xref: /netbsd-src/sys/dev/usb/if_urtwn.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: if_urtwn.c,v 1.1 2012/03/25 00:11:16 nonaka Exp $	*/
2 /*	$OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $	*/
3 
4 /*-
5  * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
22  */
23 
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.1 2012/03/25 00:11:16 nonaka Exp $");
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/firmload.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdivar.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67 
68 #include <dev/usb/if_urtwnreg.h>
69 #include <dev/usb/if_urtwnvar.h>
70 #include <dev/usb/if_urtwn_data.h>
71 
72 #ifdef USB_DEBUG
73 #define URTWN_DEBUG
74 #endif
75 
76 #ifdef URTWN_DEBUG
77 #define	DBG_INIT	__BIT(0)
78 #define	DBG_FN		__BIT(1)
79 #define	DBG_TX		__BIT(2)
80 #define	DBG_RX		__BIT(3)
81 #define	DBG_STM		__BIT(4)
82 #define	DBG_RF		__BIT(5)
83 #define	DBG_REG		__BIT(6)
84 #define	DBG_ALL		0xffffffffU
85 u_int urtwn_debug = DBG_TX|DBG_RX|DBG_STM;
86 #define DPRINTFN(n, s)	\
87 	do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0)
88 #else
89 #define DPRINTFN(n, s)
90 #endif
91 
92 static const struct usb_devno urtwn_devs[] = {
93 	{ USB_VENDOR_ABOCOM,	USB_PRODUCT_ABOCOM_RTL8188CU_1 },
94 	{ USB_VENDOR_ABOCOM,	USB_PRODUCT_ABOCOM_RTL8188CU_2 },
95 	{ USB_VENDOR_ABOCOM,	USB_PRODUCT_ABOCOM_RTL8192CU },
96 	{ USB_VENDOR_AZUREWAVE,	USB_PRODUCT_AZUREWAVE_RTL8188CE_1 },
97 	{ USB_VENDOR_AZUREWAVE,	USB_PRODUCT_AZUREWAVE_RTL8188CE_2 },
98 	{ USB_VENDOR_BELKIN,	USB_PRODUCT_BELKIN_RTL8188CU },
99 	{ USB_VENDOR_COREGA,	USB_PRODUCT_COREGA_RTL8192CU },
100 	{ USB_VENDOR_DLINK,	USB_PRODUCT_DLINK_RTL8188CU },
101 	{ USB_VENDOR_DLINK,	USB_PRODUCT_DLINK_RTL8192CU_1 },
102 	{ USB_VENDOR_DLINK,	USB_PRODUCT_DLINK_RTL8192CU_2 },
103 	{ USB_VENDOR_DLINK,	USB_PRODUCT_DLINK_RTL8192CU_3 },
104 	{ USB_VENDOR_EDIMAX,	USB_PRODUCT_EDIMAX_RTL8188CU },
105 	{ USB_VENDOR_EDIMAX,	USB_PRODUCT_EDIMAX_RTL8192CU },
106 	{ USB_VENDOR_FEIXUN,	USB_PRODUCT_FEIXUN_RTL8188CU },
107 	{ USB_VENDOR_FEIXUN,	USB_PRODUCT_FEIXUN_RTL8192CU },
108 	{ USB_VENDOR_GUILLEMOT,	USB_PRODUCT_GUILLEMOT_HWNUP150 },
109 	{ USB_VENDOR_HP3,	USB_PRODUCT_HP3_RTL8188CU },
110 	{ USB_VENDOR_NETGEAR,	USB_PRODUCT_NETGEAR_WNA1000M },
111 	{ USB_VENDOR_NOVATECH,	USB_PRODUCT_NOVATECH_RTL8188CU },
112 	{ USB_VENDOR_PLANEX2,	USB_PRODUCT_PLANEX2_RTL8188CU_1 },
113 	{ USB_VENDOR_PLANEX2,	USB_PRODUCT_PLANEX2_RTL8188CU_2 },
114 	{ USB_VENDOR_PLANEX2,	USB_PRODUCT_PLANEX2_RTL8192CU },
115 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8188CE_0 },
116 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8188CE_1 },
117 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8188CU_0 },
118 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8188CU_1 },
119 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8188CU_2 },
120 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8188RU },
121 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8191CU },
122 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8192CE },
123 	{ USB_VENDOR_REALTEK,	USB_PRODUCT_REALTEK_RTL8192CU },
124 	{ USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_RTL8188CU },
125 	{ USB_VENDOR_TRENDNET,	USB_PRODUCT_TRENDNET_RTL8188CU },
126 	{ USB_VENDOR_ZYXEL,	USB_PRODUCT_ZYXEL_RTL8192CU }
127 };
128 
129 static int	urtwn_match(device_t, cfdata_t, void *);
130 static void	urtwn_attach(device_t, device_t, void *);
131 static int	urtwn_detach(device_t, int);
132 static int	urtwn_activate(device_t, enum devact);
133 
134 CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
135     urtwn_attach, urtwn_detach, urtwn_activate);
136 
137 static int	urtwn_open_pipes(struct urtwn_softc *);
138 static void	urtwn_close_pipes(struct urtwn_softc *);
139 static int	urtwn_alloc_rx_list(struct urtwn_softc *);
140 static void	urtwn_free_rx_list(struct urtwn_softc *);
141 static int	urtwn_alloc_tx_list(struct urtwn_softc *);
142 static void	urtwn_free_tx_list(struct urtwn_softc *);
143 static void	urtwn_task(void *);
144 static void	urtwn_do_async(struct urtwn_softc *,
145 		    void (*)(struct urtwn_softc *, void *), void *, int);
146 static void	urtwn_wait_async(struct urtwn_softc *);
147 static int	urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
148 		    int);
149 static int	urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
150 		    int);
151 static int	urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
152 static uint32_t	urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
153 static int	urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
154 static uint8_t	urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
155 static void	urtwn_efuse_read(struct urtwn_softc *);
156 static int	urtwn_read_chipid(struct urtwn_softc *);
157 static void	urtwn_read_rom(struct urtwn_softc *);
158 static int	urtwn_media_change(struct ifnet *);
159 static int	urtwn_ra_init(struct urtwn_softc *);
160 static void	urtwn_tsf_sync_enable(struct urtwn_softc *);
161 static void	urtwn_set_led(struct urtwn_softc *, int, int);
162 static void	urtwn_calib_to(void *);
163 static void	urtwn_calib_to_cb(struct urtwn_softc *, void *);
164 static void	urtwn_next_scan(void *);
165 static int	urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
166 		    int);
167 static void	urtwn_newstate_cb(struct urtwn_softc *, void *);
168 static int	urtwn_wme_update(struct ieee80211com *);
169 static void	urtwn_wme_update_cb(struct urtwn_softc *, void *);
170 static void	urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
171 static int8_t	urtwn_get_rssi(struct urtwn_softc *, int, void *);
172 static void	urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
173 static void	urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
174 static void	urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
175 static int	urtwn_tx(struct urtwn_softc *, struct mbuf *,
176 		    struct ieee80211_node *);
177 static void	urtwn_start(struct ifnet *);
178 static void	urtwn_watchdog(struct ifnet *);
179 static int	urtwn_ioctl(struct ifnet *, u_long, void *);
180 static int	urtwn_power_on(struct urtwn_softc *);
181 static int	urtwn_llt_init(struct urtwn_softc *);
182 static void	urtwn_fw_reset(struct urtwn_softc *);
183 static int	urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
184 static int	urtwn_load_firmware(struct urtwn_softc *);
185 static int	urtwn_dma_init(struct urtwn_softc *);
186 static void	urtwn_mac_init(struct urtwn_softc *);
187 static void	urtwn_bb_init(struct urtwn_softc *);
188 static void	urtwn_rf_init(struct urtwn_softc *);
189 static void	urtwn_cam_init(struct urtwn_softc *);
190 static void	urtwn_pa_bias_init(struct urtwn_softc *);
191 static void	urtwn_rxfilter_init(struct urtwn_softc *);
192 static void	urtwn_edca_init(struct urtwn_softc *);
193 static void	urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]);
194 static void	urtwn_get_txpower(struct urtwn_softc *, int, u_int, u_int,
195 		    uint16_t[]);
196 static void	urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
197 static void	urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
198 		    u_int);
199 static void	urtwn_iq_calib(struct urtwn_softc *, bool);
200 static void	urtwn_lc_calib(struct urtwn_softc *);
201 static void	urtwn_temp_calib(struct urtwn_softc *);
202 static int	urtwn_init(struct ifnet *);
203 static void	urtwn_stop(struct ifnet *, int);
204 static void	urtwn_chip_stop(struct urtwn_softc *);
205 
206 /* Aliases. */
207 #define	urtwn_bb_write	urtwn_write_4
208 #define	urtwn_bb_read	urtwn_read_4
209 
210 static int
211 urtwn_match(device_t parent, cfdata_t match, void *aux)
212 {
213 	struct usb_attach_arg *uaa = aux;
214 
215 	return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ?
216 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
217 }
218 
219 static void
220 urtwn_attach(device_t parent, device_t self, void *aux)
221 {
222 	struct urtwn_softc *sc = device_private(self);
223 	struct ieee80211com *ic = &sc->sc_ic;
224 	struct ifnet *ifp = &sc->sc_if;
225 	struct usb_attach_arg *uaa = aux;
226 	char *devinfop;
227 	int i, error;
228 
229 	sc->sc_dev = self;
230 	sc->sc_udev = uaa->device;
231 
232 	aprint_naive("\n");
233 	aprint_normal("\n");
234 
235 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
236 	aprint_normal_dev(self, "%s\n", devinfop);
237 	usbd_devinfo_free(devinfop);
238 
239 	mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
240 	mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NET);
241 	mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
242 
243 	usb_init_task(&sc->sc_task, urtwn_task, sc);
244 
245 	callout_init(&sc->sc_scan_to, 0);
246 	callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
247 	callout_init(&sc->sc_calib_to, 0);
248 	callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
249 
250 	if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
251 		aprint_error_dev(self, "could not set configuration no\n");
252 		goto fail;
253 	}
254 
255 	/* Get the first interface handle. */
256 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
257 	if (error != 0) {
258 		aprint_error_dev(self, "could not get interface handle\n");
259 		goto fail;
260 	}
261 
262 	error = urtwn_read_chipid(sc);
263 	if (error != 0) {
264 		aprint_error_dev(self, "unsupported test chip\n");
265 		goto fail;
266 	}
267 
268 	/* Determine number of Tx/Rx chains. */
269 	if (sc->chip & URTWN_CHIP_92C) {
270 		sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
271 		sc->nrxchains = 2;
272 	} else {
273 		sc->ntxchains = 1;
274 		sc->nrxchains = 1;
275 	}
276 	urtwn_read_rom(sc);
277 
278 	aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %dT%dR, address %s\n",
279 	    (sc->chip & URTWN_CHIP_92C) ? "8192CU" :
280 	    (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
281 	    (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
282 	    "8188CUS", sc->ntxchains, sc->nrxchains,
283 	    ether_sprintf(ic->ic_myaddr));
284 
285 	error = urtwn_open_pipes(sc);
286 	if (error != 0) {
287 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
288 		goto fail;
289 	}
290 	aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
291 	    sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
292 	    sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
293 
294 	/*
295 	 * Setup the 802.11 device.
296 	 */
297 	ic->ic_ifp = ifp;
298 	ic->ic_phytype = IEEE80211_T_OFDM;	/* Not only, but not used. */
299 	ic->ic_opmode = IEEE80211_M_STA;	/* Default to BSS mode. */
300 	ic->ic_state = IEEE80211_S_INIT;
301 
302 	/* Set device capabilities. */
303 	ic->ic_caps =
304 	    IEEE80211_C_MONITOR |	/* Monitor mode supported. */
305 	    IEEE80211_C_SHPREAMBLE |	/* Short preamble supported. */
306 	    IEEE80211_C_SHSLOT |	/* Short slot time supported. */
307 	    IEEE80211_C_WME |		/* 802.11e */
308 	    IEEE80211_C_WPA;		/* 802.11i */
309 
310 	/* Set supported .11b and .11g rates. */
311 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
312 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
313 
314 	/* Set supported .11b and .11g channels (1 through 14). */
315 	for (i = 1; i <= 14; i++) {
316 		ic->ic_channels[i].ic_freq =
317 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
318 		ic->ic_channels[i].ic_flags =
319 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
320 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
321 	}
322 
323 	ifp->if_softc = sc;
324 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
325 	ifp->if_init = urtwn_init;
326 	ifp->if_ioctl = urtwn_ioctl;
327 	ifp->if_start = urtwn_start;
328 	ifp->if_watchdog = urtwn_watchdog;
329 	IFQ_SET_READY(&ifp->if_snd);
330 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
331 
332 	if_attach(ifp);
333 	ieee80211_ifattach(ic);
334 	/* override default methods */
335 	ic->ic_wme.wme_update = urtwn_wme_update;
336 
337 	/* Override state transition machine. */
338 	sc->sc_newstate = ic->ic_newstate;
339 	ic->ic_newstate = urtwn_newstate;
340 	ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status);
341 
342 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
343 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
344 	    &sc->sc_drvbpf);
345 
346 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
347 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
348 	sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
349 
350 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
351 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
352 	sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
353 
354 	ieee80211_announce(ic);
355 
356 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
357 
358 	SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
359 	return;
360 
361  fail:
362 	sc->sc_dying = 1;
363 	aprint_error_dev(self, "attach failed\n");
364 }
365 
366 static int
367 urtwn_detach(device_t self, int flags)
368 {
369 	struct urtwn_softc *sc = device_private(self);
370 	struct ifnet *ifp = &sc->sc_if;
371 	int s;
372 
373 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
374 
375 	s = splusb();
376 
377 	sc->sc_dying = 1;
378 
379 	callout_stop(&sc->sc_scan_to);
380 	callout_stop(&sc->sc_calib_to);
381 
382 	if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
383 		usb_rem_task(sc->sc_udev, &sc->sc_task);
384 		urtwn_stop(ifp, 0);
385 
386 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
387 		bpf_detach(ifp);
388 		ieee80211_ifdetach(&sc->sc_ic);
389 		if_detach(ifp);
390 
391 		/* Abort and close Tx/Rx pipes. */
392 		urtwn_close_pipes(sc);
393 	}
394 
395 	splx(s);
396 
397 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
398 
399 	callout_destroy(&sc->sc_scan_to);
400 	callout_destroy(&sc->sc_calib_to);
401 	mutex_destroy(&sc->sc_fwcmd_mtx);
402 	mutex_destroy(&sc->sc_tx_mtx);
403 	mutex_destroy(&sc->sc_task_mtx);
404 
405 	return (0);
406 }
407 
408 static int
409 urtwn_activate(device_t self, enum devact act)
410 {
411 	struct urtwn_softc *sc = device_private(self);
412 
413 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
414 
415 	switch (act) {
416 	case DVACT_DEACTIVATE:
417 		if_deactivate(sc->sc_ic.ic_ifp);
418 		return (0);
419 	default:
420 		return (EOPNOTSUPP);
421 	}
422 }
423 
424 static int
425 urtwn_open_pipes(struct urtwn_softc *sc)
426 {
427 	/* Bulk-out endpoints addresses (from highest to lowest prio). */
428 	static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 };
429 	usb_interface_descriptor_t *id;
430 	usb_endpoint_descriptor_t *ed;
431 	int i, ntx = 0, error;
432 
433 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
434 
435 	/* Determine the number of bulk-out pipes. */
436 	id = usbd_get_interface_descriptor(sc->sc_iface);
437 	for (i = 0; i < id->bNumEndpoints; i++) {
438 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
439 		if (ed != NULL &&
440 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
441 		    UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
442 			ntx++;
443 	}
444 	DPRINTFN(DBG_INIT, ("%s: %s: found %d bulk-out pipes\n",
445 	    device_xname(sc->sc_dev), __func__, ntx));
446 	if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
447 		aprint_error_dev(sc->sc_dev,
448 		    "%d: invalid number of Tx bulk pipes\n", ntx);
449 		return (EIO);
450 	}
451 	sc->rx_npipe = 1;
452 	sc->tx_npipe = ntx;
453 
454 	/* Open bulk-in pipe at address 0x81. */
455 	error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
456 	    &sc->rx_pipe);
457 	if (error != 0) {
458 		aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe\n");
459 		goto fail;
460 	}
461 
462 	/* Open bulk-out pipes (up to 3). */
463 	for (i = 0; i < ntx; i++) {
464 		error = usbd_open_pipe(sc->sc_iface, epaddr[i],
465 		    USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
466 		if (error != 0) {
467 			aprint_error_dev(sc->sc_dev,
468 			    "could not open Tx bulk pipe 0x%02x\n", epaddr[i]);
469 			goto fail;
470 		}
471 	}
472 
473 	/* Map 802.11 access categories to USB pipes. */
474 	sc->ac2idx[WME_AC_BK] =
475 	sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
476 	sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
477 	sc->ac2idx[WME_AC_VO] = 0;	/* Always use highest prio. */
478 
479  fail:
480 	if (error != 0)
481 		urtwn_close_pipes(sc);
482 	return (error);
483 }
484 
485 static void
486 urtwn_close_pipes(struct urtwn_softc *sc)
487 {
488 	int i;
489 
490 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
491 
492 	/* Close Rx pipe. */
493 	if (sc->rx_pipe != NULL) {
494 		usbd_abort_pipe(sc->rx_pipe);
495 		usbd_close_pipe(sc->rx_pipe);
496 		sc->rx_pipe = NULL;
497 	}
498 	/* Close Tx pipes. */
499 	for (i = 0; i < R92C_MAX_EPOUT; i++) {
500 		if (sc->tx_pipe[i] == NULL)
501 			continue;
502 		usbd_abort_pipe(sc->tx_pipe[i]);
503 		usbd_close_pipe(sc->tx_pipe[i]);
504 		sc->tx_pipe[i] = NULL;
505 	}
506 }
507 
508 static int
509 urtwn_alloc_rx_list(struct urtwn_softc *sc)
510 {
511 	struct urtwn_rx_data *data;
512 	int i, error = 0;
513 
514 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
515 
516 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
517 		data = &sc->rx_data[i];
518 
519 		data->sc = sc;	/* Backpointer for callbacks. */
520 
521 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
522 		if (data->xfer == NULL) {
523 			aprint_error_dev(sc->sc_dev,
524 			    "could not allocate xfer\n");
525 			error = ENOMEM;
526 			break;
527 		}
528 
529 		data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
530 		if (data->buf == NULL) {
531 			aprint_error_dev(sc->sc_dev,
532 			    "could not allocate xfer buffer\n");
533 			error = ENOMEM;
534 			break;
535 		}
536 	}
537 	if (error != 0)
538 		urtwn_free_rx_list(sc);
539 	return (error);
540 }
541 
542 static void
543 urtwn_free_rx_list(struct urtwn_softc *sc)
544 {
545 	int i;
546 
547 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
548 
549 	/* NB: Caller must abort pipe first. */
550 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
551 		if (sc->rx_data[i].xfer != NULL) {
552 			usbd_free_xfer(sc->rx_data[i].xfer);
553 			sc->rx_data[i].xfer = NULL;
554 		}
555 	}
556 }
557 
558 static int
559 urtwn_alloc_tx_list(struct urtwn_softc *sc)
560 {
561 	struct urtwn_tx_data *data;
562 	int i, error = 0;
563 
564 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
565 
566 	mutex_enter(&sc->sc_tx_mtx);
567 	TAILQ_INIT(&sc->tx_free_list);
568 	for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
569 		data = &sc->tx_data[i];
570 
571 		data->sc = sc;	/* Backpointer for callbacks. */
572 
573 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
574 		if (data->xfer == NULL) {
575 			aprint_error_dev(sc->sc_dev,
576 			    "could not allocate xfer\n");
577 			error = ENOMEM;
578 			goto fail;
579 		}
580 
581 		data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
582 		if (data->buf == NULL) {
583 			aprint_error_dev(sc->sc_dev,
584 			    "could not allocate xfer buffer\n");
585 			error = ENOMEM;
586 			goto fail;
587 		}
588 
589 		/* Append this Tx buffer to our free list. */
590 		TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
591 	}
592 	mutex_exit(&sc->sc_tx_mtx);
593 	return (0);
594 
595  fail:
596 	urtwn_free_tx_list(sc);
597 	return (error);
598 }
599 
600 static void
601 urtwn_free_tx_list(struct urtwn_softc *sc)
602 {
603 	struct urtwn_tx_data *data;
604 	int i;
605 
606 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
607 
608 	/* NB: Caller must abort pipe first. */
609 	for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
610 		data = &sc->tx_data[i];
611 
612 		if (data->xfer != NULL) {
613 			usbd_free_xfer(data->xfer);
614 			data->xfer = NULL;
615 		}
616 	}
617 }
618 
619 static void
620 urtwn_task(void *arg)
621 {
622 	struct urtwn_softc *sc = arg;
623 	struct urtwn_host_cmd_ring *ring = &sc->cmdq;
624 	struct urtwn_host_cmd *cmd;
625 	int s;
626 
627 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
628 
629 	/* Process host commands. */
630 	s = splusb();
631 	mutex_spin_enter(&sc->sc_task_mtx);
632 	while (ring->next != ring->cur) {
633 		cmd = &ring->cmd[ring->next];
634 		mutex_spin_exit(&sc->sc_task_mtx);
635 		splx(s);
636 		/* Invoke callback. */
637 		cmd->cb(sc, cmd->data);
638 		s = splusb();
639 		mutex_spin_enter(&sc->sc_task_mtx);
640 		ring->queued--;
641 		ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
642 	}
643 	mutex_spin_exit(&sc->sc_task_mtx);
644 	wakeup(&sc->cmdq);
645 	splx(s);
646 }
647 
648 static void
649 urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
650     void *arg, int len)
651 {
652 	struct urtwn_host_cmd_ring *ring = &sc->cmdq;
653 	struct urtwn_host_cmd *cmd;
654 	int s;
655 
656 	DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n",
657 	    device_xname(sc->sc_dev), __func__, cb, arg, len));
658 
659 	s = splusb();
660 	mutex_spin_enter(&sc->sc_task_mtx);
661 	cmd = &ring->cmd[ring->cur];
662 	cmd->cb = cb;
663 	KASSERT(len <= sizeof(cmd->data));
664 	memcpy(cmd->data, arg, len);
665 	ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
666 
667 	/* If there is no pending command already, schedule a task. */
668 	if (!sc->sc_dying && ++ring->queued == 1) {
669 		mutex_spin_exit(&sc->sc_task_mtx);
670 		usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
671 	} else
672 		mutex_spin_exit(&sc->sc_task_mtx);
673 	splx(s);
674 }
675 
676 static void
677 urtwn_wait_async(struct urtwn_softc *sc)
678 {
679 
680 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
681 
682 	/* Wait for all queued asynchronous commands to complete. */
683 	while (sc->cmdq.queued > 0)
684 		tsleep(&sc->cmdq, 0, "endtask", 0);
685 }
686 
687 static int
688 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
689     int len)
690 {
691 	usb_device_request_t req;
692 	usbd_status error;
693 
694 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
695 	req.bRequest = R92C_REQ_REGS;
696 	USETW(req.wValue, addr);
697 	USETW(req.wIndex, 0);
698 	USETW(req.wLength, len);
699 	error = usbd_do_request(sc->sc_udev, &req, buf);
700 	if (error != USBD_NORMAL_COMPLETION) {
701 		DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
702 		    device_xname(sc->sc_dev), __func__, error, addr, len));
703 	}
704 	return (error);
705 }
706 
707 static void
708 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
709 {
710 
711 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
712 	    device_xname(sc->sc_dev), __func__, addr, val));
713 
714 	urtwn_write_region_1(sc, addr, &val, 1);
715 }
716 
717 static void
718 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
719 {
720 	uint8_t buf[2];
721 
722 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
723 	    device_xname(sc->sc_dev), __func__, addr, val));
724 
725 	buf[0] = (uint8_t)val;
726 	buf[1] = (uint8_t)(val >> 8);
727 	urtwn_write_region_1(sc, addr, buf, 2);
728 }
729 
730 static void
731 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
732 {
733 	uint8_t buf[4];
734 
735 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
736 	    device_xname(sc->sc_dev), __func__, addr, val));
737 
738 	buf[0] = (uint8_t)val;
739 	buf[1] = (uint8_t)(val >> 8);
740 	buf[2] = (uint8_t)(val >> 16);
741 	buf[3] = (uint8_t)(val >> 24);
742 	urtwn_write_region_1(sc, addr, buf, 4);
743 }
744 
745 static int
746 urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
747 {
748 
749 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n",
750 	    device_xname(sc->sc_dev), __func__, addr, len));
751 
752 	return urtwn_write_region_1(sc, addr, buf, len);
753 }
754 
755 static int
756 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
757     int len)
758 {
759 	usb_device_request_t req;
760 	usbd_status error;
761 
762 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
763 	req.bRequest = R92C_REQ_REGS;
764 	USETW(req.wValue, addr);
765 	USETW(req.wIndex, 0);
766 	USETW(req.wLength, len);
767 	error = usbd_do_request(sc->sc_udev, &req, buf);
768 	if (error != USBD_NORMAL_COMPLETION) {
769 		DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
770 		    device_xname(sc->sc_dev), __func__, error, addr, len));
771 	}
772 	return (error);
773 }
774 
775 static uint8_t
776 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
777 {
778 	uint8_t val;
779 
780 	if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
781 		return (0xff);
782 
783 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
784 	    device_xname(sc->sc_dev), __func__, addr, val));
785 	return (val);
786 }
787 
788 static uint16_t
789 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
790 {
791 	uint8_t buf[2];
792 	uint16_t val;
793 
794 	if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
795 		return (0xffff);
796 
797 	val = LE_READ_2(&buf[0]);
798 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
799 	    device_xname(sc->sc_dev), __func__, addr, val));
800 	return (val);
801 }
802 
803 static uint32_t
804 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
805 {
806 	uint8_t buf[4];
807 	uint32_t val;
808 
809 	if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
810 		return (0xffffffff);
811 
812 	val = LE_READ_4(&buf[0]);
813 	DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
814 	    device_xname(sc->sc_dev), __func__, addr, val));
815 	return (val);
816 }
817 
818 static int
819 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
820 {
821 	struct r92c_fw_cmd cmd;
822 	uint8_t *cp;
823 	int fwcur;
824 	int ntries;
825 
826 	DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n",
827 	    device_xname(sc->sc_dev), __func__, id, buf, len));
828 
829 	mutex_enter(&sc->sc_fwcmd_mtx);
830 	fwcur = sc->fwcur;
831 	sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
832 	mutex_exit(&sc->sc_fwcmd_mtx);
833 
834 	/* Wait for current FW box to be empty. */
835 	for (ntries = 0; ntries < 100; ntries++) {
836 		if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
837 			break;
838 		DELAY(1);
839 	}
840 	if (ntries == 100) {
841 		aprint_error_dev(sc->sc_dev,
842 		    "could not send firmware command %d\n", id);
843 		return (ETIMEDOUT);
844 	}
845 
846 	memset(&cmd, 0, sizeof(cmd));
847 	KASSERT(len <= sizeof(cmd.msg));
848 	memcpy(cmd.msg, buf, len);
849 
850 	/* Write the first word last since that will trigger the FW. */
851 	cp = (uint8_t *)&cmd;
852 	if (len >= 4) {
853 		cmd.id = id | R92C_CMD_FLAG_EXT;
854 		urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2);
855 		urtwn_write_4(sc, R92C_HMEBOX(fwcur),
856 		    cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
857 	} else {
858 		cmd.id = id;
859 		urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
860 	}
861 
862 	return (0);
863 }
864 
865 static void
866 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
867 {
868 
869 	urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
870 	    SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
871 }
872 
873 static uint32_t
874 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
875 {
876 	uint32_t reg[R92C_MAX_CHAINS], val;
877 
878 	reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
879 	if (chain != 0) {
880 		reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
881 	}
882 
883 	urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
884 	    reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
885 	DELAY(1000);
886 
887 	urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
888 	    RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
889 	    R92C_HSSI_PARAM2_READ_EDGE);
890 	DELAY(1000);
891 
892 	urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
893 	    reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
894 	DELAY(1000);
895 
896 	if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
897 		val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
898 	} else {
899 		val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
900 	}
901 	return (MS(val, R92C_LSSI_READBACK_DATA));
902 }
903 
904 static int
905 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
906 {
907 	int ntries;
908 
909 	urtwn_write_4(sc, R92C_LLT_INIT,
910 	    SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
911 	    SM(R92C_LLT_INIT_ADDR, addr) |
912 	    SM(R92C_LLT_INIT_DATA, data));
913 	/* Wait for write operation to complete. */
914 	for (ntries = 0; ntries < 20; ntries++) {
915 		if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
916 		    R92C_LLT_INIT_OP_NO_ACTIVE) {
917 			/* Done */
918 			return (0);
919 		}
920 		DELAY(5);
921 	}
922 	return (ETIMEDOUT);
923 }
924 
925 static uint8_t
926 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
927 {
928 	uint32_t reg;
929 	int ntries;
930 
931 	reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
932 	reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
933 	reg &= ~R92C_EFUSE_CTRL_VALID;
934 	urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
935 
936 	/* Wait for read operation to complete. */
937 	for (ntries = 0; ntries < 100; ntries++) {
938 		reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
939 		if (reg & R92C_EFUSE_CTRL_VALID) {
940 			/* Done */
941 			return (MS(reg, R92C_EFUSE_CTRL_DATA));
942 		}
943 		DELAY(5);
944 	}
945 	aprint_error_dev(sc->sc_dev,
946 	    "could not read efuse byte at address 0x%04x\n", addr);
947 	return (0xff);
948 }
949 
950 static void
951 urtwn_efuse_read(struct urtwn_softc *sc)
952 {
953 	uint8_t *rom = (uint8_t *)&sc->rom;
954 	uint32_t reg;
955 	uint16_t addr = 0;
956 	uint8_t off, msk;
957 	int i;
958 
959 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
960 
961 	reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
962 	if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
963 		urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
964 		    reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
965 	}
966 	reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
967 	if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
968 		urtwn_write_2(sc, R92C_SYS_FUNC_EN,
969 		    reg | R92C_SYS_FUNC_EN_ELDR);
970 	}
971 	reg = urtwn_read_2(sc, R92C_SYS_CLKR);
972 	if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
973 	    (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
974 		urtwn_write_2(sc, R92C_SYS_CLKR,
975 		    reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
976 	}
977 	memset(&sc->rom, 0xff, sizeof(sc->rom));
978 	while (addr < 512) {
979 		reg = urtwn_efuse_read_1(sc, addr);
980 		if (reg == 0xff)
981 			break;
982 		addr++;
983 		off = reg >> 4;
984 		msk = reg & 0xf;
985 		for (i = 0; i < 4; i++) {
986 			if (msk & (1U << i))
987 				continue;
988 
989 			rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
990 			addr++;
991 			rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
992 			addr++;
993 		}
994 	}
995 #ifdef URTWN_DEBUG
996 	if (urtwn_debug & DBG_INIT) {
997 		/* Dump ROM content. */
998 		printf("%s: %s", device_xname(sc->sc_dev), __func__);
999 		for (i = 0; i < (int)sizeof(sc->rom); i++)
1000 			printf(":%02x", rom[i]);
1001 		printf("\n");
1002 	}
1003 #endif
1004 }
1005 
1006 static int
1007 urtwn_read_chipid(struct urtwn_softc *sc)
1008 {
1009 	uint32_t reg;
1010 
1011 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1012 
1013 	sc->chip = 0;
1014 	reg = urtwn_read_4(sc, R92C_SYS_CFG);
1015 	if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
1016 		/* test chip, not supported */
1017 		return (EIO);
1018 	}
1019 	if (reg & R92C_SYS_CFG_TYPE_92C) {
1020 		sc->chip |= URTWN_CHIP_92C;
1021 		/* Check if it is a castrated 8192C. */
1022 		if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
1023 		    R92C_HPON_FSM_CHIP_BONDING_ID) ==
1024 		    R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
1025 			sc->chip |= URTWN_CHIP_92C_1T2R;
1026 		}
1027 	}
1028 	if (reg & R92C_SYS_CFG_VENDOR_UMC) {
1029 		sc->chip |= URTWN_CHIP_UMC;
1030 		if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
1031 			sc->chip |= URTWN_CHIP_UMC_A_CUT;
1032 		}
1033 	}
1034 	return (0);
1035 }
1036 
1037 #ifdef URTWN_DEBUG
1038 static void
1039 urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
1040 {
1041 
1042 	aprint_normal_dev(sc->sc_dev,
1043 	    "id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n",
1044 	    rp->id, rp->dbg_sel, rp->vid, rp->pid);
1045 
1046 	aprint_normal_dev(sc->sc_dev,
1047 	    "usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n",
1048 	    rp->usb_opt, rp->ep_setting, rp->usb_phy);
1049 
1050 	aprint_normal_dev(sc->sc_dev,
1051 	    "macaddr %02x:%02x:%02x:%02x:%02x:%02x\n",
1052 	    rp->macaddr[0], rp->macaddr[1],
1053 	    rp->macaddr[2], rp->macaddr[3],
1054 	    rp->macaddr[4], rp->macaddr[5]);
1055 
1056 	aprint_normal_dev(sc->sc_dev,
1057 	    "string %s, subcustomer_id 0x%x\n",
1058 	    rp->string, rp->subcustomer_id);
1059 
1060 	aprint_normal_dev(sc->sc_dev,
1061 	    "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
1062 	    rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
1063 	    rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
1064 
1065 	aprint_normal_dev(sc->sc_dev,
1066 	    "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
1067 	    rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
1068 	    rp->ht40_1s_tx_pwr[0][2],
1069 	    rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
1070 	    rp->ht40_1s_tx_pwr[1][2]);
1071 
1072 	aprint_normal_dev(sc->sc_dev,
1073 	    "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1074 	    rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1075 	    rp->ht40_2s_tx_pwr_diff[2] & 0xf,
1076 	    rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1077 	    rp->ht40_2s_tx_pwr_diff[2] >> 4);
1078 
1079 	aprint_normal_dev(sc->sc_dev,
1080 	    "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1081 	    rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
1082 	    rp->ht20_tx_pwr_diff[2] & 0xf,
1083 	    rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
1084 	    rp->ht20_tx_pwr_diff[2] >> 4);
1085 
1086 	aprint_normal_dev(sc->sc_dev,
1087 	    "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1088 	    rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
1089 	    rp->ofdm_tx_pwr_diff[2] & 0xf,
1090 	    rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
1091 	    rp->ofdm_tx_pwr_diff[2] >> 4);
1092 
1093 	aprint_normal_dev(sc->sc_dev,
1094 	    "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1095 	    rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
1096 	    rp->ht40_max_pwr[2] & 0xf,
1097 	    rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
1098 	    rp->ht40_max_pwr[2] >> 4);
1099 
1100 	aprint_normal_dev(sc->sc_dev,
1101 	    "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1102 	    rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
1103 	    rp->ht20_max_pwr[2] & 0xf,
1104 	    rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
1105 	    rp->ht20_max_pwr[2] >> 4);
1106 
1107 	aprint_normal_dev(sc->sc_dev,
1108 	    "xtal_calib %d, tssi %d %d, thermal %d\n",
1109 	    rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
1110 
1111 	aprint_normal_dev(sc->sc_dev,
1112 	    "rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n",
1113 	    rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
1114 
1115 	aprint_normal_dev(sc->sc_dev,
1116 	    "channnel_plan %d, version %d customer_id 0x%x\n",
1117 	    rp->channel_plan, rp->version, rp->curstomer_id);
1118 }
1119 #endif
1120 
1121 static void
1122 urtwn_read_rom(struct urtwn_softc *sc)
1123 {
1124 	struct ieee80211com *ic = &sc->sc_ic;
1125 	struct r92c_rom *rom = &sc->rom;
1126 
1127 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1128 
1129 	/* Read full ROM image. */
1130 	urtwn_efuse_read(sc);
1131 #ifdef URTWN_DEBUG
1132 	if (urtwn_debug & DBG_REG)
1133 		urtwn_dump_rom(sc, rom);
1134 #endif
1135 
1136 	/* XXX Weird but this is what the vendor driver does. */
1137 	sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
1138 	sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
1139 	sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
1140 
1141 	DPRINTFN(DBG_INIT,
1142 	    ("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n",
1143 	    device_xname(sc->sc_dev), __func__, sc->pa_setting,
1144 	    sc->board_type, sc->regulatory));
1145 
1146 	IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
1147 }
1148 
1149 static int
1150 urtwn_media_change(struct ifnet *ifp)
1151 {
1152 #ifdef URTWN_DEBUG
1153 	struct urtwn_softc *sc = ifp->if_softc;
1154 #endif
1155 	int error;
1156 
1157 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1158 
1159 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1160 		return (error);
1161 
1162 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1163 	    (IFF_UP | IFF_RUNNING)) {
1164 		urtwn_init(ifp);
1165 	}
1166 	return (0);
1167 }
1168 
1169 /*
1170  * Initialize rate adaptation in firmware.
1171  */
1172 static int
1173 urtwn_ra_init(struct urtwn_softc *sc)
1174 {
1175 	static const uint8_t map[] = {
1176 		2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
1177 	};
1178 	struct ieee80211com *ic = &sc->sc_ic;
1179 	struct ieee80211_node *ni = ic->ic_bss;
1180 	struct ieee80211_rateset *rs = &ni->ni_rates;
1181 	struct r92c_fw_cmd_macid_cfg cmd;
1182 	uint32_t rates, basicrates;
1183 	uint32_t mask;
1184 	uint8_t mode;
1185 	int maxrate, maxbasicrate, error, i, j;
1186 
1187 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1188 
1189 	/* Get normal and basic rates mask. */
1190 	rates = basicrates = 0;
1191 	maxrate = maxbasicrate = 0;
1192 	for (i = 0; i < rs->rs_nrates; i++) {
1193 		/* Convert 802.11 rate to HW rate index. */
1194 		for (j = 0; j < (int)__arraycount(map); j++) {
1195 			if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
1196 				break;
1197 			}
1198 		}
1199 		if (j == __arraycount(map)) {
1200 			/* Unknown rate, skip. */
1201 			continue;
1202 		}
1203 
1204 		rates |= 1U << j;
1205 		if (j > maxrate) {
1206 			maxrate = j;
1207 		}
1208 
1209 		if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
1210 			basicrates |= 1U << j;
1211 			if (j > maxbasicrate) {
1212 				maxbasicrate = j;
1213 			}
1214 		}
1215 	}
1216 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1217 		mode = R92C_RAID_11B;
1218 	} else {
1219 		mode = R92C_RAID_11BG;
1220 	}
1221 	DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, "
1222 	    "maxrate=%x, maxbasicrate=%x\n",
1223 	    device_xname(sc->sc_dev), __func__, mode, rates, basicrates,
1224 	    maxrate, maxbasicrate));
1225 	if (basicrates == 0) {
1226 		basicrates |= 1;	/* add 1Mbps */
1227 	}
1228 
1229 	/* Set rates mask for group addressed frames. */
1230 	cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
1231 	mask = (mode << 28) | basicrates;
1232 	cmd.mask[0] = (uint8_t)mask;
1233 	cmd.mask[1] = (uint8_t)(mask >> 8);
1234 	cmd.mask[2] = (uint8_t)(mask >> 16);
1235 	cmd.mask[3] = (uint8_t)(mask >> 24);
1236 	error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1237 	if (error != 0) {
1238 		aprint_error_dev(sc->sc_dev,
1239 		    "could not add broadcast station\n");
1240 		return (error);
1241 	}
1242 	/* Set initial MRR rate. */
1243 	DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%d\n",
1244 	    device_xname(sc->sc_dev), __func__, maxbasicrate));
1245 	urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate);
1246 
1247 	/* Set rates mask for unicast frames. */
1248 	cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
1249 	mask = (mode << 28) | rates;
1250 	cmd.mask[0] = (uint8_t)mask;
1251 	cmd.mask[1] = (uint8_t)(mask >> 8);
1252 	cmd.mask[2] = (uint8_t)(mask >> 16);
1253 	cmd.mask[3] = (uint8_t)(mask >> 24);
1254 	error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1255 	if (error != 0) {
1256 		aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
1257 		return (error);
1258 	}
1259 	/* Set initial MRR rate. */
1260 	DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%d\n", device_xname(sc->sc_dev),
1261 	    __func__, maxrate));
1262 	urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate);
1263 
1264 	/* Indicate highest supported rate. */
1265 	ni->ni_txrate = rs->rs_nrates - 1;
1266 
1267 	return (0);
1268 }
1269 
1270 static int
1271 urtwn_get_nettype(struct urtwn_softc *sc)
1272 {
1273 	struct ieee80211com *ic = &sc->sc_ic;
1274 	int type;
1275 
1276 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1277 
1278 	switch (ic->ic_opmode) {
1279 	case IEEE80211_M_STA:
1280 		type = R92C_CR_NETTYPE_INFRA;
1281 		break;
1282 
1283 	case IEEE80211_M_IBSS:
1284 		type = R92C_CR_NETTYPE_ADHOC;
1285 		break;
1286 
1287 	default:
1288 		type = R92C_CR_NETTYPE_NOLINK;
1289 		break;
1290 	}
1291 
1292 	return (type);
1293 }
1294 
1295 static void
1296 urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
1297 {
1298 	uint8_t	reg;
1299 
1300 	DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev),
1301 	    __func__, type));
1302 
1303 	reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
1304 	urtwn_write_1(sc, R92C_CR + 2, reg | type);
1305 }
1306 
1307 static void
1308 urtwn_tsf_sync_enable(struct urtwn_softc *sc)
1309 {
1310 	struct ieee80211_node *ni = sc->sc_ic.ic_bss;
1311 	uint64_t tsf;
1312 
1313 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1314 
1315 	/* Enable TSF synchronization. */
1316 	urtwn_write_1(sc, R92C_BCN_CTRL,
1317 	    urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
1318 
1319 	/* Correct TSF */
1320 	urtwn_write_1(sc, R92C_BCN_CTRL,
1321 	    urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
1322 
1323 	/* Set initial TSF. */
1324 	tsf = ni->ni_tstamp.tsf;
1325 	tsf = le64toh(tsf);
1326 	tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
1327 	tsf -= IEEE80211_DUR_TU;
1328 	urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
1329 	urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
1330 
1331 	urtwn_write_1(sc, R92C_BCN_CTRL,
1332 	    urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
1333 }
1334 
1335 static void
1336 urtwn_set_led(struct urtwn_softc *sc, int led, int on)
1337 {
1338 	uint8_t reg;
1339 
1340 	DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev),
1341 	    __func__, led, on));
1342 
1343 	if (led == URTWN_LED_LINK) {
1344 		reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
1345 		if (!on) {
1346 			reg |= R92C_LEDCFG0_DIS;
1347 		}
1348 		urtwn_write_1(sc, R92C_LEDCFG0, reg);
1349 		sc->ledlink = on;	/* Save LED state. */
1350 	}
1351 }
1352 
1353 static void
1354 urtwn_calib_to(void *arg)
1355 {
1356 	struct urtwn_softc *sc = arg;
1357 
1358 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1359 
1360 	if (sc->sc_dying)
1361 		return;
1362 
1363 	/* Do it in a process context. */
1364 	urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
1365 }
1366 
1367 /* ARGSUSED */
1368 static void
1369 urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
1370 {
1371 	struct r92c_fw_cmd_rssi cmd;
1372 
1373 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1374 
1375 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
1376 		goto restart_timer;
1377 
1378 	if (sc->avg_pwdb != -1) {
1379 		/* Indicate Rx signal strength to FW for rate adaptation. */
1380 		memset(&cmd, 0, sizeof(cmd));
1381 		cmd.macid = 0;	/* BSS. */
1382 		cmd.pwdb = sc->avg_pwdb;
1383 		DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n",
1384 		    device_xname(sc->sc_dev), __func__, sc->avg_pwdb));
1385 		urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
1386 	}
1387 
1388 	/* Do temperature compensation. */
1389 	urtwn_temp_calib(sc);
1390 
1391  restart_timer:
1392 	if (!sc->sc_dying) {
1393 		/* Restart calibration timer. */
1394 		callout_schedule(&sc->sc_calib_to, hz);
1395 	}
1396 }
1397 
1398 static void
1399 urtwn_next_scan(void *arg)
1400 {
1401 	struct urtwn_softc *sc = arg;
1402 
1403 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1404 
1405 	if (sc->sc_dying)
1406 		return;
1407 
1408 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1409 		ieee80211_next_scan(&sc->sc_ic);
1410 }
1411 
1412 static int
1413 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1414 {
1415 	struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1416 	struct urtwn_cmd_newstate cmd;
1417 
1418 	DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n",
1419 	    device_xname(sc->sc_dev), __func__,
1420 	    ieee80211_state_name[nstate], nstate, arg));
1421 
1422 	callout_stop(&sc->sc_scan_to);
1423 	callout_stop(&sc->sc_calib_to);
1424 
1425 	/* Do it in a process context. */
1426 	cmd.state = nstate;
1427 	cmd.arg = arg;
1428 	urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
1429 	return (0);
1430 }
1431 
1432 static void
1433 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
1434 {
1435 	struct urtwn_cmd_newstate *cmd = arg;
1436 	struct ieee80211com *ic = &sc->sc_ic;
1437 	struct ieee80211_node *ni;
1438 	enum ieee80211_state ostate = ic->ic_state;
1439 	enum ieee80211_state nstate = cmd->state;
1440 	uint32_t reg;
1441 	uint8_t sifs_time;
1442 	int s;
1443 
1444 	DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n",
1445 	    device_xname(sc->sc_dev), __func__,
1446 	    ieee80211_state_name[ostate], ostate,
1447 	    ieee80211_state_name[nstate], nstate));
1448 
1449 	s = splnet();
1450 
1451 	switch (ostate) {
1452 	case IEEE80211_S_INIT:
1453 		break;
1454 
1455 	case IEEE80211_S_SCAN:
1456 		if (nstate != IEEE80211_S_SCAN) {
1457 			/*
1458 			 * End of scanning
1459 			 */
1460 			/* flush 4-AC Queue after site_survey */
1461 			urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
1462 
1463 			/* Allow Rx from our BSSID only. */
1464 			urtwn_write_4(sc, R92C_RCR,
1465 			    urtwn_read_4(sc, R92C_RCR) |
1466 			      R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1467 		}
1468 		break;
1469 
1470 	case IEEE80211_S_AUTH:
1471 	case IEEE80211_S_ASSOC:
1472 		break;
1473 
1474 	case IEEE80211_S_RUN:
1475 		/* Turn link LED off. */
1476 		urtwn_set_led(sc, URTWN_LED_LINK, 0);
1477 
1478 		/* Set media status to 'No Link'. */
1479 		urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1480 
1481 		/* Stop Rx of data frames. */
1482 		urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1483 
1484 		/* Reset TSF. */
1485 		urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
1486 
1487 		/* Disable TSF synchronization. */
1488 		urtwn_write_1(sc, R92C_BCN_CTRL,
1489 		    urtwn_read_1(sc, R92C_BCN_CTRL) |
1490 		      R92C_BCN_CTRL_DIS_TSF_UDT0);
1491 
1492 		/* Back to 20MHz mode */
1493 		urtwn_set_chan(sc, ic->ic_bss->ni_chan,
1494 		    IEEE80211_HTINFO_2NDCHAN_NONE);
1495 
1496 		if (ic->ic_opmode == IEEE80211_M_IBSS ||
1497 		    ic->ic_opmode == IEEE80211_M_HOSTAP) {
1498 			/* Stop BCN */
1499 			urtwn_write_1(sc, R92C_BCN_CTRL,
1500 			    urtwn_read_1(sc, R92C_BCN_CTRL) &
1501 			    ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
1502 		}
1503 
1504 		/* Reset EDCA parameters. */
1505 		urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
1506 		urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
1507 		urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
1508 		urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
1509 
1510 		/* flush all cam entries */
1511 		urtwn_cam_init(sc);
1512 		break;
1513 	}
1514 
1515 	switch (nstate) {
1516 	case IEEE80211_S_INIT:
1517 		/* Turn link LED off. */
1518 		urtwn_set_led(sc, URTWN_LED_LINK, 0);
1519 		break;
1520 
1521 	case IEEE80211_S_SCAN:
1522 		if (ostate != IEEE80211_S_SCAN) {
1523 			/*
1524 			 * Begin of scanning
1525 			 */
1526 
1527 			/* Set gain for scanning. */
1528 			reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1529 			reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1530 			urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1531 
1532 			reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1533 			reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1534 			urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1535 
1536 			/* Set media status to 'No Link'. */
1537 			urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1538 
1539 			/* Allow Rx from any BSSID. */
1540 			urtwn_write_4(sc, R92C_RCR,
1541 			    urtwn_read_4(sc, R92C_RCR) &
1542 			    ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1543 
1544 			/* Stop Rx of data frames. */
1545 			urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1546 
1547 			/* Disable update TSF */
1548 			urtwn_write_1(sc, R92C_BCN_CTRL,
1549 			    urtwn_read_1(sc, R92C_BCN_CTRL) |
1550 			      R92C_BCN_CTRL_DIS_TSF_UDT0);
1551 		}
1552 
1553 		/* Make link LED blink during scan. */
1554 		urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
1555 
1556 		/* Pause AC Tx queues. */
1557 		urtwn_write_1(sc, R92C_TXPAUSE,
1558 		    urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
1559 
1560 		urtwn_set_chan(sc, ic->ic_curchan,
1561 		    IEEE80211_HTINFO_2NDCHAN_NONE);
1562 
1563 		/* Start periodic scan. */
1564 		if (!sc->sc_dying)
1565 			callout_schedule(&sc->sc_scan_to, hz / 5);
1566 		break;
1567 
1568 	case IEEE80211_S_AUTH:
1569 		/* Set initial gain under link. */
1570 		reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1571 		reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1572 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1573 
1574 		reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1575 		reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1576 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1577 
1578 		/* Set media status to 'No Link'. */
1579 		urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1580 
1581 		/* Allow Rx from any BSSID. */
1582 		urtwn_write_4(sc, R92C_RCR,
1583 		    urtwn_read_4(sc, R92C_RCR) &
1584 		      ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1585 
1586 		urtwn_set_chan(sc, ic->ic_curchan,
1587 		    IEEE80211_HTINFO_2NDCHAN_NONE);
1588 		break;
1589 
1590 	case IEEE80211_S_ASSOC:
1591 		break;
1592 
1593 	case IEEE80211_S_RUN:
1594 		ni = ic->ic_bss;
1595 
1596 		/* XXX: Set 20MHz mode */
1597 		urtwn_set_chan(sc, ic->ic_curchan,
1598 		    IEEE80211_HTINFO_2NDCHAN_NONE);
1599 
1600 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1601 			/* Back to 20MHz mode */
1602 			urtwn_set_chan(sc, ic->ic_ibss_chan,
1603 			    IEEE80211_HTINFO_2NDCHAN_NONE);
1604 
1605 			/* Enable Rx of data frames. */
1606 			urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1607 
1608 			/* Turn link LED on. */
1609 			urtwn_set_led(sc, URTWN_LED_LINK, 1);
1610 			break;
1611 		}
1612 
1613 		/* Set media status to 'Associated'. */
1614 		urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
1615 
1616 		/* Set BSSID. */
1617 		urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
1618 		urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
1619 
1620 		if (ic->ic_curmode == IEEE80211_MODE_11B) {
1621 			urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
1622 		} else {
1623 			/* 802.11b/g */
1624 			urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
1625 		}
1626 
1627 		/* Enable Rx of data frames. */
1628 		urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1629 
1630 		/* Set beacon interval. */
1631 		urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
1632 
1633 		if (ic->ic_opmode == IEEE80211_M_STA) {
1634 			/* Allow Rx from our BSSID only. */
1635 			urtwn_write_4(sc, R92C_RCR,
1636 			    urtwn_read_4(sc, R92C_RCR) |
1637 			      R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1638 
1639 			/* Enable TSF synchronization. */
1640 			urtwn_tsf_sync_enable(sc);
1641 		}
1642 
1643 		sifs_time = 10;
1644 		urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
1645 		urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
1646 		urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
1647 		urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
1648 		urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
1649 		urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
1650 
1651 		/* Intialize rate adaptation. */
1652 		urtwn_ra_init(sc);
1653 
1654 		/* Turn link LED on. */
1655 		urtwn_set_led(sc, URTWN_LED_LINK, 1);
1656 
1657 		/* Reset average RSSI. */
1658 		sc->avg_pwdb = -1;
1659 
1660 		/* Reset temperature calibration state machine. */
1661 		sc->thcal_state = 0;
1662 		sc->thcal_lctemp = 0;
1663 
1664 		/* Start periodic calibration. */
1665 		if (!sc->sc_dying)
1666 			callout_schedule(&sc->sc_calib_to, hz);
1667 		break;
1668 	}
1669 
1670 	(*sc->sc_newstate)(ic, nstate, cmd->arg);
1671 
1672 	splx(s);
1673 }
1674 
1675 static int
1676 urtwn_wme_update(struct ieee80211com *ic)
1677 {
1678 	struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1679 
1680 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1681 
1682 	/* don't override default WME values if WME is not actually enabled */
1683 	if (!(ic->ic_flags & IEEE80211_F_WME))
1684 		return (0);
1685 
1686 	/* Do it in a process context. */
1687 	urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
1688 	return (0);
1689 }
1690 
1691 static void
1692 urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
1693 {
1694 	static const uint16_t ac2reg[WME_NUM_AC] = {
1695 		R92C_EDCA_BE_PARAM,
1696 		R92C_EDCA_BK_PARAM,
1697 		R92C_EDCA_VI_PARAM,
1698 		R92C_EDCA_VO_PARAM
1699 	};
1700 	struct ieee80211com *ic = &sc->sc_ic;
1701 	const struct wmeParams *wmep;
1702 	int ac, aifs, slottime;
1703 	int s;
1704 
1705 	DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev),
1706 	    __func__));
1707 
1708 	s = splnet();
1709 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1710 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1711 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1712 		/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
1713 		aifs = wmep->wmep_aifsn * slottime + 10;
1714 		urtwn_write_4(sc, ac2reg[ac],
1715 		    SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
1716 		    SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
1717 		    SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
1718 		    SM(R92C_EDCA_PARAM_AIFS, aifs));
1719 	}
1720 	splx(s);
1721 }
1722 
1723 static void
1724 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
1725 {
1726 	int pwdb;
1727 
1728 	DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n",
1729 	    device_xname(sc->sc_dev), __func__, rate, rssi));
1730 
1731 	/* Convert antenna signal to percentage. */
1732 	if (rssi <= -100 || rssi >= 20)
1733 		pwdb = 0;
1734 	else if (rssi >= 0)
1735 		pwdb = 100;
1736 	else
1737 		pwdb = 100 + rssi;
1738 	if (rate <= 3) {
1739 		/* CCK gain is smaller than OFDM/MCS gain. */
1740 		pwdb += 6;
1741 		if (pwdb > 100)
1742 			pwdb = 100;
1743 		if (pwdb <= 14)
1744 			pwdb -= 4;
1745 		else if (pwdb <= 26)
1746 			pwdb -= 8;
1747 		else if (pwdb <= 34)
1748 			pwdb -= 6;
1749 		else if (pwdb <= 42)
1750 			pwdb -= 2;
1751 	}
1752 	if (sc->avg_pwdb == -1)	/* Init. */
1753 		sc->avg_pwdb = pwdb;
1754 	else if (sc->avg_pwdb < pwdb)
1755 		sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
1756 	else
1757 		sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
1758 
1759 	DPRINTFN(DBG_RF, ("%s: %s: PWDB=%d EMA=%d\n", device_xname(sc->sc_dev),
1760 	    __func__, pwdb, sc->avg_pwdb));
1761 }
1762 
1763 static int8_t
1764 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1765 {
1766 	static const int8_t cckoff[] = { 16, -12, -26, -46 };
1767 	struct r92c_rx_phystat *phy;
1768 	struct r92c_rx_cck *cck;
1769 	uint8_t rpt;
1770 	int8_t rssi;
1771 
1772 	DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev),
1773 	    __func__, rate));
1774 
1775 	if (rate <= 3) {
1776 		cck = (struct r92c_rx_cck *)physt;
1777 		if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
1778 			rpt = (cck->agc_rpt >> 5) & 0x3;
1779 			rssi = (cck->agc_rpt & 0x1f) << 1;
1780 		} else {
1781 			rpt = (cck->agc_rpt >> 6) & 0x3;
1782 			rssi = cck->agc_rpt & 0x3e;
1783 		}
1784 		rssi = cckoff[rpt] - rssi;
1785 	} else {	/* OFDM/HT. */
1786 		phy = (struct r92c_rx_phystat *)physt;
1787 		rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1788 	}
1789 	return (rssi);
1790 }
1791 
1792 static void
1793 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
1794 {
1795 	struct ieee80211com *ic = &sc->sc_ic;
1796 	struct ifnet *ifp = ic->ic_ifp;
1797 	struct ieee80211_frame *wh;
1798 	struct ieee80211_node *ni;
1799 	struct r92c_rx_stat *stat;
1800 	uint32_t rxdw0, rxdw3;
1801 	struct mbuf *m;
1802 	uint8_t rate;
1803 	int8_t rssi = 0;
1804 	int s, infosz;
1805 
1806 	DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n",
1807 	    device_xname(sc->sc_dev), __func__, buf, pktlen));
1808 
1809 	stat = (struct r92c_rx_stat *)buf;
1810 	rxdw0 = le32toh(stat->rxdw0);
1811 	rxdw3 = le32toh(stat->rxdw3);
1812 
1813 	if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
1814 		/*
1815 		 * This should not happen since we setup our Rx filter
1816 		 * to not receive these frames.
1817 		 */
1818 		DPRINTFN(DBG_RX, ("%s: %s: CRC error\n",
1819 		    device_xname(sc->sc_dev), __func__));
1820 		ifp->if_ierrors++;
1821 		return;
1822 	}
1823 	if (__predict_false(pktlen < (int)sizeof(*wh))) {
1824 		DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n",
1825 		    device_xname(sc->sc_dev), __func__, pktlen));
1826 		ic->ic_stats.is_rx_tooshort++;
1827 		ifp->if_ierrors++;
1828 		return;
1829 	}
1830 	if (__predict_false(pktlen > MCLBYTES)) {
1831 		DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n",
1832 		    device_xname(sc->sc_dev), __func__, pktlen));
1833 		ifp->if_ierrors++;
1834 		return;
1835 	}
1836 
1837 	rate = MS(rxdw3, R92C_RXDW3_RATE);
1838 	infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1839 
1840 	/* Get RSSI from PHY status descriptor if present. */
1841 	if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
1842 		rssi = urtwn_get_rssi(sc, rate, &stat[1]);
1843 		/* Update our average RSSI. */
1844 		urtwn_update_avgrssi(sc, rate, rssi);
1845 	}
1846 
1847 	DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
1848 	    device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi));
1849 
1850 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1851 	if (__predict_false(m == NULL)) {
1852 		aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
1853 		ic->ic_stats.is_rx_nobuf++;
1854 		ifp->if_ierrors++;
1855 		return;
1856 	}
1857 	if (pktlen > (int)MHLEN) {
1858 		MCLGET(m, M_DONTWAIT);
1859 		if (__predict_false(!(m->m_flags & M_EXT))) {
1860 			aprint_error_dev(sc->sc_dev,
1861 			    "couldn't allocate rx mbuf cluster\n");
1862 			m_freem(m);
1863 			ic->ic_stats.is_rx_nobuf++;
1864 			ifp->if_ierrors++;
1865 			return;
1866 		}
1867 	}
1868 
1869 	/* Finalize mbuf. */
1870 	m->m_pkthdr.rcvif = ifp;
1871 	wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
1872 	memcpy(mtod(m, uint8_t *), wh, pktlen);
1873 	m->m_pkthdr.len = m->m_len = pktlen;
1874 
1875 	s = splnet();
1876 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1877 		struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1878 
1879 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1880 		if (!(rxdw3 & R92C_RXDW3_HT)) {
1881 			switch (rate) {
1882 			/* CCK. */
1883 			case  0: tap->wr_rate =   2; break;
1884 			case  1: tap->wr_rate =   4; break;
1885 			case  2: tap->wr_rate =  11; break;
1886 			case  3: tap->wr_rate =  22; break;
1887 			/* OFDM. */
1888 			case  4: tap->wr_rate =  12; break;
1889 			case  5: tap->wr_rate =  18; break;
1890 			case  6: tap->wr_rate =  24; break;
1891 			case  7: tap->wr_rate =  36; break;
1892 			case  8: tap->wr_rate =  48; break;
1893 			case  9: tap->wr_rate =  72; break;
1894 			case 10: tap->wr_rate =  96; break;
1895 			case 11: tap->wr_rate = 108; break;
1896 			}
1897 		} else if (rate >= 12) {	/* MCS0~15. */
1898 			/* Bit 7 set means HT MCS instead of rate. */
1899 			tap->wr_rate = 0x80 | (rate - 12);
1900 		}
1901 		tap->wr_dbm_antsignal = rssi;
1902 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1903 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1904 
1905 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1906 	}
1907 
1908 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1909 
1910 	/* push the frame up to the 802.11 stack */
1911 	ieee80211_input(ic, m, ni, rssi, 0);
1912 
1913 	/* Node is no longer needed. */
1914 	ieee80211_free_node(ni);
1915 
1916 	splx(s);
1917 }
1918 
1919 static void
1920 urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1921 {
1922 	struct urtwn_rx_data *data = priv;
1923 	struct urtwn_softc *sc = data->sc;
1924 	struct r92c_rx_stat *stat;
1925 	uint32_t rxdw0;
1926 	uint8_t *buf;
1927 	int len, totlen, pktlen, infosz, npkts;
1928 
1929 	DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n",
1930 	    device_xname(sc->sc_dev), __func__, status));
1931 
1932 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1933 		if (status == USBD_STALLED)
1934 			usbd_clear_endpoint_stall_async(sc->rx_pipe);
1935 		else if (status != USBD_CANCELLED)
1936 			goto resubmit;
1937 		return;
1938 	}
1939 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1940 
1941 	if (__predict_false(len < (int)sizeof(*stat))) {
1942 		DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n",
1943 		    device_xname(sc->sc_dev), __func__, len));
1944 		goto resubmit;
1945 	}
1946 	buf = data->buf;
1947 
1948 	/* Get the number of encapsulated frames. */
1949 	stat = (struct r92c_rx_stat *)buf;
1950 	npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
1951 	DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n",
1952 	    device_xname(sc->sc_dev), __func__, npkts));
1953 
1954 	/* Process all of them. */
1955 	while (npkts-- > 0) {
1956 		if (__predict_false(len < (int)sizeof(*stat))) {
1957 			DPRINTFN(DBG_RX,
1958 			    ("%s: %s: len(%d) is short than header\n",
1959 			    device_xname(sc->sc_dev), __func__, len));
1960 			break;
1961 		}
1962 		stat = (struct r92c_rx_stat *)buf;
1963 		rxdw0 = le32toh(stat->rxdw0);
1964 
1965 		pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
1966 		if (__predict_false(pktlen == 0)) {
1967 			DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n",
1968 			    device_xname(sc->sc_dev), __func__));
1969 			break;
1970 		}
1971 
1972 		infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1973 
1974 		/* Make sure everything fits in xfer. */
1975 		totlen = sizeof(*stat) + infosz + pktlen;
1976 		if (__predict_false(totlen > len)) {
1977 			DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n",
1978 			    device_xname(sc->sc_dev), __func__, totlen,
1979 			    (int)sizeof(*stat), infosz, pktlen, len));
1980 			break;
1981 		}
1982 
1983 		/* Process 802.11 frame. */
1984 		urtwn_rx_frame(sc, buf, pktlen);
1985 
1986 		/* Next chunk is 128-byte aligned. */
1987 		totlen = roundup2(totlen, 128);
1988 		buf += totlen;
1989 		len -= totlen;
1990 	}
1991 
1992  resubmit:
1993 	/* Setup a new transfer. */
1994 	usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
1995 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
1996 	(void)usbd_transfer(xfer);
1997 }
1998 
1999 static void
2000 urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2001 {
2002 	struct urtwn_tx_data *data = priv;
2003 	struct urtwn_softc *sc = data->sc;
2004 	struct ifnet *ifp = &sc->sc_if;
2005 	int s;
2006 
2007 	DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n",
2008 	    device_xname(sc->sc_dev), __func__, status));
2009 
2010 	mutex_enter(&sc->sc_tx_mtx);
2011 	/* Put this Tx buffer back to our free list. */
2012 	TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2013 	mutex_exit(&sc->sc_tx_mtx);
2014 
2015 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2016 		if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
2017 			if (status == USBD_STALLED)
2018 				usbd_clear_endpoint_stall_async(data->pipe);
2019 			ifp->if_oerrors++;
2020 		}
2021 		return;
2022 	}
2023 
2024 	ifp->if_opackets++;
2025 
2026 	s = splnet();
2027 	sc->tx_timer = 0;
2028 	ifp->if_flags &= ~IFF_OACTIVE;
2029 	splx(s);
2030 
2031 	urtwn_start(ifp);
2032 }
2033 
2034 static int
2035 urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2036 {
2037 	struct ieee80211com *ic = &sc->sc_ic;
2038 	struct ieee80211_frame *wh;
2039 	struct ieee80211_key *k = NULL;
2040 	struct urtwn_tx_data *data;
2041 	struct r92c_tx_desc *txd;
2042 	usbd_pipe_handle pipe;
2043 	uint16_t seq, sum;
2044 	uint8_t raid, type, tid, qid;
2045 	int i, s, hasqos, xferlen, padsize, error;
2046 
2047 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2048 
2049 	wh = mtod(m, struct ieee80211_frame *);
2050 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2051 
2052 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2053 		k = ieee80211_crypto_encap(ic, ni, m);
2054 		if (k == NULL) {
2055 			m_freem(m);
2056 			return (ENOBUFS);
2057 		}
2058 		/* packet header may have moved, reset our local pointer */
2059 		wh = mtod(m, struct ieee80211_frame *);
2060 	}
2061 
2062 	if (__predict_false(sc->sc_drvbpf != NULL)) {
2063 		struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
2064 
2065 		tap->wt_flags = 0;
2066 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
2067 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
2068 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2069 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2070 
2071 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2072 	}
2073 
2074 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2075 		/* data frames in 11n mode */
2076 		struct ieee80211_qosframe *qwh = (void *)wh;
2077 		tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
2078 		qid = TID_TO_WME_AC(tid);
2079 	} else if (type != IEEE80211_FC0_TYPE_DATA) {
2080 		/* Use AC_VO for management frames. */
2081 		qid = WME_AC_VO;
2082 		tid = 0;	/* compiler happy */
2083 	} else {
2084 		/* non-qos data frames */
2085 		tid = R92C_TXDW1_QSEL_BE;
2086 		qid = WME_AC_BE;
2087 	}
2088 
2089 	/* Get the USB pipe to use for this AC. */
2090 	pipe = sc->tx_pipe[sc->ac2idx[qid]];
2091 
2092 	/* Grab a Tx buffer from our free list. */
2093 	mutex_enter(&sc->sc_tx_mtx);
2094 	data = TAILQ_FIRST(&sc->tx_free_list);
2095 	TAILQ_REMOVE(&sc->tx_free_list, data, next);
2096 	mutex_exit(&sc->sc_tx_mtx);
2097 
2098 	if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
2099 		padsize = 8;
2100 	else
2101 		padsize = 0;
2102 
2103 	/* Fill Tx descriptor. */
2104 	txd = (struct r92c_tx_desc *)data->buf;
2105 	memset(txd, 0, sizeof(*txd) + padsize);
2106 
2107 	txd->txdw0 |= htole32(
2108 	    SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
2109 	    SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
2110 	    R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
2111 
2112 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2113 		txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
2114 
2115 	/* fix pad field */
2116 	if (padsize > 0) {
2117 		DPRINTFN(DBG_TX, ("%s: %s: padding: size=%d\n",
2118 		    device_xname(sc->sc_dev), __func__, padsize));
2119 		txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
2120 	}
2121 
2122 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2123 	    type == IEEE80211_FC0_TYPE_DATA) {
2124 		if (ic->ic_curmode == IEEE80211_MODE_11B)
2125 			raid = R92C_RAID_11B;
2126 		else
2127 			raid = R92C_RAID_11BG;
2128 		DPRINTFN(DBG_TX,
2129 		    ("%s: %s: data packet: tid=%d, raid=%d\n",
2130 		    device_xname(sc->sc_dev), __func__, tid, raid));
2131 
2132 		txd->txdw1 |= htole32(
2133 		    SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2134 		    SM(R92C_TXDW1_QSEL, tid) |
2135 		    SM(R92C_TXDW1_RAID, raid) |
2136 		    R92C_TXDW1_AGGBK);
2137 
2138 		if (hasqos) {
2139 			txd->txdw4 |= htole32(R92C_TXDW4_QOS);
2140 		}
2141 
2142 		if (ic->ic_flags & IEEE80211_F_USEPROT) {
2143 			/* for 11g */
2144 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
2145 				txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
2146 				    R92C_TXDW4_HWRTSEN);
2147 			} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
2148 				txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
2149 				    R92C_TXDW4_HWRTSEN);
2150 			}
2151 		}
2152 		/* Send RTS at OFDM24. */
2153 		txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
2154 		txd->txdw5 |= htole32(0x0001ff00);
2155 		/* Send data at OFDM54. */
2156 		txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
2157 	} else if (type == IEEE80211_FC0_TYPE_MGT) {
2158 		DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n",
2159 		    device_xname(sc->sc_dev), __func__));
2160 		txd->txdw1 |= htole32(
2161 		    SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2162 		    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
2163 		    SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2164 
2165 		/* Force CCK1. */
2166 		txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2167 		/* Use 1Mbps */
2168 		txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2169 	} else {
2170 		/* broadcast or multicast packets */
2171 		DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n",
2172 		    device_xname(sc->sc_dev), __func__));
2173 		txd->txdw1 |= htole32(
2174 		    SM(R92C_TXDW1_MACID, URTWN_MACID_BC) |
2175 		    SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2176 
2177 		/* Force CCK1. */
2178 		txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2179 		/* Use 1Mbps */
2180 		txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2181 	}
2182 
2183 	/* Set sequence number */
2184 	seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
2185 	txd->txdseq |= htole16(seq);
2186 
2187 	if (!hasqos) {
2188 		/* Use HW sequence numbering for non-QoS frames. */
2189 		txd->txdw4  |= htole32(R92C_TXDW4_HWSEQ);
2190 		txd->txdseq |= htole16(0x8000);		/* WTF? */
2191 	}
2192 
2193 	/* Compute Tx descriptor checksum. */
2194 	sum = 0;
2195 	for (i = 0; i < (int)sizeof(*txd) / 2; i++)
2196 		sum ^= ((uint16_t *)txd)[i];
2197 	txd->txdsum = sum;	/* NB: already little endian. */
2198 
2199 	xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize;
2200 	m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize);
2201 	m_freem(m);
2202 
2203 	s = splnet();
2204 	data->pipe = pipe;
2205 	usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
2206 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
2207 	    urtwn_txeof);
2208 	error = usbd_transfer(data->xfer);
2209 	if (__predict_false(error != USBD_NORMAL_COMPLETION &&
2210 	    error != USBD_IN_PROGRESS)) {
2211 		splx(s);
2212 		DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n",
2213 		    device_xname(sc->sc_dev), __func__, error));
2214 		mutex_enter(&sc->sc_tx_mtx);
2215 		/* Put this Tx buffer back to our free list. */
2216 		TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2217 		mutex_exit(&sc->sc_tx_mtx);
2218 		return (error);
2219 	}
2220 	splx(s);
2221 	ieee80211_free_node(ni);
2222 	return (0);
2223 }
2224 
2225 static void
2226 urtwn_start(struct ifnet *ifp)
2227 {
2228 	struct urtwn_softc *sc = ifp->if_softc;
2229 	struct ieee80211com *ic = &sc->sc_ic;
2230 	struct ether_header *eh;
2231 	struct ieee80211_node *ni;
2232 	struct mbuf *m;
2233 
2234 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2235 
2236 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2237 		return;
2238 
2239 	for (;;) {
2240 		mutex_enter(&sc->sc_tx_mtx);
2241 		if (TAILQ_EMPTY(&sc->tx_free_list)) {
2242 			mutex_exit(&sc->sc_tx_mtx);
2243 			ifp->if_flags |= IFF_OACTIVE;
2244 			break;
2245 		}
2246 		mutex_exit(&sc->sc_tx_mtx);
2247 
2248 		/* Send pending management frames first. */
2249 		IF_DEQUEUE(&ic->ic_mgtq, m);
2250 		if (m != NULL) {
2251 			ni = (void *)m->m_pkthdr.rcvif;
2252 			m->m_pkthdr.rcvif = NULL;
2253 			goto sendit;
2254 		}
2255 		if (ic->ic_state != IEEE80211_S_RUN)
2256 			break;
2257 
2258 		/* Encapsulate and send data frames. */
2259 		IFQ_DEQUEUE(&ifp->if_snd, m);
2260 		if (m == NULL)
2261 			break;
2262 		if (m->m_len < (int)sizeof(*eh) &&
2263 		    (m = m_pullup(m, sizeof(*eh))) == NULL) {
2264 			ifp->if_oerrors++;
2265 			continue;
2266 		}
2267 		eh = mtod(m, struct ether_header *);
2268 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2269 		if (ni == NULL) {
2270 			m_freem(m);
2271 			ifp->if_oerrors++;
2272 			continue;
2273 		}
2274 
2275 		bpf_mtap(ifp, m);
2276 
2277 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
2278 			ieee80211_free_node(ni);
2279 			ifp->if_oerrors++;
2280 			continue;
2281 		}
2282  sendit:
2283 		bpf_mtap3(ic->ic_rawbpf, m);
2284 
2285 		if (urtwn_tx(sc, m, ni) != 0) {
2286 			ieee80211_free_node(ni);
2287 			ifp->if_oerrors++;
2288 			continue;
2289 		}
2290 
2291 		sc->tx_timer = 5;
2292 		ifp->if_timer = 1;
2293 	}
2294 }
2295 
2296 static void
2297 urtwn_watchdog(struct ifnet *ifp)
2298 {
2299 	struct urtwn_softc *sc = ifp->if_softc;
2300 
2301 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2302 
2303 	ifp->if_timer = 0;
2304 
2305 	if (sc->tx_timer > 0) {
2306 		if (--sc->tx_timer == 0) {
2307 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2308 			/* urtwn_init(ifp); XXX needs a process context! */
2309 			ifp->if_oerrors++;
2310 			return;
2311 		}
2312 		ifp->if_timer = 1;
2313 	}
2314 	ieee80211_watchdog(&sc->sc_ic);
2315 }
2316 
2317 static int
2318 urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2319 {
2320 	struct urtwn_softc *sc = ifp->if_softc;
2321 	struct ieee80211com *ic = &sc->sc_ic;
2322 	struct ifaddr *ifa;
2323 	int s, error = 0;
2324 
2325 	DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n",
2326 	    device_xname(sc->sc_dev), __func__, cmd, data));
2327 
2328 	s = splnet();
2329 
2330 	switch (cmd) {
2331 	case SIOCSIFADDR:
2332 		ifa = (struct ifaddr *)data;
2333 		ifp->if_flags |= IFF_UP;
2334 #ifdef INET
2335 		if (ifa->ifa_addr->sa_family == AF_INET)
2336 			arp_ifinit(&ic->ic_ac, ifa);
2337 #endif
2338 		/*FALLTHROUGH*/
2339 	case SIOCSIFFLAGS:
2340 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2341 			break;
2342 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2343 		case IFF_UP|IFF_RUNNING:
2344 			break;
2345 		case IFF_UP:
2346 			urtwn_init(ifp);
2347 			break;
2348 		case IFF_RUNNING:
2349 			urtwn_stop(ifp, 1);
2350 			break;
2351 		case 0:
2352 			break;
2353 		}
2354 		break;
2355 
2356 	case SIOCADDMULTI:
2357 	case SIOCDELMULTI:
2358 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2359 			/* setup multicast filter, etc */
2360 			error = 0;
2361 		}
2362 		break;
2363 
2364 	case SIOCS80211CHANNEL:
2365 		error = ieee80211_ioctl(ic, cmd, data);
2366 		if (error == ENETRESET &&
2367 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2368 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2369 			    (IFF_UP | IFF_RUNNING)) {
2370 				urtwn_set_chan(sc, ic->ic_ibss_chan,
2371 				    IEEE80211_HTINFO_2NDCHAN_NONE);
2372 			}
2373 			error = 0;
2374 		}
2375 		break;
2376 
2377 	default:
2378 		error = ieee80211_ioctl(ic, cmd, data);
2379 		break;
2380 	}
2381 	if (error == ENETRESET) {
2382 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2383 		    (IFF_UP | IFF_RUNNING)) {
2384 			urtwn_init(ifp);
2385 		}
2386 		error = 0;
2387 	}
2388 
2389 	splx(s);
2390 
2391 	return (error);
2392 }
2393 
2394 static int
2395 urtwn_power_on(struct urtwn_softc *sc)
2396 {
2397 	uint32_t reg;
2398 	int ntries;
2399 
2400 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2401 
2402 	/* Wait for autoload done bit. */
2403 	for (ntries = 0; ntries < 1000; ntries++) {
2404 		if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
2405 			break;
2406 		DELAY(5);
2407 	}
2408 	if (ntries == 1000) {
2409 		aprint_error_dev(sc->sc_dev,
2410 		    "timeout waiting for chip autoload\n");
2411 		return (ETIMEDOUT);
2412 	}
2413 
2414 	/* Unlock ISO/CLK/Power control register. */
2415 	urtwn_write_1(sc, R92C_RSV_CTRL, 0);
2416 	/* Move SPS into PWM mode. */
2417 	urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
2418 	DELAY(100);
2419 
2420 	reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
2421 	if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
2422 		urtwn_write_1(sc, R92C_LDOV12D_CTRL,
2423 		    reg | R92C_LDOV12D_CTRL_LDV12_EN);
2424 		DELAY(100);
2425 		urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
2426 		    urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
2427 		    ~R92C_SYS_ISO_CTRL_MD2PP);
2428 	}
2429 
2430 	/* Auto enable WLAN. */
2431 	urtwn_write_2(sc, R92C_APS_FSMCO,
2432 	    urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
2433 	for (ntries = 0; ntries < 1000; ntries++) {
2434 		if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
2435 		    R92C_APS_FSMCO_APFM_ONMAC))
2436 			break;
2437 		DELAY(5);
2438 	}
2439 	if (ntries == 1000) {
2440 		aprint_error_dev(sc->sc_dev,
2441 		    "timeout waiting for MAC auto ON\n");
2442 		return (ETIMEDOUT);
2443 	}
2444 
2445 	/* Enable radio, GPIO and LED functions. */
2446 	KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
2447 	    R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
2448 	urtwn_write_2(sc, R92C_APS_FSMCO,
2449 	    R92C_APS_FSMCO_AFSM_HSUS |
2450 	    R92C_APS_FSMCO_PDN_EN |
2451 	    R92C_APS_FSMCO_PFM_ALDN);
2452 
2453 	/* Release RF digital isolation. */
2454 	urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
2455 	    urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
2456 
2457 	/* Initialize MAC. */
2458 	urtwn_write_1(sc, R92C_APSD_CTRL,
2459 	    urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
2460 	for (ntries = 0; ntries < 200; ntries++) {
2461 		if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
2462 		    R92C_APSD_CTRL_OFF_STATUS))
2463 			break;
2464 		DELAY(5);
2465 	}
2466 	if (ntries == 200) {
2467 		aprint_error_dev(sc->sc_dev,
2468 		    "timeout waiting for MAC initialization\n");
2469 		return (ETIMEDOUT);
2470 	}
2471 
2472 	/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2473 	reg = urtwn_read_2(sc, R92C_CR);
2474 	reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2475 	    R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2476 	    R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
2477 	    R92C_CR_ENSEC;
2478 	urtwn_write_2(sc, R92C_CR, reg);
2479 
2480 	urtwn_write_1(sc, 0xfe10, 0x19);
2481 	return (0);
2482 }
2483 
2484 static int
2485 urtwn_llt_init(struct urtwn_softc *sc)
2486 {
2487 	int i, error;
2488 
2489 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2490 
2491 	/* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
2492 	for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
2493 		if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2494 			return (error);
2495 	}
2496 	/* NB: 0xff indicates end-of-list. */
2497 	if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
2498 		return (error);
2499 	/*
2500 	 * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
2501 	 * as ring buffer.
2502 	 */
2503 	for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
2504 		if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2505 			return (error);
2506 	}
2507 	/* Make the last page point to the beginning of the ring buffer. */
2508 	error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
2509 	return (error);
2510 }
2511 
2512 static void
2513 urtwn_fw_reset(struct urtwn_softc *sc)
2514 {
2515 	uint16_t reg;
2516 	int ntries;
2517 
2518 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2519 
2520 	/* Tell 8051 to reset itself. */
2521 	urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
2522 
2523 	/* Wait until 8051 resets by itself. */
2524 	for (ntries = 0; ntries < 100; ntries++) {
2525 		reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2526 		if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
2527 			return;
2528 		DELAY(50);
2529 	}
2530 	/* Force 8051 reset. */
2531 	urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2532 }
2533 
2534 static int
2535 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
2536 {
2537 	uint32_t reg;
2538 	int off, mlen, error = 0;
2539 
2540 	DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n",
2541 	    device_xname(sc->sc_dev), __func__, page, buf, len));
2542 
2543 	reg = urtwn_read_4(sc, R92C_MCUFWDL);
2544 	reg = RW(reg, R92C_MCUFWDL_PAGE, page);
2545 	urtwn_write_4(sc, R92C_MCUFWDL, reg);
2546 
2547 	off = R92C_FW_START_ADDR;
2548 	while (len > 0) {
2549 		if (len > 196)
2550 			mlen = 196;
2551 		else if (len > 4)
2552 			mlen = 4;
2553 		else
2554 			mlen = 1;
2555 		error = urtwn_write_region(sc, off, buf, mlen);
2556 		if (error != 0)
2557 			break;
2558 		off += mlen;
2559 		buf += mlen;
2560 		len -= mlen;
2561 	}
2562 	return (error);
2563 }
2564 
2565 static int
2566 urtwn_load_firmware(struct urtwn_softc *sc)
2567 {
2568 	firmware_handle_t fwh;
2569 	const struct r92c_fw_hdr *hdr;
2570 	const char *name;
2571 	u_char *fw, *ptr;
2572 	size_t len;
2573 	uint32_t reg;
2574 	int mlen, ntries, page, error;
2575 
2576 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2577 
2578 	/* Read firmware image from the filesystem. */
2579 	if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2580 	    URTWN_CHIP_UMC_A_CUT)
2581 		name = "urtwn-rtl8192cfwU";
2582 	else
2583 		name = "urtwn-rtl8192cfwT";
2584 	if ((error = firmware_open("urtwn", name, &fwh)) != 0) {
2585 		aprint_error_dev(sc->sc_dev,
2586 		    "failed loadfirmware of file %s (error %d)\n", name, error);
2587 		return (error);
2588 	}
2589 	len = firmware_get_size(fwh);
2590 	fw = firmware_malloc(len);
2591 	if (fw == NULL) {
2592 		aprint_error_dev(sc->sc_dev,
2593 		    "failed to allocate firmware memory\n");
2594 		firmware_close(fwh);
2595 		return (ENOMEM);
2596 	}
2597 	error = firmware_read(fwh, 0, fw, len);
2598 	firmware_close(fwh);
2599 	if (error != 0) {
2600 		aprint_error_dev(sc->sc_dev,
2601 		    "failed to read firmware (error %d)\n", error);
2602 		firmware_free(fw, 0);
2603 		return (error);
2604 	}
2605 
2606 	ptr = fw;
2607 	hdr = (const struct r92c_fw_hdr *)ptr;
2608 	/* Check if there is a valid FW header and skip it. */
2609 	if ((le16toh(hdr->signature) >> 4) == 0x88c ||
2610 	    (le16toh(hdr->signature) >> 4) == 0x92c) {
2611 		DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n",
2612 		    device_xname(sc->sc_dev), __func__,
2613 		    le16toh(hdr->version), le16toh(hdr->subversion),
2614 		    hdr->month, hdr->date, hdr->hour, hdr->minute));
2615 		ptr += sizeof(*hdr);
2616 		len -= sizeof(*hdr);
2617 	}
2618 
2619 	if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
2620 		urtwn_fw_reset(sc);
2621 		urtwn_write_1(sc, R92C_MCUFWDL, 0);
2622 	}
2623 
2624 	/* download enabled */
2625 	urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2626 	    urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2627 	    R92C_SYS_FUNC_EN_CPUEN);
2628 	urtwn_write_1(sc, R92C_MCUFWDL,
2629 	    urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
2630 	urtwn_write_1(sc, R92C_MCUFWDL + 2,
2631 	    urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
2632 
2633 	/* download firmware */
2634 	for (page = 0; len > 0; page++) {
2635 		mlen = MIN(len, R92C_FW_PAGE_SIZE);
2636 		error = urtwn_fw_loadpage(sc, page, ptr, mlen);
2637 		if (error != 0) {
2638 			aprint_error_dev(sc->sc_dev,
2639 			    "could not load firmware page %d\n", page);
2640 			goto fail;
2641 		}
2642 		ptr += mlen;
2643 		len -= mlen;
2644 	}
2645 
2646 	/* download disable */
2647 	urtwn_write_1(sc, R92C_MCUFWDL,
2648 	    urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
2649 	urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
2650 
2651 	/* Wait for checksum report. */
2652 	for (ntries = 0; ntries < 1000; ntries++) {
2653 		if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
2654 			break;
2655 		DELAY(5);
2656 	}
2657 	if (ntries == 1000) {
2658 		aprint_error_dev(sc->sc_dev,
2659 		    "timeout waiting for checksum report\n");
2660 		error = ETIMEDOUT;
2661 		goto fail;
2662 	}
2663 
2664 	/* Wait for firmware readiness. */
2665 	reg = urtwn_read_4(sc, R92C_MCUFWDL);
2666 	reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
2667 	urtwn_write_4(sc, R92C_MCUFWDL, reg);
2668 	for (ntries = 0; ntries < 1000; ntries++) {
2669 		if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
2670 			break;
2671 		DELAY(5);
2672 	}
2673 	if (ntries == 1000) {
2674 		aprint_error_dev(sc->sc_dev,
2675 		    "timeout waiting for firmware readiness\n");
2676 		error = ETIMEDOUT;
2677 		goto fail;
2678 	}
2679  fail:
2680 	firmware_free(fw, 0);
2681 	return (error);
2682 }
2683 
2684 static int
2685 urtwn_dma_init(struct urtwn_softc *sc)
2686 {
2687 	int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
2688 	uint32_t reg;
2689 	int error;
2690 
2691 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2692 
2693 	/* Initialize LLT table. */
2694 	error = urtwn_llt_init(sc);
2695 	if (error != 0)
2696 		return (error);
2697 
2698 	/* Get Tx queues to USB endpoints mapping. */
2699 	hashq = hasnq = haslq = 0;
2700 	reg = urtwn_read_2(sc, R92C_USB_EP + 1);
2701 	DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n",
2702 	    device_xname(sc->sc_dev), __func__, reg));
2703 	if (MS(reg, R92C_USB_EP_HQ) != 0)
2704 		hashq = 1;
2705 	if (MS(reg, R92C_USB_EP_NQ) != 0)
2706 		hasnq = 1;
2707 	if (MS(reg, R92C_USB_EP_LQ) != 0)
2708 		haslq = 1;
2709 	nqueues = hashq + hasnq + haslq;
2710 	if (nqueues == 0)
2711 		return (EIO);
2712 	/* Get the number of pages for each queue. */
2713 	nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
2714 	/* The remaining pages are assigned to the high priority queue. */
2715 	nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
2716 
2717 	/* Set number of pages for normal priority queue. */
2718 	urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
2719 	urtwn_write_4(sc, R92C_RQPN,
2720 	    /* Set number of pages for public queue. */
2721 	    SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
2722 	    /* Set number of pages for high priority queue. */
2723 	    SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
2724 	    /* Set number of pages for low priority queue. */
2725 	    SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
2726 	    /* Load values. */
2727 	    R92C_RQPN_LD);
2728 
2729 	urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2730 	urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2731 	urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
2732 	urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
2733 	urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
2734 
2735 	/* Set queue to USB pipe mapping. */
2736 	reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2737 	reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2738 	if (nqueues == 1) {
2739 		if (hashq) {
2740 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
2741 		} else if (hasnq) {
2742 			reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
2743 		} else {
2744 			reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2745 		}
2746 	} else if (nqueues == 2) {
2747 		/* All 2-endpoints configs have a high priority queue. */
2748 		if (!hashq) {
2749 			return (EIO);
2750 		}
2751 		if (hasnq) {
2752 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2753 		} else {
2754 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
2755 		}
2756 	} else {
2757 		reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2758 	}
2759 	urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2760 
2761 	/* Set Tx/Rx transfer page boundary. */
2762 	urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
2763 
2764 	/* Set Tx/Rx transfer page size. */
2765 	urtwn_write_1(sc, R92C_PBP,
2766 	    SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
2767 	return (0);
2768 }
2769 
2770 static void
2771 urtwn_mac_init(struct urtwn_softc *sc)
2772 {
2773 	int i;
2774 
2775 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2776 
2777 	/* Write MAC initialization values. */
2778 	for (i = 0; i < (int)__arraycount(rtl8192cu_mac); i++)
2779 		urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
2780 }
2781 
2782 static void
2783 urtwn_bb_init(struct urtwn_softc *sc)
2784 {
2785 	const struct urtwn_bb_prog *prog;
2786 	uint32_t reg;
2787 	int i;
2788 
2789 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2790 
2791 	/* Enable BB and RF. */
2792 	urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2793 	    urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2794 	    R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
2795 	    R92C_SYS_FUNC_EN_DIO_RF);
2796 
2797 	urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
2798 	urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
2799 
2800 	urtwn_write_1(sc, R92C_RF_CTRL,
2801 	    R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
2802 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2803 	    R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
2804 	    R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
2805 
2806 	urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
2807 	urtwn_write_1(sc, 0x15, 0xe9);
2808 	urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
2809 
2810 	/* Select BB programming based on board type. */
2811 	if (!(sc->chip & URTWN_CHIP_92C)) {
2812 		if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2813 			prog = &rtl8188ce_bb_prog;
2814 		} else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2815 			prog = &rtl8188ru_bb_prog;
2816 		} else {
2817 			prog = &rtl8188cu_bb_prog;
2818 		}
2819 	} else {
2820 		if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2821 			prog = &rtl8192ce_bb_prog;
2822 		} else {
2823 			prog = &rtl8192cu_bb_prog;
2824 		}
2825 	}
2826 	/* Write BB initialization values. */
2827 	for (i = 0; i < prog->count; i++) {
2828 		/* additional delay depend on registers */
2829 		switch (prog->regs[i]) {
2830 		case 0xfe:
2831 			usbd_delay_ms(sc->sc_udev, 50);
2832 			break;
2833 		case 0xfd:
2834 			usbd_delay_ms(sc->sc_udev, 5);
2835 			break;
2836 		case 0xfc:
2837 			usbd_delay_ms(sc->sc_udev, 1);
2838 			break;
2839 		case 0xfb:
2840 			DELAY(50);
2841 			break;
2842 		case 0xfa:
2843 			DELAY(5);
2844 			break;
2845 		case 0xf9:
2846 			DELAY(1);
2847 			break;
2848 		}
2849 		urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
2850 		DELAY(1);
2851 	}
2852 
2853 	if (sc->chip & URTWN_CHIP_92C_1T2R) {
2854 		/* 8192C 1T only configuration. */
2855 		reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
2856 		reg = (reg & ~0x00000003) | 0x2;
2857 		urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
2858 
2859 		reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
2860 		reg = (reg & ~0x00300033) | 0x00200022;
2861 		urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
2862 
2863 		reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
2864 		reg = (reg & ~0xff000000) | (0x45 << 24);
2865 		urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
2866 
2867 		reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
2868 		reg = (reg & ~0x000000ff) | 0x23;
2869 		urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
2870 
2871 		reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
2872 		reg = (reg & ~0x00000030) | (1 << 4);
2873 		urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
2874 
2875 		reg = urtwn_bb_read(sc, 0xe74);
2876 		reg = (reg & ~0x0c000000) | (2 << 26);
2877 		urtwn_bb_write(sc, 0xe74, reg);
2878 		reg = urtwn_bb_read(sc, 0xe78);
2879 		reg = (reg & ~0x0c000000) | (2 << 26);
2880 		urtwn_bb_write(sc, 0xe78, reg);
2881 		reg = urtwn_bb_read(sc, 0xe7c);
2882 		reg = (reg & ~0x0c000000) | (2 << 26);
2883 		urtwn_bb_write(sc, 0xe7c, reg);
2884 		reg = urtwn_bb_read(sc, 0xe80);
2885 		reg = (reg & ~0x0c000000) | (2 << 26);
2886 		urtwn_bb_write(sc, 0xe80, reg);
2887 		reg = urtwn_bb_read(sc, 0xe88);
2888 		reg = (reg & ~0x0c000000) | (2 << 26);
2889 		urtwn_bb_write(sc, 0xe88, reg);
2890 	}
2891 
2892 	/* Write AGC values. */
2893 	for (i = 0; i < prog->agccount; i++) {
2894 		urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
2895 		DELAY(1);
2896 	}
2897 
2898 	if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
2899 	    R92C_HSSI_PARAM2_CCK_HIPWR) {
2900 		SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
2901 	}
2902 }
2903 
2904 static void
2905 urtwn_rf_init(struct urtwn_softc *sc)
2906 {
2907 	const struct urtwn_rf_prog *prog;
2908 	uint32_t reg, mask, saved;
2909 	int i, j, idx;
2910 
2911 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2912 
2913 	/* Select RF programming based on board type. */
2914 	if (!(sc->chip & URTWN_CHIP_92C)) {
2915 		if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2916 			prog = rtl8188ce_rf_prog;
2917 		} else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2918 			prog = rtl8188ru_rf_prog;
2919 		} else {
2920 			prog = rtl8188cu_rf_prog;
2921 		}
2922 	} else {
2923 		prog = rtl8192ce_rf_prog;
2924 	}
2925 
2926 	for (i = 0; i < sc->nrxchains; i++) {
2927 		/* Save RF_ENV control type. */
2928 		idx = i / 2;
2929 		mask = 0xffffU << ((i % 2) * 16);
2930 		saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
2931 
2932 		/* Set RF_ENV enable. */
2933 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2934 		reg |= 0x100000;
2935 		urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2936 		DELAY(1);
2937 
2938 		/* Set RF_ENV output high. */
2939 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2940 		reg |= 0x10;
2941 		urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2942 		DELAY(1);
2943 
2944 		/* Set address and data lengths of RF registers. */
2945 		reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2946 		reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
2947 		urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2948 		DELAY(1);
2949 		reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2950 		reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
2951 		urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2952 		DELAY(1);
2953 
2954 		/* Write RF initialization values for this chain. */
2955 		for (j = 0; j < prog[i].count; j++) {
2956 			if (prog[i].regs[j] >= 0xf9 &&
2957 			    prog[i].regs[j] <= 0xfe) {
2958 				/*
2959 				 * These are fake RF registers offsets that
2960 				 * indicate a delay is required.
2961 				 */
2962 				usbd_delay_ms(sc->sc_udev, 50);
2963 				continue;
2964 			}
2965 			urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
2966 			DELAY(1);
2967 		}
2968 
2969 		/* Restore RF_ENV control type. */
2970 		reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
2971 		urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
2972 	}
2973 
2974 	if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2975 	    URTWN_CHIP_UMC_A_CUT) {
2976 		urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
2977 		urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
2978 	}
2979 
2980 	/* Cache RF register CHNLBW. */
2981 	for (i = 0; i < 2; i++) {
2982 		sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
2983 	}
2984 }
2985 
2986 static void
2987 urtwn_cam_init(struct urtwn_softc *sc)
2988 {
2989 	uint32_t content, command;
2990 	uint8_t idx;
2991 	int i;
2992 
2993 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2994 
2995 	for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
2996 		content = (idx & 3)
2997 		    | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
2998 		    | R92C_CAM_VALID;
2999 
3000 		command = R92C_CAMCMD_POLLING
3001 		    | R92C_CAMCMD_WRITE
3002 		    | R92C_CAM_CTL0(idx);
3003 
3004 		urtwn_write_4(sc, R92C_CAMWRITE, content);
3005 		urtwn_write_4(sc, R92C_CAMCMD, command);
3006 	}
3007 
3008 	for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3009 		for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
3010 			if (i == 0) {
3011 				content = (idx & 3)
3012 				    | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3013 				    | R92C_CAM_VALID;
3014 			} else {
3015 				content = 0;
3016 			}
3017 
3018 			command = R92C_CAMCMD_POLLING
3019 			    | R92C_CAMCMD_WRITE
3020 			    | R92C_CAM_CTL0(idx)
3021 			    | (u_int)i;
3022 
3023 			urtwn_write_4(sc, R92C_CAMWRITE, content);
3024 			urtwn_write_4(sc, R92C_CAMCMD, command);
3025 		}
3026 	}
3027 
3028 	/* Invalidate all CAM entries. */
3029 	urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
3030 }
3031 
3032 static void
3033 urtwn_pa_bias_init(struct urtwn_softc *sc)
3034 {
3035 	uint8_t reg;
3036 	int i;
3037 
3038 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3039 
3040 	for (i = 0; i < sc->nrxchains; i++) {
3041 		if (sc->pa_setting & (1U << i))
3042 			continue;
3043 
3044 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
3045 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
3046 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
3047 		urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
3048 	}
3049 	if (!(sc->pa_setting & 0x10)) {
3050 		reg = urtwn_read_1(sc, 0x16);
3051 		reg = (reg & ~0xf0) | 0x90;
3052 		urtwn_write_1(sc, 0x16, reg);
3053 	}
3054 }
3055 
3056 static void
3057 urtwn_rxfilter_init(struct urtwn_softc *sc)
3058 {
3059 
3060 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3061 
3062 	/* Initialize Rx filter. */
3063 	/* TODO: use better filter for monitor mode. */
3064 	urtwn_write_4(sc, R92C_RCR,
3065 	    R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
3066 	    R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
3067 	    R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
3068 	/* Accept all multicast frames. */
3069 	urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
3070 	urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
3071 	/* Accept all management frames. */
3072 	urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
3073 	/* Reject all control frames. */
3074 	urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
3075 	/* Accept all data frames. */
3076 	urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
3077 }
3078 
3079 static void
3080 urtwn_edca_init(struct urtwn_softc *sc)
3081 {
3082 
3083 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3084 
3085 	/* set spec SIFS (used in NAV) */
3086 	urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
3087 	urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
3088 
3089 	/* set SIFS CCK/OFDM */
3090 	urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
3091 	urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
3092 
3093 	/* TXOP */
3094 	urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
3095 	urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
3096 	urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
3097 	urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
3098 }
3099 
3100 static void
3101 urtwn_write_txpower(struct urtwn_softc *sc, int chain,
3102     uint16_t power[URTWN_RIDX_COUNT])
3103 {
3104 	uint32_t reg;
3105 
3106 	DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev),
3107 	    __func__, chain));
3108 
3109 	/* Write per-CCK rate Tx power. */
3110 	if (chain == 0) {
3111 		reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
3112 		reg = RW(reg, R92C_TXAGC_A_CCK1,  power[0]);
3113 		urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
3114 
3115 		reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3116 		reg = RW(reg, R92C_TXAGC_A_CCK2,  power[1]);
3117 		reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
3118 		reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
3119 		urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3120 	} else {
3121 		reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
3122 		reg = RW(reg, R92C_TXAGC_B_CCK1,  power[0]);
3123 		reg = RW(reg, R92C_TXAGC_B_CCK2,  power[1]);
3124 		reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
3125 		urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
3126 
3127 		reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3128 		reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
3129 		urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3130 	}
3131 	/* Write per-OFDM rate Tx power. */
3132 	urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
3133 	    SM(R92C_TXAGC_RATE06, power[ 4]) |
3134 	    SM(R92C_TXAGC_RATE09, power[ 5]) |
3135 	    SM(R92C_TXAGC_RATE12, power[ 6]) |
3136 	    SM(R92C_TXAGC_RATE18, power[ 7]));
3137 	urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
3138 	    SM(R92C_TXAGC_RATE24, power[ 8]) |
3139 	    SM(R92C_TXAGC_RATE36, power[ 9]) |
3140 	    SM(R92C_TXAGC_RATE48, power[10]) |
3141 	    SM(R92C_TXAGC_RATE54, power[11]));
3142 	/* Write per-MCS Tx power. */
3143 	urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
3144 	    SM(R92C_TXAGC_MCS00,  power[12]) |
3145 	    SM(R92C_TXAGC_MCS01,  power[13]) |
3146 	    SM(R92C_TXAGC_MCS02,  power[14]) |
3147 	    SM(R92C_TXAGC_MCS03,  power[15]));
3148 	urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
3149 	    SM(R92C_TXAGC_MCS04,  power[16]) |
3150 	    SM(R92C_TXAGC_MCS05,  power[17]) |
3151 	    SM(R92C_TXAGC_MCS06,  power[18]) |
3152 	    SM(R92C_TXAGC_MCS07,  power[19]));
3153 	urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
3154 	    SM(R92C_TXAGC_MCS08,  power[20]) |
3155 	    SM(R92C_TXAGC_MCS09,  power[21]) |
3156 	    SM(R92C_TXAGC_MCS10,  power[22]) |
3157 	    SM(R92C_TXAGC_MCS11,  power[23]));
3158 	urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
3159 	    SM(R92C_TXAGC_MCS12,  power[24]) |
3160 	    SM(R92C_TXAGC_MCS13,  power[25]) |
3161 	    SM(R92C_TXAGC_MCS14,  power[26]) |
3162 	    SM(R92C_TXAGC_MCS15,  power[27]));
3163 }
3164 
3165 static void
3166 urtwn_get_txpower(struct urtwn_softc *sc, int chain, u_int chan, u_int ht40m,
3167     uint16_t power[URTWN_RIDX_COUNT])
3168 {
3169 	struct r92c_rom *rom = &sc->rom;
3170 	uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
3171 	const struct urtwn_txpwr *base;
3172 	int ridx, group;
3173 
3174 	DPRINTFN(DBG_FN, ("%s: %s: chain=%d, chan=%d\n",
3175 	    device_xname(sc->sc_dev), __func__, chain, chan));
3176 
3177 	/* Determine channel group. */
3178 	if (chan <= 3) {
3179 		group = 0;
3180 	} else if (chan <= 9) {
3181 		group = 1;
3182 	} else {
3183 		group = 2;
3184 	}
3185 
3186 	/* Get original Tx power based on board type and RF chain. */
3187 	if (!(sc->chip & URTWN_CHIP_92C)) {
3188 		if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3189 			base = &rtl8188ru_txagc[chain];
3190 		} else {
3191 			base = &rtl8192cu_txagc[chain];
3192 		}
3193 	} else {
3194 		base = &rtl8192cu_txagc[chain];
3195 	}
3196 
3197 	memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
3198 	if (sc->regulatory == 0) {
3199 		for (ridx = 0; ridx <= 3; ridx++) {
3200 			power[ridx] = base->pwr[0][ridx];
3201 		}
3202 	}
3203 	for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
3204 		if (sc->regulatory == 3) {
3205 			power[ridx] = base->pwr[0][ridx];
3206 			/* Apply vendor limits. */
3207 			if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
3208 				maxpow = rom->ht40_max_pwr[group];
3209 			} else {
3210 				maxpow = rom->ht20_max_pwr[group];
3211 			}
3212 			maxpow = (maxpow >> (chain * 4)) & 0xf;
3213 			if (power[ridx] > maxpow) {
3214 				power[ridx] = maxpow;
3215 			}
3216 		} else if (sc->regulatory == 1) {
3217 			if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3218 				power[ridx] = base->pwr[group][ridx];
3219 			}
3220 		} else if (sc->regulatory != 2) {
3221 			power[ridx] = base->pwr[0][ridx];
3222 		}
3223 	}
3224 
3225 	/* Compute per-CCK rate Tx power. */
3226 	cckpow = rom->cck_tx_pwr[chain][group];
3227 	for (ridx = 0; ridx <= 3; ridx++) {
3228 		power[ridx] += cckpow;
3229 		if (power[ridx] > R92C_MAX_TX_PWR) {
3230 			power[ridx] = R92C_MAX_TX_PWR;
3231 		}
3232 	}
3233 
3234 	htpow = rom->ht40_1s_tx_pwr[chain][group];
3235 	if (sc->ntxchains > 1) {
3236 		/* Apply reduction for 2 spatial streams. */
3237 		diff = rom->ht40_2s_tx_pwr_diff[group];
3238 		diff = (diff >> (chain * 4)) & 0xf;
3239 		htpow = (htpow > diff) ? htpow - diff : 0;
3240 	}
3241 
3242 	/* Compute per-OFDM rate Tx power. */
3243 	diff = rom->ofdm_tx_pwr_diff[group];
3244 	diff = (diff >> (chain * 4)) & 0xf;
3245 	ofdmpow = htpow + diff;	/* HT->OFDM correction. */
3246 	for (ridx = 4; ridx <= 11; ridx++) {
3247 		power[ridx] += ofdmpow;
3248 		if (power[ridx] > R92C_MAX_TX_PWR) {
3249 			power[ridx] = R92C_MAX_TX_PWR;
3250 		}
3251 	}
3252 
3253 	/* Compute per-MCS Tx power. */
3254 	if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3255 		diff = rom->ht20_tx_pwr_diff[group];
3256 		diff = (diff >> (chain * 4)) & 0xf;
3257 		htpow += diff;	/* HT40->HT20 correction. */
3258 	}
3259 	for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
3260 		power[ridx] += htpow;
3261 		if (power[ridx] > R92C_MAX_TX_PWR) {
3262 			power[ridx] = R92C_MAX_TX_PWR;
3263 		}
3264 	}
3265 #ifdef URTWN_DEBUG
3266 	if (urtwn_debug & DBG_RF) {
3267 		/* Dump per-rate Tx power values. */
3268 		printf("%s: %s: Tx power for chain %d:\n",
3269 		    device_xname(sc->sc_dev), __func__, chain);
3270 		for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) {
3271 			printf("%s: %s: Rate %d = %u\n",
3272 			    device_xname(sc->sc_dev), __func__, ridx,
3273 			    power[ridx]);
3274 		}
3275 	}
3276 #endif
3277 }
3278 
3279 static void
3280 urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
3281 {
3282 	uint16_t power[URTWN_RIDX_COUNT];
3283 	int i;
3284 
3285 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3286 
3287 	for (i = 0; i < sc->ntxchains; i++) {
3288 		/* Compute per-rate Tx power values. */
3289 		urtwn_get_txpower(sc, i, chan, ht40m, power);
3290 		/* Write per-rate Tx power values to hardware. */
3291 		urtwn_write_txpower(sc, i, power);
3292 	}
3293 }
3294 
3295 static void
3296 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
3297 {
3298 	struct ieee80211com *ic = &sc->sc_ic;
3299 	u_int chan;
3300 	int i;
3301 
3302 	chan = ieee80211_chan2ieee(ic, c);	/* XXX center freq! */
3303 
3304 	DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev),
3305 	    __func__, chan));
3306 
3307 	if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
3308 		chan += 2;
3309 	} else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
3310 		chan -= 2;
3311 	}
3312 
3313 	/* Set Tx power for this new channel. */
3314 	urtwn_set_txpower(sc, chan, ht40m);
3315 
3316 	for (i = 0; i < sc->nrxchains; i++) {
3317 		urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
3318 		    RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
3319 	}
3320 
3321 	if (ht40m) {
3322 		/* Is secondary channel below or above primary? */
3323 		int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
3324 		uint32_t reg;
3325 
3326 		urtwn_write_1(sc, R92C_BWOPMODE,
3327 		    urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
3328 
3329 		reg = urtwn_read_1(sc, R92C_RRSR + 2);
3330 		reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
3331 		urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
3332 
3333 		urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3334 		    urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
3335 		urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3336 		    urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
3337 
3338 		/* Set CCK side band. */
3339 		reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
3340 		reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
3341 		urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
3342 
3343 		reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
3344 		reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
3345 		urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
3346 
3347 		urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3348 		    urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
3349 		    ~R92C_FPGA0_ANAPARAM2_CBW20);
3350 
3351 		reg = urtwn_bb_read(sc, 0x818);
3352 		reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
3353 		urtwn_bb_write(sc, 0x818, reg);
3354 
3355 		/* Select 40MHz bandwidth. */
3356 		urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3357 		    (sc->rf_chnlbw[0] & ~0xfff) | chan);
3358 	} else {
3359 		urtwn_write_1(sc, R92C_BWOPMODE,
3360 		    urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
3361 
3362 		urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3363 		    urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
3364 		urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3365 		    urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
3366 
3367 		urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3368 		    urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
3369 		    R92C_FPGA0_ANAPARAM2_CBW20);
3370 
3371 		/* Select 20MHz bandwidth. */
3372 		urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3373 		    (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
3374 	}
3375 }
3376 
3377 static void
3378 urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
3379 {
3380 
3381 	DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev),
3382 	    __func__, inited));
3383 
3384 	/* TODO */
3385 }
3386 
3387 static void
3388 urtwn_lc_calib(struct urtwn_softc *sc)
3389 {
3390 	uint32_t rf_ac[2];
3391 	uint8_t txmode;
3392 	int i;
3393 
3394 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3395 
3396 	txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
3397 	if ((txmode & 0x70) != 0) {
3398 		/* Disable all continuous Tx. */
3399 		urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
3400 
3401 		/* Set RF mode to standby mode. */
3402 		for (i = 0; i < sc->nrxchains; i++) {
3403 			rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
3404 			urtwn_rf_write(sc, i, R92C_RF_AC,
3405 			    RW(rf_ac[i], R92C_RF_AC_MODE,
3406 				R92C_RF_AC_MODE_STANDBY));
3407 		}
3408 	} else {
3409 		/* Block all Tx queues. */
3410 		urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
3411 	}
3412 	/* Start calibration. */
3413 	urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3414 	    urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
3415 
3416 	/* Give calibration the time to complete. */
3417 	usbd_delay_ms(sc->sc_udev, 100);
3418 
3419 	/* Restore configuration. */
3420 	if ((txmode & 0x70) != 0) {
3421 		/* Restore Tx mode. */
3422 		urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
3423 		/* Restore RF mode. */
3424 		for (i = 0; i < sc->nrxchains; i++) {
3425 			urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
3426 		}
3427 	} else {
3428 		/* Unblock all Tx queues. */
3429 		urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
3430 	}
3431 }
3432 
3433 static void
3434 urtwn_temp_calib(struct urtwn_softc *sc)
3435 {
3436 	int temp;
3437 
3438 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3439 
3440 	if (sc->thcal_state == 0) {
3441 		/* Start measuring temperature. */
3442 		DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n",
3443 		    device_xname(sc->sc_dev), __func__));
3444 		urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
3445 		sc->thcal_state = 1;
3446 		return;
3447 	}
3448 	sc->thcal_state = 0;
3449 
3450 	/* Read measured temperature. */
3451 	temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
3452 	DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev),
3453 	    __func__, temp));
3454 	if (temp == 0)	/* Read failed, skip. */
3455 		return;
3456 
3457 	/*
3458 	 * Redo LC calibration if temperature changed significantly since
3459 	 * last calibration.
3460 	 */
3461 	if (sc->thcal_lctemp == 0) {
3462 		/* First LC calibration is performed in urtwn_init(). */
3463 		sc->thcal_lctemp = temp;
3464 	} else if (abs(temp - sc->thcal_lctemp) > 1) {
3465 		DPRINTFN(DBG_RF,
3466 		    ("%s: %s: LC calib triggered by temp: %d -> %d\n",
3467 		    device_xname(sc->sc_dev), __func__, sc->thcal_lctemp,
3468 		    temp));
3469 		urtwn_lc_calib(sc);
3470 		/* Record temperature of last LC calibration. */
3471 		sc->thcal_lctemp = temp;
3472 	}
3473 }
3474 
3475 static int
3476 urtwn_init(struct ifnet *ifp)
3477 {
3478 	struct urtwn_softc *sc = ifp->if_softc;
3479 	struct ieee80211com *ic = &sc->sc_ic;
3480 	struct urtwn_rx_data *data;
3481 	uint32_t reg;
3482 	int i, error;
3483 
3484 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3485 
3486 	urtwn_stop(ifp, 0);
3487 
3488 	mutex_enter(&sc->sc_task_mtx);
3489 	/* Init host async commands ring. */
3490 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3491 	mutex_exit(&sc->sc_task_mtx);
3492 
3493 	mutex_enter(&sc->sc_fwcmd_mtx);
3494 	/* Init firmware commands ring. */
3495 	sc->fwcur = 0;
3496 	mutex_exit(&sc->sc_fwcmd_mtx);
3497 
3498 	/* Allocate Tx/Rx buffers. */
3499 	error = urtwn_alloc_rx_list(sc);
3500 	if (error != 0) {
3501 		aprint_error_dev(sc->sc_dev,
3502 		    "could not allocate Rx buffers\n");
3503 		goto fail;
3504 	}
3505 	error = urtwn_alloc_tx_list(sc);
3506 	if (error != 0) {
3507 		aprint_error_dev(sc->sc_dev,
3508 		    "could not allocate Tx buffers\n");
3509 		goto fail;
3510 	}
3511 
3512 	/* Power on adapter. */
3513 	error = urtwn_power_on(sc);
3514 	if (error != 0)
3515 		goto fail;
3516 
3517 	/* Initialize DMA. */
3518 	error = urtwn_dma_init(sc);
3519 	if (error != 0)
3520 		goto fail;
3521 
3522 	/* Set info size in Rx descriptors (in 64-bit words). */
3523 	urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
3524 
3525 	/* Init interrupts. */
3526 	urtwn_write_4(sc, R92C_HISR, 0xffffffff);
3527 	urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
3528 
3529 	/* Set MAC address. */
3530 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3531 	urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
3532 
3533 	/* Set initial network type. */
3534 	reg = urtwn_read_4(sc, R92C_CR);
3535 	switch (ic->ic_opmode) {
3536 	case IEEE80211_M_STA:
3537 	default:
3538 		reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
3539 		break;
3540 
3541 	case IEEE80211_M_IBSS:
3542 		reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
3543 		break;
3544 	}
3545 	urtwn_write_4(sc, R92C_CR, reg);
3546 
3547 	urtwn_rxfilter_init(sc);
3548 
3549 	/* Set response rate */
3550 	reg = urtwn_read_4(sc, R92C_RRSR);
3551 	reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
3552 	urtwn_write_4(sc, R92C_RRSR, reg);
3553 
3554 	/* SIFS (used in NAV) */
3555 	urtwn_write_2(sc, R92C_SPEC_SIFS,
3556 	    SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
3557 
3558 	/* Set short/long retry limits. */
3559 	urtwn_write_2(sc, R92C_RL,
3560 	    SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
3561 
3562 	/* Initialize EDCA parameters. */
3563 	urtwn_edca_init(sc);
3564 
3565 	/* Setup rate fallback. */
3566 	urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
3567 	urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
3568 	urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
3569 	urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
3570 
3571 	urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
3572 	    urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
3573 	    R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
3574 	/* Set ACK timeout. */
3575 	urtwn_write_1(sc, R92C_ACKTO, 0x40);
3576 
3577 	/* Setup USB aggregation. */
3578 	/* Tx */
3579 	reg = urtwn_read_4(sc, R92C_TDECTRL);
3580 	reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
3581 	urtwn_write_4(sc, R92C_TDECTRL, reg);
3582 	/* Rx */
3583 	urtwn_write_1(sc, R92C_TRXDMA_CTRL,
3584 	    urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
3585 	      R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
3586 	urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3587 	    urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
3588 	      ~R92C_USB_SPECIAL_OPTION_AGG_EN);
3589 	urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
3590 	urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
3591 
3592 	/* Initialize beacon parameters. */
3593 	urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
3594 	urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
3595 	urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
3596 	urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
3597 
3598 	/* Setup AMPDU aggregation. */
3599 	urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631);	/* MCS7~0 */
3600 	urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
3601 	urtwn_write_2(sc, 0x4ca, 0x0708);
3602 
3603 	urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
3604 	urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
3605 
3606 	/* Load 8051 microcode. */
3607 	error = urtwn_load_firmware(sc);
3608 	if (error != 0)
3609 		goto fail;
3610 	SET(sc->sc_flags, URTWN_FLAG_FWREADY);
3611 
3612 	/* Initialize MAC/BB/RF blocks. */
3613 	urtwn_mac_init(sc);
3614 	urtwn_write_4(sc, R92C_RCR,
3615 	    urtwn_read_4(sc, R92C_RCR) & ~R92C_RCR_ADF);
3616 	urtwn_bb_init(sc);
3617 	urtwn_rf_init(sc);
3618 
3619 	/* Turn CCK and OFDM blocks on. */
3620 	reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3621 	reg |= R92C_RFMOD_CCK_EN;
3622 	urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3623 	reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3624 	reg |= R92C_RFMOD_OFDM_EN;
3625 	urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3626 
3627 	/* Clear per-station keys table. */
3628 	urtwn_cam_init(sc);
3629 
3630 	/* Enable hardware sequence numbering. */
3631 	urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
3632 
3633 	/* Perform LO and IQ calibrations. */
3634 	urtwn_iq_calib(sc, sc->iqk_inited);
3635 	sc->iqk_inited = true;
3636 
3637 	/* Perform LC calibration. */
3638 	urtwn_lc_calib(sc);
3639 
3640 	/* Fix USB interference issue. */
3641 	urtwn_write_1(sc, 0xfe40, 0xe0);
3642 	urtwn_write_1(sc, 0xfe41, 0x8d);
3643 	urtwn_write_1(sc, 0xfe42, 0x80);
3644 	urtwn_write_4(sc, 0x20c, 0xfd0320);
3645 
3646 	urtwn_pa_bias_init(sc);
3647 
3648 	if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) {
3649 		/* 1T1R */
3650 		urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
3651 		    urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
3652 	}
3653 
3654 	/* Initialize GPIO setting. */
3655 	urtwn_write_1(sc, R92C_GPIO_MUXCFG,
3656 	    urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
3657 
3658 	/* Fix for lower temperature. */
3659 	urtwn_write_1(sc, 0x15, 0xe9);
3660 
3661 	/* Set default channel. */
3662 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
3663 	urtwn_set_chan(sc, ic->ic_ibss_chan, IEEE80211_HTINFO_2NDCHAN_NONE);
3664 
3665 	/* Queue Rx xfers. */
3666 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
3667 		data = &sc->rx_data[i];
3668 		usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
3669 		    URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3670 		    USBD_NO_TIMEOUT, urtwn_rxeof);
3671 		error = usbd_transfer(data->xfer);
3672 		if (__predict_false(error != USBD_NORMAL_COMPLETION &&
3673 		    error != USBD_IN_PROGRESS))
3674 			goto fail;
3675 	}
3676 
3677 	/* We're ready to go. */
3678 	ifp->if_flags &= ~IFF_OACTIVE;
3679 	ifp->if_flags |= IFF_RUNNING;
3680 
3681 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3682 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3683 	else
3684 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3685 	return (0);
3686 
3687  fail:
3688 	urtwn_stop(ifp, 1);
3689 	return (error);
3690 }
3691 
3692 static void
3693 urtwn_stop(struct ifnet *ifp, int disable)
3694 {
3695 	struct urtwn_softc *sc = ifp->if_softc;
3696 	struct ieee80211com *ic = &sc->sc_ic;
3697 	int i, s;
3698 
3699 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3700 
3701 	sc->tx_timer = 0;
3702 	ifp->if_timer = 0;
3703 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3704 
3705 	s = splusb();
3706 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3707 	urtwn_wait_async(sc);
3708 	splx(s);
3709 
3710 	callout_stop(&sc->sc_scan_to);
3711 	callout_stop(&sc->sc_calib_to);
3712 
3713 	/* Abort Tx. */
3714 	for (i = 0; i < R92C_MAX_EPOUT; i++) {
3715 		if (sc->tx_pipe[i] != NULL)
3716 			usbd_abort_pipe(sc->tx_pipe[i]);
3717 	}
3718 
3719 	/* Stop Rx pipe. */
3720 	usbd_abort_pipe(sc->rx_pipe);
3721 
3722 	/* Free Tx/Rx buffers. */
3723 	urtwn_free_tx_list(sc);
3724 	urtwn_free_rx_list(sc);
3725 
3726 	if (disable)
3727 		urtwn_chip_stop(sc);
3728 }
3729 
3730 static void
3731 urtwn_chip_stop(struct urtwn_softc *sc)
3732 {
3733 	uint32_t reg;
3734 	bool disabled = true;
3735 
3736 	DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3737 
3738 	/*
3739 	 * RF Off Sequence
3740 	 */
3741 	/* Pause MAC TX queue */
3742 	urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
3743 
3744 	/* Disable RF */
3745 	urtwn_rf_write(sc, 0, 0, 0);
3746 
3747 	urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
3748 
3749 	/* Reset BB state machine */
3750 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3751 	    R92C_SYS_FUNC_EN_USBD |
3752 	    R92C_SYS_FUNC_EN_USBA |
3753 	    R92C_SYS_FUNC_EN_BB_GLB_RST);
3754 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3755 	    R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
3756 
3757 	/*
3758 	 * Reset digital sequence
3759 	 */
3760 	if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
3761 		/* Reset MCU ready status */
3762 		urtwn_write_1(sc, R92C_MCUFWDL, 0);
3763 		/* If firmware in ram code, do reset */
3764 		if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
3765 			urtwn_fw_reset(sc);
3766 			CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
3767 		}
3768 	}
3769 
3770 	/* Reset MAC and Enable 8051 */
3771 	urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
3772 
3773 	/* Reset MCU ready status */
3774 	urtwn_write_1(sc, R92C_MCUFWDL, 0);
3775 
3776 	if (disabled) {
3777 		/* Disable MAC clock */
3778 		urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3779 		/* Disable AFE PLL */
3780 		urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
3781 		/* Gated AFE DIG_CLOCK */
3782 		urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
3783 		/* Isolated digital to PON */
3784 		urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
3785 	}
3786 
3787 	/*
3788 	 * Pull GPIO PIN to balance level and LED control
3789 	 */
3790 	/* 1. Disable GPIO[7:0] */
3791 	urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
3792 
3793 	reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
3794 	reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
3795 	urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
3796 
3797         /* Disable GPIO[10:8] */
3798         urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
3799 
3800 	reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
3801         reg |= (((reg & 0x000f) << 4) | 0x0780);
3802         urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg);
3803 
3804 	/* Disable LED0 & 1 */
3805         urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
3806 
3807 	/*
3808 	 * Reset digital sequence
3809 	 */
3810         if (disabled) {
3811 		/* Disable ELDR clock */
3812 		urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3813 		/* Isolated ELDR to PON */
3814 		urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
3815 	}
3816 
3817 	/*
3818 	 * Disable analog sequence
3819 	 */
3820         if (disabled) {
3821 		/* Disable A15 power */
3822                 urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
3823 		/* Disable digital core power */
3824                 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
3825                     urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
3826 		      ~R92C_LDOV12D_CTRL_LDV12_EN);
3827         }
3828 
3829 	/* Enter PFM mode */
3830 	urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
3831 
3832 	/* Set USB suspend */
3833 	urtwn_write_2(sc, R92C_APS_FSMCO,
3834 	    R92C_APS_FSMCO_APDM_HOST |
3835 	    R92C_APS_FSMCO_AFSM_HSUS |
3836 	    R92C_APS_FSMCO_PFM_ALDN);
3837 
3838 	urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
3839 }
3840 
3841 MODULE(MODULE_CLASS_DRIVER, if_urtwn, NULL);
3842 
3843 #ifdef _MODULE
3844 #include "ioconf.c"
3845 #endif
3846 
3847 static int
3848 if_urtwn_modcmd(modcmd_t cmd, void *aux)
3849 {
3850 	int error = 0;
3851 
3852 	switch (cmd) {
3853 	case MODULE_CMD_INIT:
3854 #ifdef _MODULE
3855 		error = config_init_component(cfdriver_ioconf_urtwn,
3856 		    cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
3857 #endif
3858 		return (error);
3859 	case MODULE_CMD_FINI:
3860 #ifdef _MODULE
3861 		error = config_fini_component(cfdriver_ioconf_urtwn,
3862 		    cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
3863 #endif
3864 		return (error);
3865 	default:
3866 		return (ENOTTY);
3867 	}
3868 }
3869