xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.59 2020/03/15 23:04:51 thorpej Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.59 2020/03/15 23:04:51 thorpej Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/firmload.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71 
72 #include <dev/usb/if_zydreg.h>
73 
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82 
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85 
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p)	\
88 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 	struct usb_devno	dev;
93 	uint8_t			rev;
94 #define ZYD_ZD1211	0
95 #define ZYD_ZD1211B	1
96 } zyd_devs[] = {
97 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
98 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
99 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
100 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
101 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
102 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
103 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
104 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
106 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
107 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
108 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
109 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
110 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
111 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
113 	ZYD_ZD1211_DEV(TWINMOS,		G240),
114 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
115 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
117 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
118 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
119 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
121 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
122 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
126 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
127 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
128 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
129 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
130 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
131 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
132 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
133 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
134 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
135 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
136 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
137 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
138 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
139 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
140 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
141 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
142 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
143 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
144 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
145 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
146 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
147 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
148 	ZYD_ZD1211B_DEV(USR,		USR5423),
149 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
150 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
151 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
152 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
153 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
154 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
155 };
156 #define zyd_lookup(v, p)	\
157 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158 
159 static int zyd_match(device_t, cfdata_t, void *);
160 static void zyd_attach(device_t, device_t, void *);
161 static int zyd_detach(device_t, int);
162 static int zyd_activate(device_t, enum devact);
163 
164 
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166     zyd_attach, zyd_detach, zyd_activate);
167 
168 Static void	zyd_attachhook(device_t);
169 Static int	zyd_complete_attach(struct zyd_softc *);
170 Static int	zyd_open_pipes(struct zyd_softc *);
171 Static void	zyd_close_pipes(struct zyd_softc *);
172 Static int	zyd_alloc_tx_list(struct zyd_softc *);
173 Static void	zyd_free_tx_list(struct zyd_softc *);
174 Static int	zyd_alloc_rx_list(struct zyd_softc *);
175 Static void	zyd_free_rx_list(struct zyd_softc *);
176 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int	zyd_media_change(struct ifnet *);
178 Static void	zyd_next_scan(void *);
179 Static void	zyd_task(void *);
180 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 		    void *, int, u_int);
183 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void	zyd_lock_phy(struct zyd_softc *);
189 Static void	zyd_unlock_phy(struct zyd_softc *);
190 Static int	zyd_rfmd_init(struct zyd_rf *);
191 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int	zyd_al2230_init(struct zyd_rf *);
194 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_al2230_init_b(struct zyd_rf *);
197 Static int	zyd_al7230B_init(struct zyd_rf *);
198 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int	zyd_al2210_init(struct zyd_rf *);
201 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int	zyd_gct_init(struct zyd_rf *);
204 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int	zyd_maxim_init(struct zyd_rf *);
207 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int	zyd_maxim2_init(struct zyd_rf *);
210 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int	zyd_hw_init(struct zyd_softc *);
215 Static int	zyd_read_eeprom(struct zyd_softc *);
216 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int	zyd_switch_radio(struct zyd_softc *, int);
219 Static void	zyd_set_led(struct zyd_softc *, int, int);
220 Static int	zyd_set_rxfilter(struct zyd_softc *);
221 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t	zyd_plcp_signal(int);
224 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 		    struct ieee80211_node *);
230 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 Static void	zyd_start(struct ifnet *);
233 Static void	zyd_watchdog(struct ifnet *);
234 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int	zyd_init(struct ifnet *);
236 Static void	zyd_stop(struct ifnet *, int);
237 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void	zyd_iter_func(void *, struct ieee80211_node *);
239 Static void	zyd_amrr_timeout(void *);
240 Static void	zyd_newassoc(struct ieee80211_node *, int);
241 
242 static int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 	struct usb_attach_arg *uaa = aux;
246 
247 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250 
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 	struct zyd_softc *sc = device_private(self);
255 	firmware_handle_t fwh;
256 	const char *fwname;
257 	u_char *fw;
258 	size_t size;
259 	int error;
260 
261 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 		aprint_error_dev(sc->sc_dev,
264 		    "failed to open firmware %s (error=%d)\n", fwname, error);
265 		return;
266 	}
267 	size = firmware_get_size(fwh);
268 	fw = firmware_malloc(size);
269 	if (fw == NULL) {
270 		aprint_error_dev(sc->sc_dev,
271 		    "failed to allocate firmware memory\n");
272 		firmware_close(fwh);
273 		return;
274 	}
275 	error = firmware_read(fwh, 0, fw, size);
276 	firmware_close(fwh);
277 	if (error != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "failed to read firmware (error %d)\n", error);
280 		firmware_free(fw, size);
281 		return;
282 	}
283 
284 	error = zyd_loadfirmware(sc, fw, size);
285 	if (error != 0) {
286 		aprint_error_dev(sc->sc_dev,
287 		    "could not load firmware (error=%d)\n", error);
288 		firmware_free(fw, size);
289 		return;
290 	}
291 
292 	firmware_free(fw, size);
293 
294 	/* complete the attach process */
295 	if ((error = zyd_complete_attach(sc)) == 0)
296 		sc->attached = 1;
297 	return;
298 }
299 
300 static void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 	struct zyd_softc *sc = device_private(self);
304 	struct usb_attach_arg *uaa = aux;
305 	char *devinfop;
306 	usb_device_descriptor_t* ddesc;
307 	struct ifnet *ifp = &sc->sc_if;
308 
309 	sc->sc_dev = self;
310 	sc->sc_udev = uaa->uaa_device;
311 
312 	aprint_naive("\n");
313 	aprint_normal("\n");
314 
315 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 	aprint_normal_dev(self, "%s\n", devinfop);
317 	usbd_devinfo_free(devinfop);
318 
319 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320 
321 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 		aprint_error_dev(self, "device version mismatch: %#x "
324 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 		return;
326 	}
327 
328 	ifp->if_softc = sc;
329 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 	ifp->if_init = zyd_init;
331 	ifp->if_ioctl = zyd_ioctl;
332 	ifp->if_start = zyd_start;
333 	ifp->if_watchdog = zyd_watchdog;
334 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 	IFQ_SET_READY(&ifp->if_snd);
336 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337 
338 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
339 	cv_init(&sc->sc_cmdcv, "zydcmd");
340 	SIMPLEQ_INIT(&sc->sc_rqh);
341 
342 	/* defer configrations after file system is ready to load firmware */
343 	config_mountroot(self, zyd_attachhook);
344 }
345 
346 Static int
347 zyd_complete_attach(struct zyd_softc *sc)
348 {
349 	struct ieee80211com *ic = &sc->sc_ic;
350 	struct ifnet *ifp = &sc->sc_if;
351 	usbd_status error;
352 	int i;
353 
354 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
355 	callout_init(&(sc->sc_scan_ch), 0);
356 
357 	sc->amrr.amrr_min_success_threshold =  1;
358 	sc->amrr.amrr_max_success_threshold = 10;
359 	callout_init(&sc->sc_amrr_ch, 0);
360 
361 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
362 	if (error != 0) {
363 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
364 		    ", err=%s\n", usbd_errstr(error));
365 		goto fail;
366 	}
367 
368 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
369 	    &sc->sc_iface);
370 	if (error != 0) {
371 		aprint_error_dev(sc->sc_dev,
372 		    "getting interface handle failed\n");
373 		goto fail;
374 	}
375 
376 	if ((error = zyd_open_pipes(sc)) != 0) {
377 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
378 		goto fail;
379 	}
380 
381 	if ((error = zyd_read_eeprom(sc)) != 0) {
382 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
383 		goto fail;
384 	}
385 
386 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
387 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
388 		goto fail;
389 	}
390 
391 	if ((error = zyd_hw_init(sc)) != 0) {
392 		aprint_error_dev(sc->sc_dev,
393 		    "hardware initialization failed\n");
394 		goto fail;
395 	}
396 
397 	aprint_normal_dev(sc->sc_dev,
398 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
399 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
400 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
401 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
402 
403 	ic->ic_ifp = ifp;
404 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
405 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
406 	ic->ic_state = IEEE80211_S_INIT;
407 
408 	/* set device capabilities */
409 	ic->ic_caps =
410 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
411 	    IEEE80211_C_TXPMGT |	/* tx power management */
412 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
413 	    IEEE80211_C_WEP;		/* s/w WEP */
414 
415 	/* set supported .11b and .11g rates */
416 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
417 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
418 
419 	/* set supported .11b and .11g channels (1 through 14) */
420 	for (i = 1; i <= 14; i++) {
421 		ic->ic_channels[i].ic_freq =
422 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
423 		ic->ic_channels[i].ic_flags =
424 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
425 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 	}
427 
428 	if_attach(ifp);
429 	ieee80211_ifattach(ic);
430 	ic->ic_node_alloc = zyd_node_alloc;
431 	ic->ic_newassoc = zyd_newassoc;
432 
433 	/* override state transition machine */
434 	sc->sc_newstate = ic->ic_newstate;
435 	ic->ic_newstate = zyd_newstate;
436 
437 	/* XXX media locking needs revisiting */
438 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
439 	ieee80211_media_init_with_lock(ic,
440 	    zyd_media_change, ieee80211_media_status, &sc->sc_media_mtx);
441 
442 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
443 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
444 	    &sc->sc_drvbpf);
445 
446 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
447 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
448 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
449 
450 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
451 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
452 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
453 
454 	ieee80211_announce(ic);
455 
456 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
457 
458 fail:	return error;
459 }
460 
461 static int
462 zyd_detach(device_t self, int flags)
463 {
464 	struct zyd_softc *sc = device_private(self);
465 	struct ieee80211com *ic = &sc->sc_ic;
466 	struct ifnet *ifp = &sc->sc_if;
467 
468 	if (!sc->attached)
469 		return 0;
470 
471 	mutex_enter(&sc->sc_lock);
472 
473 	zyd_stop(ifp, 1);
474 	callout_halt(&sc->sc_scan_ch, NULL);
475 	callout_halt(&sc->sc_amrr_ch, NULL);
476 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
477 
478 	/* Abort, etc. done by zyd_stop */
479 	zyd_close_pipes(sc);
480 
481 	sc->attached = 0;
482 
483 	bpf_detach(ifp);
484 	ieee80211_ifdetach(ic);
485 	if_detach(ifp);
486 
487 	mutex_exit(&sc->sc_lock);
488 
489 	mutex_destroy(&sc->sc_lock);
490 	cv_destroy(&sc->sc_cmdcv);
491 
492 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
493 
494 	return 0;
495 }
496 
497 Static int
498 zyd_open_pipes(struct zyd_softc *sc)
499 {
500 	usb_endpoint_descriptor_t *edesc;
501 	usbd_status error;
502 
503 	/* interrupt in */
504 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
505 	if (edesc == NULL)
506 		return EINVAL;
507 
508 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
509 	if (sc->ibuf_size == 0)	/* should not happen */
510 		return EINVAL;
511 
512 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
513 
514 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
515 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
516 	    USBD_DEFAULT_INTERVAL);
517 	if (error != 0) {
518 		printf("%s: open rx intr pipe failed: %s\n",
519 		    device_xname(sc->sc_dev), usbd_errstr(error));
520 		goto fail;
521 	}
522 
523 	/* interrupt out (not necessarily an interrupt pipe) */
524 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
525 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
526 	if (error != 0) {
527 		printf("%s: open tx intr pipe failed: %s\n",
528 		    device_xname(sc->sc_dev), usbd_errstr(error));
529 		goto fail;
530 	}
531 
532 	/* bulk in */
533 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
534 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
535 	if (error != 0) {
536 		printf("%s: open rx pipe failed: %s\n",
537 		    device_xname(sc->sc_dev), usbd_errstr(error));
538 		goto fail;
539 	}
540 
541 	/* bulk out */
542 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
543 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
544 	if (error != 0) {
545 		printf("%s: open tx pipe failed: %s\n",
546 		    device_xname(sc->sc_dev), usbd_errstr(error));
547 		goto fail;
548 	}
549 
550 	return 0;
551 
552 fail:	zyd_close_pipes(sc);
553 	return error;
554 }
555 
556 Static void
557 zyd_close_pipes(struct zyd_softc *sc)
558 {
559 	int i;
560 
561 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
562 		if (sc->zyd_ep[i] != NULL) {
563 			usbd_close_pipe(sc->zyd_ep[i]);
564 			sc->zyd_ep[i] = NULL;
565 		}
566 	}
567 	if (sc->ibuf != NULL) {
568 		kmem_free(sc->ibuf, sc->ibuf_size);
569 		sc->ibuf = NULL;
570 	}
571 }
572 
573 Static int
574 zyd_alloc_tx_list(struct zyd_softc *sc)
575 {
576 	int i, error;
577 
578 	sc->tx_queued = 0;
579 
580 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
581 		struct zyd_tx_data *data = &sc->tx_data[i];
582 
583 		data->sc = sc;	/* backpointer for callbacks */
584 
585 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
586 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
587 		if (error) {
588 			printf("%s: could not allocate tx xfer\n",
589 			    device_xname(sc->sc_dev));
590 			goto fail;
591 		}
592 		data->buf = usbd_get_buffer(data->xfer);
593 
594 		/* clear Tx descriptor */
595 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
596 	}
597 	return 0;
598 
599 fail:	zyd_free_tx_list(sc);
600 	return error;
601 }
602 
603 Static void
604 zyd_free_tx_list(struct zyd_softc *sc)
605 {
606 	int i;
607 
608 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
609 		struct zyd_tx_data *data = &sc->tx_data[i];
610 
611 		if (data->xfer != NULL) {
612 			usbd_destroy_xfer(data->xfer);
613 			data->xfer = NULL;
614 		}
615 		if (data->ni != NULL) {
616 			ieee80211_free_node(data->ni);
617 			data->ni = NULL;
618 		}
619 	}
620 }
621 
622 Static int
623 zyd_alloc_rx_list(struct zyd_softc *sc)
624 {
625 	int i, error;
626 
627 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
628 		struct zyd_rx_data *data = &sc->rx_data[i];
629 
630 		data->sc = sc;	/* backpointer for callbacks */
631 
632 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
633 		    ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
634 		if (error) {
635 			printf("%s: could not allocate rx xfer\n",
636 			    device_xname(sc->sc_dev));
637 			goto fail;
638 		}
639 		data->buf = usbd_get_buffer(data->xfer);
640 	}
641 	return 0;
642 
643 fail:	zyd_free_rx_list(sc);
644 	return error;
645 }
646 
647 Static void
648 zyd_free_rx_list(struct zyd_softc *sc)
649 {
650 	int i;
651 
652 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
653 		struct zyd_rx_data *data = &sc->rx_data[i];
654 
655 		if (data->xfer != NULL) {
656 			usbd_destroy_xfer(data->xfer);
657 			data->xfer = NULL;
658 		}
659 	}
660 }
661 
662 /* ARGUSED */
663 Static struct ieee80211_node *
664 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
665 {
666 	struct zyd_node *zn;
667 
668 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
669 	return zn ? &zn->ni : NULL;
670 }
671 
672 Static int
673 zyd_media_change(struct ifnet *ifp)
674 {
675 	int error;
676 
677 	error = ieee80211_media_change(ifp);
678 	if (error != ENETRESET)
679 		return error;
680 
681 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
682 		zyd_init(ifp);
683 
684 	return 0;
685 }
686 
687 /*
688  * This function is called periodically (every 200ms) during scanning to
689  * switch from one channel to another.
690  */
691 Static void
692 zyd_next_scan(void *arg)
693 {
694 	struct zyd_softc *sc = arg;
695 	struct ieee80211com *ic = &sc->sc_ic;
696 
697 	if (ic->ic_state == IEEE80211_S_SCAN)
698 		ieee80211_next_scan(ic);
699 }
700 
701 Static void
702 zyd_task(void *arg)
703 {
704 	struct zyd_softc *sc = arg;
705 	struct ieee80211com *ic = &sc->sc_ic;
706 	enum ieee80211_state ostate;
707 
708 	ostate = ic->ic_state;
709 
710 	switch (sc->sc_state) {
711 	case IEEE80211_S_INIT:
712 		if (ostate == IEEE80211_S_RUN) {
713 			/* turn link LED off */
714 			zyd_set_led(sc, ZYD_LED1, 0);
715 
716 			/* stop data LED from blinking */
717 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
718 		}
719 		break;
720 
721 	case IEEE80211_S_SCAN:
722 		zyd_set_chan(sc, ic->ic_curchan);
723 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
724 		break;
725 
726 	case IEEE80211_S_AUTH:
727 	case IEEE80211_S_ASSOC:
728 		zyd_set_chan(sc, ic->ic_curchan);
729 		break;
730 
731 	case IEEE80211_S_RUN:
732 	{
733 		struct ieee80211_node *ni = ic->ic_bss;
734 
735 		zyd_set_chan(sc, ic->ic_curchan);
736 
737 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
738 			/* turn link LED on */
739 			zyd_set_led(sc, ZYD_LED1, 1);
740 
741 			/* make data LED blink upon Tx */
742 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
743 
744 			zyd_set_bssid(sc, ni->ni_bssid);
745 		}
746 
747 		if (ic->ic_opmode == IEEE80211_M_STA) {
748 			/* fake a join to init the tx rate */
749 			zyd_newassoc(ni, 1);
750 		}
751 
752 		/* start automatic rate control timer */
753 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
754 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
755 
756 		break;
757 	}
758 	}
759 
760 	sc->sc_newstate(ic, sc->sc_state, -1);
761 }
762 
763 Static int
764 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
765 {
766 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
767 
768 	if (!sc->attached)
769 		return ENXIO;
770 
771 	/*
772 	 * XXXSMP: This does not wait for the task, if it is in flight,
773 	 * to complete.  If this code works at all, it must rely on the
774 	 * kernel lock to serialize with the USB task thread.
775 	 */
776 	usb_rem_task(sc->sc_udev, &sc->sc_task);
777 	callout_stop(&sc->sc_scan_ch);
778 	callout_stop(&sc->sc_amrr_ch);
779 
780 	/* do it in a process context */
781 	sc->sc_state = nstate;
782 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
783 
784 	return 0;
785 }
786 
787 Static int
788 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
789     void *odata, int olen, u_int flags)
790 {
791 	struct usbd_xfer *xfer;
792 	struct zyd_cmd cmd;
793 	struct rq rq;
794 	uint16_t xferflags;
795 	int error;
796 	usbd_status uerror;
797 
798 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
799 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
800 	if (error)
801 		return error;
802 
803 	cmd.code = htole16(code);
804 	memcpy(cmd.data, idata, ilen);
805 
806 	xferflags = USBD_FORCE_SHORT_XFER;
807 	if (!(flags & ZYD_CMD_FLAG_READ))
808 		xferflags |= USBD_SYNCHRONOUS;
809 	else {
810 		rq.idata = idata;
811 		rq.odata = odata;
812 		rq.len = olen / sizeof(struct zyd_pair);
813 		mutex_enter(&sc->sc_lock);
814 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
815 		mutex_exit(&sc->sc_lock);
816 	}
817 
818 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
819 	    ZYD_INTR_TIMEOUT, NULL);
820 	uerror = usbd_transfer(xfer);
821 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
822 		printf("%s: could not send command (error=%s)\n",
823 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
824 		(void)usbd_destroy_xfer(xfer);
825 		return EIO;
826 	}
827 	if (!(flags & ZYD_CMD_FLAG_READ)) {
828 		(void)usbd_destroy_xfer(xfer);
829 		return 0;	/* write: don't wait for reply */
830 	}
831 	/* wait at most one second for command reply */
832 	mutex_enter(&sc->sc_lock);
833 	error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz);
834 	if (error == EWOULDBLOCK)
835 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
836 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
837 	mutex_exit(&sc->sc_lock);
838 
839 	(void)usbd_destroy_xfer(xfer);
840 	return error;
841 }
842 
843 Static int
844 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
845 {
846 	struct zyd_pair tmp;
847 	int error;
848 
849 	reg = htole16(reg);
850 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
851 	    ZYD_CMD_FLAG_READ);
852 	if (error == 0)
853 		*val = le16toh(tmp.val);
854 	else
855 		*val = 0;
856 	return error;
857 }
858 
859 Static int
860 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
861 {
862 	struct zyd_pair tmp[2];
863 	uint16_t regs[2];
864 	int error;
865 
866 	regs[0] = htole16(ZYD_REG32_HI(reg));
867 	regs[1] = htole16(ZYD_REG32_LO(reg));
868 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
869 	    ZYD_CMD_FLAG_READ);
870 	if (error == 0)
871 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
872 	else
873 		*val = 0;
874 	return error;
875 }
876 
877 Static int
878 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
879 {
880 	struct zyd_pair pair;
881 
882 	pair.reg = htole16(reg);
883 	pair.val = htole16(val);
884 
885 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
886 }
887 
888 Static int
889 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
890 {
891 	struct zyd_pair pair[2];
892 
893 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
894 	pair[0].val = htole16(val >> 16);
895 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
896 	pair[1].val = htole16(val & 0xffff);
897 
898 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
899 }
900 
901 Static int
902 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
903 {
904 	struct zyd_rf *rf = &sc->sc_rf;
905 	struct zyd_rfwrite req;
906 	uint16_t cr203;
907 	int i;
908 
909 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
910 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
911 
912 	req.code  = htole16(2);
913 	req.width = htole16(rf->width);
914 	for (i = 0; i < rf->width; i++) {
915 		req.bit[i] = htole16(cr203);
916 		if (val & (1 << (rf->width - 1 - i)))
917 			req.bit[i] |= htole16(ZYD_RF_DATA);
918 	}
919 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
920 }
921 
922 Static void
923 zyd_lock_phy(struct zyd_softc *sc)
924 {
925 	uint32_t tmp;
926 
927 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
928 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
929 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
930 }
931 
932 Static void
933 zyd_unlock_phy(struct zyd_softc *sc)
934 {
935 	uint32_t tmp;
936 
937 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
938 	tmp |= ZYD_UNLOCK_PHY_REGS;
939 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
940 }
941 
942 /*
943  * RFMD RF methods.
944  */
945 Static int
946 zyd_rfmd_init(struct zyd_rf *rf)
947 {
948 	struct zyd_softc *sc = rf->rf_sc;
949 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
950 	static const uint32_t rfini[] = ZYD_RFMD_RF;
951 	int error;
952 	size_t i;
953 
954 	/* init RF-dependent PHY registers */
955 	for (i = 0; i < __arraycount(phyini); i++) {
956 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
957 		if (error != 0)
958 			return error;
959 	}
960 
961 	/* init RFMD radio */
962 	for (i = 0; i < __arraycount(rfini); i++) {
963 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
964 			return error;
965 	}
966 	return 0;
967 }
968 
969 Static int
970 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
971 {
972 	struct zyd_softc *sc = rf->rf_sc;
973 
974 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
975 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
976 
977 	return 0;
978 }
979 
980 Static int
981 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
982 {
983 	struct zyd_softc *sc = rf->rf_sc;
984 	static const struct {
985 		uint32_t	r1, r2;
986 	} rfprog[] = ZYD_RFMD_CHANTABLE;
987 
988 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
989 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
990 
991 	return 0;
992 }
993 
994 /*
995  * AL2230 RF methods.
996  */
997 Static int
998 zyd_al2230_init(struct zyd_rf *rf)
999 {
1000 	struct zyd_softc *sc = rf->rf_sc;
1001 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1002 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1003 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1004 	int error;
1005 	size_t i;
1006 
1007 	/* init RF-dependent PHY registers */
1008 	for (i = 0; i < __arraycount(phyini); i++) {
1009 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1010 		if (error != 0)
1011 			return error;
1012 	}
1013 
1014 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1015 		for (i = 0; i < __arraycount(phy2230s); i++) {
1016 			error = zyd_write16(sc, phy2230s[i].reg,
1017 			    phy2230s[i].val);
1018 			if (error != 0)
1019 				return error;
1020 		}
1021 	}
1022 
1023 	/* init AL2230 radio */
1024 	for (i = 0; i < __arraycount(rfini); i++) {
1025 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1026 			return error;
1027 	}
1028 	return 0;
1029 }
1030 
1031 Static int
1032 zyd_al2230_init_b(struct zyd_rf *rf)
1033 {
1034 	struct zyd_softc *sc = rf->rf_sc;
1035 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1036 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1037 	int error;
1038 	size_t i;
1039 
1040 	/* init RF-dependent PHY registers */
1041 	for (i = 0; i < __arraycount(phyini); i++) {
1042 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1043 		if (error != 0)
1044 			return error;
1045 	}
1046 
1047 	/* init AL2230 radio */
1048 	for (i = 0; i < __arraycount(rfini); i++) {
1049 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1050 			return error;
1051 	}
1052 	return 0;
1053 }
1054 
1055 Static int
1056 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1057 {
1058 	struct zyd_softc *sc = rf->rf_sc;
1059 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1060 
1061 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1062 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1063 
1064 	return 0;
1065 }
1066 
1067 Static int
1068 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1069 {
1070 	struct zyd_softc *sc = rf->rf_sc;
1071 	static const struct {
1072 		uint32_t	r1, r2, r3;
1073 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1074 
1075 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1076 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1077 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1078 
1079 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1080 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1081 
1082 	return 0;
1083 }
1084 
1085 /*
1086  * AL7230B RF methods.
1087  */
1088 Static int
1089 zyd_al7230B_init(struct zyd_rf *rf)
1090 {
1091 	struct zyd_softc *sc = rf->rf_sc;
1092 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1093 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1094 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1095 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1096 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1097 	int error;
1098 	size_t i;
1099 
1100 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1101 
1102 	/* init RF-dependent PHY registers, part one */
1103 	for (i = 0; i < __arraycount(phyini_1); i++) {
1104 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1105 		if (error != 0)
1106 			return error;
1107 	}
1108 	/* init AL7230B radio, part one */
1109 	for (i = 0; i < __arraycount(rfini_1); i++) {
1110 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1111 			return error;
1112 	}
1113 	/* init RF-dependent PHY registers, part two */
1114 	for (i = 0; i < __arraycount(phyini_2); i++) {
1115 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1116 		if (error != 0)
1117 			return error;
1118 	}
1119 	/* init AL7230B radio, part two */
1120 	for (i = 0; i < __arraycount(rfini_2); i++) {
1121 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1122 			return error;
1123 	}
1124 	/* init RF-dependent PHY registers, part three */
1125 	for (i = 0; i < __arraycount(phyini_3); i++) {
1126 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1127 		if (error != 0)
1128 			return error;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 Static int
1135 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1136 {
1137 	struct zyd_softc *sc = rf->rf_sc;
1138 
1139 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1140 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1141 
1142 	return 0;
1143 }
1144 
1145 Static int
1146 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1147 {
1148 	struct zyd_softc *sc = rf->rf_sc;
1149 	static const struct {
1150 		uint32_t	r1, r2;
1151 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1152 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1153 	int error;
1154 	size_t i;
1155 
1156 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1157 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1158 
1159 	for (i = 0; i < __arraycount(rfsc); i++) {
1160 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1161 			return error;
1162 	}
1163 
1164 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1165 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1166 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1167 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1168 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1169 
1170 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1171 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1172 	(void)zyd_rfwrite(sc, 0x3c9000);
1173 
1174 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1175 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1176 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * AL2210 RF methods.
1183  */
1184 Static int
1185 zyd_al2210_init(struct zyd_rf *rf)
1186 {
1187 	struct zyd_softc *sc = rf->rf_sc;
1188 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1189 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1190 	uint32_t tmp;
1191 	int error;
1192 	size_t i;
1193 
1194 	(void)zyd_write32(sc, ZYD_CR18, 2);
1195 
1196 	/* init RF-dependent PHY registers */
1197 	for (i = 0; i < __arraycount(phyini); i++) {
1198 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1199 		if (error != 0)
1200 			return error;
1201 	}
1202 	/* init AL2210 radio */
1203 	for (i = 0; i < __arraycount(rfini); i++) {
1204 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1205 			return error;
1206 	}
1207 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1208 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1209 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1210 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1211 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1212 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1213 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1214 	(void)zyd_write32(sc, ZYD_CR18, 3);
1215 
1216 	return 0;
1217 }
1218 
1219 Static int
1220 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1221 {
1222 	/* vendor driver does nothing for this RF chip */
1223 
1224 	return 0;
1225 }
1226 
1227 Static int
1228 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1229 {
1230 	struct zyd_softc *sc = rf->rf_sc;
1231 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1232 	uint32_t tmp;
1233 
1234 	(void)zyd_write32(sc, ZYD_CR18, 2);
1235 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1236 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1237 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1238 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1239 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1240 
1241 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1242 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1243 
1244 	/* actually set the channel */
1245 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1246 
1247 	(void)zyd_write32(sc, ZYD_CR18, 3);
1248 
1249 	return 0;
1250 }
1251 
1252 /*
1253  * GCT RF methods.
1254  */
1255 Static int
1256 zyd_gct_init(struct zyd_rf *rf)
1257 {
1258 	struct zyd_softc *sc = rf->rf_sc;
1259 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1260 	static const uint32_t rfini[] = ZYD_GCT_RF;
1261 	int error;
1262 	size_t i;
1263 
1264 	/* init RF-dependent PHY registers */
1265 	for (i = 0; i < __arraycount(phyini); i++) {
1266 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1267 		if (error != 0)
1268 			return error;
1269 	}
1270 	/* init cgt radio */
1271 	for (i = 0; i < __arraycount(rfini); i++) {
1272 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1273 			return error;
1274 	}
1275 	return 0;
1276 }
1277 
1278 Static int
1279 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1280 {
1281 	/* vendor driver does nothing for this RF chip */
1282 
1283 	return 0;
1284 }
1285 
1286 Static int
1287 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1288 {
1289 	struct zyd_softc *sc = rf->rf_sc;
1290 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1291 
1292 	(void)zyd_rfwrite(sc, 0x1c0000);
1293 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1294 	(void)zyd_rfwrite(sc, 0x1c0008);
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * Maxim RF methods.
1301  */
1302 Static int
1303 zyd_maxim_init(struct zyd_rf *rf)
1304 {
1305 	struct zyd_softc *sc = rf->rf_sc;
1306 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1307 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1308 	uint16_t tmp;
1309 	int error;
1310 	size_t i;
1311 
1312 	/* init RF-dependent PHY registers */
1313 	for (i = 0; i < __arraycount(phyini); i++) {
1314 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1315 		if (error != 0)
1316 			return error;
1317 	}
1318 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1319 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1320 
1321 	/* init maxim radio */
1322 	for (i = 0; i < __arraycount(rfini); i++) {
1323 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1324 			return error;
1325 	}
1326 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1327 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1328 
1329 	return 0;
1330 }
1331 
1332 Static int
1333 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1334 {
1335 	/* vendor driver does nothing for this RF chip */
1336 
1337 	return 0;
1338 }
1339 
1340 Static int
1341 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1342 {
1343 	struct zyd_softc *sc = rf->rf_sc;
1344 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1345 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1346 	static const struct {
1347 		uint32_t	r1, r2;
1348 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1349 	uint16_t tmp;
1350 	int error;
1351 	size_t i;
1352 
1353 	/*
1354 	 * Do the same as we do when initializing it, except for the channel
1355 	 * values coming from the two channel tables.
1356 	 */
1357 
1358 	/* init RF-dependent PHY registers */
1359 	for (i = 0; i < __arraycount(phyini); i++) {
1360 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1361 		if (error != 0)
1362 			return error;
1363 	}
1364 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1365 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1366 
1367 	/* first two values taken from the chantables */
1368 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1369 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1370 
1371 	/* init maxim radio - skipping the two first values */
1372 	for (i = 2; i < __arraycount(rfini); i++) {
1373 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1374 			return error;
1375 	}
1376 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1377 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Maxim2 RF methods.
1384  */
1385 Static int
1386 zyd_maxim2_init(struct zyd_rf *rf)
1387 {
1388 	struct zyd_softc *sc = rf->rf_sc;
1389 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1390 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1391 	uint16_t tmp;
1392 	int error;
1393 	size_t i;
1394 
1395 	/* init RF-dependent PHY registers */
1396 	for (i = 0; i < __arraycount(phyini); i++) {
1397 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1398 		if (error != 0)
1399 			return error;
1400 	}
1401 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1402 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1403 
1404 	/* init maxim2 radio */
1405 	for (i = 0; i < __arraycount(rfini); i++) {
1406 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1407 			return error;
1408 	}
1409 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1410 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1411 
1412 	return 0;
1413 }
1414 
1415 Static int
1416 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1417 {
1418 	/* vendor driver does nothing for this RF chip */
1419 
1420 	return 0;
1421 }
1422 
1423 Static int
1424 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1425 {
1426 	struct zyd_softc *sc = rf->rf_sc;
1427 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1428 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1429 	static const struct {
1430 		uint32_t	r1, r2;
1431 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1432 	uint16_t tmp;
1433 	int error;
1434 	size_t i;
1435 
1436 	/*
1437 	 * Do the same as we do when initializing it, except for the channel
1438 	 * values coming from the two channel tables.
1439 	 */
1440 
1441 	/* init RF-dependent PHY registers */
1442 	for (i = 0; i < __arraycount(phyini); i++) {
1443 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1444 		if (error != 0)
1445 			return error;
1446 	}
1447 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1448 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1449 
1450 	/* first two values taken from the chantables */
1451 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1452 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1453 
1454 	/* init maxim2 radio - skipping the two first values */
1455 	for (i = 2; i < __arraycount(rfini); i++) {
1456 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1457 			return error;
1458 	}
1459 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1460 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1461 
1462 	return 0;
1463 }
1464 
1465 Static int
1466 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1467 {
1468 	struct zyd_rf *rf = &sc->sc_rf;
1469 
1470 	rf->rf_sc = sc;
1471 
1472 	switch (type) {
1473 	case ZYD_RF_RFMD:
1474 		rf->init         = zyd_rfmd_init;
1475 		rf->switch_radio = zyd_rfmd_switch_radio;
1476 		rf->set_channel  = zyd_rfmd_set_channel;
1477 		rf->width        = 24;	/* 24-bit RF values */
1478 		break;
1479 	case ZYD_RF_AL2230:
1480 	case ZYD_RF_AL2230S:
1481 		if (sc->mac_rev == ZYD_ZD1211B)
1482 			rf->init = zyd_al2230_init_b;
1483 		else
1484 			rf->init = zyd_al2230_init;
1485 		rf->switch_radio = zyd_al2230_switch_radio;
1486 		rf->set_channel  = zyd_al2230_set_channel;
1487 		rf->width        = 24;	/* 24-bit RF values */
1488 		break;
1489 	case ZYD_RF_AL7230B:
1490 		rf->init         = zyd_al7230B_init;
1491 		rf->switch_radio = zyd_al7230B_switch_radio;
1492 		rf->set_channel  = zyd_al7230B_set_channel;
1493 		rf->width        = 24;	/* 24-bit RF values */
1494 		break;
1495 	case ZYD_RF_AL2210:
1496 		rf->init         = zyd_al2210_init;
1497 		rf->switch_radio = zyd_al2210_switch_radio;
1498 		rf->set_channel  = zyd_al2210_set_channel;
1499 		rf->width        = 24;	/* 24-bit RF values */
1500 		break;
1501 	case ZYD_RF_GCT:
1502 		rf->init         = zyd_gct_init;
1503 		rf->switch_radio = zyd_gct_switch_radio;
1504 		rf->set_channel  = zyd_gct_set_channel;
1505 		rf->width        = 21;	/* 21-bit RF values */
1506 		break;
1507 	case ZYD_RF_MAXIM_NEW:
1508 		rf->init         = zyd_maxim_init;
1509 		rf->switch_radio = zyd_maxim_switch_radio;
1510 		rf->set_channel  = zyd_maxim_set_channel;
1511 		rf->width        = 18;	/* 18-bit RF values */
1512 		break;
1513 	case ZYD_RF_MAXIM_NEW2:
1514 		rf->init         = zyd_maxim2_init;
1515 		rf->switch_radio = zyd_maxim2_switch_radio;
1516 		rf->set_channel  = zyd_maxim2_set_channel;
1517 		rf->width        = 18;	/* 18-bit RF values */
1518 		break;
1519 	default:
1520 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1521 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1522 		return EINVAL;
1523 	}
1524 	return 0;
1525 }
1526 
1527 Static const char *
1528 zyd_rf_name(uint8_t type)
1529 {
1530 	static const char * const zyd_rfs[] = {
1531 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1532 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1533 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1534 		"PHILIPS"
1535 	};
1536 
1537 	return zyd_rfs[(type > 15) ? 0 : type];
1538 }
1539 
1540 Static int
1541 zyd_hw_init(struct zyd_softc *sc)
1542 {
1543 	struct zyd_rf *rf = &sc->sc_rf;
1544 	const struct zyd_phy_pair *phyp;
1545 	int error;
1546 
1547 	/* specify that the plug and play is finished */
1548 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1549 
1550 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1551 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1552 
1553 	/* retrieve firmware revision number */
1554 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1555 
1556 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1557 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1558 
1559 	/* disable interrupts */
1560 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1561 
1562 	/* PHY init */
1563 	zyd_lock_phy(sc);
1564 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1565 	for (; phyp->reg != 0; phyp++) {
1566 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1567 			goto fail;
1568 	}
1569 	zyd_unlock_phy(sc);
1570 
1571 	/* HMAC init */
1572 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1573 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1574 
1575 	if (sc->mac_rev == ZYD_ZD1211) {
1576 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1577 	} else {
1578 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1579 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1580 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1581 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1582 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1583 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1584 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1585 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1586 	}
1587 
1588 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1589 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1590 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1591 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1592 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1593 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1594 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1595 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1596 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1597 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1598 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1599 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1600 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1601 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1602 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1603 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1604 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1605 
1606 	/* RF chip init */
1607 	zyd_lock_phy(sc);
1608 	error = (*rf->init)(rf);
1609 	zyd_unlock_phy(sc);
1610 	if (error != 0) {
1611 		printf("%s: radio initialization failed\n",
1612 		    device_xname(sc->sc_dev));
1613 		goto fail;
1614 	}
1615 
1616 	/* init beacon interval to 100ms */
1617 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1618 		goto fail;
1619 
1620 fail:	return error;
1621 }
1622 
1623 Static int
1624 zyd_read_eeprom(struct zyd_softc *sc)
1625 {
1626 	struct ieee80211com *ic = &sc->sc_ic;
1627 	uint32_t tmp;
1628 	uint16_t val;
1629 	int i;
1630 
1631 	/* read MAC address */
1632 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1633 	ic->ic_myaddr[0] = tmp & 0xff;
1634 	ic->ic_myaddr[1] = tmp >>  8;
1635 	ic->ic_myaddr[2] = tmp >> 16;
1636 	ic->ic_myaddr[3] = tmp >> 24;
1637 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1638 	ic->ic_myaddr[4] = tmp & 0xff;
1639 	ic->ic_myaddr[5] = tmp >>  8;
1640 
1641 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1642 	sc->rf_rev = tmp & 0x0f;
1643 	sc->pa_rev = (tmp >> 16) & 0x0f;
1644 
1645 	/* read regulatory domain (currently unused) */
1646 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1647 	sc->regdomain = tmp >> 16;
1648 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1649 
1650 	/* read Tx power calibration tables */
1651 	for (i = 0; i < 7; i++) {
1652 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1653 		sc->pwr_cal[i * 2] = val >> 8;
1654 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1655 
1656 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1657 		sc->pwr_int[i * 2] = val >> 8;
1658 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1659 
1660 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1661 		sc->ofdm36_cal[i * 2] = val >> 8;
1662 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1663 
1664 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1665 		sc->ofdm48_cal[i * 2] = val >> 8;
1666 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1667 
1668 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1669 		sc->ofdm54_cal[i * 2] = val >> 8;
1670 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1671 	}
1672 	return 0;
1673 }
1674 
1675 Static int
1676 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1677 {
1678 	uint32_t tmp;
1679 
1680 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1681 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1682 
1683 	tmp = addr[5] << 8 | addr[4];
1684 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1685 
1686 	return 0;
1687 }
1688 
1689 Static int
1690 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1691 {
1692 	uint32_t tmp;
1693 
1694 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1695 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1696 
1697 	tmp = addr[5] << 8 | addr[4];
1698 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1699 
1700 	return 0;
1701 }
1702 
1703 Static int
1704 zyd_switch_radio(struct zyd_softc *sc, int on)
1705 {
1706 	struct zyd_rf *rf = &sc->sc_rf;
1707 	int error;
1708 
1709 	zyd_lock_phy(sc);
1710 	error = (*rf->switch_radio)(rf, on);
1711 	zyd_unlock_phy(sc);
1712 
1713 	return error;
1714 }
1715 
1716 Static void
1717 zyd_set_led(struct zyd_softc *sc, int which, int on)
1718 {
1719 	uint32_t tmp;
1720 
1721 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1722 	tmp &= ~which;
1723 	if (on)
1724 		tmp |= which;
1725 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1726 }
1727 
1728 Static int
1729 zyd_set_rxfilter(struct zyd_softc *sc)
1730 {
1731 	uint32_t rxfilter;
1732 
1733 	switch (sc->sc_ic.ic_opmode) {
1734 	case IEEE80211_M_STA:
1735 		rxfilter = ZYD_FILTER_BSS;
1736 		break;
1737 	case IEEE80211_M_IBSS:
1738 	case IEEE80211_M_HOSTAP:
1739 		rxfilter = ZYD_FILTER_HOSTAP;
1740 		break;
1741 	case IEEE80211_M_MONITOR:
1742 		rxfilter = ZYD_FILTER_MONITOR;
1743 		break;
1744 	default:
1745 		/* should not get there */
1746 		return EINVAL;
1747 	}
1748 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1749 }
1750 
1751 Static void
1752 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1753 {
1754 	struct ieee80211com *ic = &sc->sc_ic;
1755 	struct zyd_rf *rf = &sc->sc_rf;
1756 	u_int chan;
1757 
1758 	chan = ieee80211_chan2ieee(ic, c);
1759 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1760 		return;
1761 
1762 	zyd_lock_phy(sc);
1763 
1764 	(*rf->set_channel)(rf, chan);
1765 
1766 	/* update Tx power */
1767 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1768 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1769 
1770 	if (sc->mac_rev == ZYD_ZD1211B) {
1771 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1772 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1773 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1774 
1775 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1776 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1777 	}
1778 
1779 	zyd_unlock_phy(sc);
1780 }
1781 
1782 Static int
1783 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1784 {
1785 	/* XXX this is probably broken.. */
1786 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1787 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1788 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1789 
1790 	return 0;
1791 }
1792 
1793 Static uint8_t
1794 zyd_plcp_signal(int rate)
1795 {
1796 	switch (rate) {
1797 	/* CCK rates (returned values are device-dependent) */
1798 	case 2:		return 0x0;
1799 	case 4:		return 0x1;
1800 	case 11:	return 0x2;
1801 	case 22:	return 0x3;
1802 
1803 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1804 	case 12:	return 0xb;
1805 	case 18:	return 0xf;
1806 	case 24:	return 0xa;
1807 	case 36:	return 0xe;
1808 	case 48:	return 0x9;
1809 	case 72:	return 0xd;
1810 	case 96:	return 0x8;
1811 	case 108:	return 0xc;
1812 
1813 	/* unsupported rates (should not get there) */
1814 	default:	return 0xff;
1815 	}
1816 }
1817 
1818 Static void
1819 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1820 {
1821 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1822 	struct zyd_cmd *cmd;
1823 	uint32_t datalen;
1824 
1825 	if (status != USBD_NORMAL_COMPLETION) {
1826 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1827 			return;
1828 
1829 		if (status == USBD_STALLED) {
1830 			usbd_clear_endpoint_stall_async(
1831 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1832 		}
1833 		return;
1834 	}
1835 
1836 	cmd = (struct zyd_cmd *)sc->ibuf;
1837 
1838 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1839 		struct zyd_notif_retry *retry =
1840 		    (struct zyd_notif_retry *)cmd->data;
1841 		struct ieee80211com *ic = &sc->sc_ic;
1842 		struct ifnet *ifp = &sc->sc_if;
1843 		struct ieee80211_node *ni;
1844 
1845 		DPRINTF(("retry intr: rate=%#x addr=%s count=%d (%#x)\n",
1846 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1847 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1848 
1849 		/*
1850 		 * Find the node to which the packet was sent and update its
1851 		 * retry statistics.  In BSS mode, this node is the AP we're
1852 		 * associated to so no lookup is actually needed.
1853 		 */
1854 		if (ic->ic_opmode != IEEE80211_M_STA) {
1855 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1856 			if (ni == NULL)
1857 				return;	/* just ignore */
1858 		} else
1859 			ni = ic->ic_bss;
1860 
1861 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1862 
1863 		if (le16toh(retry->count) & 0x100)
1864 			if_statinc(ifp, if_oerrors);
1865 
1866 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1867 		struct rq *rqp;
1868 
1869 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1870 			return;	/* HMAC interrupt */
1871 
1872 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1873 		datalen -= sizeof(cmd->code);
1874 		datalen -= 2;	/* XXX: padding? */
1875 
1876 		mutex_enter(&sc->sc_lock);
1877 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1878 			int i;
1879 
1880 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1881 				continue;
1882 			for (i = 0; i < rqp->len; i++) {
1883 				if (*(((const uint16_t *)rqp->idata) + i) !=
1884 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1885 					break;
1886 			}
1887 			if (i != rqp->len)
1888 				continue;
1889 
1890 			/* copy answer into caller-supplied buffer */
1891 			memcpy(rqp->odata, cmd->data,
1892 			    sizeof(struct zyd_pair) * rqp->len);
1893 			cv_signal(&sc->sc_cmdcv);
1894 			mutex_exit(&sc->sc_lock);
1895 			return;
1896 		}
1897 		mutex_exit(&sc->sc_lock);
1898 		return;	/* unexpected IORD notification */
1899 	} else {
1900 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1901 		    le16toh(cmd->code));
1902 	}
1903 }
1904 
1905 Static void
1906 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1907 {
1908 	struct ieee80211com *ic = &sc->sc_ic;
1909 	struct ifnet *ifp = &sc->sc_if;
1910 	struct ieee80211_node *ni;
1911 	struct ieee80211_frame *wh;
1912 	const struct zyd_plcphdr *plcp;
1913 	const struct zyd_rx_stat *stat;
1914 	struct mbuf *m;
1915 	int rlen, s;
1916 
1917 	if (len < ZYD_MIN_FRAGSZ) {
1918 		printf("%s: frame too short (length=%d)\n",
1919 		    device_xname(sc->sc_dev), len);
1920 		if_statinc(ifp, if_ierrors);
1921 		return;
1922 	}
1923 
1924 	plcp = (const struct zyd_plcphdr *)buf;
1925 	stat = (const struct zyd_rx_stat *)
1926 	    (buf + len - sizeof(struct zyd_rx_stat));
1927 
1928 	if (stat->flags & ZYD_RX_ERROR) {
1929 		DPRINTF(("%s: RX status indicated error (%x)\n",
1930 		    device_xname(sc->sc_dev), stat->flags));
1931 		if_statinc(ifp, if_ierrors);
1932 		return;
1933 	}
1934 
1935 	/* compute actual frame length */
1936 	rlen = len - sizeof(struct zyd_plcphdr) -
1937 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1938 
1939 	/* allocate a mbuf to store the frame */
1940 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1941 	if (m == NULL) {
1942 		printf("%s: could not allocate rx mbuf\n",
1943 		    device_xname(sc->sc_dev));
1944 		if_statinc(ifp, if_ierrors);
1945 		return;
1946 	}
1947 	if (rlen > MHLEN) {
1948 		MCLGET(m, M_DONTWAIT);
1949 		if (!(m->m_flags & M_EXT)) {
1950 			printf("%s: could not allocate rx mbuf cluster\n",
1951 			    device_xname(sc->sc_dev));
1952 			m_freem(m);
1953 			if_statinc(ifp, if_ierrors);
1954 			return;
1955 		}
1956 	}
1957 	m_set_rcvif(m, ifp);
1958 	m->m_pkthdr.len = m->m_len = rlen;
1959 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1960 
1961 	s = splnet();
1962 
1963 	if (sc->sc_drvbpf != NULL) {
1964 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1965 		static const uint8_t rates[] = {
1966 			/* reverse function of zyd_plcp_signal() */
1967 			2, 4, 11, 22, 0, 0, 0, 0,
1968 			96, 48, 24, 12, 108, 72, 36, 18
1969 		};
1970 
1971 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1972 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1973 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1974 		tap->wr_rssi = stat->rssi;
1975 		tap->wr_rate = rates[plcp->signal & 0xf];
1976 
1977 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1978 	}
1979 
1980 	wh = mtod(m, struct ieee80211_frame *);
1981 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1982 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1983 
1984 	/* node is no longer needed */
1985 	ieee80211_free_node(ni);
1986 
1987 	splx(s);
1988 }
1989 
1990 Static void
1991 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1992 {
1993 	struct zyd_rx_data *data = priv;
1994 	struct zyd_softc *sc = data->sc;
1995 	struct ifnet *ifp = &sc->sc_if;
1996 	const struct zyd_rx_desc *desc;
1997 	int len;
1998 
1999 	if (status != USBD_NORMAL_COMPLETION) {
2000 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2001 			return;
2002 
2003 		if (status == USBD_STALLED)
2004 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2005 
2006 		goto skip;
2007 	}
2008 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2009 
2010 	if (len < ZYD_MIN_RXBUFSZ) {
2011 		printf("%s: xfer too short (length=%d)\n",
2012 		    device_xname(sc->sc_dev), len);
2013 		if_statinc(ifp, if_ierrors);
2014 		goto skip;
2015 	}
2016 
2017 	desc = (const struct zyd_rx_desc *)
2018 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2019 
2020 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2021 		const uint8_t *p = data->buf, *end = p + len;
2022 		int i;
2023 
2024 		DPRINTFN(3, ("received multi-frame transfer\n"));
2025 
2026 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2027 			const uint16_t len16 = UGETW(desc->len[i]);
2028 
2029 			if (len16 == 0 || p + len16 > end)
2030 				break;
2031 
2032 			zyd_rx_data(sc, p, len16);
2033 			/* next frame is aligned on a 32-bit boundary */
2034 			p += (len16 + 3) & ~3;
2035 		}
2036 	} else {
2037 		DPRINTFN(3, ("received single-frame transfer\n"));
2038 
2039 		zyd_rx_data(sc, data->buf, len);
2040 	}
2041 
2042 skip:	/* setup a new transfer */
2043 
2044 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2045 	    USBD_NO_TIMEOUT, zyd_rxeof);
2046 	(void)usbd_transfer(xfer);
2047 }
2048 
2049 Static int
2050 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2051 {
2052 	struct ieee80211com *ic = &sc->sc_ic;
2053 	struct ifnet *ifp = &sc->sc_if;
2054 	struct zyd_tx_desc *desc;
2055 	struct zyd_tx_data *data;
2056 	struct ieee80211_frame *wh;
2057 	struct ieee80211_key *k;
2058 	int xferlen, totlen, rate;
2059 	uint16_t pktlen;
2060 	usbd_status error;
2061 
2062 	data = &sc->tx_data[0];
2063 	desc = (struct zyd_tx_desc *)data->buf;
2064 
2065 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2066 
2067 	wh = mtod(m0, struct ieee80211_frame *);
2068 
2069 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2070 		k = ieee80211_crypto_encap(ic, ni, m0);
2071 		if (k == NULL) {
2072 			m_freem(m0);
2073 			return ENOBUFS;
2074 		}
2075 	}
2076 
2077 	data->ni = ni;
2078 
2079 	wh = mtod(m0, struct ieee80211_frame *);
2080 
2081 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2082 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2083 
2084 	/* fill Tx descriptor */
2085 	desc->len = htole16(totlen);
2086 
2087 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2088 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2089 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2090 		if (totlen > ic->ic_rtsthreshold) {
2091 			desc->flags |= ZYD_TX_FLAG_RTS;
2092 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2093 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2094 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2095 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2096 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2097 				desc->flags |= ZYD_TX_FLAG_RTS;
2098 		}
2099 	} else
2100 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2101 
2102 	if ((wh->i_fc[0] &
2103 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2104 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2105 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2106 
2107 	desc->phy = zyd_plcp_signal(rate);
2108 	if (ZYD_RATE_IS_OFDM(rate)) {
2109 		desc->phy |= ZYD_TX_PHY_OFDM;
2110 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2111 			desc->phy |= ZYD_TX_PHY_5GHZ;
2112 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2113 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2114 
2115 	/* actual transmit length (XXX why +10?) */
2116 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2117 	if (sc->mac_rev == ZYD_ZD1211)
2118 		pktlen += totlen;
2119 	desc->pktlen = htole16(pktlen);
2120 
2121 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2122 	desc->plcp_service = 0;
2123 	if (rate == 22) {
2124 		const int remainder = (16 * totlen) % 22;
2125 		if (remainder != 0 && remainder < 7)
2126 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2127 	}
2128 
2129 	if (sc->sc_drvbpf != NULL) {
2130 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2131 
2132 		tap->wt_flags = 0;
2133 		tap->wt_rate = rate;
2134 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2135 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2136 
2137 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2138 	}
2139 
2140 	m_copydata(m0, 0, m0->m_pkthdr.len,
2141 	    data->buf + sizeof(struct zyd_tx_desc));
2142 
2143 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2144 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2145 
2146 	m_freem(m0);	/* mbuf no longer needed */
2147 
2148 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2149 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2150 	error = usbd_transfer(data->xfer);
2151 	if (error != USBD_IN_PROGRESS && error != 0) {
2152 		if_statinc(ifp, if_oerrors);
2153 		return EIO;
2154 	}
2155 	sc->tx_queued++;
2156 
2157 	return 0;
2158 }
2159 
2160 Static void
2161 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2162 {
2163 	struct zyd_tx_data *data = priv;
2164 	struct zyd_softc *sc = data->sc;
2165 	struct ifnet *ifp = &sc->sc_if;
2166 	int s;
2167 
2168 	if (status != USBD_NORMAL_COMPLETION) {
2169 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2170 			return;
2171 
2172 		printf("%s: could not transmit buffer: %s\n",
2173 		    device_xname(sc->sc_dev), usbd_errstr(status));
2174 
2175 		if (status == USBD_STALLED) {
2176 			usbd_clear_endpoint_stall_async(
2177 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2178 		}
2179 		if_statinc(ifp, if_oerrors);
2180 		return;
2181 	}
2182 
2183 	s = splnet();
2184 
2185 	/* update rate control statistics */
2186 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2187 
2188 	ieee80211_free_node(data->ni);
2189 	data->ni = NULL;
2190 
2191 	sc->tx_queued--;
2192 	if_statinc(ifp, if_opackets);
2193 
2194 	sc->tx_timer = 0;
2195 	ifp->if_flags &= ~IFF_OACTIVE;
2196 	zyd_start(ifp);
2197 
2198 	splx(s);
2199 }
2200 
2201 Static int
2202 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2203 {
2204 	struct ieee80211com *ic = &sc->sc_ic;
2205 	struct ifnet *ifp = &sc->sc_if;
2206 	struct zyd_tx_desc *desc;
2207 	struct zyd_tx_data *data;
2208 	struct ieee80211_frame *wh;
2209 	struct ieee80211_key *k;
2210 	int xferlen, totlen, rate;
2211 	uint16_t pktlen;
2212 	usbd_status error;
2213 
2214 	wh = mtod(m0, struct ieee80211_frame *);
2215 
2216 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2217 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2218 	else
2219 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2220 	rate &= IEEE80211_RATE_VAL;
2221 
2222 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2223 		k = ieee80211_crypto_encap(ic, ni, m0);
2224 		if (k == NULL) {
2225 			m_freem(m0);
2226 			return ENOBUFS;
2227 		}
2228 
2229 		/* packet header may have moved, reset our local pointer */
2230 		wh = mtod(m0, struct ieee80211_frame *);
2231 	}
2232 
2233 	data = &sc->tx_data[0];
2234 	desc = (struct zyd_tx_desc *)data->buf;
2235 
2236 	data->ni = ni;
2237 
2238 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2239 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2240 
2241 	/* fill Tx descriptor */
2242 	desc->len = htole16(totlen);
2243 
2244 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2245 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2246 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2247 		if (totlen > ic->ic_rtsthreshold) {
2248 			desc->flags |= ZYD_TX_FLAG_RTS;
2249 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2250 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2251 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2252 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2253 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2254 				desc->flags |= ZYD_TX_FLAG_RTS;
2255 		}
2256 	} else
2257 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2258 
2259 	if ((wh->i_fc[0] &
2260 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2261 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2262 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2263 
2264 	desc->phy = zyd_plcp_signal(rate);
2265 	if (ZYD_RATE_IS_OFDM(rate)) {
2266 		desc->phy |= ZYD_TX_PHY_OFDM;
2267 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2268 			desc->phy |= ZYD_TX_PHY_5GHZ;
2269 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2270 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2271 
2272 	/* actual transmit length (XXX why +10?) */
2273 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2274 	if (sc->mac_rev == ZYD_ZD1211)
2275 		pktlen += totlen;
2276 	desc->pktlen = htole16(pktlen);
2277 
2278 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2279 	desc->plcp_service = 0;
2280 	if (rate == 22) {
2281 		const int remainder = (16 * totlen) % 22;
2282 		if (remainder != 0 && remainder < 7)
2283 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2284 	}
2285 
2286 	if (sc->sc_drvbpf != NULL) {
2287 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2288 
2289 		tap->wt_flags = 0;
2290 		tap->wt_rate = rate;
2291 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2292 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2293 
2294 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2295 	}
2296 
2297 	m_copydata(m0, 0, m0->m_pkthdr.len,
2298 	    data->buf + sizeof(struct zyd_tx_desc));
2299 
2300 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2301 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2302 
2303 	m_freem(m0);	/* mbuf no longer needed */
2304 
2305 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2306 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2307 	error = usbd_transfer(data->xfer);
2308 	if (error != USBD_IN_PROGRESS && error != 0) {
2309 		if_statinc(ifp, if_oerrors);
2310 		return EIO;
2311 	}
2312 	sc->tx_queued++;
2313 
2314 	return 0;
2315 }
2316 
2317 Static void
2318 zyd_start(struct ifnet *ifp)
2319 {
2320 	struct zyd_softc *sc = ifp->if_softc;
2321 	struct ieee80211com *ic = &sc->sc_ic;
2322 	struct ether_header *eh;
2323 	struct ieee80211_node *ni;
2324 	struct mbuf *m0;
2325 
2326 	for (;;) {
2327 		IF_POLL(&ic->ic_mgtq, m0);
2328 		if (m0 != NULL) {
2329 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2330 				ifp->if_flags |= IFF_OACTIVE;
2331 				break;
2332 			}
2333 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2334 
2335 			ni = M_GETCTX(m0, struct ieee80211_node *);
2336 			M_CLEARCTX(m0);
2337 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2338 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2339 				break;
2340 		} else {
2341 			if (ic->ic_state != IEEE80211_S_RUN)
2342 				break;
2343 			IFQ_POLL(&ifp->if_snd, m0);
2344 			if (m0 == NULL)
2345 				break;
2346 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2347 				ifp->if_flags |= IFF_OACTIVE;
2348 				break;
2349 			}
2350 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2351 
2352 			if (m0->m_len < sizeof(struct ether_header) &&
2353 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2354 				continue;
2355 
2356 			eh = mtod(m0, struct ether_header *);
2357 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2358 			if (ni == NULL) {
2359 				m_freem(m0);
2360 				continue;
2361 			}
2362 			bpf_mtap(ifp, m0, BPF_D_OUT);
2363 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2364 				ieee80211_free_node(ni);
2365 				if_statinc(ifp, if_oerrors);
2366 				continue;
2367 			}
2368 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2369 			if (zyd_tx_data(sc, m0, ni) != 0) {
2370 				ieee80211_free_node(ni);
2371 				if_statinc(ifp, if_oerrors);
2372 				break;
2373 			}
2374 		}
2375 
2376 		sc->tx_timer = 5;
2377 		ifp->if_timer = 1;
2378 	}
2379 }
2380 
2381 Static void
2382 zyd_watchdog(struct ifnet *ifp)
2383 {
2384 	struct zyd_softc *sc = ifp->if_softc;
2385 	struct ieee80211com *ic = &sc->sc_ic;
2386 
2387 	ifp->if_timer = 0;
2388 
2389 	if (sc->tx_timer > 0) {
2390 		if (--sc->tx_timer == 0) {
2391 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2392 			/* zyd_init(ifp); XXX needs a process context ? */
2393 			if_statinc(ifp, if_oerrors);
2394 			return;
2395 		}
2396 		ifp->if_timer = 1;
2397 	}
2398 
2399 	ieee80211_watchdog(ic);
2400 }
2401 
2402 Static int
2403 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2404 {
2405 	struct zyd_softc *sc = ifp->if_softc;
2406 	struct ieee80211com *ic = &sc->sc_ic;
2407 	int s, error = 0;
2408 
2409 	s = splnet();
2410 
2411 	switch (cmd) {
2412 	case SIOCSIFFLAGS:
2413 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2414 			break;
2415 		/* XXX re-use ether_ioctl() */
2416 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2417 		case IFF_UP:
2418 			zyd_init(ifp);
2419 			break;
2420 		case IFF_RUNNING:
2421 			zyd_stop(ifp, 1);
2422 			break;
2423 		default:
2424 			break;
2425 		}
2426 		break;
2427 
2428 	default:
2429 		error = ieee80211_ioctl(ic, cmd, data);
2430 	}
2431 
2432 	if (error == ENETRESET) {
2433 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2434 		    (IFF_RUNNING | IFF_UP))
2435 			zyd_init(ifp);
2436 		error = 0;
2437 	}
2438 
2439 	splx(s);
2440 
2441 	return error;
2442 }
2443 
2444 Static int
2445 zyd_init(struct ifnet *ifp)
2446 {
2447 	struct zyd_softc *sc = ifp->if_softc;
2448 	struct ieee80211com *ic = &sc->sc_ic;
2449 	int i, error;
2450 
2451 	zyd_stop(ifp, 0);
2452 
2453 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2454 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2455 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2456 	if (error != 0)
2457 		return error;
2458 
2459 	/* we'll do software WEP decryption for now */
2460 	DPRINTF(("setting encryption type\n"));
2461 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2462 	if (error != 0)
2463 		return error;
2464 
2465 	/* promiscuous mode */
2466 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2467 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2468 
2469 	(void)zyd_set_rxfilter(sc);
2470 
2471 	/* switch radio transmitter ON */
2472 	(void)zyd_switch_radio(sc, 1);
2473 
2474 	/* set basic rates */
2475 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2476 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2477 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2478 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2479 	else	/* assumes 802.11b/g */
2480 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2481 
2482 	/* set mandatory rates */
2483 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2484 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2485 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2486 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2487 	else	/* assumes 802.11b/g */
2488 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2489 
2490 	/* set default BSS channel */
2491 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2492 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2493 
2494 	/* enable interrupts */
2495 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2496 
2497 	/*
2498 	 * Allocate Tx and Rx xfer queues.
2499 	 */
2500 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2501 		printf("%s: could not allocate Tx list\n",
2502 		    device_xname(sc->sc_dev));
2503 		goto fail;
2504 	}
2505 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2506 		printf("%s: could not allocate Rx list\n",
2507 		    device_xname(sc->sc_dev));
2508 		goto fail;
2509 	}
2510 
2511 	/*
2512 	 * Start up the receive pipe.
2513 	 */
2514 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2515 		struct zyd_rx_data *data = &sc->rx_data[i];
2516 
2517 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2518 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2519 		error = usbd_transfer(data->xfer);
2520 		if (error != USBD_IN_PROGRESS && error != 0) {
2521 			printf("%s: could not queue Rx transfer\n",
2522 			    device_xname(sc->sc_dev));
2523 			goto fail;
2524 		}
2525 	}
2526 
2527 	ifp->if_flags &= ~IFF_OACTIVE;
2528 	ifp->if_flags |= IFF_RUNNING;
2529 
2530 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2531 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2532 	else
2533 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2534 
2535 	return 0;
2536 
2537 fail:	zyd_stop(ifp, 1);
2538 	return error;
2539 }
2540 
2541 Static void
2542 zyd_stop(struct ifnet *ifp, int disable)
2543 {
2544 	struct zyd_softc *sc = ifp->if_softc;
2545 	struct ieee80211com *ic = &sc->sc_ic;
2546 
2547 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2548 
2549 	sc->tx_timer = 0;
2550 	ifp->if_timer = 0;
2551 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2552 
2553 	/* switch radio transmitter OFF */
2554 	(void)zyd_switch_radio(sc, 0);
2555 
2556 	/* disable Rx */
2557 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2558 
2559 	/* disable interrupts */
2560 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2561 
2562 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2563 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2564 
2565 	zyd_free_rx_list(sc);
2566 	zyd_free_tx_list(sc);
2567 }
2568 
2569 Static int
2570 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2571 {
2572 	usb_device_request_t req;
2573 	uint16_t addr;
2574 	uint8_t stat;
2575 
2576 	DPRINTF(("firmware size=%zu\n", size));
2577 
2578 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2579 	req.bRequest = ZYD_DOWNLOADREQ;
2580 	USETW(req.wIndex, 0);
2581 
2582 	addr = ZYD_FIRMWARE_START_ADDR;
2583 	while (size > 0) {
2584 #if 0
2585 		const int mlen = uimin(size, 4096);
2586 #else
2587 		/*
2588 		 * XXXX: When the transfer size is 4096 bytes, it is not
2589 		 * likely to be able to transfer it.
2590 		 * The cause is port or machine or chip?
2591 		 */
2592 		const int mlen = uimin(size, 64);
2593 #endif
2594 
2595 		DPRINTF(("loading firmware block: len=%d, addr=%#x\n", mlen,
2596 		    addr));
2597 
2598 		USETW(req.wValue, addr);
2599 		USETW(req.wLength, mlen);
2600 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2601 			return EIO;
2602 
2603 		addr += mlen / 2;
2604 		fw   += mlen;
2605 		size -= mlen;
2606 	}
2607 
2608 	/* check whether the upload succeeded */
2609 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2610 	req.bRequest = ZYD_DOWNLOADSTS;
2611 	USETW(req.wValue, 0);
2612 	USETW(req.wIndex, 0);
2613 	USETW(req.wLength, sizeof(stat));
2614 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2615 		return EIO;
2616 
2617 	return (stat & 0x80) ? EIO : 0;
2618 }
2619 
2620 Static void
2621 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2622 {
2623 	struct zyd_softc *sc = arg;
2624 	struct zyd_node *zn = (struct zyd_node *)ni;
2625 
2626 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2627 }
2628 
2629 Static void
2630 zyd_amrr_timeout(void *arg)
2631 {
2632 	struct zyd_softc *sc = arg;
2633 	struct ieee80211com *ic = &sc->sc_ic;
2634 	int s;
2635 
2636 	s = splnet();
2637 	if (ic->ic_opmode == IEEE80211_M_STA)
2638 		zyd_iter_func(sc, ic->ic_bss);
2639 	else
2640 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2641 	splx(s);
2642 
2643 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2644 }
2645 
2646 Static void
2647 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2648 {
2649 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2650 	int i;
2651 
2652 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2653 
2654 	/* set rate to some reasonable initial value */
2655 	for (i = ni->ni_rates.rs_nrates - 1;
2656 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2657 	     i--);
2658 	ni->ni_txrate = i;
2659 }
2660 
2661 static int
2662 zyd_activate(device_t self, enum devact act)
2663 {
2664 	struct zyd_softc *sc = device_private(self);
2665 
2666 	switch (act) {
2667 	case DVACT_DEACTIVATE:
2668 		if_deactivate(&sc->sc_if);
2669 		return 0;
2670 	default:
2671 		return EOPNOTSUPP;
2672 	}
2673 }
2674