1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.36 2013/01/22 12:40:43 jmcneill Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.36 2013/01/22 12:40:43 jmcneill Exp $"); 27 28 #include <sys/param.h> 29 #include <sys/sockio.h> 30 #include <sys/proc.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <machine/endian.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/in_systm.h> 52 #include <netinet/in_var.h> 53 #include <netinet/ip.h> 54 55 #include <net80211/ieee80211_netbsd.h> 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/firmload.h> 61 62 #include <dev/usb/usb.h> 63 #include <dev/usb/usbdi.h> 64 #include <dev/usb/usbdi_util.h> 65 #include <dev/usb/usbdevs.h> 66 67 #include <dev/usb/if_zydreg.h> 68 69 #ifdef ZYD_DEBUG 70 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 71 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 72 int zyddebug = 0; 73 #else 74 #define DPRINTF(x) 75 #define DPRINTFN(n, x) 76 #endif 77 78 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 79 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 80 81 /* various supported device vendors/products */ 82 #define ZYD_ZD1211_DEV(v, p) \ 83 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 84 #define ZYD_ZD1211B_DEV(v, p) \ 85 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 86 static const struct zyd_type { 87 struct usb_devno dev; 88 uint8_t rev; 89 #define ZYD_ZD1211 0 90 #define ZYD_ZD1211B 1 91 } zyd_devs[] = { 92 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 93 ZYD_ZD1211_DEV(ABOCOM, WL54), 94 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 95 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 96 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 97 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 98 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 99 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 100 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 101 ZYD_ZD1211_DEV(SAGEM, XG760A), 102 ZYD_ZD1211_DEV(SENAO, NUB8301), 103 ZYD_ZD1211_DEV(SITECOMEU, WL113), 104 ZYD_ZD1211_DEV(SWEEX, ZD1211), 105 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 106 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 107 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 108 ZYD_ZD1211_DEV(TWINMOS, G240), 109 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 110 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 111 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 112 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 113 ZYD_ZD1211_DEV(ZCOM, ZD1211), 114 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 115 ZYD_ZD1211_DEV(ZYXEL, AG225H), 116 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 117 ZYD_ZD1211_DEV(ZYXEL, G200V2), 118 119 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 120 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 121 ZYD_ZD1211B_DEV(ACCTON, WUS201), 122 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 123 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 124 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 125 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 126 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 127 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 128 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 129 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 130 ZYD_ZD1211B_DEV(MELCO, KG54L), 131 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 132 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 133 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 134 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 135 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 136 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 137 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 138 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 139 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 140 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 141 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 142 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 143 ZYD_ZD1211B_DEV(USR, USR5423), 144 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 145 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 146 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 147 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 148 ZYD_ZD1211B_DEV(ZYXEL, M202), 149 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 150 }; 151 #define zyd_lookup(v, p) \ 152 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 153 154 int zyd_match(device_t, cfdata_t, void *); 155 void zyd_attach(device_t, device_t, void *); 156 int zyd_detach(device_t, int); 157 int zyd_activate(device_t, enum devact); 158 extern struct cfdriver zyd_cd; 159 160 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 161 zyd_attach, zyd_detach, zyd_activate); 162 163 Static void zyd_attachhook(device_t); 164 Static int zyd_complete_attach(struct zyd_softc *); 165 Static int zyd_open_pipes(struct zyd_softc *); 166 Static void zyd_close_pipes(struct zyd_softc *); 167 Static int zyd_alloc_tx_list(struct zyd_softc *); 168 Static void zyd_free_tx_list(struct zyd_softc *); 169 Static int zyd_alloc_rx_list(struct zyd_softc *); 170 Static void zyd_free_rx_list(struct zyd_softc *); 171 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 172 Static int zyd_media_change(struct ifnet *); 173 Static void zyd_next_scan(void *); 174 Static void zyd_task(void *); 175 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 176 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 177 void *, int, u_int); 178 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 179 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 180 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 181 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 182 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 183 Static void zyd_lock_phy(struct zyd_softc *); 184 Static void zyd_unlock_phy(struct zyd_softc *); 185 Static int zyd_rfmd_init(struct zyd_rf *); 186 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 187 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 188 Static int zyd_al2230_init(struct zyd_rf *); 189 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 190 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 191 Static int zyd_al2230_init_b(struct zyd_rf *); 192 Static int zyd_al7230B_init(struct zyd_rf *); 193 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 194 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 195 Static int zyd_al2210_init(struct zyd_rf *); 196 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 197 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 198 Static int zyd_gct_init(struct zyd_rf *); 199 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 200 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 201 Static int zyd_maxim_init(struct zyd_rf *); 202 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 203 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 204 Static int zyd_maxim2_init(struct zyd_rf *); 205 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 206 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 207 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 208 Static const char *zyd_rf_name(uint8_t); 209 Static int zyd_hw_init(struct zyd_softc *); 210 Static int zyd_read_eeprom(struct zyd_softc *); 211 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 212 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 213 Static int zyd_switch_radio(struct zyd_softc *, int); 214 Static void zyd_set_led(struct zyd_softc *, int, int); 215 Static int zyd_set_rxfilter(struct zyd_softc *); 216 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 217 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 218 Static uint8_t zyd_plcp_signal(int); 219 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 220 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 221 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 222 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 223 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 224 struct ieee80211_node *); 225 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 226 struct ieee80211_node *); 227 Static void zyd_start(struct ifnet *); 228 Static void zyd_watchdog(struct ifnet *); 229 Static int zyd_ioctl(struct ifnet *, u_long, void *); 230 Static int zyd_init(struct ifnet *); 231 Static void zyd_stop(struct ifnet *, int); 232 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 233 Static void zyd_iter_func(void *, struct ieee80211_node *); 234 Static void zyd_amrr_timeout(void *); 235 Static void zyd_newassoc(struct ieee80211_node *, int); 236 237 static const struct ieee80211_rateset zyd_rateset_11b = 238 { 4, { 2, 4, 11, 22 } }; 239 240 static const struct ieee80211_rateset zyd_rateset_11g = 241 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 242 243 int 244 zyd_match(device_t parent, cfdata_t match, void *aux) 245 { 246 struct usb_attach_arg *uaa = aux; 247 248 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 249 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 250 } 251 252 Static void 253 zyd_attachhook(device_t self) 254 { 255 struct zyd_softc *sc = device_private(self); 256 firmware_handle_t fwh; 257 const char *fwname; 258 u_char *fw; 259 size_t size; 260 int error; 261 262 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 263 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 264 aprint_error_dev(sc->sc_dev, 265 "failed to open firmware %s (error=%d)\n", fwname, error); 266 return; 267 } 268 size = firmware_get_size(fwh); 269 fw = firmware_malloc(size); 270 if (fw == NULL) { 271 aprint_error_dev(sc->sc_dev, 272 "failed to allocate firmware memory\n"); 273 firmware_close(fwh); 274 return; 275 } 276 error = firmware_read(fwh, 0, fw, size); 277 firmware_close(fwh); 278 if (error != 0) { 279 aprint_error_dev(sc->sc_dev, 280 "failed to read firmware (error %d)\n", error); 281 firmware_free(fw, 0); 282 return; 283 } 284 285 error = zyd_loadfirmware(sc, fw, size); 286 if (error != 0) { 287 aprint_error_dev(sc->sc_dev, 288 "could not load firmware (error=%d)\n", error); 289 firmware_free(fw, 0); 290 return; 291 } 292 293 firmware_free(fw, 0); 294 sc->sc_flags |= ZD1211_FWLOADED; 295 296 /* complete the attach process */ 297 if ((error = zyd_complete_attach(sc)) == 0) 298 sc->attached = 1; 299 return; 300 } 301 302 void 303 zyd_attach(device_t parent, device_t self, void *aux) 304 { 305 struct zyd_softc *sc = device_private(self); 306 struct usb_attach_arg *uaa = aux; 307 char *devinfop; 308 usb_device_descriptor_t* ddesc; 309 struct ifnet *ifp = &sc->sc_if; 310 311 sc->sc_dev = self; 312 sc->sc_udev = uaa->device; 313 sc->sc_flags = 0; 314 315 aprint_naive("\n"); 316 aprint_normal("\n"); 317 318 devinfop = usbd_devinfo_alloc(uaa->device, 0); 319 aprint_normal_dev(self, "%s\n", devinfop); 320 usbd_devinfo_free(devinfop); 321 322 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 323 324 ddesc = usbd_get_device_descriptor(sc->sc_udev); 325 if (UGETW(ddesc->bcdDevice) < 0x4330) { 326 aprint_error_dev(self, "device version mismatch: 0x%x " 327 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 328 return; 329 } 330 331 ifp->if_softc = sc; 332 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 333 ifp->if_init = zyd_init; 334 ifp->if_ioctl = zyd_ioctl; 335 ifp->if_start = zyd_start; 336 ifp->if_watchdog = zyd_watchdog; 337 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 338 IFQ_SET_READY(&ifp->if_snd); 339 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 340 341 SIMPLEQ_INIT(&sc->sc_rqh); 342 343 /* defer configrations after file system is ready to load firmware */ 344 config_mountroot(self, zyd_attachhook); 345 } 346 347 Static int 348 zyd_complete_attach(struct zyd_softc *sc) 349 { 350 struct ieee80211com *ic = &sc->sc_ic; 351 struct ifnet *ifp = &sc->sc_if; 352 usbd_status error; 353 int i; 354 355 usb_init_task(&sc->sc_task, zyd_task, sc, 0); 356 callout_init(&(sc->sc_scan_ch), 0); 357 358 sc->amrr.amrr_min_success_threshold = 1; 359 sc->amrr.amrr_max_success_threshold = 10; 360 callout_init(&sc->sc_amrr_ch, 0); 361 362 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 363 if (error != 0) { 364 aprint_error_dev(sc->sc_dev, "failed to set configuration" 365 ", err=%s\n", usbd_errstr(error)); 366 goto fail; 367 } 368 369 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 370 &sc->sc_iface); 371 if (error != 0) { 372 aprint_error_dev(sc->sc_dev, 373 "getting interface handle failed\n"); 374 goto fail; 375 } 376 377 if ((error = zyd_open_pipes(sc)) != 0) { 378 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 379 goto fail; 380 } 381 382 if ((error = zyd_read_eeprom(sc)) != 0) { 383 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 384 goto fail; 385 } 386 387 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 388 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 389 goto fail; 390 } 391 392 if ((error = zyd_hw_init(sc)) != 0) { 393 aprint_error_dev(sc->sc_dev, 394 "hardware initialization failed\n"); 395 goto fail; 396 } 397 398 aprint_normal_dev(sc->sc_dev, 399 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 400 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 401 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 402 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 403 404 ic->ic_ifp = ifp; 405 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 406 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 407 ic->ic_state = IEEE80211_S_INIT; 408 409 /* set device capabilities */ 410 ic->ic_caps = 411 IEEE80211_C_MONITOR | /* monitor mode supported */ 412 IEEE80211_C_TXPMGT | /* tx power management */ 413 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 414 IEEE80211_C_WEP; /* s/w WEP */ 415 416 /* set supported .11b and .11g rates */ 417 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b; 418 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g; 419 420 /* set supported .11b and .11g channels (1 through 14) */ 421 for (i = 1; i <= 14; i++) { 422 ic->ic_channels[i].ic_freq = 423 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 424 ic->ic_channels[i].ic_flags = 425 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 426 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 } 428 429 if_attach(ifp); 430 ieee80211_ifattach(ic); 431 ic->ic_node_alloc = zyd_node_alloc; 432 ic->ic_newassoc = zyd_newassoc; 433 434 /* override state transition machine */ 435 sc->sc_newstate = ic->ic_newstate; 436 ic->ic_newstate = zyd_newstate; 437 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); 438 439 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 440 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 441 &sc->sc_drvbpf); 442 443 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 444 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 445 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 446 447 sc->sc_txtap_len = sizeof sc->sc_txtapu; 448 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 449 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 450 451 ieee80211_announce(ic); 452 453 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 454 455 fail: return error; 456 } 457 458 int 459 zyd_detach(device_t self, int flags) 460 { 461 struct zyd_softc *sc = device_private(self); 462 struct ieee80211com *ic = &sc->sc_ic; 463 struct ifnet *ifp = &sc->sc_if; 464 int s; 465 466 if (!sc->attached) 467 return 0; 468 469 s = splusb(); 470 471 zyd_stop(ifp, 1); 472 usb_rem_task(sc->sc_udev, &sc->sc_task); 473 callout_stop(&sc->sc_scan_ch); 474 callout_stop(&sc->sc_amrr_ch); 475 476 zyd_close_pipes(sc); 477 478 sc->attached = 0; 479 480 bpf_detach(ifp); 481 ieee80211_ifdetach(ic); 482 if_detach(ifp); 483 484 splx(s); 485 486 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 487 sc->sc_dev); 488 489 return 0; 490 } 491 492 Static int 493 zyd_open_pipes(struct zyd_softc *sc) 494 { 495 usb_endpoint_descriptor_t *edesc; 496 int isize; 497 usbd_status error; 498 499 /* interrupt in */ 500 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 501 if (edesc == NULL) 502 return EINVAL; 503 504 isize = UGETW(edesc->wMaxPacketSize); 505 if (isize == 0) /* should not happen */ 506 return EINVAL; 507 508 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 509 if (sc->ibuf == NULL) 510 return ENOMEM; 511 512 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 513 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 514 USBD_DEFAULT_INTERVAL); 515 if (error != 0) { 516 printf("%s: open rx intr pipe failed: %s\n", 517 device_xname(sc->sc_dev), usbd_errstr(error)); 518 goto fail; 519 } 520 521 /* interrupt out (not necessarily an interrupt pipe) */ 522 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 523 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 524 if (error != 0) { 525 printf("%s: open tx intr pipe failed: %s\n", 526 device_xname(sc->sc_dev), usbd_errstr(error)); 527 goto fail; 528 } 529 530 /* bulk in */ 531 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 532 &sc->zyd_ep[ZYD_ENDPT_BIN]); 533 if (error != 0) { 534 printf("%s: open rx pipe failed: %s\n", 535 device_xname(sc->sc_dev), usbd_errstr(error)); 536 goto fail; 537 } 538 539 /* bulk out */ 540 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 541 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 542 if (error != 0) { 543 printf("%s: open tx pipe failed: %s\n", 544 device_xname(sc->sc_dev), usbd_errstr(error)); 545 goto fail; 546 } 547 548 return 0; 549 550 fail: zyd_close_pipes(sc); 551 return error; 552 } 553 554 Static void 555 zyd_close_pipes(struct zyd_softc *sc) 556 { 557 int i; 558 559 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 560 if (sc->zyd_ep[i] != NULL) { 561 usbd_abort_pipe(sc->zyd_ep[i]); 562 usbd_close_pipe(sc->zyd_ep[i]); 563 sc->zyd_ep[i] = NULL; 564 } 565 } 566 if (sc->ibuf != NULL) { 567 free(sc->ibuf, M_USBDEV); 568 sc->ibuf = NULL; 569 } 570 } 571 572 Static int 573 zyd_alloc_tx_list(struct zyd_softc *sc) 574 { 575 int i, error; 576 577 sc->tx_queued = 0; 578 579 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 580 struct zyd_tx_data *data = &sc->tx_data[i]; 581 582 data->sc = sc; /* backpointer for callbacks */ 583 584 data->xfer = usbd_alloc_xfer(sc->sc_udev); 585 if (data->xfer == NULL) { 586 printf("%s: could not allocate tx xfer\n", 587 device_xname(sc->sc_dev)); 588 error = ENOMEM; 589 goto fail; 590 } 591 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 592 if (data->buf == NULL) { 593 printf("%s: could not allocate tx buffer\n", 594 device_xname(sc->sc_dev)); 595 error = ENOMEM; 596 goto fail; 597 } 598 599 /* clear Tx descriptor */ 600 memset(data->buf, 0, sizeof (struct zyd_tx_desc)); 601 } 602 return 0; 603 604 fail: zyd_free_tx_list(sc); 605 return error; 606 } 607 608 Static void 609 zyd_free_tx_list(struct zyd_softc *sc) 610 { 611 int i; 612 613 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 614 struct zyd_tx_data *data = &sc->tx_data[i]; 615 616 if (data->xfer != NULL) { 617 usbd_free_xfer(data->xfer); 618 data->xfer = NULL; 619 } 620 if (data->ni != NULL) { 621 ieee80211_free_node(data->ni); 622 data->ni = NULL; 623 } 624 } 625 } 626 627 Static int 628 zyd_alloc_rx_list(struct zyd_softc *sc) 629 { 630 int i, error; 631 632 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 633 struct zyd_rx_data *data = &sc->rx_data[i]; 634 635 data->sc = sc; /* backpointer for callbacks */ 636 637 data->xfer = usbd_alloc_xfer(sc->sc_udev); 638 if (data->xfer == NULL) { 639 printf("%s: could not allocate rx xfer\n", 640 device_xname(sc->sc_dev)); 641 error = ENOMEM; 642 goto fail; 643 } 644 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 645 if (data->buf == NULL) { 646 printf("%s: could not allocate rx buffer\n", 647 device_xname(sc->sc_dev)); 648 error = ENOMEM; 649 goto fail; 650 } 651 } 652 return 0; 653 654 fail: zyd_free_rx_list(sc); 655 return error; 656 } 657 658 Static void 659 zyd_free_rx_list(struct zyd_softc *sc) 660 { 661 int i; 662 663 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 664 struct zyd_rx_data *data = &sc->rx_data[i]; 665 666 if (data->xfer != NULL) { 667 usbd_free_xfer(data->xfer); 668 data->xfer = NULL; 669 } 670 } 671 } 672 673 /* ARGUSED */ 674 Static struct ieee80211_node * 675 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 676 { 677 struct zyd_node *zn; 678 679 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 680 681 return &zn->ni; 682 } 683 684 Static int 685 zyd_media_change(struct ifnet *ifp) 686 { 687 int error; 688 689 error = ieee80211_media_change(ifp); 690 if (error != ENETRESET) 691 return error; 692 693 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 694 zyd_init(ifp); 695 696 return 0; 697 } 698 699 /* 700 * This function is called periodically (every 200ms) during scanning to 701 * switch from one channel to another. 702 */ 703 Static void 704 zyd_next_scan(void *arg) 705 { 706 struct zyd_softc *sc = arg; 707 struct ieee80211com *ic = &sc->sc_ic; 708 709 if (ic->ic_state == IEEE80211_S_SCAN) 710 ieee80211_next_scan(ic); 711 } 712 713 Static void 714 zyd_task(void *arg) 715 { 716 struct zyd_softc *sc = arg; 717 struct ieee80211com *ic = &sc->sc_ic; 718 enum ieee80211_state ostate; 719 720 ostate = ic->ic_state; 721 722 switch (sc->sc_state) { 723 case IEEE80211_S_INIT: 724 if (ostate == IEEE80211_S_RUN) { 725 /* turn link LED off */ 726 zyd_set_led(sc, ZYD_LED1, 0); 727 728 /* stop data LED from blinking */ 729 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 730 } 731 break; 732 733 case IEEE80211_S_SCAN: 734 zyd_set_chan(sc, ic->ic_curchan); 735 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 736 break; 737 738 case IEEE80211_S_AUTH: 739 case IEEE80211_S_ASSOC: 740 zyd_set_chan(sc, ic->ic_curchan); 741 break; 742 743 case IEEE80211_S_RUN: 744 { 745 struct ieee80211_node *ni = ic->ic_bss; 746 747 zyd_set_chan(sc, ic->ic_curchan); 748 749 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 750 /* turn link LED on */ 751 zyd_set_led(sc, ZYD_LED1, 1); 752 753 /* make data LED blink upon Tx */ 754 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 755 756 zyd_set_bssid(sc, ni->ni_bssid); 757 } 758 759 if (ic->ic_opmode == IEEE80211_M_STA) { 760 /* fake a join to init the tx rate */ 761 zyd_newassoc(ni, 1); 762 } 763 764 /* start automatic rate control timer */ 765 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 766 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 767 768 break; 769 } 770 } 771 772 sc->sc_newstate(ic, sc->sc_state, -1); 773 } 774 775 Static int 776 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 777 { 778 struct zyd_softc *sc = ic->ic_ifp->if_softc; 779 780 if (!sc->attached) 781 return ENXIO; 782 783 usb_rem_task(sc->sc_udev, &sc->sc_task); 784 callout_stop(&sc->sc_scan_ch); 785 callout_stop(&sc->sc_amrr_ch); 786 787 /* do it in a process context */ 788 sc->sc_state = nstate; 789 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 790 791 return 0; 792 } 793 794 Static int 795 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 796 void *odata, int olen, u_int flags) 797 { 798 usbd_xfer_handle xfer; 799 struct zyd_cmd cmd; 800 struct rq rq; 801 uint16_t xferflags; 802 int error; 803 usbd_status uerror; 804 int s = 0; 805 806 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 807 return ENOMEM; 808 809 cmd.code = htole16(code); 810 bcopy(idata, cmd.data, ilen); 811 812 xferflags = USBD_FORCE_SHORT_XFER; 813 if (!(flags & ZYD_CMD_FLAG_READ)) 814 xferflags |= USBD_SYNCHRONOUS; 815 else { 816 s = splusb(); 817 rq.idata = idata; 818 rq.odata = odata; 819 rq.len = olen / sizeof (struct zyd_pair); 820 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 821 } 822 823 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 824 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 825 uerror = usbd_transfer(xfer); 826 if (uerror != USBD_IN_PROGRESS && uerror != 0) { 827 if (flags & ZYD_CMD_FLAG_READ) 828 splx(s); 829 printf("%s: could not send command (error=%s)\n", 830 device_xname(sc->sc_dev), usbd_errstr(uerror)); 831 (void)usbd_free_xfer(xfer); 832 return EIO; 833 } 834 if (!(flags & ZYD_CMD_FLAG_READ)) { 835 (void)usbd_free_xfer(xfer); 836 return 0; /* write: don't wait for reply */ 837 } 838 /* wait at most one second for command reply */ 839 error = tsleep(odata, PCATCH, "zydcmd", hz); 840 if (error == EWOULDBLOCK) 841 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 842 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 843 splx(s); 844 845 (void)usbd_free_xfer(xfer); 846 return error; 847 } 848 849 Static int 850 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 851 { 852 struct zyd_pair tmp; 853 int error; 854 855 reg = htole16(reg); 856 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 857 ZYD_CMD_FLAG_READ); 858 if (error == 0) 859 *val = le16toh(tmp.val); 860 else 861 *val = 0; 862 return error; 863 } 864 865 Static int 866 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 867 { 868 struct zyd_pair tmp[2]; 869 uint16_t regs[2]; 870 int error; 871 872 regs[0] = htole16(ZYD_REG32_HI(reg)); 873 regs[1] = htole16(ZYD_REG32_LO(reg)); 874 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 875 ZYD_CMD_FLAG_READ); 876 if (error == 0) 877 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 878 else 879 *val = 0; 880 return error; 881 } 882 883 Static int 884 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 885 { 886 struct zyd_pair pair; 887 888 pair.reg = htole16(reg); 889 pair.val = htole16(val); 890 891 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 892 } 893 894 Static int 895 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 896 { 897 struct zyd_pair pair[2]; 898 899 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 900 pair[0].val = htole16(val >> 16); 901 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 902 pair[1].val = htole16(val & 0xffff); 903 904 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 905 } 906 907 Static int 908 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 909 { 910 struct zyd_rf *rf = &sc->sc_rf; 911 struct zyd_rfwrite req; 912 uint16_t cr203; 913 int i; 914 915 (void)zyd_read16(sc, ZYD_CR203, &cr203); 916 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 917 918 req.code = htole16(2); 919 req.width = htole16(rf->width); 920 for (i = 0; i < rf->width; i++) { 921 req.bit[i] = htole16(cr203); 922 if (val & (1 << (rf->width - 1 - i))) 923 req.bit[i] |= htole16(ZYD_RF_DATA); 924 } 925 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 926 } 927 928 Static void 929 zyd_lock_phy(struct zyd_softc *sc) 930 { 931 uint32_t tmp; 932 933 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 934 tmp &= ~ZYD_UNLOCK_PHY_REGS; 935 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 936 } 937 938 Static void 939 zyd_unlock_phy(struct zyd_softc *sc) 940 { 941 uint32_t tmp; 942 943 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 944 tmp |= ZYD_UNLOCK_PHY_REGS; 945 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 946 } 947 948 /* 949 * RFMD RF methods. 950 */ 951 Static int 952 zyd_rfmd_init(struct zyd_rf *rf) 953 { 954 struct zyd_softc *sc = rf->rf_sc; 955 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 956 static const uint32_t rfini[] = ZYD_RFMD_RF; 957 int error; 958 size_t i; 959 960 /* init RF-dependent PHY registers */ 961 for (i = 0; i < __arraycount(phyini); i++) { 962 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 963 if (error != 0) 964 return error; 965 } 966 967 /* init RFMD radio */ 968 for (i = 0; i < __arraycount(rfini); i++) { 969 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 970 return error; 971 } 972 return 0; 973 } 974 975 Static int 976 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 977 { 978 struct zyd_softc *sc = rf->rf_sc; 979 980 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 981 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 982 983 return 0; 984 } 985 986 Static int 987 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 988 { 989 struct zyd_softc *sc = rf->rf_sc; 990 static const struct { 991 uint32_t r1, r2; 992 } rfprog[] = ZYD_RFMD_CHANTABLE; 993 994 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 995 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 996 997 return 0; 998 } 999 1000 /* 1001 * AL2230 RF methods. 1002 */ 1003 Static int 1004 zyd_al2230_init(struct zyd_rf *rf) 1005 { 1006 struct zyd_softc *sc = rf->rf_sc; 1007 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1008 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1009 static const uint32_t rfini[] = ZYD_AL2230_RF; 1010 int error; 1011 size_t i; 1012 1013 /* init RF-dependent PHY registers */ 1014 for (i = 0; i < __arraycount(phyini); i++) { 1015 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1016 if (error != 0) 1017 return error; 1018 } 1019 1020 if (sc->rf_rev == ZYD_RF_AL2230S) { 1021 for (i = 0; i < __arraycount(phy2230s); i++) { 1022 error = zyd_write16(sc, phy2230s[i].reg, 1023 phy2230s[i].val); 1024 if (error != 0) 1025 return error; 1026 } 1027 } 1028 1029 /* init AL2230 radio */ 1030 for (i = 0; i < __arraycount(rfini); i++) { 1031 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1032 return error; 1033 } 1034 return 0; 1035 } 1036 1037 Static int 1038 zyd_al2230_init_b(struct zyd_rf *rf) 1039 { 1040 struct zyd_softc *sc = rf->rf_sc; 1041 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1042 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1043 int error; 1044 size_t i; 1045 1046 /* init RF-dependent PHY registers */ 1047 for (i = 0; i < __arraycount(phyini); i++) { 1048 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1049 if (error != 0) 1050 return error; 1051 } 1052 1053 /* init AL2230 radio */ 1054 for (i = 0; i < __arraycount(rfini); i++) { 1055 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1056 return error; 1057 } 1058 return 0; 1059 } 1060 1061 Static int 1062 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1063 { 1064 struct zyd_softc *sc = rf->rf_sc; 1065 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1066 1067 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1068 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1069 1070 return 0; 1071 } 1072 1073 Static int 1074 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1075 { 1076 struct zyd_softc *sc = rf->rf_sc; 1077 static const struct { 1078 uint32_t r1, r2, r3; 1079 } rfprog[] = ZYD_AL2230_CHANTABLE; 1080 1081 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1082 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1083 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1084 1085 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1086 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1087 1088 return 0; 1089 } 1090 1091 /* 1092 * AL7230B RF methods. 1093 */ 1094 Static int 1095 zyd_al7230B_init(struct zyd_rf *rf) 1096 { 1097 struct zyd_softc *sc = rf->rf_sc; 1098 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1099 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1100 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1101 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1102 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1103 int error; 1104 size_t i; 1105 1106 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1107 1108 /* init RF-dependent PHY registers, part one */ 1109 for (i = 0; i < __arraycount(phyini_1); i++) { 1110 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1111 if (error != 0) 1112 return error; 1113 } 1114 /* init AL7230B radio, part one */ 1115 for (i = 0; i < __arraycount(rfini_1); i++) { 1116 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1117 return error; 1118 } 1119 /* init RF-dependent PHY registers, part two */ 1120 for (i = 0; i < __arraycount(phyini_2); i++) { 1121 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1122 if (error != 0) 1123 return error; 1124 } 1125 /* init AL7230B radio, part two */ 1126 for (i = 0; i < __arraycount(rfini_2); i++) { 1127 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1128 return error; 1129 } 1130 /* init RF-dependent PHY registers, part three */ 1131 for (i = 0; i < __arraycount(phyini_3); i++) { 1132 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1133 if (error != 0) 1134 return error; 1135 } 1136 1137 return 0; 1138 } 1139 1140 Static int 1141 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1142 { 1143 struct zyd_softc *sc = rf->rf_sc; 1144 1145 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1146 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1147 1148 return 0; 1149 } 1150 1151 Static int 1152 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1153 { 1154 struct zyd_softc *sc = rf->rf_sc; 1155 static const struct { 1156 uint32_t r1, r2; 1157 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1158 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1159 int error; 1160 size_t i; 1161 1162 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1163 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1164 1165 for (i = 0; i < __arraycount(rfsc); i++) { 1166 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1167 return error; 1168 } 1169 1170 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1171 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1172 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1173 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1174 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1175 1176 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1177 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1178 (void)zyd_rfwrite(sc, 0x3c9000); 1179 1180 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1181 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1182 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * AL2210 RF methods. 1189 */ 1190 Static int 1191 zyd_al2210_init(struct zyd_rf *rf) 1192 { 1193 struct zyd_softc *sc = rf->rf_sc; 1194 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1195 static const uint32_t rfini[] = ZYD_AL2210_RF; 1196 uint32_t tmp; 1197 int error; 1198 size_t i; 1199 1200 (void)zyd_write32(sc, ZYD_CR18, 2); 1201 1202 /* init RF-dependent PHY registers */ 1203 for (i = 0; i < __arraycount(phyini); i++) { 1204 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1205 if (error != 0) 1206 return error; 1207 } 1208 /* init AL2210 radio */ 1209 for (i = 0; i < __arraycount(rfini); i++) { 1210 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1211 return error; 1212 } 1213 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1214 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1215 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1216 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1217 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1218 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1219 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1220 (void)zyd_write32(sc, ZYD_CR18, 3); 1221 1222 return 0; 1223 } 1224 1225 Static int 1226 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1227 { 1228 /* vendor driver does nothing for this RF chip */ 1229 1230 return 0; 1231 } 1232 1233 Static int 1234 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1235 { 1236 struct zyd_softc *sc = rf->rf_sc; 1237 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1238 uint32_t tmp; 1239 1240 (void)zyd_write32(sc, ZYD_CR18, 2); 1241 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1242 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1243 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1244 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1245 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1246 1247 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1248 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1249 1250 /* actually set the channel */ 1251 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1252 1253 (void)zyd_write32(sc, ZYD_CR18, 3); 1254 1255 return 0; 1256 } 1257 1258 /* 1259 * GCT RF methods. 1260 */ 1261 Static int 1262 zyd_gct_init(struct zyd_rf *rf) 1263 { 1264 struct zyd_softc *sc = rf->rf_sc; 1265 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1266 static const uint32_t rfini[] = ZYD_GCT_RF; 1267 int error; 1268 size_t i; 1269 1270 /* init RF-dependent PHY registers */ 1271 for (i = 0; i < __arraycount(phyini); i++) { 1272 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1273 if (error != 0) 1274 return error; 1275 } 1276 /* init cgt radio */ 1277 for (i = 0; i < __arraycount(rfini); i++) { 1278 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1279 return error; 1280 } 1281 return 0; 1282 } 1283 1284 Static int 1285 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1286 { 1287 /* vendor driver does nothing for this RF chip */ 1288 1289 return 0; 1290 } 1291 1292 Static int 1293 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1294 { 1295 struct zyd_softc *sc = rf->rf_sc; 1296 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1297 1298 (void)zyd_rfwrite(sc, 0x1c0000); 1299 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1300 (void)zyd_rfwrite(sc, 0x1c0008); 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * Maxim RF methods. 1307 */ 1308 Static int 1309 zyd_maxim_init(struct zyd_rf *rf) 1310 { 1311 struct zyd_softc *sc = rf->rf_sc; 1312 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1313 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1314 uint16_t tmp; 1315 int error; 1316 size_t i; 1317 1318 /* init RF-dependent PHY registers */ 1319 for (i = 0; i < __arraycount(phyini); i++) { 1320 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1321 if (error != 0) 1322 return error; 1323 } 1324 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1325 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1326 1327 /* init maxim radio */ 1328 for (i = 0; i < __arraycount(rfini); i++) { 1329 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1330 return error; 1331 } 1332 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1333 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1334 1335 return 0; 1336 } 1337 1338 Static int 1339 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1340 { 1341 /* vendor driver does nothing for this RF chip */ 1342 1343 return 0; 1344 } 1345 1346 Static int 1347 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1348 { 1349 struct zyd_softc *sc = rf->rf_sc; 1350 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1351 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1352 static const struct { 1353 uint32_t r1, r2; 1354 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1355 uint16_t tmp; 1356 int error; 1357 size_t i; 1358 1359 /* 1360 * Do the same as we do when initializing it, except for the channel 1361 * values coming from the two channel tables. 1362 */ 1363 1364 /* init RF-dependent PHY registers */ 1365 for (i = 0; i < __arraycount(phyini); i++) { 1366 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1367 if (error != 0) 1368 return error; 1369 } 1370 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1371 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1372 1373 /* first two values taken from the chantables */ 1374 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1375 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1376 1377 /* init maxim radio - skipping the two first values */ 1378 for (i = 2; i < __arraycount(rfini); i++) { 1379 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1380 return error; 1381 } 1382 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1383 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1384 1385 return 0; 1386 } 1387 1388 /* 1389 * Maxim2 RF methods. 1390 */ 1391 Static int 1392 zyd_maxim2_init(struct zyd_rf *rf) 1393 { 1394 struct zyd_softc *sc = rf->rf_sc; 1395 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1396 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1397 uint16_t tmp; 1398 int error; 1399 size_t i; 1400 1401 /* init RF-dependent PHY registers */ 1402 for (i = 0; i < __arraycount(phyini); i++) { 1403 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1404 if (error != 0) 1405 return error; 1406 } 1407 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1408 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1409 1410 /* init maxim2 radio */ 1411 for (i = 0; i < __arraycount(rfini); i++) { 1412 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1413 return error; 1414 } 1415 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1416 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1417 1418 return 0; 1419 } 1420 1421 Static int 1422 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1423 { 1424 /* vendor driver does nothing for this RF chip */ 1425 1426 return 0; 1427 } 1428 1429 Static int 1430 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1431 { 1432 struct zyd_softc *sc = rf->rf_sc; 1433 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1434 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1435 static const struct { 1436 uint32_t r1, r2; 1437 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1438 uint16_t tmp; 1439 int error; 1440 size_t i; 1441 1442 /* 1443 * Do the same as we do when initializing it, except for the channel 1444 * values coming from the two channel tables. 1445 */ 1446 1447 /* init RF-dependent PHY registers */ 1448 for (i = 0; i < __arraycount(phyini); i++) { 1449 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1450 if (error != 0) 1451 return error; 1452 } 1453 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1454 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1455 1456 /* first two values taken from the chantables */ 1457 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1458 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1459 1460 /* init maxim2 radio - skipping the two first values */ 1461 for (i = 2; i < __arraycount(rfini); i++) { 1462 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1463 return error; 1464 } 1465 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1466 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1467 1468 return 0; 1469 } 1470 1471 Static int 1472 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1473 { 1474 struct zyd_rf *rf = &sc->sc_rf; 1475 1476 rf->rf_sc = sc; 1477 1478 switch (type) { 1479 case ZYD_RF_RFMD: 1480 rf->init = zyd_rfmd_init; 1481 rf->switch_radio = zyd_rfmd_switch_radio; 1482 rf->set_channel = zyd_rfmd_set_channel; 1483 rf->width = 24; /* 24-bit RF values */ 1484 break; 1485 case ZYD_RF_AL2230: 1486 case ZYD_RF_AL2230S: 1487 if (sc->mac_rev == ZYD_ZD1211B) 1488 rf->init = zyd_al2230_init_b; 1489 else 1490 rf->init = zyd_al2230_init; 1491 rf->switch_radio = zyd_al2230_switch_radio; 1492 rf->set_channel = zyd_al2230_set_channel; 1493 rf->width = 24; /* 24-bit RF values */ 1494 break; 1495 case ZYD_RF_AL7230B: 1496 rf->init = zyd_al7230B_init; 1497 rf->switch_radio = zyd_al7230B_switch_radio; 1498 rf->set_channel = zyd_al7230B_set_channel; 1499 rf->width = 24; /* 24-bit RF values */ 1500 break; 1501 case ZYD_RF_AL2210: 1502 rf->init = zyd_al2210_init; 1503 rf->switch_radio = zyd_al2210_switch_radio; 1504 rf->set_channel = zyd_al2210_set_channel; 1505 rf->width = 24; /* 24-bit RF values */ 1506 break; 1507 case ZYD_RF_GCT: 1508 rf->init = zyd_gct_init; 1509 rf->switch_radio = zyd_gct_switch_radio; 1510 rf->set_channel = zyd_gct_set_channel; 1511 rf->width = 21; /* 21-bit RF values */ 1512 break; 1513 case ZYD_RF_MAXIM_NEW: 1514 rf->init = zyd_maxim_init; 1515 rf->switch_radio = zyd_maxim_switch_radio; 1516 rf->set_channel = zyd_maxim_set_channel; 1517 rf->width = 18; /* 18-bit RF values */ 1518 break; 1519 case ZYD_RF_MAXIM_NEW2: 1520 rf->init = zyd_maxim2_init; 1521 rf->switch_radio = zyd_maxim2_switch_radio; 1522 rf->set_channel = zyd_maxim2_set_channel; 1523 rf->width = 18; /* 18-bit RF values */ 1524 break; 1525 default: 1526 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1527 device_xname(sc->sc_dev), zyd_rf_name(type)); 1528 return EINVAL; 1529 } 1530 return 0; 1531 } 1532 1533 Static const char * 1534 zyd_rf_name(uint8_t type) 1535 { 1536 static const char * const zyd_rfs[] = { 1537 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1538 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1539 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1540 "PHILIPS" 1541 }; 1542 1543 return zyd_rfs[(type > 15) ? 0 : type]; 1544 } 1545 1546 Static int 1547 zyd_hw_init(struct zyd_softc *sc) 1548 { 1549 struct zyd_rf *rf = &sc->sc_rf; 1550 const struct zyd_phy_pair *phyp; 1551 int error; 1552 1553 /* specify that the plug and play is finished */ 1554 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1555 1556 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1557 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1558 1559 /* retrieve firmware revision number */ 1560 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1561 1562 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1563 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1564 1565 /* disable interrupts */ 1566 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1567 1568 /* PHY init */ 1569 zyd_lock_phy(sc); 1570 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1571 for (; phyp->reg != 0; phyp++) { 1572 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1573 goto fail; 1574 } 1575 zyd_unlock_phy(sc); 1576 1577 /* HMAC init */ 1578 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1579 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1580 1581 if (sc->mac_rev == ZYD_ZD1211) { 1582 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1583 } else { 1584 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1585 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1586 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1587 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1588 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1589 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1590 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1591 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1592 } 1593 1594 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1595 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1596 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1597 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1598 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1599 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1600 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1601 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1602 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1603 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1604 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1605 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1606 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1607 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1608 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1609 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1610 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1611 1612 /* RF chip init */ 1613 zyd_lock_phy(sc); 1614 error = (*rf->init)(rf); 1615 zyd_unlock_phy(sc); 1616 if (error != 0) { 1617 printf("%s: radio initialization failed\n", 1618 device_xname(sc->sc_dev)); 1619 goto fail; 1620 } 1621 1622 /* init beacon interval to 100ms */ 1623 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1624 goto fail; 1625 1626 fail: return error; 1627 } 1628 1629 Static int 1630 zyd_read_eeprom(struct zyd_softc *sc) 1631 { 1632 struct ieee80211com *ic = &sc->sc_ic; 1633 uint32_t tmp; 1634 uint16_t val; 1635 int i; 1636 1637 /* read MAC address */ 1638 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1639 ic->ic_myaddr[0] = tmp & 0xff; 1640 ic->ic_myaddr[1] = tmp >> 8; 1641 ic->ic_myaddr[2] = tmp >> 16; 1642 ic->ic_myaddr[3] = tmp >> 24; 1643 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1644 ic->ic_myaddr[4] = tmp & 0xff; 1645 ic->ic_myaddr[5] = tmp >> 8; 1646 1647 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1648 sc->rf_rev = tmp & 0x0f; 1649 sc->pa_rev = (tmp >> 16) & 0x0f; 1650 1651 /* read regulatory domain (currently unused) */ 1652 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1653 sc->regdomain = tmp >> 16; 1654 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1655 1656 /* read Tx power calibration tables */ 1657 for (i = 0; i < 7; i++) { 1658 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1659 sc->pwr_cal[i * 2] = val >> 8; 1660 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1661 1662 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1663 sc->pwr_int[i * 2] = val >> 8; 1664 sc->pwr_int[i * 2 + 1] = val & 0xff; 1665 1666 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1667 sc->ofdm36_cal[i * 2] = val >> 8; 1668 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1669 1670 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1671 sc->ofdm48_cal[i * 2] = val >> 8; 1672 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1673 1674 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1675 sc->ofdm54_cal[i * 2] = val >> 8; 1676 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1677 } 1678 return 0; 1679 } 1680 1681 Static int 1682 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1683 { 1684 uint32_t tmp; 1685 1686 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1687 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1688 1689 tmp = addr[5] << 8 | addr[4]; 1690 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1691 1692 return 0; 1693 } 1694 1695 Static int 1696 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1697 { 1698 uint32_t tmp; 1699 1700 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1701 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1702 1703 tmp = addr[5] << 8 | addr[4]; 1704 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1705 1706 return 0; 1707 } 1708 1709 Static int 1710 zyd_switch_radio(struct zyd_softc *sc, int on) 1711 { 1712 struct zyd_rf *rf = &sc->sc_rf; 1713 int error; 1714 1715 zyd_lock_phy(sc); 1716 error = (*rf->switch_radio)(rf, on); 1717 zyd_unlock_phy(sc); 1718 1719 return error; 1720 } 1721 1722 Static void 1723 zyd_set_led(struct zyd_softc *sc, int which, int on) 1724 { 1725 uint32_t tmp; 1726 1727 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1728 tmp &= ~which; 1729 if (on) 1730 tmp |= which; 1731 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1732 } 1733 1734 Static int 1735 zyd_set_rxfilter(struct zyd_softc *sc) 1736 { 1737 uint32_t rxfilter; 1738 1739 switch (sc->sc_ic.ic_opmode) { 1740 case IEEE80211_M_STA: 1741 rxfilter = ZYD_FILTER_BSS; 1742 break; 1743 case IEEE80211_M_IBSS: 1744 case IEEE80211_M_HOSTAP: 1745 rxfilter = ZYD_FILTER_HOSTAP; 1746 break; 1747 case IEEE80211_M_MONITOR: 1748 rxfilter = ZYD_FILTER_MONITOR; 1749 break; 1750 default: 1751 /* should not get there */ 1752 return EINVAL; 1753 } 1754 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1755 } 1756 1757 Static void 1758 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1759 { 1760 struct ieee80211com *ic = &sc->sc_ic; 1761 struct zyd_rf *rf = &sc->sc_rf; 1762 u_int chan; 1763 1764 chan = ieee80211_chan2ieee(ic, c); 1765 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1766 return; 1767 1768 zyd_lock_phy(sc); 1769 1770 (*rf->set_channel)(rf, chan); 1771 1772 /* update Tx power */ 1773 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1774 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1775 1776 if (sc->mac_rev == ZYD_ZD1211B) { 1777 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1778 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1779 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1780 1781 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1782 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1783 } 1784 1785 zyd_unlock_phy(sc); 1786 } 1787 1788 Static int 1789 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1790 { 1791 /* XXX this is probably broken.. */ 1792 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1793 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1794 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1795 1796 return 0; 1797 } 1798 1799 Static uint8_t 1800 zyd_plcp_signal(int rate) 1801 { 1802 switch (rate) { 1803 /* CCK rates (returned values are device-dependent) */ 1804 case 2: return 0x0; 1805 case 4: return 0x1; 1806 case 11: return 0x2; 1807 case 22: return 0x3; 1808 1809 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1810 case 12: return 0xb; 1811 case 18: return 0xf; 1812 case 24: return 0xa; 1813 case 36: return 0xe; 1814 case 48: return 0x9; 1815 case 72: return 0xd; 1816 case 96: return 0x8; 1817 case 108: return 0xc; 1818 1819 /* unsupported rates (should not get there) */ 1820 default: return 0xff; 1821 } 1822 } 1823 1824 Static void 1825 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1826 { 1827 struct zyd_softc *sc = (struct zyd_softc *)priv; 1828 struct zyd_cmd *cmd; 1829 uint32_t datalen; 1830 1831 if (status != USBD_NORMAL_COMPLETION) { 1832 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1833 return; 1834 1835 if (status == USBD_STALLED) { 1836 usbd_clear_endpoint_stall_async( 1837 sc->zyd_ep[ZYD_ENDPT_IIN]); 1838 } 1839 return; 1840 } 1841 1842 cmd = (struct zyd_cmd *)sc->ibuf; 1843 1844 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1845 struct zyd_notif_retry *retry = 1846 (struct zyd_notif_retry *)cmd->data; 1847 struct ieee80211com *ic = &sc->sc_ic; 1848 struct ifnet *ifp = &sc->sc_if; 1849 struct ieee80211_node *ni; 1850 1851 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1852 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1853 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1854 1855 /* 1856 * Find the node to which the packet was sent and update its 1857 * retry statistics. In BSS mode, this node is the AP we're 1858 * associated to so no lookup is actually needed. 1859 */ 1860 if (ic->ic_opmode != IEEE80211_M_STA) { 1861 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1862 if (ni == NULL) 1863 return; /* just ignore */ 1864 } else 1865 ni = ic->ic_bss; 1866 1867 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1868 1869 if (le16toh(retry->count) & 0x100) 1870 ifp->if_oerrors++; /* too many retries */ 1871 1872 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1873 struct rq *rqp; 1874 1875 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1876 return; /* HMAC interrupt */ 1877 1878 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1879 datalen -= sizeof(cmd->code); 1880 datalen -= 2; /* XXX: padding? */ 1881 1882 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1883 int i; 1884 1885 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1886 continue; 1887 for (i = 0; i < rqp->len; i++) { 1888 if (*(((const uint16_t *)rqp->idata) + i) != 1889 (((struct zyd_pair *)cmd->data) + i)->reg) 1890 break; 1891 } 1892 if (i != rqp->len) 1893 continue; 1894 1895 /* copy answer into caller-supplied buffer */ 1896 bcopy(cmd->data, rqp->odata, 1897 sizeof(struct zyd_pair) * rqp->len); 1898 wakeup(rqp->odata); /* wakeup caller */ 1899 1900 return; 1901 } 1902 return; /* unexpected IORD notification */ 1903 } else { 1904 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1905 le16toh(cmd->code)); 1906 } 1907 } 1908 1909 Static void 1910 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1911 { 1912 struct ieee80211com *ic = &sc->sc_ic; 1913 struct ifnet *ifp = &sc->sc_if; 1914 struct ieee80211_node *ni; 1915 struct ieee80211_frame *wh; 1916 const struct zyd_plcphdr *plcp; 1917 const struct zyd_rx_stat *stat; 1918 struct mbuf *m; 1919 int rlen, s; 1920 1921 if (len < ZYD_MIN_FRAGSZ) { 1922 printf("%s: frame too short (length=%d)\n", 1923 device_xname(sc->sc_dev), len); 1924 ifp->if_ierrors++; 1925 return; 1926 } 1927 1928 plcp = (const struct zyd_plcphdr *)buf; 1929 stat = (const struct zyd_rx_stat *) 1930 (buf + len - sizeof (struct zyd_rx_stat)); 1931 1932 if (stat->flags & ZYD_RX_ERROR) { 1933 DPRINTF(("%s: RX status indicated error (%x)\n", 1934 device_xname(sc->sc_dev), stat->flags)); 1935 ifp->if_ierrors++; 1936 return; 1937 } 1938 1939 /* compute actual frame length */ 1940 rlen = len - sizeof (struct zyd_plcphdr) - 1941 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1942 1943 /* allocate a mbuf to store the frame */ 1944 MGETHDR(m, M_DONTWAIT, MT_DATA); 1945 if (m == NULL) { 1946 printf("%s: could not allocate rx mbuf\n", 1947 device_xname(sc->sc_dev)); 1948 ifp->if_ierrors++; 1949 return; 1950 } 1951 if (rlen > MHLEN) { 1952 MCLGET(m, M_DONTWAIT); 1953 if (!(m->m_flags & M_EXT)) { 1954 printf("%s: could not allocate rx mbuf cluster\n", 1955 device_xname(sc->sc_dev)); 1956 m_freem(m); 1957 ifp->if_ierrors++; 1958 return; 1959 } 1960 } 1961 m->m_pkthdr.rcvif = ifp; 1962 m->m_pkthdr.len = m->m_len = rlen; 1963 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); 1964 1965 s = splnet(); 1966 1967 if (sc->sc_drvbpf != NULL) { 1968 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1969 static const uint8_t rates[] = { 1970 /* reverse function of zyd_plcp_signal() */ 1971 2, 4, 11, 22, 0, 0, 0, 0, 1972 96, 48, 24, 12, 108, 72, 36, 18 1973 }; 1974 1975 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1976 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1977 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1978 tap->wr_rssi = stat->rssi; 1979 tap->wr_rate = rates[plcp->signal & 0xf]; 1980 1981 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1982 } 1983 1984 wh = mtod(m, struct ieee80211_frame *); 1985 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1986 ieee80211_input(ic, m, ni, stat->rssi, 0); 1987 1988 /* node is no longer needed */ 1989 ieee80211_free_node(ni); 1990 1991 splx(s); 1992 } 1993 1994 Static void 1995 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1996 { 1997 struct zyd_rx_data *data = priv; 1998 struct zyd_softc *sc = data->sc; 1999 struct ifnet *ifp = &sc->sc_if; 2000 const struct zyd_rx_desc *desc; 2001 int len; 2002 2003 if (status != USBD_NORMAL_COMPLETION) { 2004 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2005 return; 2006 2007 if (status == USBD_STALLED) 2008 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2009 2010 goto skip; 2011 } 2012 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2013 2014 if (len < ZYD_MIN_RXBUFSZ) { 2015 printf("%s: xfer too short (length=%d)\n", 2016 device_xname(sc->sc_dev), len); 2017 ifp->if_ierrors++; 2018 goto skip; 2019 } 2020 2021 desc = (const struct zyd_rx_desc *) 2022 (data->buf + len - sizeof (struct zyd_rx_desc)); 2023 2024 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2025 const uint8_t *p = data->buf, *end = p + len; 2026 int i; 2027 2028 DPRINTFN(3, ("received multi-frame transfer\n")); 2029 2030 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2031 const uint16_t len16 = UGETW(desc->len[i]); 2032 2033 if (len16 == 0 || p + len16 > end) 2034 break; 2035 2036 zyd_rx_data(sc, p, len16); 2037 /* next frame is aligned on a 32-bit boundary */ 2038 p += (len16 + 3) & ~3; 2039 } 2040 } else { 2041 DPRINTFN(3, ("received single-frame transfer\n")); 2042 2043 zyd_rx_data(sc, data->buf, len); 2044 } 2045 2046 skip: /* setup a new transfer */ 2047 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2048 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2049 USBD_NO_TIMEOUT, zyd_rxeof); 2050 (void)usbd_transfer(xfer); 2051 } 2052 2053 Static int 2054 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2055 { 2056 struct ieee80211com *ic = &sc->sc_ic; 2057 struct ifnet *ifp = &sc->sc_if; 2058 struct zyd_tx_desc *desc; 2059 struct zyd_tx_data *data; 2060 struct ieee80211_frame *wh; 2061 struct ieee80211_key *k; 2062 int xferlen, totlen, rate; 2063 uint16_t pktlen; 2064 usbd_status error; 2065 2066 data = &sc->tx_data[0]; 2067 desc = (struct zyd_tx_desc *)data->buf; 2068 2069 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2070 2071 wh = mtod(m0, struct ieee80211_frame *); 2072 2073 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2074 k = ieee80211_crypto_encap(ic, ni, m0); 2075 if (k == NULL) { 2076 m_freem(m0); 2077 return ENOBUFS; 2078 } 2079 } 2080 2081 data->ni = ni; 2082 2083 wh = mtod(m0, struct ieee80211_frame *); 2084 2085 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2086 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2087 2088 /* fill Tx descriptor */ 2089 desc->len = htole16(totlen); 2090 2091 desc->flags = ZYD_TX_FLAG_BACKOFF; 2092 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2093 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2094 if (totlen > ic->ic_rtsthreshold) { 2095 desc->flags |= ZYD_TX_FLAG_RTS; 2096 } else if (ZYD_RATE_IS_OFDM(rate) && 2097 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2098 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2099 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2100 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2101 desc->flags |= ZYD_TX_FLAG_RTS; 2102 } 2103 } else 2104 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2105 2106 if ((wh->i_fc[0] & 2107 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2108 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2109 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2110 2111 desc->phy = zyd_plcp_signal(rate); 2112 if (ZYD_RATE_IS_OFDM(rate)) { 2113 desc->phy |= ZYD_TX_PHY_OFDM; 2114 if (ic->ic_curmode == IEEE80211_MODE_11A) 2115 desc->phy |= ZYD_TX_PHY_5GHZ; 2116 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2117 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2118 2119 /* actual transmit length (XXX why +10?) */ 2120 pktlen = sizeof (struct zyd_tx_desc) + 10; 2121 if (sc->mac_rev == ZYD_ZD1211) 2122 pktlen += totlen; 2123 desc->pktlen = htole16(pktlen); 2124 2125 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2126 desc->plcp_service = 0; 2127 if (rate == 22) { 2128 const int remainder = (16 * totlen) % 22; 2129 if (remainder != 0 && remainder < 7) 2130 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2131 } 2132 2133 if (sc->sc_drvbpf != NULL) { 2134 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2135 2136 tap->wt_flags = 0; 2137 tap->wt_rate = rate; 2138 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2139 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2140 2141 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2142 } 2143 2144 m_copydata(m0, 0, m0->m_pkthdr.len, 2145 data->buf + sizeof (struct zyd_tx_desc)); 2146 2147 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2148 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2149 2150 m_freem(m0); /* mbuf no longer needed */ 2151 2152 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2153 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2154 ZYD_TX_TIMEOUT, zyd_txeof); 2155 error = usbd_transfer(data->xfer); 2156 if (error != USBD_IN_PROGRESS && error != 0) { 2157 ifp->if_oerrors++; 2158 return EIO; 2159 } 2160 sc->tx_queued++; 2161 2162 return 0; 2163 } 2164 2165 Static void 2166 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2167 { 2168 struct zyd_tx_data *data = priv; 2169 struct zyd_softc *sc = data->sc; 2170 struct ifnet *ifp = &sc->sc_if; 2171 int s; 2172 2173 if (status != USBD_NORMAL_COMPLETION) { 2174 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2175 return; 2176 2177 printf("%s: could not transmit buffer: %s\n", 2178 device_xname(sc->sc_dev), usbd_errstr(status)); 2179 2180 if (status == USBD_STALLED) { 2181 usbd_clear_endpoint_stall_async( 2182 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2183 } 2184 ifp->if_oerrors++; 2185 return; 2186 } 2187 2188 s = splnet(); 2189 2190 /* update rate control statistics */ 2191 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2192 2193 ieee80211_free_node(data->ni); 2194 data->ni = NULL; 2195 2196 sc->tx_queued--; 2197 ifp->if_opackets++; 2198 2199 sc->tx_timer = 0; 2200 ifp->if_flags &= ~IFF_OACTIVE; 2201 zyd_start(ifp); 2202 2203 splx(s); 2204 } 2205 2206 Static int 2207 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2208 { 2209 struct ieee80211com *ic = &sc->sc_ic; 2210 struct ifnet *ifp = &sc->sc_if; 2211 struct zyd_tx_desc *desc; 2212 struct zyd_tx_data *data; 2213 struct ieee80211_frame *wh; 2214 struct ieee80211_key *k; 2215 int xferlen, totlen, rate; 2216 uint16_t pktlen; 2217 usbd_status error; 2218 2219 wh = mtod(m0, struct ieee80211_frame *); 2220 2221 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2222 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2223 else 2224 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2225 rate &= IEEE80211_RATE_VAL; 2226 2227 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2228 k = ieee80211_crypto_encap(ic, ni, m0); 2229 if (k == NULL) { 2230 m_freem(m0); 2231 return ENOBUFS; 2232 } 2233 2234 /* packet header may have moved, reset our local pointer */ 2235 wh = mtod(m0, struct ieee80211_frame *); 2236 } 2237 2238 data = &sc->tx_data[0]; 2239 desc = (struct zyd_tx_desc *)data->buf; 2240 2241 data->ni = ni; 2242 2243 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2244 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2245 2246 /* fill Tx descriptor */ 2247 desc->len = htole16(totlen); 2248 2249 desc->flags = ZYD_TX_FLAG_BACKOFF; 2250 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2251 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2252 if (totlen > ic->ic_rtsthreshold) { 2253 desc->flags |= ZYD_TX_FLAG_RTS; 2254 } else if (ZYD_RATE_IS_OFDM(rate) && 2255 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2256 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2257 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2258 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2259 desc->flags |= ZYD_TX_FLAG_RTS; 2260 } 2261 } else 2262 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2263 2264 if ((wh->i_fc[0] & 2265 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2266 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2267 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2268 2269 desc->phy = zyd_plcp_signal(rate); 2270 if (ZYD_RATE_IS_OFDM(rate)) { 2271 desc->phy |= ZYD_TX_PHY_OFDM; 2272 if (ic->ic_curmode == IEEE80211_MODE_11A) 2273 desc->phy |= ZYD_TX_PHY_5GHZ; 2274 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2275 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2276 2277 /* actual transmit length (XXX why +10?) */ 2278 pktlen = sizeof (struct zyd_tx_desc) + 10; 2279 if (sc->mac_rev == ZYD_ZD1211) 2280 pktlen += totlen; 2281 desc->pktlen = htole16(pktlen); 2282 2283 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2284 desc->plcp_service = 0; 2285 if (rate == 22) { 2286 const int remainder = (16 * totlen) % 22; 2287 if (remainder != 0 && remainder < 7) 2288 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2289 } 2290 2291 if (sc->sc_drvbpf != NULL) { 2292 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2293 2294 tap->wt_flags = 0; 2295 tap->wt_rate = rate; 2296 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2297 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2298 2299 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2300 } 2301 2302 m_copydata(m0, 0, m0->m_pkthdr.len, 2303 data->buf + sizeof (struct zyd_tx_desc)); 2304 2305 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2306 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2307 2308 m_freem(m0); /* mbuf no longer needed */ 2309 2310 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2311 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2312 ZYD_TX_TIMEOUT, zyd_txeof); 2313 error = usbd_transfer(data->xfer); 2314 if (error != USBD_IN_PROGRESS && error != 0) { 2315 ifp->if_oerrors++; 2316 return EIO; 2317 } 2318 sc->tx_queued++; 2319 2320 return 0; 2321 } 2322 2323 Static void 2324 zyd_start(struct ifnet *ifp) 2325 { 2326 struct zyd_softc *sc = ifp->if_softc; 2327 struct ieee80211com *ic = &sc->sc_ic; 2328 struct ether_header *eh; 2329 struct ieee80211_node *ni; 2330 struct mbuf *m0; 2331 2332 for (;;) { 2333 IF_POLL(&ic->ic_mgtq, m0); 2334 if (m0 != NULL) { 2335 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2336 ifp->if_flags |= IFF_OACTIVE; 2337 break; 2338 } 2339 IF_DEQUEUE(&ic->ic_mgtq, m0); 2340 2341 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2342 m0->m_pkthdr.rcvif = NULL; 2343 bpf_mtap3(ic->ic_rawbpf, m0); 2344 if (zyd_tx_mgt(sc, m0, ni) != 0) 2345 break; 2346 } else { 2347 if (ic->ic_state != IEEE80211_S_RUN) 2348 break; 2349 IFQ_POLL(&ifp->if_snd, m0); 2350 if (m0 == NULL) 2351 break; 2352 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2353 ifp->if_flags |= IFF_OACTIVE; 2354 break; 2355 } 2356 IFQ_DEQUEUE(&ifp->if_snd, m0); 2357 2358 if (m0->m_len < sizeof(struct ether_header) && 2359 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2360 continue; 2361 2362 eh = mtod(m0, struct ether_header *); 2363 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2364 if (ni == NULL) { 2365 m_freem(m0); 2366 continue; 2367 } 2368 bpf_mtap(ifp, m0); 2369 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2370 ieee80211_free_node(ni); 2371 ifp->if_oerrors++; 2372 continue; 2373 } 2374 bpf_mtap3(ic->ic_rawbpf, m0); 2375 if (zyd_tx_data(sc, m0, ni) != 0) { 2376 ieee80211_free_node(ni); 2377 ifp->if_oerrors++; 2378 break; 2379 } 2380 } 2381 2382 sc->tx_timer = 5; 2383 ifp->if_timer = 1; 2384 } 2385 } 2386 2387 Static void 2388 zyd_watchdog(struct ifnet *ifp) 2389 { 2390 struct zyd_softc *sc = ifp->if_softc; 2391 struct ieee80211com *ic = &sc->sc_ic; 2392 2393 ifp->if_timer = 0; 2394 2395 if (sc->tx_timer > 0) { 2396 if (--sc->tx_timer == 0) { 2397 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2398 /* zyd_init(ifp); XXX needs a process context ? */ 2399 ifp->if_oerrors++; 2400 return; 2401 } 2402 ifp->if_timer = 1; 2403 } 2404 2405 ieee80211_watchdog(ic); 2406 } 2407 2408 Static int 2409 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2410 { 2411 struct zyd_softc *sc = ifp->if_softc; 2412 struct ieee80211com *ic = &sc->sc_ic; 2413 int s, error = 0; 2414 2415 s = splnet(); 2416 2417 switch (cmd) { 2418 case SIOCSIFFLAGS: 2419 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2420 break; 2421 /* XXX re-use ether_ioctl() */ 2422 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2423 case IFF_UP: 2424 zyd_init(ifp); 2425 break; 2426 case IFF_RUNNING: 2427 zyd_stop(ifp, 1); 2428 break; 2429 default: 2430 break; 2431 } 2432 break; 2433 2434 default: 2435 error = ieee80211_ioctl(ic, cmd, data); 2436 } 2437 2438 if (error == ENETRESET) { 2439 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2440 (IFF_RUNNING | IFF_UP)) 2441 zyd_init(ifp); 2442 error = 0; 2443 } 2444 2445 splx(s); 2446 2447 return error; 2448 } 2449 2450 Static int 2451 zyd_init(struct ifnet *ifp) 2452 { 2453 struct zyd_softc *sc = ifp->if_softc; 2454 struct ieee80211com *ic = &sc->sc_ic; 2455 int i, error; 2456 2457 zyd_stop(ifp, 0); 2458 2459 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2460 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2461 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2462 if (error != 0) 2463 return error; 2464 2465 /* we'll do software WEP decryption for now */ 2466 DPRINTF(("setting encryption type\n")); 2467 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2468 if (error != 0) 2469 return error; 2470 2471 /* promiscuous mode */ 2472 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2473 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2474 2475 (void)zyd_set_rxfilter(sc); 2476 2477 /* switch radio transmitter ON */ 2478 (void)zyd_switch_radio(sc, 1); 2479 2480 /* set basic rates */ 2481 if (ic->ic_curmode == IEEE80211_MODE_11B) 2482 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2483 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2484 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2485 else /* assumes 802.11b/g */ 2486 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2487 2488 /* set mandatory rates */ 2489 if (ic->ic_curmode == IEEE80211_MODE_11B) 2490 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2491 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2492 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2493 else /* assumes 802.11b/g */ 2494 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2495 2496 /* set default BSS channel */ 2497 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2498 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2499 2500 /* enable interrupts */ 2501 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2502 2503 /* 2504 * Allocate Tx and Rx xfer queues. 2505 */ 2506 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2507 printf("%s: could not allocate Tx list\n", 2508 device_xname(sc->sc_dev)); 2509 goto fail; 2510 } 2511 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2512 printf("%s: could not allocate Rx list\n", 2513 device_xname(sc->sc_dev)); 2514 goto fail; 2515 } 2516 2517 /* 2518 * Start up the receive pipe. 2519 */ 2520 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2521 struct zyd_rx_data *data = &sc->rx_data[i]; 2522 2523 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2524 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2525 USBD_NO_TIMEOUT, zyd_rxeof); 2526 error = usbd_transfer(data->xfer); 2527 if (error != USBD_IN_PROGRESS && error != 0) { 2528 printf("%s: could not queue Rx transfer\n", 2529 device_xname(sc->sc_dev)); 2530 goto fail; 2531 } 2532 } 2533 2534 ifp->if_flags &= ~IFF_OACTIVE; 2535 ifp->if_flags |= IFF_RUNNING; 2536 2537 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2538 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2539 else 2540 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2541 2542 return 0; 2543 2544 fail: zyd_stop(ifp, 1); 2545 return error; 2546 } 2547 2548 Static void 2549 zyd_stop(struct ifnet *ifp, int disable) 2550 { 2551 struct zyd_softc *sc = ifp->if_softc; 2552 struct ieee80211com *ic = &sc->sc_ic; 2553 2554 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2555 2556 sc->tx_timer = 0; 2557 ifp->if_timer = 0; 2558 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2559 2560 /* switch radio transmitter OFF */ 2561 (void)zyd_switch_radio(sc, 0); 2562 2563 /* disable Rx */ 2564 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2565 2566 /* disable interrupts */ 2567 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2568 2569 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2570 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2571 2572 zyd_free_rx_list(sc); 2573 zyd_free_tx_list(sc); 2574 } 2575 2576 Static int 2577 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2578 { 2579 usb_device_request_t req; 2580 uint16_t addr; 2581 uint8_t stat; 2582 2583 DPRINTF(("firmware size=%zu\n", size)); 2584 2585 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2586 req.bRequest = ZYD_DOWNLOADREQ; 2587 USETW(req.wIndex, 0); 2588 2589 addr = ZYD_FIRMWARE_START_ADDR; 2590 while (size > 0) { 2591 #if 0 2592 const int mlen = min(size, 4096); 2593 #else 2594 /* 2595 * XXXX: When the transfer size is 4096 bytes, it is not 2596 * likely to be able to transfer it. 2597 * The cause is port or machine or chip? 2598 */ 2599 const int mlen = min(size, 64); 2600 #endif 2601 2602 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2603 addr)); 2604 2605 USETW(req.wValue, addr); 2606 USETW(req.wLength, mlen); 2607 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2608 return EIO; 2609 2610 addr += mlen / 2; 2611 fw += mlen; 2612 size -= mlen; 2613 } 2614 2615 /* check whether the upload succeeded */ 2616 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2617 req.bRequest = ZYD_DOWNLOADSTS; 2618 USETW(req.wValue, 0); 2619 USETW(req.wIndex, 0); 2620 USETW(req.wLength, sizeof stat); 2621 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2622 return EIO; 2623 2624 return (stat & 0x80) ? EIO : 0; 2625 } 2626 2627 Static void 2628 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2629 { 2630 struct zyd_softc *sc = arg; 2631 struct zyd_node *zn = (struct zyd_node *)ni; 2632 2633 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2634 } 2635 2636 Static void 2637 zyd_amrr_timeout(void *arg) 2638 { 2639 struct zyd_softc *sc = arg; 2640 struct ieee80211com *ic = &sc->sc_ic; 2641 int s; 2642 2643 s = splnet(); 2644 if (ic->ic_opmode == IEEE80211_M_STA) 2645 zyd_iter_func(sc, ic->ic_bss); 2646 else 2647 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2648 splx(s); 2649 2650 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2651 } 2652 2653 Static void 2654 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2655 { 2656 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2657 int i; 2658 2659 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2660 2661 /* set rate to some reasonable initial value */ 2662 for (i = ni->ni_rates.rs_nrates - 1; 2663 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2664 i--); 2665 ni->ni_txrate = i; 2666 } 2667 2668 int 2669 zyd_activate(device_t self, enum devact act) 2670 { 2671 struct zyd_softc *sc = device_private(self); 2672 2673 switch (act) { 2674 case DVACT_DEACTIVATE: 2675 if_deactivate(&sc->sc_if); 2676 return 0; 2677 default: 2678 return EOPNOTSUPP; 2679 } 2680 } 2681