1 /* $NetBSD: if_ural.c,v 1.50 2016/07/07 06:55:42 msaitoh Exp $ */ 2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */ 3 4 /*- 5 * Copyright (c) 2005, 2006 6 * Damien Bergamini <damien.bergamini@free.fr> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2500USB chipset driver 23 * http://www.ralinktech.com/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.50 2016/07/07 06:55:42 msaitoh Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <machine/endian.h> 41 #include <sys/intr.h> 42 43 #include <net/bpf.h> 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/if_dl.h> 47 #include <net/if_ether.h> 48 #include <net/if_media.h> 49 #include <net/if_types.h> 50 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 56 #include <net80211/ieee80211_netbsd.h> 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/usb/usb.h> 62 #include <dev/usb/usbdi.h> 63 #include <dev/usb/usbdi_util.h> 64 #include <dev/usb/usbdevs.h> 65 66 #include <dev/usb/if_uralreg.h> 67 #include <dev/usb/if_uralvar.h> 68 69 #ifdef URAL_DEBUG 70 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0) 71 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0) 72 int ural_debug = 0; 73 #else 74 #define DPRINTF(x) 75 #define DPRINTFN(n, x) 76 #endif 77 78 /* various supported device vendors/products */ 79 static const struct usb_devno ural_devs[] = { 80 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G }, 81 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 }, 82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 83 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, 84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, 85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, 86 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU }, 87 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 }, 88 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, 89 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, 90 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, 91 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, 92 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, 93 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, 94 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 }, 95 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 }, 96 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 }, 97 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W }, 98 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, 99 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, 100 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, 101 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 102 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, 103 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G }, 104 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, 105 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 }, 106 }; 107 108 Static int ural_alloc_tx_list(struct ural_softc *); 109 Static void ural_free_tx_list(struct ural_softc *); 110 Static int ural_alloc_rx_list(struct ural_softc *); 111 Static void ural_free_rx_list(struct ural_softc *); 112 Static int ural_media_change(struct ifnet *); 113 Static void ural_next_scan(void *); 114 Static void ural_task(void *); 115 Static int ural_newstate(struct ieee80211com *, 116 enum ieee80211_state, int); 117 Static int ural_rxrate(struct ural_rx_desc *); 118 Static void ural_txeof(struct usbd_xfer *, void *, 119 usbd_status); 120 Static void ural_rxeof(struct usbd_xfer *, void *, 121 usbd_status); 122 Static int ural_ack_rate(struct ieee80211com *, int); 123 Static uint16_t ural_txtime(int, int, uint32_t); 124 Static uint8_t ural_plcp_signal(int); 125 Static void ural_setup_tx_desc(struct ural_softc *, 126 struct ural_tx_desc *, uint32_t, int, int); 127 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 128 struct ieee80211_node *); 129 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 130 struct ieee80211_node *); 131 Static int ural_tx_data(struct ural_softc *, struct mbuf *, 132 struct ieee80211_node *); 133 Static void ural_start(struct ifnet *); 134 Static void ural_watchdog(struct ifnet *); 135 Static int ural_reset(struct ifnet *); 136 Static int ural_ioctl(struct ifnet *, u_long, void *); 137 Static void ural_set_testmode(struct ural_softc *); 138 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 139 int); 140 Static uint16_t ural_read(struct ural_softc *, uint16_t); 141 Static void ural_read_multi(struct ural_softc *, uint16_t, void *, 142 int); 143 Static void ural_write(struct ural_softc *, uint16_t, uint16_t); 144 Static void ural_write_multi(struct ural_softc *, uint16_t, void *, 145 int); 146 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 147 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 148 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 149 Static void ural_set_chan(struct ural_softc *, 150 struct ieee80211_channel *); 151 Static void ural_disable_rf_tune(struct ural_softc *); 152 Static void ural_enable_tsf_sync(struct ural_softc *); 153 Static void ural_update_slot(struct ifnet *); 154 Static void ural_set_txpreamble(struct ural_softc *); 155 Static void ural_set_basicrates(struct ural_softc *); 156 Static void ural_set_bssid(struct ural_softc *, uint8_t *); 157 Static void ural_set_macaddr(struct ural_softc *, uint8_t *); 158 Static void ural_update_promisc(struct ural_softc *); 159 Static const char *ural_get_rf(int); 160 Static void ural_read_eeprom(struct ural_softc *); 161 Static int ural_bbp_init(struct ural_softc *); 162 Static void ural_set_txantenna(struct ural_softc *, int); 163 Static void ural_set_rxantenna(struct ural_softc *, int); 164 Static int ural_init(struct ifnet *); 165 Static void ural_stop(struct ifnet *, int); 166 Static void ural_amrr_start(struct ural_softc *, 167 struct ieee80211_node *); 168 Static void ural_amrr_timeout(void *); 169 Static void ural_amrr_update(struct usbd_xfer *, void *, 170 usbd_status status); 171 172 /* 173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 174 */ 175 static const struct ieee80211_rateset ural_rateset_11a = 176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 177 178 static const struct ieee80211_rateset ural_rateset_11b = 179 { 4, { 2, 4, 11, 22 } }; 180 181 static const struct ieee80211_rateset ural_rateset_11g = 182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 183 184 /* 185 * Default values for MAC registers; values taken from the reference driver. 186 */ 187 static const struct { 188 uint16_t reg; 189 uint16_t val; 190 } ural_def_mac[] = { 191 { RAL_TXRX_CSR5, 0x8c8d }, 192 { RAL_TXRX_CSR6, 0x8b8a }, 193 { RAL_TXRX_CSR7, 0x8687 }, 194 { RAL_TXRX_CSR8, 0x0085 }, 195 { RAL_MAC_CSR13, 0x1111 }, 196 { RAL_MAC_CSR14, 0x1e11 }, 197 { RAL_TXRX_CSR21, 0xe78f }, 198 { RAL_MAC_CSR9, 0xff1d }, 199 { RAL_MAC_CSR11, 0x0002 }, 200 { RAL_MAC_CSR22, 0x0053 }, 201 { RAL_MAC_CSR15, 0x0000 }, 202 { RAL_MAC_CSR8, 0x0780 }, 203 { RAL_TXRX_CSR19, 0x0000 }, 204 { RAL_TXRX_CSR18, 0x005a }, 205 { RAL_PHY_CSR2, 0x0000 }, 206 { RAL_TXRX_CSR0, 0x1ec0 }, 207 { RAL_PHY_CSR4, 0x000f } 208 }; 209 210 /* 211 * Default values for BBP registers; values taken from the reference driver. 212 */ 213 static const struct { 214 uint8_t reg; 215 uint8_t val; 216 } ural_def_bbp[] = { 217 { 3, 0x02 }, 218 { 4, 0x19 }, 219 { 14, 0x1c }, 220 { 15, 0x30 }, 221 { 16, 0xac }, 222 { 17, 0x48 }, 223 { 18, 0x18 }, 224 { 19, 0xff }, 225 { 20, 0x1e }, 226 { 21, 0x08 }, 227 { 22, 0x08 }, 228 { 23, 0x08 }, 229 { 24, 0x80 }, 230 { 25, 0x50 }, 231 { 26, 0x08 }, 232 { 27, 0x23 }, 233 { 30, 0x10 }, 234 { 31, 0x2b }, 235 { 32, 0xb9 }, 236 { 34, 0x12 }, 237 { 35, 0x50 }, 238 { 39, 0xc4 }, 239 { 40, 0x02 }, 240 { 41, 0x60 }, 241 { 53, 0x10 }, 242 { 54, 0x18 }, 243 { 56, 0x08 }, 244 { 57, 0x10 }, 245 { 58, 0x08 }, 246 { 61, 0x60 }, 247 { 62, 0x10 }, 248 { 75, 0xff } 249 }; 250 251 /* 252 * Default values for RF register R2 indexed by channel numbers. 253 */ 254 static const uint32_t ural_rf2522_r2[] = { 255 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 256 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 257 }; 258 259 static const uint32_t ural_rf2523_r2[] = { 260 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 261 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 262 }; 263 264 static const uint32_t ural_rf2524_r2[] = { 265 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 266 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 267 }; 268 269 static const uint32_t ural_rf2525_r2[] = { 270 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 271 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 272 }; 273 274 static const uint32_t ural_rf2525_hi_r2[] = { 275 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 276 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 277 }; 278 279 static const uint32_t ural_rf2525e_r2[] = { 280 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 281 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 282 }; 283 284 static const uint32_t ural_rf2526_hi_r2[] = { 285 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 286 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 287 }; 288 289 static const uint32_t ural_rf2526_r2[] = { 290 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 291 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 292 }; 293 294 /* 295 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 296 * values taken from the reference driver. 297 */ 298 static const struct { 299 uint8_t chan; 300 uint32_t r1; 301 uint32_t r2; 302 uint32_t r4; 303 } ural_rf5222[] = { 304 { 1, 0x08808, 0x0044d, 0x00282 }, 305 { 2, 0x08808, 0x0044e, 0x00282 }, 306 { 3, 0x08808, 0x0044f, 0x00282 }, 307 { 4, 0x08808, 0x00460, 0x00282 }, 308 { 5, 0x08808, 0x00461, 0x00282 }, 309 { 6, 0x08808, 0x00462, 0x00282 }, 310 { 7, 0x08808, 0x00463, 0x00282 }, 311 { 8, 0x08808, 0x00464, 0x00282 }, 312 { 9, 0x08808, 0x00465, 0x00282 }, 313 { 10, 0x08808, 0x00466, 0x00282 }, 314 { 11, 0x08808, 0x00467, 0x00282 }, 315 { 12, 0x08808, 0x00468, 0x00282 }, 316 { 13, 0x08808, 0x00469, 0x00282 }, 317 { 14, 0x08808, 0x0046b, 0x00286 }, 318 319 { 36, 0x08804, 0x06225, 0x00287 }, 320 { 40, 0x08804, 0x06226, 0x00287 }, 321 { 44, 0x08804, 0x06227, 0x00287 }, 322 { 48, 0x08804, 0x06228, 0x00287 }, 323 { 52, 0x08804, 0x06229, 0x00287 }, 324 { 56, 0x08804, 0x0622a, 0x00287 }, 325 { 60, 0x08804, 0x0622b, 0x00287 }, 326 { 64, 0x08804, 0x0622c, 0x00287 }, 327 328 { 100, 0x08804, 0x02200, 0x00283 }, 329 { 104, 0x08804, 0x02201, 0x00283 }, 330 { 108, 0x08804, 0x02202, 0x00283 }, 331 { 112, 0x08804, 0x02203, 0x00283 }, 332 { 116, 0x08804, 0x02204, 0x00283 }, 333 { 120, 0x08804, 0x02205, 0x00283 }, 334 { 124, 0x08804, 0x02206, 0x00283 }, 335 { 128, 0x08804, 0x02207, 0x00283 }, 336 { 132, 0x08804, 0x02208, 0x00283 }, 337 { 136, 0x08804, 0x02209, 0x00283 }, 338 { 140, 0x08804, 0x0220a, 0x00283 }, 339 340 { 149, 0x08808, 0x02429, 0x00281 }, 341 { 153, 0x08808, 0x0242b, 0x00281 }, 342 { 157, 0x08808, 0x0242d, 0x00281 }, 343 { 161, 0x08808, 0x0242f, 0x00281 } 344 }; 345 346 int ural_match(device_t, cfdata_t, void *); 347 void ural_attach(device_t, device_t, void *); 348 int ural_detach(device_t, int); 349 int ural_activate(device_t, enum devact); 350 extern struct cfdriver ural_cd; 351 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, 352 ural_detach, ural_activate); 353 354 int 355 ural_match(device_t parent, cfdata_t match, void *aux) 356 { 357 struct usb_attach_arg *uaa = aux; 358 359 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 360 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 361 } 362 363 void 364 ural_attach(device_t parent, device_t self, void *aux) 365 { 366 struct ural_softc *sc = device_private(self); 367 struct usb_attach_arg *uaa = aux; 368 struct ieee80211com *ic = &sc->sc_ic; 369 struct ifnet *ifp = &sc->sc_if; 370 usb_interface_descriptor_t *id; 371 usb_endpoint_descriptor_t *ed; 372 usbd_status error; 373 char *devinfop; 374 int i; 375 376 sc->sc_dev = self; 377 sc->sc_udev = uaa->uaa_device; 378 379 aprint_naive("\n"); 380 aprint_normal("\n"); 381 382 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 383 aprint_normal_dev(self, "%s\n", devinfop); 384 usbd_devinfo_free(devinfop); 385 386 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0); 387 if (error != 0) { 388 aprint_error_dev(self, "failed to set configuration" 389 ", err=%s\n", usbd_errstr(error)); 390 return; 391 } 392 393 /* get the first interface handle */ 394 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, 395 &sc->sc_iface); 396 if (error != 0) { 397 aprint_error_dev(self, "could not get interface handle\n"); 398 return; 399 } 400 401 /* 402 * Find endpoints. 403 */ 404 id = usbd_get_interface_descriptor(sc->sc_iface); 405 406 sc->sc_rx_no = sc->sc_tx_no = -1; 407 for (i = 0; i < id->bNumEndpoints; i++) { 408 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 409 if (ed == NULL) { 410 aprint_error_dev(self, 411 "no endpoint descriptor for %d\n", i); 412 return; 413 } 414 415 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 416 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 417 sc->sc_rx_no = ed->bEndpointAddress; 418 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 419 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 420 sc->sc_tx_no = ed->bEndpointAddress; 421 } 422 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 423 aprint_error_dev(self, "missing endpoint\n"); 424 return; 425 } 426 427 usb_init_task(&sc->sc_task, ural_task, sc, 0); 428 callout_init(&sc->sc_scan_ch, 0); 429 sc->amrr.amrr_min_success_threshold = 1; 430 sc->amrr.amrr_max_success_threshold = 15; 431 callout_init(&sc->sc_amrr_ch, 0); 432 433 /* retrieve RT2570 rev. no */ 434 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 435 436 /* retrieve MAC address and various other things from EEPROM */ 437 ural_read_eeprom(sc); 438 439 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 440 sc->asic_rev, ural_get_rf(sc->rf_rev)); 441 442 ifp->if_softc = sc; 443 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 445 ifp->if_init = ural_init; 446 ifp->if_ioctl = ural_ioctl; 447 ifp->if_start = ural_start; 448 ifp->if_watchdog = ural_watchdog; 449 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 450 IFQ_SET_READY(&ifp->if_snd); 451 452 ic->ic_ifp = ifp; 453 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 454 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 455 ic->ic_state = IEEE80211_S_INIT; 456 457 /* set device capabilities */ 458 ic->ic_caps = 459 IEEE80211_C_IBSS | /* IBSS mode supported */ 460 IEEE80211_C_MONITOR | /* monitor mode supported */ 461 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 462 IEEE80211_C_TXPMGT | /* tx power management */ 463 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 464 IEEE80211_C_SHSLOT | /* short slot time supported */ 465 IEEE80211_C_WPA; /* 802.11i */ 466 467 if (sc->rf_rev == RAL_RF_5222) { 468 /* set supported .11a rates */ 469 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a; 470 471 /* set supported .11a channels */ 472 for (i = 36; i <= 64; i += 4) { 473 ic->ic_channels[i].ic_freq = 474 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 475 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 476 } 477 for (i = 100; i <= 140; i += 4) { 478 ic->ic_channels[i].ic_freq = 479 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 480 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 481 } 482 for (i = 149; i <= 161; i += 4) { 483 ic->ic_channels[i].ic_freq = 484 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 485 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 486 } 487 } 488 489 /* set supported .11b and .11g rates */ 490 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b; 491 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g; 492 493 /* set supported .11b and .11g channels (1 through 14) */ 494 for (i = 1; i <= 14; i++) { 495 ic->ic_channels[i].ic_freq = 496 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 497 ic->ic_channels[i].ic_flags = 498 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 499 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 500 } 501 502 if_attach(ifp); 503 ieee80211_ifattach(ic); 504 ic->ic_reset = ural_reset; 505 506 /* override state transition machine */ 507 sc->sc_newstate = ic->ic_newstate; 508 ic->ic_newstate = ural_newstate; 509 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status); 510 511 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 512 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 513 514 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 515 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 516 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); 517 518 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 519 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 520 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); 521 522 ieee80211_announce(ic); 523 524 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 525 526 if (!pmf_device_register(self, NULL, NULL)) 527 aprint_error_dev(self, "couldn't establish power handler\n"); 528 529 return; 530 } 531 532 int 533 ural_detach(device_t self, int flags) 534 { 535 struct ural_softc *sc = device_private(self); 536 struct ieee80211com *ic = &sc->sc_ic; 537 struct ifnet *ifp = &sc->sc_if; 538 int s; 539 540 pmf_device_deregister(self); 541 542 s = splusb(); 543 544 ural_stop(ifp, 1); 545 usb_rem_task(sc->sc_udev, &sc->sc_task); 546 callout_stop(&sc->sc_scan_ch); 547 callout_stop(&sc->sc_amrr_ch); 548 549 bpf_detach(ifp); 550 ieee80211_ifdetach(ic); 551 if_detach(ifp); 552 553 splx(s); 554 555 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 556 557 return 0; 558 } 559 560 Static int 561 ural_alloc_tx_list(struct ural_softc *sc) 562 { 563 struct ural_tx_data *data; 564 int i, error; 565 566 sc->tx_queued = 0; 567 568 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 569 data = &sc->tx_data[i]; 570 571 data->sc = sc; 572 error = usbd_create_xfer(sc->sc_tx_pipeh, 573 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0, 574 &data->xfer); 575 if (error) { 576 printf("%s: could not allocate tx xfer\n", 577 device_xname(sc->sc_dev)); 578 goto fail; 579 } 580 581 data->buf = usbd_get_buffer(data->xfer); 582 } 583 584 return 0; 585 586 fail: ural_free_tx_list(sc); 587 return error; 588 } 589 590 Static void 591 ural_free_tx_list(struct ural_softc *sc) 592 { 593 struct ural_tx_data *data; 594 int i; 595 596 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 597 data = &sc->tx_data[i]; 598 599 if (data->xfer != NULL) { 600 usbd_destroy_xfer(data->xfer); 601 data->xfer = NULL; 602 } 603 604 if (data->ni != NULL) { 605 ieee80211_free_node(data->ni); 606 data->ni = NULL; 607 } 608 } 609 } 610 611 Static int 612 ural_alloc_rx_list(struct ural_softc *sc) 613 { 614 struct ural_rx_data *data; 615 int i, error; 616 617 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 618 data = &sc->rx_data[i]; 619 620 data->sc = sc; 621 622 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 623 USBD_SHORT_XFER_OK, 0, &data->xfer); 624 if (error) { 625 printf("%s: could not allocate rx xfer\n", 626 device_xname(sc->sc_dev)); 627 goto fail; 628 } 629 630 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 631 if (data->m == NULL) { 632 printf("%s: could not allocate rx mbuf\n", 633 device_xname(sc->sc_dev)); 634 error = ENOMEM; 635 goto fail; 636 } 637 638 MCLGET(data->m, M_DONTWAIT); 639 if (!(data->m->m_flags & M_EXT)) { 640 printf("%s: could not allocate rx mbuf cluster\n", 641 device_xname(sc->sc_dev)); 642 error = ENOMEM; 643 goto fail; 644 } 645 646 data->buf = mtod(data->m, uint8_t *); 647 } 648 649 return 0; 650 651 fail: ural_free_tx_list(sc); 652 return error; 653 } 654 655 Static void 656 ural_free_rx_list(struct ural_softc *sc) 657 { 658 struct ural_rx_data *data; 659 int i; 660 661 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 662 data = &sc->rx_data[i]; 663 664 if (data->xfer != NULL) { 665 usbd_destroy_xfer(data->xfer); 666 data->xfer = NULL; 667 } 668 669 if (data->m != NULL) { 670 m_freem(data->m); 671 data->m = NULL; 672 } 673 } 674 } 675 676 Static int 677 ural_media_change(struct ifnet *ifp) 678 { 679 int error; 680 681 error = ieee80211_media_change(ifp); 682 if (error != ENETRESET) 683 return error; 684 685 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 686 ural_init(ifp); 687 688 return 0; 689 } 690 691 /* 692 * This function is called periodically (every 200ms) during scanning to 693 * switch from one channel to another. 694 */ 695 Static void 696 ural_next_scan(void *arg) 697 { 698 struct ural_softc *sc = arg; 699 struct ieee80211com *ic = &sc->sc_ic; 700 701 if (ic->ic_state == IEEE80211_S_SCAN) 702 ieee80211_next_scan(ic); 703 } 704 705 Static void 706 ural_task(void *arg) 707 { 708 struct ural_softc *sc = arg; 709 struct ieee80211com *ic = &sc->sc_ic; 710 enum ieee80211_state ostate; 711 struct ieee80211_node *ni; 712 struct mbuf *m; 713 714 ostate = ic->ic_state; 715 716 switch (sc->sc_state) { 717 case IEEE80211_S_INIT: 718 if (ostate == IEEE80211_S_RUN) { 719 /* abort TSF synchronization */ 720 ural_write(sc, RAL_TXRX_CSR19, 0); 721 722 /* force tx led to stop blinking */ 723 ural_write(sc, RAL_MAC_CSR20, 0); 724 } 725 break; 726 727 case IEEE80211_S_SCAN: 728 ural_set_chan(sc, ic->ic_curchan); 729 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc); 730 break; 731 732 case IEEE80211_S_AUTH: 733 ural_set_chan(sc, ic->ic_curchan); 734 break; 735 736 case IEEE80211_S_ASSOC: 737 ural_set_chan(sc, ic->ic_curchan); 738 break; 739 740 case IEEE80211_S_RUN: 741 ural_set_chan(sc, ic->ic_curchan); 742 743 ni = ic->ic_bss; 744 745 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 746 ural_update_slot(ic->ic_ifp); 747 ural_set_txpreamble(sc); 748 ural_set_basicrates(sc); 749 ural_set_bssid(sc, ni->ni_bssid); 750 } 751 752 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 753 ic->ic_opmode == IEEE80211_M_IBSS) { 754 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 755 if (m == NULL) { 756 printf("%s: could not allocate beacon\n", 757 device_xname(sc->sc_dev)); 758 return; 759 } 760 761 if (ural_tx_bcn(sc, m, ni) != 0) { 762 m_freem(m); 763 printf("%s: could not send beacon\n", 764 device_xname(sc->sc_dev)); 765 return; 766 } 767 768 /* beacon is no longer needed */ 769 m_freem(m); 770 } 771 772 /* make tx led blink on tx (controlled by ASIC) */ 773 ural_write(sc, RAL_MAC_CSR20, 1); 774 775 if (ic->ic_opmode != IEEE80211_M_MONITOR) 776 ural_enable_tsf_sync(sc); 777 778 /* enable automatic rate adaptation in STA mode */ 779 if (ic->ic_opmode == IEEE80211_M_STA && 780 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 781 ural_amrr_start(sc, ni); 782 783 break; 784 } 785 786 sc->sc_newstate(ic, sc->sc_state, -1); 787 } 788 789 Static int 790 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, 791 int arg) 792 { 793 struct ural_softc *sc = ic->ic_ifp->if_softc; 794 795 usb_rem_task(sc->sc_udev, &sc->sc_task); 796 callout_stop(&sc->sc_scan_ch); 797 callout_stop(&sc->sc_amrr_ch); 798 799 /* do it in a process context */ 800 sc->sc_state = nstate; 801 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 802 803 return 0; 804 } 805 806 /* quickly determine if a given rate is CCK or OFDM */ 807 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 808 809 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 810 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 811 812 #define RAL_SIFS 10 /* us */ 813 814 #define RAL_RXTX_TURNAROUND 5 /* us */ 815 816 /* 817 * This function is only used by the Rx radiotap code. 818 */ 819 Static int 820 ural_rxrate(struct ural_rx_desc *desc) 821 { 822 if (le32toh(desc->flags) & RAL_RX_OFDM) { 823 /* reverse function of ural_plcp_signal */ 824 switch (desc->rate) { 825 case 0xb: return 12; 826 case 0xf: return 18; 827 case 0xa: return 24; 828 case 0xe: return 36; 829 case 0x9: return 48; 830 case 0xd: return 72; 831 case 0x8: return 96; 832 case 0xc: return 108; 833 } 834 } else { 835 if (desc->rate == 10) 836 return 2; 837 if (desc->rate == 20) 838 return 4; 839 if (desc->rate == 55) 840 return 11; 841 if (desc->rate == 110) 842 return 22; 843 } 844 return 2; /* should not get there */ 845 } 846 847 Static void 848 ural_txeof(struct usbd_xfer *xfer, void * priv, 849 usbd_status status) 850 { 851 struct ural_tx_data *data = priv; 852 struct ural_softc *sc = data->sc; 853 struct ifnet *ifp = &sc->sc_if; 854 int s; 855 856 if (status != USBD_NORMAL_COMPLETION) { 857 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 858 return; 859 860 printf("%s: could not transmit buffer: %s\n", 861 device_xname(sc->sc_dev), usbd_errstr(status)); 862 863 if (status == USBD_STALLED) 864 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 865 866 ifp->if_oerrors++; 867 return; 868 } 869 870 s = splnet(); 871 872 m_freem(data->m); 873 data->m = NULL; 874 ieee80211_free_node(data->ni); 875 data->ni = NULL; 876 877 sc->tx_queued--; 878 ifp->if_opackets++; 879 880 DPRINTFN(10, ("tx done\n")); 881 882 sc->sc_tx_timer = 0; 883 ifp->if_flags &= ~IFF_OACTIVE; 884 ural_start(ifp); 885 886 splx(s); 887 } 888 889 Static void 890 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 891 { 892 struct ural_rx_data *data = priv; 893 struct ural_softc *sc = data->sc; 894 struct ieee80211com *ic = &sc->sc_ic; 895 struct ifnet *ifp = &sc->sc_if; 896 struct ural_rx_desc *desc; 897 struct ieee80211_frame *wh; 898 struct ieee80211_node *ni; 899 struct mbuf *mnew, *m; 900 int s, len; 901 902 if (status != USBD_NORMAL_COMPLETION) { 903 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 904 return; 905 906 if (status == USBD_STALLED) 907 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 908 goto skip; 909 } 910 911 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 912 913 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 914 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 915 len)); 916 ifp->if_ierrors++; 917 goto skip; 918 } 919 920 /* rx descriptor is located at the end */ 921 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); 922 923 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) || 924 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) { 925 /* 926 * This should not happen since we did not request to receive 927 * those frames when we filled RAL_TXRX_CSR2. 928 */ 929 DPRINTFN(5, ("PHY or CRC error\n")); 930 ifp->if_ierrors++; 931 goto skip; 932 } 933 934 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 935 if (mnew == NULL) { 936 ifp->if_ierrors++; 937 goto skip; 938 } 939 940 MCLGET(mnew, M_DONTWAIT); 941 if (!(mnew->m_flags & M_EXT)) { 942 ifp->if_ierrors++; 943 m_freem(mnew); 944 goto skip; 945 } 946 947 m = data->m; 948 data->m = mnew; 949 data->buf = mtod(data->m, uint8_t *); 950 951 /* finalize mbuf */ 952 m_set_rcvif(m, ifp); 953 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 954 m->m_flags |= M_HASFCS; /* h/w leaves FCS */ 955 956 s = splnet(); 957 958 if (sc->sc_drvbpf != NULL) { 959 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 960 961 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 962 tap->wr_rate = ural_rxrate(desc); 963 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 964 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 965 tap->wr_antenna = sc->rx_ant; 966 tap->wr_antsignal = desc->rssi; 967 968 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 969 } 970 971 wh = mtod(m, struct ieee80211_frame *); 972 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 973 974 /* send the frame to the 802.11 layer */ 975 ieee80211_input(ic, m, ni, desc->rssi, 0); 976 977 /* node is no longer needed */ 978 ieee80211_free_node(ni); 979 980 splx(s); 981 982 DPRINTFN(15, ("rx done\n")); 983 984 skip: /* setup a new transfer */ 985 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, 986 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 987 usbd_transfer(xfer); 988 } 989 990 /* 991 * Return the expected ack rate for a frame transmitted at rate `rate'. 992 * XXX: this should depend on the destination node basic rate set. 993 */ 994 Static int 995 ural_ack_rate(struct ieee80211com *ic, int rate) 996 { 997 switch (rate) { 998 /* CCK rates */ 999 case 2: 1000 return 2; 1001 case 4: 1002 case 11: 1003 case 22: 1004 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1005 1006 /* OFDM rates */ 1007 case 12: 1008 case 18: 1009 return 12; 1010 case 24: 1011 case 36: 1012 return 24; 1013 case 48: 1014 case 72: 1015 case 96: 1016 case 108: 1017 return 48; 1018 } 1019 1020 /* default to 1Mbps */ 1021 return 2; 1022 } 1023 1024 /* 1025 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1026 * The function automatically determines the operating mode depending on the 1027 * given rate. `flags' indicates whether short preamble is in use or not. 1028 */ 1029 Static uint16_t 1030 ural_txtime(int len, int rate, uint32_t flags) 1031 { 1032 uint16_t txtime; 1033 1034 if (RAL_RATE_IS_OFDM(rate)) { 1035 /* IEEE Std 802.11g-2003, pp. 37 */ 1036 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1037 txtime = 16 + 4 + 4 * txtime + 6; 1038 } else { 1039 /* IEEE Std 802.11b-1999, pp. 28 */ 1040 txtime = (16 * len + rate - 1) / rate; 1041 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1042 txtime += 72 + 24; 1043 else 1044 txtime += 144 + 48; 1045 } 1046 return txtime; 1047 } 1048 1049 Static uint8_t 1050 ural_plcp_signal(int rate) 1051 { 1052 switch (rate) { 1053 /* CCK rates (returned values are device-dependent) */ 1054 case 2: return 0x0; 1055 case 4: return 0x1; 1056 case 11: return 0x2; 1057 case 22: return 0x3; 1058 1059 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1060 case 12: return 0xb; 1061 case 18: return 0xf; 1062 case 24: return 0xa; 1063 case 36: return 0xe; 1064 case 48: return 0x9; 1065 case 72: return 0xd; 1066 case 96: return 0x8; 1067 case 108: return 0xc; 1068 1069 /* unsupported rates (should not get there) */ 1070 default: return 0xff; 1071 } 1072 } 1073 1074 Static void 1075 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1076 uint32_t flags, int len, int rate) 1077 { 1078 struct ieee80211com *ic = &sc->sc_ic; 1079 uint16_t plcp_length; 1080 int remainder; 1081 1082 desc->flags = htole32(flags); 1083 desc->flags |= htole32(RAL_TX_NEWSEQ); 1084 desc->flags |= htole32(len << 16); 1085 1086 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1087 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame))); 1088 1089 /* setup PLCP fields */ 1090 desc->plcp_signal = ural_plcp_signal(rate); 1091 desc->plcp_service = 4; 1092 1093 len += IEEE80211_CRC_LEN; 1094 if (RAL_RATE_IS_OFDM(rate)) { 1095 desc->flags |= htole32(RAL_TX_OFDM); 1096 1097 plcp_length = len & 0xfff; 1098 desc->plcp_length_hi = plcp_length >> 6; 1099 desc->plcp_length_lo = plcp_length & 0x3f; 1100 } else { 1101 plcp_length = (16 * len + rate - 1) / rate; 1102 if (rate == 22) { 1103 remainder = (16 * len) % 22; 1104 if (remainder != 0 && remainder < 7) 1105 desc->plcp_service |= RAL_PLCP_LENGEXT; 1106 } 1107 desc->plcp_length_hi = plcp_length >> 8; 1108 desc->plcp_length_lo = plcp_length & 0xff; 1109 1110 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1111 desc->plcp_signal |= 0x08; 1112 } 1113 1114 desc->iv = 0; 1115 desc->eiv = 0; 1116 } 1117 1118 #define RAL_TX_TIMEOUT 5000 1119 1120 Static int 1121 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1122 { 1123 struct ural_tx_desc *desc; 1124 struct usbd_xfer *xfer; 1125 uint8_t cmd = 0; 1126 usbd_status error; 1127 uint8_t *buf; 1128 int xferlen, rate; 1129 1130 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1131 1132 /* xfer length needs to be a multiple of two! */ 1133 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1134 1135 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen, 1136 USBD_FORCE_SHORT_XFER, 0, &xfer); 1137 if (error) 1138 return error; 1139 1140 buf = usbd_get_buffer(xfer); 1141 1142 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER, 1143 RAL_TX_TIMEOUT, NULL); 1144 1145 error = usbd_sync_transfer(xfer); 1146 if (error != 0) { 1147 usbd_destroy_xfer(xfer); 1148 return error; 1149 } 1150 1151 desc = (struct ural_tx_desc *)buf; 1152 1153 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); 1154 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, 1155 m0->m_pkthdr.len, rate); 1156 1157 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", 1158 m0->m_pkthdr.len, rate, xferlen)); 1159 1160 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER, 1161 RAL_TX_TIMEOUT, NULL); 1162 1163 error = usbd_sync_transfer(xfer); 1164 usbd_destroy_xfer(xfer); 1165 1166 return error; 1167 } 1168 1169 Static int 1170 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1171 { 1172 struct ieee80211com *ic = &sc->sc_ic; 1173 struct ural_tx_desc *desc; 1174 struct ural_tx_data *data; 1175 struct ieee80211_frame *wh; 1176 struct ieee80211_key *k; 1177 uint32_t flags = 0; 1178 uint16_t dur; 1179 usbd_status error; 1180 int xferlen, rate; 1181 1182 data = &sc->tx_data[0]; 1183 desc = (struct ural_tx_desc *)data->buf; 1184 1185 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1186 1187 wh = mtod(m0, struct ieee80211_frame *); 1188 1189 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1190 k = ieee80211_crypto_encap(ic, ni, m0); 1191 if (k == NULL) { 1192 m_freem(m0); 1193 return ENOBUFS; 1194 } 1195 } 1196 1197 data->m = m0; 1198 data->ni = ni; 1199 1200 wh = mtod(m0, struct ieee80211_frame *); 1201 1202 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1203 flags |= RAL_TX_ACK; 1204 1205 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; 1206 *(uint16_t *)wh->i_dur = htole16(dur); 1207 1208 /* tell hardware to add timestamp for probe responses */ 1209 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1210 IEEE80211_FC0_TYPE_MGT && 1211 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1212 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1213 flags |= RAL_TX_TIMESTAMP; 1214 } 1215 1216 if (sc->sc_drvbpf != NULL) { 1217 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1218 1219 tap->wt_flags = 0; 1220 tap->wt_rate = rate; 1221 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1222 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1223 tap->wt_antenna = sc->tx_ant; 1224 1225 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1226 } 1227 1228 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1229 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1230 1231 /* align end on a 2-bytes boundary */ 1232 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1233 1234 /* 1235 * No space left in the last URB to store the extra 2 bytes, force 1236 * sending of another URB. 1237 */ 1238 if ((xferlen % 64) == 0) 1239 xferlen += 2; 1240 1241 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n", 1242 m0->m_pkthdr.len, rate, xferlen)); 1243 1244 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1245 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof); 1246 1247 error = usbd_transfer(data->xfer); 1248 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1249 m_freem(m0); 1250 return error; 1251 } 1252 1253 sc->tx_queued++; 1254 1255 return 0; 1256 } 1257 1258 Static int 1259 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1260 { 1261 struct ieee80211com *ic = &sc->sc_ic; 1262 struct ural_tx_desc *desc; 1263 struct ural_tx_data *data; 1264 struct ieee80211_frame *wh; 1265 struct ieee80211_key *k; 1266 uint32_t flags = 0; 1267 uint16_t dur; 1268 usbd_status error; 1269 int xferlen, rate; 1270 1271 wh = mtod(m0, struct ieee80211_frame *); 1272 1273 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1274 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1275 else 1276 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1277 1278 rate &= IEEE80211_RATE_VAL; 1279 1280 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1281 k = ieee80211_crypto_encap(ic, ni, m0); 1282 if (k == NULL) { 1283 m_freem(m0); 1284 return ENOBUFS; 1285 } 1286 1287 /* packet header may have moved, reset our local pointer */ 1288 wh = mtod(m0, struct ieee80211_frame *); 1289 } 1290 1291 data = &sc->tx_data[0]; 1292 desc = (struct ural_tx_desc *)data->buf; 1293 1294 data->m = m0; 1295 data->ni = ni; 1296 1297 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1298 flags |= RAL_TX_ACK; 1299 flags |= RAL_TX_RETRY(7); 1300 1301 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), 1302 ic->ic_flags) + RAL_SIFS; 1303 *(uint16_t *)wh->i_dur = htole16(dur); 1304 } 1305 1306 if (sc->sc_drvbpf != NULL) { 1307 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1308 1309 tap->wt_flags = 0; 1310 tap->wt_rate = rate; 1311 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1312 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1313 tap->wt_antenna = sc->tx_ant; 1314 1315 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1316 } 1317 1318 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1319 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1320 1321 /* align end on a 2-bytes boundary */ 1322 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1323 1324 /* 1325 * No space left in the last URB to store the extra 2 bytes, force 1326 * sending of another URB. 1327 */ 1328 if ((xferlen % 64) == 0) 1329 xferlen += 2; 1330 1331 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n", 1332 m0->m_pkthdr.len, rate, xferlen)); 1333 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1334 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof); 1335 1336 error = usbd_transfer(data->xfer); 1337 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1338 return error; 1339 1340 sc->tx_queued++; 1341 1342 return 0; 1343 } 1344 1345 Static void 1346 ural_start(struct ifnet *ifp) 1347 { 1348 struct ural_softc *sc = ifp->if_softc; 1349 struct ieee80211com *ic = &sc->sc_ic; 1350 struct mbuf *m0; 1351 struct ether_header *eh; 1352 struct ieee80211_node *ni; 1353 1354 for (;;) { 1355 IF_POLL(&ic->ic_mgtq, m0); 1356 if (m0 != NULL) { 1357 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1358 ifp->if_flags |= IFF_OACTIVE; 1359 break; 1360 } 1361 IF_DEQUEUE(&ic->ic_mgtq, m0); 1362 1363 ni = M_GETCTX(m0, struct ieee80211_node *); 1364 M_CLEARCTX(m0); 1365 bpf_mtap3(ic->ic_rawbpf, m0); 1366 if (ural_tx_mgt(sc, m0, ni) != 0) 1367 break; 1368 1369 } else { 1370 if (ic->ic_state != IEEE80211_S_RUN) 1371 break; 1372 IFQ_DEQUEUE(&ifp->if_snd, m0); 1373 if (m0 == NULL) 1374 break; 1375 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1376 IF_PREPEND(&ifp->if_snd, m0); 1377 ifp->if_flags |= IFF_OACTIVE; 1378 break; 1379 } 1380 1381 if (m0->m_len < sizeof(struct ether_header) && 1382 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1383 continue; 1384 1385 eh = mtod(m0, struct ether_header *); 1386 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1387 if (ni == NULL) { 1388 m_freem(m0); 1389 continue; 1390 } 1391 bpf_mtap(ifp, m0); 1392 m0 = ieee80211_encap(ic, m0, ni); 1393 if (m0 == NULL) { 1394 ieee80211_free_node(ni); 1395 continue; 1396 } 1397 bpf_mtap3(ic->ic_rawbpf, m0); 1398 if (ural_tx_data(sc, m0, ni) != 0) { 1399 ieee80211_free_node(ni); 1400 ifp->if_oerrors++; 1401 break; 1402 } 1403 } 1404 1405 sc->sc_tx_timer = 5; 1406 ifp->if_timer = 1; 1407 } 1408 } 1409 1410 Static void 1411 ural_watchdog(struct ifnet *ifp) 1412 { 1413 struct ural_softc *sc = ifp->if_softc; 1414 struct ieee80211com *ic = &sc->sc_ic; 1415 1416 ifp->if_timer = 0; 1417 1418 if (sc->sc_tx_timer > 0) { 1419 if (--sc->sc_tx_timer == 0) { 1420 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1421 /*ural_init(sc); XXX needs a process context! */ 1422 ifp->if_oerrors++; 1423 return; 1424 } 1425 ifp->if_timer = 1; 1426 } 1427 1428 ieee80211_watchdog(ic); 1429 } 1430 1431 /* 1432 * This function allows for fast channel switching in monitor mode (used by 1433 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 1434 * generate a new beacon frame. 1435 */ 1436 Static int 1437 ural_reset(struct ifnet *ifp) 1438 { 1439 struct ural_softc *sc = ifp->if_softc; 1440 struct ieee80211com *ic = &sc->sc_ic; 1441 1442 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1443 return ENETRESET; 1444 1445 ural_set_chan(sc, ic->ic_curchan); 1446 1447 return 0; 1448 } 1449 1450 Static int 1451 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1452 { 1453 #define IS_RUNNING(ifp) \ 1454 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1455 1456 struct ural_softc *sc = ifp->if_softc; 1457 struct ieee80211com *ic = &sc->sc_ic; 1458 int s, error = 0; 1459 1460 s = splnet(); 1461 1462 switch (cmd) { 1463 case SIOCSIFFLAGS: 1464 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1465 break; 1466 /* XXX re-use ether_ioctl() */ 1467 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1468 case IFF_UP|IFF_RUNNING: 1469 ural_update_promisc(sc); 1470 break; 1471 case IFF_UP: 1472 ural_init(ifp); 1473 break; 1474 case IFF_RUNNING: 1475 ural_stop(ifp, 1); 1476 break; 1477 case 0: 1478 break; 1479 } 1480 break; 1481 1482 case SIOCADDMULTI: 1483 case SIOCDELMULTI: 1484 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1485 error = 0; 1486 } 1487 break; 1488 1489 default: 1490 error = ieee80211_ioctl(ic, cmd, data); 1491 } 1492 1493 if (error == ENETRESET) { 1494 if (IS_RUNNING(ifp) && 1495 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1496 ural_init(ifp); 1497 error = 0; 1498 } 1499 1500 splx(s); 1501 1502 return error; 1503 #undef IS_RUNNING 1504 } 1505 1506 Static void 1507 ural_set_testmode(struct ural_softc *sc) 1508 { 1509 usb_device_request_t req; 1510 usbd_status error; 1511 1512 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1513 req.bRequest = RAL_VENDOR_REQUEST; 1514 USETW(req.wValue, 4); 1515 USETW(req.wIndex, 1); 1516 USETW(req.wLength, 0); 1517 1518 error = usbd_do_request(sc->sc_udev, &req, NULL); 1519 if (error != 0) { 1520 printf("%s: could not set test mode: %s\n", 1521 device_xname(sc->sc_dev), usbd_errstr(error)); 1522 } 1523 } 1524 1525 Static void 1526 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1527 { 1528 usb_device_request_t req; 1529 usbd_status error; 1530 1531 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1532 req.bRequest = RAL_READ_EEPROM; 1533 USETW(req.wValue, 0); 1534 USETW(req.wIndex, addr); 1535 USETW(req.wLength, len); 1536 1537 error = usbd_do_request(sc->sc_udev, &req, buf); 1538 if (error != 0) { 1539 printf("%s: could not read EEPROM: %s\n", 1540 device_xname(sc->sc_dev), usbd_errstr(error)); 1541 } 1542 } 1543 1544 Static uint16_t 1545 ural_read(struct ural_softc *sc, uint16_t reg) 1546 { 1547 usb_device_request_t req; 1548 usbd_status error; 1549 uint16_t val; 1550 1551 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1552 req.bRequest = RAL_READ_MAC; 1553 USETW(req.wValue, 0); 1554 USETW(req.wIndex, reg); 1555 USETW(req.wLength, sizeof(uint16_t)); 1556 1557 error = usbd_do_request(sc->sc_udev, &req, &val); 1558 if (error != 0) { 1559 printf("%s: could not read MAC register: %s\n", 1560 device_xname(sc->sc_dev), usbd_errstr(error)); 1561 return 0; 1562 } 1563 1564 return le16toh(val); 1565 } 1566 1567 Static void 1568 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1569 { 1570 usb_device_request_t req; 1571 usbd_status error; 1572 1573 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1574 req.bRequest = RAL_READ_MULTI_MAC; 1575 USETW(req.wValue, 0); 1576 USETW(req.wIndex, reg); 1577 USETW(req.wLength, len); 1578 1579 error = usbd_do_request(sc->sc_udev, &req, buf); 1580 if (error != 0) { 1581 printf("%s: could not read MAC register: %s\n", 1582 device_xname(sc->sc_dev), usbd_errstr(error)); 1583 } 1584 } 1585 1586 Static void 1587 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1588 { 1589 usb_device_request_t req; 1590 usbd_status error; 1591 1592 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1593 req.bRequest = RAL_WRITE_MAC; 1594 USETW(req.wValue, val); 1595 USETW(req.wIndex, reg); 1596 USETW(req.wLength, 0); 1597 1598 error = usbd_do_request(sc->sc_udev, &req, NULL); 1599 if (error != 0) { 1600 printf("%s: could not write MAC register: %s\n", 1601 device_xname(sc->sc_dev), usbd_errstr(error)); 1602 } 1603 } 1604 1605 Static void 1606 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1607 { 1608 usb_device_request_t req; 1609 usbd_status error; 1610 1611 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1612 req.bRequest = RAL_WRITE_MULTI_MAC; 1613 USETW(req.wValue, 0); 1614 USETW(req.wIndex, reg); 1615 USETW(req.wLength, len); 1616 1617 error = usbd_do_request(sc->sc_udev, &req, buf); 1618 if (error != 0) { 1619 printf("%s: could not write MAC register: %s\n", 1620 device_xname(sc->sc_dev), usbd_errstr(error)); 1621 } 1622 } 1623 1624 Static void 1625 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1626 { 1627 uint16_t tmp; 1628 int ntries; 1629 1630 for (ntries = 0; ntries < 5; ntries++) { 1631 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1632 break; 1633 } 1634 if (ntries == 5) { 1635 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1636 return; 1637 } 1638 1639 tmp = reg << 8 | val; 1640 ural_write(sc, RAL_PHY_CSR7, tmp); 1641 } 1642 1643 Static uint8_t 1644 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1645 { 1646 uint16_t val; 1647 int ntries; 1648 1649 val = RAL_BBP_WRITE | reg << 8; 1650 ural_write(sc, RAL_PHY_CSR7, val); 1651 1652 for (ntries = 0; ntries < 5; ntries++) { 1653 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1654 break; 1655 } 1656 if (ntries == 5) { 1657 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1658 return 0; 1659 } 1660 1661 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1662 } 1663 1664 Static void 1665 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1666 { 1667 uint32_t tmp; 1668 int ntries; 1669 1670 for (ntries = 0; ntries < 5; ntries++) { 1671 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1672 break; 1673 } 1674 if (ntries == 5) { 1675 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1676 return; 1677 } 1678 1679 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1680 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1681 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1682 1683 /* remember last written value in sc */ 1684 sc->rf_regs[reg] = val; 1685 1686 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 1687 } 1688 1689 Static void 1690 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1691 { 1692 struct ieee80211com *ic = &sc->sc_ic; 1693 uint8_t power, tmp; 1694 u_int i, chan; 1695 1696 chan = ieee80211_chan2ieee(ic, c); 1697 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1698 return; 1699 1700 if (IEEE80211_IS_CHAN_2GHZ(c)) 1701 power = min(sc->txpow[chan - 1], 31); 1702 else 1703 power = 31; 1704 1705 /* adjust txpower using ifconfig settings */ 1706 power -= (100 - ic->ic_txpowlimit) / 8; 1707 1708 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 1709 1710 switch (sc->rf_rev) { 1711 case RAL_RF_2522: 1712 ural_rf_write(sc, RAL_RF1, 0x00814); 1713 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1714 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1715 break; 1716 1717 case RAL_RF_2523: 1718 ural_rf_write(sc, RAL_RF1, 0x08804); 1719 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1720 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1721 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1722 break; 1723 1724 case RAL_RF_2524: 1725 ural_rf_write(sc, RAL_RF1, 0x0c808); 1726 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1727 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1728 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1729 break; 1730 1731 case RAL_RF_2525: 1732 ural_rf_write(sc, RAL_RF1, 0x08808); 1733 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1734 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1735 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1736 1737 ural_rf_write(sc, RAL_RF1, 0x08808); 1738 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1739 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1740 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1741 break; 1742 1743 case RAL_RF_2525E: 1744 ural_rf_write(sc, RAL_RF1, 0x08808); 1745 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1747 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1748 break; 1749 1750 case RAL_RF_2526: 1751 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1752 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1753 ural_rf_write(sc, RAL_RF1, 0x08804); 1754 1755 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1756 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1757 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1758 break; 1759 1760 /* dual-band RF */ 1761 case RAL_RF_5222: 1762 for (i = 0; ural_rf5222[i].chan != chan; i++); 1763 1764 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1765 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1766 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1767 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1768 break; 1769 } 1770 1771 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1772 ic->ic_state != IEEE80211_S_SCAN) { 1773 /* set Japan filter bit for channel 14 */ 1774 tmp = ural_bbp_read(sc, 70); 1775 1776 tmp &= ~RAL_JAPAN_FILTER; 1777 if (chan == 14) 1778 tmp |= RAL_JAPAN_FILTER; 1779 1780 ural_bbp_write(sc, 70, tmp); 1781 1782 /* clear CRC errors */ 1783 ural_read(sc, RAL_STA_CSR0); 1784 1785 DELAY(10000); 1786 ural_disable_rf_tune(sc); 1787 } 1788 } 1789 1790 /* 1791 * Disable RF auto-tuning. 1792 */ 1793 Static void 1794 ural_disable_rf_tune(struct ural_softc *sc) 1795 { 1796 uint32_t tmp; 1797 1798 if (sc->rf_rev != RAL_RF_2523) { 1799 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1800 ural_rf_write(sc, RAL_RF1, tmp); 1801 } 1802 1803 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1804 ural_rf_write(sc, RAL_RF3, tmp); 1805 1806 DPRINTFN(2, ("disabling RF autotune\n")); 1807 } 1808 1809 /* 1810 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1811 * synchronization. 1812 */ 1813 Static void 1814 ural_enable_tsf_sync(struct ural_softc *sc) 1815 { 1816 struct ieee80211com *ic = &sc->sc_ic; 1817 uint16_t logcwmin, preload, tmp; 1818 1819 /* first, disable TSF synchronization */ 1820 ural_write(sc, RAL_TXRX_CSR19, 0); 1821 1822 tmp = (16 * ic->ic_bss->ni_intval) << 4; 1823 ural_write(sc, RAL_TXRX_CSR18, tmp); 1824 1825 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1826 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1827 tmp = logcwmin << 12 | preload; 1828 ural_write(sc, RAL_TXRX_CSR20, tmp); 1829 1830 /* finally, enable TSF synchronization */ 1831 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1832 if (ic->ic_opmode == IEEE80211_M_STA) 1833 tmp |= RAL_ENABLE_TSF_SYNC(1); 1834 else 1835 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1836 ural_write(sc, RAL_TXRX_CSR19, tmp); 1837 1838 DPRINTF(("enabling TSF synchronization\n")); 1839 } 1840 1841 Static void 1842 ural_update_slot(struct ifnet *ifp) 1843 { 1844 struct ural_softc *sc = ifp->if_softc; 1845 struct ieee80211com *ic = &sc->sc_ic; 1846 uint16_t slottime, sifs, eifs; 1847 1848 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1849 1850 /* 1851 * These settings may sound a bit inconsistent but this is what the 1852 * reference driver does. 1853 */ 1854 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1855 sifs = 16 - RAL_RXTX_TURNAROUND; 1856 eifs = 364; 1857 } else { 1858 sifs = 10 - RAL_RXTX_TURNAROUND; 1859 eifs = 64; 1860 } 1861 1862 ural_write(sc, RAL_MAC_CSR10, slottime); 1863 ural_write(sc, RAL_MAC_CSR11, sifs); 1864 ural_write(sc, RAL_MAC_CSR12, eifs); 1865 } 1866 1867 Static void 1868 ural_set_txpreamble(struct ural_softc *sc) 1869 { 1870 uint16_t tmp; 1871 1872 tmp = ural_read(sc, RAL_TXRX_CSR10); 1873 1874 tmp &= ~RAL_SHORT_PREAMBLE; 1875 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1876 tmp |= RAL_SHORT_PREAMBLE; 1877 1878 ural_write(sc, RAL_TXRX_CSR10, tmp); 1879 } 1880 1881 Static void 1882 ural_set_basicrates(struct ural_softc *sc) 1883 { 1884 struct ieee80211com *ic = &sc->sc_ic; 1885 1886 /* update basic rate set */ 1887 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1888 /* 11b basic rates: 1, 2Mbps */ 1889 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1890 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { 1891 /* 11a basic rates: 6, 12, 24Mbps */ 1892 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1893 } else { 1894 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1895 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1896 } 1897 } 1898 1899 Static void 1900 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid) 1901 { 1902 uint16_t tmp; 1903 1904 tmp = bssid[0] | bssid[1] << 8; 1905 ural_write(sc, RAL_MAC_CSR5, tmp); 1906 1907 tmp = bssid[2] | bssid[3] << 8; 1908 ural_write(sc, RAL_MAC_CSR6, tmp); 1909 1910 tmp = bssid[4] | bssid[5] << 8; 1911 ural_write(sc, RAL_MAC_CSR7, tmp); 1912 1913 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); 1914 } 1915 1916 Static void 1917 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1918 { 1919 uint16_t tmp; 1920 1921 tmp = addr[0] | addr[1] << 8; 1922 ural_write(sc, RAL_MAC_CSR2, tmp); 1923 1924 tmp = addr[2] | addr[3] << 8; 1925 ural_write(sc, RAL_MAC_CSR3, tmp); 1926 1927 tmp = addr[4] | addr[5] << 8; 1928 ural_write(sc, RAL_MAC_CSR4, tmp); 1929 1930 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); 1931 } 1932 1933 Static void 1934 ural_update_promisc(struct ural_softc *sc) 1935 { 1936 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1937 uint32_t tmp; 1938 1939 tmp = ural_read(sc, RAL_TXRX_CSR2); 1940 1941 tmp &= ~RAL_DROP_NOT_TO_ME; 1942 if (!(ifp->if_flags & IFF_PROMISC)) 1943 tmp |= RAL_DROP_NOT_TO_ME; 1944 1945 ural_write(sc, RAL_TXRX_CSR2, tmp); 1946 1947 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1948 "entering" : "leaving")); 1949 } 1950 1951 Static const char * 1952 ural_get_rf(int rev) 1953 { 1954 switch (rev) { 1955 case RAL_RF_2522: return "RT2522"; 1956 case RAL_RF_2523: return "RT2523"; 1957 case RAL_RF_2524: return "RT2524"; 1958 case RAL_RF_2525: return "RT2525"; 1959 case RAL_RF_2525E: return "RT2525e"; 1960 case RAL_RF_2526: return "RT2526"; 1961 case RAL_RF_5222: return "RT5222"; 1962 default: return "unknown"; 1963 } 1964 } 1965 1966 Static void 1967 ural_read_eeprom(struct ural_softc *sc) 1968 { 1969 struct ieee80211com *ic = &sc->sc_ic; 1970 uint16_t val; 1971 1972 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1973 val = le16toh(val); 1974 sc->rf_rev = (val >> 11) & 0x7; 1975 sc->hw_radio = (val >> 10) & 0x1; 1976 sc->led_mode = (val >> 6) & 0x7; 1977 sc->rx_ant = (val >> 4) & 0x3; 1978 sc->tx_ant = (val >> 2) & 0x3; 1979 sc->nb_ant = val & 0x3; 1980 1981 /* read MAC address */ 1982 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1983 1984 /* read default values for BBP registers */ 1985 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1986 1987 /* read Tx power for all b/g channels */ 1988 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1989 } 1990 1991 Static int 1992 ural_bbp_init(struct ural_softc *sc) 1993 { 1994 int i, ntries; 1995 1996 /* wait for BBP to be ready */ 1997 for (ntries = 0; ntries < 100; ntries++) { 1998 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1999 break; 2000 DELAY(1000); 2001 } 2002 if (ntries == 100) { 2003 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev)); 2004 return EIO; 2005 } 2006 2007 /* initialize BBP registers to default values */ 2008 for (i = 0; i < __arraycount(ural_def_bbp); i++) 2009 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 2010 2011 #if 0 2012 /* initialize BBP registers to values stored in EEPROM */ 2013 for (i = 0; i < 16; i++) { 2014 if (sc->bbp_prom[i].reg == 0xff) 2015 continue; 2016 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2017 } 2018 #endif 2019 2020 return 0; 2021 } 2022 2023 Static void 2024 ural_set_txantenna(struct ural_softc *sc, int antenna) 2025 { 2026 uint16_t tmp; 2027 uint8_t tx; 2028 2029 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 2030 if (antenna == 1) 2031 tx |= RAL_BBP_ANTA; 2032 else if (antenna == 2) 2033 tx |= RAL_BBP_ANTB; 2034 else 2035 tx |= RAL_BBP_DIVERSITY; 2036 2037 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2038 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2039 sc->rf_rev == RAL_RF_5222) 2040 tx |= RAL_BBP_FLIPIQ; 2041 2042 ural_bbp_write(sc, RAL_BBP_TX, tx); 2043 2044 /* update values in PHY_CSR5 and PHY_CSR6 */ 2045 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2046 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2047 2048 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2049 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2050 } 2051 2052 Static void 2053 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2054 { 2055 uint8_t rx; 2056 2057 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2058 if (antenna == 1) 2059 rx |= RAL_BBP_ANTA; 2060 else if (antenna == 2) 2061 rx |= RAL_BBP_ANTB; 2062 else 2063 rx |= RAL_BBP_DIVERSITY; 2064 2065 /* need to force no I/Q flip for RF 2525e and 2526 */ 2066 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2067 rx &= ~RAL_BBP_FLIPIQ; 2068 2069 ural_bbp_write(sc, RAL_BBP_RX, rx); 2070 } 2071 2072 Static int 2073 ural_init(struct ifnet *ifp) 2074 { 2075 struct ural_softc *sc = ifp->if_softc; 2076 struct ieee80211com *ic = &sc->sc_ic; 2077 struct ieee80211_key *wk; 2078 uint16_t tmp; 2079 usbd_status error; 2080 int i, ntries; 2081 2082 ural_set_testmode(sc); 2083 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2084 2085 ural_stop(ifp, 0); 2086 2087 /* initialize MAC registers to default values */ 2088 for (i = 0; i < __arraycount(ural_def_mac); i++) 2089 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2090 2091 /* wait for BBP and RF to wake up (this can take a long time!) */ 2092 for (ntries = 0; ntries < 100; ntries++) { 2093 tmp = ural_read(sc, RAL_MAC_CSR17); 2094 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2095 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2096 break; 2097 DELAY(1000); 2098 } 2099 if (ntries == 100) { 2100 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2101 device_xname(sc->sc_dev)); 2102 error = EIO; 2103 goto fail; 2104 } 2105 2106 /* we're ready! */ 2107 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2108 2109 /* set basic rate set (will be updated later) */ 2110 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2111 2112 error = ural_bbp_init(sc); 2113 if (error != 0) 2114 goto fail; 2115 2116 /* set default BSS channel */ 2117 ural_set_chan(sc, ic->ic_curchan); 2118 2119 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2120 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2121 2122 ural_set_txantenna(sc, sc->tx_ant); 2123 ural_set_rxantenna(sc, sc->rx_ant); 2124 2125 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2126 ural_set_macaddr(sc, ic->ic_myaddr); 2127 2128 /* 2129 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). 2130 */ 2131 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2132 wk = &ic->ic_crypto.cs_nw_keys[i]; 2133 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE + 2134 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE); 2135 } 2136 2137 /* 2138 * Allocate xfer for AMRR statistics requests. 2139 */ 2140 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 2141 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer); 2142 if (error) { 2143 printf("%s: could not allocate AMRR xfer\n", 2144 device_xname(sc->sc_dev)); 2145 goto fail; 2146 } 2147 2148 /* 2149 * Open Tx and Rx USB bulk pipes. 2150 */ 2151 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2152 &sc->sc_tx_pipeh); 2153 if (error != 0) { 2154 printf("%s: could not open Tx pipe: %s\n", 2155 device_xname(sc->sc_dev), usbd_errstr(error)); 2156 goto fail; 2157 } 2158 2159 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2160 &sc->sc_rx_pipeh); 2161 if (error != 0) { 2162 printf("%s: could not open Rx pipe: %s\n", 2163 device_xname(sc->sc_dev), usbd_errstr(error)); 2164 goto fail; 2165 } 2166 2167 /* 2168 * Allocate Tx and Rx xfer queues. 2169 */ 2170 error = ural_alloc_tx_list(sc); 2171 if (error != 0) { 2172 printf("%s: could not allocate Tx list\n", 2173 device_xname(sc->sc_dev)); 2174 goto fail; 2175 } 2176 2177 error = ural_alloc_rx_list(sc); 2178 if (error != 0) { 2179 printf("%s: could not allocate Rx list\n", 2180 device_xname(sc->sc_dev)); 2181 goto fail; 2182 } 2183 2184 /* 2185 * Start up the receive pipe. 2186 */ 2187 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 2188 struct ural_rx_data *data = &sc->rx_data[i]; 2189 2190 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2191 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 2192 usbd_transfer(data->xfer); 2193 } 2194 2195 /* kick Rx */ 2196 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; 2197 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2198 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; 2199 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2200 tmp |= RAL_DROP_TODS; 2201 if (!(ifp->if_flags & IFF_PROMISC)) 2202 tmp |= RAL_DROP_NOT_TO_ME; 2203 } 2204 ural_write(sc, RAL_TXRX_CSR2, tmp); 2205 2206 ifp->if_flags &= ~IFF_OACTIVE; 2207 ifp->if_flags |= IFF_RUNNING; 2208 2209 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2210 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2211 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2212 } else 2213 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2214 2215 return 0; 2216 2217 fail: ural_stop(ifp, 1); 2218 return error; 2219 } 2220 2221 Static void 2222 ural_stop(struct ifnet *ifp, int disable) 2223 { 2224 struct ural_softc *sc = ifp->if_softc; 2225 struct ieee80211com *ic = &sc->sc_ic; 2226 2227 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2228 2229 sc->sc_tx_timer = 0; 2230 ifp->if_timer = 0; 2231 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2232 2233 /* disable Rx */ 2234 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2235 2236 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2237 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2238 ural_write(sc, RAL_MAC_CSR1, 0); 2239 2240 if (sc->amrr_xfer != NULL) { 2241 usbd_destroy_xfer(sc->amrr_xfer); 2242 sc->amrr_xfer = NULL; 2243 } 2244 2245 if (sc->sc_rx_pipeh != NULL) { 2246 usbd_abort_pipe(sc->sc_rx_pipeh); 2247 } 2248 2249 if (sc->sc_tx_pipeh != NULL) { 2250 usbd_abort_pipe(sc->sc_tx_pipeh); 2251 } 2252 2253 ural_free_rx_list(sc); 2254 ural_free_tx_list(sc); 2255 2256 if (sc->sc_rx_pipeh != NULL) { 2257 usbd_close_pipe(sc->sc_rx_pipeh); 2258 sc->sc_rx_pipeh = NULL; 2259 } 2260 2261 if (sc->sc_tx_pipeh != NULL) { 2262 usbd_close_pipe(sc->sc_tx_pipeh); 2263 sc->sc_tx_pipeh = NULL; 2264 } 2265 } 2266 2267 int 2268 ural_activate(device_t self, enum devact act) 2269 { 2270 struct ural_softc *sc = device_private(self); 2271 2272 switch (act) { 2273 case DVACT_DEACTIVATE: 2274 if_deactivate(&sc->sc_if); 2275 return 0; 2276 default: 2277 return EOPNOTSUPP; 2278 } 2279 } 2280 2281 Static void 2282 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) 2283 { 2284 int i; 2285 2286 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2287 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2288 2289 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2290 2291 /* set rate to some reasonable initial value */ 2292 for (i = ni->ni_rates.rs_nrates - 1; 2293 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2294 i--); 2295 ni->ni_txrate = i; 2296 2297 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2298 } 2299 2300 Static void 2301 ural_amrr_timeout(void *arg) 2302 { 2303 struct ural_softc *sc = (struct ural_softc *)arg; 2304 usb_device_request_t req; 2305 int s; 2306 2307 s = splusb(); 2308 2309 /* 2310 * Asynchronously read statistic registers (cleared by read). 2311 */ 2312 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2313 req.bRequest = RAL_READ_MULTI_MAC; 2314 USETW(req.wValue, 0); 2315 USETW(req.wIndex, RAL_STA_CSR0); 2316 USETW(req.wLength, sizeof(sc->sta)); 2317 2318 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2319 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2320 ural_amrr_update); 2321 (void)usbd_transfer(sc->amrr_xfer); 2322 2323 splx(s); 2324 } 2325 2326 Static void 2327 ural_amrr_update(struct usbd_xfer *xfer, void * priv, 2328 usbd_status status) 2329 { 2330 struct ural_softc *sc = (struct ural_softc *)priv; 2331 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2332 2333 if (status != USBD_NORMAL_COMPLETION) { 2334 printf("%s: could not retrieve Tx statistics - " 2335 "cancelling automatic rate control\n", 2336 device_xname(sc->sc_dev)); 2337 return; 2338 } 2339 2340 /* count TX retry-fail as Tx errors */ 2341 ifp->if_oerrors += sc->sta[9]; 2342 2343 sc->amn.amn_retrycnt = 2344 sc->sta[7] + /* TX one-retry ok count */ 2345 sc->sta[8] + /* TX more-retry ok count */ 2346 sc->sta[9]; /* TX retry-fail count */ 2347 2348 sc->amn.amn_txcnt = 2349 sc->amn.amn_retrycnt + 2350 sc->sta[6]; /* TX no-retry ok count */ 2351 2352 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2353 2354 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2355 } 2356