1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.59 2020/03/15 23:04:51 thorpej Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.59 2020/03/15 23:04:51 thorpej Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_usb.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/proc.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/kmem.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/if_dl.h> 51 #include <net/if_ether.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 55 #include <netinet/in.h> 56 #include <netinet/in_systm.h> 57 #include <netinet/in_var.h> 58 #include <netinet/ip.h> 59 60 #include <net80211/ieee80211_netbsd.h> 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_amrr.h> 63 #include <net80211/ieee80211_radiotap.h> 64 65 #include <dev/firmload.h> 66 67 #include <dev/usb/usb.h> 68 #include <dev/usb/usbdi.h> 69 #include <dev/usb/usbdi_util.h> 70 #include <dev/usb/usbdevs.h> 71 72 #include <dev/usb/if_zydreg.h> 73 74 #ifdef ZYD_DEBUG 75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 77 int zyddebug = 0; 78 #else 79 #define DPRINTF(x) 80 #define DPRINTFN(n, x) 81 #endif 82 83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 85 86 /* various supported device vendors/products */ 87 #define ZYD_ZD1211_DEV(v, p) \ 88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 89 #define ZYD_ZD1211B_DEV(v, p) \ 90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 91 static const struct zyd_type { 92 struct usb_devno dev; 93 uint8_t rev; 94 #define ZYD_ZD1211 0 95 #define ZYD_ZD1211B 1 96 } zyd_devs[] = { 97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 98 ZYD_ZD1211_DEV(ABOCOM, WL54), 99 ZYD_ZD1211_DEV(ASUSTEK, WL159G), 100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 106 ZYD_ZD1211_DEV(SAGEM, XG760A), 107 ZYD_ZD1211_DEV(SENAO, NUB8301), 108 ZYD_ZD1211_DEV(SITECOMEU, WL113), 109 ZYD_ZD1211_DEV(SWEEX, ZD1211), 110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 113 ZYD_ZD1211_DEV(TWINMOS, G240), 114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 118 ZYD_ZD1211_DEV(ZCOM, ZD1211), 119 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 120 ZYD_ZD1211_DEV(ZYXEL, AG225H), 121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 122 ZYD_ZD1211_DEV(ZYXEL, G200V2), 123 124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 126 ZYD_ZD1211B_DEV(ACCTON, WUS201), 127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI), 129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 135 ZYD_ZD1211B_DEV(MELCO, KG54L), 136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS), 139 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 140 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 145 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 146 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 147 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 148 ZYD_ZD1211B_DEV(USR, USR5423), 149 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 150 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 152 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 153 ZYD_ZD1211B_DEV(ZYXEL, M202), 154 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 155 }; 156 #define zyd_lookup(v, p) \ 157 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 158 159 static int zyd_match(device_t, cfdata_t, void *); 160 static void zyd_attach(device_t, device_t, void *); 161 static int zyd_detach(device_t, int); 162 static int zyd_activate(device_t, enum devact); 163 164 165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match, 166 zyd_attach, zyd_detach, zyd_activate); 167 168 Static void zyd_attachhook(device_t); 169 Static int zyd_complete_attach(struct zyd_softc *); 170 Static int zyd_open_pipes(struct zyd_softc *); 171 Static void zyd_close_pipes(struct zyd_softc *); 172 Static int zyd_alloc_tx_list(struct zyd_softc *); 173 Static void zyd_free_tx_list(struct zyd_softc *); 174 Static int zyd_alloc_rx_list(struct zyd_softc *); 175 Static void zyd_free_rx_list(struct zyd_softc *); 176 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); 177 Static int zyd_media_change(struct ifnet *); 178 Static void zyd_next_scan(void *); 179 Static void zyd_task(void *); 180 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 181 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 182 void *, int, u_int); 183 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 184 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 185 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 186 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 187 Static int zyd_rfwrite(struct zyd_softc *, uint32_t); 188 Static void zyd_lock_phy(struct zyd_softc *); 189 Static void zyd_unlock_phy(struct zyd_softc *); 190 Static int zyd_rfmd_init(struct zyd_rf *); 191 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 192 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 193 Static int zyd_al2230_init(struct zyd_rf *); 194 Static int zyd_al2230_switch_radio(struct zyd_rf *, int); 195 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 196 Static int zyd_al2230_init_b(struct zyd_rf *); 197 Static int zyd_al7230B_init(struct zyd_rf *); 198 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 199 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 200 Static int zyd_al2210_init(struct zyd_rf *); 201 Static int zyd_al2210_switch_radio(struct zyd_rf *, int); 202 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 203 Static int zyd_gct_init(struct zyd_rf *); 204 Static int zyd_gct_switch_radio(struct zyd_rf *, int); 205 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 206 Static int zyd_maxim_init(struct zyd_rf *); 207 Static int zyd_maxim_switch_radio(struct zyd_rf *, int); 208 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 209 Static int zyd_maxim2_init(struct zyd_rf *); 210 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 211 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 212 Static int zyd_rf_attach(struct zyd_softc *, uint8_t); 213 Static const char *zyd_rf_name(uint8_t); 214 Static int zyd_hw_init(struct zyd_softc *); 215 Static int zyd_read_eeprom(struct zyd_softc *); 216 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 217 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 218 Static int zyd_switch_radio(struct zyd_softc *, int); 219 Static void zyd_set_led(struct zyd_softc *, int, int); 220 Static int zyd_set_rxfilter(struct zyd_softc *); 221 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 222 Static int zyd_set_beacon_interval(struct zyd_softc *, int); 223 Static uint8_t zyd_plcp_signal(int); 224 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status); 225 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 226 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status); 227 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status); 228 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, 229 struct ieee80211_node *); 230 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *, 231 struct ieee80211_node *); 232 Static void zyd_start(struct ifnet *); 233 Static void zyd_watchdog(struct ifnet *); 234 Static int zyd_ioctl(struct ifnet *, u_long, void *); 235 Static int zyd_init(struct ifnet *); 236 Static void zyd_stop(struct ifnet *, int); 237 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 238 Static void zyd_iter_func(void *, struct ieee80211_node *); 239 Static void zyd_amrr_timeout(void *); 240 Static void zyd_newassoc(struct ieee80211_node *, int); 241 242 static int 243 zyd_match(device_t parent, cfdata_t match, void *aux) 244 { 245 struct usb_attach_arg *uaa = aux; 246 247 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 249 } 250 251 Static void 252 zyd_attachhook(device_t self) 253 { 254 struct zyd_softc *sc = device_private(self); 255 firmware_handle_t fwh; 256 const char *fwname; 257 u_char *fw; 258 size_t size; 259 int error; 260 261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b"; 262 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) { 263 aprint_error_dev(sc->sc_dev, 264 "failed to open firmware %s (error=%d)\n", fwname, error); 265 return; 266 } 267 size = firmware_get_size(fwh); 268 fw = firmware_malloc(size); 269 if (fw == NULL) { 270 aprint_error_dev(sc->sc_dev, 271 "failed to allocate firmware memory\n"); 272 firmware_close(fwh); 273 return; 274 } 275 error = firmware_read(fwh, 0, fw, size); 276 firmware_close(fwh); 277 if (error != 0) { 278 aprint_error_dev(sc->sc_dev, 279 "failed to read firmware (error %d)\n", error); 280 firmware_free(fw, size); 281 return; 282 } 283 284 error = zyd_loadfirmware(sc, fw, size); 285 if (error != 0) { 286 aprint_error_dev(sc->sc_dev, 287 "could not load firmware (error=%d)\n", error); 288 firmware_free(fw, size); 289 return; 290 } 291 292 firmware_free(fw, size); 293 294 /* complete the attach process */ 295 if ((error = zyd_complete_attach(sc)) == 0) 296 sc->attached = 1; 297 return; 298 } 299 300 static void 301 zyd_attach(device_t parent, device_t self, void *aux) 302 { 303 struct zyd_softc *sc = device_private(self); 304 struct usb_attach_arg *uaa = aux; 305 char *devinfop; 306 usb_device_descriptor_t* ddesc; 307 struct ifnet *ifp = &sc->sc_if; 308 309 sc->sc_dev = self; 310 sc->sc_udev = uaa->uaa_device; 311 312 aprint_naive("\n"); 313 aprint_normal("\n"); 314 315 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0); 316 aprint_normal_dev(self, "%s\n", devinfop); 317 usbd_devinfo_free(devinfop); 318 319 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev; 320 321 ddesc = usbd_get_device_descriptor(sc->sc_udev); 322 if (UGETW(ddesc->bcdDevice) < 0x4330) { 323 aprint_error_dev(self, "device version mismatch: %#x " 324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); 325 return; 326 } 327 328 ifp->if_softc = sc; 329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 330 ifp->if_init = zyd_init; 331 ifp->if_ioctl = zyd_ioctl; 332 ifp->if_start = zyd_start; 333 ifp->if_watchdog = zyd_watchdog; 334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 335 IFQ_SET_READY(&ifp->if_snd); 336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 337 338 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 339 cv_init(&sc->sc_cmdcv, "zydcmd"); 340 SIMPLEQ_INIT(&sc->sc_rqh); 341 342 /* defer configrations after file system is ready to load firmware */ 343 config_mountroot(self, zyd_attachhook); 344 } 345 346 Static int 347 zyd_complete_attach(struct zyd_softc *sc) 348 { 349 struct ieee80211com *ic = &sc->sc_ic; 350 struct ifnet *ifp = &sc->sc_if; 351 usbd_status error; 352 int i; 353 354 usb_init_task(&sc->sc_task, zyd_task, sc, 0); 355 callout_init(&(sc->sc_scan_ch), 0); 356 357 sc->amrr.amrr_min_success_threshold = 1; 358 sc->amrr.amrr_max_success_threshold = 10; 359 callout_init(&sc->sc_amrr_ch, 0); 360 361 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 362 if (error != 0) { 363 aprint_error_dev(sc->sc_dev, "failed to set configuration" 364 ", err=%s\n", usbd_errstr(error)); 365 goto fail; 366 } 367 368 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 369 &sc->sc_iface); 370 if (error != 0) { 371 aprint_error_dev(sc->sc_dev, 372 "getting interface handle failed\n"); 373 goto fail; 374 } 375 376 if ((error = zyd_open_pipes(sc)) != 0) { 377 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 378 goto fail; 379 } 380 381 if ((error = zyd_read_eeprom(sc)) != 0) { 382 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n"); 383 goto fail; 384 } 385 386 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 387 aprint_error_dev(sc->sc_dev, "could not attach RF\n"); 388 goto fail; 389 } 390 391 if ((error = zyd_hw_init(sc)) != 0) { 392 aprint_error_dev(sc->sc_dev, 393 "hardware initialization failed\n"); 394 goto fail; 395 } 396 397 aprint_normal_dev(sc->sc_dev, 398 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 399 (sc->mac_rev == ZYD_ZD1211) ? "": "B", 400 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 401 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 402 403 ic->ic_ifp = ifp; 404 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 405 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 406 ic->ic_state = IEEE80211_S_INIT; 407 408 /* set device capabilities */ 409 ic->ic_caps = 410 IEEE80211_C_MONITOR | /* monitor mode supported */ 411 IEEE80211_C_TXPMGT | /* tx power management */ 412 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 413 IEEE80211_C_WEP; /* s/w WEP */ 414 415 /* set supported .11b and .11g rates */ 416 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 417 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 418 419 /* set supported .11b and .11g channels (1 through 14) */ 420 for (i = 1; i <= 14; i++) { 421 ic->ic_channels[i].ic_freq = 422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 423 ic->ic_channels[i].ic_flags = 424 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 425 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 426 } 427 428 if_attach(ifp); 429 ieee80211_ifattach(ic); 430 ic->ic_node_alloc = zyd_node_alloc; 431 ic->ic_newassoc = zyd_newassoc; 432 433 /* override state transition machine */ 434 sc->sc_newstate = ic->ic_newstate; 435 ic->ic_newstate = zyd_newstate; 436 437 /* XXX media locking needs revisiting */ 438 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB); 439 ieee80211_media_init_with_lock(ic, 440 zyd_media_change, ieee80211_media_status, &sc->sc_media_mtx); 441 442 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 443 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 444 &sc->sc_drvbpf); 445 446 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 447 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 448 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 449 450 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 451 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 452 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 453 454 ieee80211_announce(ic); 455 456 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 457 458 fail: return error; 459 } 460 461 static int 462 zyd_detach(device_t self, int flags) 463 { 464 struct zyd_softc *sc = device_private(self); 465 struct ieee80211com *ic = &sc->sc_ic; 466 struct ifnet *ifp = &sc->sc_if; 467 468 if (!sc->attached) 469 return 0; 470 471 mutex_enter(&sc->sc_lock); 472 473 zyd_stop(ifp, 1); 474 callout_halt(&sc->sc_scan_ch, NULL); 475 callout_halt(&sc->sc_amrr_ch, NULL); 476 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL); 477 478 /* Abort, etc. done by zyd_stop */ 479 zyd_close_pipes(sc); 480 481 sc->attached = 0; 482 483 bpf_detach(ifp); 484 ieee80211_ifdetach(ic); 485 if_detach(ifp); 486 487 mutex_exit(&sc->sc_lock); 488 489 mutex_destroy(&sc->sc_lock); 490 cv_destroy(&sc->sc_cmdcv); 491 492 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 493 494 return 0; 495 } 496 497 Static int 498 zyd_open_pipes(struct zyd_softc *sc) 499 { 500 usb_endpoint_descriptor_t *edesc; 501 usbd_status error; 502 503 /* interrupt in */ 504 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 505 if (edesc == NULL) 506 return EINVAL; 507 508 sc->ibuf_size = UGETW(edesc->wMaxPacketSize); 509 if (sc->ibuf_size == 0) /* should not happen */ 510 return EINVAL; 511 512 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP); 513 514 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 515 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr, 516 USBD_DEFAULT_INTERVAL); 517 if (error != 0) { 518 printf("%s: open rx intr pipe failed: %s\n", 519 device_xname(sc->sc_dev), usbd_errstr(error)); 520 goto fail; 521 } 522 523 /* interrupt out (not necessarily an interrupt pipe) */ 524 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 525 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 526 if (error != 0) { 527 printf("%s: open tx intr pipe failed: %s\n", 528 device_xname(sc->sc_dev), usbd_errstr(error)); 529 goto fail; 530 } 531 532 /* bulk in */ 533 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 534 &sc->zyd_ep[ZYD_ENDPT_BIN]); 535 if (error != 0) { 536 printf("%s: open rx pipe failed: %s\n", 537 device_xname(sc->sc_dev), usbd_errstr(error)); 538 goto fail; 539 } 540 541 /* bulk out */ 542 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 543 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 544 if (error != 0) { 545 printf("%s: open tx pipe failed: %s\n", 546 device_xname(sc->sc_dev), usbd_errstr(error)); 547 goto fail; 548 } 549 550 return 0; 551 552 fail: zyd_close_pipes(sc); 553 return error; 554 } 555 556 Static void 557 zyd_close_pipes(struct zyd_softc *sc) 558 { 559 int i; 560 561 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 562 if (sc->zyd_ep[i] != NULL) { 563 usbd_close_pipe(sc->zyd_ep[i]); 564 sc->zyd_ep[i] = NULL; 565 } 566 } 567 if (sc->ibuf != NULL) { 568 kmem_free(sc->ibuf, sc->ibuf_size); 569 sc->ibuf = NULL; 570 } 571 } 572 573 Static int 574 zyd_alloc_tx_list(struct zyd_softc *sc) 575 { 576 int i, error; 577 578 sc->tx_queued = 0; 579 580 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 581 struct zyd_tx_data *data = &sc->tx_data[i]; 582 583 data->sc = sc; /* backpointer for callbacks */ 584 585 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT], 586 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer); 587 if (error) { 588 printf("%s: could not allocate tx xfer\n", 589 device_xname(sc->sc_dev)); 590 goto fail; 591 } 592 data->buf = usbd_get_buffer(data->xfer); 593 594 /* clear Tx descriptor */ 595 memset(data->buf, 0, sizeof(struct zyd_tx_desc)); 596 } 597 return 0; 598 599 fail: zyd_free_tx_list(sc); 600 return error; 601 } 602 603 Static void 604 zyd_free_tx_list(struct zyd_softc *sc) 605 { 606 int i; 607 608 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 609 struct zyd_tx_data *data = &sc->tx_data[i]; 610 611 if (data->xfer != NULL) { 612 usbd_destroy_xfer(data->xfer); 613 data->xfer = NULL; 614 } 615 if (data->ni != NULL) { 616 ieee80211_free_node(data->ni); 617 data->ni = NULL; 618 } 619 } 620 } 621 622 Static int 623 zyd_alloc_rx_list(struct zyd_softc *sc) 624 { 625 int i, error; 626 627 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 628 struct zyd_rx_data *data = &sc->rx_data[i]; 629 630 data->sc = sc; /* backpointer for callbacks */ 631 632 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN], 633 ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer); 634 if (error) { 635 printf("%s: could not allocate rx xfer\n", 636 device_xname(sc->sc_dev)); 637 goto fail; 638 } 639 data->buf = usbd_get_buffer(data->xfer); 640 } 641 return 0; 642 643 fail: zyd_free_rx_list(sc); 644 return error; 645 } 646 647 Static void 648 zyd_free_rx_list(struct zyd_softc *sc) 649 { 650 int i; 651 652 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 653 struct zyd_rx_data *data = &sc->rx_data[i]; 654 655 if (data->xfer != NULL) { 656 usbd_destroy_xfer(data->xfer); 657 data->xfer = NULL; 658 } 659 } 660 } 661 662 /* ARGUSED */ 663 Static struct ieee80211_node * 664 zyd_node_alloc(struct ieee80211_node_table *nt __unused) 665 { 666 struct zyd_node *zn; 667 668 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); 669 return zn ? &zn->ni : NULL; 670 } 671 672 Static int 673 zyd_media_change(struct ifnet *ifp) 674 { 675 int error; 676 677 error = ieee80211_media_change(ifp); 678 if (error != ENETRESET) 679 return error; 680 681 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 682 zyd_init(ifp); 683 684 return 0; 685 } 686 687 /* 688 * This function is called periodically (every 200ms) during scanning to 689 * switch from one channel to another. 690 */ 691 Static void 692 zyd_next_scan(void *arg) 693 { 694 struct zyd_softc *sc = arg; 695 struct ieee80211com *ic = &sc->sc_ic; 696 697 if (ic->ic_state == IEEE80211_S_SCAN) 698 ieee80211_next_scan(ic); 699 } 700 701 Static void 702 zyd_task(void *arg) 703 { 704 struct zyd_softc *sc = arg; 705 struct ieee80211com *ic = &sc->sc_ic; 706 enum ieee80211_state ostate; 707 708 ostate = ic->ic_state; 709 710 switch (sc->sc_state) { 711 case IEEE80211_S_INIT: 712 if (ostate == IEEE80211_S_RUN) { 713 /* turn link LED off */ 714 zyd_set_led(sc, ZYD_LED1, 0); 715 716 /* stop data LED from blinking */ 717 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 718 } 719 break; 720 721 case IEEE80211_S_SCAN: 722 zyd_set_chan(sc, ic->ic_curchan); 723 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc); 724 break; 725 726 case IEEE80211_S_AUTH: 727 case IEEE80211_S_ASSOC: 728 zyd_set_chan(sc, ic->ic_curchan); 729 break; 730 731 case IEEE80211_S_RUN: 732 { 733 struct ieee80211_node *ni = ic->ic_bss; 734 735 zyd_set_chan(sc, ic->ic_curchan); 736 737 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 738 /* turn link LED on */ 739 zyd_set_led(sc, ZYD_LED1, 1); 740 741 /* make data LED blink upon Tx */ 742 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 743 744 zyd_set_bssid(sc, ni->ni_bssid); 745 } 746 747 if (ic->ic_opmode == IEEE80211_M_STA) { 748 /* fake a join to init the tx rate */ 749 zyd_newassoc(ni, 1); 750 } 751 752 /* start automatic rate control timer */ 753 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 754 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 755 756 break; 757 } 758 } 759 760 sc->sc_newstate(ic, sc->sc_state, -1); 761 } 762 763 Static int 764 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 765 { 766 struct zyd_softc *sc = ic->ic_ifp->if_softc; 767 768 if (!sc->attached) 769 return ENXIO; 770 771 /* 772 * XXXSMP: This does not wait for the task, if it is in flight, 773 * to complete. If this code works at all, it must rely on the 774 * kernel lock to serialize with the USB task thread. 775 */ 776 usb_rem_task(sc->sc_udev, &sc->sc_task); 777 callout_stop(&sc->sc_scan_ch); 778 callout_stop(&sc->sc_amrr_ch); 779 780 /* do it in a process context */ 781 sc->sc_state = nstate; 782 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 783 784 return 0; 785 } 786 787 Static int 788 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 789 void *odata, int olen, u_int flags) 790 { 791 struct usbd_xfer *xfer; 792 struct zyd_cmd cmd; 793 struct rq rq; 794 uint16_t xferflags; 795 int error; 796 usbd_status uerror; 797 798 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT], 799 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer); 800 if (error) 801 return error; 802 803 cmd.code = htole16(code); 804 memcpy(cmd.data, idata, ilen); 805 806 xferflags = USBD_FORCE_SHORT_XFER; 807 if (!(flags & ZYD_CMD_FLAG_READ)) 808 xferflags |= USBD_SYNCHRONOUS; 809 else { 810 rq.idata = idata; 811 rq.odata = odata; 812 rq.len = olen / sizeof(struct zyd_pair); 813 mutex_enter(&sc->sc_lock); 814 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 815 mutex_exit(&sc->sc_lock); 816 } 817 818 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags, 819 ZYD_INTR_TIMEOUT, NULL); 820 uerror = usbd_transfer(xfer); 821 if (uerror != USBD_IN_PROGRESS && uerror != 0) { 822 printf("%s: could not send command (error=%s)\n", 823 device_xname(sc->sc_dev), usbd_errstr(uerror)); 824 (void)usbd_destroy_xfer(xfer); 825 return EIO; 826 } 827 if (!(flags & ZYD_CMD_FLAG_READ)) { 828 (void)usbd_destroy_xfer(xfer); 829 return 0; /* write: don't wait for reply */ 830 } 831 /* wait at most one second for command reply */ 832 mutex_enter(&sc->sc_lock); 833 error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz); 834 if (error == EWOULDBLOCK) 835 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev)); 836 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); 837 mutex_exit(&sc->sc_lock); 838 839 (void)usbd_destroy_xfer(xfer); 840 return error; 841 } 842 843 Static int 844 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 845 { 846 struct zyd_pair tmp; 847 int error; 848 849 reg = htole16(reg); 850 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 851 ZYD_CMD_FLAG_READ); 852 if (error == 0) 853 *val = le16toh(tmp.val); 854 else 855 *val = 0; 856 return error; 857 } 858 859 Static int 860 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 861 { 862 struct zyd_pair tmp[2]; 863 uint16_t regs[2]; 864 int error; 865 866 regs[0] = htole16(ZYD_REG32_HI(reg)); 867 regs[1] = htole16(ZYD_REG32_LO(reg)); 868 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 869 ZYD_CMD_FLAG_READ); 870 if (error == 0) 871 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 872 else 873 *val = 0; 874 return error; 875 } 876 877 Static int 878 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 879 { 880 struct zyd_pair pair; 881 882 pair.reg = htole16(reg); 883 pair.val = htole16(val); 884 885 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 886 } 887 888 Static int 889 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 890 { 891 struct zyd_pair pair[2]; 892 893 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 894 pair[0].val = htole16(val >> 16); 895 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 896 pair[1].val = htole16(val & 0xffff); 897 898 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 899 } 900 901 Static int 902 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 903 { 904 struct zyd_rf *rf = &sc->sc_rf; 905 struct zyd_rfwrite req; 906 uint16_t cr203; 907 int i; 908 909 (void)zyd_read16(sc, ZYD_CR203, &cr203); 910 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 911 912 req.code = htole16(2); 913 req.width = htole16(rf->width); 914 for (i = 0; i < rf->width; i++) { 915 req.bit[i] = htole16(cr203); 916 if (val & (1 << (rf->width - 1 - i))) 917 req.bit[i] |= htole16(ZYD_RF_DATA); 918 } 919 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 920 } 921 922 Static void 923 zyd_lock_phy(struct zyd_softc *sc) 924 { 925 uint32_t tmp; 926 927 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 928 tmp &= ~ZYD_UNLOCK_PHY_REGS; 929 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 930 } 931 932 Static void 933 zyd_unlock_phy(struct zyd_softc *sc) 934 { 935 uint32_t tmp; 936 937 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 938 tmp |= ZYD_UNLOCK_PHY_REGS; 939 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 940 } 941 942 /* 943 * RFMD RF methods. 944 */ 945 Static int 946 zyd_rfmd_init(struct zyd_rf *rf) 947 { 948 struct zyd_softc *sc = rf->rf_sc; 949 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 950 static const uint32_t rfini[] = ZYD_RFMD_RF; 951 int error; 952 size_t i; 953 954 /* init RF-dependent PHY registers */ 955 for (i = 0; i < __arraycount(phyini); i++) { 956 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 957 if (error != 0) 958 return error; 959 } 960 961 /* init RFMD radio */ 962 for (i = 0; i < __arraycount(rfini); i++) { 963 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 964 return error; 965 } 966 return 0; 967 } 968 969 Static int 970 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 971 { 972 struct zyd_softc *sc = rf->rf_sc; 973 974 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 975 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 976 977 return 0; 978 } 979 980 Static int 981 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 982 { 983 struct zyd_softc *sc = rf->rf_sc; 984 static const struct { 985 uint32_t r1, r2; 986 } rfprog[] = ZYD_RFMD_CHANTABLE; 987 988 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 989 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 990 991 return 0; 992 } 993 994 /* 995 * AL2230 RF methods. 996 */ 997 Static int 998 zyd_al2230_init(struct zyd_rf *rf) 999 { 1000 struct zyd_softc *sc = rf->rf_sc; 1001 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1002 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1003 static const uint32_t rfini[] = ZYD_AL2230_RF; 1004 int error; 1005 size_t i; 1006 1007 /* init RF-dependent PHY registers */ 1008 for (i = 0; i < __arraycount(phyini); i++) { 1009 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1010 if (error != 0) 1011 return error; 1012 } 1013 1014 if (sc->rf_rev == ZYD_RF_AL2230S) { 1015 for (i = 0; i < __arraycount(phy2230s); i++) { 1016 error = zyd_write16(sc, phy2230s[i].reg, 1017 phy2230s[i].val); 1018 if (error != 0) 1019 return error; 1020 } 1021 } 1022 1023 /* init AL2230 radio */ 1024 for (i = 0; i < __arraycount(rfini); i++) { 1025 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1026 return error; 1027 } 1028 return 0; 1029 } 1030 1031 Static int 1032 zyd_al2230_init_b(struct zyd_rf *rf) 1033 { 1034 struct zyd_softc *sc = rf->rf_sc; 1035 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1036 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1037 int error; 1038 size_t i; 1039 1040 /* init RF-dependent PHY registers */ 1041 for (i = 0; i < __arraycount(phyini); i++) { 1042 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1043 if (error != 0) 1044 return error; 1045 } 1046 1047 /* init AL2230 radio */ 1048 for (i = 0; i < __arraycount(rfini); i++) { 1049 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1050 return error; 1051 } 1052 return 0; 1053 } 1054 1055 Static int 1056 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1057 { 1058 struct zyd_softc *sc = rf->rf_sc; 1059 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1060 1061 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1062 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1063 1064 return 0; 1065 } 1066 1067 Static int 1068 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1069 { 1070 struct zyd_softc *sc = rf->rf_sc; 1071 static const struct { 1072 uint32_t r1, r2, r3; 1073 } rfprog[] = ZYD_AL2230_CHANTABLE; 1074 1075 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1076 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1077 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1078 1079 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1080 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1081 1082 return 0; 1083 } 1084 1085 /* 1086 * AL7230B RF methods. 1087 */ 1088 Static int 1089 zyd_al7230B_init(struct zyd_rf *rf) 1090 { 1091 struct zyd_softc *sc = rf->rf_sc; 1092 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1093 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1094 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1095 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1096 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1097 int error; 1098 size_t i; 1099 1100 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1101 1102 /* init RF-dependent PHY registers, part one */ 1103 for (i = 0; i < __arraycount(phyini_1); i++) { 1104 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1105 if (error != 0) 1106 return error; 1107 } 1108 /* init AL7230B radio, part one */ 1109 for (i = 0; i < __arraycount(rfini_1); i++) { 1110 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1111 return error; 1112 } 1113 /* init RF-dependent PHY registers, part two */ 1114 for (i = 0; i < __arraycount(phyini_2); i++) { 1115 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1116 if (error != 0) 1117 return error; 1118 } 1119 /* init AL7230B radio, part two */ 1120 for (i = 0; i < __arraycount(rfini_2); i++) { 1121 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1122 return error; 1123 } 1124 /* init RF-dependent PHY registers, part three */ 1125 for (i = 0; i < __arraycount(phyini_3); i++) { 1126 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1127 if (error != 0) 1128 return error; 1129 } 1130 1131 return 0; 1132 } 1133 1134 Static int 1135 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1136 { 1137 struct zyd_softc *sc = rf->rf_sc; 1138 1139 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1140 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1141 1142 return 0; 1143 } 1144 1145 Static int 1146 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1147 { 1148 struct zyd_softc *sc = rf->rf_sc; 1149 static const struct { 1150 uint32_t r1, r2; 1151 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1152 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1153 int error; 1154 size_t i; 1155 1156 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1157 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1158 1159 for (i = 0; i < __arraycount(rfsc); i++) { 1160 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1161 return error; 1162 } 1163 1164 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1165 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1166 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1167 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1168 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1169 1170 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1171 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1172 (void)zyd_rfwrite(sc, 0x3c9000); 1173 1174 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1175 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1176 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * AL2210 RF methods. 1183 */ 1184 Static int 1185 zyd_al2210_init(struct zyd_rf *rf) 1186 { 1187 struct zyd_softc *sc = rf->rf_sc; 1188 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1189 static const uint32_t rfini[] = ZYD_AL2210_RF; 1190 uint32_t tmp; 1191 int error; 1192 size_t i; 1193 1194 (void)zyd_write32(sc, ZYD_CR18, 2); 1195 1196 /* init RF-dependent PHY registers */ 1197 for (i = 0; i < __arraycount(phyini); i++) { 1198 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1199 if (error != 0) 1200 return error; 1201 } 1202 /* init AL2210 radio */ 1203 for (i = 0; i < __arraycount(rfini); i++) { 1204 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1205 return error; 1206 } 1207 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1208 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1209 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1210 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1211 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1212 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1213 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1214 (void)zyd_write32(sc, ZYD_CR18, 3); 1215 1216 return 0; 1217 } 1218 1219 Static int 1220 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1221 { 1222 /* vendor driver does nothing for this RF chip */ 1223 1224 return 0; 1225 } 1226 1227 Static int 1228 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1229 { 1230 struct zyd_softc *sc = rf->rf_sc; 1231 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1232 uint32_t tmp; 1233 1234 (void)zyd_write32(sc, ZYD_CR18, 2); 1235 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1236 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1237 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1238 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1239 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1240 1241 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1242 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1243 1244 /* actually set the channel */ 1245 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1246 1247 (void)zyd_write32(sc, ZYD_CR18, 3); 1248 1249 return 0; 1250 } 1251 1252 /* 1253 * GCT RF methods. 1254 */ 1255 Static int 1256 zyd_gct_init(struct zyd_rf *rf) 1257 { 1258 struct zyd_softc *sc = rf->rf_sc; 1259 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1260 static const uint32_t rfini[] = ZYD_GCT_RF; 1261 int error; 1262 size_t i; 1263 1264 /* init RF-dependent PHY registers */ 1265 for (i = 0; i < __arraycount(phyini); i++) { 1266 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1267 if (error != 0) 1268 return error; 1269 } 1270 /* init cgt radio */ 1271 for (i = 0; i < __arraycount(rfini); i++) { 1272 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1273 return error; 1274 } 1275 return 0; 1276 } 1277 1278 Static int 1279 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1280 { 1281 /* vendor driver does nothing for this RF chip */ 1282 1283 return 0; 1284 } 1285 1286 Static int 1287 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1288 { 1289 struct zyd_softc *sc = rf->rf_sc; 1290 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1291 1292 (void)zyd_rfwrite(sc, 0x1c0000); 1293 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1294 (void)zyd_rfwrite(sc, 0x1c0008); 1295 1296 return 0; 1297 } 1298 1299 /* 1300 * Maxim RF methods. 1301 */ 1302 Static int 1303 zyd_maxim_init(struct zyd_rf *rf) 1304 { 1305 struct zyd_softc *sc = rf->rf_sc; 1306 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1307 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1308 uint16_t tmp; 1309 int error; 1310 size_t i; 1311 1312 /* init RF-dependent PHY registers */ 1313 for (i = 0; i < __arraycount(phyini); i++) { 1314 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1315 if (error != 0) 1316 return error; 1317 } 1318 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1319 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1320 1321 /* init maxim radio */ 1322 for (i = 0; i < __arraycount(rfini); i++) { 1323 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1324 return error; 1325 } 1326 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1327 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1328 1329 return 0; 1330 } 1331 1332 Static int 1333 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1334 { 1335 /* vendor driver does nothing for this RF chip */ 1336 1337 return 0; 1338 } 1339 1340 Static int 1341 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1342 { 1343 struct zyd_softc *sc = rf->rf_sc; 1344 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1345 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1346 static const struct { 1347 uint32_t r1, r2; 1348 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1349 uint16_t tmp; 1350 int error; 1351 size_t i; 1352 1353 /* 1354 * Do the same as we do when initializing it, except for the channel 1355 * values coming from the two channel tables. 1356 */ 1357 1358 /* init RF-dependent PHY registers */ 1359 for (i = 0; i < __arraycount(phyini); i++) { 1360 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1361 if (error != 0) 1362 return error; 1363 } 1364 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1365 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1366 1367 /* first two values taken from the chantables */ 1368 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1369 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1370 1371 /* init maxim radio - skipping the two first values */ 1372 for (i = 2; i < __arraycount(rfini); i++) { 1373 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1374 return error; 1375 } 1376 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1377 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1378 1379 return 0; 1380 } 1381 1382 /* 1383 * Maxim2 RF methods. 1384 */ 1385 Static int 1386 zyd_maxim2_init(struct zyd_rf *rf) 1387 { 1388 struct zyd_softc *sc = rf->rf_sc; 1389 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1390 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1391 uint16_t tmp; 1392 int error; 1393 size_t i; 1394 1395 /* init RF-dependent PHY registers */ 1396 for (i = 0; i < __arraycount(phyini); i++) { 1397 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1398 if (error != 0) 1399 return error; 1400 } 1401 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1402 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1403 1404 /* init maxim2 radio */ 1405 for (i = 0; i < __arraycount(rfini); i++) { 1406 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1407 return error; 1408 } 1409 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1410 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1411 1412 return 0; 1413 } 1414 1415 Static int 1416 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1417 { 1418 /* vendor driver does nothing for this RF chip */ 1419 1420 return 0; 1421 } 1422 1423 Static int 1424 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1425 { 1426 struct zyd_softc *sc = rf->rf_sc; 1427 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1428 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1429 static const struct { 1430 uint32_t r1, r2; 1431 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1432 uint16_t tmp; 1433 int error; 1434 size_t i; 1435 1436 /* 1437 * Do the same as we do when initializing it, except for the channel 1438 * values coming from the two channel tables. 1439 */ 1440 1441 /* init RF-dependent PHY registers */ 1442 for (i = 0; i < __arraycount(phyini); i++) { 1443 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1444 if (error != 0) 1445 return error; 1446 } 1447 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1448 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1449 1450 /* first two values taken from the chantables */ 1451 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1452 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1453 1454 /* init maxim2 radio - skipping the two first values */ 1455 for (i = 2; i < __arraycount(rfini); i++) { 1456 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1457 return error; 1458 } 1459 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1460 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1461 1462 return 0; 1463 } 1464 1465 Static int 1466 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1467 { 1468 struct zyd_rf *rf = &sc->sc_rf; 1469 1470 rf->rf_sc = sc; 1471 1472 switch (type) { 1473 case ZYD_RF_RFMD: 1474 rf->init = zyd_rfmd_init; 1475 rf->switch_radio = zyd_rfmd_switch_radio; 1476 rf->set_channel = zyd_rfmd_set_channel; 1477 rf->width = 24; /* 24-bit RF values */ 1478 break; 1479 case ZYD_RF_AL2230: 1480 case ZYD_RF_AL2230S: 1481 if (sc->mac_rev == ZYD_ZD1211B) 1482 rf->init = zyd_al2230_init_b; 1483 else 1484 rf->init = zyd_al2230_init; 1485 rf->switch_radio = zyd_al2230_switch_radio; 1486 rf->set_channel = zyd_al2230_set_channel; 1487 rf->width = 24; /* 24-bit RF values */ 1488 break; 1489 case ZYD_RF_AL7230B: 1490 rf->init = zyd_al7230B_init; 1491 rf->switch_radio = zyd_al7230B_switch_radio; 1492 rf->set_channel = zyd_al7230B_set_channel; 1493 rf->width = 24; /* 24-bit RF values */ 1494 break; 1495 case ZYD_RF_AL2210: 1496 rf->init = zyd_al2210_init; 1497 rf->switch_radio = zyd_al2210_switch_radio; 1498 rf->set_channel = zyd_al2210_set_channel; 1499 rf->width = 24; /* 24-bit RF values */ 1500 break; 1501 case ZYD_RF_GCT: 1502 rf->init = zyd_gct_init; 1503 rf->switch_radio = zyd_gct_switch_radio; 1504 rf->set_channel = zyd_gct_set_channel; 1505 rf->width = 21; /* 21-bit RF values */ 1506 break; 1507 case ZYD_RF_MAXIM_NEW: 1508 rf->init = zyd_maxim_init; 1509 rf->switch_radio = zyd_maxim_switch_radio; 1510 rf->set_channel = zyd_maxim_set_channel; 1511 rf->width = 18; /* 18-bit RF values */ 1512 break; 1513 case ZYD_RF_MAXIM_NEW2: 1514 rf->init = zyd_maxim2_init; 1515 rf->switch_radio = zyd_maxim2_switch_radio; 1516 rf->set_channel = zyd_maxim2_set_channel; 1517 rf->width = 18; /* 18-bit RF values */ 1518 break; 1519 default: 1520 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1521 device_xname(sc->sc_dev), zyd_rf_name(type)); 1522 return EINVAL; 1523 } 1524 return 0; 1525 } 1526 1527 Static const char * 1528 zyd_rf_name(uint8_t type) 1529 { 1530 static const char * const zyd_rfs[] = { 1531 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1532 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1533 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1534 "PHILIPS" 1535 }; 1536 1537 return zyd_rfs[(type > 15) ? 0 : type]; 1538 } 1539 1540 Static int 1541 zyd_hw_init(struct zyd_softc *sc) 1542 { 1543 struct zyd_rf *rf = &sc->sc_rf; 1544 const struct zyd_phy_pair *phyp; 1545 int error; 1546 1547 /* specify that the plug and play is finished */ 1548 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1549 1550 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1551 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1552 1553 /* retrieve firmware revision number */ 1554 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1555 1556 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1557 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1558 1559 /* disable interrupts */ 1560 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1561 1562 /* PHY init */ 1563 zyd_lock_phy(sc); 1564 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1565 for (; phyp->reg != 0; phyp++) { 1566 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1567 goto fail; 1568 } 1569 zyd_unlock_phy(sc); 1570 1571 /* HMAC init */ 1572 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1573 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1574 1575 if (sc->mac_rev == ZYD_ZD1211) { 1576 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1577 } else { 1578 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); 1579 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1580 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1581 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1582 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1583 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1584 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1585 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1586 } 1587 1588 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1589 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1590 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1591 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1592 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1593 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1594 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1595 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1596 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1597 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1598 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1599 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1600 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1601 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1602 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1603 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1604 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1605 1606 /* RF chip init */ 1607 zyd_lock_phy(sc); 1608 error = (*rf->init)(rf); 1609 zyd_unlock_phy(sc); 1610 if (error != 0) { 1611 printf("%s: radio initialization failed\n", 1612 device_xname(sc->sc_dev)); 1613 goto fail; 1614 } 1615 1616 /* init beacon interval to 100ms */ 1617 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1618 goto fail; 1619 1620 fail: return error; 1621 } 1622 1623 Static int 1624 zyd_read_eeprom(struct zyd_softc *sc) 1625 { 1626 struct ieee80211com *ic = &sc->sc_ic; 1627 uint32_t tmp; 1628 uint16_t val; 1629 int i; 1630 1631 /* read MAC address */ 1632 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1633 ic->ic_myaddr[0] = tmp & 0xff; 1634 ic->ic_myaddr[1] = tmp >> 8; 1635 ic->ic_myaddr[2] = tmp >> 16; 1636 ic->ic_myaddr[3] = tmp >> 24; 1637 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1638 ic->ic_myaddr[4] = tmp & 0xff; 1639 ic->ic_myaddr[5] = tmp >> 8; 1640 1641 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1642 sc->rf_rev = tmp & 0x0f; 1643 sc->pa_rev = (tmp >> 16) & 0x0f; 1644 1645 /* read regulatory domain (currently unused) */ 1646 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1647 sc->regdomain = tmp >> 16; 1648 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1649 1650 /* read Tx power calibration tables */ 1651 for (i = 0; i < 7; i++) { 1652 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1653 sc->pwr_cal[i * 2] = val >> 8; 1654 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1655 1656 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1657 sc->pwr_int[i * 2] = val >> 8; 1658 sc->pwr_int[i * 2 + 1] = val & 0xff; 1659 1660 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1661 sc->ofdm36_cal[i * 2] = val >> 8; 1662 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1663 1664 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1665 sc->ofdm48_cal[i * 2] = val >> 8; 1666 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1667 1668 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1669 sc->ofdm54_cal[i * 2] = val >> 8; 1670 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1671 } 1672 return 0; 1673 } 1674 1675 Static int 1676 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1677 { 1678 uint32_t tmp; 1679 1680 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1681 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1682 1683 tmp = addr[5] << 8 | addr[4]; 1684 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1685 1686 return 0; 1687 } 1688 1689 Static int 1690 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1691 { 1692 uint32_t tmp; 1693 1694 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1695 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1696 1697 tmp = addr[5] << 8 | addr[4]; 1698 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1699 1700 return 0; 1701 } 1702 1703 Static int 1704 zyd_switch_radio(struct zyd_softc *sc, int on) 1705 { 1706 struct zyd_rf *rf = &sc->sc_rf; 1707 int error; 1708 1709 zyd_lock_phy(sc); 1710 error = (*rf->switch_radio)(rf, on); 1711 zyd_unlock_phy(sc); 1712 1713 return error; 1714 } 1715 1716 Static void 1717 zyd_set_led(struct zyd_softc *sc, int which, int on) 1718 { 1719 uint32_t tmp; 1720 1721 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1722 tmp &= ~which; 1723 if (on) 1724 tmp |= which; 1725 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1726 } 1727 1728 Static int 1729 zyd_set_rxfilter(struct zyd_softc *sc) 1730 { 1731 uint32_t rxfilter; 1732 1733 switch (sc->sc_ic.ic_opmode) { 1734 case IEEE80211_M_STA: 1735 rxfilter = ZYD_FILTER_BSS; 1736 break; 1737 case IEEE80211_M_IBSS: 1738 case IEEE80211_M_HOSTAP: 1739 rxfilter = ZYD_FILTER_HOSTAP; 1740 break; 1741 case IEEE80211_M_MONITOR: 1742 rxfilter = ZYD_FILTER_MONITOR; 1743 break; 1744 default: 1745 /* should not get there */ 1746 return EINVAL; 1747 } 1748 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1749 } 1750 1751 Static void 1752 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1753 { 1754 struct ieee80211com *ic = &sc->sc_ic; 1755 struct zyd_rf *rf = &sc->sc_rf; 1756 u_int chan; 1757 1758 chan = ieee80211_chan2ieee(ic, c); 1759 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1760 return; 1761 1762 zyd_lock_phy(sc); 1763 1764 (*rf->set_channel)(rf, chan); 1765 1766 /* update Tx power */ 1767 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1768 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1769 1770 if (sc->mac_rev == ZYD_ZD1211B) { 1771 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1772 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1773 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1774 1775 (void)zyd_write32(sc, ZYD_CR69, 0x28); 1776 (void)zyd_write32(sc, ZYD_CR69, 0x2a); 1777 } 1778 1779 zyd_unlock_phy(sc); 1780 } 1781 1782 Static int 1783 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1784 { 1785 /* XXX this is probably broken.. */ 1786 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1787 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1788 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1789 1790 return 0; 1791 } 1792 1793 Static uint8_t 1794 zyd_plcp_signal(int rate) 1795 { 1796 switch (rate) { 1797 /* CCK rates (returned values are device-dependent) */ 1798 case 2: return 0x0; 1799 case 4: return 0x1; 1800 case 11: return 0x2; 1801 case 22: return 0x3; 1802 1803 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1804 case 12: return 0xb; 1805 case 18: return 0xf; 1806 case 24: return 0xa; 1807 case 36: return 0xe; 1808 case 48: return 0x9; 1809 case 72: return 0xd; 1810 case 96: return 0x8; 1811 case 108: return 0xc; 1812 1813 /* unsupported rates (should not get there) */ 1814 default: return 0xff; 1815 } 1816 } 1817 1818 Static void 1819 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status) 1820 { 1821 struct zyd_softc *sc = (struct zyd_softc *)priv; 1822 struct zyd_cmd *cmd; 1823 uint32_t datalen; 1824 1825 if (status != USBD_NORMAL_COMPLETION) { 1826 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1827 return; 1828 1829 if (status == USBD_STALLED) { 1830 usbd_clear_endpoint_stall_async( 1831 sc->zyd_ep[ZYD_ENDPT_IIN]); 1832 } 1833 return; 1834 } 1835 1836 cmd = (struct zyd_cmd *)sc->ibuf; 1837 1838 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1839 struct zyd_notif_retry *retry = 1840 (struct zyd_notif_retry *)cmd->data; 1841 struct ieee80211com *ic = &sc->sc_ic; 1842 struct ifnet *ifp = &sc->sc_if; 1843 struct ieee80211_node *ni; 1844 1845 DPRINTF(("retry intr: rate=%#x addr=%s count=%d (%#x)\n", 1846 le16toh(retry->rate), ether_sprintf(retry->macaddr), 1847 le16toh(retry->count) & 0xff, le16toh(retry->count))); 1848 1849 /* 1850 * Find the node to which the packet was sent and update its 1851 * retry statistics. In BSS mode, this node is the AP we're 1852 * associated to so no lookup is actually needed. 1853 */ 1854 if (ic->ic_opmode != IEEE80211_M_STA) { 1855 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr); 1856 if (ni == NULL) 1857 return; /* just ignore */ 1858 } else 1859 ni = ic->ic_bss; 1860 1861 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1862 1863 if (le16toh(retry->count) & 0x100) 1864 if_statinc(ifp, if_oerrors); 1865 1866 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { 1867 struct rq *rqp; 1868 1869 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1870 return; /* HMAC interrupt */ 1871 1872 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); 1873 datalen -= sizeof(cmd->code); 1874 datalen -= 2; /* XXX: padding? */ 1875 1876 mutex_enter(&sc->sc_lock); 1877 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) { 1878 int i; 1879 1880 if (sizeof(struct zyd_pair) * rqp->len != datalen) 1881 continue; 1882 for (i = 0; i < rqp->len; i++) { 1883 if (*(((const uint16_t *)rqp->idata) + i) != 1884 (((struct zyd_pair *)cmd->data) + i)->reg) 1885 break; 1886 } 1887 if (i != rqp->len) 1888 continue; 1889 1890 /* copy answer into caller-supplied buffer */ 1891 memcpy(rqp->odata, cmd->data, 1892 sizeof(struct zyd_pair) * rqp->len); 1893 cv_signal(&sc->sc_cmdcv); 1894 mutex_exit(&sc->sc_lock); 1895 return; 1896 } 1897 mutex_exit(&sc->sc_lock); 1898 return; /* unexpected IORD notification */ 1899 } else { 1900 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev), 1901 le16toh(cmd->code)); 1902 } 1903 } 1904 1905 Static void 1906 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1907 { 1908 struct ieee80211com *ic = &sc->sc_ic; 1909 struct ifnet *ifp = &sc->sc_if; 1910 struct ieee80211_node *ni; 1911 struct ieee80211_frame *wh; 1912 const struct zyd_plcphdr *plcp; 1913 const struct zyd_rx_stat *stat; 1914 struct mbuf *m; 1915 int rlen, s; 1916 1917 if (len < ZYD_MIN_FRAGSZ) { 1918 printf("%s: frame too short (length=%d)\n", 1919 device_xname(sc->sc_dev), len); 1920 if_statinc(ifp, if_ierrors); 1921 return; 1922 } 1923 1924 plcp = (const struct zyd_plcphdr *)buf; 1925 stat = (const struct zyd_rx_stat *) 1926 (buf + len - sizeof(struct zyd_rx_stat)); 1927 1928 if (stat->flags & ZYD_RX_ERROR) { 1929 DPRINTF(("%s: RX status indicated error (%x)\n", 1930 device_xname(sc->sc_dev), stat->flags)); 1931 if_statinc(ifp, if_ierrors); 1932 return; 1933 } 1934 1935 /* compute actual frame length */ 1936 rlen = len - sizeof(struct zyd_plcphdr) - 1937 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 1938 1939 /* allocate a mbuf to store the frame */ 1940 MGETHDR(m, M_DONTWAIT, MT_DATA); 1941 if (m == NULL) { 1942 printf("%s: could not allocate rx mbuf\n", 1943 device_xname(sc->sc_dev)); 1944 if_statinc(ifp, if_ierrors); 1945 return; 1946 } 1947 if (rlen > MHLEN) { 1948 MCLGET(m, M_DONTWAIT); 1949 if (!(m->m_flags & M_EXT)) { 1950 printf("%s: could not allocate rx mbuf cluster\n", 1951 device_xname(sc->sc_dev)); 1952 m_freem(m); 1953 if_statinc(ifp, if_ierrors); 1954 return; 1955 } 1956 } 1957 m_set_rcvif(m, ifp); 1958 m->m_pkthdr.len = m->m_len = rlen; 1959 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen); 1960 1961 s = splnet(); 1962 1963 if (sc->sc_drvbpf != NULL) { 1964 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1965 static const uint8_t rates[] = { 1966 /* reverse function of zyd_plcp_signal() */ 1967 2, 4, 11, 22, 0, 0, 0, 0, 1968 96, 48, 24, 12, 108, 72, 36, 18 1969 }; 1970 1971 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1972 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1973 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1974 tap->wr_rssi = stat->rssi; 1975 tap->wr_rate = rates[plcp->signal & 0xf]; 1976 1977 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 1978 } 1979 1980 wh = mtod(m, struct ieee80211_frame *); 1981 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1982 ieee80211_input(ic, m, ni, stat->rssi, 0); 1983 1984 /* node is no longer needed */ 1985 ieee80211_free_node(ni); 1986 1987 splx(s); 1988 } 1989 1990 Static void 1991 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 1992 { 1993 struct zyd_rx_data *data = priv; 1994 struct zyd_softc *sc = data->sc; 1995 struct ifnet *ifp = &sc->sc_if; 1996 const struct zyd_rx_desc *desc; 1997 int len; 1998 1999 if (status != USBD_NORMAL_COMPLETION) { 2000 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2001 return; 2002 2003 if (status == USBD_STALLED) 2004 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2005 2006 goto skip; 2007 } 2008 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2009 2010 if (len < ZYD_MIN_RXBUFSZ) { 2011 printf("%s: xfer too short (length=%d)\n", 2012 device_xname(sc->sc_dev), len); 2013 if_statinc(ifp, if_ierrors); 2014 goto skip; 2015 } 2016 2017 desc = (const struct zyd_rx_desc *) 2018 (data->buf + len - sizeof(struct zyd_rx_desc)); 2019 2020 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2021 const uint8_t *p = data->buf, *end = p + len; 2022 int i; 2023 2024 DPRINTFN(3, ("received multi-frame transfer\n")); 2025 2026 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2027 const uint16_t len16 = UGETW(desc->len[i]); 2028 2029 if (len16 == 0 || p + len16 > end) 2030 break; 2031 2032 zyd_rx_data(sc, p, len16); 2033 /* next frame is aligned on a 32-bit boundary */ 2034 p += (len16 + 3) & ~3; 2035 } 2036 } else { 2037 DPRINTFN(3, ("received single-frame transfer\n")); 2038 2039 zyd_rx_data(sc, data->buf, len); 2040 } 2041 2042 skip: /* setup a new transfer */ 2043 2044 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 2045 USBD_NO_TIMEOUT, zyd_rxeof); 2046 (void)usbd_transfer(xfer); 2047 } 2048 2049 Static int 2050 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2051 { 2052 struct ieee80211com *ic = &sc->sc_ic; 2053 struct ifnet *ifp = &sc->sc_if; 2054 struct zyd_tx_desc *desc; 2055 struct zyd_tx_data *data; 2056 struct ieee80211_frame *wh; 2057 struct ieee80211_key *k; 2058 int xferlen, totlen, rate; 2059 uint16_t pktlen; 2060 usbd_status error; 2061 2062 data = &sc->tx_data[0]; 2063 desc = (struct zyd_tx_desc *)data->buf; 2064 2065 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2066 2067 wh = mtod(m0, struct ieee80211_frame *); 2068 2069 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2070 k = ieee80211_crypto_encap(ic, ni, m0); 2071 if (k == NULL) { 2072 m_freem(m0); 2073 return ENOBUFS; 2074 } 2075 } 2076 2077 data->ni = ni; 2078 2079 wh = mtod(m0, struct ieee80211_frame *); 2080 2081 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; 2082 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2083 2084 /* fill Tx descriptor */ 2085 desc->len = htole16(totlen); 2086 2087 desc->flags = ZYD_TX_FLAG_BACKOFF; 2088 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2089 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2090 if (totlen > ic->ic_rtsthreshold) { 2091 desc->flags |= ZYD_TX_FLAG_RTS; 2092 } else if (ZYD_RATE_IS_OFDM(rate) && 2093 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2094 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2095 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2096 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2097 desc->flags |= ZYD_TX_FLAG_RTS; 2098 } 2099 } else 2100 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2101 2102 if ((wh->i_fc[0] & 2103 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2104 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2105 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2106 2107 desc->phy = zyd_plcp_signal(rate); 2108 if (ZYD_RATE_IS_OFDM(rate)) { 2109 desc->phy |= ZYD_TX_PHY_OFDM; 2110 if (ic->ic_curmode == IEEE80211_MODE_11A) 2111 desc->phy |= ZYD_TX_PHY_5GHZ; 2112 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2113 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2114 2115 /* actual transmit length (XXX why +10?) */ 2116 pktlen = sizeof(struct zyd_tx_desc) + 10; 2117 if (sc->mac_rev == ZYD_ZD1211) 2118 pktlen += totlen; 2119 desc->pktlen = htole16(pktlen); 2120 2121 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2122 desc->plcp_service = 0; 2123 if (rate == 22) { 2124 const int remainder = (16 * totlen) % 22; 2125 if (remainder != 0 && remainder < 7) 2126 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2127 } 2128 2129 if (sc->sc_drvbpf != NULL) { 2130 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2131 2132 tap->wt_flags = 0; 2133 tap->wt_rate = rate; 2134 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2135 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2136 2137 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 2138 } 2139 2140 m_copydata(m0, 0, m0->m_pkthdr.len, 2141 data->buf + sizeof(struct zyd_tx_desc)); 2142 2143 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", 2144 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2145 2146 m_freem(m0); /* mbuf no longer needed */ 2147 2148 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 2149 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); 2150 error = usbd_transfer(data->xfer); 2151 if (error != USBD_IN_PROGRESS && error != 0) { 2152 if_statinc(ifp, if_oerrors); 2153 return EIO; 2154 } 2155 sc->tx_queued++; 2156 2157 return 0; 2158 } 2159 2160 Static void 2161 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 2162 { 2163 struct zyd_tx_data *data = priv; 2164 struct zyd_softc *sc = data->sc; 2165 struct ifnet *ifp = &sc->sc_if; 2166 int s; 2167 2168 if (status != USBD_NORMAL_COMPLETION) { 2169 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2170 return; 2171 2172 printf("%s: could not transmit buffer: %s\n", 2173 device_xname(sc->sc_dev), usbd_errstr(status)); 2174 2175 if (status == USBD_STALLED) { 2176 usbd_clear_endpoint_stall_async( 2177 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2178 } 2179 if_statinc(ifp, if_oerrors); 2180 return; 2181 } 2182 2183 s = splnet(); 2184 2185 /* update rate control statistics */ 2186 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2187 2188 ieee80211_free_node(data->ni); 2189 data->ni = NULL; 2190 2191 sc->tx_queued--; 2192 if_statinc(ifp, if_opackets); 2193 2194 sc->tx_timer = 0; 2195 ifp->if_flags &= ~IFF_OACTIVE; 2196 zyd_start(ifp); 2197 2198 splx(s); 2199 } 2200 2201 Static int 2202 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2203 { 2204 struct ieee80211com *ic = &sc->sc_ic; 2205 struct ifnet *ifp = &sc->sc_if; 2206 struct zyd_tx_desc *desc; 2207 struct zyd_tx_data *data; 2208 struct ieee80211_frame *wh; 2209 struct ieee80211_key *k; 2210 int xferlen, totlen, rate; 2211 uint16_t pktlen; 2212 usbd_status error; 2213 2214 wh = mtod(m0, struct ieee80211_frame *); 2215 2216 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 2217 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 2218 else 2219 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2220 rate &= IEEE80211_RATE_VAL; 2221 2222 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2223 k = ieee80211_crypto_encap(ic, ni, m0); 2224 if (k == NULL) { 2225 m_freem(m0); 2226 return ENOBUFS; 2227 } 2228 2229 /* packet header may have moved, reset our local pointer */ 2230 wh = mtod(m0, struct ieee80211_frame *); 2231 } 2232 2233 data = &sc->tx_data[0]; 2234 desc = (struct zyd_tx_desc *)data->buf; 2235 2236 data->ni = ni; 2237 2238 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; 2239 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2240 2241 /* fill Tx descriptor */ 2242 desc->len = htole16(totlen); 2243 2244 desc->flags = ZYD_TX_FLAG_BACKOFF; 2245 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2246 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2247 if (totlen > ic->ic_rtsthreshold) { 2248 desc->flags |= ZYD_TX_FLAG_RTS; 2249 } else if (ZYD_RATE_IS_OFDM(rate) && 2250 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2251 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2252 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2253 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2254 desc->flags |= ZYD_TX_FLAG_RTS; 2255 } 2256 } else 2257 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2258 2259 if ((wh->i_fc[0] & 2260 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2261 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2262 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2263 2264 desc->phy = zyd_plcp_signal(rate); 2265 if (ZYD_RATE_IS_OFDM(rate)) { 2266 desc->phy |= ZYD_TX_PHY_OFDM; 2267 if (ic->ic_curmode == IEEE80211_MODE_11A) 2268 desc->phy |= ZYD_TX_PHY_5GHZ; 2269 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2270 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2271 2272 /* actual transmit length (XXX why +10?) */ 2273 pktlen = sizeof(struct zyd_tx_desc) + 10; 2274 if (sc->mac_rev == ZYD_ZD1211) 2275 pktlen += totlen; 2276 desc->pktlen = htole16(pktlen); 2277 2278 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2279 desc->plcp_service = 0; 2280 if (rate == 22) { 2281 const int remainder = (16 * totlen) % 22; 2282 if (remainder != 0 && remainder < 7) 2283 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2284 } 2285 2286 if (sc->sc_drvbpf != NULL) { 2287 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2288 2289 tap->wt_flags = 0; 2290 tap->wt_rate = rate; 2291 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2292 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2293 2294 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 2295 } 2296 2297 m_copydata(m0, 0, m0->m_pkthdr.len, 2298 data->buf + sizeof(struct zyd_tx_desc)); 2299 2300 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", 2301 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); 2302 2303 m_freem(m0); /* mbuf no longer needed */ 2304 2305 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 2306 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof); 2307 error = usbd_transfer(data->xfer); 2308 if (error != USBD_IN_PROGRESS && error != 0) { 2309 if_statinc(ifp, if_oerrors); 2310 return EIO; 2311 } 2312 sc->tx_queued++; 2313 2314 return 0; 2315 } 2316 2317 Static void 2318 zyd_start(struct ifnet *ifp) 2319 { 2320 struct zyd_softc *sc = ifp->if_softc; 2321 struct ieee80211com *ic = &sc->sc_ic; 2322 struct ether_header *eh; 2323 struct ieee80211_node *ni; 2324 struct mbuf *m0; 2325 2326 for (;;) { 2327 IF_POLL(&ic->ic_mgtq, m0); 2328 if (m0 != NULL) { 2329 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2330 ifp->if_flags |= IFF_OACTIVE; 2331 break; 2332 } 2333 IF_DEQUEUE(&ic->ic_mgtq, m0); 2334 2335 ni = M_GETCTX(m0, struct ieee80211_node *); 2336 M_CLEARCTX(m0); 2337 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 2338 if (zyd_tx_mgt(sc, m0, ni) != 0) 2339 break; 2340 } else { 2341 if (ic->ic_state != IEEE80211_S_RUN) 2342 break; 2343 IFQ_POLL(&ifp->if_snd, m0); 2344 if (m0 == NULL) 2345 break; 2346 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2347 ifp->if_flags |= IFF_OACTIVE; 2348 break; 2349 } 2350 IFQ_DEQUEUE(&ifp->if_snd, m0); 2351 2352 if (m0->m_len < sizeof(struct ether_header) && 2353 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 2354 continue; 2355 2356 eh = mtod(m0, struct ether_header *); 2357 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2358 if (ni == NULL) { 2359 m_freem(m0); 2360 continue; 2361 } 2362 bpf_mtap(ifp, m0, BPF_D_OUT); 2363 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 2364 ieee80211_free_node(ni); 2365 if_statinc(ifp, if_oerrors); 2366 continue; 2367 } 2368 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 2369 if (zyd_tx_data(sc, m0, ni) != 0) { 2370 ieee80211_free_node(ni); 2371 if_statinc(ifp, if_oerrors); 2372 break; 2373 } 2374 } 2375 2376 sc->tx_timer = 5; 2377 ifp->if_timer = 1; 2378 } 2379 } 2380 2381 Static void 2382 zyd_watchdog(struct ifnet *ifp) 2383 { 2384 struct zyd_softc *sc = ifp->if_softc; 2385 struct ieee80211com *ic = &sc->sc_ic; 2386 2387 ifp->if_timer = 0; 2388 2389 if (sc->tx_timer > 0) { 2390 if (--sc->tx_timer == 0) { 2391 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 2392 /* zyd_init(ifp); XXX needs a process context ? */ 2393 if_statinc(ifp, if_oerrors); 2394 return; 2395 } 2396 ifp->if_timer = 1; 2397 } 2398 2399 ieee80211_watchdog(ic); 2400 } 2401 2402 Static int 2403 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2404 { 2405 struct zyd_softc *sc = ifp->if_softc; 2406 struct ieee80211com *ic = &sc->sc_ic; 2407 int s, error = 0; 2408 2409 s = splnet(); 2410 2411 switch (cmd) { 2412 case SIOCSIFFLAGS: 2413 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2414 break; 2415 /* XXX re-use ether_ioctl() */ 2416 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 2417 case IFF_UP: 2418 zyd_init(ifp); 2419 break; 2420 case IFF_RUNNING: 2421 zyd_stop(ifp, 1); 2422 break; 2423 default: 2424 break; 2425 } 2426 break; 2427 2428 default: 2429 error = ieee80211_ioctl(ic, cmd, data); 2430 } 2431 2432 if (error == ENETRESET) { 2433 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2434 (IFF_RUNNING | IFF_UP)) 2435 zyd_init(ifp); 2436 error = 0; 2437 } 2438 2439 splx(s); 2440 2441 return error; 2442 } 2443 2444 Static int 2445 zyd_init(struct ifnet *ifp) 2446 { 2447 struct zyd_softc *sc = ifp->if_softc; 2448 struct ieee80211com *ic = &sc->sc_ic; 2449 int i, error; 2450 2451 zyd_stop(ifp, 0); 2452 2453 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2454 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2455 error = zyd_set_macaddr(sc, ic->ic_myaddr); 2456 if (error != 0) 2457 return error; 2458 2459 /* we'll do software WEP decryption for now */ 2460 DPRINTF(("setting encryption type\n")); 2461 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2462 if (error != 0) 2463 return error; 2464 2465 /* promiscuous mode */ 2466 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2467 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2468 2469 (void)zyd_set_rxfilter(sc); 2470 2471 /* switch radio transmitter ON */ 2472 (void)zyd_switch_radio(sc, 1); 2473 2474 /* set basic rates */ 2475 if (ic->ic_curmode == IEEE80211_MODE_11B) 2476 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2477 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2478 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2479 else /* assumes 802.11b/g */ 2480 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2481 2482 /* set mandatory rates */ 2483 if (ic->ic_curmode == IEEE80211_MODE_11B) 2484 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2485 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2486 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2487 else /* assumes 802.11b/g */ 2488 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2489 2490 /* set default BSS channel */ 2491 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2492 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2493 2494 /* enable interrupts */ 2495 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2496 2497 /* 2498 * Allocate Tx and Rx xfer queues. 2499 */ 2500 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2501 printf("%s: could not allocate Tx list\n", 2502 device_xname(sc->sc_dev)); 2503 goto fail; 2504 } 2505 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2506 printf("%s: could not allocate Rx list\n", 2507 device_xname(sc->sc_dev)); 2508 goto fail; 2509 } 2510 2511 /* 2512 * Start up the receive pipe. 2513 */ 2514 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2515 struct zyd_rx_data *data = &sc->rx_data[i]; 2516 2517 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ, 2518 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); 2519 error = usbd_transfer(data->xfer); 2520 if (error != USBD_IN_PROGRESS && error != 0) { 2521 printf("%s: could not queue Rx transfer\n", 2522 device_xname(sc->sc_dev)); 2523 goto fail; 2524 } 2525 } 2526 2527 ifp->if_flags &= ~IFF_OACTIVE; 2528 ifp->if_flags |= IFF_RUNNING; 2529 2530 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2531 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2532 else 2533 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2534 2535 return 0; 2536 2537 fail: zyd_stop(ifp, 1); 2538 return error; 2539 } 2540 2541 Static void 2542 zyd_stop(struct ifnet *ifp, int disable) 2543 { 2544 struct zyd_softc *sc = ifp->if_softc; 2545 struct ieee80211com *ic = &sc->sc_ic; 2546 2547 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2548 2549 sc->tx_timer = 0; 2550 ifp->if_timer = 0; 2551 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2552 2553 /* switch radio transmitter OFF */ 2554 (void)zyd_switch_radio(sc, 0); 2555 2556 /* disable Rx */ 2557 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2558 2559 /* disable interrupts */ 2560 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2561 2562 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2563 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2564 2565 zyd_free_rx_list(sc); 2566 zyd_free_tx_list(sc); 2567 } 2568 2569 Static int 2570 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2571 { 2572 usb_device_request_t req; 2573 uint16_t addr; 2574 uint8_t stat; 2575 2576 DPRINTF(("firmware size=%zu\n", size)); 2577 2578 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2579 req.bRequest = ZYD_DOWNLOADREQ; 2580 USETW(req.wIndex, 0); 2581 2582 addr = ZYD_FIRMWARE_START_ADDR; 2583 while (size > 0) { 2584 #if 0 2585 const int mlen = uimin(size, 4096); 2586 #else 2587 /* 2588 * XXXX: When the transfer size is 4096 bytes, it is not 2589 * likely to be able to transfer it. 2590 * The cause is port or machine or chip? 2591 */ 2592 const int mlen = uimin(size, 64); 2593 #endif 2594 2595 DPRINTF(("loading firmware block: len=%d, addr=%#x\n", mlen, 2596 addr)); 2597 2598 USETW(req.wValue, addr); 2599 USETW(req.wLength, mlen); 2600 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2601 return EIO; 2602 2603 addr += mlen / 2; 2604 fw += mlen; 2605 size -= mlen; 2606 } 2607 2608 /* check whether the upload succeeded */ 2609 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2610 req.bRequest = ZYD_DOWNLOADSTS; 2611 USETW(req.wValue, 0); 2612 USETW(req.wIndex, 0); 2613 USETW(req.wLength, sizeof(stat)); 2614 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2615 return EIO; 2616 2617 return (stat & 0x80) ? EIO : 0; 2618 } 2619 2620 Static void 2621 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2622 { 2623 struct zyd_softc *sc = arg; 2624 struct zyd_node *zn = (struct zyd_node *)ni; 2625 2626 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2627 } 2628 2629 Static void 2630 zyd_amrr_timeout(void *arg) 2631 { 2632 struct zyd_softc *sc = arg; 2633 struct ieee80211com *ic = &sc->sc_ic; 2634 int s; 2635 2636 s = splnet(); 2637 if (ic->ic_opmode == IEEE80211_M_STA) 2638 zyd_iter_func(sc, ic->ic_bss); 2639 else 2640 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); 2641 splx(s); 2642 2643 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); 2644 } 2645 2646 Static void 2647 zyd_newassoc(struct ieee80211_node *ni, int isnew) 2648 { 2649 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; 2650 int i; 2651 2652 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2653 2654 /* set rate to some reasonable initial value */ 2655 for (i = ni->ni_rates.rs_nrates - 1; 2656 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2657 i--); 2658 ni->ni_txrate = i; 2659 } 2660 2661 static int 2662 zyd_activate(device_t self, enum devact act) 2663 { 2664 struct zyd_softc *sc = device_private(self); 2665 2666 switch (act) { 2667 case DVACT_DEACTIVATE: 2668 if_deactivate(&sc->sc_if); 2669 return 0; 2670 default: 2671 return EOPNOTSUPP; 2672 } 2673 } 2674