xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.17 2009/03/18 16:00:20 cegger Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.17 2009/03/18 16:00:20 cegger Exp $");
26 
27 #include "bpfilter.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/firmload.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_zydreg.h>
71 
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
75 
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
87 
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p)	\
92 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 	struct usb_devno	dev;
95 	uint8_t			rev;
96 #define ZYD_ZD1211	0
97 #define ZYD_ZD1211B	1
98 } zyd_devs[] = {
99 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
100 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
101 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
102 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
103 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
104 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
106 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
107 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
108 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
109 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
110 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
111 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
113 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
114 	ZYD_ZD1211_DEV(TWINMOS,		G240),
115 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
117 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
118 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
119 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
121 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
122 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
126 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
127 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
128 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
129 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
130 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
131 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
132 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
133 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
134 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
135 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
136 #if 0	/* Shall we needs? */
137 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_1),
138 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B_2),
139 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
140 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
141 #endif
142 	ZYD_ZD1211B_DEV(USR,		USR5423),
143 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
144 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
145 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
146 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
147 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
148 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
149 };
150 #define zyd_lookup(v, p)	\
151 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
152 
153 USB_DECLARE_DRIVER(zyd);
154 
155 Static int	zyd_attachhook(void *);
156 Static int	zyd_complete_attach(struct zyd_softc *);
157 Static int	zyd_open_pipes(struct zyd_softc *);
158 Static void	zyd_close_pipes(struct zyd_softc *);
159 Static int	zyd_alloc_tx_list(struct zyd_softc *);
160 Static void	zyd_free_tx_list(struct zyd_softc *);
161 Static int	zyd_alloc_rx_list(struct zyd_softc *);
162 Static void	zyd_free_rx_list(struct zyd_softc *);
163 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
164 Static int	zyd_media_change(struct ifnet *);
165 Static void	zyd_next_scan(void *);
166 Static void	zyd_task(void *);
167 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
169 		    void *, int, u_int);
170 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
171 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
172 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
173 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
174 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
175 Static void	zyd_lock_phy(struct zyd_softc *);
176 Static void	zyd_unlock_phy(struct zyd_softc *);
177 Static int	zyd_rfmd_init(struct zyd_rf *);
178 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
179 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
180 Static int	zyd_al2230_init(struct zyd_rf *);
181 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
182 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
183 Static int	zyd_al2230_init_b(struct zyd_rf *);
184 Static int	zyd_al7230B_init(struct zyd_rf *);
185 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 Static int	zyd_al2210_init(struct zyd_rf *);
188 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
189 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 Static int	zyd_gct_init(struct zyd_rf *);
191 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
192 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 Static int	zyd_maxim_init(struct zyd_rf *);
194 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
195 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 Static int	zyd_maxim2_init(struct zyd_rf *);
197 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
200 Static const char *zyd_rf_name(uint8_t);
201 Static int	zyd_hw_init(struct zyd_softc *);
202 Static int	zyd_read_eeprom(struct zyd_softc *);
203 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
204 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
205 Static int	zyd_switch_radio(struct zyd_softc *, int);
206 Static void	zyd_set_led(struct zyd_softc *, int, int);
207 Static int	zyd_set_rxfilter(struct zyd_softc *);
208 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
209 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
210 Static uint8_t	zyd_plcp_signal(int);
211 Static void	zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
212 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
213 Static void	zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
214 Static void	zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
215 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
216 		    struct ieee80211_node *);
217 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
218 		    struct ieee80211_node *);
219 Static void	zyd_start(struct ifnet *);
220 Static void	zyd_watchdog(struct ifnet *);
221 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
222 Static int	zyd_init(struct ifnet *);
223 Static void	zyd_stop(struct ifnet *, int);
224 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
225 Static void	zyd_iter_func(void *, struct ieee80211_node *);
226 Static void	zyd_amrr_timeout(void *);
227 Static void	zyd_newassoc(struct ieee80211_node *, int);
228 
229 static const struct ieee80211_rateset zyd_rateset_11b =
230 	{ 4, { 2, 4, 11, 22 } };
231 
232 static const struct ieee80211_rateset zyd_rateset_11g =
233 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
234 
235 USB_MATCH(zyd)
236 {
237 	USB_MATCH_START(zyd, uaa);
238 
239 	return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
240 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242 
243 Static int
244 zyd_attachhook(void *xsc)
245 {
246 	struct zyd_softc *sc = xsc;
247 	firmware_handle_t fwh;
248 	const char *fwname;
249 	u_char *fw;
250 	size_t size;
251 	int error;
252 
253 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
254 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
255 		aprint_error_dev(sc->sc_dev,
256 		    "failed to open firmware %s (error=%d)\n", fwname, error);
257 		return error;
258 	}
259 	size = firmware_get_size(fwh);
260 	fw = firmware_malloc(size);
261 	if (fw == NULL) {
262 		aprint_error_dev(sc->sc_dev,
263 		    "failed to allocate firmware memory\n");
264 		firmware_close(fwh);
265 		return ENOMEM;
266 	}
267 	error = firmware_read(fwh, 0, fw, size);
268 	firmware_close(fwh);
269 	if (error != 0) {
270 		aprint_error_dev(sc->sc_dev,
271 		    "failed to read firmware (error %d)\n", error);
272 		firmware_free(fw, 0);
273 		return error;
274 	}
275 
276 	error = zyd_loadfirmware(sc, fw, size);
277 	if (error != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "could not load firmware (error=%d)\n", error);
280 		firmware_free(fw, 0);
281 		return ENXIO;
282 	}
283 
284 	firmware_free(fw, 0);
285 	sc->sc_flags |= ZD1211_FWLOADED;
286 
287 	/* complete the attach process */
288 	if ((error = zyd_complete_attach(sc)) == 0)
289 		sc->attached = 1;
290 	return error;
291 }
292 
293 USB_ATTACH(zyd)
294 {
295 	USB_ATTACH_START(zyd, sc, uaa);
296 	char *devinfop;
297 	usb_device_descriptor_t* ddesc;
298 	struct ifnet *ifp = &sc->sc_if;
299 
300 	sc->sc_dev = self;
301 	sc->sc_udev = uaa->device;
302 	sc->sc_flags = 0;
303 
304 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
305 	USB_ATTACH_SETUP;
306 	aprint_normal_dev(self, "%s\n", devinfop);
307 	usbd_devinfo_free(devinfop);
308 
309 	sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
310 
311 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
312 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
313 		aprint_error_dev(self, "device version mismatch: 0x%x "
314 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
315 		USB_ATTACH_ERROR_RETURN;
316 	}
317 
318 	ifp->if_softc = sc;
319 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 	ifp->if_init = zyd_init;
321 	ifp->if_ioctl = zyd_ioctl;
322 	ifp->if_start = zyd_start;
323 	ifp->if_watchdog = zyd_watchdog;
324 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
325 	IFQ_SET_READY(&ifp->if_snd);
326 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
327 
328 	if_attach(ifp);
329 	/* XXXX: alloc temporarily until the layer2 can be configured. */
330 	if_alloc_sadl(ifp);
331 
332 	SIMPLEQ_INIT(&sc->sc_rqh);
333 
334 	USB_ATTACH_SUCCESS_RETURN;
335 }
336 
337 Static int
338 zyd_complete_attach(struct zyd_softc *sc)
339 {
340 	struct ieee80211com *ic = &sc->sc_ic;
341 	struct ifnet *ifp = &sc->sc_if;
342 	usbd_status error;
343 	int i;
344 
345 	usb_init_task(&sc->sc_task, zyd_task, sc);
346 	usb_callout_init(sc->sc_scan_ch);
347 
348 	sc->amrr.amrr_min_success_threshold =  1;
349 	sc->amrr.amrr_max_success_threshold = 10;
350 	usb_callout_init(sc->sc_amrr_ch);
351 
352 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
353 	if (error != 0) {
354 		aprint_error_dev(sc->sc_dev, "setting config no failed\n");
355 		goto fail;
356 	}
357 
358 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
359 	    &sc->sc_iface);
360 	if (error != 0) {
361 		aprint_error_dev(sc->sc_dev,
362 		    "getting interface handle failed\n");
363 		goto fail;
364 	}
365 
366 	if ((error = zyd_open_pipes(sc)) != 0) {
367 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
368 		goto fail;
369 	}
370 
371 	if ((error = zyd_read_eeprom(sc)) != 0) {
372 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
373 		goto fail;
374 	}
375 
376 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
377 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
378 		goto fail;
379 	}
380 
381 	if ((error = zyd_hw_init(sc)) != 0) {
382 		aprint_error_dev(sc->sc_dev,
383 		    "hardware initialization failed\n");
384 		goto fail;
385 	}
386 
387 	aprint_normal_dev(sc->sc_dev,
388 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
389 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
390 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
391 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
392 
393 	ic->ic_ifp = ifp;
394 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
395 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
396 	ic->ic_state = IEEE80211_S_INIT;
397 
398 	/* set device capabilities */
399 	ic->ic_caps =
400 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
401 	    IEEE80211_C_TXPMGT |	/* tx power management */
402 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
403 	    IEEE80211_C_WEP;		/* s/w WEP */
404 
405 	/* set supported .11b and .11g rates */
406 	ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
407 	ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
408 
409 	/* set supported .11b and .11g channels (1 through 14) */
410 	for (i = 1; i <= 14; i++) {
411 		ic->ic_channels[i].ic_freq =
412 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
413 		ic->ic_channels[i].ic_flags =
414 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
415 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
416 	}
417 
418 	if_free_sadl(ifp);
419 	ieee80211_ifattach(ic);
420 	ic->ic_node_alloc = zyd_node_alloc;
421 	ic->ic_newassoc = zyd_newassoc;
422 
423 	/* override state transition machine */
424 	sc->sc_newstate = ic->ic_newstate;
425 	ic->ic_newstate = zyd_newstate;
426 	ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
427 
428 #if NBPFILTER > 0
429 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
430 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431 	    &sc->sc_drvbpf);
432 
433 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
436 
437 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
438 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
440 #endif
441 
442 	ieee80211_announce(ic);
443 
444 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
445 	    USBDEV(sc->sc_dev));
446 
447 fail:	return error;
448 }
449 
450 USB_DETACH(zyd)
451 {
452 	USB_DETACH_START(zyd, sc);
453 	struct ieee80211com *ic = &sc->sc_ic;
454 	struct ifnet *ifp = &sc->sc_if;
455 	int s;
456 
457 	if (!sc->attached) {
458 		if_free_sadl(ifp);
459 		if_detach(ifp);
460 		return 0;
461 	}
462 
463 	s = splusb();
464 
465 	zyd_stop(ifp, 1);
466 	usb_rem_task(sc->sc_udev, &sc->sc_task);
467 	usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
468 	usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
469 
470 	zyd_close_pipes(sc);
471 
472 	sc->attached = 0;
473 
474 #if NBPFILTER > 0
475 	bpfdetach(ifp);
476 #endif
477 	ieee80211_ifdetach(ic);
478 	if_detach(ifp);
479 
480 	splx(s);
481 
482 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 	    USBDEV(sc->sc_dev));
484 
485 	return 0;
486 }
487 
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 	usb_endpoint_descriptor_t *edesc;
492 	int isize;
493 	usbd_status error;
494 
495 	/* interrupt in */
496 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 	if (edesc == NULL)
498 		return EINVAL;
499 
500 	isize = UGETW(edesc->wMaxPacketSize);
501 	if (isize == 0)	/* should not happen */
502 		return EINVAL;
503 
504 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 	if (sc->ibuf == NULL)
506 		return ENOMEM;
507 
508 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 	    USBD_DEFAULT_INTERVAL);
511 	if (error != 0) {
512 		printf("%s: open rx intr pipe failed: %s\n",
513 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
514 		goto fail;
515 	}
516 
517 	/* interrupt out (not necessarily an interrupt pipe) */
518 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 	if (error != 0) {
521 		printf("%s: open tx intr pipe failed: %s\n",
522 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
523 		goto fail;
524 	}
525 
526 	/* bulk in */
527 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 	if (error != 0) {
530 		printf("%s: open rx pipe failed: %s\n",
531 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
532 		goto fail;
533 	}
534 
535 	/* bulk out */
536 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 	if (error != 0) {
539 		printf("%s: open tx pipe failed: %s\n",
540 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
541 		goto fail;
542 	}
543 
544 	return 0;
545 
546 fail:	zyd_close_pipes(sc);
547 	return error;
548 }
549 
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 	int i;
554 
555 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 		if (sc->zyd_ep[i] != NULL) {
557 			usbd_abort_pipe(sc->zyd_ep[i]);
558 			usbd_close_pipe(sc->zyd_ep[i]);
559 			sc->zyd_ep[i] = NULL;
560 		}
561 	}
562 	if (sc->ibuf != NULL) {
563 		free(sc->ibuf, M_USBDEV);
564 		sc->ibuf = NULL;
565 	}
566 }
567 
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 	int i, error;
572 
573 	sc->tx_queued = 0;
574 
575 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 		struct zyd_tx_data *data = &sc->tx_data[i];
577 
578 		data->sc = sc;	/* backpointer for callbacks */
579 
580 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 		if (data->xfer == NULL) {
582 			printf("%s: could not allocate tx xfer\n",
583 			    USBDEVNAME(sc->sc_dev));
584 			error = ENOMEM;
585 			goto fail;
586 		}
587 		data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 		if (data->buf == NULL) {
589 			printf("%s: could not allocate tx buffer\n",
590 			    USBDEVNAME(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		/* clear Tx descriptor */
596 		memset(data->buf, 0, sizeof (struct zyd_tx_desc));
597 	}
598 	return 0;
599 
600 fail:	zyd_free_tx_list(sc);
601 	return error;
602 }
603 
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 	int i;
608 
609 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 		struct zyd_tx_data *data = &sc->tx_data[i];
611 
612 		if (data->xfer != NULL) {
613 			usbd_free_xfer(data->xfer);
614 			data->xfer = NULL;
615 		}
616 		if (data->ni != NULL) {
617 			ieee80211_free_node(data->ni);
618 			data->ni = NULL;
619 		}
620 	}
621 }
622 
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 	int i, error;
627 
628 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 		struct zyd_rx_data *data = &sc->rx_data[i];
630 
631 		data->sc = sc;	/* backpointer for callbacks */
632 
633 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 		if (data->xfer == NULL) {
635 			printf("%s: could not allocate rx xfer\n",
636 			    USBDEVNAME(sc->sc_dev));
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 		data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 		if (data->buf == NULL) {
642 			printf("%s: could not allocate rx buffer\n",
643 			    USBDEVNAME(sc->sc_dev));
644 			error = ENOMEM;
645 			goto fail;
646 		}
647 	}
648 	return 0;
649 
650 fail:	zyd_free_rx_list(sc);
651 	return error;
652 }
653 
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 	int i;
658 
659 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 		struct zyd_rx_data *data = &sc->rx_data[i];
661 
662 		if (data->xfer != NULL) {
663 			usbd_free_xfer(data->xfer);
664 			data->xfer = NULL;
665 		}
666 	}
667 }
668 
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 	struct zyd_node *zn;
674 
675 	zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
676 
677 	return (struct ieee80211_node *)zn;
678 }
679 
680 Static int
681 zyd_media_change(struct ifnet *ifp)
682 {
683 	int error;
684 
685 	error = ieee80211_media_change(ifp);
686 	if (error != ENETRESET)
687 		return error;
688 
689 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 		zyd_init(ifp);
691 
692 	return 0;
693 }
694 
695 /*
696  * This function is called periodically (every 200ms) during scanning to
697  * switch from one channel to another.
698  */
699 Static void
700 zyd_next_scan(void *arg)
701 {
702 	struct zyd_softc *sc = arg;
703 	struct ieee80211com *ic = &sc->sc_ic;
704 
705 	if (ic->ic_state == IEEE80211_S_SCAN)
706 		ieee80211_next_scan(ic);
707 }
708 
709 Static void
710 zyd_task(void *arg)
711 {
712 	struct zyd_softc *sc = arg;
713 	struct ieee80211com *ic = &sc->sc_ic;
714 	enum ieee80211_state ostate;
715 
716 	ostate = ic->ic_state;
717 
718 	switch (sc->sc_state) {
719 	case IEEE80211_S_INIT:
720 		if (ostate == IEEE80211_S_RUN) {
721 			/* turn link LED off */
722 			zyd_set_led(sc, ZYD_LED1, 0);
723 
724 			/* stop data LED from blinking */
725 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
726 		}
727 		break;
728 
729 	case IEEE80211_S_SCAN:
730 		zyd_set_chan(sc, ic->ic_curchan);
731 		usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
732 		break;
733 
734 	case IEEE80211_S_AUTH:
735 	case IEEE80211_S_ASSOC:
736 		zyd_set_chan(sc, ic->ic_curchan);
737 		break;
738 
739 	case IEEE80211_S_RUN:
740 	{
741 		struct ieee80211_node *ni = ic->ic_bss;
742 
743 		zyd_set_chan(sc, ic->ic_curchan);
744 
745 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
746 			/* turn link LED on */
747 			zyd_set_led(sc, ZYD_LED1, 1);
748 
749 			/* make data LED blink upon Tx */
750 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
751 
752 			zyd_set_bssid(sc, ni->ni_bssid);
753 		}
754 
755 		if (ic->ic_opmode == IEEE80211_M_STA) {
756 			/* fake a join to init the tx rate */
757 			zyd_newassoc(ni, 1);
758 		}
759 
760 		/* start automatic rate control timer */
761 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 			usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
763 
764 		break;
765 	}
766 	}
767 
768 	sc->sc_newstate(ic, sc->sc_state, -1);
769 }
770 
771 Static int
772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
775 
776 	usb_rem_task(sc->sc_udev, &sc->sc_task);
777 	usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
778 	usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
779 
780 	/* do it in a process context */
781 	sc->sc_state = nstate;
782 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
783 
784 	return 0;
785 }
786 
787 Static int
788 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
789     void *odata, int olen, u_int flags)
790 {
791 	usbd_xfer_handle xfer;
792 	struct zyd_cmd cmd;
793 	struct rq rq;
794 	uint16_t xferflags;
795 	usbd_status error;
796 	int s = 0;
797 
798 	if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
799 		return ENOMEM;
800 
801 	cmd.code = htole16(code);
802 	bcopy(idata, cmd.data, ilen);
803 
804 	xferflags = USBD_FORCE_SHORT_XFER;
805 	if (!(flags & ZYD_CMD_FLAG_READ))
806 		xferflags |= USBD_SYNCHRONOUS;
807 	else {
808 		s = splusb();
809 		rq.idata = idata;
810 		rq.odata = odata;
811 		rq.len = olen / sizeof (struct zyd_pair);
812 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
813 	}
814 
815 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
816 	    sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
817 	error = usbd_transfer(xfer);
818 	if (error != USBD_IN_PROGRESS && error != 0) {
819 		if (flags & ZYD_CMD_FLAG_READ)
820 			splx(s);
821 		printf("%s: could not send command (error=%s)\n",
822 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
823 		(void)usbd_free_xfer(xfer);
824 		return EIO;
825 	}
826 	if (!(flags & ZYD_CMD_FLAG_READ)) {
827 		(void)usbd_free_xfer(xfer);
828 		return 0;	/* write: don't wait for reply */
829 	}
830 	/* wait at most one second for command reply */
831 	error = tsleep(odata, PCATCH, "zydcmd", hz);
832 	if (error == EWOULDBLOCK)
833 		printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev));
834 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
835 	splx(s);
836 
837 	(void)usbd_free_xfer(xfer);
838 	return error;
839 }
840 
841 Static int
842 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
843 {
844 	struct zyd_pair tmp;
845 	int error;
846 
847 	reg = htole16(reg);
848 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
849 	    ZYD_CMD_FLAG_READ);
850 	if (error == 0)
851 		*val = le16toh(tmp.val);
852 	return error;
853 }
854 
855 Static int
856 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
857 {
858 	struct zyd_pair tmp[2];
859 	uint16_t regs[2];
860 	int error;
861 
862 	regs[0] = htole16(ZYD_REG32_HI(reg));
863 	regs[1] = htole16(ZYD_REG32_LO(reg));
864 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
865 	    ZYD_CMD_FLAG_READ);
866 	if (error == 0)
867 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
868 	return error;
869 }
870 
871 Static int
872 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
873 {
874 	struct zyd_pair pair;
875 
876 	pair.reg = htole16(reg);
877 	pair.val = htole16(val);
878 
879 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
880 }
881 
882 Static int
883 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
884 {
885 	struct zyd_pair pair[2];
886 
887 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
888 	pair[0].val = htole16(val >> 16);
889 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
890 	pair[1].val = htole16(val & 0xffff);
891 
892 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
893 }
894 
895 Static int
896 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
897 {
898 	struct zyd_rf *rf = &sc->sc_rf;
899 	struct zyd_rfwrite req;
900 	uint16_t cr203;
901 	int i;
902 
903 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
904 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
905 
906 	req.code  = htole16(2);
907 	req.width = htole16(rf->width);
908 	for (i = 0; i < rf->width; i++) {
909 		req.bit[i] = htole16(cr203);
910 		if (val & (1 << (rf->width - 1 - i)))
911 			req.bit[i] |= htole16(ZYD_RF_DATA);
912 	}
913 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
914 }
915 
916 Static void
917 zyd_lock_phy(struct zyd_softc *sc)
918 {
919 	uint32_t tmp;
920 
921 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
922 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
923 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
924 }
925 
926 Static void
927 zyd_unlock_phy(struct zyd_softc *sc)
928 {
929 	uint32_t tmp;
930 
931 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
932 	tmp |= ZYD_UNLOCK_PHY_REGS;
933 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
934 }
935 
936 /*
937  * RFMD RF methods.
938  */
939 Static int
940 zyd_rfmd_init(struct zyd_rf *rf)
941 {
942 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
943 	struct zyd_softc *sc = rf->rf_sc;
944 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
945 	static const uint32_t rfini[] = ZYD_RFMD_RF;
946 	int i, error;
947 
948 	/* init RF-dependent PHY registers */
949 	for (i = 0; i < N(phyini); i++) {
950 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
951 		if (error != 0)
952 			return error;
953 	}
954 
955 	/* init RFMD radio */
956 	for (i = 0; i < N(rfini); i++) {
957 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
958 			return error;
959 	}
960 	return 0;
961 #undef N
962 }
963 
964 Static int
965 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
966 {
967 	struct zyd_softc *sc = rf->rf_sc;
968 
969 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
970 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
971 
972 	return 0;
973 }
974 
975 Static int
976 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
977 {
978 	struct zyd_softc *sc = rf->rf_sc;
979 	static const struct {
980 		uint32_t	r1, r2;
981 	} rfprog[] = ZYD_RFMD_CHANTABLE;
982 
983 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
984 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
985 
986 	return 0;
987 }
988 
989 /*
990  * AL2230 RF methods.
991  */
992 Static int
993 zyd_al2230_init(struct zyd_rf *rf)
994 {
995 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
996 	struct zyd_softc *sc = rf->rf_sc;
997 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
998 	static const uint32_t rfini[] = ZYD_AL2230_RF;
999 	int i, error;
1000 
1001 	/* init RF-dependent PHY registers */
1002 	for (i = 0; i < N(phyini); i++) {
1003 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1004 		if (error != 0)
1005 			return error;
1006 	}
1007 
1008 	/* init AL2230 radio */
1009 	for (i = 0; i < N(rfini); i++) {
1010 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1011 			return error;
1012 	}
1013 	return 0;
1014 #undef N
1015 }
1016 
1017 Static int
1018 zyd_al2230_init_b(struct zyd_rf *rf)
1019 {
1020 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1021 	struct zyd_softc *sc = rf->rf_sc;
1022 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1023 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1024 	int i, error;
1025 
1026 	/* init RF-dependent PHY registers */
1027 	for (i = 0; i < N(phyini); i++) {
1028 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1029 		if (error != 0)
1030 			return error;
1031 	}
1032 
1033 	/* init AL2230 radio */
1034 	for (i = 0; i < N(rfini); i++) {
1035 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1036 			return error;
1037 	}
1038 	return 0;
1039 #undef N
1040 }
1041 
1042 Static int
1043 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1044 {
1045 	struct zyd_softc *sc = rf->rf_sc;
1046 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1047 
1048 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1049 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1050 
1051 	return 0;
1052 }
1053 
1054 Static int
1055 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1056 {
1057 	struct zyd_softc *sc = rf->rf_sc;
1058 	static const struct {
1059 		uint32_t	r1, r2, r3;
1060 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1061 
1062 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1063 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1064 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1065 
1066 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1067 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1068 
1069 	return 0;
1070 }
1071 
1072 /*
1073  * AL7230B RF methods.
1074  */
1075 Static int
1076 zyd_al7230B_init(struct zyd_rf *rf)
1077 {
1078 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1079 	struct zyd_softc *sc = rf->rf_sc;
1080 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1081 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1082 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1083 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1084 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1085 	int i, error;
1086 
1087 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1088 
1089 	/* init RF-dependent PHY registers, part one */
1090 	for (i = 0; i < N(phyini_1); i++) {
1091 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1092 		if (error != 0)
1093 			return error;
1094 	}
1095 	/* init AL7230B radio, part one */
1096 	for (i = 0; i < N(rfini_1); i++) {
1097 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1098 			return error;
1099 	}
1100 	/* init RF-dependent PHY registers, part two */
1101 	for (i = 0; i < N(phyini_2); i++) {
1102 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1103 		if (error != 0)
1104 			return error;
1105 	}
1106 	/* init AL7230B radio, part two */
1107 	for (i = 0; i < N(rfini_2); i++) {
1108 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1109 			return error;
1110 	}
1111 	/* init RF-dependent PHY registers, part three */
1112 	for (i = 0; i < N(phyini_3); i++) {
1113 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1114 		if (error != 0)
1115 			return error;
1116 	}
1117 
1118 	return 0;
1119 #undef N
1120 }
1121 
1122 Static int
1123 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1124 {
1125 	struct zyd_softc *sc = rf->rf_sc;
1126 
1127 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1128 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1129 
1130 	return 0;
1131 }
1132 
1133 Static int
1134 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1135 {
1136 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1137 	struct zyd_softc *sc = rf->rf_sc;
1138 	static const struct {
1139 		uint32_t	r1, r2;
1140 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1141 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1142 	int i, error;
1143 
1144 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1145 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1146 
1147 	for (i = 0; i < N(rfsc); i++) {
1148 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1149 			return error;
1150 	}
1151 
1152 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1153 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1154 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1155 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1156 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1157 
1158 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1159 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1160 	(void)zyd_rfwrite(sc, 0x3c9000);
1161 
1162 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1163 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1164 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1165 
1166 	return 0;
1167 #undef N
1168 }
1169 
1170 /*
1171  * AL2210 RF methods.
1172  */
1173 Static int
1174 zyd_al2210_init(struct zyd_rf *rf)
1175 {
1176 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1177 	struct zyd_softc *sc = rf->rf_sc;
1178 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1179 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1180 	uint32_t tmp;
1181 	int i, error;
1182 
1183 	(void)zyd_write32(sc, ZYD_CR18, 2);
1184 
1185 	/* init RF-dependent PHY registers */
1186 	for (i = 0; i < N(phyini); i++) {
1187 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1188 		if (error != 0)
1189 			return error;
1190 	}
1191 	/* init AL2210 radio */
1192 	for (i = 0; i < N(rfini); i++) {
1193 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1194 			return error;
1195 	}
1196 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1197 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1198 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1199 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1200 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1201 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1202 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1203 	(void)zyd_write32(sc, ZYD_CR18, 3);
1204 
1205 	return 0;
1206 #undef N
1207 }
1208 
1209 Static int
1210 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1211 {
1212 	/* vendor driver does nothing for this RF chip */
1213 
1214 	return 0;
1215 }
1216 
1217 Static int
1218 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1219 {
1220 	struct zyd_softc *sc = rf->rf_sc;
1221 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1222 	uint32_t tmp;
1223 
1224 	(void)zyd_write32(sc, ZYD_CR18, 2);
1225 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1226 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1227 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1228 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1229 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1230 
1231 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1232 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1233 
1234 	/* actually set the channel */
1235 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1236 
1237 	(void)zyd_write32(sc, ZYD_CR18, 3);
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * GCT RF methods.
1244  */
1245 Static int
1246 zyd_gct_init(struct zyd_rf *rf)
1247 {
1248 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1249 	struct zyd_softc *sc = rf->rf_sc;
1250 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1251 	static const uint32_t rfini[] = ZYD_GCT_RF;
1252 	int i, error;
1253 
1254 	/* init RF-dependent PHY registers */
1255 	for (i = 0; i < N(phyini); i++) {
1256 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1257 		if (error != 0)
1258 			return error;
1259 	}
1260 	/* init cgt radio */
1261 	for (i = 0; i < N(rfini); i++) {
1262 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1263 			return error;
1264 	}
1265 	return 0;
1266 #undef N
1267 }
1268 
1269 Static int
1270 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1271 {
1272 	/* vendor driver does nothing for this RF chip */
1273 
1274 	return 0;
1275 }
1276 
1277 Static int
1278 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1279 {
1280 	struct zyd_softc *sc = rf->rf_sc;
1281 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1282 
1283 	(void)zyd_rfwrite(sc, 0x1c0000);
1284 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1285 	(void)zyd_rfwrite(sc, 0x1c0008);
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Maxim RF methods.
1292  */
1293 Static int
1294 zyd_maxim_init(struct zyd_rf *rf)
1295 {
1296 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1297 	struct zyd_softc *sc = rf->rf_sc;
1298 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1299 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1300 	uint16_t tmp;
1301 	int i, error;
1302 
1303 	/* init RF-dependent PHY registers */
1304 	for (i = 0; i < N(phyini); i++) {
1305 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1306 		if (error != 0)
1307 			return error;
1308 	}
1309 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1310 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1311 
1312 	/* init maxim radio */
1313 	for (i = 0; i < N(rfini); i++) {
1314 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1315 			return error;
1316 	}
1317 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1319 
1320 	return 0;
1321 #undef N
1322 }
1323 
1324 Static int
1325 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1326 {
1327 	/* vendor driver does nothing for this RF chip */
1328 
1329 	return 0;
1330 }
1331 
1332 Static int
1333 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1334 {
1335 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1336 	struct zyd_softc *sc = rf->rf_sc;
1337 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1338 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1339 	static const struct {
1340 		uint32_t	r1, r2;
1341 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1342 	uint16_t tmp;
1343 	int i, error;
1344 
1345 	/*
1346 	 * Do the same as we do when initializing it, except for the channel
1347 	 * values coming from the two channel tables.
1348 	 */
1349 
1350 	/* init RF-dependent PHY registers */
1351 	for (i = 0; i < N(phyini); i++) {
1352 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1353 		if (error != 0)
1354 			return error;
1355 	}
1356 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1357 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1358 
1359 	/* first two values taken from the chantables */
1360 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1361 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1362 
1363 	/* init maxim radio - skipping the two first values */
1364 	for (i = 2; i < N(rfini); i++) {
1365 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1366 			return error;
1367 	}
1368 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1369 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1370 
1371 	return 0;
1372 #undef N
1373 }
1374 
1375 /*
1376  * Maxim2 RF methods.
1377  */
1378 Static int
1379 zyd_maxim2_init(struct zyd_rf *rf)
1380 {
1381 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1382 	struct zyd_softc *sc = rf->rf_sc;
1383 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1384 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1385 	uint16_t tmp;
1386 	int i, error;
1387 
1388 	/* init RF-dependent PHY registers */
1389 	for (i = 0; i < N(phyini); i++) {
1390 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1391 		if (error != 0)
1392 			return error;
1393 	}
1394 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1395 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1396 
1397 	/* init maxim2 radio */
1398 	for (i = 0; i < N(rfini); i++) {
1399 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1400 			return error;
1401 	}
1402 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1403 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1404 
1405 	return 0;
1406 #undef N
1407 }
1408 
1409 Static int
1410 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1411 {
1412 	/* vendor driver does nothing for this RF chip */
1413 
1414 	return 0;
1415 }
1416 
1417 Static int
1418 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1419 {
1420 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1421 	struct zyd_softc *sc = rf->rf_sc;
1422 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1423 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1424 	static const struct {
1425 		uint32_t	r1, r2;
1426 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1427 	uint16_t tmp;
1428 	int i, error;
1429 
1430 	/*
1431 	 * Do the same as we do when initializing it, except for the channel
1432 	 * values coming from the two channel tables.
1433 	 */
1434 
1435 	/* init RF-dependent PHY registers */
1436 	for (i = 0; i < N(phyini); i++) {
1437 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1438 		if (error != 0)
1439 			return error;
1440 	}
1441 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1442 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1443 
1444 	/* first two values taken from the chantables */
1445 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1446 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1447 
1448 	/* init maxim2 radio - skipping the two first values */
1449 	for (i = 2; i < N(rfini); i++) {
1450 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1451 			return error;
1452 	}
1453 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1454 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1455 
1456 	return 0;
1457 #undef N
1458 }
1459 
1460 Static int
1461 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1462 {
1463 	struct zyd_rf *rf = &sc->sc_rf;
1464 
1465 	rf->rf_sc = sc;
1466 
1467 	switch (type) {
1468 	case ZYD_RF_RFMD:
1469 		rf->init         = zyd_rfmd_init;
1470 		rf->switch_radio = zyd_rfmd_switch_radio;
1471 		rf->set_channel  = zyd_rfmd_set_channel;
1472 		rf->width        = 24;	/* 24-bit RF values */
1473 		break;
1474 	case ZYD_RF_AL2230:
1475 		if (sc->mac_rev == ZYD_ZD1211B)
1476 			rf->init = zyd_al2230_init_b;
1477 		else
1478 			rf->init = zyd_al2230_init;
1479 		rf->switch_radio = zyd_al2230_switch_radio;
1480 		rf->set_channel  = zyd_al2230_set_channel;
1481 		rf->width        = 24;	/* 24-bit RF values */
1482 		break;
1483 	case ZYD_RF_AL7230B:
1484 		rf->init         = zyd_al7230B_init;
1485 		rf->switch_radio = zyd_al7230B_switch_radio;
1486 		rf->set_channel  = zyd_al7230B_set_channel;
1487 		rf->width        = 24;	/* 24-bit RF values */
1488 		break;
1489 	case ZYD_RF_AL2210:
1490 		rf->init         = zyd_al2210_init;
1491 		rf->switch_radio = zyd_al2210_switch_radio;
1492 		rf->set_channel  = zyd_al2210_set_channel;
1493 		rf->width        = 24;	/* 24-bit RF values */
1494 		break;
1495 	case ZYD_RF_GCT:
1496 		rf->init         = zyd_gct_init;
1497 		rf->switch_radio = zyd_gct_switch_radio;
1498 		rf->set_channel  = zyd_gct_set_channel;
1499 		rf->width        = 21;	/* 21-bit RF values */
1500 		break;
1501 	case ZYD_RF_MAXIM_NEW:
1502 		rf->init         = zyd_maxim_init;
1503 		rf->switch_radio = zyd_maxim_switch_radio;
1504 		rf->set_channel  = zyd_maxim_set_channel;
1505 		rf->width        = 18;	/* 18-bit RF values */
1506 		break;
1507 	case ZYD_RF_MAXIM_NEW2:
1508 		rf->init         = zyd_maxim2_init;
1509 		rf->switch_radio = zyd_maxim2_switch_radio;
1510 		rf->set_channel  = zyd_maxim2_set_channel;
1511 		rf->width        = 18;	/* 18-bit RF values */
1512 		break;
1513 	default:
1514 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1515 		    USBDEVNAME(sc->sc_dev), zyd_rf_name(type));
1516 		return EINVAL;
1517 	}
1518 	return 0;
1519 }
1520 
1521 Static const char *
1522 zyd_rf_name(uint8_t type)
1523 {
1524 	static const char * const zyd_rfs[] = {
1525 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1526 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1527 		"PV2000",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1528 		"PHILIPS"
1529 	};
1530 
1531 	return zyd_rfs[(type > 15) ? 0 : type];
1532 }
1533 
1534 Static int
1535 zyd_hw_init(struct zyd_softc *sc)
1536 {
1537 	struct zyd_rf *rf = &sc->sc_rf;
1538 	const struct zyd_phy_pair *phyp;
1539 	int error;
1540 
1541 	/* specify that the plug and play is finished */
1542 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1543 
1544 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1545 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1546 
1547 	/* retrieve firmware revision number */
1548 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1549 
1550 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1551 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1552 
1553 	/* disable interrupts */
1554 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1555 
1556 	/* PHY init */
1557 	zyd_lock_phy(sc);
1558 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1559 	for (; phyp->reg != 0; phyp++) {
1560 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1561 			goto fail;
1562 	}
1563 	zyd_unlock_phy(sc);
1564 
1565 	/* HMAC init */
1566 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1567 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1568 
1569 	if (sc->mac_rev == ZYD_ZD1211) {
1570 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1571 	} else {
1572 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1573 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1574 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1575 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1576 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1577 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1578 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1579 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1580 	}
1581 
1582 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1583 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1584 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1585 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1586 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1587 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1588 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1589 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1590 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1591 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1592 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1593 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1594 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1595 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1596 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1597 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1598 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1599 
1600 	/* RF chip init */
1601 	zyd_lock_phy(sc);
1602 	error = (*rf->init)(rf);
1603 	zyd_unlock_phy(sc);
1604 	if (error != 0) {
1605 		printf("%s: radio initialization failed\n",
1606 		    USBDEVNAME(sc->sc_dev));
1607 		goto fail;
1608 	}
1609 
1610 	/* init beacon interval to 100ms */
1611 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1612 		goto fail;
1613 
1614 fail:	return error;
1615 }
1616 
1617 Static int
1618 zyd_read_eeprom(struct zyd_softc *sc)
1619 {
1620 	struct ieee80211com *ic = &sc->sc_ic;
1621 	uint32_t tmp;
1622 	uint16_t val;
1623 	int i;
1624 
1625 	/* read MAC address */
1626 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1627 	ic->ic_myaddr[0] = tmp & 0xff;
1628 	ic->ic_myaddr[1] = tmp >>  8;
1629 	ic->ic_myaddr[2] = tmp >> 16;
1630 	ic->ic_myaddr[3] = tmp >> 24;
1631 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1632 	ic->ic_myaddr[4] = tmp & 0xff;
1633 	ic->ic_myaddr[5] = tmp >>  8;
1634 
1635 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1636 	sc->rf_rev = tmp & 0x0f;
1637 	sc->pa_rev = (tmp >> 16) & 0x0f;
1638 
1639 	/* read regulatory domain (currently unused) */
1640 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1641 	sc->regdomain = tmp >> 16;
1642 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1643 
1644 	/* read Tx power calibration tables */
1645 	for (i = 0; i < 7; i++) {
1646 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1647 		sc->pwr_cal[i * 2] = val >> 8;
1648 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1649 
1650 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1651 		sc->pwr_int[i * 2] = val >> 8;
1652 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1653 
1654 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1655 		sc->ofdm36_cal[i * 2] = val >> 8;
1656 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1657 
1658 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1659 		sc->ofdm48_cal[i * 2] = val >> 8;
1660 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1661 
1662 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1663 		sc->ofdm54_cal[i * 2] = val >> 8;
1664 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1665 	}
1666 	return 0;
1667 }
1668 
1669 Static int
1670 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1671 {
1672 	uint32_t tmp;
1673 
1674 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1675 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1676 
1677 	tmp = addr[5] << 8 | addr[4];
1678 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1679 
1680 	return 0;
1681 }
1682 
1683 Static int
1684 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1685 {
1686 	uint32_t tmp;
1687 
1688 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1689 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1690 
1691 	tmp = addr[5] << 8 | addr[4];
1692 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1693 
1694 	return 0;
1695 }
1696 
1697 Static int
1698 zyd_switch_radio(struct zyd_softc *sc, int on)
1699 {
1700 	struct zyd_rf *rf = &sc->sc_rf;
1701 	int error;
1702 
1703 	zyd_lock_phy(sc);
1704 	error = (*rf->switch_radio)(rf, on);
1705 	zyd_unlock_phy(sc);
1706 
1707 	return error;
1708 }
1709 
1710 Static void
1711 zyd_set_led(struct zyd_softc *sc, int which, int on)
1712 {
1713 	uint32_t tmp;
1714 
1715 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1716 	tmp &= ~which;
1717 	if (on)
1718 		tmp |= which;
1719 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1720 }
1721 
1722 Static int
1723 zyd_set_rxfilter(struct zyd_softc *sc)
1724 {
1725 	uint32_t rxfilter;
1726 
1727 	switch (sc->sc_ic.ic_opmode) {
1728 	case IEEE80211_M_STA:
1729 		rxfilter = ZYD_FILTER_BSS;
1730 		break;
1731 	case IEEE80211_M_IBSS:
1732 	case IEEE80211_M_HOSTAP:
1733 		rxfilter = ZYD_FILTER_HOSTAP;
1734 		break;
1735 	case IEEE80211_M_MONITOR:
1736 		rxfilter = ZYD_FILTER_MONITOR;
1737 		break;
1738 	default:
1739 		/* should not get there */
1740 		return EINVAL;
1741 	}
1742 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1743 }
1744 
1745 Static void
1746 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1747 {
1748 	struct ieee80211com *ic = &sc->sc_ic;
1749 	struct zyd_rf *rf = &sc->sc_rf;
1750 	u_int chan;
1751 
1752 	chan = ieee80211_chan2ieee(ic, c);
1753 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1754 		return;
1755 
1756 	zyd_lock_phy(sc);
1757 
1758 	(*rf->set_channel)(rf, chan);
1759 
1760 	/* update Tx power */
1761 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1762 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1763 
1764 	if (sc->mac_rev == ZYD_ZD1211B) {
1765 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1766 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1767 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1768 
1769 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1770 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1771 	}
1772 
1773 	zyd_unlock_phy(sc);
1774 }
1775 
1776 Static int
1777 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1778 {
1779 	/* XXX this is probably broken.. */
1780 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1781 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1782 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1783 
1784 	return 0;
1785 }
1786 
1787 Static uint8_t
1788 zyd_plcp_signal(int rate)
1789 {
1790 	switch (rate) {
1791 	/* CCK rates (returned values are device-dependent) */
1792 	case 2:		return 0x0;
1793 	case 4:		return 0x1;
1794 	case 11:	return 0x2;
1795 	case 22:	return 0x3;
1796 
1797 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1798 	case 12:	return 0xb;
1799 	case 18:	return 0xf;
1800 	case 24:	return 0xa;
1801 	case 36:	return 0xe;
1802 	case 48:	return 0x9;
1803 	case 72:	return 0xd;
1804 	case 96:	return 0x8;
1805 	case 108:	return 0xc;
1806 
1807 	/* unsupported rates (should not get there) */
1808 	default:	return 0xff;
1809 	}
1810 }
1811 
1812 Static void
1813 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1814 {
1815 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1816 	struct zyd_cmd *cmd;
1817 	uint32_t datalen;
1818 
1819 	if (status != USBD_NORMAL_COMPLETION) {
1820 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1821 			return;
1822 
1823 		if (status == USBD_STALLED) {
1824 			usbd_clear_endpoint_stall_async(
1825 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1826 		}
1827 		return;
1828 	}
1829 
1830 	cmd = (struct zyd_cmd *)sc->ibuf;
1831 
1832 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1833 		struct zyd_notif_retry *retry =
1834 		    (struct zyd_notif_retry *)cmd->data;
1835 		struct ieee80211com *ic = &sc->sc_ic;
1836 		struct ifnet *ifp = &sc->sc_if;
1837 		struct ieee80211_node *ni;
1838 
1839 		DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1840 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1841 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1842 
1843 		/*
1844 		 * Find the node to which the packet was sent and update its
1845 		 * retry statistics.  In BSS mode, this node is the AP we're
1846 		 * associated to so no lookup is actually needed.
1847 		 */
1848 		if (ic->ic_opmode != IEEE80211_M_STA) {
1849 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1850 			if (ni == NULL)
1851 				return;	/* just ignore */
1852 		} else
1853 			ni = ic->ic_bss;
1854 
1855 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1856 
1857 		if (le16toh(retry->count) & 0x100)
1858 			ifp->if_oerrors++;	/* too many retries */
1859 
1860 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1861 		struct rq *rqp;
1862 
1863 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1864 			return;	/* HMAC interrupt */
1865 
1866 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1867 		datalen -= sizeof(cmd->code);
1868 		datalen -= 2;	/* XXX: padding? */
1869 
1870 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1871 			int i;
1872 
1873 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1874 				continue;
1875 			for (i = 0; i < rqp->len; i++) {
1876 				if (*(((const uint16_t *)rqp->idata) + i) !=
1877 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1878 					break;
1879 			}
1880 			if (i != rqp->len)
1881 				continue;
1882 
1883 			/* copy answer into caller-supplied buffer */
1884 			bcopy(cmd->data, rqp->odata,
1885 			    sizeof(struct zyd_pair) * rqp->len);
1886 			wakeup(rqp->odata);	/* wakeup caller */
1887 
1888 			return;
1889 		}
1890 		return;	/* unexpected IORD notification */
1891 	} else {
1892 		printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev),
1893 		    le16toh(cmd->code));
1894 	}
1895 }
1896 
1897 Static void
1898 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1899 {
1900 	struct ieee80211com *ic = &sc->sc_ic;
1901 	struct ifnet *ifp = &sc->sc_if;
1902 	struct ieee80211_node *ni;
1903 	struct ieee80211_frame *wh;
1904 	const struct zyd_plcphdr *plcp;
1905 	const struct zyd_rx_stat *stat;
1906 	struct mbuf *m;
1907 	int rlen, s;
1908 
1909 	if (len < ZYD_MIN_FRAGSZ) {
1910 		printf("%s: frame too short (length=%d)\n",
1911 		    USBDEVNAME(sc->sc_dev), len);
1912 		ifp->if_ierrors++;
1913 		return;
1914 	}
1915 
1916 	plcp = (const struct zyd_plcphdr *)buf;
1917 	stat = (const struct zyd_rx_stat *)
1918 	    (buf + len - sizeof (struct zyd_rx_stat));
1919 
1920 	if (stat->flags & ZYD_RX_ERROR) {
1921 		DPRINTF(("%s: RX status indicated error (%x)\n",
1922 		    USBDEVNAME(sc->sc_dev), stat->flags));
1923 		ifp->if_ierrors++;
1924 		return;
1925 	}
1926 
1927 	/* compute actual frame length */
1928 	rlen = len - sizeof (struct zyd_plcphdr) -
1929 	    sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1930 
1931 	/* allocate a mbuf to store the frame */
1932 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1933 	if (m == NULL) {
1934 		printf("%s: could not allocate rx mbuf\n",
1935 		    USBDEVNAME(sc->sc_dev));
1936 		ifp->if_ierrors++;
1937 		return;
1938 	}
1939 	if (rlen > MHLEN) {
1940 		MCLGET(m, M_DONTWAIT);
1941 		if (!(m->m_flags & M_EXT)) {
1942 			printf("%s: could not allocate rx mbuf cluster\n",
1943 			    USBDEVNAME(sc->sc_dev));
1944 			m_freem(m);
1945 			ifp->if_ierrors++;
1946 			return;
1947 		}
1948 	}
1949 	m->m_pkthdr.rcvif = ifp;
1950 	m->m_pkthdr.len = m->m_len = rlen;
1951 	bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1952 
1953 	s = splnet();
1954 
1955 #if NBPFILTER > 0
1956 	if (sc->sc_drvbpf != NULL) {
1957 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1958 		static const uint8_t rates[] = {
1959 			/* reverse function of zyd_plcp_signal() */
1960 			2, 4, 11, 22, 0, 0, 0, 0,
1961 			96, 48, 24, 12, 108, 72, 36, 18
1962 		};
1963 
1964 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1965 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1966 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1967 		tap->wr_rssi = stat->rssi;
1968 		tap->wr_rate = rates[plcp->signal & 0xf];
1969 
1970 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1971 	}
1972 #endif
1973 
1974 	wh = mtod(m, struct ieee80211_frame *);
1975 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1976 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1977 
1978 	/* node is no longer needed */
1979 	ieee80211_free_node(ni);
1980 
1981 	splx(s);
1982 }
1983 
1984 Static void
1985 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1986 {
1987 	struct zyd_rx_data *data = priv;
1988 	struct zyd_softc *sc = data->sc;
1989 	struct ifnet *ifp = &sc->sc_if;
1990 	const struct zyd_rx_desc *desc;
1991 	int len;
1992 
1993 	if (status != USBD_NORMAL_COMPLETION) {
1994 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1995 			return;
1996 
1997 		if (status == USBD_STALLED)
1998 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1999 
2000 		goto skip;
2001 	}
2002 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2003 
2004 	if (len < ZYD_MIN_RXBUFSZ) {
2005 		printf("%s: xfer too short (length=%d)\n",
2006 		    USBDEVNAME(sc->sc_dev), len);
2007 		ifp->if_ierrors++;
2008 		goto skip;
2009 	}
2010 
2011 	desc = (const struct zyd_rx_desc *)
2012 	    (data->buf + len - sizeof (struct zyd_rx_desc));
2013 
2014 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2015 		const uint8_t *p = data->buf, *end = p + len;
2016 		int i;
2017 
2018 		DPRINTFN(3, ("received multi-frame transfer\n"));
2019 
2020 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2021 			const uint16_t len16 = UGETW(desc->len[i]);
2022 
2023 			if (len16 == 0 || p + len16 > end)
2024 				break;
2025 
2026 			zyd_rx_data(sc, p, len16);
2027 			/* next frame is aligned on a 32-bit boundary */
2028 			p += (len16 + 3) & ~3;
2029 		}
2030 	} else {
2031 		DPRINTFN(3, ("received single-frame transfer\n"));
2032 
2033 		zyd_rx_data(sc, data->buf, len);
2034 	}
2035 
2036 skip:	/* setup a new transfer */
2037 	usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2038 	    ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2039 	    USBD_NO_TIMEOUT, zyd_rxeof);
2040 	(void)usbd_transfer(xfer);
2041 }
2042 
2043 Static int
2044 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2045 {
2046 	struct ieee80211com *ic = &sc->sc_ic;
2047 	struct ifnet *ifp = &sc->sc_if;
2048 	struct zyd_tx_desc *desc;
2049 	struct zyd_tx_data *data;
2050 	struct ieee80211_frame *wh;
2051 	struct ieee80211_key *k;
2052 	int xferlen, totlen, rate;
2053 	uint16_t pktlen;
2054 	usbd_status error;
2055 
2056 	data = &sc->tx_data[0];
2057 	desc = (struct zyd_tx_desc *)data->buf;
2058 
2059 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2060 
2061 	wh = mtod(m0, struct ieee80211_frame *);
2062 
2063 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2064 		k = ieee80211_crypto_encap(ic, ni, m0);
2065 		if (k == NULL) {
2066 			m_freem(m0);
2067 			return ENOBUFS;
2068 		}
2069 	}
2070 
2071 	data->ni = ni;
2072 
2073 	wh = mtod(m0, struct ieee80211_frame *);
2074 
2075 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2076 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2077 
2078 	/* fill Tx descriptor */
2079 	desc->len = htole16(totlen);
2080 
2081 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2082 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2083 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2084 		if (totlen > ic->ic_rtsthreshold) {
2085 			desc->flags |= ZYD_TX_FLAG_RTS;
2086 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2087 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2088 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2089 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2090 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2091 				desc->flags |= ZYD_TX_FLAG_RTS;
2092 		}
2093 	} else
2094 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2095 
2096 	if ((wh->i_fc[0] &
2097 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2098 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2099 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2100 
2101 	desc->phy = zyd_plcp_signal(rate);
2102 	if (ZYD_RATE_IS_OFDM(rate)) {
2103 		desc->phy |= ZYD_TX_PHY_OFDM;
2104 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2105 			desc->phy |= ZYD_TX_PHY_5GHZ;
2106 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2107 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2108 
2109 	/* actual transmit length (XXX why +10?) */
2110 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2111 	if (sc->mac_rev == ZYD_ZD1211)
2112 		pktlen += totlen;
2113 	desc->pktlen = htole16(pktlen);
2114 
2115 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2116 	desc->plcp_service = 0;
2117 	if (rate == 22) {
2118 		const int remainder = (16 * totlen) % 22;
2119 		if (remainder != 0 && remainder < 7)
2120 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2121 	}
2122 
2123 #if NBPFILTER > 0
2124 	if (sc->sc_drvbpf != NULL) {
2125 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2126 
2127 		tap->wt_flags = 0;
2128 		tap->wt_rate = rate;
2129 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2130 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2131 
2132 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2133 	}
2134 #endif
2135 
2136 	m_copydata(m0, 0, m0->m_pkthdr.len,
2137 	    data->buf + sizeof (struct zyd_tx_desc));
2138 
2139 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2140 	    USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2141 
2142 	m_freem(m0);	/* mbuf no longer needed */
2143 
2144 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2145 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2146 	    ZYD_TX_TIMEOUT, zyd_txeof);
2147 	error = usbd_transfer(data->xfer);
2148 	if (error != USBD_IN_PROGRESS && error != 0) {
2149 		ifp->if_oerrors++;
2150 		return EIO;
2151 	}
2152 	sc->tx_queued++;
2153 
2154 	return 0;
2155 }
2156 
2157 Static void
2158 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2159 {
2160 	struct zyd_tx_data *data = priv;
2161 	struct zyd_softc *sc = data->sc;
2162 	struct ifnet *ifp = &sc->sc_if;
2163 	int s;
2164 
2165 	if (status != USBD_NORMAL_COMPLETION) {
2166 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2167 			return;
2168 
2169 		printf("%s: could not transmit buffer: %s\n",
2170 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
2171 
2172 		if (status == USBD_STALLED) {
2173 			usbd_clear_endpoint_stall_async(
2174 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2175 		}
2176 		ifp->if_oerrors++;
2177 		return;
2178 	}
2179 
2180 	s = splnet();
2181 
2182 	/* update rate control statistics */
2183 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2184 
2185 	ieee80211_free_node(data->ni);
2186 	data->ni = NULL;
2187 
2188 	sc->tx_queued--;
2189 	ifp->if_opackets++;
2190 
2191 	sc->tx_timer = 0;
2192 	ifp->if_flags &= ~IFF_OACTIVE;
2193 	zyd_start(ifp);
2194 
2195 	splx(s);
2196 }
2197 
2198 Static int
2199 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2200 {
2201 	struct ieee80211com *ic = &sc->sc_ic;
2202 	struct ifnet *ifp = &sc->sc_if;
2203 	struct zyd_tx_desc *desc;
2204 	struct zyd_tx_data *data;
2205 	struct ieee80211_frame *wh;
2206 	struct ieee80211_key *k;
2207 	int xferlen, totlen, rate;
2208 	uint16_t pktlen;
2209 	usbd_status error;
2210 
2211 	wh = mtod(m0, struct ieee80211_frame *);
2212 
2213 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2214 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2215 	else
2216 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2217 	rate &= IEEE80211_RATE_VAL;
2218 
2219 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2220 		k = ieee80211_crypto_encap(ic, ni, m0);
2221 		if (k == NULL) {
2222 			m_freem(m0);
2223 			return ENOBUFS;
2224 		}
2225 
2226 		/* packet header may have moved, reset our local pointer */
2227 		wh = mtod(m0, struct ieee80211_frame *);
2228 	}
2229 
2230 	data = &sc->tx_data[0];
2231 	desc = (struct zyd_tx_desc *)data->buf;
2232 
2233 	data->ni = ni;
2234 
2235 	xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2236 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2237 
2238 	/* fill Tx descriptor */
2239 	desc->len = htole16(totlen);
2240 
2241 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2242 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2243 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2244 		if (totlen > ic->ic_rtsthreshold) {
2245 			desc->flags |= ZYD_TX_FLAG_RTS;
2246 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2247 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2248 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2249 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2250 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2251 				desc->flags |= ZYD_TX_FLAG_RTS;
2252 		}
2253 	} else
2254 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2255 
2256 	if ((wh->i_fc[0] &
2257 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2258 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2259 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2260 
2261 	desc->phy = zyd_plcp_signal(rate);
2262 	if (ZYD_RATE_IS_OFDM(rate)) {
2263 		desc->phy |= ZYD_TX_PHY_OFDM;
2264 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2265 			desc->phy |= ZYD_TX_PHY_5GHZ;
2266 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2267 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2268 
2269 	/* actual transmit length (XXX why +10?) */
2270 	pktlen = sizeof (struct zyd_tx_desc) + 10;
2271 	if (sc->mac_rev == ZYD_ZD1211)
2272 		pktlen += totlen;
2273 	desc->pktlen = htole16(pktlen);
2274 
2275 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2276 	desc->plcp_service = 0;
2277 	if (rate == 22) {
2278 		const int remainder = (16 * totlen) % 22;
2279 		if (remainder != 0 && remainder < 7)
2280 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2281 	}
2282 
2283 #if NBPFILTER > 0
2284 	if (sc->sc_drvbpf != NULL) {
2285 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2286 
2287 		tap->wt_flags = 0;
2288 		tap->wt_rate = rate;
2289 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2290 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2291 
2292 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2293 	}
2294 #endif
2295 
2296 	m_copydata(m0, 0, m0->m_pkthdr.len,
2297 	    data->buf + sizeof (struct zyd_tx_desc));
2298 
2299 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2300 	    USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2301 
2302 	m_freem(m0);	/* mbuf no longer needed */
2303 
2304 	usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2305 	    data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2306 	    ZYD_TX_TIMEOUT, zyd_txeof);
2307 	error = usbd_transfer(data->xfer);
2308 	if (error != USBD_IN_PROGRESS && error != 0) {
2309 		ifp->if_oerrors++;
2310 		return EIO;
2311 	}
2312 	sc->tx_queued++;
2313 
2314 	return 0;
2315 }
2316 
2317 Static void
2318 zyd_start(struct ifnet *ifp)
2319 {
2320 	struct zyd_softc *sc = ifp->if_softc;
2321 	struct ieee80211com *ic = &sc->sc_ic;
2322 	struct ether_header *eh;
2323 	struct ieee80211_node *ni;
2324 	struct mbuf *m0;
2325 
2326 	for (;;) {
2327 		IF_POLL(&ic->ic_mgtq, m0);
2328 		if (m0 != NULL) {
2329 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2330 				ifp->if_flags |= IFF_OACTIVE;
2331 				break;
2332 			}
2333 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2334 
2335 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2336 			m0->m_pkthdr.rcvif = NULL;
2337 #if NBPFILTER > 0
2338 			if (ic->ic_rawbpf != NULL)
2339 				bpf_mtap(ic->ic_rawbpf, m0);
2340 #endif
2341 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2342 				break;
2343 		} else {
2344 			if (ic->ic_state != IEEE80211_S_RUN)
2345 				break;
2346 			IFQ_POLL(&ifp->if_snd, m0);
2347 			if (m0 == NULL)
2348 				break;
2349 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2350 				ifp->if_flags |= IFF_OACTIVE;
2351 				break;
2352 			}
2353 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2354 
2355 			if (m0->m_len < sizeof(struct ether_header) &&
2356 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2357 				continue;
2358 
2359 			eh = mtod(m0, struct ether_header *);
2360 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2361 			if (ni == NULL) {
2362 				m_freem(m0);
2363 				continue;
2364 			}
2365 #if NBPFILTER > 0
2366 			if (ifp->if_bpf != NULL)
2367 				bpf_mtap(ifp->if_bpf, m0);
2368 #endif
2369 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2370 				ieee80211_free_node(ni);
2371 				ifp->if_oerrors++;
2372 				continue;
2373 			}
2374 #if NBPFILTER > 0
2375 			if (ic->ic_rawbpf != NULL)
2376 				bpf_mtap(ic->ic_rawbpf, m0);
2377 #endif
2378 			if (zyd_tx_data(sc, m0, ni) != 0) {
2379 				ieee80211_free_node(ni);
2380 				ifp->if_oerrors++;
2381 				break;
2382 			}
2383 		}
2384 
2385 		sc->tx_timer = 5;
2386 		ifp->if_timer = 1;
2387 	}
2388 }
2389 
2390 Static void
2391 zyd_watchdog(struct ifnet *ifp)
2392 {
2393 	struct zyd_softc *sc = ifp->if_softc;
2394 	struct ieee80211com *ic = &sc->sc_ic;
2395 
2396 	ifp->if_timer = 0;
2397 
2398 	if (sc->tx_timer > 0) {
2399 		if (--sc->tx_timer == 0) {
2400 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
2401 			/* zyd_init(ifp); XXX needs a process context ? */
2402 			ifp->if_oerrors++;
2403 			return;
2404 		}
2405 		ifp->if_timer = 1;
2406 	}
2407 
2408 	ieee80211_watchdog(ic);
2409 }
2410 
2411 Static int
2412 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2413 {
2414 	struct zyd_softc *sc = ifp->if_softc;
2415 	struct ieee80211com *ic = &sc->sc_ic;
2416 	int s, error = 0;
2417 
2418 	s = splnet();
2419 
2420 	switch (cmd) {
2421 	case SIOCSIFFLAGS:
2422 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2423 			break;
2424 		/* XXX re-use ether_ioctl() */
2425 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2426 		case IFF_UP:
2427 			zyd_init(ifp);
2428 			break;
2429 		case IFF_RUNNING:
2430 			zyd_stop(ifp, 1);
2431 			break;
2432 		default:
2433 			break;
2434 		}
2435 		break;
2436 
2437 	default:
2438 		if (!sc->attached)
2439 			error = ENXIO;
2440 		else
2441 			error = ieee80211_ioctl(ic, cmd, data);
2442 	}
2443 
2444 	if (error == ENETRESET) {
2445 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2446 		    (IFF_RUNNING | IFF_UP))
2447 			zyd_init(ifp);
2448 		error = 0;
2449 	}
2450 
2451 	splx(s);
2452 
2453 	return error;
2454 }
2455 
2456 Static int
2457 zyd_init(struct ifnet *ifp)
2458 {
2459 	struct zyd_softc *sc = ifp->if_softc;
2460 	struct ieee80211com *ic = &sc->sc_ic;
2461 	int i, error;
2462 
2463 	if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2464 		if ((error = zyd_attachhook(sc)) != 0)
2465 			return error;
2466 
2467 	zyd_stop(ifp, 0);
2468 
2469 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2470 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2471 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2472 	if (error != 0)
2473 		return error;
2474 
2475 	/* we'll do software WEP decryption for now */
2476 	DPRINTF(("setting encryption type\n"));
2477 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2478 	if (error != 0)
2479 		return error;
2480 
2481 	/* promiscuous mode */
2482 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2483 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2484 
2485 	(void)zyd_set_rxfilter(sc);
2486 
2487 	/* switch radio transmitter ON */
2488 	(void)zyd_switch_radio(sc, 1);
2489 
2490 	/* set basic rates */
2491 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2492 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2493 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2494 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2495 	else	/* assumes 802.11b/g */
2496 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2497 
2498 	/* set mandatory rates */
2499 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2500 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2501 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2502 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2503 	else	/* assumes 802.11b/g */
2504 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2505 
2506 	/* set default BSS channel */
2507 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2508 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2509 
2510 	/* enable interrupts */
2511 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2512 
2513 	/*
2514 	 * Allocate Tx and Rx xfer queues.
2515 	 */
2516 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2517 		printf("%s: could not allocate Tx list\n",
2518 		    USBDEVNAME(sc->sc_dev));
2519 		goto fail;
2520 	}
2521 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2522 		printf("%s: could not allocate Rx list\n",
2523 		    USBDEVNAME(sc->sc_dev));
2524 		goto fail;
2525 	}
2526 
2527 	/*
2528 	 * Start up the receive pipe.
2529 	 */
2530 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2531 		struct zyd_rx_data *data = &sc->rx_data[i];
2532 
2533 		usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2534 		    NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2535 		    USBD_NO_TIMEOUT, zyd_rxeof);
2536 		error = usbd_transfer(data->xfer);
2537 		if (error != USBD_IN_PROGRESS && error != 0) {
2538 			printf("%s: could not queue Rx transfer\n",
2539 			    USBDEVNAME(sc->sc_dev));
2540 			goto fail;
2541 		}
2542 	}
2543 
2544 	ifp->if_flags &= ~IFF_OACTIVE;
2545 	ifp->if_flags |= IFF_RUNNING;
2546 
2547 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2548 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2549 	else
2550 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2551 
2552 	return 0;
2553 
2554 fail:	zyd_stop(ifp, 1);
2555 	return error;
2556 }
2557 
2558 Static void
2559 zyd_stop(struct ifnet *ifp, int disable)
2560 {
2561 	struct zyd_softc *sc = ifp->if_softc;
2562 	struct ieee80211com *ic = &sc->sc_ic;
2563 
2564 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2565 
2566 	sc->tx_timer = 0;
2567 	ifp->if_timer = 0;
2568 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2569 
2570 	/* switch radio transmitter OFF */
2571 	(void)zyd_switch_radio(sc, 0);
2572 
2573 	/* disable Rx */
2574 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2575 
2576 	/* disable interrupts */
2577 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2578 
2579 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2580 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2581 
2582 	zyd_free_rx_list(sc);
2583 	zyd_free_tx_list(sc);
2584 }
2585 
2586 Static int
2587 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2588 {
2589 	usb_device_request_t req;
2590 	uint16_t addr;
2591 	uint8_t stat;
2592 
2593 	DPRINTF(("firmware size=%zu\n", size));
2594 
2595 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2596 	req.bRequest = ZYD_DOWNLOADREQ;
2597 	USETW(req.wIndex, 0);
2598 
2599 	addr = ZYD_FIRMWARE_START_ADDR;
2600 	while (size > 0) {
2601 #if 0
2602 		const int mlen = min(size, 4096);
2603 #else
2604 		/*
2605 		 * XXXX: When the transfer size is 4096 bytes, it is not
2606 		 * likely to be able to transfer it.
2607 		 * The cause is port or machine or chip?
2608 		 */
2609 		const int mlen = min(size, 64);
2610 #endif
2611 
2612 		DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2613 		    addr));
2614 
2615 		USETW(req.wValue, addr);
2616 		USETW(req.wLength, mlen);
2617 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2618 			return EIO;
2619 
2620 		addr += mlen / 2;
2621 		fw   += mlen;
2622 		size -= mlen;
2623 	}
2624 
2625 	/* check whether the upload succeeded */
2626 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2627 	req.bRequest = ZYD_DOWNLOADSTS;
2628 	USETW(req.wValue, 0);
2629 	USETW(req.wIndex, 0);
2630 	USETW(req.wLength, sizeof stat);
2631 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2632 		return EIO;
2633 
2634 	return (stat & 0x80) ? EIO : 0;
2635 }
2636 
2637 Static void
2638 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2639 {
2640 	struct zyd_softc *sc = arg;
2641 	struct zyd_node *zn = (struct zyd_node *)ni;
2642 
2643 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2644 }
2645 
2646 Static void
2647 zyd_amrr_timeout(void *arg)
2648 {
2649 	struct zyd_softc *sc = arg;
2650 	struct ieee80211com *ic = &sc->sc_ic;
2651 	int s;
2652 
2653 	s = splnet();
2654 	if (ic->ic_opmode == IEEE80211_M_STA)
2655 		zyd_iter_func(sc, ic->ic_bss);
2656 	else
2657 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2658 	splx(s);
2659 
2660 	usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2661 }
2662 
2663 Static void
2664 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2665 {
2666 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2667 	int i;
2668 
2669 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2670 
2671 	/* set rate to some reasonable initial value */
2672 	for (i = ni->ni_rates.rs_nrates - 1;
2673 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2674 	     i--);
2675 	ni->ni_txrate = i;
2676 }
2677 
2678 int
2679 zyd_activate(device_ptr_t self, enum devact act)
2680 {
2681 	struct zyd_softc *sc = device_private(self);
2682 
2683 	switch (act) {
2684 	case DVACT_ACTIVATE:
2685 		break;
2686 
2687 	case DVACT_DEACTIVATE:
2688 		if_deactivate(&sc->sc_if);
2689 		break;
2690 	}
2691 	return 0;
2692 }
2693