xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision 2e2322c9c07009df921d11b1268f8506affbb8ba)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.43 2016/11/25 12:56:29 skrll Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.43 2016/11/25 12:56:29 skrll Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/firmload.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71 
72 #include <dev/usb/if_zydreg.h>
73 
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82 
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85 
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p)	\
88 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 	struct usb_devno	dev;
93 	uint8_t			rev;
94 #define ZYD_ZD1211	0
95 #define ZYD_ZD1211B	1
96 } zyd_devs[] = {
97 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
98 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
99 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
100 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
101 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
102 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
103 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
104 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
106 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
107 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
108 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
109 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
110 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
111 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
113 	ZYD_ZD1211_DEV(TWINMOS,		G240),
114 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
115 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
117 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
118 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
119 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
121 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
122 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
126 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
127 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
128 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
129 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
130 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
131 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
132 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
133 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
134 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
135 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
136 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
137 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
138 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
139 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
140 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
141 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
142 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
143 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
144 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
145 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
146 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
147 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
148 	ZYD_ZD1211B_DEV(USR,		USR5423),
149 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
150 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
151 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
152 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
153 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
154 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
155 };
156 #define zyd_lookup(v, p)	\
157 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158 
159 int zyd_match(device_t, cfdata_t, void *);
160 void zyd_attach(device_t, device_t, void *);
161 int zyd_detach(device_t, int);
162 int zyd_activate(device_t, enum devact);
163 extern struct cfdriver zyd_cd;
164 
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166     zyd_attach, zyd_detach, zyd_activate);
167 
168 Static void	zyd_attachhook(device_t);
169 Static int	zyd_complete_attach(struct zyd_softc *);
170 Static int	zyd_open_pipes(struct zyd_softc *);
171 Static void	zyd_close_pipes(struct zyd_softc *);
172 Static int	zyd_alloc_tx_list(struct zyd_softc *);
173 Static void	zyd_free_tx_list(struct zyd_softc *);
174 Static int	zyd_alloc_rx_list(struct zyd_softc *);
175 Static void	zyd_free_rx_list(struct zyd_softc *);
176 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int	zyd_media_change(struct ifnet *);
178 Static void	zyd_next_scan(void *);
179 Static void	zyd_task(void *);
180 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 		    void *, int, u_int);
183 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void	zyd_lock_phy(struct zyd_softc *);
189 Static void	zyd_unlock_phy(struct zyd_softc *);
190 Static int	zyd_rfmd_init(struct zyd_rf *);
191 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int	zyd_al2230_init(struct zyd_rf *);
194 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_al2230_init_b(struct zyd_rf *);
197 Static int	zyd_al7230B_init(struct zyd_rf *);
198 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int	zyd_al2210_init(struct zyd_rf *);
201 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int	zyd_gct_init(struct zyd_rf *);
204 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int	zyd_maxim_init(struct zyd_rf *);
207 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int	zyd_maxim2_init(struct zyd_rf *);
210 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int	zyd_hw_init(struct zyd_softc *);
215 Static int	zyd_read_eeprom(struct zyd_softc *);
216 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int	zyd_switch_radio(struct zyd_softc *, int);
219 Static void	zyd_set_led(struct zyd_softc *, int, int);
220 Static int	zyd_set_rxfilter(struct zyd_softc *);
221 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t	zyd_plcp_signal(int);
224 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 		    struct ieee80211_node *);
230 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 Static void	zyd_start(struct ifnet *);
233 Static void	zyd_watchdog(struct ifnet *);
234 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int	zyd_init(struct ifnet *);
236 Static void	zyd_stop(struct ifnet *, int);
237 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void	zyd_iter_func(void *, struct ieee80211_node *);
239 Static void	zyd_amrr_timeout(void *);
240 Static void	zyd_newassoc(struct ieee80211_node *, int);
241 
242 static const struct ieee80211_rateset zyd_rateset_11b =
243 	{ 4, { 2, 4, 11, 22 } };
244 
245 static const struct ieee80211_rateset zyd_rateset_11g =
246 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
247 
248 int
249 zyd_match(device_t parent, cfdata_t match, void *aux)
250 {
251 	struct usb_attach_arg *uaa = aux;
252 
253 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
254 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255 }
256 
257 Static void
258 zyd_attachhook(device_t self)
259 {
260 	struct zyd_softc *sc = device_private(self);
261 	firmware_handle_t fwh;
262 	const char *fwname;
263 	u_char *fw;
264 	size_t size;
265 	int error;
266 
267 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
268 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
269 		aprint_error_dev(sc->sc_dev,
270 		    "failed to open firmware %s (error=%d)\n", fwname, error);
271 		return;
272 	}
273 	size = firmware_get_size(fwh);
274 	fw = firmware_malloc(size);
275 	if (fw == NULL) {
276 		aprint_error_dev(sc->sc_dev,
277 		    "failed to allocate firmware memory\n");
278 		firmware_close(fwh);
279 		return;
280 	}
281 	error = firmware_read(fwh, 0, fw, size);
282 	firmware_close(fwh);
283 	if (error != 0) {
284 		aprint_error_dev(sc->sc_dev,
285 		    "failed to read firmware (error %d)\n", error);
286 		firmware_free(fw, size);
287 		return;
288 	}
289 
290 	error = zyd_loadfirmware(sc, fw, size);
291 	if (error != 0) {
292 		aprint_error_dev(sc->sc_dev,
293 		    "could not load firmware (error=%d)\n", error);
294 		firmware_free(fw, size);
295 		return;
296 	}
297 
298 	firmware_free(fw, size);
299 	sc->sc_flags |= ZD1211_FWLOADED;
300 
301 	/* complete the attach process */
302 	if ((error = zyd_complete_attach(sc)) == 0)
303 		sc->attached = 1;
304 	return;
305 }
306 
307 void
308 zyd_attach(device_t parent, device_t self, void *aux)
309 {
310 	struct zyd_softc *sc = device_private(self);
311 	struct usb_attach_arg *uaa = aux;
312 	char *devinfop;
313 	usb_device_descriptor_t* ddesc;
314 	struct ifnet *ifp = &sc->sc_if;
315 
316 	sc->sc_dev = self;
317 	sc->sc_udev = uaa->uaa_device;
318 	sc->sc_flags = 0;
319 
320 	aprint_naive("\n");
321 	aprint_normal("\n");
322 
323 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
324 	aprint_normal_dev(self, "%s\n", devinfop);
325 	usbd_devinfo_free(devinfop);
326 
327 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
328 
329 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
330 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
331 		aprint_error_dev(self, "device version mismatch: 0x%x "
332 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
333 		return;
334 	}
335 
336 	ifp->if_softc = sc;
337 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 	ifp->if_init = zyd_init;
339 	ifp->if_ioctl = zyd_ioctl;
340 	ifp->if_start = zyd_start;
341 	ifp->if_watchdog = zyd_watchdog;
342 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
343 	IFQ_SET_READY(&ifp->if_snd);
344 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
345 
346 	SIMPLEQ_INIT(&sc->sc_rqh);
347 
348 	/* defer configrations after file system is ready to load firmware */
349 	config_mountroot(self, zyd_attachhook);
350 }
351 
352 Static int
353 zyd_complete_attach(struct zyd_softc *sc)
354 {
355 	struct ieee80211com *ic = &sc->sc_ic;
356 	struct ifnet *ifp = &sc->sc_if;
357 	usbd_status error;
358 	int i;
359 
360 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
361 	callout_init(&(sc->sc_scan_ch), 0);
362 
363 	sc->amrr.amrr_min_success_threshold =  1;
364 	sc->amrr.amrr_max_success_threshold = 10;
365 	callout_init(&sc->sc_amrr_ch, 0);
366 
367 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
368 	if (error != 0) {
369 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
370 		    ", err=%s\n", usbd_errstr(error));
371 		goto fail;
372 	}
373 
374 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
375 	    &sc->sc_iface);
376 	if (error != 0) {
377 		aprint_error_dev(sc->sc_dev,
378 		    "getting interface handle failed\n");
379 		goto fail;
380 	}
381 
382 	if ((error = zyd_open_pipes(sc)) != 0) {
383 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
384 		goto fail;
385 	}
386 
387 	if ((error = zyd_read_eeprom(sc)) != 0) {
388 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
389 		goto fail;
390 	}
391 
392 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
393 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
394 		goto fail;
395 	}
396 
397 	if ((error = zyd_hw_init(sc)) != 0) {
398 		aprint_error_dev(sc->sc_dev,
399 		    "hardware initialization failed\n");
400 		goto fail;
401 	}
402 
403 	aprint_normal_dev(sc->sc_dev,
404 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
405 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
406 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
407 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
408 
409 	ic->ic_ifp = ifp;
410 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
411 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
412 	ic->ic_state = IEEE80211_S_INIT;
413 
414 	/* set device capabilities */
415 	ic->ic_caps =
416 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
417 	    IEEE80211_C_TXPMGT |	/* tx power management */
418 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
419 	    IEEE80211_C_WEP;		/* s/w WEP */
420 
421 	/* set supported .11b and .11g rates */
422 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
423 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
424 
425 	/* set supported .11b and .11g channels (1 through 14) */
426 	for (i = 1; i <= 14; i++) {
427 		ic->ic_channels[i].ic_freq =
428 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
429 		ic->ic_channels[i].ic_flags =
430 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 	}
433 
434 	if_attach(ifp);
435 	ieee80211_ifattach(ic);
436 	ic->ic_node_alloc = zyd_node_alloc;
437 	ic->ic_newassoc = zyd_newassoc;
438 
439 	/* override state transition machine */
440 	sc->sc_newstate = ic->ic_newstate;
441 	ic->ic_newstate = zyd_newstate;
442 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
443 
444 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
445 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
446 	    &sc->sc_drvbpf);
447 
448 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
449 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
450 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
451 
452 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
453 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
454 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
455 
456 	ieee80211_announce(ic);
457 
458 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
459 
460 fail:	return error;
461 }
462 
463 int
464 zyd_detach(device_t self, int flags)
465 {
466 	struct zyd_softc *sc = device_private(self);
467 	struct ieee80211com *ic = &sc->sc_ic;
468 	struct ifnet *ifp = &sc->sc_if;
469 	int s;
470 
471 	if (!sc->attached)
472 		return 0;
473 
474 	s = splusb();
475 
476 	zyd_stop(ifp, 1);
477 	usb_rem_task(sc->sc_udev, &sc->sc_task);
478 	callout_stop(&sc->sc_scan_ch);
479 	callout_stop(&sc->sc_amrr_ch);
480 
481 	/* Abort, etc. done by zyd_stop */
482 	zyd_close_pipes(sc);
483 
484 	sc->attached = 0;
485 
486 	bpf_detach(ifp);
487 	ieee80211_ifdetach(ic);
488 	if_detach(ifp);
489 
490 	splx(s);
491 
492 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
493 
494 	return 0;
495 }
496 
497 Static int
498 zyd_open_pipes(struct zyd_softc *sc)
499 {
500 	usb_endpoint_descriptor_t *edesc;
501 	usbd_status error;
502 
503 	/* interrupt in */
504 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
505 	if (edesc == NULL)
506 		return EINVAL;
507 
508 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
509 	if (sc->ibuf_size == 0)	/* should not happen */
510 		return EINVAL;
511 
512 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
513 	if (sc->ibuf == NULL)
514 		return ENOMEM;
515 
516 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
517 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
518 	    USBD_DEFAULT_INTERVAL);
519 	if (error != 0) {
520 		printf("%s: open rx intr pipe failed: %s\n",
521 		    device_xname(sc->sc_dev), usbd_errstr(error));
522 		goto fail;
523 	}
524 
525 	/* interrupt out (not necessarily an interrupt pipe) */
526 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
527 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
528 	if (error != 0) {
529 		printf("%s: open tx intr pipe failed: %s\n",
530 		    device_xname(sc->sc_dev), usbd_errstr(error));
531 		goto fail;
532 	}
533 
534 	/* bulk in */
535 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
536 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
537 	if (error != 0) {
538 		printf("%s: open rx pipe failed: %s\n",
539 		    device_xname(sc->sc_dev), usbd_errstr(error));
540 		goto fail;
541 	}
542 
543 	/* bulk out */
544 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
545 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
546 	if (error != 0) {
547 		printf("%s: open tx pipe failed: %s\n",
548 		    device_xname(sc->sc_dev), usbd_errstr(error));
549 		goto fail;
550 	}
551 
552 	return 0;
553 
554 fail:	zyd_close_pipes(sc);
555 	return error;
556 }
557 
558 Static void
559 zyd_close_pipes(struct zyd_softc *sc)
560 {
561 	int i;
562 
563 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
564 		if (sc->zyd_ep[i] != NULL) {
565 			usbd_close_pipe(sc->zyd_ep[i]);
566 			sc->zyd_ep[i] = NULL;
567 		}
568 	}
569 	if (sc->ibuf != NULL) {
570 		kmem_free(sc->ibuf, sc->ibuf_size);
571 		sc->ibuf = NULL;
572 	}
573 }
574 
575 Static int
576 zyd_alloc_tx_list(struct zyd_softc *sc)
577 {
578 	int i, error;
579 
580 	sc->tx_queued = 0;
581 
582 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
583 		struct zyd_tx_data *data = &sc->tx_data[i];
584 
585 		data->sc = sc;	/* backpointer for callbacks */
586 
587 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
588 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
589 		if (error) {
590 			printf("%s: could not allocate tx xfer\n",
591 			    device_xname(sc->sc_dev));
592 			goto fail;
593 		}
594 		data->buf = usbd_get_buffer(data->xfer);
595 
596 		/* clear Tx descriptor */
597 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
598 	}
599 	return 0;
600 
601 fail:	zyd_free_tx_list(sc);
602 	return error;
603 }
604 
605 Static void
606 zyd_free_tx_list(struct zyd_softc *sc)
607 {
608 	int i;
609 
610 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
611 		struct zyd_tx_data *data = &sc->tx_data[i];
612 
613 		if (data->xfer != NULL) {
614 			usbd_destroy_xfer(data->xfer);
615 			data->xfer = NULL;
616 		}
617 		if (data->ni != NULL) {
618 			ieee80211_free_node(data->ni);
619 			data->ni = NULL;
620 		}
621 	}
622 }
623 
624 Static int
625 zyd_alloc_rx_list(struct zyd_softc *sc)
626 {
627 	int i, error;
628 
629 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
630 		struct zyd_rx_data *data = &sc->rx_data[i];
631 
632 		data->sc = sc;	/* backpointer for callbacks */
633 
634 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
635 		    ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer);
636 		if (error) {
637 			printf("%s: could not allocate rx xfer\n",
638 			    device_xname(sc->sc_dev));
639 			goto fail;
640 		}
641 		data->buf = usbd_get_buffer(data->xfer);
642 	}
643 	return 0;
644 
645 fail:	zyd_free_rx_list(sc);
646 	return error;
647 }
648 
649 Static void
650 zyd_free_rx_list(struct zyd_softc *sc)
651 {
652 	int i;
653 
654 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
655 		struct zyd_rx_data *data = &sc->rx_data[i];
656 
657 		if (data->xfer != NULL) {
658 			usbd_destroy_xfer(data->xfer);
659 			data->xfer = NULL;
660 		}
661 	}
662 }
663 
664 /* ARGUSED */
665 Static struct ieee80211_node *
666 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
667 {
668 	struct zyd_node *zn;
669 
670 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
671 
672 	return &zn->ni;
673 }
674 
675 Static int
676 zyd_media_change(struct ifnet *ifp)
677 {
678 	int error;
679 
680 	error = ieee80211_media_change(ifp);
681 	if (error != ENETRESET)
682 		return error;
683 
684 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
685 		zyd_init(ifp);
686 
687 	return 0;
688 }
689 
690 /*
691  * This function is called periodically (every 200ms) during scanning to
692  * switch from one channel to another.
693  */
694 Static void
695 zyd_next_scan(void *arg)
696 {
697 	struct zyd_softc *sc = arg;
698 	struct ieee80211com *ic = &sc->sc_ic;
699 
700 	if (ic->ic_state == IEEE80211_S_SCAN)
701 		ieee80211_next_scan(ic);
702 }
703 
704 Static void
705 zyd_task(void *arg)
706 {
707 	struct zyd_softc *sc = arg;
708 	struct ieee80211com *ic = &sc->sc_ic;
709 	enum ieee80211_state ostate;
710 
711 	ostate = ic->ic_state;
712 
713 	switch (sc->sc_state) {
714 	case IEEE80211_S_INIT:
715 		if (ostate == IEEE80211_S_RUN) {
716 			/* turn link LED off */
717 			zyd_set_led(sc, ZYD_LED1, 0);
718 
719 			/* stop data LED from blinking */
720 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
721 		}
722 		break;
723 
724 	case IEEE80211_S_SCAN:
725 		zyd_set_chan(sc, ic->ic_curchan);
726 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
727 		break;
728 
729 	case IEEE80211_S_AUTH:
730 	case IEEE80211_S_ASSOC:
731 		zyd_set_chan(sc, ic->ic_curchan);
732 		break;
733 
734 	case IEEE80211_S_RUN:
735 	{
736 		struct ieee80211_node *ni = ic->ic_bss;
737 
738 		zyd_set_chan(sc, ic->ic_curchan);
739 
740 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
741 			/* turn link LED on */
742 			zyd_set_led(sc, ZYD_LED1, 1);
743 
744 			/* make data LED blink upon Tx */
745 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
746 
747 			zyd_set_bssid(sc, ni->ni_bssid);
748 		}
749 
750 		if (ic->ic_opmode == IEEE80211_M_STA) {
751 			/* fake a join to init the tx rate */
752 			zyd_newassoc(ni, 1);
753 		}
754 
755 		/* start automatic rate control timer */
756 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
757 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
758 
759 		break;
760 	}
761 	}
762 
763 	sc->sc_newstate(ic, sc->sc_state, -1);
764 }
765 
766 Static int
767 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
768 {
769 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
770 
771 	if (!sc->attached)
772 		return ENXIO;
773 
774 	usb_rem_task(sc->sc_udev, &sc->sc_task);
775 	callout_stop(&sc->sc_scan_ch);
776 	callout_stop(&sc->sc_amrr_ch);
777 
778 	/* do it in a process context */
779 	sc->sc_state = nstate;
780 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
781 
782 	return 0;
783 }
784 
785 Static int
786 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
787     void *odata, int olen, u_int flags)
788 {
789 	struct usbd_xfer *xfer;
790 	struct zyd_cmd cmd;
791 	struct rq rq;
792 	uint16_t xferflags;
793 	int error;
794 	usbd_status uerror;
795 	int s = 0;
796 
797 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
798 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
799 	if (error)
800 		return error;
801 
802 	cmd.code = htole16(code);
803 	memcpy(cmd.data, idata, ilen);
804 
805 	xferflags = USBD_FORCE_SHORT_XFER;
806 	if (!(flags & ZYD_CMD_FLAG_READ))
807 		xferflags |= USBD_SYNCHRONOUS;
808 	else {
809 		s = splusb();
810 		rq.idata = idata;
811 		rq.odata = odata;
812 		rq.len = olen / sizeof(struct zyd_pair);
813 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
814 	}
815 
816 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
817 	    ZYD_INTR_TIMEOUT, NULL);
818 	uerror = usbd_transfer(xfer);
819 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
820 		if (flags & ZYD_CMD_FLAG_READ)
821 			splx(s);
822 		printf("%s: could not send command (error=%s)\n",
823 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
824 		(void)usbd_destroy_xfer(xfer);
825 		return EIO;
826 	}
827 	if (!(flags & ZYD_CMD_FLAG_READ)) {
828 		(void)usbd_destroy_xfer(xfer);
829 		return 0;	/* write: don't wait for reply */
830 	}
831 	/* wait at most one second for command reply */
832 	error = tsleep(odata, PCATCH, "zydcmd", hz);
833 	if (error == EWOULDBLOCK)
834 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
835 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
836 	splx(s);
837 
838 	(void)usbd_destroy_xfer(xfer);
839 	return error;
840 }
841 
842 Static int
843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
844 {
845 	struct zyd_pair tmp;
846 	int error;
847 
848 	reg = htole16(reg);
849 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
850 	    ZYD_CMD_FLAG_READ);
851 	if (error == 0)
852 		*val = le16toh(tmp.val);
853 	else
854 		*val = 0;
855 	return error;
856 }
857 
858 Static int
859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
860 {
861 	struct zyd_pair tmp[2];
862 	uint16_t regs[2];
863 	int error;
864 
865 	regs[0] = htole16(ZYD_REG32_HI(reg));
866 	regs[1] = htole16(ZYD_REG32_LO(reg));
867 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
868 	    ZYD_CMD_FLAG_READ);
869 	if (error == 0)
870 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
871 	else
872 		*val = 0;
873 	return error;
874 }
875 
876 Static int
877 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
878 {
879 	struct zyd_pair pair;
880 
881 	pair.reg = htole16(reg);
882 	pair.val = htole16(val);
883 
884 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
885 }
886 
887 Static int
888 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
889 {
890 	struct zyd_pair pair[2];
891 
892 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
893 	pair[0].val = htole16(val >> 16);
894 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
895 	pair[1].val = htole16(val & 0xffff);
896 
897 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
898 }
899 
900 Static int
901 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
902 {
903 	struct zyd_rf *rf = &sc->sc_rf;
904 	struct zyd_rfwrite req;
905 	uint16_t cr203;
906 	int i;
907 
908 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
909 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
910 
911 	req.code  = htole16(2);
912 	req.width = htole16(rf->width);
913 	for (i = 0; i < rf->width; i++) {
914 		req.bit[i] = htole16(cr203);
915 		if (val & (1 << (rf->width - 1 - i)))
916 			req.bit[i] |= htole16(ZYD_RF_DATA);
917 	}
918 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
919 }
920 
921 Static void
922 zyd_lock_phy(struct zyd_softc *sc)
923 {
924 	uint32_t tmp;
925 
926 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
927 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
928 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
929 }
930 
931 Static void
932 zyd_unlock_phy(struct zyd_softc *sc)
933 {
934 	uint32_t tmp;
935 
936 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 	tmp |= ZYD_UNLOCK_PHY_REGS;
938 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
939 }
940 
941 /*
942  * RFMD RF methods.
943  */
944 Static int
945 zyd_rfmd_init(struct zyd_rf *rf)
946 {
947 	struct zyd_softc *sc = rf->rf_sc;
948 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
949 	static const uint32_t rfini[] = ZYD_RFMD_RF;
950 	int error;
951 	size_t i;
952 
953 	/* init RF-dependent PHY registers */
954 	for (i = 0; i < __arraycount(phyini); i++) {
955 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
956 		if (error != 0)
957 			return error;
958 	}
959 
960 	/* init RFMD radio */
961 	for (i = 0; i < __arraycount(rfini); i++) {
962 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
963 			return error;
964 	}
965 	return 0;
966 }
967 
968 Static int
969 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
970 {
971 	struct zyd_softc *sc = rf->rf_sc;
972 
973 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
974 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
975 
976 	return 0;
977 }
978 
979 Static int
980 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
981 {
982 	struct zyd_softc *sc = rf->rf_sc;
983 	static const struct {
984 		uint32_t	r1, r2;
985 	} rfprog[] = ZYD_RFMD_CHANTABLE;
986 
987 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
988 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
989 
990 	return 0;
991 }
992 
993 /*
994  * AL2230 RF methods.
995  */
996 Static int
997 zyd_al2230_init(struct zyd_rf *rf)
998 {
999 	struct zyd_softc *sc = rf->rf_sc;
1000 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1001 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1002 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1003 	int error;
1004 	size_t i;
1005 
1006 	/* init RF-dependent PHY registers */
1007 	for (i = 0; i < __arraycount(phyini); i++) {
1008 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1009 		if (error != 0)
1010 			return error;
1011 	}
1012 
1013 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1014 		for (i = 0; i < __arraycount(phy2230s); i++) {
1015 			error = zyd_write16(sc, phy2230s[i].reg,
1016 			    phy2230s[i].val);
1017 			if (error != 0)
1018 				return error;
1019 		}
1020 	}
1021 
1022 	/* init AL2230 radio */
1023 	for (i = 0; i < __arraycount(rfini); i++) {
1024 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1025 			return error;
1026 	}
1027 	return 0;
1028 }
1029 
1030 Static int
1031 zyd_al2230_init_b(struct zyd_rf *rf)
1032 {
1033 	struct zyd_softc *sc = rf->rf_sc;
1034 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1035 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1036 	int error;
1037 	size_t i;
1038 
1039 	/* init RF-dependent PHY registers */
1040 	for (i = 0; i < __arraycount(phyini); i++) {
1041 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1042 		if (error != 0)
1043 			return error;
1044 	}
1045 
1046 	/* init AL2230 radio */
1047 	for (i = 0; i < __arraycount(rfini); i++) {
1048 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1049 			return error;
1050 	}
1051 	return 0;
1052 }
1053 
1054 Static int
1055 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1056 {
1057 	struct zyd_softc *sc = rf->rf_sc;
1058 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1059 
1060 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1061 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1062 
1063 	return 0;
1064 }
1065 
1066 Static int
1067 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1068 {
1069 	struct zyd_softc *sc = rf->rf_sc;
1070 	static const struct {
1071 		uint32_t	r1, r2, r3;
1072 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1073 
1074 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1075 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1076 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1077 
1078 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1079 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * AL7230B RF methods.
1086  */
1087 Static int
1088 zyd_al7230B_init(struct zyd_rf *rf)
1089 {
1090 	struct zyd_softc *sc = rf->rf_sc;
1091 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1092 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1093 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1094 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1095 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1096 	int error;
1097 	size_t i;
1098 
1099 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1100 
1101 	/* init RF-dependent PHY registers, part one */
1102 	for (i = 0; i < __arraycount(phyini_1); i++) {
1103 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1104 		if (error != 0)
1105 			return error;
1106 	}
1107 	/* init AL7230B radio, part one */
1108 	for (i = 0; i < __arraycount(rfini_1); i++) {
1109 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1110 			return error;
1111 	}
1112 	/* init RF-dependent PHY registers, part two */
1113 	for (i = 0; i < __arraycount(phyini_2); i++) {
1114 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1115 		if (error != 0)
1116 			return error;
1117 	}
1118 	/* init AL7230B radio, part two */
1119 	for (i = 0; i < __arraycount(rfini_2); i++) {
1120 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1121 			return error;
1122 	}
1123 	/* init RF-dependent PHY registers, part three */
1124 	for (i = 0; i < __arraycount(phyini_3); i++) {
1125 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1126 		if (error != 0)
1127 			return error;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 Static int
1134 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1135 {
1136 	struct zyd_softc *sc = rf->rf_sc;
1137 
1138 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1139 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1140 
1141 	return 0;
1142 }
1143 
1144 Static int
1145 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1146 {
1147 	struct zyd_softc *sc = rf->rf_sc;
1148 	static const struct {
1149 		uint32_t	r1, r2;
1150 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1151 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1152 	int error;
1153 	size_t i;
1154 
1155 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1156 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1157 
1158 	for (i = 0; i < __arraycount(rfsc); i++) {
1159 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1160 			return error;
1161 	}
1162 
1163 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1164 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1165 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1166 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1167 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1168 
1169 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1170 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1171 	(void)zyd_rfwrite(sc, 0x3c9000);
1172 
1173 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1174 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1175 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * AL2210 RF methods.
1182  */
1183 Static int
1184 zyd_al2210_init(struct zyd_rf *rf)
1185 {
1186 	struct zyd_softc *sc = rf->rf_sc;
1187 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1188 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1189 	uint32_t tmp;
1190 	int error;
1191 	size_t i;
1192 
1193 	(void)zyd_write32(sc, ZYD_CR18, 2);
1194 
1195 	/* init RF-dependent PHY registers */
1196 	for (i = 0; i < __arraycount(phyini); i++) {
1197 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1198 		if (error != 0)
1199 			return error;
1200 	}
1201 	/* init AL2210 radio */
1202 	for (i = 0; i < __arraycount(rfini); i++) {
1203 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1204 			return error;
1205 	}
1206 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1207 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1208 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1209 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1210 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1211 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1212 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1213 	(void)zyd_write32(sc, ZYD_CR18, 3);
1214 
1215 	return 0;
1216 }
1217 
1218 Static int
1219 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1220 {
1221 	/* vendor driver does nothing for this RF chip */
1222 
1223 	return 0;
1224 }
1225 
1226 Static int
1227 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1228 {
1229 	struct zyd_softc *sc = rf->rf_sc;
1230 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1231 	uint32_t tmp;
1232 
1233 	(void)zyd_write32(sc, ZYD_CR18, 2);
1234 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1235 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1236 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1237 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1238 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1239 
1240 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1241 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1242 
1243 	/* actually set the channel */
1244 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1245 
1246 	(void)zyd_write32(sc, ZYD_CR18, 3);
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * GCT RF methods.
1253  */
1254 Static int
1255 zyd_gct_init(struct zyd_rf *rf)
1256 {
1257 	struct zyd_softc *sc = rf->rf_sc;
1258 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1259 	static const uint32_t rfini[] = ZYD_GCT_RF;
1260 	int error;
1261 	size_t i;
1262 
1263 	/* init RF-dependent PHY registers */
1264 	for (i = 0; i < __arraycount(phyini); i++) {
1265 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1266 		if (error != 0)
1267 			return error;
1268 	}
1269 	/* init cgt radio */
1270 	for (i = 0; i < __arraycount(rfini); i++) {
1271 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1272 			return error;
1273 	}
1274 	return 0;
1275 }
1276 
1277 Static int
1278 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1279 {
1280 	/* vendor driver does nothing for this RF chip */
1281 
1282 	return 0;
1283 }
1284 
1285 Static int
1286 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1287 {
1288 	struct zyd_softc *sc = rf->rf_sc;
1289 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1290 
1291 	(void)zyd_rfwrite(sc, 0x1c0000);
1292 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1293 	(void)zyd_rfwrite(sc, 0x1c0008);
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Maxim RF methods.
1300  */
1301 Static int
1302 zyd_maxim_init(struct zyd_rf *rf)
1303 {
1304 	struct zyd_softc *sc = rf->rf_sc;
1305 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1306 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1307 	uint16_t tmp;
1308 	int error;
1309 	size_t i;
1310 
1311 	/* init RF-dependent PHY registers */
1312 	for (i = 0; i < __arraycount(phyini); i++) {
1313 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1314 		if (error != 0)
1315 			return error;
1316 	}
1317 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1319 
1320 	/* init maxim radio */
1321 	for (i = 0; i < __arraycount(rfini); i++) {
1322 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1323 			return error;
1324 	}
1325 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1326 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1327 
1328 	return 0;
1329 }
1330 
1331 Static int
1332 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1333 {
1334 	/* vendor driver does nothing for this RF chip */
1335 
1336 	return 0;
1337 }
1338 
1339 Static int
1340 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1341 {
1342 	struct zyd_softc *sc = rf->rf_sc;
1343 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1344 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1345 	static const struct {
1346 		uint32_t	r1, r2;
1347 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1348 	uint16_t tmp;
1349 	int error;
1350 	size_t i;
1351 
1352 	/*
1353 	 * Do the same as we do when initializing it, except for the channel
1354 	 * values coming from the two channel tables.
1355 	 */
1356 
1357 	/* init RF-dependent PHY registers */
1358 	for (i = 0; i < __arraycount(phyini); i++) {
1359 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1360 		if (error != 0)
1361 			return error;
1362 	}
1363 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1364 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1365 
1366 	/* first two values taken from the chantables */
1367 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1368 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1369 
1370 	/* init maxim radio - skipping the two first values */
1371 	for (i = 2; i < __arraycount(rfini); i++) {
1372 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1373 			return error;
1374 	}
1375 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1376 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1377 
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Maxim2 RF methods.
1383  */
1384 Static int
1385 zyd_maxim2_init(struct zyd_rf *rf)
1386 {
1387 	struct zyd_softc *sc = rf->rf_sc;
1388 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1389 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1390 	uint16_t tmp;
1391 	int error;
1392 	size_t i;
1393 
1394 	/* init RF-dependent PHY registers */
1395 	for (i = 0; i < __arraycount(phyini); i++) {
1396 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1397 		if (error != 0)
1398 			return error;
1399 	}
1400 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1401 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1402 
1403 	/* init maxim2 radio */
1404 	for (i = 0; i < __arraycount(rfini); i++) {
1405 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1406 			return error;
1407 	}
1408 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1409 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1410 
1411 	return 0;
1412 }
1413 
1414 Static int
1415 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1416 {
1417 	/* vendor driver does nothing for this RF chip */
1418 
1419 	return 0;
1420 }
1421 
1422 Static int
1423 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1424 {
1425 	struct zyd_softc *sc = rf->rf_sc;
1426 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1427 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1428 	static const struct {
1429 		uint32_t	r1, r2;
1430 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1431 	uint16_t tmp;
1432 	int error;
1433 	size_t i;
1434 
1435 	/*
1436 	 * Do the same as we do when initializing it, except for the channel
1437 	 * values coming from the two channel tables.
1438 	 */
1439 
1440 	/* init RF-dependent PHY registers */
1441 	for (i = 0; i < __arraycount(phyini); i++) {
1442 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1443 		if (error != 0)
1444 			return error;
1445 	}
1446 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1447 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1448 
1449 	/* first two values taken from the chantables */
1450 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1451 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1452 
1453 	/* init maxim2 radio - skipping the two first values */
1454 	for (i = 2; i < __arraycount(rfini); i++) {
1455 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1456 			return error;
1457 	}
1458 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1459 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1460 
1461 	return 0;
1462 }
1463 
1464 Static int
1465 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1466 {
1467 	struct zyd_rf *rf = &sc->sc_rf;
1468 
1469 	rf->rf_sc = sc;
1470 
1471 	switch (type) {
1472 	case ZYD_RF_RFMD:
1473 		rf->init         = zyd_rfmd_init;
1474 		rf->switch_radio = zyd_rfmd_switch_radio;
1475 		rf->set_channel  = zyd_rfmd_set_channel;
1476 		rf->width        = 24;	/* 24-bit RF values */
1477 		break;
1478 	case ZYD_RF_AL2230:
1479 	case ZYD_RF_AL2230S:
1480 		if (sc->mac_rev == ZYD_ZD1211B)
1481 			rf->init = zyd_al2230_init_b;
1482 		else
1483 			rf->init = zyd_al2230_init;
1484 		rf->switch_radio = zyd_al2230_switch_radio;
1485 		rf->set_channel  = zyd_al2230_set_channel;
1486 		rf->width        = 24;	/* 24-bit RF values */
1487 		break;
1488 	case ZYD_RF_AL7230B:
1489 		rf->init         = zyd_al7230B_init;
1490 		rf->switch_radio = zyd_al7230B_switch_radio;
1491 		rf->set_channel  = zyd_al7230B_set_channel;
1492 		rf->width        = 24;	/* 24-bit RF values */
1493 		break;
1494 	case ZYD_RF_AL2210:
1495 		rf->init         = zyd_al2210_init;
1496 		rf->switch_radio = zyd_al2210_switch_radio;
1497 		rf->set_channel  = zyd_al2210_set_channel;
1498 		rf->width        = 24;	/* 24-bit RF values */
1499 		break;
1500 	case ZYD_RF_GCT:
1501 		rf->init         = zyd_gct_init;
1502 		rf->switch_radio = zyd_gct_switch_radio;
1503 		rf->set_channel  = zyd_gct_set_channel;
1504 		rf->width        = 21;	/* 21-bit RF values */
1505 		break;
1506 	case ZYD_RF_MAXIM_NEW:
1507 		rf->init         = zyd_maxim_init;
1508 		rf->switch_radio = zyd_maxim_switch_radio;
1509 		rf->set_channel  = zyd_maxim_set_channel;
1510 		rf->width        = 18;	/* 18-bit RF values */
1511 		break;
1512 	case ZYD_RF_MAXIM_NEW2:
1513 		rf->init         = zyd_maxim2_init;
1514 		rf->switch_radio = zyd_maxim2_switch_radio;
1515 		rf->set_channel  = zyd_maxim2_set_channel;
1516 		rf->width        = 18;	/* 18-bit RF values */
1517 		break;
1518 	default:
1519 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1520 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1521 		return EINVAL;
1522 	}
1523 	return 0;
1524 }
1525 
1526 Static const char *
1527 zyd_rf_name(uint8_t type)
1528 {
1529 	static const char * const zyd_rfs[] = {
1530 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1531 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1532 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1533 		"PHILIPS"
1534 	};
1535 
1536 	return zyd_rfs[(type > 15) ? 0 : type];
1537 }
1538 
1539 Static int
1540 zyd_hw_init(struct zyd_softc *sc)
1541 {
1542 	struct zyd_rf *rf = &sc->sc_rf;
1543 	const struct zyd_phy_pair *phyp;
1544 	int error;
1545 
1546 	/* specify that the plug and play is finished */
1547 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1548 
1549 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1550 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1551 
1552 	/* retrieve firmware revision number */
1553 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1554 
1555 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1556 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1557 
1558 	/* disable interrupts */
1559 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1560 
1561 	/* PHY init */
1562 	zyd_lock_phy(sc);
1563 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1564 	for (; phyp->reg != 0; phyp++) {
1565 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1566 			goto fail;
1567 	}
1568 	zyd_unlock_phy(sc);
1569 
1570 	/* HMAC init */
1571 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1572 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1573 
1574 	if (sc->mac_rev == ZYD_ZD1211) {
1575 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1576 	} else {
1577 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1578 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1579 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1580 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1581 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1582 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1583 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1584 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1585 	}
1586 
1587 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1588 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1589 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1590 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1591 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1592 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1593 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1594 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1595 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1596 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1597 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1598 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1599 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1600 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1601 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1602 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1603 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1604 
1605 	/* RF chip init */
1606 	zyd_lock_phy(sc);
1607 	error = (*rf->init)(rf);
1608 	zyd_unlock_phy(sc);
1609 	if (error != 0) {
1610 		printf("%s: radio initialization failed\n",
1611 		    device_xname(sc->sc_dev));
1612 		goto fail;
1613 	}
1614 
1615 	/* init beacon interval to 100ms */
1616 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1617 		goto fail;
1618 
1619 fail:	return error;
1620 }
1621 
1622 Static int
1623 zyd_read_eeprom(struct zyd_softc *sc)
1624 {
1625 	struct ieee80211com *ic = &sc->sc_ic;
1626 	uint32_t tmp;
1627 	uint16_t val;
1628 	int i;
1629 
1630 	/* read MAC address */
1631 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1632 	ic->ic_myaddr[0] = tmp & 0xff;
1633 	ic->ic_myaddr[1] = tmp >>  8;
1634 	ic->ic_myaddr[2] = tmp >> 16;
1635 	ic->ic_myaddr[3] = tmp >> 24;
1636 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1637 	ic->ic_myaddr[4] = tmp & 0xff;
1638 	ic->ic_myaddr[5] = tmp >>  8;
1639 
1640 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1641 	sc->rf_rev = tmp & 0x0f;
1642 	sc->pa_rev = (tmp >> 16) & 0x0f;
1643 
1644 	/* read regulatory domain (currently unused) */
1645 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1646 	sc->regdomain = tmp >> 16;
1647 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1648 
1649 	/* read Tx power calibration tables */
1650 	for (i = 0; i < 7; i++) {
1651 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1652 		sc->pwr_cal[i * 2] = val >> 8;
1653 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1654 
1655 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1656 		sc->pwr_int[i * 2] = val >> 8;
1657 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1658 
1659 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1660 		sc->ofdm36_cal[i * 2] = val >> 8;
1661 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1662 
1663 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1664 		sc->ofdm48_cal[i * 2] = val >> 8;
1665 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1666 
1667 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1668 		sc->ofdm54_cal[i * 2] = val >> 8;
1669 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1670 	}
1671 	return 0;
1672 }
1673 
1674 Static int
1675 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1676 {
1677 	uint32_t tmp;
1678 
1679 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1680 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1681 
1682 	tmp = addr[5] << 8 | addr[4];
1683 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1684 
1685 	return 0;
1686 }
1687 
1688 Static int
1689 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1690 {
1691 	uint32_t tmp;
1692 
1693 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1694 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1695 
1696 	tmp = addr[5] << 8 | addr[4];
1697 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1698 
1699 	return 0;
1700 }
1701 
1702 Static int
1703 zyd_switch_radio(struct zyd_softc *sc, int on)
1704 {
1705 	struct zyd_rf *rf = &sc->sc_rf;
1706 	int error;
1707 
1708 	zyd_lock_phy(sc);
1709 	error = (*rf->switch_radio)(rf, on);
1710 	zyd_unlock_phy(sc);
1711 
1712 	return error;
1713 }
1714 
1715 Static void
1716 zyd_set_led(struct zyd_softc *sc, int which, int on)
1717 {
1718 	uint32_t tmp;
1719 
1720 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1721 	tmp &= ~which;
1722 	if (on)
1723 		tmp |= which;
1724 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1725 }
1726 
1727 Static int
1728 zyd_set_rxfilter(struct zyd_softc *sc)
1729 {
1730 	uint32_t rxfilter;
1731 
1732 	switch (sc->sc_ic.ic_opmode) {
1733 	case IEEE80211_M_STA:
1734 		rxfilter = ZYD_FILTER_BSS;
1735 		break;
1736 	case IEEE80211_M_IBSS:
1737 	case IEEE80211_M_HOSTAP:
1738 		rxfilter = ZYD_FILTER_HOSTAP;
1739 		break;
1740 	case IEEE80211_M_MONITOR:
1741 		rxfilter = ZYD_FILTER_MONITOR;
1742 		break;
1743 	default:
1744 		/* should not get there */
1745 		return EINVAL;
1746 	}
1747 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1748 }
1749 
1750 Static void
1751 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1752 {
1753 	struct ieee80211com *ic = &sc->sc_ic;
1754 	struct zyd_rf *rf = &sc->sc_rf;
1755 	u_int chan;
1756 
1757 	chan = ieee80211_chan2ieee(ic, c);
1758 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1759 		return;
1760 
1761 	zyd_lock_phy(sc);
1762 
1763 	(*rf->set_channel)(rf, chan);
1764 
1765 	/* update Tx power */
1766 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1767 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1768 
1769 	if (sc->mac_rev == ZYD_ZD1211B) {
1770 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1771 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1772 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1773 
1774 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1775 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1776 	}
1777 
1778 	zyd_unlock_phy(sc);
1779 }
1780 
1781 Static int
1782 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1783 {
1784 	/* XXX this is probably broken.. */
1785 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1786 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1787 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1788 
1789 	return 0;
1790 }
1791 
1792 Static uint8_t
1793 zyd_plcp_signal(int rate)
1794 {
1795 	switch (rate) {
1796 	/* CCK rates (returned values are device-dependent) */
1797 	case 2:		return 0x0;
1798 	case 4:		return 0x1;
1799 	case 11:	return 0x2;
1800 	case 22:	return 0x3;
1801 
1802 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1803 	case 12:	return 0xb;
1804 	case 18:	return 0xf;
1805 	case 24:	return 0xa;
1806 	case 36:	return 0xe;
1807 	case 48:	return 0x9;
1808 	case 72:	return 0xd;
1809 	case 96:	return 0x8;
1810 	case 108:	return 0xc;
1811 
1812 	/* unsupported rates (should not get there) */
1813 	default:	return 0xff;
1814 	}
1815 }
1816 
1817 Static void
1818 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1819 {
1820 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1821 	struct zyd_cmd *cmd;
1822 	uint32_t datalen;
1823 
1824 	if (status != USBD_NORMAL_COMPLETION) {
1825 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1826 			return;
1827 
1828 		if (status == USBD_STALLED) {
1829 			usbd_clear_endpoint_stall_async(
1830 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1831 		}
1832 		return;
1833 	}
1834 
1835 	cmd = (struct zyd_cmd *)sc->ibuf;
1836 
1837 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1838 		struct zyd_notif_retry *retry =
1839 		    (struct zyd_notif_retry *)cmd->data;
1840 		struct ieee80211com *ic = &sc->sc_ic;
1841 		struct ifnet *ifp = &sc->sc_if;
1842 		struct ieee80211_node *ni;
1843 
1844 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1845 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1846 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1847 
1848 		/*
1849 		 * Find the node to which the packet was sent and update its
1850 		 * retry statistics.  In BSS mode, this node is the AP we're
1851 		 * associated to so no lookup is actually needed.
1852 		 */
1853 		if (ic->ic_opmode != IEEE80211_M_STA) {
1854 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1855 			if (ni == NULL)
1856 				return;	/* just ignore */
1857 		} else
1858 			ni = ic->ic_bss;
1859 
1860 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1861 
1862 		if (le16toh(retry->count) & 0x100)
1863 			ifp->if_oerrors++;	/* too many retries */
1864 
1865 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1866 		struct rq *rqp;
1867 
1868 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1869 			return;	/* HMAC interrupt */
1870 
1871 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1872 		datalen -= sizeof(cmd->code);
1873 		datalen -= 2;	/* XXX: padding? */
1874 
1875 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1876 			int i;
1877 
1878 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1879 				continue;
1880 			for (i = 0; i < rqp->len; i++) {
1881 				if (*(((const uint16_t *)rqp->idata) + i) !=
1882 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1883 					break;
1884 			}
1885 			if (i != rqp->len)
1886 				continue;
1887 
1888 			/* copy answer into caller-supplied buffer */
1889 			memcpy(rqp->odata, cmd->data,
1890 			    sizeof(struct zyd_pair) * rqp->len);
1891 			wakeup(rqp->odata);	/* wakeup caller */
1892 
1893 			return;
1894 		}
1895 		return;	/* unexpected IORD notification */
1896 	} else {
1897 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1898 		    le16toh(cmd->code));
1899 	}
1900 }
1901 
1902 Static void
1903 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1904 {
1905 	struct ieee80211com *ic = &sc->sc_ic;
1906 	struct ifnet *ifp = &sc->sc_if;
1907 	struct ieee80211_node *ni;
1908 	struct ieee80211_frame *wh;
1909 	const struct zyd_plcphdr *plcp;
1910 	const struct zyd_rx_stat *stat;
1911 	struct mbuf *m;
1912 	int rlen, s;
1913 
1914 	if (len < ZYD_MIN_FRAGSZ) {
1915 		printf("%s: frame too short (length=%d)\n",
1916 		    device_xname(sc->sc_dev), len);
1917 		ifp->if_ierrors++;
1918 		return;
1919 	}
1920 
1921 	plcp = (const struct zyd_plcphdr *)buf;
1922 	stat = (const struct zyd_rx_stat *)
1923 	    (buf + len - sizeof(struct zyd_rx_stat));
1924 
1925 	if (stat->flags & ZYD_RX_ERROR) {
1926 		DPRINTF(("%s: RX status indicated error (%x)\n",
1927 		    device_xname(sc->sc_dev), stat->flags));
1928 		ifp->if_ierrors++;
1929 		return;
1930 	}
1931 
1932 	/* compute actual frame length */
1933 	rlen = len - sizeof(struct zyd_plcphdr) -
1934 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1935 
1936 	/* allocate a mbuf to store the frame */
1937 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1938 	if (m == NULL) {
1939 		printf("%s: could not allocate rx mbuf\n",
1940 		    device_xname(sc->sc_dev));
1941 		ifp->if_ierrors++;
1942 		return;
1943 	}
1944 	if (rlen > MHLEN) {
1945 		MCLGET(m, M_DONTWAIT);
1946 		if (!(m->m_flags & M_EXT)) {
1947 			printf("%s: could not allocate rx mbuf cluster\n",
1948 			    device_xname(sc->sc_dev));
1949 			m_freem(m);
1950 			ifp->if_ierrors++;
1951 			return;
1952 		}
1953 	}
1954 	m_set_rcvif(m, ifp);
1955 	m->m_pkthdr.len = m->m_len = rlen;
1956 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1957 
1958 	s = splnet();
1959 
1960 	if (sc->sc_drvbpf != NULL) {
1961 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1962 		static const uint8_t rates[] = {
1963 			/* reverse function of zyd_plcp_signal() */
1964 			2, 4, 11, 22, 0, 0, 0, 0,
1965 			96, 48, 24, 12, 108, 72, 36, 18
1966 		};
1967 
1968 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1969 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1970 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1971 		tap->wr_rssi = stat->rssi;
1972 		tap->wr_rate = rates[plcp->signal & 0xf];
1973 
1974 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1975 	}
1976 
1977 	wh = mtod(m, struct ieee80211_frame *);
1978 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1979 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1980 
1981 	/* node is no longer needed */
1982 	ieee80211_free_node(ni);
1983 
1984 	splx(s);
1985 }
1986 
1987 Static void
1988 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1989 {
1990 	struct zyd_rx_data *data = priv;
1991 	struct zyd_softc *sc = data->sc;
1992 	struct ifnet *ifp = &sc->sc_if;
1993 	const struct zyd_rx_desc *desc;
1994 	int len;
1995 
1996 	if (status != USBD_NORMAL_COMPLETION) {
1997 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1998 			return;
1999 
2000 		if (status == USBD_STALLED)
2001 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2002 
2003 		goto skip;
2004 	}
2005 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2006 
2007 	if (len < ZYD_MIN_RXBUFSZ) {
2008 		printf("%s: xfer too short (length=%d)\n",
2009 		    device_xname(sc->sc_dev), len);
2010 		ifp->if_ierrors++;
2011 		goto skip;
2012 	}
2013 
2014 	desc = (const struct zyd_rx_desc *)
2015 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2016 
2017 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2018 		const uint8_t *p = data->buf, *end = p + len;
2019 		int i;
2020 
2021 		DPRINTFN(3, ("received multi-frame transfer\n"));
2022 
2023 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2024 			const uint16_t len16 = UGETW(desc->len[i]);
2025 
2026 			if (len16 == 0 || p + len16 > end)
2027 				break;
2028 
2029 			zyd_rx_data(sc, p, len16);
2030 			/* next frame is aligned on a 32-bit boundary */
2031 			p += (len16 + 3) & ~3;
2032 		}
2033 	} else {
2034 		DPRINTFN(3, ("received single-frame transfer\n"));
2035 
2036 		zyd_rx_data(sc, data->buf, len);
2037 	}
2038 
2039 skip:	/* setup a new transfer */
2040 
2041 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2042 	    USBD_NO_TIMEOUT, zyd_rxeof);
2043 	(void)usbd_transfer(xfer);
2044 }
2045 
2046 Static int
2047 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2048 {
2049 	struct ieee80211com *ic = &sc->sc_ic;
2050 	struct ifnet *ifp = &sc->sc_if;
2051 	struct zyd_tx_desc *desc;
2052 	struct zyd_tx_data *data;
2053 	struct ieee80211_frame *wh;
2054 	struct ieee80211_key *k;
2055 	int xferlen, totlen, rate;
2056 	uint16_t pktlen;
2057 	usbd_status error;
2058 
2059 	data = &sc->tx_data[0];
2060 	desc = (struct zyd_tx_desc *)data->buf;
2061 
2062 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2063 
2064 	wh = mtod(m0, struct ieee80211_frame *);
2065 
2066 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2067 		k = ieee80211_crypto_encap(ic, ni, m0);
2068 		if (k == NULL) {
2069 			m_freem(m0);
2070 			return ENOBUFS;
2071 		}
2072 	}
2073 
2074 	data->ni = ni;
2075 
2076 	wh = mtod(m0, struct ieee80211_frame *);
2077 
2078 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2079 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2080 
2081 	/* fill Tx descriptor */
2082 	desc->len = htole16(totlen);
2083 
2084 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2085 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2086 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2087 		if (totlen > ic->ic_rtsthreshold) {
2088 			desc->flags |= ZYD_TX_FLAG_RTS;
2089 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2090 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2091 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2092 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2093 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2094 				desc->flags |= ZYD_TX_FLAG_RTS;
2095 		}
2096 	} else
2097 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2098 
2099 	if ((wh->i_fc[0] &
2100 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2101 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2102 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2103 
2104 	desc->phy = zyd_plcp_signal(rate);
2105 	if (ZYD_RATE_IS_OFDM(rate)) {
2106 		desc->phy |= ZYD_TX_PHY_OFDM;
2107 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2108 			desc->phy |= ZYD_TX_PHY_5GHZ;
2109 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2110 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2111 
2112 	/* actual transmit length (XXX why +10?) */
2113 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2114 	if (sc->mac_rev == ZYD_ZD1211)
2115 		pktlen += totlen;
2116 	desc->pktlen = htole16(pktlen);
2117 
2118 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2119 	desc->plcp_service = 0;
2120 	if (rate == 22) {
2121 		const int remainder = (16 * totlen) % 22;
2122 		if (remainder != 0 && remainder < 7)
2123 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2124 	}
2125 
2126 	if (sc->sc_drvbpf != NULL) {
2127 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2128 
2129 		tap->wt_flags = 0;
2130 		tap->wt_rate = rate;
2131 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2132 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2133 
2134 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2135 	}
2136 
2137 	m_copydata(m0, 0, m0->m_pkthdr.len,
2138 	    data->buf + sizeof(struct zyd_tx_desc));
2139 
2140 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2141 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2142 
2143 	m_freem(m0);	/* mbuf no longer needed */
2144 
2145 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2146 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2147 	error = usbd_transfer(data->xfer);
2148 	if (error != USBD_IN_PROGRESS && error != 0) {
2149 		ifp->if_oerrors++;
2150 		return EIO;
2151 	}
2152 	sc->tx_queued++;
2153 
2154 	return 0;
2155 }
2156 
2157 Static void
2158 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2159 {
2160 	struct zyd_tx_data *data = priv;
2161 	struct zyd_softc *sc = data->sc;
2162 	struct ifnet *ifp = &sc->sc_if;
2163 	int s;
2164 
2165 	if (status != USBD_NORMAL_COMPLETION) {
2166 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2167 			return;
2168 
2169 		printf("%s: could not transmit buffer: %s\n",
2170 		    device_xname(sc->sc_dev), usbd_errstr(status));
2171 
2172 		if (status == USBD_STALLED) {
2173 			usbd_clear_endpoint_stall_async(
2174 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2175 		}
2176 		ifp->if_oerrors++;
2177 		return;
2178 	}
2179 
2180 	s = splnet();
2181 
2182 	/* update rate control statistics */
2183 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2184 
2185 	ieee80211_free_node(data->ni);
2186 	data->ni = NULL;
2187 
2188 	sc->tx_queued--;
2189 	ifp->if_opackets++;
2190 
2191 	sc->tx_timer = 0;
2192 	ifp->if_flags &= ~IFF_OACTIVE;
2193 	zyd_start(ifp);
2194 
2195 	splx(s);
2196 }
2197 
2198 Static int
2199 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2200 {
2201 	struct ieee80211com *ic = &sc->sc_ic;
2202 	struct ifnet *ifp = &sc->sc_if;
2203 	struct zyd_tx_desc *desc;
2204 	struct zyd_tx_data *data;
2205 	struct ieee80211_frame *wh;
2206 	struct ieee80211_key *k;
2207 	int xferlen, totlen, rate;
2208 	uint16_t pktlen;
2209 	usbd_status error;
2210 
2211 	wh = mtod(m0, struct ieee80211_frame *);
2212 
2213 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2214 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2215 	else
2216 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2217 	rate &= IEEE80211_RATE_VAL;
2218 
2219 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2220 		k = ieee80211_crypto_encap(ic, ni, m0);
2221 		if (k == NULL) {
2222 			m_freem(m0);
2223 			return ENOBUFS;
2224 		}
2225 
2226 		/* packet header may have moved, reset our local pointer */
2227 		wh = mtod(m0, struct ieee80211_frame *);
2228 	}
2229 
2230 	data = &sc->tx_data[0];
2231 	desc = (struct zyd_tx_desc *)data->buf;
2232 
2233 	data->ni = ni;
2234 
2235 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2236 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2237 
2238 	/* fill Tx descriptor */
2239 	desc->len = htole16(totlen);
2240 
2241 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2242 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2243 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2244 		if (totlen > ic->ic_rtsthreshold) {
2245 			desc->flags |= ZYD_TX_FLAG_RTS;
2246 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2247 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2248 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2249 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2250 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2251 				desc->flags |= ZYD_TX_FLAG_RTS;
2252 		}
2253 	} else
2254 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2255 
2256 	if ((wh->i_fc[0] &
2257 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2258 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2259 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2260 
2261 	desc->phy = zyd_plcp_signal(rate);
2262 	if (ZYD_RATE_IS_OFDM(rate)) {
2263 		desc->phy |= ZYD_TX_PHY_OFDM;
2264 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2265 			desc->phy |= ZYD_TX_PHY_5GHZ;
2266 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2267 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2268 
2269 	/* actual transmit length (XXX why +10?) */
2270 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2271 	if (sc->mac_rev == ZYD_ZD1211)
2272 		pktlen += totlen;
2273 	desc->pktlen = htole16(pktlen);
2274 
2275 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2276 	desc->plcp_service = 0;
2277 	if (rate == 22) {
2278 		const int remainder = (16 * totlen) % 22;
2279 		if (remainder != 0 && remainder < 7)
2280 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2281 	}
2282 
2283 	if (sc->sc_drvbpf != NULL) {
2284 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2285 
2286 		tap->wt_flags = 0;
2287 		tap->wt_rate = rate;
2288 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2289 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2290 
2291 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2292 	}
2293 
2294 	m_copydata(m0, 0, m0->m_pkthdr.len,
2295 	    data->buf + sizeof(struct zyd_tx_desc));
2296 
2297 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2298 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2299 
2300 	m_freem(m0);	/* mbuf no longer needed */
2301 
2302 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2303 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2304 	error = usbd_transfer(data->xfer);
2305 	if (error != USBD_IN_PROGRESS && error != 0) {
2306 		ifp->if_oerrors++;
2307 		return EIO;
2308 	}
2309 	sc->tx_queued++;
2310 
2311 	return 0;
2312 }
2313 
2314 Static void
2315 zyd_start(struct ifnet *ifp)
2316 {
2317 	struct zyd_softc *sc = ifp->if_softc;
2318 	struct ieee80211com *ic = &sc->sc_ic;
2319 	struct ether_header *eh;
2320 	struct ieee80211_node *ni;
2321 	struct mbuf *m0;
2322 
2323 	for (;;) {
2324 		IF_POLL(&ic->ic_mgtq, m0);
2325 		if (m0 != NULL) {
2326 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2327 				ifp->if_flags |= IFF_OACTIVE;
2328 				break;
2329 			}
2330 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2331 
2332 			ni = M_GETCTX(m0, struct ieee80211_node *);
2333 			M_CLEARCTX(m0);
2334 			bpf_mtap3(ic->ic_rawbpf, m0);
2335 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2336 				break;
2337 		} else {
2338 			if (ic->ic_state != IEEE80211_S_RUN)
2339 				break;
2340 			IFQ_POLL(&ifp->if_snd, m0);
2341 			if (m0 == NULL)
2342 				break;
2343 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2344 				ifp->if_flags |= IFF_OACTIVE;
2345 				break;
2346 			}
2347 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2348 
2349 			if (m0->m_len < sizeof(struct ether_header) &&
2350 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2351 				continue;
2352 
2353 			eh = mtod(m0, struct ether_header *);
2354 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2355 			if (ni == NULL) {
2356 				m_freem(m0);
2357 				continue;
2358 			}
2359 			bpf_mtap(ifp, m0);
2360 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2361 				ieee80211_free_node(ni);
2362 				ifp->if_oerrors++;
2363 				continue;
2364 			}
2365 			bpf_mtap3(ic->ic_rawbpf, m0);
2366 			if (zyd_tx_data(sc, m0, ni) != 0) {
2367 				ieee80211_free_node(ni);
2368 				ifp->if_oerrors++;
2369 				break;
2370 			}
2371 		}
2372 
2373 		sc->tx_timer = 5;
2374 		ifp->if_timer = 1;
2375 	}
2376 }
2377 
2378 Static void
2379 zyd_watchdog(struct ifnet *ifp)
2380 {
2381 	struct zyd_softc *sc = ifp->if_softc;
2382 	struct ieee80211com *ic = &sc->sc_ic;
2383 
2384 	ifp->if_timer = 0;
2385 
2386 	if (sc->tx_timer > 0) {
2387 		if (--sc->tx_timer == 0) {
2388 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2389 			/* zyd_init(ifp); XXX needs a process context ? */
2390 			ifp->if_oerrors++;
2391 			return;
2392 		}
2393 		ifp->if_timer = 1;
2394 	}
2395 
2396 	ieee80211_watchdog(ic);
2397 }
2398 
2399 Static int
2400 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2401 {
2402 	struct zyd_softc *sc = ifp->if_softc;
2403 	struct ieee80211com *ic = &sc->sc_ic;
2404 	int s, error = 0;
2405 
2406 	s = splnet();
2407 
2408 	switch (cmd) {
2409 	case SIOCSIFFLAGS:
2410 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2411 			break;
2412 		/* XXX re-use ether_ioctl() */
2413 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2414 		case IFF_UP:
2415 			zyd_init(ifp);
2416 			break;
2417 		case IFF_RUNNING:
2418 			zyd_stop(ifp, 1);
2419 			break;
2420 		default:
2421 			break;
2422 		}
2423 		break;
2424 
2425 	default:
2426 		error = ieee80211_ioctl(ic, cmd, data);
2427 	}
2428 
2429 	if (error == ENETRESET) {
2430 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2431 		    (IFF_RUNNING | IFF_UP))
2432 			zyd_init(ifp);
2433 		error = 0;
2434 	}
2435 
2436 	splx(s);
2437 
2438 	return error;
2439 }
2440 
2441 Static int
2442 zyd_init(struct ifnet *ifp)
2443 {
2444 	struct zyd_softc *sc = ifp->if_softc;
2445 	struct ieee80211com *ic = &sc->sc_ic;
2446 	int i, error;
2447 
2448 	zyd_stop(ifp, 0);
2449 
2450 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2451 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2452 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2453 	if (error != 0)
2454 		return error;
2455 
2456 	/* we'll do software WEP decryption for now */
2457 	DPRINTF(("setting encryption type\n"));
2458 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2459 	if (error != 0)
2460 		return error;
2461 
2462 	/* promiscuous mode */
2463 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2464 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2465 
2466 	(void)zyd_set_rxfilter(sc);
2467 
2468 	/* switch radio transmitter ON */
2469 	(void)zyd_switch_radio(sc, 1);
2470 
2471 	/* set basic rates */
2472 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2473 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2474 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2475 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2476 	else	/* assumes 802.11b/g */
2477 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2478 
2479 	/* set mandatory rates */
2480 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2481 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2482 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2483 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2484 	else	/* assumes 802.11b/g */
2485 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2486 
2487 	/* set default BSS channel */
2488 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2489 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2490 
2491 	/* enable interrupts */
2492 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2493 
2494 	/*
2495 	 * Allocate Tx and Rx xfer queues.
2496 	 */
2497 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2498 		printf("%s: could not allocate Tx list\n",
2499 		    device_xname(sc->sc_dev));
2500 		goto fail;
2501 	}
2502 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2503 		printf("%s: could not allocate Rx list\n",
2504 		    device_xname(sc->sc_dev));
2505 		goto fail;
2506 	}
2507 
2508 	/*
2509 	 * Start up the receive pipe.
2510 	 */
2511 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2512 		struct zyd_rx_data *data = &sc->rx_data[i];
2513 
2514 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2515 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2516 		error = usbd_transfer(data->xfer);
2517 		if (error != USBD_IN_PROGRESS && error != 0) {
2518 			printf("%s: could not queue Rx transfer\n",
2519 			    device_xname(sc->sc_dev));
2520 			goto fail;
2521 		}
2522 	}
2523 
2524 	ifp->if_flags &= ~IFF_OACTIVE;
2525 	ifp->if_flags |= IFF_RUNNING;
2526 
2527 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2528 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2529 	else
2530 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2531 
2532 	return 0;
2533 
2534 fail:	zyd_stop(ifp, 1);
2535 	return error;
2536 }
2537 
2538 Static void
2539 zyd_stop(struct ifnet *ifp, int disable)
2540 {
2541 	struct zyd_softc *sc = ifp->if_softc;
2542 	struct ieee80211com *ic = &sc->sc_ic;
2543 
2544 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2545 
2546 	sc->tx_timer = 0;
2547 	ifp->if_timer = 0;
2548 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2549 
2550 	/* switch radio transmitter OFF */
2551 	(void)zyd_switch_radio(sc, 0);
2552 
2553 	/* disable Rx */
2554 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2555 
2556 	/* disable interrupts */
2557 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2558 
2559 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2560 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2561 
2562 	zyd_free_rx_list(sc);
2563 	zyd_free_tx_list(sc);
2564 }
2565 
2566 Static int
2567 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2568 {
2569 	usb_device_request_t req;
2570 	uint16_t addr;
2571 	uint8_t stat;
2572 
2573 	DPRINTF(("firmware size=%zu\n", size));
2574 
2575 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2576 	req.bRequest = ZYD_DOWNLOADREQ;
2577 	USETW(req.wIndex, 0);
2578 
2579 	addr = ZYD_FIRMWARE_START_ADDR;
2580 	while (size > 0) {
2581 #if 0
2582 		const int mlen = min(size, 4096);
2583 #else
2584 		/*
2585 		 * XXXX: When the transfer size is 4096 bytes, it is not
2586 		 * likely to be able to transfer it.
2587 		 * The cause is port or machine or chip?
2588 		 */
2589 		const int mlen = min(size, 64);
2590 #endif
2591 
2592 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2593 		    addr));
2594 
2595 		USETW(req.wValue, addr);
2596 		USETW(req.wLength, mlen);
2597 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2598 			return EIO;
2599 
2600 		addr += mlen / 2;
2601 		fw   += mlen;
2602 		size -= mlen;
2603 	}
2604 
2605 	/* check whether the upload succeeded */
2606 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2607 	req.bRequest = ZYD_DOWNLOADSTS;
2608 	USETW(req.wValue, 0);
2609 	USETW(req.wIndex, 0);
2610 	USETW(req.wLength, sizeof(stat));
2611 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2612 		return EIO;
2613 
2614 	return (stat & 0x80) ? EIO : 0;
2615 }
2616 
2617 Static void
2618 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2619 {
2620 	struct zyd_softc *sc = arg;
2621 	struct zyd_node *zn = (struct zyd_node *)ni;
2622 
2623 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2624 }
2625 
2626 Static void
2627 zyd_amrr_timeout(void *arg)
2628 {
2629 	struct zyd_softc *sc = arg;
2630 	struct ieee80211com *ic = &sc->sc_ic;
2631 	int s;
2632 
2633 	s = splnet();
2634 	if (ic->ic_opmode == IEEE80211_M_STA)
2635 		zyd_iter_func(sc, ic->ic_bss);
2636 	else
2637 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2638 	splx(s);
2639 
2640 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2641 }
2642 
2643 Static void
2644 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2645 {
2646 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2647 	int i;
2648 
2649 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2650 
2651 	/* set rate to some reasonable initial value */
2652 	for (i = ni->ni_rates.rs_nrates - 1;
2653 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2654 	     i--);
2655 	ni->ni_txrate = i;
2656 }
2657 
2658 int
2659 zyd_activate(device_t self, enum devact act)
2660 {
2661 	struct zyd_softc *sc = device_private(self);
2662 
2663 	switch (act) {
2664 	case DVACT_DEACTIVATE:
2665 		if_deactivate(&sc->sc_if);
2666 		return 0;
2667 	default:
2668 		return EOPNOTSUPP;
2669 	}
2670 }
2671