfini); i++) {
1412 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1413 			return error;
1414 	}
1415 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1416 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1417 
1418 	return 0;
1419 }
1420 
1421 Static int
1422 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1423 {
1424 	/* vendor driver does nothing for this RF chip */
1425 
1426 	return 0;
1427 }
1428 
1429 Static int
1430 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1431 {
1432 	struct zyd_softc *sc = rf->rf_sc;
1433 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1434 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1435 	static const struct {
1436 		uint32_t	r1, r2;
1437 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1438 	uint16_t tmp;
1439 	int error;
1440 	size_t i;
1441 
1442 	/*
1443 	 * Do the same as we do when initializing it, except for the channel
1444 	 * values coming from the two channel tables.
1445 	 */
1446 
1447 	/* init RF-dependent PHY registers */
1448 	for (i = 0; i < __arraycount(phyini); i++) {
1449 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1450 		if (error != 0)
1451 			return error;
1452 	}
1453 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1454 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1455 
1456 	/* first two values taken from the chantables */
1457 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1458 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1459 
1460 	/* init maxim2 radio - skipping the two first values */
1461 	for (i = 2; i < __arraycount(rfini); i++) {
1462 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1463 			return error;
1464 	}
1465 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1466 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1467 
1468 	return 0;
1469 }
1470 
1471 Static int
1472 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1473 {
1474 	struct zyd_rf *rf = &sc->sc_rf;
1475 
1476 	rf->rf_sc = sc;
1477 
1478 	switch (type) {
1479 	case ZYD_RF_RFMD:
1480 		rf->init         = zyd_rfmd_init;
1481 		rf->switch_radio = zyd_rfmd_switch_radio;
1482 		rf->set_channel  = zyd_rfmd_set_channel;
1483 		rf->width        = 24;	/* 24-bit RF values */
1484 		break;
1485 	case ZYD_RF_AL2230:
1486 	case ZYD_RF_AL2230S:
1487 		if (sc->mac_rev == ZYD_ZD1211B)
1488 			rf->init = zyd_al2230_init_b;
1489 		else
1490 			rf->init = zyd_al2230_init;
1491 		rf->switch_radio = zyd_al2230_switch_radio;
1492 		rf->set_channel  = zyd_al2230_set_channel;
1493 		rf->width        = 24;	/* 24-bit RF values */
1494 		break;
1495 	case ZYD_RF_AL7230B:
1496 		rf->init         = zyd_al7230B_init;
1497 		rf->switch_radio = zyd_al7230B_switch_radio;
1498 		rf->set_channel  = zyd_al7230B_set_channel;
1499 		rf->width        = 24;	/* 24-bit RF values */
1500 		break;
1501 	case ZYD_RF_AL2210:
1502 		rf->init         = zyd_al2210_init;
1503 		rf->switch_radio = zyd_al2210_switch_radio;
1504 		rf->set_channel  = zyd_al2210_set_channel;
1505 		rf->width        = 24;	/* 24-bit RF values */
1506 		break;
1507 	case ZYD_RF_GCT:
1508 		rf->init         = zyd_gct_init;
1509 		rf->switch_radio = zyd_gct_switch_radio;
1510 		rf->set_channel  = zyd_gct_set_channel;
1511 		rf->width        = 21;	/* 21-bit RF values */
1512 		break;
1513 	case ZYD_RF_MAXIM_NEW:
1514 		rf->init         = zyd_maxim_init;
1515 		rf->switch_radio = zyd_maxim_switch_radio;
1516 		rf->set_channel  = zyd_maxim_set_channel;
1517 		rf->width        = 18;	/* 18-bit RF values */
1518 		break;
1519 	case ZYD_RF_MAXIM_NEW2:
1520 		rf->init         = zyd_maxim2_init;
1521 		rf->switch_radio = zyd_maxim2_switch_radio;
1522 		rf->set_channel  = zyd_maxim2_set_channel;
1523 		rf->width        = 18;	/* 18-bit RF values */
1524 		break;
1525 	default:
1526 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1527 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1528 		return EINVAL;
1529 	}
1530 	return 0;
1531 }
1532 
1533 Static const char *
1534 zyd_rf_name(uint8_t type)
1535 {
1536 	static const char * const zyd_rfs[] = {
1537 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1538 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1539 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1540 		"PHILIPS"
1541 	};
1542 
1543 	return zyd_rfs[(type > 15) ? 0 : type];
1544 }
1545 
1546 Static int
1547 zyd_hw_init(struct zyd_softc *sc)
1548 {
1549 	struct zyd_rf *rf = &sc->sc_rf;
1550 	const struct zyd_phy_pair *phyp;
1551 	int error;
1552 
1553 	/* specify that the plug and play is finished */
1554 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1555 
1556 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1557 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1558 
1559 	/* retrieve firmware revision number */
1560 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1561 
1562 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1563 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1564 
1565 	/* disable interrupts */
1566 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1567 
1568 	/* PHY init */
1569 	zyd_lock_phy(sc);
1570 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1571 	for (; phyp->reg != 0; phyp++) {
1572 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1573 			goto fail;
1574 	}
1575 	zyd_unlock_phy(sc);
1576 
1577 	/* HMAC init */
1578 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1579 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1580 
1581 	if (sc->mac_rev == ZYD_ZD1211) {
1582 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1583 	} else {
1584 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1585 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1586 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1587 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1588 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1589 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1590 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1591 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1592 	}
1593 
1594 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1595 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1596 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1597 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1598 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1599 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1600 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1601 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1602 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1603 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1604 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1605 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1606 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1607 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1608 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1609 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1610 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1611 
1612 	/* RF chip init */
1613 	zyd_lock_phy(sc);
1614 	error = (*rf->init)(rf);
1615 	zyd_unlock_phy(sc);
1616 	if (error != 0) {
1617 		printf("%s: radio initialization failed\n",
1618 		    device_xname(sc->sc_dev));
1619 		goto fail;
1620 	}
1621 
1622 	/* init beacon interval to 100ms */
1623 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1624 		goto fail;
1625 
1626 fail:	return error;
1627 }
1628 
1629 Static int
1630 zyd_read_eeprom(struct zyd_softc *sc)
1631 {
1632 	struct ieee80211com *ic = &sc->sc_ic;
1633 	uint32_t tmp;
1634 	uint16_t val;
1635 	int i;
1636 
1637 	/* read MAC address */
1638 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1639 	ic->ic_myaddr[0] = tmp & 0xff;
1640 	ic->ic_myaddr[1] = tmp >>  8;
1641 	ic->ic_myaddr[2] = tmp >> 16;
1642 	ic->ic_myaddr[3] = tmp >> 24;
1643 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1644 	ic->ic_myaddr[4] = tmp & 0xff;
1645 	ic->ic_myaddr[5] = tmp >>  8;
1646 
1647 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1648 	sc->rf_rev = tmp & 0x0f;
1649 	sc->pa_rev = (tmp >> 16) & 0x0f;
1650 
1651 	/* read regulatory domain (currently unused) */
1652 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1653 	sc->regdomain = tmp >> 16;
1654 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1655 
1656 	/* read Tx power calibration tables */
1657 	for (i = 0; i < 7; i++) {
1658 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1659 		sc->pwr_cal[i * 2] = val >> 8;
1660 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1661 
1662 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1663 		sc->pwr_int[i * 2] = val >> 8;
1664 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1665 
1666 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1667 		sc->ofdm36_cal[i * 2] = val >> 8;
1668 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1669 
1670 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1671 		sc->ofdm48_cal[i * 2] = val >> 8;
1672 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1673 
1674 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1675 		sc->ofdm54_cal[i * 2] = val >> 8;
1676 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1677 	}
1678 	return 0;
1679 }
1680 
1681 Static int
1682 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1683 {
1684 	uint32_t tmp;
1685 
1686 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1687 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1688 
1689 	tmp = addr[5] << 8 | addr[4];
1690 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1691 
1692 	return 0;
1693 }
1694 
1695 Static int
1696 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1697 {
1698 	uint32_t tmp;
1699 
1700 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1701 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1702 
1703 	tmp = addr[5] << 8 | addr[4];
1704 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1705 
1706 	return 0;
1707 }
1708 
1709 Static int
1710 zyd_switch_radio(struct zyd_softc *sc, int on)
1711 {
1712 	struct zyd_rf *rf = &sc->sc_rf;
1713 	int error;
1714 
1715 	zyd_lock_phy(sc);
1716 	error = (*rf->switch_radio)(rf, on);
1717 	zyd_unlock_phy(sc);
1718 
1719 	return error;
1720 }
1721 
1722 Static void
1723 zyd_set_led(struct zyd_softc *sc, int which, int on)
1724 {
1725 	uint32_t tmp;
1726 
1727 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1728 	tmp &= ~which;
1729 	if (on)
1730 		tmp |= which;
1731 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1732 }
1733 
1734 Static int
1735 zyd_set_rxfilter(struct zyd_softc *sc)
1736 {
1737 	uint32_t rxfilter;
1738 
1739 	switch (sc->sc_ic.ic_opmode) {
1740 	case IEEE80211_M_STA:
1741 		rxfilter = ZYD_FILTER_BSS;
1742 		break;
1743 	case IEEE80211_M_IBSS:
1744 	case IEEE80211_M_HOSTAP:
1745 		rxfilter = ZYD_FILTER_HOSTAP;
1746 		break;
1747 	case IEEE80211_M_MONITOR:
1748 		rxfilter = ZYD_FILTER_MONITOR;
1749 		break;
1750 	default:
1751 		/* should not get there */
1752 		return EINVAL;
1753 	}
1754 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1755 }
1756 
1757 Static void
1758 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1759 {
1760 	struct ieee80211com *ic = &sc->sc_ic;
1761 	struct zyd_rf *rf = &sc->sc_rf;
1762 	u_int chan;
1763 
1764 	chan = ieee80211_chan2ieee(ic, c);
1765 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1766 		return;
1767 
1768 	zyd_lock_phy(sc);
1769 
1770 	(*rf->set_channel)(rf, chan);
1771 
1772 	/* update Tx power */
1773 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1774 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1775 
1776 	if (sc->mac_rev == ZYD_ZD1211B) {
1777 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1778 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1779 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1780 
1781 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1782 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1783 	}
1784 
1785 	zyd_unlock_phy(sc);
1786 }
1787 
1788 Static int
1789 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1790 {
1791 	/* XXX this is probably broken.. */
1792 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1793 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1794 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1795 
1796 	return 0;
1797 }
1798 
1799 Static uint8_t
1800 zyd_plcp_signal(int rate)
1801 {
1802 	switch (rate) {
1803 	/* CCK rates (returned values are device-dependent) */
1804 	case 2:		return 0x0;
1805 	case 4:		return 0x1;
1806 	case 11:	return 0x2;
1807 	case 22:	return 0x3;
1808 
1809 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1810 	case 12:	return 0xb;
1811 	case 18:	return 0xf;
1812 	case 24:	return 0xa;
1813 	case 36:	return 0xe;
1814 	case 48:	return 0x9;
1815 	case 72:	return 0xd;
1816 	case 96:	return 0x8;
1817 	case 108:	return 0xc;
1818 
1819 	/* unsupported rates (should not get there) */
1820 	default:	return 0xff;
1821 	}
1822 }
1823 
1824 Static void
1825 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1826 {
1827 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1828 	struct zyd_cmd *cmd;
1829 	uint32_t datalen;
1830 
1831 	if (status != USBD_NORMAL_COMPLETION) {
1832 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1833 			return;
1834 
1835 		if (status == USBD_STALLED) {
1836 			usbd_clear_endpoint_stall_async(
1837 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1838 		}
1839 		return;
1840 	}
1841 
1842 	cmd = (struct zyd_cmd *)sc->ibuf;
1843 
1844 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1845 		struct zyd_notif_retry *retry =
1846 		    (struct zyd_notif_retry *)cmd->data;
1847 		struct ieee80211com *ic = &sc->sc_ic;
1848 		struct ifnet *ifp = &sc->sc_if;
1849 		struct ieee80211_node *ni;
1850 
1851 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1852 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1853 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1854 
1855 		/*
1856 		 * Find the node to which the packet was sent and update its
1857 		 * retry statistics.  In BSS mode, this node is the AP we're
1858 		 * associated to so no lookup is actually needed.
1859 		 */
1860 		if (ic->ic_opmode != IEEE80211_M_STA) {
1861 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1862 			if (ni == NULL)
1863 				return;	/* just ignore */
1864 		} else
1865 			ni = ic->ic_bss;
1866 
1867 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1868 
1869 		if (le16toh(retry->count) & 0x100)
1870 			ifp->if_oerrors++;	/* too many retries */
1871 
1872 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1873 		struct rq *rqp;
1874 
1875 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1876 			return;	/* HMAC interrupt */
1877 
1878 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1879 		datalen -= sizeof(cmd->code);
1880 		datalen -= 2;	/* XXX: padding? */
1881 
1882 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1883 			int i;
1884 
1885 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1886 				continue;
1887 			for (i = 0; i < rqp->len; i++) {
1888 				if (*(((const uint16_t *)rqp->idata) + i) !=
1889 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1890 					break;
1891 			}
1892 			if (i != rqp->len)
1893 				continue;
1894 
1895 			/* copy answer into caller-supplied buffer */
1896 			bcopy(cmd->data, rqp->odata,
1897 			    sizeof(struct zyd_pair) * rqp->len);
1898 			wakeup(rqp->odata);	/* wakeup caller */
1899 
1900 			return;
1901 		}
1902 		return;	/* unexpected IORD notification */
1903 	} else {
1904 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1905 		    le16toh(cmd->code));
1906 	}
1907 }
1908 
1909 Static void
1910 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1911 {
1912 	struct ieee80211com *ic = &sc->sc_ic;
1913 	struct ifnet *ifp = &sc->sc_if;
1914 	struct ieee80211_node *ni;
1915 	struct ieee80211_frame *wh;
1916 	const struct zyd_plcphdr *plcp;
1917 	const struct zyd_rx_stat *stat;
1918 	struct mbuf *m;
1919 	int rlen, s;
1920 
1921 	if (len < ZYD_MIN_FRAGSZ) {
1922 		printf("%s: frame too short (length=%d)\n",
1923 		    device_xname(sc->sc_dev), len);
1924 		ifp->if_ierrors++;
1925 		return;
1926 	}
1927 
1928 	plcp = (const struct zyd_plcphdr *)buf;
1929 	stat = (const struct zyd_rx_stat *)
1930 	    (buf + len - sizeof (struct zyd_rx_stat));
1931 
1932 	if (stat->flags & ZYD_RX_ERROR) {
1933 		DPRINTF(("%s: RX status indicated error (%x)\n",
1934 		    device_xname(sc->sc_dev), stat->flags));
1935 		ifp->if_ierrors++;
1936 		return;
1937 	}
1938 
1939 	/* compute actual frame length */
1940 	rlen = len - sizeof (struct zyd_plcphdr) -
1941 	    sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1942 
1943 	/* allocate a mbuf to store the frame */
1944 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1945 	if (m == NULL) {
1946 		printf("%s: could not allocate rx mbuf\n",
1947 		    device_xname(sc->sc_dev));
1948 		ifp->if_ierrors++;
1949 		return;
1950 	}
1951 	if (rlen > MHLEN) {
1952 		MCLGET(m, M_DONTWAIT);
1953 		if (!(m->m_flags & M_EXT)) {
1954 			printf("%s: could not allocate rx mbuf cluster\n",
1955 			    device_xname(sc->sc_dev));
1956 			m_freem(m);
1957 			ifp->if_ierrors++;
1958 			return;
1959 		}
1960 	}
1961 	m->m_pkthdr.rcvif = ifp;
1962 	m->m_pkthdr.len = m->m_len = rlen;
1963 	bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1964 
1965 	s = splnet();
1966 
1967 	if (sc->sc_drvbpf != NULL) {
1968 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1969 		static const uint8_t rates[] = {
1970 			/* reverse function of zyd_plcp_signal() */
1971 			2, 4, 11, 22, 0, 0, 0, 0,
1972 			96, 48, 24, 12, 108, 72, 36, 18
1973 		};
1974 
1975 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1976 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1977 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1978 		tap->wr_rssi = stat->rssi;
1979 		tap->wr_rate = rates[plcp->signal & 0xf];
1980 
1981 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1982 	}
1983 
1984 	wh = mtod(m, struct ieee80211_frame *);
1985 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1986 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1987 
1988 	/* node is no longer needed */
1989 	ieee80211_free_node(ni);
1990 
1991 	splx(s);
1992 }
1993 
1994 Static void
1995 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1996 {
1997 	struct zyd_rx_data *data = priv;
1998 	struct zyd_softc *sc = data->sc;
1999 	struct ifnet *ifp = &sc->sc_if;
2000 	const struct zyd_rx_desc *desc;
2001 	int len;
2002 
2003 	if (status != USBD_NORMAL_COMPLETION) {
2004 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2005 			return;
2006 
2007 		if (status == USBD_STALLED)
2008 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2009 
2010 		goto skip;
2011 	}
2012 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2013 
2014 	if (len < ZYD_MIN_RXBUFSZ) {
2015 		printf("%s: xfer too short (length=%d)\n",
2016 		    device_xname(sc->sc_dev), len);
2017 		ifp->if_ierrors++;
2018 		goto skip;
2019 	}
2020 
2021 	desc = (const struct zyd_rx_desc *)
2022 	    (data->buf + len - sizeof (struct zyd_rx_desc));
2023 
2024 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2025 		const uint8_t *p = data->buf, *end = p + len;
2026 		int i;
2027 
2028 		DPRINTFN(3, ("received multi-frame transfer\n"));
2029 
2030 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2031 			const uint16_t len16 = UGETW(desc->len[i]);
2032 
2033 			if (len16 == 0 || p + len16 > end)
2034 				break;
2035 
2036 			zyd_rx_data(sc, p, len16);
2037 			/* next frame is aligned on a 32-bit boundary */
2038 			p += (len16 + 3) & ~3;
2039 		}
2040 	} else {
2041 		DPRINTFN(3, ("received single-frame transfer\n"));
2042 
2043 		zyd_rx_data(sc, data->buf, len);
2044 	}
2045 
2046 skip:	/* setup a new transfer */
2047 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2048 	    ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2049 	    USBD_NO_TIMEOUT, zyd_rxeof);
2050 	(void)usbd_transfer(xfer);
2051 }
2052 
2053 Static int
2054 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2055 {
2056 	struct ieee80211com *ic = &sc->sc_ic;
2057 	struct ifnet *ifp = &sc->sc_if;
2058 	struct zyd_tx_desc *desc;
2059 	struct zyd_tx_data *data;
2060 	struct ieee80211_frame *wh;
2061 	struct ieee80211_key *k;
2062 	int xferlen, totlen, rate;
2063 	uint16_t pktlen;
2064 	usbd_status error;
2065 
2066 	data = &sc->tx_data[0];
2067 	desc = (struct zyd_tx_desc *)data->buf;
2068 
2069 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2070 
2071 	wh = mtod(m0, struct ieee80211_frame *);
2072 
2073 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2074 		k = ieee80211_crypto_encap(ic, ni, m0);
2075 		if (k == NULL) {
2076 			m_freem(m0);
2077 			return ENOBUFS;
2078 		}
2079 	}
2080 
2081 	data->ni = ni;
2082 
2083 	wh = mtod(m0, struct ieee80211_frame *);
2084 
2085 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2086 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2087 
2088 	/* fill Tx descriptor */
2089 	desc->len = htole16(totlen);
2090 
2091 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2092 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2093 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2094 		if (totlen > ic->ic_rtsthreshold) {
2095 			desc->flags |= ZYD_TX_FLAG_RTS;
2096 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2097 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2098 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2099 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2100 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2101 				desc->flags |= ZYD_TX_FLAG_RTS;
2102 		}
2103 	} else
2104 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2105 
2106 	if ((wh->i_fc[0] &
2107 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2108 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2109 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2110 
2111 	desc->phy = zyd_plcp_signal(rate);
2112 	if (ZYD_RATE_IS_OFDM(rate)) {
2113 		desc->phy |= ZYD_TX_PHY_OFDM;
2114 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2115 			desc->phy |= ZYD_TX_PHY_5GHZ;
2116 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2117 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2118 
2119 	/* actual transmit length (XXX why +10?) */
2120 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2121 	if (sc->mac_rev == ZYD_ZD1211)
2122 		pktlen += totlen;
2123 	desc->pktlen = htole16(pktlen);
2124 
2125 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2126 	desc->plcp_service = 0;
2127 	if (rate == 22) {
2128 		const int remainder = (16 * totlen) % 22;
2129 		if (remainder != 0 && remainder < 7)
2130 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2131 	}
2132 
2133 	if (sc->sc_drvbpf != NULL) {
2134 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2135 
2136 		tap->wt_flags = 0;
2137 		tap->wt_rate = rate;
2138 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2139 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2140 
2141 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2142 	}
2143 
2144 	m_copydata(m0, 0, m0->m_pkthdr.len,
2145 	    data->buf + sizeof (struct zyd_tx_desc));
2146 
2147 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2148 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2149 
2150 	m_freem(m0);	/* mbuf no longer needed */
2151 
2152 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2153 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2154 	    ZYD_TX_TIMEOUT, zyd_txeof);
2155 	error = usbd_transfer(data->xfer);
2156 	if (error != USBD_IN_PROGRESS && error != 0) {
2157 		ifp->if_oerrors++;
2158 		return EIO;
2159 	}
2160 	sc->tx_queued++;
2161 
2162 	return 0;
2163 }
2164 
2165 Static void
2166 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2167 {
2168 	struct zyd_tx_data *data = priv;
2169 	struct zyd_softc *sc = data->sc;
2170 	struct ifnet *ifp = &sc->sc_if;
2171 	int s;
2172 
2173 	if (status != USBD_NORMAL_COMPLETION) {
2174 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2175 			return;
2176 
2177 		printf("%s: could not transmit buffer: %s\n",
2178 		    device_xname(sc->sc_dev), usbd_errstr(status));
2179 
2180 		if (status == USBD_STALLED) {
2181 			usbd_clear_endpoint_stall_async(
2182 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2183 		}
2184 		ifp->if_oerrors++;
2185 		return;
2186 	}
2187 
2188 	s = splnet();
2189 
2190 	/* update rate control statistics */
2191 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2192 
2193 	ieee80211_free_node(data->ni);
2194 	data->ni = NULL;
2195 
2196 	sc->tx_queued--;
2197 	ifp->if_opackets++;
2198 
2199 	sc->tx_timer = 0;
2200 	ifp->if_flags &= ~IFF_OACTIVE;
2201 	zyd_start(ifp);
2202 
2203 	splx(s);
2204 }
2205 
2206 Static int
2207 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2208 {
2209 	struct ieee80211com *ic = &sc->sc_ic;
2210 	struct ifnet *ifp = &sc->sc_if;
2211 	struct zyd_tx_desc *desc;
2212 	struct zyd_tx_data *data;
2213 	struct ieee80211_frame *wh;
2214 	struct ieee80211_key *k;
2215 	int xferlen, totlen, rate;
2216 	uint16_t pktlen;
2217 	usbd_status error;
2218 
2219 	wh = mtod(m0, struct ieee80211_frame *);
2220 
2221 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2222 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2223 	else
2224 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2225 	rate &= IEEE80211_RATE_VAL;
2226 
2227 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2228 		k = ieee80211_crypto_encap(ic, ni, m0);
2229 		if (k == NULL) {
2230 			m_freem(m0);
2231 			return ENOBUFS;
2232 		}
2233 
2234 		/* packet header may have moved, reset our local pointer */
2235 		wh = mtod(m0, struct ieee80211_frame *);
2236 	}
2237 
2238 	data = &sc->tx_data[0];
2239 	desc = (struct zyd_tx_desc *)data->buf;
2240 
2241 	data->ni = ni;
2242 
2243 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2244 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2245 
2246 	/* fill Tx descriptor */
2247 	desc->len = htole16(totlen);
2248 
2249 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2250 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2251 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2252 		if (totlen > ic->ic_rtsthreshold) {
2253 			desc->flags |= ZYD_TX_FLAG_RTS;
2254 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2255 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2256 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2257 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2258 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2259 				desc->flags |= ZYD_TX_FLAG_RTS;
2260 		}
2261 	} else
2262 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2263 
2264 	if ((wh->i_fc[0] &
2265 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2266 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2267 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2268 
2269 	desc->phy = zyd_plcp_signal(rate);
2270 	if (ZYD_RATE_IS_OFDM(rate)) {
2271 		desc->phy |= ZYD_TX_PHY_OFDM;
2272 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2273 			desc->phy |= ZYD_TX_PHY_5GHZ;
2274 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2275 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2276 
2277 	/* actual transmit length (XXX why +10?) */
2278 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2279 	if (sc->mac_rev == ZYD_ZD1211)
2280 		pktlen += totlen;
2281 	desc->pktlen = htole16(pktlen);
2282 
2283 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2284 	desc->plcp_service = 0;
2285 	if (rate == 22) {
2286 		const int remainder = (16 * totlen) % 22;
2287 		if (remainder != 0 && remainder < 7)
2288 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2289 	}
2290 
2291 	if (sc->sc_drvbpf != NULL) {
2292 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2293 
2294 		tap->wt_flags = 0;
2295 		tap->wt_rate = rate;
2296 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2297 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2298 
2299 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2300 	}
2301 
2302 	m_copydata(m0, 0, m0->m_pkthdr.len,
2303 	    data->buf + sizeof (struct zyd_tx_desc));
2304 
2305 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2306 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2307 
2308 	m_freem(m0);	/* mbuf no longer needed */
2309 
2310 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2311 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2312 	    ZYD_TX_TIMEOUT, zyd_txeof);
2313 	error = usbd_transfer(data->xfer);
2314 	if (error != USBD_IN_PROGRESS && error != 0) {
2315 		ifp->if_oerrors++;
2316 		return EIO;
2317 	}
2318 	sc->tx_queued++;
2319 
2320 	return 0;
2321 }
2322 
2323 Static void
2324 zyd_start(struct ifnet *ifp)
2325 {
2326 	struct zyd_softc *sc = ifp->if_softc;
2327 	struct ieee80211com *ic = &sc->sc_ic;
2328 	struct ether_header *eh;
2329 	struct ieee80211_node *ni;
2330 	struct mbuf *m0;
2331 
2332 	for (;;) {
2333 		IF_POLL(&ic->ic_mgtq, m0);
2334 		if (m0 != NULL) {
2335 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2336 				ifp->if_flags |= IFF_OACTIVE;
2337 				break;
2338 			}
2339 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2340 
2341 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2342 			m0->m_pkthdr.rcvif = NULL;
2343 			bpf_mtap3(ic->ic_rawbpf, m0);
2344 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2345 				break;
2346 		} else {
2347 			if (ic->ic_state != IEEE80211_S_RUN)
2348 				break;
2349 			IFQ_POLL(&ifp->if_snd, m0);
2350 			if (m0 == NULL)
2351 				break;
2352 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2353 				ifp->if_flags |= IFF_OACTIVE;
2354 				break;
2355 			}
2356 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2357 
2358 			if (m0->m_len < sizeof(struct ether_header) &&
2359 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2360 				continue;
2361 
2362 			eh = mtod(m0, struct ether_header *);
2363 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2364 			if (ni == NULL) {
2365 				m_freem(m0);
2366 				continue;
2367 			}
2368 			bpf_mtap(ifp, m0);
2369 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2370 				ieee80211_free_node(ni);
2371 				ifp->if_oerrors++;
2372 				continue;
2373 			}
2374 			bpf_mtap3(ic->ic_rawbpf, m0);
2375 			if (zyd_tx_data(sc, m0, ni) != 0) {
2376 				ieee80211_free_node(ni);
2377 				ifp->if_oerrors++;
2378 				break;
2379 			}
2380 		}
2381 
2382 		sc->tx_timer = 5;
2383 		ifp->if_timer = 1;
2384 	}
2385 }
2386 
2387 Static void
2388 zyd_watchdog(struct ifnet *ifp)
2389 {
2390 	struct zyd_softc *sc = ifp->if_softc;
2391 	struct ieee80211com *ic = &sc->sc_ic;
2392 
2393 	ifp->if_timer = 0;
2394 
2395 	if (sc->tx_timer > 0) {
2396 		if (--sc->tx_timer == 0) {
2397 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2398 			/* zyd_init(ifp); XXX needs a process context ? */
2399 			ifp->if_oerrors++;
2400 			return;
2401 		}
2402 		ifp->if_timer = 1;
2403 	}
2404 
2405 	ieee80211_watchdog(ic);
2406 }
2407 
2408 Static int
2409 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2410 {
2411 	struct zyd_softc *sc = ifp->if_softc;
2412 	struct ieee80211com *ic = &sc->sc_ic;
2413 	int s, error = 0;
2414 
2415 	s = splnet();
2416 
2417 	switch (cmd) {
2418 	case SIOCSIFFLAGS:
2419 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2420 			break;
2421 		/* XXX re-use ether_ioctl() */
2422 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2423 		case IFF_UP:
2424 			zyd_init(ifp);
2425 			break;
2426 		case IFF_RUNNING:
2427 			zyd_stop(ifp, 1);
2428 			break;
2429 		default:
2430 			break;
2431 		}
2432 		break;
2433 
2434 	default:
2435 		error = ieee80211_ioctl(ic, cmd, data);
2436 	}
2437 
2438 	if (error == ENETRESET) {
2439 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2440 		    (IFF_RUNNING | IFF_UP))
2441 			zyd_init(ifp);
2442 		error = 0;
2443 	}
2444 
2445 	splx(s);
2446 
2447 	return error;
2448 }
2449 
2450 Static int
2451 zyd_init(struct ifnet *ifp)
2452 {
2453 	struct zyd_softc *sc = ifp->if_softc;
2454 	struct ieee80211com *ic = &sc->sc_ic;
2455 	int i, error;
2456 
2457 	zyd_stop(ifp, 0);
2458 
2459 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2460 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2461 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2462 	if (error != 0)
2463 		return error;
2464 
2465 	/* we'll do software WEP decryption for now */
2466 	DPRINTF(("setting encryption type\n"));
2467 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2468 	if (error != 0)
2469 		return error;
2470 
2471 	/* promiscuous mode */
2472 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2473 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2474 
2475 	(void)zyd_set_rxfilter(sc);
2476 
2477 	/* switch radio transmitter ON */
2478 	(void)zyd_switch_radio(sc, 1);
2479 
2480 	/* set basic rates */
2481 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2482 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2483 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2484 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2485 	else	/* assumes 802.11b/g */
2486 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2487 
2488 	/* set mandatory rates */
2489 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2490 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2491 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2492 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2493 	else	/* assumes 802.11b/g */
2494 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2495 
2496 	/* set default BSS channel */
2497 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2498 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2499 
2500 	/* enable interrupts */
2501 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2502 
2503 	/*
2504 	 * Allocate Tx and Rx xfer queues.
2505 	 */
2506 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2507 		printf("%s: could not allocate Tx list\n",
2508 		    device_xname(sc->sc_dev));
2509 		goto fail;
2510 	}
2511 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2512 		printf("%s: could not allocate Rx list\n",
2513 		    device_xname(sc->sc_dev));
2514 		goto fail;
2515 	}
2516 
2517 	/*
2518 	 * Start up the receive pipe.
2519 	 */
2520 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2521 		struct zyd_rx_data *data = &sc->rx_data[i];
2522 
2523 		usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2524 		    NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2525 		    USBD_NO_TIMEOUT, zyd_rxeof);
2526 		error = usbd_transfer(data->xfer);
2527 		if (error != USBD_IN_PROGRESS && error != 0) {
2528 			printf("%s: could not queue Rx transfer\n",
2529 			    device_xname(sc->sc_dev));
2530 			goto fail;
2531 		}
2532 	}
2533 
2534 	ifp->if_flags &= ~IFF_OACTIVE;
2535 	ifp->if_flags |= IFF_RUNNING;
2536 
2537 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2538 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2539 	else
2540 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2541 
2542 	return 0;
2543 
2544 fail:	zyd_stop(ifp, 1);
2545 	return error;
2546 }
2547 
2548 Static void
2549 zyd_stop(struct ifnet *ifp, int disable)
2550 {
2551 	struct zyd_softc *sc = ifp->if_softc;
2552 	struct ieee80211com *ic = &sc->sc_ic;
2553 
2554 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2555 
2556 	sc->tx_timer = 0;
2557 	ifp->if_timer = 0;
2558 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2559 
2560 	/* switch radio transmitter OFF */
2561 	(void)zyd_switch_radio(sc, 0);
2562 
2563 	/* disable Rx */
2564 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2565 
2566 	/* disable interrupts */
2567 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2568 
2569 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2570 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2571 
2572 	zyd_free_rx_list(sc);
2573 	zyd_free_tx_list(sc);
2574 }
2575 
2576 Static int
2577 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2578 {
2579 	usb_device_request_t req;
2580 	uint16_t addr;
2581 	uint8_t stat;
2582 
2583 	DPRINTF(("firmware size=%zu\n", size));
2584 
2585 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2586 	req.bRequest = ZYD_DOWNLOADREQ;
2587 	USETW(req.wIndex, 0);
2588 
2589 	addr = ZYD_FIRMWARE_START_ADDR;
2590 	while (size > 0) {
2591 #if 0
2592 		const int mlen = min(size, 4096);
2593 #else
2594 		/*
2595 		 * XXXX: When the transfer size is 4096 bytes, it is not
2596 		 * likely to be able to transfer it.
2597 		 * The cause is port or machine or chip?
2598 		 */
2599 		const int mlen = min(size, 64);
2600 #endif
2601 
2602 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2603 		    addr));
2604 
2605 		USETW(req.wValue, addr);
2606 		USETW(req.wLength, mlen);
2607 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2608 			return EIO;
2609 
2610 		addr += mlen / 2;
2611 		fw   += mlen;
2612 		size -= mlen;
2613 	}
2614 
2615 	/* check whether the upload succeeded */
2616 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2617 	req.bRequest = ZYD_DOWNLOADSTS;
2618 	USETW(req.wValue, 0);
2619 	USETW(req.wIndex, 0);
2620 	USETW(req.wLength, sizeof stat);
2621 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2622 		return EIO;
2623 
2624 	return (stat & 0x80) ? EIO : 0;
2625 }
2626 
2627 Static void
2628 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2629 {
2630 	struct zyd_softc *sc = arg;
2631 	struct zyd_node *zn = (struct zyd_node *)ni;
2632 
2633 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2634 }
2635 
2636 Static void
2637 zyd_amrr_timeout(void *arg)
2638 {
2639 	struct zyd_softc *sc = arg;
2640 	struct ieee80211com *ic = &sc->sc_ic;
2641 	int s;
2642 
2643 	s = splnet();
2644 	if (ic->ic_opmode == IEEE80211_M_STA)
2645 		zyd_iter_func(sc, ic->ic_bss);
2646 	else
2647 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2648 	splx(s);
2649 
2650 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2651 }
2652 
2653 Static void
2654 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2655 {
2656 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2657 	int i;
2658 
2659 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2660 
2661 	/* set rate to some reasonable initial value */
2662 	for (i = ni->ni_rates.rs_nrates - 1;
2663 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2664 	     i--);
2665 	ni->ni_txrate = i;
2666 }
2667 
2668 int
2669 zyd_activate(device_t self, enum devact act)
2670 {
2671 	struct zyd_softc *sc = device_private(self);
2672 
2673 	switch (act) {
2674 	case DVACT_DEACTIVATE:
2675 		if_deactivate(&sc->sc_if);
2676 		return 0;
2677 	default:
2678 		return EOPNOTSUPP;
2679 	}
2680 }
2681