1 /* $NetBSD: if_urtwn.c,v 1.22 2013/03/12 14:19:34 christos Exp $ */ 2 /* $OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $ */ 3 4 /*- 5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU. 22 */ 23 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.22 2013/03/12 14:19:34 christos Exp $"); 26 27 #ifdef _KERNEL_OPT 28 #include "opt_inet.h" 29 #endif 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/conf.h> 41 #include <sys/device.h> 42 43 #include <sys/bus.h> 44 #include <machine/endian.h> 45 #include <sys/intr.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/if_dl.h> 51 #include <net/if_ether.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 55 #include <netinet/in.h> 56 #include <netinet/in_systm.h> 57 #include <netinet/in_var.h> 58 #include <netinet/ip.h> 59 #include <netinet/if_inarp.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_radiotap.h> 64 65 #include <dev/firmload.h> 66 67 #include <dev/usb/usb.h> 68 #include <dev/usb/usbdi.h> 69 #include <dev/usb/usbdivar.h> 70 #include <dev/usb/usbdi_util.h> 71 #include <dev/usb/usbdevs.h> 72 73 #include <dev/usb/if_urtwnreg.h> 74 #include <dev/usb/if_urtwnvar.h> 75 #include <dev/usb/if_urtwn_data.h> 76 77 /* 78 * The sc_write_mtx locking is to prevent sequences of writes from 79 * being intermingled with each other. I don't know if this is really 80 * needed. I have added it just to be on the safe side. 81 */ 82 83 #ifdef URTWN_DEBUG 84 #define DBG_INIT __BIT(0) 85 #define DBG_FN __BIT(1) 86 #define DBG_TX __BIT(2) 87 #define DBG_RX __BIT(3) 88 #define DBG_STM __BIT(4) 89 #define DBG_RF __BIT(5) 90 #define DBG_REG __BIT(6) 91 #define DBG_ALL 0xffffffffU 92 u_int urtwn_debug = 0; 93 #define DPRINTFN(n, s) \ 94 do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0) 95 #else 96 #define DPRINTFN(n, s) 97 #endif 98 99 static const struct usb_devno urtwn_devs[] = { 100 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_1 }, 101 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_2 }, 102 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8192CU }, 103 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_RTL8192CU }, 104 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_1 }, 105 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_2 }, 106 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CU }, 107 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8188CU }, 108 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192CU }, 109 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_1 }, 110 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_2 }, 111 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_3 }, 112 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_4 }, 113 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_5 }, 114 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192CU }, 115 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8188CU }, 116 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_1 }, 117 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_2 }, 118 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_3 }, 119 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8188CU }, 120 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192CU }, 121 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8188CU }, 122 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8192CU }, 123 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUP150 }, 124 { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192CU }, 125 { USB_VENDOR_HP3, USB_PRODUCT_HP3_RTL8188CU }, 126 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000M }, 127 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_RTL8192CU }, 128 { USB_VENDOR_NETGEAR4, USB_PRODUCT_NETGEAR4_RTL8188CU }, 129 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RTL8188CU }, 130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_1 }, 131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_2 }, 132 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8192CU }, 133 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_3 }, 134 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_4 }, 135 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CUS }, 136 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_0 }, 137 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_1 }, 138 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CTV }, 139 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_0 }, 140 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_1 }, 141 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_2 }, 142 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_COMBO }, 143 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CUS }, 144 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU }, 145 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU_2 }, 146 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8191CU }, 147 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CE }, 148 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CU }, 149 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU }, 150 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU_2 }, 151 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CU }, 152 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8188CU }, 153 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8192CU }, 154 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RTL8192CU } 155 }; 156 157 static int urtwn_match(device_t, cfdata_t, void *); 158 static void urtwn_attach(device_t, device_t, void *); 159 static int urtwn_detach(device_t, int); 160 static int urtwn_activate(device_t, enum devact); 161 162 CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match, 163 urtwn_attach, urtwn_detach, urtwn_activate); 164 165 static int urtwn_open_pipes(struct urtwn_softc *); 166 static void urtwn_close_pipes(struct urtwn_softc *); 167 static int urtwn_alloc_rx_list(struct urtwn_softc *); 168 static void urtwn_free_rx_list(struct urtwn_softc *); 169 static int urtwn_alloc_tx_list(struct urtwn_softc *); 170 static void urtwn_free_tx_list(struct urtwn_softc *); 171 static void urtwn_task(void *); 172 static void urtwn_do_async(struct urtwn_softc *, 173 void (*)(struct urtwn_softc *, void *), void *, int); 174 static void urtwn_wait_async(struct urtwn_softc *); 175 static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *, 176 int); 177 static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t); 178 static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t); 179 static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t); 180 static int urtwn_write_region(struct urtwn_softc *, uint16_t, uint8_t *, 181 int); 182 static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *, 183 int); 184 static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t); 185 static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t); 186 static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t); 187 static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int); 188 static void urtwn_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); 189 static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t); 190 static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t); 191 static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t); 192 static void urtwn_efuse_read(struct urtwn_softc *); 193 static int urtwn_read_chipid(struct urtwn_softc *); 194 #ifdef URTWN_DEBUG 195 static void urtwn_dump_rom(struct urtwn_softc *, struct r92c_rom *); 196 #endif 197 static void urtwn_read_rom(struct urtwn_softc *); 198 static int urtwn_media_change(struct ifnet *); 199 static int urtwn_ra_init(struct urtwn_softc *); 200 static int urtwn_get_nettype(struct urtwn_softc *); 201 static void urtwn_set_nettype0_msr(struct urtwn_softc *, uint8_t); 202 static void urtwn_tsf_sync_enable(struct urtwn_softc *); 203 static void urtwn_set_led(struct urtwn_softc *, int, int); 204 static void urtwn_calib_to(void *); 205 static void urtwn_calib_to_cb(struct urtwn_softc *, void *); 206 static void urtwn_next_scan(void *); 207 static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state, 208 int); 209 static void urtwn_newstate_cb(struct urtwn_softc *, void *); 210 static int urtwn_wme_update(struct ieee80211com *); 211 static void urtwn_wme_update_cb(struct urtwn_softc *, void *); 212 static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t); 213 static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *); 214 static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int); 215 static void urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 216 static void urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 217 static int urtwn_tx(struct urtwn_softc *, struct mbuf *, 218 struct ieee80211_node *, struct urtwn_tx_data *); 219 static void urtwn_start(struct ifnet *); 220 static void urtwn_watchdog(struct ifnet *); 221 static int urtwn_ioctl(struct ifnet *, u_long, void *); 222 static int urtwn_power_on(struct urtwn_softc *); 223 static int urtwn_llt_init(struct urtwn_softc *); 224 static void urtwn_fw_reset(struct urtwn_softc *); 225 static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int); 226 static int urtwn_load_firmware(struct urtwn_softc *); 227 static int urtwn_dma_init(struct urtwn_softc *); 228 static void urtwn_mac_init(struct urtwn_softc *); 229 static void urtwn_bb_init(struct urtwn_softc *); 230 static void urtwn_rf_init(struct urtwn_softc *); 231 static void urtwn_cam_init(struct urtwn_softc *); 232 static void urtwn_pa_bias_init(struct urtwn_softc *); 233 static void urtwn_rxfilter_init(struct urtwn_softc *); 234 static void urtwn_edca_init(struct urtwn_softc *); 235 static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]); 236 static void urtwn_get_txpower(struct urtwn_softc *, size_t, u_int, u_int, 237 uint16_t[]); 238 static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int); 239 static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *, 240 u_int); 241 static void urtwn_iq_calib(struct urtwn_softc *, bool); 242 static void urtwn_lc_calib(struct urtwn_softc *); 243 static void urtwn_temp_calib(struct urtwn_softc *); 244 static int urtwn_init(struct ifnet *); 245 static void urtwn_stop(struct ifnet *, int); 246 static int urtwn_reset(struct ifnet *); 247 static void urtwn_chip_stop(struct urtwn_softc *); 248 249 /* Aliases. */ 250 #define urtwn_bb_write urtwn_write_4 251 #define urtwn_bb_read urtwn_read_4 252 253 static int 254 urtwn_match(device_t parent, cfdata_t match, void *aux) 255 { 256 struct usb_attach_arg *uaa = aux; 257 258 return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ? 259 UMATCH_VENDOR_PRODUCT : UMATCH_NONE); 260 } 261 262 static void 263 urtwn_attach(device_t parent, device_t self, void *aux) 264 { 265 struct urtwn_softc *sc = device_private(self); 266 struct ieee80211com *ic = &sc->sc_ic; 267 struct ifnet *ifp = &sc->sc_if; 268 struct usb_attach_arg *uaa = aux; 269 char *devinfop; 270 size_t i; 271 int error; 272 273 sc->sc_dev = self; 274 sc->sc_udev = uaa->device; 275 276 aprint_naive("\n"); 277 aprint_normal("\n"); 278 279 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 280 281 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 282 aprint_normal_dev(self, "%s\n", devinfop); 283 usbd_devinfo_free(devinfop); 284 285 mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET); 286 mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NONE); 287 mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE); 288 mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE); 289 290 usb_init_task(&sc->sc_task, urtwn_task, sc, 0); 291 292 callout_init(&sc->sc_scan_to, 0); 293 callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc); 294 callout_init(&sc->sc_calib_to, 0); 295 callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc); 296 297 error = usbd_set_config_no(sc->sc_udev, 1, 0); 298 if (error != 0) { 299 aprint_error_dev(self, "failed to set configuration" 300 ", err=%s\n", usbd_errstr(error)); 301 goto fail; 302 } 303 304 /* Get the first interface handle. */ 305 error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface); 306 if (error != 0) { 307 aprint_error_dev(self, "could not get interface handle\n"); 308 goto fail; 309 } 310 311 error = urtwn_read_chipid(sc); 312 if (error != 0) { 313 aprint_error_dev(self, "unsupported test chip\n"); 314 goto fail; 315 } 316 317 /* Determine number of Tx/Rx chains. */ 318 if (sc->chip & URTWN_CHIP_92C) { 319 sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2; 320 sc->nrxchains = 2; 321 } else { 322 sc->ntxchains = 1; 323 sc->nrxchains = 1; 324 } 325 urtwn_read_rom(sc); 326 327 aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %zdT%zdR, address %s\n", 328 (sc->chip & URTWN_CHIP_92C) ? "8192CU" : 329 (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" : 330 (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" : 331 "8188CUS", sc->ntxchains, sc->nrxchains, 332 ether_sprintf(ic->ic_myaddr)); 333 334 error = urtwn_open_pipes(sc); 335 if (error != 0) { 336 aprint_error_dev(sc->sc_dev, "could not open pipes\n"); 337 goto fail; 338 } 339 aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n", 340 sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "", 341 sc->tx_npipe, sc->tx_npipe > 1 ? "s" : ""); 342 343 /* 344 * Setup the 802.11 device. 345 */ 346 ic->ic_ifp = ifp; 347 ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */ 348 ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */ 349 ic->ic_state = IEEE80211_S_INIT; 350 351 /* Set device capabilities. */ 352 ic->ic_caps = 353 IEEE80211_C_MONITOR | /* Monitor mode supported. */ 354 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ 355 IEEE80211_C_SHSLOT | /* Short slot time supported. */ 356 IEEE80211_C_WME | /* 802.11e */ 357 IEEE80211_C_WPA; /* 802.11i */ 358 359 /* Set supported .11b and .11g rates. */ 360 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 361 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 362 363 /* Set supported .11b and .11g channels (1 through 14). */ 364 for (i = 1; i <= 14; i++) { 365 ic->ic_channels[i].ic_freq = 366 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 367 ic->ic_channels[i].ic_flags = 368 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 369 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 370 } 371 372 ifp->if_softc = sc; 373 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 374 ifp->if_init = urtwn_init; 375 ifp->if_ioctl = urtwn_ioctl; 376 ifp->if_start = urtwn_start; 377 ifp->if_watchdog = urtwn_watchdog; 378 IFQ_SET_READY(&ifp->if_snd); 379 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 380 381 if_attach(ifp); 382 ieee80211_ifattach(ic); 383 384 /* override default methods */ 385 ic->ic_reset = urtwn_reset; 386 ic->ic_wme.wme_update = urtwn_wme_update; 387 388 /* Override state transition machine. */ 389 sc->sc_newstate = ic->ic_newstate; 390 ic->ic_newstate = urtwn_newstate; 391 ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status); 392 393 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 394 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 395 &sc->sc_drvbpf); 396 397 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 398 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 399 sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT); 400 401 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 402 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 403 sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT); 404 405 ieee80211_announce(ic); 406 407 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 408 409 SET(sc->sc_flags, URTWN_FLAG_ATTACHED); 410 return; 411 412 fail: 413 sc->sc_dying = 1; 414 aprint_error_dev(self, "attach failed\n"); 415 } 416 417 static int 418 urtwn_detach(device_t self, int flags) 419 { 420 struct urtwn_softc *sc = device_private(self); 421 struct ifnet *ifp = &sc->sc_if; 422 int s; 423 424 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 425 426 s = splusb(); 427 428 sc->sc_dying = 1; 429 430 callout_stop(&sc->sc_scan_to); 431 callout_stop(&sc->sc_calib_to); 432 433 if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) { 434 usb_rem_task(sc->sc_udev, &sc->sc_task); 435 urtwn_stop(ifp, 0); 436 437 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 438 bpf_detach(ifp); 439 ieee80211_ifdetach(&sc->sc_ic); 440 if_detach(ifp); 441 442 /* Abort and close Tx/Rx pipes. */ 443 urtwn_close_pipes(sc); 444 } 445 446 splx(s); 447 448 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 449 450 callout_destroy(&sc->sc_scan_to); 451 callout_destroy(&sc->sc_calib_to); 452 453 mutex_destroy(&sc->sc_write_mtx); 454 mutex_destroy(&sc->sc_fwcmd_mtx); 455 mutex_destroy(&sc->sc_tx_mtx); 456 mutex_destroy(&sc->sc_task_mtx); 457 458 return (0); 459 } 460 461 static int 462 urtwn_activate(device_t self, enum devact act) 463 { 464 struct urtwn_softc *sc = device_private(self); 465 466 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 467 468 switch (act) { 469 case DVACT_DEACTIVATE: 470 if_deactivate(sc->sc_ic.ic_ifp); 471 return (0); 472 default: 473 return (EOPNOTSUPP); 474 } 475 } 476 477 static int 478 urtwn_open_pipes(struct urtwn_softc *sc) 479 { 480 /* Bulk-out endpoints addresses (from highest to lowest prio). */ 481 static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 }; 482 usb_interface_descriptor_t *id; 483 usb_endpoint_descriptor_t *ed; 484 size_t i, ntx = 0; 485 int error; 486 487 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 488 489 /* Determine the number of bulk-out pipes. */ 490 id = usbd_get_interface_descriptor(sc->sc_iface); 491 for (i = 0; i < id->bNumEndpoints; i++) { 492 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 493 if (ed != NULL && 494 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK && 495 UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT) 496 ntx++; 497 } 498 DPRINTFN(DBG_INIT, ("%s: %s: found %zd bulk-out pipes\n", 499 device_xname(sc->sc_dev), __func__, ntx)); 500 if (ntx == 0 || ntx > R92C_MAX_EPOUT) { 501 aprint_error_dev(sc->sc_dev, 502 "%zd: invalid number of Tx bulk pipes\n", ntx); 503 return (EIO); 504 } 505 sc->rx_npipe = 1; 506 sc->tx_npipe = ntx; 507 508 /* Open bulk-in pipe at address 0x81. */ 509 error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE, 510 &sc->rx_pipe); 511 if (error != 0) { 512 aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe" 513 ": %d\n", error); 514 goto fail; 515 } 516 517 /* Open bulk-out pipes (up to 3). */ 518 for (i = 0; i < ntx; i++) { 519 error = usbd_open_pipe(sc->sc_iface, epaddr[i], 520 USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]); 521 if (error != 0) { 522 aprint_error_dev(sc->sc_dev, 523 "could not open Tx bulk pipe 0x%02x: %d\n", 524 epaddr[i], error); 525 goto fail; 526 } 527 } 528 529 /* Map 802.11 access categories to USB pipes. */ 530 sc->ac2idx[WME_AC_BK] = 531 sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0); 532 sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0; 533 sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */ 534 535 fail: 536 if (error != 0) 537 urtwn_close_pipes(sc); 538 return (error); 539 } 540 541 static void 542 urtwn_close_pipes(struct urtwn_softc *sc) 543 { 544 usbd_pipe_handle pipe; 545 size_t i; 546 547 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 548 549 /* Close Rx pipe. */ 550 CTASSERT(sizeof(pipe) == sizeof(void *)); 551 pipe = atomic_swap_ptr(&sc->rx_pipe, NULL); 552 if (pipe != NULL) { 553 usbd_abort_pipe(pipe); 554 usbd_close_pipe(pipe); 555 } 556 /* Close Tx pipes. */ 557 for (i = 0; i < R92C_MAX_EPOUT; i++) { 558 pipe = atomic_swap_ptr(&sc->tx_pipe[i], NULL); 559 if (pipe != NULL) { 560 usbd_abort_pipe(pipe); 561 usbd_close_pipe(pipe); 562 } 563 } 564 } 565 566 static int 567 urtwn_alloc_rx_list(struct urtwn_softc *sc) 568 { 569 struct urtwn_rx_data *data; 570 size_t i; 571 int error = 0; 572 573 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 574 575 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { 576 data = &sc->rx_data[i]; 577 578 data->sc = sc; /* Backpointer for callbacks. */ 579 580 data->xfer = usbd_alloc_xfer(sc->sc_udev); 581 if (data->xfer == NULL) { 582 aprint_error_dev(sc->sc_dev, 583 "could not allocate xfer\n"); 584 error = ENOMEM; 585 break; 586 } 587 588 data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ); 589 if (data->buf == NULL) { 590 aprint_error_dev(sc->sc_dev, 591 "could not allocate xfer buffer\n"); 592 error = ENOMEM; 593 break; 594 } 595 } 596 if (error != 0) 597 urtwn_free_rx_list(sc); 598 return (error); 599 } 600 601 static void 602 urtwn_free_rx_list(struct urtwn_softc *sc) 603 { 604 usbd_xfer_handle xfer; 605 size_t i; 606 607 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 608 609 /* NB: Caller must abort pipe first. */ 610 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { 611 CTASSERT(sizeof(xfer) == sizeof(void *)); 612 xfer = atomic_swap_ptr(&sc->tx_data[i].xfer, NULL); 613 if (xfer != NULL) 614 usbd_free_xfer(xfer); 615 } 616 } 617 618 static int 619 urtwn_alloc_tx_list(struct urtwn_softc *sc) 620 { 621 struct urtwn_tx_data *data; 622 size_t i; 623 int error = 0; 624 625 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 626 627 mutex_enter(&sc->sc_tx_mtx); 628 TAILQ_INIT(&sc->tx_free_list); 629 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) { 630 data = &sc->tx_data[i]; 631 632 data->sc = sc; /* Backpointer for callbacks. */ 633 634 data->xfer = usbd_alloc_xfer(sc->sc_udev); 635 if (data->xfer == NULL) { 636 aprint_error_dev(sc->sc_dev, 637 "could not allocate xfer\n"); 638 error = ENOMEM; 639 goto fail; 640 } 641 642 data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ); 643 if (data->buf == NULL) { 644 aprint_error_dev(sc->sc_dev, 645 "could not allocate xfer buffer\n"); 646 error = ENOMEM; 647 goto fail; 648 } 649 650 /* Append this Tx buffer to our free list. */ 651 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); 652 } 653 mutex_exit(&sc->sc_tx_mtx); 654 return (0); 655 656 fail: 657 urtwn_free_tx_list(sc); 658 mutex_exit(&sc->sc_tx_mtx); 659 return (error); 660 } 661 662 static void 663 urtwn_free_tx_list(struct urtwn_softc *sc) 664 { 665 usbd_xfer_handle xfer; 666 size_t i; 667 668 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 669 670 /* NB: Caller must abort pipe first. */ 671 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) { 672 CTASSERT(sizeof(xfer) == sizeof(void *)); 673 xfer = atomic_swap_ptr(&sc->tx_data[i].xfer, NULL); 674 if (xfer != NULL) 675 usbd_free_xfer(xfer); 676 } 677 } 678 679 static void 680 urtwn_task(void *arg) 681 { 682 struct urtwn_softc *sc = arg; 683 struct urtwn_host_cmd_ring *ring = &sc->cmdq; 684 struct urtwn_host_cmd *cmd; 685 int s; 686 687 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 688 689 /* Process host commands. */ 690 s = splusb(); 691 mutex_spin_enter(&sc->sc_task_mtx); 692 while (ring->next != ring->cur) { 693 cmd = &ring->cmd[ring->next]; 694 mutex_spin_exit(&sc->sc_task_mtx); 695 splx(s); 696 /* Invoke callback with kernel lock held. */ 697 cmd->cb(sc, cmd->data); 698 s = splusb(); 699 mutex_spin_enter(&sc->sc_task_mtx); 700 ring->queued--; 701 ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT; 702 } 703 mutex_spin_exit(&sc->sc_task_mtx); 704 wakeup(&sc->cmdq); 705 splx(s); 706 } 707 708 static void 709 urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *), 710 void *arg, int len) 711 { 712 struct urtwn_host_cmd_ring *ring = &sc->cmdq; 713 struct urtwn_host_cmd *cmd; 714 int s; 715 716 DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n", 717 device_xname(sc->sc_dev), __func__, cb, arg, len)); 718 719 s = splusb(); 720 mutex_spin_enter(&sc->sc_task_mtx); 721 cmd = &ring->cmd[ring->cur]; 722 cmd->cb = cb; 723 KASSERT(len <= sizeof(cmd->data)); 724 memcpy(cmd->data, arg, len); 725 ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT; 726 727 /* If there is no pending command already, schedule a task. */ 728 if (!sc->sc_dying && ++ring->queued == 1) { 729 mutex_spin_exit(&sc->sc_task_mtx); 730 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 731 } else 732 mutex_spin_exit(&sc->sc_task_mtx); 733 splx(s); 734 } 735 736 static void 737 urtwn_wait_async(struct urtwn_softc *sc) 738 { 739 740 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 741 742 /* Wait for all queued asynchronous commands to complete. */ 743 while (sc->cmdq.queued > 0) 744 tsleep(&sc->cmdq, 0, "endtask", 0); 745 } 746 747 static int 748 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, 749 int len) 750 { 751 usb_device_request_t req; 752 usbd_status error; 753 754 KASSERT(mutex_owned(&sc->sc_write_mtx)); 755 756 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 757 req.bRequest = R92C_REQ_REGS; 758 USETW(req.wValue, addr); 759 USETW(req.wIndex, 0); 760 USETW(req.wLength, len); 761 error = usbd_do_request(sc->sc_udev, &req, buf); 762 if (error != USBD_NORMAL_COMPLETION) { 763 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n", 764 device_xname(sc->sc_dev), __func__, error, addr, len)); 765 } 766 return (error); 767 } 768 769 static void 770 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val) 771 { 772 773 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n", 774 device_xname(sc->sc_dev), __func__, addr, val)); 775 776 urtwn_write_region_1(sc, addr, &val, 1); 777 } 778 779 static void 780 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val) 781 { 782 uint8_t buf[2]; 783 784 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n", 785 device_xname(sc->sc_dev), __func__, addr, val)); 786 787 buf[0] = (uint8_t)val; 788 buf[1] = (uint8_t)(val >> 8); 789 urtwn_write_region_1(sc, addr, buf, 2); 790 } 791 792 static void 793 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val) 794 { 795 uint8_t buf[4]; 796 797 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n", 798 device_xname(sc->sc_dev), __func__, addr, val)); 799 800 buf[0] = (uint8_t)val; 801 buf[1] = (uint8_t)(val >> 8); 802 buf[2] = (uint8_t)(val >> 16); 803 buf[3] = (uint8_t)(val >> 24); 804 urtwn_write_region_1(sc, addr, buf, 4); 805 } 806 807 static int 808 urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) 809 { 810 811 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n", 812 device_xname(sc->sc_dev), __func__, addr, len)); 813 814 return urtwn_write_region_1(sc, addr, buf, len); 815 } 816 817 static int 818 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, 819 int len) 820 { 821 usb_device_request_t req; 822 usbd_status error; 823 824 req.bmRequestType = UT_READ_VENDOR_DEVICE; 825 req.bRequest = R92C_REQ_REGS; 826 USETW(req.wValue, addr); 827 USETW(req.wIndex, 0); 828 USETW(req.wLength, len); 829 error = usbd_do_request(sc->sc_udev, &req, buf); 830 if (error != USBD_NORMAL_COMPLETION) { 831 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n", 832 device_xname(sc->sc_dev), __func__, error, addr, len)); 833 } 834 return (error); 835 } 836 837 static uint8_t 838 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr) 839 { 840 uint8_t val; 841 842 if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION) 843 return (0xff); 844 845 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n", 846 device_xname(sc->sc_dev), __func__, addr, val)); 847 return (val); 848 } 849 850 static uint16_t 851 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr) 852 { 853 uint8_t buf[2]; 854 uint16_t val; 855 856 if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION) 857 return (0xffff); 858 859 val = LE_READ_2(&buf[0]); 860 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n", 861 device_xname(sc->sc_dev), __func__, addr, val)); 862 return (val); 863 } 864 865 static uint32_t 866 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr) 867 { 868 uint8_t buf[4]; 869 uint32_t val; 870 871 if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION) 872 return (0xffffffff); 873 874 val = LE_READ_4(&buf[0]); 875 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n", 876 device_xname(sc->sc_dev), __func__, addr, val)); 877 return (val); 878 } 879 880 static int 881 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len) 882 { 883 struct r92c_fw_cmd cmd; 884 uint8_t *cp; 885 int fwcur; 886 int ntries; 887 888 DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n", 889 device_xname(sc->sc_dev), __func__, id, buf, len)); 890 891 KASSERT(mutex_owned(&sc->sc_write_mtx)); 892 893 mutex_enter(&sc->sc_fwcmd_mtx); 894 fwcur = sc->fwcur; 895 sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX; 896 mutex_exit(&sc->sc_fwcmd_mtx); 897 898 /* Wait for current FW box to be empty. */ 899 for (ntries = 0; ntries < 100; ntries++) { 900 if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur))) 901 break; 902 DELAY(1); 903 } 904 if (ntries == 100) { 905 aprint_error_dev(sc->sc_dev, 906 "could not send firmware command %d\n", id); 907 return (ETIMEDOUT); 908 } 909 910 memset(&cmd, 0, sizeof(cmd)); 911 KASSERT(len <= sizeof(cmd.msg)); 912 memcpy(cmd.msg, buf, len); 913 914 /* Write the first word last since that will trigger the FW. */ 915 cp = (uint8_t *)&cmd; 916 if (len >= 4) { 917 cmd.id = id | R92C_CMD_FLAG_EXT; 918 urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2); 919 urtwn_write_4(sc, R92C_HMEBOX(fwcur), 920 cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24)); 921 } else { 922 cmd.id = id; 923 urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len); 924 } 925 926 return (0); 927 } 928 929 static void 930 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) 931 { 932 933 urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), 934 SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); 935 } 936 937 static uint32_t 938 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr) 939 { 940 uint32_t reg[R92C_MAX_CHAINS], val; 941 942 reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)); 943 if (chain != 0) { 944 reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain)); 945 } 946 947 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), 948 reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE); 949 DELAY(1000); 950 951 urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain), 952 RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) | 953 R92C_HSSI_PARAM2_READ_EDGE); 954 DELAY(1000); 955 956 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), 957 reg[0] | R92C_HSSI_PARAM2_READ_EDGE); 958 DELAY(1000); 959 960 if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) { 961 val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain)); 962 } else { 963 val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain)); 964 } 965 return (MS(val, R92C_LSSI_READBACK_DATA)); 966 } 967 968 static int 969 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) 970 { 971 int ntries; 972 973 KASSERT(mutex_owned(&sc->sc_write_mtx)); 974 975 urtwn_write_4(sc, R92C_LLT_INIT, 976 SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) | 977 SM(R92C_LLT_INIT_ADDR, addr) | 978 SM(R92C_LLT_INIT_DATA, data)); 979 /* Wait for write operation to complete. */ 980 for (ntries = 0; ntries < 20; ntries++) { 981 if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) == 982 R92C_LLT_INIT_OP_NO_ACTIVE) { 983 /* Done */ 984 return (0); 985 } 986 DELAY(5); 987 } 988 return (ETIMEDOUT); 989 } 990 991 static uint8_t 992 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr) 993 { 994 uint32_t reg; 995 int ntries; 996 997 KASSERT(mutex_owned(&sc->sc_write_mtx)); 998 999 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); 1000 reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr); 1001 reg &= ~R92C_EFUSE_CTRL_VALID; 1002 urtwn_write_4(sc, R92C_EFUSE_CTRL, reg); 1003 1004 /* Wait for read operation to complete. */ 1005 for (ntries = 0; ntries < 100; ntries++) { 1006 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); 1007 if (reg & R92C_EFUSE_CTRL_VALID) { 1008 /* Done */ 1009 return (MS(reg, R92C_EFUSE_CTRL_DATA)); 1010 } 1011 DELAY(5); 1012 } 1013 aprint_error_dev(sc->sc_dev, 1014 "could not read efuse byte at address 0x%04x\n", addr); 1015 return (0xff); 1016 } 1017 1018 static void 1019 urtwn_efuse_read(struct urtwn_softc *sc) 1020 { 1021 uint8_t *rom = (uint8_t *)&sc->rom; 1022 uint32_t reg; 1023 uint16_t addr = 0; 1024 uint8_t off, msk; 1025 size_t i; 1026 1027 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1028 1029 KASSERT(mutex_owned(&sc->sc_write_mtx)); 1030 1031 reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL); 1032 if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) { 1033 urtwn_write_2(sc, R92C_SYS_ISO_CTRL, 1034 reg | R92C_SYS_ISO_CTRL_PWC_EV12V); 1035 } 1036 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); 1037 if (!(reg & R92C_SYS_FUNC_EN_ELDR)) { 1038 urtwn_write_2(sc, R92C_SYS_FUNC_EN, 1039 reg | R92C_SYS_FUNC_EN_ELDR); 1040 } 1041 reg = urtwn_read_2(sc, R92C_SYS_CLKR); 1042 if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) != 1043 (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) { 1044 urtwn_write_2(sc, R92C_SYS_CLKR, 1045 reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M); 1046 } 1047 memset(&sc->rom, 0xff, sizeof(sc->rom)); 1048 while (addr < 512) { 1049 reg = urtwn_efuse_read_1(sc, addr); 1050 if (reg == 0xff) 1051 break; 1052 addr++; 1053 off = reg >> 4; 1054 msk = reg & 0xf; 1055 for (i = 0; i < 4; i++) { 1056 if (msk & (1U << i)) 1057 continue; 1058 1059 rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr); 1060 addr++; 1061 rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr); 1062 addr++; 1063 } 1064 } 1065 #ifdef URTWN_DEBUG 1066 if (urtwn_debug & DBG_INIT) { 1067 /* Dump ROM content. */ 1068 printf("%s: %s", device_xname(sc->sc_dev), __func__); 1069 for (i = 0; i < (int)sizeof(sc->rom); i++) 1070 printf(":%02x", rom[i]); 1071 printf("\n"); 1072 } 1073 #endif 1074 } 1075 1076 static int 1077 urtwn_read_chipid(struct urtwn_softc *sc) 1078 { 1079 uint32_t reg; 1080 1081 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1082 1083 sc->chip = 0; 1084 reg = urtwn_read_4(sc, R92C_SYS_CFG); 1085 if (reg & R92C_SYS_CFG_TRP_VAUX_EN) { 1086 /* test chip, not supported */ 1087 return (EIO); 1088 } 1089 if (reg & R92C_SYS_CFG_TYPE_92C) { 1090 sc->chip |= URTWN_CHIP_92C; 1091 /* Check if it is a castrated 8192C. */ 1092 if (MS(urtwn_read_4(sc, R92C_HPON_FSM), 1093 R92C_HPON_FSM_CHIP_BONDING_ID) == 1094 R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) { 1095 sc->chip |= URTWN_CHIP_92C_1T2R; 1096 } 1097 } 1098 if (reg & R92C_SYS_CFG_VENDOR_UMC) { 1099 sc->chip |= URTWN_CHIP_UMC; 1100 if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) { 1101 sc->chip |= URTWN_CHIP_UMC_A_CUT; 1102 } 1103 } 1104 return (0); 1105 } 1106 1107 #ifdef URTWN_DEBUG 1108 static void 1109 urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp) 1110 { 1111 1112 aprint_normal_dev(sc->sc_dev, 1113 "id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n", 1114 rp->id, rp->dbg_sel, rp->vid, rp->pid); 1115 1116 aprint_normal_dev(sc->sc_dev, 1117 "usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n", 1118 rp->usb_opt, rp->ep_setting, rp->usb_phy); 1119 1120 aprint_normal_dev(sc->sc_dev, 1121 "macaddr %02x:%02x:%02x:%02x:%02x:%02x\n", 1122 rp->macaddr[0], rp->macaddr[1], 1123 rp->macaddr[2], rp->macaddr[3], 1124 rp->macaddr[4], rp->macaddr[5]); 1125 1126 aprint_normal_dev(sc->sc_dev, 1127 "string %s, subcustomer_id 0x%x\n", 1128 rp->string, rp->subcustomer_id); 1129 1130 aprint_normal_dev(sc->sc_dev, 1131 "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n", 1132 rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2], 1133 rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]); 1134 1135 aprint_normal_dev(sc->sc_dev, 1136 "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n", 1137 rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1], 1138 rp->ht40_1s_tx_pwr[0][2], 1139 rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1], 1140 rp->ht40_1s_tx_pwr[1][2]); 1141 1142 aprint_normal_dev(sc->sc_dev, 1143 "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n", 1144 rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf, 1145 rp->ht40_2s_tx_pwr_diff[2] & 0xf, 1146 rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf, 1147 rp->ht40_2s_tx_pwr_diff[2] >> 4); 1148 1149 aprint_normal_dev(sc->sc_dev, 1150 "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n", 1151 rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf, 1152 rp->ht20_tx_pwr_diff[2] & 0xf, 1153 rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4, 1154 rp->ht20_tx_pwr_diff[2] >> 4); 1155 1156 aprint_normal_dev(sc->sc_dev, 1157 "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n", 1158 rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf, 1159 rp->ofdm_tx_pwr_diff[2] & 0xf, 1160 rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4, 1161 rp->ofdm_tx_pwr_diff[2] >> 4); 1162 1163 aprint_normal_dev(sc->sc_dev, 1164 "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n", 1165 rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf, 1166 rp->ht40_max_pwr[2] & 0xf, 1167 rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4, 1168 rp->ht40_max_pwr[2] >> 4); 1169 1170 aprint_normal_dev(sc->sc_dev, 1171 "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n", 1172 rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf, 1173 rp->ht20_max_pwr[2] & 0xf, 1174 rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4, 1175 rp->ht20_max_pwr[2] >> 4); 1176 1177 aprint_normal_dev(sc->sc_dev, 1178 "xtal_calib %d, tssi %d %d, thermal %d\n", 1179 rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter); 1180 1181 aprint_normal_dev(sc->sc_dev, 1182 "rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n", 1183 rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4); 1184 1185 aprint_normal_dev(sc->sc_dev, 1186 "channnel_plan %d, version %d customer_id 0x%x\n", 1187 rp->channel_plan, rp->version, rp->curstomer_id); 1188 } 1189 #endif 1190 1191 static void 1192 urtwn_read_rom(struct urtwn_softc *sc) 1193 { 1194 struct ieee80211com *ic = &sc->sc_ic; 1195 struct r92c_rom *rom = &sc->rom; 1196 1197 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1198 1199 mutex_enter(&sc->sc_write_mtx); 1200 1201 /* Read full ROM image. */ 1202 urtwn_efuse_read(sc); 1203 #ifdef URTWN_DEBUG 1204 if (urtwn_debug & DBG_REG) 1205 urtwn_dump_rom(sc, rom); 1206 #endif 1207 1208 /* XXX Weird but this is what the vendor driver does. */ 1209 sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa); 1210 sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE); 1211 sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY); 1212 1213 DPRINTFN(DBG_INIT, 1214 ("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n", 1215 device_xname(sc->sc_dev), __func__, sc->pa_setting, 1216 sc->board_type, sc->regulatory)); 1217 1218 IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr); 1219 1220 mutex_exit(&sc->sc_write_mtx); 1221 } 1222 1223 static int 1224 urtwn_media_change(struct ifnet *ifp) 1225 { 1226 #ifdef URTWN_DEBUG 1227 struct urtwn_softc *sc = ifp->if_softc; 1228 #endif 1229 int error; 1230 1231 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1232 1233 if ((error = ieee80211_media_change(ifp)) != ENETRESET) 1234 return (error); 1235 1236 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1237 (IFF_UP | IFF_RUNNING)) { 1238 urtwn_init(ifp); 1239 } 1240 return (0); 1241 } 1242 1243 /* 1244 * Initialize rate adaptation in firmware. 1245 */ 1246 static int 1247 urtwn_ra_init(struct urtwn_softc *sc) 1248 { 1249 static const uint8_t map[] = { 1250 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 1251 }; 1252 struct ieee80211com *ic = &sc->sc_ic; 1253 struct ieee80211_node *ni = ic->ic_bss; 1254 struct ieee80211_rateset *rs = &ni->ni_rates; 1255 struct r92c_fw_cmd_macid_cfg cmd; 1256 uint32_t rates, basicrates; 1257 uint32_t mask; 1258 uint8_t mode; 1259 size_t maxrate, maxbasicrate, i, j; 1260 int error; 1261 1262 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1263 1264 KASSERT(mutex_owned(&sc->sc_write_mtx)); 1265 1266 /* Get normal and basic rates mask. */ 1267 rates = basicrates = 0; 1268 maxrate = maxbasicrate = 0; 1269 for (i = 0; i < rs->rs_nrates; i++) { 1270 /* Convert 802.11 rate to HW rate index. */ 1271 for (j = 0; j < __arraycount(map); j++) { 1272 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) { 1273 break; 1274 } 1275 } 1276 if (j == __arraycount(map)) { 1277 /* Unknown rate, skip. */ 1278 continue; 1279 } 1280 1281 rates |= 1U << j; 1282 if (j > maxrate) { 1283 maxrate = j; 1284 } 1285 1286 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) { 1287 basicrates |= 1U << j; 1288 if (j > maxbasicrate) { 1289 maxbasicrate = j; 1290 } 1291 } 1292 } 1293 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1294 mode = R92C_RAID_11B; 1295 } else { 1296 mode = R92C_RAID_11BG; 1297 } 1298 DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, " 1299 "maxrate=%zx, maxbasicrate=%zx\n", 1300 device_xname(sc->sc_dev), __func__, mode, rates, basicrates, 1301 maxrate, maxbasicrate)); 1302 if (basicrates == 0) { 1303 basicrates |= 1; /* add 1Mbps */ 1304 } 1305 1306 /* Set rates mask for group addressed frames. */ 1307 cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID; 1308 mask = (mode << 28) | basicrates; 1309 cmd.mask[0] = (uint8_t)mask; 1310 cmd.mask[1] = (uint8_t)(mask >> 8); 1311 cmd.mask[2] = (uint8_t)(mask >> 16); 1312 cmd.mask[3] = (uint8_t)(mask >> 24); 1313 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); 1314 if (error != 0) { 1315 aprint_error_dev(sc->sc_dev, 1316 "could not add broadcast station\n"); 1317 return (error); 1318 } 1319 /* Set initial MRR rate. */ 1320 DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%zd\n", 1321 device_xname(sc->sc_dev), __func__, maxbasicrate)); 1322 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate); 1323 1324 /* Set rates mask for unicast frames. */ 1325 cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID; 1326 mask = (mode << 28) | rates; 1327 cmd.mask[0] = (uint8_t)mask; 1328 cmd.mask[1] = (uint8_t)(mask >> 8); 1329 cmd.mask[2] = (uint8_t)(mask >> 16); 1330 cmd.mask[3] = (uint8_t)(mask >> 24); 1331 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); 1332 if (error != 0) { 1333 aprint_error_dev(sc->sc_dev, "could not add BSS station\n"); 1334 return (error); 1335 } 1336 /* Set initial MRR rate. */ 1337 DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%zd\n", device_xname(sc->sc_dev), 1338 __func__, maxrate)); 1339 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate); 1340 1341 /* Indicate highest supported rate. */ 1342 ni->ni_txrate = rs->rs_nrates - 1; 1343 1344 return (0); 1345 } 1346 1347 static int 1348 urtwn_get_nettype(struct urtwn_softc *sc) 1349 { 1350 struct ieee80211com *ic = &sc->sc_ic; 1351 int type; 1352 1353 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1354 1355 switch (ic->ic_opmode) { 1356 case IEEE80211_M_STA: 1357 type = R92C_CR_NETTYPE_INFRA; 1358 break; 1359 1360 case IEEE80211_M_IBSS: 1361 type = R92C_CR_NETTYPE_ADHOC; 1362 break; 1363 1364 default: 1365 type = R92C_CR_NETTYPE_NOLINK; 1366 break; 1367 } 1368 1369 return (type); 1370 } 1371 1372 static void 1373 urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type) 1374 { 1375 uint8_t reg; 1376 1377 DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev), 1378 __func__, type)); 1379 1380 KASSERT(mutex_owned(&sc->sc_write_mtx)); 1381 1382 reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c; 1383 urtwn_write_1(sc, R92C_CR + 2, reg | type); 1384 } 1385 1386 static void 1387 urtwn_tsf_sync_enable(struct urtwn_softc *sc) 1388 { 1389 struct ieee80211_node *ni = sc->sc_ic.ic_bss; 1390 uint64_t tsf; 1391 1392 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1393 1394 KASSERT(mutex_owned(&sc->sc_write_mtx)); 1395 1396 /* Enable TSF synchronization. */ 1397 urtwn_write_1(sc, R92C_BCN_CTRL, 1398 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0); 1399 1400 /* Correct TSF */ 1401 urtwn_write_1(sc, R92C_BCN_CTRL, 1402 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN); 1403 1404 /* Set initial TSF. */ 1405 tsf = ni->ni_tstamp.tsf; 1406 tsf = le64toh(tsf); 1407 tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU)); 1408 tsf -= IEEE80211_DUR_TU; 1409 urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf); 1410 urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32)); 1411 1412 urtwn_write_1(sc, R92C_BCN_CTRL, 1413 urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN); 1414 } 1415 1416 static void 1417 urtwn_set_led(struct urtwn_softc *sc, int led, int on) 1418 { 1419 uint8_t reg; 1420 1421 DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev), 1422 __func__, led, on)); 1423 1424 KASSERT(mutex_owned(&sc->sc_write_mtx)); 1425 1426 if (led == URTWN_LED_LINK) { 1427 reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70; 1428 if (!on) { 1429 reg |= R92C_LEDCFG0_DIS; 1430 } 1431 urtwn_write_1(sc, R92C_LEDCFG0, reg); 1432 sc->ledlink = on; /* Save LED state. */ 1433 } 1434 } 1435 1436 static void 1437 urtwn_calib_to(void *arg) 1438 { 1439 struct urtwn_softc *sc = arg; 1440 1441 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1442 1443 if (sc->sc_dying) 1444 return; 1445 1446 /* Do it in a process context. */ 1447 urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0); 1448 } 1449 1450 /* ARGSUSED */ 1451 static void 1452 urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg) 1453 { 1454 struct r92c_fw_cmd_rssi cmd; 1455 1456 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1457 1458 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) 1459 goto restart_timer; 1460 1461 mutex_enter(&sc->sc_write_mtx); 1462 if (sc->avg_pwdb != -1) { 1463 /* Indicate Rx signal strength to FW for rate adaptation. */ 1464 memset(&cmd, 0, sizeof(cmd)); 1465 cmd.macid = 0; /* BSS. */ 1466 cmd.pwdb = sc->avg_pwdb; 1467 DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n", 1468 device_xname(sc->sc_dev), __func__, sc->avg_pwdb)); 1469 urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd)); 1470 } 1471 1472 /* Do temperature compensation. */ 1473 urtwn_temp_calib(sc); 1474 mutex_exit(&sc->sc_write_mtx); 1475 1476 restart_timer: 1477 if (!sc->sc_dying) { 1478 /* Restart calibration timer. */ 1479 callout_schedule(&sc->sc_calib_to, hz); 1480 } 1481 } 1482 1483 static void 1484 urtwn_next_scan(void *arg) 1485 { 1486 struct urtwn_softc *sc = arg; 1487 int s; 1488 1489 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1490 1491 if (sc->sc_dying) 1492 return; 1493 1494 s = splnet(); 1495 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) 1496 ieee80211_next_scan(&sc->sc_ic); 1497 splx(s); 1498 } 1499 1500 static int 1501 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1502 { 1503 struct urtwn_softc *sc = ic->ic_ifp->if_softc; 1504 struct urtwn_cmd_newstate cmd; 1505 1506 DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n", 1507 device_xname(sc->sc_dev), __func__, 1508 ieee80211_state_name[nstate], nstate, arg)); 1509 1510 callout_stop(&sc->sc_scan_to); 1511 callout_stop(&sc->sc_calib_to); 1512 1513 /* Do it in a process context. */ 1514 cmd.state = nstate; 1515 cmd.arg = arg; 1516 urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd)); 1517 return (0); 1518 } 1519 1520 static void 1521 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg) 1522 { 1523 struct urtwn_cmd_newstate *cmd = arg; 1524 struct ieee80211com *ic = &sc->sc_ic; 1525 struct ieee80211_node *ni; 1526 enum ieee80211_state ostate = ic->ic_state; 1527 enum ieee80211_state nstate = cmd->state; 1528 uint32_t reg; 1529 uint8_t sifs_time; 1530 int s; 1531 1532 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n", 1533 device_xname(sc->sc_dev), __func__, 1534 ieee80211_state_name[ostate], ostate, 1535 ieee80211_state_name[nstate], nstate)); 1536 1537 s = splnet(); 1538 mutex_enter(&sc->sc_write_mtx); 1539 1540 callout_stop(&sc->sc_scan_to); 1541 callout_stop(&sc->sc_calib_to); 1542 1543 switch (ostate) { 1544 case IEEE80211_S_INIT: 1545 break; 1546 1547 case IEEE80211_S_SCAN: 1548 if (nstate != IEEE80211_S_SCAN) { 1549 /* 1550 * End of scanning 1551 */ 1552 /* flush 4-AC Queue after site_survey */ 1553 urtwn_write_1(sc, R92C_TXPAUSE, 0x0); 1554 1555 /* Allow Rx from our BSSID only. */ 1556 urtwn_write_4(sc, R92C_RCR, 1557 urtwn_read_4(sc, R92C_RCR) | 1558 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN); 1559 } 1560 break; 1561 1562 case IEEE80211_S_AUTH: 1563 case IEEE80211_S_ASSOC: 1564 break; 1565 1566 case IEEE80211_S_RUN: 1567 /* Turn link LED off. */ 1568 urtwn_set_led(sc, URTWN_LED_LINK, 0); 1569 1570 /* Set media status to 'No Link'. */ 1571 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); 1572 1573 /* Stop Rx of data frames. */ 1574 urtwn_write_2(sc, R92C_RXFLTMAP2, 0); 1575 1576 /* Reset TSF. */ 1577 urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03); 1578 1579 /* Disable TSF synchronization. */ 1580 urtwn_write_1(sc, R92C_BCN_CTRL, 1581 urtwn_read_1(sc, R92C_BCN_CTRL) | 1582 R92C_BCN_CTRL_DIS_TSF_UDT0); 1583 1584 /* Back to 20MHz mode */ 1585 urtwn_set_chan(sc, ic->ic_curchan, 1586 IEEE80211_HTINFO_2NDCHAN_NONE); 1587 1588 if (ic->ic_opmode == IEEE80211_M_IBSS || 1589 ic->ic_opmode == IEEE80211_M_HOSTAP) { 1590 /* Stop BCN */ 1591 urtwn_write_1(sc, R92C_BCN_CTRL, 1592 urtwn_read_1(sc, R92C_BCN_CTRL) & 1593 ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT)); 1594 } 1595 1596 /* Reset EDCA parameters. */ 1597 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217); 1598 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317); 1599 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320); 1600 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444); 1601 1602 /* flush all cam entries */ 1603 urtwn_cam_init(sc); 1604 break; 1605 } 1606 1607 switch (nstate) { 1608 case IEEE80211_S_INIT: 1609 /* Turn link LED off. */ 1610 urtwn_set_led(sc, URTWN_LED_LINK, 0); 1611 break; 1612 1613 case IEEE80211_S_SCAN: 1614 if (ostate != IEEE80211_S_SCAN) { 1615 /* 1616 * Begin of scanning 1617 */ 1618 1619 /* Set gain for scanning. */ 1620 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); 1621 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20); 1622 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); 1623 1624 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); 1625 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20); 1626 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); 1627 1628 /* Set media status to 'No Link'. */ 1629 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); 1630 1631 /* Allow Rx from any BSSID. */ 1632 urtwn_write_4(sc, R92C_RCR, 1633 urtwn_read_4(sc, R92C_RCR) & 1634 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); 1635 1636 /* Stop Rx of data frames. */ 1637 urtwn_write_2(sc, R92C_RXFLTMAP2, 0); 1638 1639 /* Disable update TSF */ 1640 urtwn_write_1(sc, R92C_BCN_CTRL, 1641 urtwn_read_1(sc, R92C_BCN_CTRL) | 1642 R92C_BCN_CTRL_DIS_TSF_UDT0); 1643 } 1644 1645 /* Make link LED blink during scan. */ 1646 urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink); 1647 1648 /* Pause AC Tx queues. */ 1649 urtwn_write_1(sc, R92C_TXPAUSE, 1650 urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f); 1651 1652 urtwn_set_chan(sc, ic->ic_curchan, 1653 IEEE80211_HTINFO_2NDCHAN_NONE); 1654 1655 /* Start periodic scan. */ 1656 if (!sc->sc_dying) 1657 callout_schedule(&sc->sc_scan_to, hz / 5); 1658 break; 1659 1660 case IEEE80211_S_AUTH: 1661 /* Set initial gain under link. */ 1662 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); 1663 #ifdef doaslinux 1664 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32); 1665 #else 1666 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20); 1667 #endif 1668 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); 1669 1670 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); 1671 #ifdef doaslinux 1672 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32); 1673 #else 1674 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20); 1675 #endif 1676 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); 1677 1678 /* Set media status to 'No Link'. */ 1679 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); 1680 1681 /* Allow Rx from any BSSID. */ 1682 urtwn_write_4(sc, R92C_RCR, 1683 urtwn_read_4(sc, R92C_RCR) & 1684 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); 1685 1686 urtwn_set_chan(sc, ic->ic_curchan, 1687 IEEE80211_HTINFO_2NDCHAN_NONE); 1688 break; 1689 1690 case IEEE80211_S_ASSOC: 1691 break; 1692 1693 case IEEE80211_S_RUN: 1694 ni = ic->ic_bss; 1695 1696 /* XXX: Set 20MHz mode */ 1697 urtwn_set_chan(sc, ic->ic_curchan, 1698 IEEE80211_HTINFO_2NDCHAN_NONE); 1699 1700 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1701 /* Back to 20MHz mode */ 1702 urtwn_set_chan(sc, ic->ic_curchan, 1703 IEEE80211_HTINFO_2NDCHAN_NONE); 1704 1705 /* Set media status to 'No Link'. */ 1706 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); 1707 1708 /* Enable Rx of data frames. */ 1709 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); 1710 1711 /* Allow Rx from any BSSID. */ 1712 urtwn_write_4(sc, R92C_RCR, 1713 urtwn_read_4(sc, R92C_RCR) & 1714 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); 1715 1716 /* Accept Rx data/control/management frames */ 1717 urtwn_write_4(sc, R92C_RCR, 1718 urtwn_read_4(sc, R92C_RCR) | 1719 R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF); 1720 1721 /* Turn link LED on. */ 1722 urtwn_set_led(sc, URTWN_LED_LINK, 1); 1723 break; 1724 } 1725 1726 /* Set media status to 'Associated'. */ 1727 urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc)); 1728 1729 /* Set BSSID. */ 1730 urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0])); 1731 urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4])); 1732 1733 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1734 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0); 1735 } else { 1736 /* 802.11b/g */ 1737 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3); 1738 } 1739 1740 /* Enable Rx of data frames. */ 1741 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); 1742 1743 /* Set beacon interval. */ 1744 urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval); 1745 1746 if (ic->ic_opmode == IEEE80211_M_STA) { 1747 /* Allow Rx from our BSSID only. */ 1748 urtwn_write_4(sc, R92C_RCR, 1749 urtwn_read_4(sc, R92C_RCR) | 1750 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN); 1751 1752 /* Enable TSF synchronization. */ 1753 urtwn_tsf_sync_enable(sc); 1754 } 1755 1756 sifs_time = 10; 1757 urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time); 1758 urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time); 1759 urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time); 1760 urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time); 1761 urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time); 1762 urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time); 1763 1764 /* Intialize rate adaptation. */ 1765 urtwn_ra_init(sc); 1766 1767 /* Turn link LED on. */ 1768 urtwn_set_led(sc, URTWN_LED_LINK, 1); 1769 1770 /* Reset average RSSI. */ 1771 sc->avg_pwdb = -1; 1772 1773 /* Reset temperature calibration state machine. */ 1774 sc->thcal_state = 0; 1775 sc->thcal_lctemp = 0; 1776 1777 /* Start periodic calibration. */ 1778 if (!sc->sc_dying) 1779 callout_schedule(&sc->sc_calib_to, hz); 1780 break; 1781 } 1782 1783 (*sc->sc_newstate)(ic, nstate, cmd->arg); 1784 1785 mutex_exit(&sc->sc_write_mtx); 1786 splx(s); 1787 } 1788 1789 static int 1790 urtwn_wme_update(struct ieee80211com *ic) 1791 { 1792 struct urtwn_softc *sc = ic->ic_ifp->if_softc; 1793 1794 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 1795 1796 /* don't override default WME values if WME is not actually enabled */ 1797 if (!(ic->ic_flags & IEEE80211_F_WME)) 1798 return (0); 1799 1800 /* Do it in a process context. */ 1801 urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0); 1802 return (0); 1803 } 1804 1805 static void 1806 urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg) 1807 { 1808 static const uint16_t ac2reg[WME_NUM_AC] = { 1809 R92C_EDCA_BE_PARAM, 1810 R92C_EDCA_BK_PARAM, 1811 R92C_EDCA_VI_PARAM, 1812 R92C_EDCA_VO_PARAM 1813 }; 1814 struct ieee80211com *ic = &sc->sc_ic; 1815 const struct wmeParams *wmep; 1816 int ac, aifs, slottime; 1817 int s; 1818 1819 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev), 1820 __func__)); 1821 1822 s = splnet(); 1823 mutex_enter(&sc->sc_write_mtx); 1824 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1825 for (ac = 0; ac < WME_NUM_AC; ac++) { 1826 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1827 /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */ 1828 aifs = wmep->wmep_aifsn * slottime + 10; 1829 urtwn_write_4(sc, ac2reg[ac], 1830 SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) | 1831 SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) | 1832 SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) | 1833 SM(R92C_EDCA_PARAM_AIFS, aifs)); 1834 } 1835 mutex_exit(&sc->sc_write_mtx); 1836 splx(s); 1837 } 1838 1839 static void 1840 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi) 1841 { 1842 int pwdb; 1843 1844 DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n", 1845 device_xname(sc->sc_dev), __func__, rate, rssi)); 1846 1847 /* Convert antenna signal to percentage. */ 1848 if (rssi <= -100 || rssi >= 20) 1849 pwdb = 0; 1850 else if (rssi >= 0) 1851 pwdb = 100; 1852 else 1853 pwdb = 100 + rssi; 1854 if (rate <= 3) { 1855 /* CCK gain is smaller than OFDM/MCS gain. */ 1856 pwdb += 6; 1857 if (pwdb > 100) 1858 pwdb = 100; 1859 if (pwdb <= 14) 1860 pwdb -= 4; 1861 else if (pwdb <= 26) 1862 pwdb -= 8; 1863 else if (pwdb <= 34) 1864 pwdb -= 6; 1865 else if (pwdb <= 42) 1866 pwdb -= 2; 1867 } 1868 if (sc->avg_pwdb == -1) /* Init. */ 1869 sc->avg_pwdb = pwdb; 1870 else if (sc->avg_pwdb < pwdb) 1871 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1; 1872 else 1873 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20); 1874 1875 DPRINTFN(DBG_RF, ("%s: %s: rate=%d rssi=%d PWDB=%d EMA=%d\n", 1876 device_xname(sc->sc_dev), __func__, 1877 rate, rssi, pwdb, sc->avg_pwdb)); 1878 } 1879 1880 static int8_t 1881 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt) 1882 { 1883 static const int8_t cckoff[] = { 16, -12, -26, -46 }; 1884 struct r92c_rx_phystat *phy; 1885 struct r92c_rx_cck *cck; 1886 uint8_t rpt; 1887 int8_t rssi; 1888 1889 DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev), 1890 __func__, rate)); 1891 1892 if (rate <= 3) { 1893 cck = (struct r92c_rx_cck *)physt; 1894 if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) { 1895 rpt = (cck->agc_rpt >> 5) & 0x3; 1896 rssi = (cck->agc_rpt & 0x1f) << 1; 1897 } else { 1898 rpt = (cck->agc_rpt >> 6) & 0x3; 1899 rssi = cck->agc_rpt & 0x3e; 1900 } 1901 rssi = cckoff[rpt] - rssi; 1902 } else { /* OFDM/HT. */ 1903 phy = (struct r92c_rx_phystat *)physt; 1904 rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; 1905 } 1906 return (rssi); 1907 } 1908 1909 static void 1910 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen) 1911 { 1912 struct ieee80211com *ic = &sc->sc_ic; 1913 struct ifnet *ifp = ic->ic_ifp; 1914 struct ieee80211_frame *wh; 1915 struct ieee80211_node *ni; 1916 struct r92c_rx_stat *stat; 1917 uint32_t rxdw0, rxdw3; 1918 struct mbuf *m; 1919 uint8_t rate; 1920 int8_t rssi = 0; 1921 int s, infosz; 1922 1923 DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n", 1924 device_xname(sc->sc_dev), __func__, buf, pktlen)); 1925 1926 stat = (struct r92c_rx_stat *)buf; 1927 rxdw0 = le32toh(stat->rxdw0); 1928 rxdw3 = le32toh(stat->rxdw3); 1929 1930 if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) { 1931 /* 1932 * This should not happen since we setup our Rx filter 1933 * to not receive these frames. 1934 */ 1935 DPRINTFN(DBG_RX, ("%s: %s: CRC error\n", 1936 device_xname(sc->sc_dev), __func__)); 1937 ifp->if_ierrors++; 1938 return; 1939 } 1940 /* 1941 * XXX: This will drop most control packets. Do we really 1942 * want this in IEEE80211_M_MONITOR mode? 1943 */ 1944 // if (__predict_false(pktlen < (int)sizeof(*wh))) { 1945 if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) { 1946 DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n", 1947 device_xname(sc->sc_dev), __func__, pktlen)); 1948 ic->ic_stats.is_rx_tooshort++; 1949 ifp->if_ierrors++; 1950 return; 1951 } 1952 if (__predict_false(pktlen > MCLBYTES)) { 1953 DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n", 1954 device_xname(sc->sc_dev), __func__, pktlen)); 1955 ifp->if_ierrors++; 1956 return; 1957 } 1958 1959 rate = MS(rxdw3, R92C_RXDW3_RATE); 1960 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; 1961 1962 /* Get RSSI from PHY status descriptor if present. */ 1963 if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) { 1964 rssi = urtwn_get_rssi(sc, rate, &stat[1]); 1965 /* Update our average RSSI. */ 1966 urtwn_update_avgrssi(sc, rate, rssi); 1967 } 1968 1969 DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n", 1970 device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi)); 1971 1972 MGETHDR(m, M_DONTWAIT, MT_DATA); 1973 if (__predict_false(m == NULL)) { 1974 aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n"); 1975 ic->ic_stats.is_rx_nobuf++; 1976 ifp->if_ierrors++; 1977 return; 1978 } 1979 if (pktlen > (int)MHLEN) { 1980 MCLGET(m, M_DONTWAIT); 1981 if (__predict_false(!(m->m_flags & M_EXT))) { 1982 aprint_error_dev(sc->sc_dev, 1983 "couldn't allocate rx mbuf cluster\n"); 1984 m_freem(m); 1985 ic->ic_stats.is_rx_nobuf++; 1986 ifp->if_ierrors++; 1987 return; 1988 } 1989 } 1990 1991 /* Finalize mbuf. */ 1992 m->m_pkthdr.rcvif = ifp; 1993 wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz); 1994 memcpy(mtod(m, uint8_t *), wh, pktlen); 1995 m->m_pkthdr.len = m->m_len = pktlen; 1996 1997 s = splnet(); 1998 if (__predict_false(sc->sc_drvbpf != NULL)) { 1999 struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2000 2001 tap->wr_flags = 0; 2002 if (!(rxdw3 & R92C_RXDW3_HT)) { 2003 switch (rate) { 2004 /* CCK. */ 2005 case 0: tap->wr_rate = 2; break; 2006 case 1: tap->wr_rate = 4; break; 2007 case 2: tap->wr_rate = 11; break; 2008 case 3: tap->wr_rate = 22; break; 2009 /* OFDM. */ 2010 case 4: tap->wr_rate = 12; break; 2011 case 5: tap->wr_rate = 18; break; 2012 case 6: tap->wr_rate = 24; break; 2013 case 7: tap->wr_rate = 36; break; 2014 case 8: tap->wr_rate = 48; break; 2015 case 9: tap->wr_rate = 72; break; 2016 case 10: tap->wr_rate = 96; break; 2017 case 11: tap->wr_rate = 108; break; 2018 } 2019 } else if (rate >= 12) { /* MCS0~15. */ 2020 /* Bit 7 set means HT MCS instead of rate. */ 2021 tap->wr_rate = 0x80 | (rate - 12); 2022 } 2023 tap->wr_dbm_antsignal = rssi; 2024 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 2025 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 2026 2027 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2028 } 2029 2030 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2031 2032 /* push the frame up to the 802.11 stack */ 2033 ieee80211_input(ic, m, ni, rssi, 0); 2034 2035 /* Node is no longer needed. */ 2036 ieee80211_free_node(ni); 2037 2038 splx(s); 2039 } 2040 2041 static void 2042 urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2043 { 2044 struct urtwn_rx_data *data = priv; 2045 struct urtwn_softc *sc = data->sc; 2046 struct r92c_rx_stat *stat; 2047 uint32_t rxdw0; 2048 uint8_t *buf; 2049 int len, totlen, pktlen, infosz, npkts; 2050 2051 DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n", 2052 device_xname(sc->sc_dev), __func__, status)); 2053 2054 if (__predict_false(status != USBD_NORMAL_COMPLETION)) { 2055 if (status == USBD_STALLED) 2056 usbd_clear_endpoint_stall_async(sc->rx_pipe); 2057 else if (status != USBD_CANCELLED) 2058 goto resubmit; 2059 return; 2060 } 2061 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2062 2063 if (__predict_false(len < (int)sizeof(*stat))) { 2064 DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n", 2065 device_xname(sc->sc_dev), __func__, len)); 2066 goto resubmit; 2067 } 2068 buf = data->buf; 2069 2070 /* Get the number of encapsulated frames. */ 2071 stat = (struct r92c_rx_stat *)buf; 2072 npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT); 2073 DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n", 2074 device_xname(sc->sc_dev), __func__, npkts)); 2075 2076 /* Process all of them. */ 2077 while (npkts-- > 0) { 2078 if (__predict_false(len < (int)sizeof(*stat))) { 2079 DPRINTFN(DBG_RX, 2080 ("%s: %s: len(%d) is short than header\n", 2081 device_xname(sc->sc_dev), __func__, len)); 2082 break; 2083 } 2084 stat = (struct r92c_rx_stat *)buf; 2085 rxdw0 = le32toh(stat->rxdw0); 2086 2087 pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); 2088 if (__predict_false(pktlen == 0)) { 2089 DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n", 2090 device_xname(sc->sc_dev), __func__)); 2091 break; 2092 } 2093 2094 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; 2095 2096 /* Make sure everything fits in xfer. */ 2097 totlen = sizeof(*stat) + infosz + pktlen; 2098 if (__predict_false(totlen > len)) { 2099 DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n", 2100 device_xname(sc->sc_dev), __func__, totlen, 2101 (int)sizeof(*stat), infosz, pktlen, len)); 2102 break; 2103 } 2104 2105 /* Process 802.11 frame. */ 2106 urtwn_rx_frame(sc, buf, pktlen); 2107 2108 /* Next chunk is 128-byte aligned. */ 2109 totlen = roundup2(totlen, 128); 2110 buf += totlen; 2111 len -= totlen; 2112 } 2113 2114 resubmit: 2115 /* Setup a new transfer. */ 2116 usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ, 2117 USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof); 2118 (void)usbd_transfer(xfer); 2119 } 2120 2121 static void 2122 urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2123 { 2124 struct urtwn_tx_data *data = priv; 2125 struct urtwn_softc *sc = data->sc; 2126 struct ifnet *ifp = &sc->sc_if; 2127 usbd_pipe_handle pipe = data->pipe; 2128 int s; 2129 2130 DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n", 2131 device_xname(sc->sc_dev), __func__, status)); 2132 2133 mutex_enter(&sc->sc_tx_mtx); 2134 /* Put this Tx buffer back to our free list. */ 2135 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); 2136 mutex_exit(&sc->sc_tx_mtx); 2137 2138 s = splnet(); 2139 sc->tx_timer = 0; 2140 ifp->if_flags &= ~IFF_OACTIVE; 2141 2142 if (__predict_false(status != USBD_NORMAL_COMPLETION)) { 2143 if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) { 2144 if (status == USBD_STALLED) 2145 usbd_clear_endpoint_stall_async(pipe); 2146 ifp->if_oerrors++; 2147 } 2148 splx(s); 2149 return; 2150 } 2151 2152 ifp->if_opackets++; 2153 urtwn_start(ifp); 2154 2155 splx(s); 2156 } 2157 2158 static int 2159 urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2160 struct urtwn_tx_data *data) 2161 { 2162 struct ieee80211com *ic = &sc->sc_ic; 2163 struct ieee80211_frame *wh; 2164 struct ieee80211_key *k = NULL; 2165 struct r92c_tx_desc *txd; 2166 usbd_pipe_handle pipe; 2167 size_t i, padsize, xferlen; 2168 uint16_t seq, sum; 2169 uint8_t raid, type, tid, qid; 2170 int s, hasqos, error; 2171 2172 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2173 2174 wh = mtod(m, struct ieee80211_frame *); 2175 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2176 2177 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2178 k = ieee80211_crypto_encap(ic, ni, m); 2179 if (k == NULL) 2180 return ENOBUFS; 2181 2182 /* packet header may have moved, reset our local pointer */ 2183 wh = mtod(m, struct ieee80211_frame *); 2184 } 2185 2186 if (__predict_false(sc->sc_drvbpf != NULL)) { 2187 struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap; 2188 2189 tap->wt_flags = 0; 2190 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 2191 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 2192 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2193 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2194 2195 /* XXX: set tap->wt_rate? */ 2196 2197 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2198 } 2199 2200 if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) { 2201 /* data frames in 11n mode */ 2202 struct ieee80211_qosframe *qwh = (void *)wh; 2203 tid = qwh->i_qos[0] & IEEE80211_QOS_TID; 2204 qid = TID_TO_WME_AC(tid); 2205 } else if (type != IEEE80211_FC0_TYPE_DATA) { 2206 /* Use AC_VO for management frames. */ 2207 qid = WME_AC_VO; 2208 tid = 0; /* compiler happy */ 2209 } else { 2210 /* non-qos data frames */ 2211 tid = R92C_TXDW1_QSEL_BE; 2212 qid = WME_AC_BE; 2213 } 2214 2215 /* Get the USB pipe to use for this AC. */ 2216 pipe = sc->tx_pipe[sc->ac2idx[qid]]; 2217 2218 if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */ 2219 padsize = 8; 2220 else 2221 padsize = 0; 2222 2223 /* Fill Tx descriptor. */ 2224 txd = (struct r92c_tx_desc *)data->buf; 2225 memset(txd, 0, sizeof(*txd) + padsize); 2226 2227 txd->txdw0 |= htole32( 2228 SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) | 2229 SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | 2230 R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); 2231 2232 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2233 txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); 2234 2235 /* fix pad field */ 2236 if (padsize > 0) { 2237 DPRINTFN(DBG_TX, ("%s: %s: padding: size=%zd\n", 2238 device_xname(sc->sc_dev), __func__, padsize)); 2239 txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8))); 2240 } 2241 2242 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 2243 type == IEEE80211_FC0_TYPE_DATA) { 2244 if (ic->ic_curmode == IEEE80211_MODE_11B) 2245 raid = R92C_RAID_11B; 2246 else 2247 raid = R92C_RAID_11BG; 2248 DPRINTFN(DBG_TX, 2249 ("%s: %s: data packet: tid=%d, raid=%d\n", 2250 device_xname(sc->sc_dev), __func__, tid, raid)); 2251 2252 txd->txdw1 |= htole32( 2253 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) | 2254 SM(R92C_TXDW1_QSEL, tid) | 2255 SM(R92C_TXDW1_RAID, raid) | 2256 R92C_TXDW1_AGGBK); 2257 2258 if (hasqos) { 2259 txd->txdw4 |= htole32(R92C_TXDW4_QOS); 2260 } 2261 2262 if (ic->ic_flags & IEEE80211_F_USEPROT) { 2263 /* for 11g */ 2264 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 2265 txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF | 2266 R92C_TXDW4_HWRTSEN); 2267 } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 2268 txd->txdw4 |= htole32(R92C_TXDW4_RTSEN | 2269 R92C_TXDW4_HWRTSEN); 2270 } 2271 } 2272 /* Send RTS at OFDM24. */ 2273 txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8)); 2274 txd->txdw5 |= htole32(0x0001ff00); 2275 /* Send data at OFDM54. */ 2276 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11)); 2277 } else if (type == IEEE80211_FC0_TYPE_MGT) { 2278 DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n", 2279 device_xname(sc->sc_dev), __func__)); 2280 txd->txdw1 |= htole32( 2281 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) | 2282 SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) | 2283 SM(R92C_TXDW1_RAID, R92C_RAID_11B)); 2284 2285 /* Force CCK1. */ 2286 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); 2287 /* Use 1Mbps */ 2288 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0)); 2289 } else { 2290 /* broadcast or multicast packets */ 2291 DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n", 2292 device_xname(sc->sc_dev), __func__)); 2293 txd->txdw1 |= htole32( 2294 SM(R92C_TXDW1_MACID, URTWN_MACID_BC) | 2295 SM(R92C_TXDW1_RAID, R92C_RAID_11B)); 2296 2297 /* Force CCK1. */ 2298 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); 2299 /* Use 1Mbps */ 2300 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0)); 2301 } 2302 2303 /* Set sequence number */ 2304 seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT; 2305 txd->txdseq |= htole16(seq); 2306 2307 if (!hasqos) { 2308 /* Use HW sequence numbering for non-QoS frames. */ 2309 txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ); 2310 txd->txdseq |= htole16(0x8000); /* WTF? */ 2311 } 2312 2313 /* Compute Tx descriptor checksum. */ 2314 sum = 0; 2315 for (i = 0; i < sizeof(*txd) / 2; i++) 2316 sum ^= ((uint16_t *)txd)[i]; 2317 txd->txdsum = sum; /* NB: already little endian. */ 2318 2319 xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize; 2320 m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize); 2321 2322 s = splnet(); 2323 data->pipe = pipe; 2324 usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen, 2325 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT, 2326 urtwn_txeof); 2327 error = usbd_transfer(data->xfer); 2328 if (__predict_false(error != USBD_NORMAL_COMPLETION && 2329 error != USBD_IN_PROGRESS)) { 2330 splx(s); 2331 DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n", 2332 device_xname(sc->sc_dev), __func__, error)); 2333 return error; 2334 } 2335 splx(s); 2336 return 0; 2337 } 2338 2339 static void 2340 urtwn_start(struct ifnet *ifp) 2341 { 2342 struct urtwn_softc *sc = ifp->if_softc; 2343 struct ieee80211com *ic = &sc->sc_ic; 2344 struct urtwn_tx_data *data; 2345 struct ether_header *eh; 2346 struct ieee80211_node *ni; 2347 struct mbuf *m; 2348 2349 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2350 2351 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2352 return; 2353 2354 data = NULL; 2355 for (;;) { 2356 mutex_enter(&sc->sc_tx_mtx); 2357 if (data == NULL && !TAILQ_EMPTY(&sc->tx_free_list)) { 2358 data = TAILQ_FIRST(&sc->tx_free_list); 2359 TAILQ_REMOVE(&sc->tx_free_list, data, next); 2360 } 2361 mutex_exit(&sc->sc_tx_mtx); 2362 2363 if (data == NULL) { 2364 ifp->if_flags |= IFF_OACTIVE; 2365 DPRINTFN(DBG_TX, ("%s: empty tx_free_list\n", 2366 device_xname(sc->sc_dev))); 2367 return; 2368 } 2369 2370 /* Send pending management frames first. */ 2371 IF_DEQUEUE(&ic->ic_mgtq, m); 2372 if (m != NULL) { 2373 ni = (void *)m->m_pkthdr.rcvif; 2374 m->m_pkthdr.rcvif = NULL; 2375 goto sendit; 2376 } 2377 if (ic->ic_state != IEEE80211_S_RUN) 2378 break; 2379 2380 /* Encapsulate and send data frames. */ 2381 IFQ_DEQUEUE(&ifp->if_snd, m); 2382 if (m == NULL) 2383 break; 2384 2385 if (m->m_len < (int)sizeof(*eh) && 2386 (m = m_pullup(m, sizeof(*eh))) == NULL) { 2387 ifp->if_oerrors++; 2388 continue; 2389 } 2390 eh = mtod(m, struct ether_header *); 2391 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2392 if (ni == NULL) { 2393 m_freem(m); 2394 ifp->if_oerrors++; 2395 continue; 2396 } 2397 2398 bpf_mtap(ifp, m); 2399 2400 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 2401 ieee80211_free_node(ni); 2402 ifp->if_oerrors++; 2403 continue; 2404 } 2405 sendit: 2406 bpf_mtap3(ic->ic_rawbpf, m); 2407 2408 if (urtwn_tx(sc, m, ni, data) != 0) { 2409 m_freem(m); 2410 ieee80211_free_node(ni); 2411 ifp->if_oerrors++; 2412 continue; 2413 } 2414 data = NULL; 2415 m_freem(m); 2416 ieee80211_free_node(ni); 2417 sc->tx_timer = 5; 2418 ifp->if_timer = 1; 2419 } 2420 2421 /* Return the Tx buffer to the free list */ 2422 mutex_enter(&sc->sc_tx_mtx); 2423 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); 2424 mutex_exit(&sc->sc_tx_mtx); 2425 } 2426 2427 static void 2428 urtwn_watchdog(struct ifnet *ifp) 2429 { 2430 struct urtwn_softc *sc = ifp->if_softc; 2431 2432 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2433 2434 ifp->if_timer = 0; 2435 2436 if (sc->tx_timer > 0) { 2437 if (--sc->tx_timer == 0) { 2438 aprint_error_dev(sc->sc_dev, "device timeout\n"); 2439 /* urtwn_init(ifp); XXX needs a process context! */ 2440 ifp->if_oerrors++; 2441 return; 2442 } 2443 ifp->if_timer = 1; 2444 } 2445 ieee80211_watchdog(&sc->sc_ic); 2446 } 2447 2448 static int 2449 urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2450 { 2451 struct urtwn_softc *sc = ifp->if_softc; 2452 struct ieee80211com *ic = &sc->sc_ic; 2453 int s, error = 0; 2454 2455 DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n", 2456 device_xname(sc->sc_dev), __func__, cmd, data)); 2457 2458 s = splnet(); 2459 2460 switch (cmd) { 2461 case SIOCSIFFLAGS: 2462 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 2463 break; 2464 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 2465 case IFF_UP | IFF_RUNNING: 2466 break; 2467 case IFF_UP: 2468 urtwn_init(ifp); 2469 break; 2470 case IFF_RUNNING: 2471 urtwn_stop(ifp, 1); 2472 break; 2473 case 0: 2474 break; 2475 } 2476 break; 2477 2478 case SIOCADDMULTI: 2479 case SIOCDELMULTI: 2480 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2481 /* setup multicast filter, etc */ 2482 error = 0; 2483 } 2484 break; 2485 2486 default: 2487 error = ieee80211_ioctl(ic, cmd, data); 2488 break; 2489 } 2490 if (error == ENETRESET) { 2491 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2492 (IFF_UP | IFF_RUNNING) && 2493 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) { 2494 urtwn_init(ifp); 2495 } 2496 error = 0; 2497 } 2498 2499 splx(s); 2500 2501 return (error); 2502 } 2503 2504 static int 2505 urtwn_power_on(struct urtwn_softc *sc) 2506 { 2507 uint32_t reg; 2508 int ntries; 2509 2510 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2511 2512 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2513 2514 /* Wait for autoload done bit. */ 2515 for (ntries = 0; ntries < 1000; ntries++) { 2516 if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN) 2517 break; 2518 DELAY(5); 2519 } 2520 if (ntries == 1000) { 2521 aprint_error_dev(sc->sc_dev, 2522 "timeout waiting for chip autoload\n"); 2523 return (ETIMEDOUT); 2524 } 2525 2526 /* Unlock ISO/CLK/Power control register. */ 2527 urtwn_write_1(sc, R92C_RSV_CTRL, 0); 2528 /* Move SPS into PWM mode. */ 2529 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b); 2530 DELAY(100); 2531 2532 reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL); 2533 if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) { 2534 urtwn_write_1(sc, R92C_LDOV12D_CTRL, 2535 reg | R92C_LDOV12D_CTRL_LDV12_EN); 2536 DELAY(100); 2537 urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 2538 urtwn_read_1(sc, R92C_SYS_ISO_CTRL) & 2539 ~R92C_SYS_ISO_CTRL_MD2PP); 2540 } 2541 2542 /* Auto enable WLAN. */ 2543 urtwn_write_2(sc, R92C_APS_FSMCO, 2544 urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); 2545 for (ntries = 0; ntries < 1000; ntries++) { 2546 if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & 2547 R92C_APS_FSMCO_APFM_ONMAC)) 2548 break; 2549 DELAY(5); 2550 } 2551 if (ntries == 1000) { 2552 aprint_error_dev(sc->sc_dev, 2553 "timeout waiting for MAC auto ON\n"); 2554 return (ETIMEDOUT); 2555 } 2556 2557 /* Enable radio, GPIO and LED functions. */ 2558 KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | 2559 R92C_APS_FSMCO_PFM_ALDN) == 0x0812); 2560 urtwn_write_2(sc, R92C_APS_FSMCO, 2561 R92C_APS_FSMCO_AFSM_HSUS | 2562 R92C_APS_FSMCO_PDN_EN | 2563 R92C_APS_FSMCO_PFM_ALDN); 2564 2565 /* Release RF digital isolation. */ 2566 urtwn_write_2(sc, R92C_SYS_ISO_CTRL, 2567 urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR); 2568 2569 /* Initialize MAC. */ 2570 urtwn_write_1(sc, R92C_APSD_CTRL, 2571 urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF); 2572 for (ntries = 0; ntries < 200; ntries++) { 2573 if (!(urtwn_read_1(sc, R92C_APSD_CTRL) & 2574 R92C_APSD_CTRL_OFF_STATUS)) 2575 break; 2576 DELAY(5); 2577 } 2578 if (ntries == 200) { 2579 aprint_error_dev(sc->sc_dev, 2580 "timeout waiting for MAC initialization\n"); 2581 return (ETIMEDOUT); 2582 } 2583 2584 /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ 2585 reg = urtwn_read_2(sc, R92C_CR); 2586 reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | 2587 R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | 2588 R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | 2589 R92C_CR_ENSEC; 2590 urtwn_write_2(sc, R92C_CR, reg); 2591 2592 urtwn_write_1(sc, 0xfe10, 0x19); 2593 return (0); 2594 } 2595 2596 static int 2597 urtwn_llt_init(struct urtwn_softc *sc) 2598 { 2599 size_t i; 2600 int error; 2601 2602 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2603 2604 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2605 2606 /* Reserve pages [0; R92C_TX_PAGE_COUNT]. */ 2607 for (i = 0; i < R92C_TX_PAGE_COUNT; i++) { 2608 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) 2609 return (error); 2610 } 2611 /* NB: 0xff indicates end-of-list. */ 2612 if ((error = urtwn_llt_write(sc, i, 0xff)) != 0) 2613 return (error); 2614 /* 2615 * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1] 2616 * as ring buffer. 2617 */ 2618 for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) { 2619 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) 2620 return (error); 2621 } 2622 /* Make the last page point to the beginning of the ring buffer. */ 2623 error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1); 2624 return (error); 2625 } 2626 2627 static void 2628 urtwn_fw_reset(struct urtwn_softc *sc) 2629 { 2630 uint16_t reg; 2631 int ntries; 2632 2633 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2634 2635 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2636 2637 /* Tell 8051 to reset itself. */ 2638 urtwn_write_1(sc, R92C_HMETFR + 3, 0x20); 2639 2640 /* Wait until 8051 resets by itself. */ 2641 for (ntries = 0; ntries < 100; ntries++) { 2642 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); 2643 if (!(reg & R92C_SYS_FUNC_EN_CPUEN)) 2644 return; 2645 DELAY(50); 2646 } 2647 /* Force 8051 reset. */ 2648 urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); 2649 } 2650 2651 static int 2652 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len) 2653 { 2654 uint32_t reg; 2655 int off, mlen, error = 0; 2656 2657 DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n", 2658 device_xname(sc->sc_dev), __func__, page, buf, len)); 2659 2660 reg = urtwn_read_4(sc, R92C_MCUFWDL); 2661 reg = RW(reg, R92C_MCUFWDL_PAGE, page); 2662 urtwn_write_4(sc, R92C_MCUFWDL, reg); 2663 2664 off = R92C_FW_START_ADDR; 2665 while (len > 0) { 2666 if (len > 196) 2667 mlen = 196; 2668 else if (len > 4) 2669 mlen = 4; 2670 else 2671 mlen = 1; 2672 error = urtwn_write_region(sc, off, buf, mlen); 2673 if (error != 0) 2674 break; 2675 off += mlen; 2676 buf += mlen; 2677 len -= mlen; 2678 } 2679 return (error); 2680 } 2681 2682 static int 2683 urtwn_load_firmware(struct urtwn_softc *sc) 2684 { 2685 firmware_handle_t fwh; 2686 const struct r92c_fw_hdr *hdr; 2687 const char *name; 2688 u_char *fw, *ptr; 2689 size_t len; 2690 uint32_t reg; 2691 int mlen, ntries, page, error; 2692 2693 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2694 2695 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2696 2697 /* Read firmware image from the filesystem. */ 2698 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == 2699 URTWN_CHIP_UMC_A_CUT) 2700 name = "rtl8192cfwU.bin"; 2701 else 2702 name = "rtl8192cfw.bin"; 2703 if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) { 2704 aprint_error_dev(sc->sc_dev, 2705 "failed loadfirmware of file %s (error %d)\n", name, error); 2706 return (error); 2707 } 2708 len = firmware_get_size(fwh); 2709 fw = firmware_malloc(len); 2710 if (fw == NULL) { 2711 aprint_error_dev(sc->sc_dev, 2712 "failed to allocate firmware memory\n"); 2713 firmware_close(fwh); 2714 return (ENOMEM); 2715 } 2716 error = firmware_read(fwh, 0, fw, len); 2717 firmware_close(fwh); 2718 if (error != 0) { 2719 aprint_error_dev(sc->sc_dev, 2720 "failed to read firmware (error %d)\n", error); 2721 firmware_free(fw, 0); 2722 return (error); 2723 } 2724 2725 ptr = fw; 2726 hdr = (const struct r92c_fw_hdr *)ptr; 2727 /* Check if there is a valid FW header and skip it. */ 2728 if ((le16toh(hdr->signature) >> 4) == 0x88c || 2729 (le16toh(hdr->signature) >> 4) == 0x92c) { 2730 DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n", 2731 device_xname(sc->sc_dev), __func__, 2732 le16toh(hdr->version), le16toh(hdr->subversion), 2733 hdr->month, hdr->date, hdr->hour, hdr->minute)); 2734 ptr += sizeof(*hdr); 2735 len -= sizeof(*hdr); 2736 } 2737 2738 if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) { 2739 urtwn_fw_reset(sc); 2740 urtwn_write_1(sc, R92C_MCUFWDL, 0); 2741 } 2742 2743 /* download enabled */ 2744 urtwn_write_2(sc, R92C_SYS_FUNC_EN, 2745 urtwn_read_2(sc, R92C_SYS_FUNC_EN) | 2746 R92C_SYS_FUNC_EN_CPUEN); 2747 urtwn_write_1(sc, R92C_MCUFWDL, 2748 urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN); 2749 urtwn_write_1(sc, R92C_MCUFWDL + 2, 2750 urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08); 2751 2752 /* download firmware */ 2753 for (page = 0; len > 0; page++) { 2754 mlen = MIN(len, R92C_FW_PAGE_SIZE); 2755 error = urtwn_fw_loadpage(sc, page, ptr, mlen); 2756 if (error != 0) { 2757 aprint_error_dev(sc->sc_dev, 2758 "could not load firmware page %d\n", page); 2759 goto fail; 2760 } 2761 ptr += mlen; 2762 len -= mlen; 2763 } 2764 2765 /* download disable */ 2766 urtwn_write_1(sc, R92C_MCUFWDL, 2767 urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN); 2768 urtwn_write_1(sc, R92C_MCUFWDL + 1, 0); 2769 2770 /* Wait for checksum report. */ 2771 for (ntries = 0; ntries < 1000; ntries++) { 2772 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT) 2773 break; 2774 DELAY(5); 2775 } 2776 if (ntries == 1000) { 2777 aprint_error_dev(sc->sc_dev, 2778 "timeout waiting for checksum report\n"); 2779 error = ETIMEDOUT; 2780 goto fail; 2781 } 2782 2783 /* Wait for firmware readiness. */ 2784 reg = urtwn_read_4(sc, R92C_MCUFWDL); 2785 reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY; 2786 urtwn_write_4(sc, R92C_MCUFWDL, reg); 2787 for (ntries = 0; ntries < 1000; ntries++) { 2788 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY) 2789 break; 2790 DELAY(5); 2791 } 2792 if (ntries == 1000) { 2793 aprint_error_dev(sc->sc_dev, 2794 "timeout waiting for firmware readiness\n"); 2795 error = ETIMEDOUT; 2796 goto fail; 2797 } 2798 fail: 2799 firmware_free(fw, 0); 2800 return (error); 2801 } 2802 2803 static int 2804 urtwn_dma_init(struct urtwn_softc *sc) 2805 { 2806 int hashq, hasnq, haslq, nqueues, nqpages, nrempages; 2807 uint32_t reg; 2808 int error; 2809 2810 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2811 2812 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2813 2814 /* Initialize LLT table. */ 2815 error = urtwn_llt_init(sc); 2816 if (error != 0) 2817 return (error); 2818 2819 /* Get Tx queues to USB endpoints mapping. */ 2820 hashq = hasnq = haslq = 0; 2821 reg = urtwn_read_2(sc, R92C_USB_EP + 1); 2822 DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n", 2823 device_xname(sc->sc_dev), __func__, reg)); 2824 if (MS(reg, R92C_USB_EP_HQ) != 0) 2825 hashq = 1; 2826 if (MS(reg, R92C_USB_EP_NQ) != 0) 2827 hasnq = 1; 2828 if (MS(reg, R92C_USB_EP_LQ) != 0) 2829 haslq = 1; 2830 nqueues = hashq + hasnq + haslq; 2831 if (nqueues == 0) 2832 return (EIO); 2833 /* Get the number of pages for each queue. */ 2834 nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues; 2835 /* The remaining pages are assigned to the high priority queue. */ 2836 nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues; 2837 2838 /* Set number of pages for normal priority queue. */ 2839 urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0); 2840 urtwn_write_4(sc, R92C_RQPN, 2841 /* Set number of pages for public queue. */ 2842 SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) | 2843 /* Set number of pages for high priority queue. */ 2844 SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) | 2845 /* Set number of pages for low priority queue. */ 2846 SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) | 2847 /* Load values. */ 2848 R92C_RQPN_LD); 2849 2850 urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY); 2851 urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY); 2852 urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY); 2853 urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY); 2854 urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY); 2855 2856 /* Set queue to USB pipe mapping. */ 2857 reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL); 2858 reg &= ~R92C_TRXDMA_CTRL_QMAP_M; 2859 if (nqueues == 1) { 2860 if (hashq) { 2861 reg |= R92C_TRXDMA_CTRL_QMAP_HQ; 2862 } else if (hasnq) { 2863 reg |= R92C_TRXDMA_CTRL_QMAP_NQ; 2864 } else { 2865 reg |= R92C_TRXDMA_CTRL_QMAP_LQ; 2866 } 2867 } else if (nqueues == 2) { 2868 /* All 2-endpoints configs have a high priority queue. */ 2869 if (!hashq) { 2870 return (EIO); 2871 } 2872 if (hasnq) { 2873 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ; 2874 } else { 2875 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ; 2876 } 2877 } else { 2878 reg |= R92C_TRXDMA_CTRL_QMAP_3EP; 2879 } 2880 urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); 2881 2882 /* Set Tx/Rx transfer page boundary. */ 2883 urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff); 2884 2885 /* Set Tx/Rx transfer page size. */ 2886 urtwn_write_1(sc, R92C_PBP, 2887 SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); 2888 return (0); 2889 } 2890 2891 static void 2892 urtwn_mac_init(struct urtwn_softc *sc) 2893 { 2894 size_t i; 2895 2896 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2897 2898 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2899 2900 /* Write MAC initialization values. */ 2901 for (i = 0; i < __arraycount(rtl8192cu_mac); i++) 2902 urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val); 2903 } 2904 2905 static void 2906 urtwn_bb_init(struct urtwn_softc *sc) 2907 { 2908 const struct urtwn_bb_prog *prog; 2909 uint32_t reg; 2910 size_t i; 2911 2912 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 2913 2914 KASSERT(mutex_owned(&sc->sc_write_mtx)); 2915 2916 /* Enable BB and RF. */ 2917 urtwn_write_2(sc, R92C_SYS_FUNC_EN, 2918 urtwn_read_2(sc, R92C_SYS_FUNC_EN) | 2919 R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST | 2920 R92C_SYS_FUNC_EN_DIO_RF); 2921 2922 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83); 2923 urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb); 2924 2925 urtwn_write_1(sc, R92C_RF_CTRL, 2926 R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB); 2927 urtwn_write_1(sc, R92C_SYS_FUNC_EN, 2928 R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD | 2929 R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB); 2930 2931 urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f); 2932 urtwn_write_1(sc, 0x15, 0xe9); 2933 urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80); 2934 2935 /* Select BB programming based on board type. */ 2936 if (!(sc->chip & URTWN_CHIP_92C)) { 2937 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) { 2938 prog = &rtl8188ce_bb_prog; 2939 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) { 2940 prog = &rtl8188ru_bb_prog; 2941 } else { 2942 prog = &rtl8188cu_bb_prog; 2943 } 2944 } else { 2945 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) { 2946 prog = &rtl8192ce_bb_prog; 2947 } else { 2948 prog = &rtl8192cu_bb_prog; 2949 } 2950 } 2951 /* Write BB initialization values. */ 2952 for (i = 0; i < prog->count; i++) { 2953 /* additional delay depend on registers */ 2954 switch (prog->regs[i]) { 2955 case 0xfe: 2956 usbd_delay_ms(sc->sc_udev, 50); 2957 break; 2958 case 0xfd: 2959 usbd_delay_ms(sc->sc_udev, 5); 2960 break; 2961 case 0xfc: 2962 usbd_delay_ms(sc->sc_udev, 1); 2963 break; 2964 case 0xfb: 2965 DELAY(50); 2966 break; 2967 case 0xfa: 2968 DELAY(5); 2969 break; 2970 case 0xf9: 2971 DELAY(1); 2972 break; 2973 } 2974 urtwn_bb_write(sc, prog->regs[i], prog->vals[i]); 2975 DELAY(1); 2976 } 2977 2978 if (sc->chip & URTWN_CHIP_92C_1T2R) { 2979 /* 8192C 1T only configuration. */ 2980 reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO); 2981 reg = (reg & ~0x00000003) | 0x2; 2982 urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg); 2983 2984 reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO); 2985 reg = (reg & ~0x00300033) | 0x00200022; 2986 urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg); 2987 2988 reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING); 2989 reg = (reg & ~0xff000000) | (0x45 << 24); 2990 urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg); 2991 2992 reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); 2993 reg = (reg & ~0x000000ff) | 0x23; 2994 urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg); 2995 2996 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1); 2997 reg = (reg & ~0x00000030) | (1 << 4); 2998 urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg); 2999 3000 reg = urtwn_bb_read(sc, 0xe74); 3001 reg = (reg & ~0x0c000000) | (2 << 26); 3002 urtwn_bb_write(sc, 0xe74, reg); 3003 reg = urtwn_bb_read(sc, 0xe78); 3004 reg = (reg & ~0x0c000000) | (2 << 26); 3005 urtwn_bb_write(sc, 0xe78, reg); 3006 reg = urtwn_bb_read(sc, 0xe7c); 3007 reg = (reg & ~0x0c000000) | (2 << 26); 3008 urtwn_bb_write(sc, 0xe7c, reg); 3009 reg = urtwn_bb_read(sc, 0xe80); 3010 reg = (reg & ~0x0c000000) | (2 << 26); 3011 urtwn_bb_write(sc, 0xe80, reg); 3012 reg = urtwn_bb_read(sc, 0xe88); 3013 reg = (reg & ~0x0c000000) | (2 << 26); 3014 urtwn_bb_write(sc, 0xe88, reg); 3015 } 3016 3017 /* Write AGC values. */ 3018 for (i = 0; i < prog->agccount; i++) { 3019 urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]); 3020 DELAY(1); 3021 } 3022 3023 if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & 3024 R92C_HSSI_PARAM2_CCK_HIPWR) { 3025 SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR); 3026 } 3027 } 3028 3029 static void 3030 urtwn_rf_init(struct urtwn_softc *sc) 3031 { 3032 const struct urtwn_rf_prog *prog; 3033 uint32_t reg, mask, saved; 3034 size_t i, j, idx; 3035 3036 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3037 3038 /* Select RF programming based on board type. */ 3039 if (!(sc->chip & URTWN_CHIP_92C)) { 3040 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) { 3041 prog = rtl8188ce_rf_prog; 3042 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) { 3043 prog = rtl8188ru_rf_prog; 3044 } else { 3045 prog = rtl8188cu_rf_prog; 3046 } 3047 } else { 3048 prog = rtl8192ce_rf_prog; 3049 } 3050 3051 for (i = 0; i < sc->nrxchains; i++) { 3052 /* Save RF_ENV control type. */ 3053 idx = i / 2; 3054 mask = 0xffffU << ((i % 2) * 16); 3055 saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask; 3056 3057 /* Set RF_ENV enable. */ 3058 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); 3059 reg |= 0x100000; 3060 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); 3061 DELAY(1); 3062 3063 /* Set RF_ENV output high. */ 3064 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); 3065 reg |= 0x10; 3066 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); 3067 DELAY(1); 3068 3069 /* Set address and data lengths of RF registers. */ 3070 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); 3071 reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH; 3072 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); 3073 DELAY(1); 3074 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); 3075 reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH; 3076 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); 3077 DELAY(1); 3078 3079 /* Write RF initialization values for this chain. */ 3080 for (j = 0; j < prog[i].count; j++) { 3081 if (prog[i].regs[j] >= 0xf9 && 3082 prog[i].regs[j] <= 0xfe) { 3083 /* 3084 * These are fake RF registers offsets that 3085 * indicate a delay is required. 3086 */ 3087 usbd_delay_ms(sc->sc_udev, 50); 3088 continue; 3089 } 3090 urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]); 3091 DELAY(1); 3092 } 3093 3094 /* Restore RF_ENV control type. */ 3095 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask; 3096 urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved); 3097 } 3098 3099 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == 3100 URTWN_CHIP_UMC_A_CUT) { 3101 urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255); 3102 urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00); 3103 } 3104 3105 /* Cache RF register CHNLBW. */ 3106 for (i = 0; i < 2; i++) { 3107 sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW); 3108 } 3109 } 3110 3111 static void 3112 urtwn_cam_init(struct urtwn_softc *sc) 3113 { 3114 uint32_t content, command; 3115 uint8_t idx; 3116 size_t i; 3117 3118 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3119 3120 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3121 3122 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) { 3123 content = (idx & 3) 3124 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S) 3125 | R92C_CAM_VALID; 3126 3127 command = R92C_CAMCMD_POLLING 3128 | R92C_CAMCMD_WRITE 3129 | R92C_CAM_CTL0(idx); 3130 3131 urtwn_write_4(sc, R92C_CAMWRITE, content); 3132 urtwn_write_4(sc, R92C_CAMCMD, command); 3133 } 3134 3135 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) { 3136 for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) { 3137 if (i == 0) { 3138 content = (idx & 3) 3139 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S) 3140 | R92C_CAM_VALID; 3141 } else { 3142 content = 0; 3143 } 3144 3145 command = R92C_CAMCMD_POLLING 3146 | R92C_CAMCMD_WRITE 3147 | R92C_CAM_CTL0(idx) 3148 | i; 3149 3150 urtwn_write_4(sc, R92C_CAMWRITE, content); 3151 urtwn_write_4(sc, R92C_CAMCMD, command); 3152 } 3153 } 3154 3155 /* Invalidate all CAM entries. */ 3156 urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR); 3157 } 3158 3159 static void 3160 urtwn_pa_bias_init(struct urtwn_softc *sc) 3161 { 3162 uint8_t reg; 3163 size_t i; 3164 3165 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3166 3167 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3168 3169 for (i = 0; i < sc->nrxchains; i++) { 3170 if (sc->pa_setting & (1U << i)) 3171 continue; 3172 3173 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406); 3174 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406); 3175 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406); 3176 urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406); 3177 } 3178 if (!(sc->pa_setting & 0x10)) { 3179 reg = urtwn_read_1(sc, 0x16); 3180 reg = (reg & ~0xf0) | 0x90; 3181 urtwn_write_1(sc, 0x16, reg); 3182 } 3183 } 3184 3185 static void 3186 urtwn_rxfilter_init(struct urtwn_softc *sc) 3187 { 3188 3189 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3190 3191 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3192 3193 /* Initialize Rx filter. */ 3194 /* TODO: use better filter for monitor mode. */ 3195 urtwn_write_4(sc, R92C_RCR, 3196 R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB | 3197 R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL | 3198 R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS); 3199 /* Accept all multicast frames. */ 3200 urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff); 3201 urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff); 3202 /* Accept all management frames. */ 3203 urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff); 3204 /* Reject all control frames. */ 3205 urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000); 3206 /* Accept all data frames. */ 3207 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); 3208 } 3209 3210 static void 3211 urtwn_edca_init(struct urtwn_softc *sc) 3212 { 3213 3214 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3215 3216 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3217 3218 /* set spec SIFS (used in NAV) */ 3219 urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a); 3220 urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a); 3221 3222 /* set SIFS CCK/OFDM */ 3223 urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a); 3224 urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a); 3225 3226 /* TXOP */ 3227 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b); 3228 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f); 3229 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324); 3230 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226); 3231 } 3232 3233 static void 3234 urtwn_write_txpower(struct urtwn_softc *sc, int chain, 3235 uint16_t power[URTWN_RIDX_COUNT]) 3236 { 3237 uint32_t reg; 3238 3239 DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev), 3240 __func__, chain)); 3241 3242 /* Write per-CCK rate Tx power. */ 3243 if (chain == 0) { 3244 reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32); 3245 reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]); 3246 urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg); 3247 3248 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); 3249 reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]); 3250 reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]); 3251 reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]); 3252 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); 3253 } else { 3254 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32); 3255 reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]); 3256 reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]); 3257 reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]); 3258 urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg); 3259 3260 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); 3261 reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]); 3262 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); 3263 } 3264 /* Write per-OFDM rate Tx power. */ 3265 urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain), 3266 SM(R92C_TXAGC_RATE06, power[ 4]) | 3267 SM(R92C_TXAGC_RATE09, power[ 5]) | 3268 SM(R92C_TXAGC_RATE12, power[ 6]) | 3269 SM(R92C_TXAGC_RATE18, power[ 7])); 3270 urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain), 3271 SM(R92C_TXAGC_RATE24, power[ 8]) | 3272 SM(R92C_TXAGC_RATE36, power[ 9]) | 3273 SM(R92C_TXAGC_RATE48, power[10]) | 3274 SM(R92C_TXAGC_RATE54, power[11])); 3275 /* Write per-MCS Tx power. */ 3276 urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain), 3277 SM(R92C_TXAGC_MCS00, power[12]) | 3278 SM(R92C_TXAGC_MCS01, power[13]) | 3279 SM(R92C_TXAGC_MCS02, power[14]) | 3280 SM(R92C_TXAGC_MCS03, power[15])); 3281 urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain), 3282 SM(R92C_TXAGC_MCS04, power[16]) | 3283 SM(R92C_TXAGC_MCS05, power[17]) | 3284 SM(R92C_TXAGC_MCS06, power[18]) | 3285 SM(R92C_TXAGC_MCS07, power[19])); 3286 urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain), 3287 SM(R92C_TXAGC_MCS08, power[20]) | 3288 SM(R92C_TXAGC_MCS09, power[21]) | 3289 SM(R92C_TXAGC_MCS10, power[22]) | 3290 SM(R92C_TXAGC_MCS11, power[23])); 3291 urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain), 3292 SM(R92C_TXAGC_MCS12, power[24]) | 3293 SM(R92C_TXAGC_MCS13, power[25]) | 3294 SM(R92C_TXAGC_MCS14, power[26]) | 3295 SM(R92C_TXAGC_MCS15, power[27])); 3296 } 3297 3298 static void 3299 urtwn_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m, 3300 uint16_t power[URTWN_RIDX_COUNT]) 3301 { 3302 struct r92c_rom *rom = &sc->rom; 3303 uint16_t cckpow, ofdmpow, htpow, diff, maxpow; 3304 const struct urtwn_txpwr *base; 3305 int ridx, group; 3306 3307 DPRINTFN(DBG_FN, ("%s: %s: chain=%zd, chan=%d\n", 3308 device_xname(sc->sc_dev), __func__, chain, chan)); 3309 3310 /* Determine channel group. */ 3311 if (chan <= 3) { 3312 group = 0; 3313 } else if (chan <= 9) { 3314 group = 1; 3315 } else { 3316 group = 2; 3317 } 3318 3319 /* Get original Tx power based on board type and RF chain. */ 3320 if (!(sc->chip & URTWN_CHIP_92C)) { 3321 if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) { 3322 base = &rtl8188ru_txagc[chain]; 3323 } else { 3324 base = &rtl8192cu_txagc[chain]; 3325 } 3326 } else { 3327 base = &rtl8192cu_txagc[chain]; 3328 } 3329 3330 memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); 3331 if (sc->regulatory == 0) { 3332 for (ridx = 0; ridx <= 3; ridx++) { 3333 power[ridx] = base->pwr[0][ridx]; 3334 } 3335 } 3336 for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) { 3337 if (sc->regulatory == 3) { 3338 power[ridx] = base->pwr[0][ridx]; 3339 /* Apply vendor limits. */ 3340 if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) { 3341 maxpow = rom->ht40_max_pwr[group]; 3342 } else { 3343 maxpow = rom->ht20_max_pwr[group]; 3344 } 3345 maxpow = (maxpow >> (chain * 4)) & 0xf; 3346 if (power[ridx] > maxpow) { 3347 power[ridx] = maxpow; 3348 } 3349 } else if (sc->regulatory == 1) { 3350 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) { 3351 power[ridx] = base->pwr[group][ridx]; 3352 } 3353 } else if (sc->regulatory != 2) { 3354 power[ridx] = base->pwr[0][ridx]; 3355 } 3356 } 3357 3358 /* Compute per-CCK rate Tx power. */ 3359 cckpow = rom->cck_tx_pwr[chain][group]; 3360 for (ridx = 0; ridx <= 3; ridx++) { 3361 power[ridx] += cckpow; 3362 if (power[ridx] > R92C_MAX_TX_PWR) { 3363 power[ridx] = R92C_MAX_TX_PWR; 3364 } 3365 } 3366 3367 htpow = rom->ht40_1s_tx_pwr[chain][group]; 3368 if (sc->ntxchains > 1) { 3369 /* Apply reduction for 2 spatial streams. */ 3370 diff = rom->ht40_2s_tx_pwr_diff[group]; 3371 diff = (diff >> (chain * 4)) & 0xf; 3372 htpow = (htpow > diff) ? htpow - diff : 0; 3373 } 3374 3375 /* Compute per-OFDM rate Tx power. */ 3376 diff = rom->ofdm_tx_pwr_diff[group]; 3377 diff = (diff >> (chain * 4)) & 0xf; 3378 ofdmpow = htpow + diff; /* HT->OFDM correction. */ 3379 for (ridx = 4; ridx <= 11; ridx++) { 3380 power[ridx] += ofdmpow; 3381 if (power[ridx] > R92C_MAX_TX_PWR) { 3382 power[ridx] = R92C_MAX_TX_PWR; 3383 } 3384 } 3385 3386 /* Compute per-MCS Tx power. */ 3387 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) { 3388 diff = rom->ht20_tx_pwr_diff[group]; 3389 diff = (diff >> (chain * 4)) & 0xf; 3390 htpow += diff; /* HT40->HT20 correction. */ 3391 } 3392 for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) { 3393 power[ridx] += htpow; 3394 if (power[ridx] > R92C_MAX_TX_PWR) { 3395 power[ridx] = R92C_MAX_TX_PWR; 3396 } 3397 } 3398 #ifdef URTWN_DEBUG 3399 if (urtwn_debug & DBG_RF) { 3400 /* Dump per-rate Tx power values. */ 3401 printf("%s: %s: Tx power for chain %zd:\n", 3402 device_xname(sc->sc_dev), __func__, chain); 3403 for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) { 3404 printf("%s: %s: Rate %d = %u\n", 3405 device_xname(sc->sc_dev), __func__, ridx, 3406 power[ridx]); 3407 } 3408 } 3409 #endif 3410 } 3411 3412 static void 3413 urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m) 3414 { 3415 uint16_t power[URTWN_RIDX_COUNT]; 3416 size_t i; 3417 3418 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3419 3420 for (i = 0; i < sc->ntxchains; i++) { 3421 /* Compute per-rate Tx power values. */ 3422 urtwn_get_txpower(sc, i, chan, ht40m, power); 3423 /* Write per-rate Tx power values to hardware. */ 3424 urtwn_write_txpower(sc, i, power); 3425 } 3426 } 3427 3428 static void 3429 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m) 3430 { 3431 struct ieee80211com *ic = &sc->sc_ic; 3432 u_int chan; 3433 size_t i; 3434 3435 chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ 3436 3437 DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev), 3438 __func__, chan)); 3439 3440 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3441 3442 if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) { 3443 chan += 2; 3444 } else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){ 3445 chan -= 2; 3446 } 3447 3448 /* Set Tx power for this new channel. */ 3449 urtwn_set_txpower(sc, chan, ht40m); 3450 3451 for (i = 0; i < sc->nrxchains; i++) { 3452 urtwn_rf_write(sc, i, R92C_RF_CHNLBW, 3453 RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan)); 3454 } 3455 3456 if (ht40m) { 3457 /* Is secondary channel below or above primary? */ 3458 int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE); 3459 uint32_t reg; 3460 3461 urtwn_write_1(sc, R92C_BWOPMODE, 3462 urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ); 3463 3464 reg = urtwn_read_1(sc, R92C_RRSR + 2); 3465 reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5; 3466 urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg); 3467 3468 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, 3469 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ); 3470 urtwn_bb_write(sc, R92C_FPGA1_RFMOD, 3471 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ); 3472 3473 /* Set CCK side band. */ 3474 reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM); 3475 reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4; 3476 urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg); 3477 3478 reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF); 3479 reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10; 3480 urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg); 3481 3482 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, 3483 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) & 3484 ~R92C_FPGA0_ANAPARAM2_CBW20); 3485 3486 reg = urtwn_bb_read(sc, 0x818); 3487 reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26; 3488 urtwn_bb_write(sc, 0x818, reg); 3489 3490 /* Select 40MHz bandwidth. */ 3491 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, 3492 (sc->rf_chnlbw[0] & ~0xfff) | chan); 3493 } else { 3494 urtwn_write_1(sc, R92C_BWOPMODE, 3495 urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ); 3496 3497 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, 3498 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ); 3499 urtwn_bb_write(sc, R92C_FPGA1_RFMOD, 3500 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ); 3501 3502 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, 3503 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) | 3504 R92C_FPGA0_ANAPARAM2_CBW20); 3505 3506 /* Select 20MHz bandwidth. */ 3507 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, 3508 (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan); 3509 } 3510 } 3511 3512 static void 3513 urtwn_iq_calib(struct urtwn_softc *sc, bool inited) 3514 { 3515 3516 DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev), 3517 __func__, inited)); 3518 3519 /* TODO */ 3520 } 3521 3522 static void 3523 urtwn_lc_calib(struct urtwn_softc *sc) 3524 { 3525 uint32_t rf_ac[2]; 3526 uint8_t txmode; 3527 size_t i; 3528 3529 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3530 3531 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3532 3533 txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3); 3534 if ((txmode & 0x70) != 0) { 3535 /* Disable all continuous Tx. */ 3536 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70); 3537 3538 /* Set RF mode to standby mode. */ 3539 for (i = 0; i < sc->nrxchains; i++) { 3540 rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC); 3541 urtwn_rf_write(sc, i, R92C_RF_AC, 3542 RW(rf_ac[i], R92C_RF_AC_MODE, 3543 R92C_RF_AC_MODE_STANDBY)); 3544 } 3545 } else { 3546 /* Block all Tx queues. */ 3547 urtwn_write_1(sc, R92C_TXPAUSE, 0xff); 3548 } 3549 /* Start calibration. */ 3550 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, 3551 urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART); 3552 3553 /* Give calibration the time to complete. */ 3554 usbd_delay_ms(sc->sc_udev, 100); 3555 3556 /* Restore configuration. */ 3557 if ((txmode & 0x70) != 0) { 3558 /* Restore Tx mode. */ 3559 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode); 3560 /* Restore RF mode. */ 3561 for (i = 0; i < sc->nrxchains; i++) { 3562 urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]); 3563 } 3564 } else { 3565 /* Unblock all Tx queues. */ 3566 urtwn_write_1(sc, R92C_TXPAUSE, 0x00); 3567 } 3568 } 3569 3570 static void 3571 urtwn_temp_calib(struct urtwn_softc *sc) 3572 { 3573 int temp; 3574 3575 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3576 3577 KASSERT(mutex_owned(&sc->sc_write_mtx)); 3578 3579 if (sc->thcal_state == 0) { 3580 /* Start measuring temperature. */ 3581 DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n", 3582 device_xname(sc->sc_dev), __func__)); 3583 urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60); 3584 sc->thcal_state = 1; 3585 return; 3586 } 3587 sc->thcal_state = 0; 3588 3589 /* Read measured temperature. */ 3590 temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f; 3591 DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev), 3592 __func__, temp)); 3593 if (temp == 0) /* Read failed, skip. */ 3594 return; 3595 3596 /* 3597 * Redo LC calibration if temperature changed significantly since 3598 * last calibration. 3599 */ 3600 if (sc->thcal_lctemp == 0) { 3601 /* First LC calibration is performed in urtwn_init(). */ 3602 sc->thcal_lctemp = temp; 3603 } else if (abs(temp - sc->thcal_lctemp) > 1) { 3604 DPRINTFN(DBG_RF, 3605 ("%s: %s: LC calib triggered by temp: %d -> %d\n", 3606 device_xname(sc->sc_dev), __func__, sc->thcal_lctemp, 3607 temp)); 3608 urtwn_lc_calib(sc); 3609 /* Record temperature of last LC calibration. */ 3610 sc->thcal_lctemp = temp; 3611 } 3612 } 3613 3614 static int 3615 urtwn_init(struct ifnet *ifp) 3616 { 3617 struct urtwn_softc *sc = ifp->if_softc; 3618 struct ieee80211com *ic = &sc->sc_ic; 3619 struct urtwn_rx_data *data; 3620 uint32_t reg; 3621 size_t i; 3622 int error; 3623 3624 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3625 3626 urtwn_stop(ifp, 0); 3627 3628 mutex_enter(&sc->sc_write_mtx); 3629 3630 mutex_enter(&sc->sc_task_mtx); 3631 /* Init host async commands ring. */ 3632 sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; 3633 mutex_exit(&sc->sc_task_mtx); 3634 3635 mutex_enter(&sc->sc_fwcmd_mtx); 3636 /* Init firmware commands ring. */ 3637 sc->fwcur = 0; 3638 mutex_exit(&sc->sc_fwcmd_mtx); 3639 3640 /* Allocate Tx/Rx buffers. */ 3641 error = urtwn_alloc_rx_list(sc); 3642 if (error != 0) { 3643 aprint_error_dev(sc->sc_dev, 3644 "could not allocate Rx buffers\n"); 3645 goto fail; 3646 } 3647 error = urtwn_alloc_tx_list(sc); 3648 if (error != 0) { 3649 aprint_error_dev(sc->sc_dev, 3650 "could not allocate Tx buffers\n"); 3651 goto fail; 3652 } 3653 3654 /* Power on adapter. */ 3655 error = urtwn_power_on(sc); 3656 if (error != 0) 3657 goto fail; 3658 3659 /* Initialize DMA. */ 3660 error = urtwn_dma_init(sc); 3661 if (error != 0) 3662 goto fail; 3663 3664 /* Set info size in Rx descriptors (in 64-bit words). */ 3665 urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4); 3666 3667 /* Init interrupts. */ 3668 urtwn_write_4(sc, R92C_HISR, 0xffffffff); 3669 urtwn_write_4(sc, R92C_HIMR, 0xffffffff); 3670 3671 /* Set MAC address. */ 3672 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 3673 urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN); 3674 3675 /* Set initial network type. */ 3676 reg = urtwn_read_4(sc, R92C_CR); 3677 switch (ic->ic_opmode) { 3678 case IEEE80211_M_STA: 3679 default: 3680 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA); 3681 break; 3682 3683 case IEEE80211_M_IBSS: 3684 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC); 3685 break; 3686 } 3687 urtwn_write_4(sc, R92C_CR, reg); 3688 3689 /* Set response rate */ 3690 reg = urtwn_read_4(sc, R92C_RRSR); 3691 reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M); 3692 urtwn_write_4(sc, R92C_RRSR, reg); 3693 3694 /* SIFS (used in NAV) */ 3695 urtwn_write_2(sc, R92C_SPEC_SIFS, 3696 SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10)); 3697 3698 /* Set short/long retry limits. */ 3699 urtwn_write_2(sc, R92C_RL, 3700 SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30)); 3701 3702 /* Initialize EDCA parameters. */ 3703 urtwn_edca_init(sc); 3704 3705 /* Setup rate fallback. */ 3706 urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000); 3707 urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404); 3708 urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201); 3709 urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605); 3710 3711 urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL, 3712 urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) | 3713 R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW); 3714 /* Set ACK timeout. */ 3715 urtwn_write_1(sc, R92C_ACKTO, 0x40); 3716 3717 /* Setup USB aggregation. */ 3718 /* Tx */ 3719 reg = urtwn_read_4(sc, R92C_TDECTRL); 3720 reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6); 3721 urtwn_write_4(sc, R92C_TDECTRL, reg); 3722 /* Rx */ 3723 urtwn_write_1(sc, R92C_TRXDMA_CTRL, 3724 urtwn_read_1(sc, R92C_TRXDMA_CTRL) | 3725 R92C_TRXDMA_CTRL_RXDMA_AGG_EN); 3726 urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION, 3727 urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) & 3728 ~R92C_USB_SPECIAL_OPTION_AGG_EN); 3729 urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48); 3730 urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4); 3731 3732 /* Initialize beacon parameters. */ 3733 urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404); 3734 urtwn_write_1(sc, R92C_DRVERLYINT, 0x05); 3735 urtwn_write_1(sc, R92C_BCNDMATIM, 0x02); 3736 urtwn_write_2(sc, R92C_BCNTCFG, 0x660f); 3737 3738 /* Setup AMPDU aggregation. */ 3739 urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */ 3740 urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16); 3741 urtwn_write_2(sc, 0x4ca, 0x0708); 3742 3743 urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff); 3744 urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0); 3745 3746 /* Load 8051 microcode. */ 3747 error = urtwn_load_firmware(sc); 3748 if (error != 0) 3749 goto fail; 3750 SET(sc->sc_flags, URTWN_FLAG_FWREADY); 3751 3752 /* Initialize MAC/BB/RF blocks. */ 3753 /* 3754 * XXX: urtwn_mac_init() sets R92C_RCR[0:15] = R92C_RCR_APM | 3755 * R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_AICV | R92C_RCR_AMF. 3756 * XXX: This setting should be removed from rtl8192cu_mac[]. 3757 */ 3758 urtwn_mac_init(sc); // sets R92C_RCR[0:15] 3759 urtwn_rxfilter_init(sc); // reset R92C_RCR 3760 urtwn_bb_init(sc); 3761 urtwn_rf_init(sc); 3762 3763 /* Turn CCK and OFDM blocks on. */ 3764 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD); 3765 reg |= R92C_RFMOD_CCK_EN; 3766 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); 3767 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD); 3768 reg |= R92C_RFMOD_OFDM_EN; 3769 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); 3770 3771 /* Clear per-station keys table. */ 3772 urtwn_cam_init(sc); 3773 3774 /* Enable hardware sequence numbering. */ 3775 urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff); 3776 3777 /* Perform LO and IQ calibrations. */ 3778 urtwn_iq_calib(sc, sc->iqk_inited); 3779 sc->iqk_inited = true; 3780 3781 /* Perform LC calibration. */ 3782 urtwn_lc_calib(sc); 3783 3784 /* Fix USB interference issue. */ 3785 urtwn_write_1(sc, 0xfe40, 0xe0); 3786 urtwn_write_1(sc, 0xfe41, 0x8d); 3787 urtwn_write_1(sc, 0xfe42, 0x80); 3788 urtwn_write_4(sc, 0x20c, 0xfd0320); 3789 3790 urtwn_pa_bias_init(sc); 3791 3792 if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) { 3793 /* 1T1R */ 3794 urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0), 3795 urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13)); 3796 } 3797 3798 /* Initialize GPIO setting. */ 3799 urtwn_write_1(sc, R92C_GPIO_MUXCFG, 3800 urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT); 3801 3802 /* Fix for lower temperature. */ 3803 urtwn_write_1(sc, 0x15, 0xe9); 3804 3805 /* Set default channel. */ 3806 urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); 3807 3808 /* Queue Rx xfers. */ 3809 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { 3810 data = &sc->rx_data[i]; 3811 usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf, 3812 URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, 3813 USBD_NO_TIMEOUT, urtwn_rxeof); 3814 error = usbd_transfer(data->xfer); 3815 if (__predict_false(error != USBD_NORMAL_COMPLETION && 3816 error != USBD_IN_PROGRESS)) 3817 goto fail; 3818 } 3819 3820 /* We're ready to go. */ 3821 ifp->if_flags &= ~IFF_OACTIVE; 3822 ifp->if_flags |= IFF_RUNNING; 3823 3824 mutex_exit(&sc->sc_write_mtx); 3825 3826 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3827 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3828 else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3829 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3830 urtwn_wait_async(sc); 3831 3832 return (0); 3833 3834 fail: 3835 mutex_exit(&sc->sc_write_mtx); 3836 3837 urtwn_stop(ifp, 1); 3838 return (error); 3839 } 3840 3841 static void 3842 urtwn_stop(struct ifnet *ifp, int disable) 3843 { 3844 struct urtwn_softc *sc = ifp->if_softc; 3845 struct ieee80211com *ic = &sc->sc_ic; 3846 size_t i; 3847 int s; 3848 3849 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3850 3851 s = splusb(); 3852 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3853 urtwn_wait_async(sc); 3854 splx(s); 3855 3856 sc->tx_timer = 0; 3857 ifp->if_timer = 0; 3858 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3859 3860 callout_stop(&sc->sc_scan_to); 3861 callout_stop(&sc->sc_calib_to); 3862 3863 /* Abort Tx. */ 3864 for (i = 0; i < R92C_MAX_EPOUT; i++) { 3865 if (sc->tx_pipe[i] != NULL) 3866 usbd_abort_pipe(sc->tx_pipe[i]); 3867 } 3868 3869 /* Stop Rx pipe. */ 3870 usbd_abort_pipe(sc->rx_pipe); 3871 3872 /* Free Tx/Rx buffers. */ 3873 urtwn_free_tx_list(sc); 3874 urtwn_free_rx_list(sc); 3875 3876 if (disable) 3877 urtwn_chip_stop(sc); 3878 } 3879 3880 static int 3881 urtwn_reset(struct ifnet *ifp) 3882 { 3883 struct urtwn_softc *sc = ifp->if_softc; 3884 struct ieee80211com *ic = &sc->sc_ic; 3885 3886 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3887 return ENETRESET; 3888 3889 urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); 3890 3891 return 0; 3892 } 3893 3894 static void 3895 urtwn_chip_stop(struct urtwn_softc *sc) 3896 { 3897 uint32_t reg; 3898 bool disabled = true; 3899 3900 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__)); 3901 3902 mutex_enter(&sc->sc_write_mtx); 3903 3904 /* 3905 * RF Off Sequence 3906 */ 3907 /* Pause MAC TX queue */ 3908 urtwn_write_1(sc, R92C_TXPAUSE, 0xFF); 3909 3910 /* Disable RF */ 3911 urtwn_rf_write(sc, 0, 0, 0); 3912 3913 urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF); 3914 3915 /* Reset BB state machine */ 3916 urtwn_write_1(sc, R92C_SYS_FUNC_EN, 3917 R92C_SYS_FUNC_EN_USBD | 3918 R92C_SYS_FUNC_EN_USBA | 3919 R92C_SYS_FUNC_EN_BB_GLB_RST); 3920 urtwn_write_1(sc, R92C_SYS_FUNC_EN, 3921 R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA); 3922 3923 /* 3924 * Reset digital sequence 3925 */ 3926 if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) { 3927 /* Reset MCU ready status */ 3928 urtwn_write_1(sc, R92C_MCUFWDL, 0); 3929 /* If firmware in ram code, do reset */ 3930 if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) { 3931 urtwn_fw_reset(sc); 3932 CLR(sc->sc_flags, URTWN_FLAG_FWREADY); 3933 } 3934 } 3935 3936 /* Reset MAC and Enable 8051 */ 3937 urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54); 3938 3939 /* Reset MCU ready status */ 3940 urtwn_write_1(sc, R92C_MCUFWDL, 0); 3941 3942 if (disabled) { 3943 /* Disable MAC clock */ 3944 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3); 3945 /* Disable AFE PLL */ 3946 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80); 3947 /* Gated AFE DIG_CLOCK */ 3948 urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F); 3949 /* Isolated digital to PON */ 3950 urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9); 3951 } 3952 3953 /* 3954 * Pull GPIO PIN to balance level and LED control 3955 */ 3956 /* 1. Disable GPIO[7:0] */ 3957 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000); 3958 3959 reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00; 3960 reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000; 3961 urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg); 3962 3963 /* Disable GPIO[10:8] */ 3964 urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00); 3965 3966 reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0; 3967 reg |= (((reg & 0x000f) << 4) | 0x0780); 3968 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg); 3969 3970 /* Disable LED0 & 1 */ 3971 urtwn_write_2(sc, R92C_LEDCFG0, 0x8080); 3972 3973 /* 3974 * Reset digital sequence 3975 */ 3976 if (disabled) { 3977 /* Disable ELDR clock */ 3978 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3); 3979 /* Isolated ELDR to PON */ 3980 urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82); 3981 } 3982 3983 /* 3984 * Disable analog sequence 3985 */ 3986 if (disabled) { 3987 /* Disable A15 power */ 3988 urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04); 3989 /* Disable digital core power */ 3990 urtwn_write_1(sc, R92C_LDOV12D_CTRL, 3991 urtwn_read_1(sc, R92C_LDOV12D_CTRL) & 3992 ~R92C_LDOV12D_CTRL_LDV12_EN); 3993 } 3994 3995 /* Enter PFM mode */ 3996 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23); 3997 3998 /* Set USB suspend */ 3999 urtwn_write_2(sc, R92C_APS_FSMCO, 4000 R92C_APS_FSMCO_APDM_HOST | 4001 R92C_APS_FSMCO_AFSM_HSUS | 4002 R92C_APS_FSMCO_PFM_ALDN); 4003 4004 urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E); 4005 4006 mutex_exit(&sc->sc_write_mtx); 4007 } 4008 4009 MODULE(MODULE_CLASS_DRIVER, if_urtwn, "bpf"); 4010 4011 #ifdef _MODULE 4012 #include "ioconf.c" 4013 #endif 4014 4015 static int 4016 if_urtwn_modcmd(modcmd_t cmd, void *aux) 4017 { 4018 int error = 0; 4019 4020 switch (cmd) { 4021 case MODULE_CMD_INIT: 4022 #ifdef _MODULE 4023 error = config_init_component(cfdriver_ioconf_urtwn, 4024 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn); 4025 #endif 4026 return (error); 4027 case MODULE_CMD_FINI: 4028 #ifdef _MODULE 4029 error = config_fini_component(cfdriver_ioconf_urtwn, 4030 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn); 4031 #endif 4032 return (error); 4033 default: 4034 return (ENOTTY); 4035 } 4036 } 4037