xref: /netbsd-src/sys/dev/usb/if_ural.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_ural.c,v 1.59 2019/05/05 03:17:54 mrg Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.59 2019/05/05 03:17:54 mrg Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72 
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
85 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
86 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
87 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
91 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
92 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
93 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
95 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
98 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
99 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
101 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
102 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
103 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
105 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
106 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
107 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
108 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
109 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111 
112 Static int		ural_alloc_tx_list(struct ural_softc *);
113 Static void		ural_free_tx_list(struct ural_softc *);
114 Static int		ural_alloc_rx_list(struct ural_softc *);
115 Static void		ural_free_rx_list(struct ural_softc *);
116 Static int		ural_media_change(struct ifnet *);
117 Static void		ural_next_scan(void *);
118 Static void		ural_task(void *);
119 Static int		ural_newstate(struct ieee80211com *,
120 			    enum ieee80211_state, int);
121 Static int		ural_rxrate(struct ural_rx_desc *);
122 Static void		ural_txeof(struct usbd_xfer *, void *,
123 			    usbd_status);
124 Static void		ural_rxeof(struct usbd_xfer *, void *,
125 			    usbd_status);
126 Static int		ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t		ural_txtime(int, int, uint32_t);
128 Static uint8_t		ural_plcp_signal(int);
129 Static void		ural_setup_tx_desc(struct ural_softc *,
130 			    struct ural_tx_desc *, uint32_t, int, int);
131 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 			    struct ieee80211_node *);
133 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 			    struct ieee80211_node *);
135 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
136 			    struct ieee80211_node *);
137 Static void		ural_start(struct ifnet *);
138 Static void		ural_watchdog(struct ifnet *);
139 Static int		ural_reset(struct ifnet *);
140 Static int		ural_ioctl(struct ifnet *, u_long, void *);
141 Static void		ural_set_testmode(struct ural_softc *);
142 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
145 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void		ural_set_chan(struct ural_softc *,
154 			    struct ieee80211_channel *);
155 Static void		ural_disable_rf_tune(struct ural_softc *);
156 Static void		ural_enable_tsf_sync(struct ural_softc *);
157 Static void		ural_update_slot(struct ifnet *);
158 Static void		ural_set_txpreamble(struct ural_softc *);
159 Static void		ural_set_basicrates(struct ural_softc *);
160 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void		ural_update_promisc(struct ural_softc *);
163 Static const char	*ural_get_rf(int);
164 Static void		ural_read_eeprom(struct ural_softc *);
165 Static int		ural_bbp_init(struct ural_softc *);
166 Static void		ural_set_txantenna(struct ural_softc *, int);
167 Static void		ural_set_rxantenna(struct ural_softc *, int);
168 Static int		ural_init(struct ifnet *);
169 Static void		ural_stop(struct ifnet *, int);
170 Static void		ural_amrr_start(struct ural_softc *,
171 			    struct ieee80211_node *);
172 Static void		ural_amrr_timeout(void *);
173 Static void		ural_amrr_update(struct usbd_xfer *, void *,
174 			    usbd_status status);
175 
176 /*
177  * Default values for MAC registers; values taken from the reference driver.
178  */
179 static const struct {
180 	uint16_t	reg;
181 	uint16_t	val;
182 } ural_def_mac[] = {
183 	{ RAL_TXRX_CSR5,  0x8c8d },
184 	{ RAL_TXRX_CSR6,  0x8b8a },
185 	{ RAL_TXRX_CSR7,  0x8687 },
186 	{ RAL_TXRX_CSR8,  0x0085 },
187 	{ RAL_MAC_CSR13,  0x1111 },
188 	{ RAL_MAC_CSR14,  0x1e11 },
189 	{ RAL_TXRX_CSR21, 0xe78f },
190 	{ RAL_MAC_CSR9,   0xff1d },
191 	{ RAL_MAC_CSR11,  0x0002 },
192 	{ RAL_MAC_CSR22,  0x0053 },
193 	{ RAL_MAC_CSR15,  0x0000 },
194 	{ RAL_MAC_CSR8,   0x0780 },
195 	{ RAL_TXRX_CSR19, 0x0000 },
196 	{ RAL_TXRX_CSR18, 0x005a },
197 	{ RAL_PHY_CSR2,   0x0000 },
198 	{ RAL_TXRX_CSR0,  0x1ec0 },
199 	{ RAL_PHY_CSR4,   0x000f }
200 };
201 
202 /*
203  * Default values for BBP registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint8_t	reg;
207 	uint8_t	val;
208 } ural_def_bbp[] = {
209 	{  3, 0x02 },
210 	{  4, 0x19 },
211 	{ 14, 0x1c },
212 	{ 15, 0x30 },
213 	{ 16, 0xac },
214 	{ 17, 0x48 },
215 	{ 18, 0x18 },
216 	{ 19, 0xff },
217 	{ 20, 0x1e },
218 	{ 21, 0x08 },
219 	{ 22, 0x08 },
220 	{ 23, 0x08 },
221 	{ 24, 0x80 },
222 	{ 25, 0x50 },
223 	{ 26, 0x08 },
224 	{ 27, 0x23 },
225 	{ 30, 0x10 },
226 	{ 31, 0x2b },
227 	{ 32, 0xb9 },
228 	{ 34, 0x12 },
229 	{ 35, 0x50 },
230 	{ 39, 0xc4 },
231 	{ 40, 0x02 },
232 	{ 41, 0x60 },
233 	{ 53, 0x10 },
234 	{ 54, 0x18 },
235 	{ 56, 0x08 },
236 	{ 57, 0x10 },
237 	{ 58, 0x08 },
238 	{ 61, 0x60 },
239 	{ 62, 0x10 },
240 	{ 75, 0xff }
241 };
242 
243 /*
244  * Default values for RF register R2 indexed by channel numbers.
245  */
246 static const uint32_t ural_rf2522_r2[] = {
247 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250 
251 static const uint32_t ural_rf2523_r2[] = {
252 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255 
256 static const uint32_t ural_rf2524_r2[] = {
257 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260 
261 static const uint32_t ural_rf2525_r2[] = {
262 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265 
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270 
271 static const uint32_t ural_rf2525e_r2[] = {
272 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275 
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280 
281 static const uint32_t ural_rf2526_r2[] = {
282 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285 
286 /*
287  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288  * values taken from the reference driver.
289  */
290 static const struct {
291 	uint8_t		chan;
292 	uint32_t	r1;
293 	uint32_t	r2;
294 	uint32_t	r4;
295 } ural_rf5222[] = {
296 	{   1, 0x08808, 0x0044d, 0x00282 },
297 	{   2, 0x08808, 0x0044e, 0x00282 },
298 	{   3, 0x08808, 0x0044f, 0x00282 },
299 	{   4, 0x08808, 0x00460, 0x00282 },
300 	{   5, 0x08808, 0x00461, 0x00282 },
301 	{   6, 0x08808, 0x00462, 0x00282 },
302 	{   7, 0x08808, 0x00463, 0x00282 },
303 	{   8, 0x08808, 0x00464, 0x00282 },
304 	{   9, 0x08808, 0x00465, 0x00282 },
305 	{  10, 0x08808, 0x00466, 0x00282 },
306 	{  11, 0x08808, 0x00467, 0x00282 },
307 	{  12, 0x08808, 0x00468, 0x00282 },
308 	{  13, 0x08808, 0x00469, 0x00282 },
309 	{  14, 0x08808, 0x0046b, 0x00286 },
310 
311 	{  36, 0x08804, 0x06225, 0x00287 },
312 	{  40, 0x08804, 0x06226, 0x00287 },
313 	{  44, 0x08804, 0x06227, 0x00287 },
314 	{  48, 0x08804, 0x06228, 0x00287 },
315 	{  52, 0x08804, 0x06229, 0x00287 },
316 	{  56, 0x08804, 0x0622a, 0x00287 },
317 	{  60, 0x08804, 0x0622b, 0x00287 },
318 	{  64, 0x08804, 0x0622c, 0x00287 },
319 
320 	{ 100, 0x08804, 0x02200, 0x00283 },
321 	{ 104, 0x08804, 0x02201, 0x00283 },
322 	{ 108, 0x08804, 0x02202, 0x00283 },
323 	{ 112, 0x08804, 0x02203, 0x00283 },
324 	{ 116, 0x08804, 0x02204, 0x00283 },
325 	{ 120, 0x08804, 0x02205, 0x00283 },
326 	{ 124, 0x08804, 0x02206, 0x00283 },
327 	{ 128, 0x08804, 0x02207, 0x00283 },
328 	{ 132, 0x08804, 0x02208, 0x00283 },
329 	{ 136, 0x08804, 0x02209, 0x00283 },
330 	{ 140, 0x08804, 0x0220a, 0x00283 },
331 
332 	{ 149, 0x08808, 0x02429, 0x00281 },
333 	{ 153, 0x08808, 0x0242b, 0x00281 },
334 	{ 157, 0x08808, 0x0242d, 0x00281 },
335 	{ 161, 0x08808, 0x0242f, 0x00281 }
336 };
337 
338 int	ural_match(device_t, cfdata_t, void *);
339 void	ural_attach(device_t, device_t, void *);
340 int	ural_detach(device_t, int);
341 int	ural_activate(device_t, enum devact);
342 
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344     ural_detach, ural_activate);
345 
346 int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 	struct usb_attach_arg *uaa = aux;
350 
351 	return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354 
355 void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 	struct ural_softc *sc = device_private(self);
359 	struct usb_attach_arg *uaa = aux;
360 	struct ieee80211com *ic = &sc->sc_ic;
361 	struct ifnet *ifp = &sc->sc_if;
362 	usb_interface_descriptor_t *id;
363 	usb_endpoint_descriptor_t *ed;
364 	usbd_status error;
365 	char *devinfop;
366 	int i;
367 
368 	sc->sc_dev = self;
369 	sc->sc_udev = uaa->uaa_device;
370 
371 	aprint_naive("\n");
372 	aprint_normal("\n");
373 
374 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
375 	aprint_normal_dev(self, "%s\n", devinfop);
376 	usbd_devinfo_free(devinfop);
377 
378 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
379 	if (error != 0) {
380 		aprint_error_dev(self, "failed to set configuration"
381 		    ", err=%s\n", usbd_errstr(error));
382 		return;
383 	}
384 
385 	/* get the first interface handle */
386 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
387 	    &sc->sc_iface);
388 	if (error != 0) {
389 		aprint_error_dev(self, "could not get interface handle\n");
390 		return;
391 	}
392 
393 	/*
394 	 * Find endpoints.
395 	 */
396 	id = usbd_get_interface_descriptor(sc->sc_iface);
397 
398 	sc->sc_rx_no = sc->sc_tx_no = -1;
399 	for (i = 0; i < id->bNumEndpoints; i++) {
400 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
401 		if (ed == NULL) {
402 			aprint_error_dev(self,
403 			    "no endpoint descriptor for %d\n", i);
404 			return;
405 		}
406 
407 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
408 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
409 			sc->sc_rx_no = ed->bEndpointAddress;
410 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
411 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
412 			sc->sc_tx_no = ed->bEndpointAddress;
413 	}
414 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
415 		aprint_error_dev(self, "missing endpoint\n");
416 		return;
417 	}
418 
419 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
420 	callout_init(&sc->sc_scan_ch, 0);
421 	sc->amrr.amrr_min_success_threshold = 1;
422 	sc->amrr.amrr_max_success_threshold = 15;
423 	callout_init(&sc->sc_amrr_ch, 0);
424 
425 	/* retrieve RT2570 rev. no */
426 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
427 
428 	/* retrieve MAC address and various other things from EEPROM */
429 	ural_read_eeprom(sc);
430 
431 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
432 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
433 
434 	ifp->if_softc = sc;
435 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
436 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
437 	ifp->if_init = ural_init;
438 	ifp->if_ioctl = ural_ioctl;
439 	ifp->if_start = ural_start;
440 	ifp->if_watchdog = ural_watchdog;
441 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
442 	IFQ_SET_READY(&ifp->if_snd);
443 
444 	ic->ic_ifp = ifp;
445 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
446 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
447 	ic->ic_state = IEEE80211_S_INIT;
448 
449 	/* set device capabilities */
450 	ic->ic_caps =
451 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
452 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
453 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
454 	    IEEE80211_C_TXPMGT |	/* tx power management */
455 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
456 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
457 	    IEEE80211_C_WPA;		/* 802.11i */
458 
459 	if (sc->rf_rev == RAL_RF_5222) {
460 		/* set supported .11a rates */
461 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
462 
463 		/* set supported .11a channels */
464 		for (i = 36; i <= 64; i += 4) {
465 			ic->ic_channels[i].ic_freq =
466 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
467 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
468 		}
469 		for (i = 100; i <= 140; i += 4) {
470 			ic->ic_channels[i].ic_freq =
471 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 		}
474 		for (i = 149; i <= 161; i += 4) {
475 			ic->ic_channels[i].ic_freq =
476 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 		}
479 	}
480 
481 	/* set supported .11b and .11g rates */
482 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
483 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
484 
485 	/* set supported .11b and .11g channels (1 through 14) */
486 	for (i = 1; i <= 14; i++) {
487 		ic->ic_channels[i].ic_freq =
488 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
489 		ic->ic_channels[i].ic_flags =
490 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
491 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
492 	}
493 
494 	if_attach(ifp);
495 	ieee80211_ifattach(ic);
496 	ic->ic_reset = ural_reset;
497 
498 	/* override state transition machine */
499 	sc->sc_newstate = ic->ic_newstate;
500 	ic->ic_newstate = ural_newstate;
501 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
502 
503 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
504 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
505 
506 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
507 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
508 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
509 
510 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
511 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
512 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
513 
514 	ieee80211_announce(ic);
515 
516 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
517 
518 	if (!pmf_device_register(self, NULL, NULL))
519 		aprint_error_dev(self, "couldn't establish power handler\n");
520 
521 	return;
522 }
523 
524 int
525 ural_detach(device_t self, int flags)
526 {
527 	struct ural_softc *sc = device_private(self);
528 	struct ieee80211com *ic = &sc->sc_ic;
529 	struct ifnet *ifp = &sc->sc_if;
530 	int s;
531 
532 	pmf_device_deregister(self);
533 
534 	s = splusb();
535 
536 	ural_stop(ifp, 1);
537 	callout_halt(&sc->sc_scan_ch, NULL);
538 	callout_halt(&sc->sc_amrr_ch, NULL);
539 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
540 
541 	bpf_detach(ifp);
542 	ieee80211_ifdetach(ic);
543 	if_detach(ifp);
544 
545 	splx(s);
546 
547 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
548 
549 	return 0;
550 }
551 
552 Static int
553 ural_alloc_tx_list(struct ural_softc *sc)
554 {
555 	struct ural_tx_data *data;
556 	int i, error;
557 
558 	sc->tx_queued = 0;
559 
560 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
561 		data = &sc->tx_data[i];
562 
563 		data->sc = sc;
564 		error = usbd_create_xfer(sc->sc_tx_pipeh,
565 		    RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
566 		    &data->xfer);
567 		if (error) {
568 			printf("%s: could not allocate tx xfer\n",
569 			    device_xname(sc->sc_dev));
570 			goto fail;
571 		}
572 
573 		data->buf = usbd_get_buffer(data->xfer);
574 	}
575 
576 	return 0;
577 
578 fail:	ural_free_tx_list(sc);
579 	return error;
580 }
581 
582 Static void
583 ural_free_tx_list(struct ural_softc *sc)
584 {
585 	struct ural_tx_data *data;
586 	int i;
587 
588 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
589 		data = &sc->tx_data[i];
590 
591 		if (data->xfer != NULL) {
592 			usbd_destroy_xfer(data->xfer);
593 			data->xfer = NULL;
594 		}
595 
596 		if (data->ni != NULL) {
597 			ieee80211_free_node(data->ni);
598 			data->ni = NULL;
599 		}
600 	}
601 }
602 
603 Static int
604 ural_alloc_rx_list(struct ural_softc *sc)
605 {
606 	struct ural_rx_data *data;
607 	int i, error;
608 
609 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
610 		data = &sc->rx_data[i];
611 
612 		data->sc = sc;
613 
614 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
615 		    0, 0, &data->xfer);
616 		if (error) {
617 			printf("%s: could not allocate rx xfer\n",
618 			    device_xname(sc->sc_dev));
619 			goto fail;
620 		}
621 
622 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
623 		if (data->m == NULL) {
624 			printf("%s: could not allocate rx mbuf\n",
625 			    device_xname(sc->sc_dev));
626 			error = ENOMEM;
627 			goto fail;
628 		}
629 
630 		MCLGET(data->m, M_DONTWAIT);
631 		if (!(data->m->m_flags & M_EXT)) {
632 			printf("%s: could not allocate rx mbuf cluster\n",
633 			    device_xname(sc->sc_dev));
634 			error = ENOMEM;
635 			goto fail;
636 		}
637 
638 		data->buf = mtod(data->m, uint8_t *);
639 	}
640 
641 	return 0;
642 
643 fail:	ural_free_rx_list(sc);
644 	return error;
645 }
646 
647 Static void
648 ural_free_rx_list(struct ural_softc *sc)
649 {
650 	struct ural_rx_data *data;
651 	int i;
652 
653 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
654 		data = &sc->rx_data[i];
655 
656 		if (data->xfer != NULL) {
657 			usbd_destroy_xfer(data->xfer);
658 			data->xfer = NULL;
659 		}
660 
661 		if (data->m != NULL) {
662 			m_freem(data->m);
663 			data->m = NULL;
664 		}
665 	}
666 }
667 
668 Static int
669 ural_media_change(struct ifnet *ifp)
670 {
671 	int error;
672 
673 	error = ieee80211_media_change(ifp);
674 	if (error != ENETRESET)
675 		return error;
676 
677 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
678 		ural_init(ifp);
679 
680 	return 0;
681 }
682 
683 /*
684  * This function is called periodically (every 200ms) during scanning to
685  * switch from one channel to another.
686  */
687 Static void
688 ural_next_scan(void *arg)
689 {
690 	struct ural_softc *sc = arg;
691 	struct ieee80211com *ic = &sc->sc_ic;
692 
693 	if (ic->ic_state == IEEE80211_S_SCAN)
694 		ieee80211_next_scan(ic);
695 }
696 
697 Static void
698 ural_task(void *arg)
699 {
700 	struct ural_softc *sc = arg;
701 	struct ieee80211com *ic = &sc->sc_ic;
702 	enum ieee80211_state ostate;
703 	struct ieee80211_node *ni;
704 	struct mbuf *m;
705 
706 	ostate = ic->ic_state;
707 
708 	switch (sc->sc_state) {
709 	case IEEE80211_S_INIT:
710 		if (ostate == IEEE80211_S_RUN) {
711 			/* abort TSF synchronization */
712 			ural_write(sc, RAL_TXRX_CSR19, 0);
713 
714 			/* force tx led to stop blinking */
715 			ural_write(sc, RAL_MAC_CSR20, 0);
716 		}
717 		break;
718 
719 	case IEEE80211_S_SCAN:
720 		ural_set_chan(sc, ic->ic_curchan);
721 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
722 		break;
723 
724 	case IEEE80211_S_AUTH:
725 		ural_set_chan(sc, ic->ic_curchan);
726 		break;
727 
728 	case IEEE80211_S_ASSOC:
729 		ural_set_chan(sc, ic->ic_curchan);
730 		break;
731 
732 	case IEEE80211_S_RUN:
733 		ural_set_chan(sc, ic->ic_curchan);
734 
735 		ni = ic->ic_bss;
736 
737 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
738 			ural_update_slot(ic->ic_ifp);
739 			ural_set_txpreamble(sc);
740 			ural_set_basicrates(sc);
741 			ural_set_bssid(sc, ni->ni_bssid);
742 		}
743 
744 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
745 		    ic->ic_opmode == IEEE80211_M_IBSS) {
746 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
747 			if (m == NULL) {
748 				printf("%s: could not allocate beacon\n",
749 				    device_xname(sc->sc_dev));
750 				return;
751 			}
752 
753 			if (ural_tx_bcn(sc, m, ni) != 0) {
754 				m_freem(m);
755 				printf("%s: could not send beacon\n",
756 				    device_xname(sc->sc_dev));
757 				return;
758 			}
759 
760 			/* beacon is no longer needed */
761 			m_freem(m);
762 		}
763 
764 		/* make tx led blink on tx (controlled by ASIC) */
765 		ural_write(sc, RAL_MAC_CSR20, 1);
766 
767 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
768 			ural_enable_tsf_sync(sc);
769 
770 		/* enable automatic rate adaptation in STA mode */
771 		if (ic->ic_opmode == IEEE80211_M_STA &&
772 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
773 			ural_amrr_start(sc, ni);
774 
775 		break;
776 	}
777 
778 	sc->sc_newstate(ic, sc->sc_state, -1);
779 }
780 
781 Static int
782 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
783     int arg)
784 {
785 	struct ural_softc *sc = ic->ic_ifp->if_softc;
786 
787 	/*
788 	 * XXXSMP: This does not wait for the task, if it is in flight,
789 	 * to complete.  If this code works at all, it must rely on the
790 	 * kernel lock to serialize with the USB task thread.
791 	 */
792 	usb_rem_task(sc->sc_udev, &sc->sc_task);
793 	callout_stop(&sc->sc_scan_ch);
794 	callout_stop(&sc->sc_amrr_ch);
795 
796 	/* do it in a process context */
797 	sc->sc_state = nstate;
798 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
799 
800 	return 0;
801 }
802 
803 /* quickly determine if a given rate is CCK or OFDM */
804 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
805 
806 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
807 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
808 
809 #define RAL_SIFS		10	/* us */
810 
811 #define RAL_RXTX_TURNAROUND	5	/* us */
812 
813 /*
814  * This function is only used by the Rx radiotap code.
815  */
816 Static int
817 ural_rxrate(struct ural_rx_desc *desc)
818 {
819 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
820 		/* reverse function of ural_plcp_signal */
821 		switch (desc->rate) {
822 		case 0xb:	return 12;
823 		case 0xf:	return 18;
824 		case 0xa:	return 24;
825 		case 0xe:	return 36;
826 		case 0x9:	return 48;
827 		case 0xd:	return 72;
828 		case 0x8:	return 96;
829 		case 0xc:	return 108;
830 		}
831 	} else {
832 		if (desc->rate == 10)
833 			return 2;
834 		if (desc->rate == 20)
835 			return 4;
836 		if (desc->rate == 55)
837 			return 11;
838 		if (desc->rate == 110)
839 			return 22;
840 	}
841 	return 2;	/* should not get there */
842 }
843 
844 Static void
845 ural_txeof(struct usbd_xfer *xfer, void * priv,
846     usbd_status status)
847 {
848 	struct ural_tx_data *data = priv;
849 	struct ural_softc *sc = data->sc;
850 	struct ifnet *ifp = &sc->sc_if;
851 	int s;
852 
853 	if (status != USBD_NORMAL_COMPLETION) {
854 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
855 			return;
856 
857 		printf("%s: could not transmit buffer: %s\n",
858 		    device_xname(sc->sc_dev), usbd_errstr(status));
859 
860 		if (status == USBD_STALLED)
861 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
862 
863 		ifp->if_oerrors++;
864 		return;
865 	}
866 
867 	s = splnet();
868 
869 	m_freem(data->m);
870 	data->m = NULL;
871 	ieee80211_free_node(data->ni);
872 	data->ni = NULL;
873 
874 	sc->tx_queued--;
875 	ifp->if_opackets++;
876 
877 	DPRINTFN(10, ("tx done\n"));
878 
879 	sc->sc_tx_timer = 0;
880 	ifp->if_flags &= ~IFF_OACTIVE;
881 	ural_start(ifp);
882 
883 	splx(s);
884 }
885 
886 Static void
887 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
888 {
889 	struct ural_rx_data *data = priv;
890 	struct ural_softc *sc = data->sc;
891 	struct ieee80211com *ic = &sc->sc_ic;
892 	struct ifnet *ifp = &sc->sc_if;
893 	struct ural_rx_desc *desc;
894 	struct ieee80211_frame *wh;
895 	struct ieee80211_node *ni;
896 	struct mbuf *mnew, *m;
897 	int s, len;
898 
899 	if (status != USBD_NORMAL_COMPLETION) {
900 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
901 			return;
902 
903 		if (status == USBD_STALLED)
904 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
905 		goto skip;
906 	}
907 
908 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
909 
910 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
911 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
912 		    len));
913 		ifp->if_ierrors++;
914 		goto skip;
915 	}
916 
917 	/* rx descriptor is located at the end */
918 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
919 
920 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
921 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
922 		/*
923 		 * This should not happen since we did not request to receive
924 		 * those frames when we filled RAL_TXRX_CSR2.
925 		 */
926 		DPRINTFN(5, ("PHY or CRC error\n"));
927 		ifp->if_ierrors++;
928 		goto skip;
929 	}
930 
931 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
932 	if (mnew == NULL) {
933 		ifp->if_ierrors++;
934 		goto skip;
935 	}
936 
937 	MCLGET(mnew, M_DONTWAIT);
938 	if (!(mnew->m_flags & M_EXT)) {
939 		ifp->if_ierrors++;
940 		m_freem(mnew);
941 		goto skip;
942 	}
943 
944 	m = data->m;
945 	data->m = mnew;
946 	data->buf = mtod(data->m, uint8_t *);
947 
948 	/* finalize mbuf */
949 	m_set_rcvif(m, ifp);
950 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
951 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
952 
953 	s = splnet();
954 
955 	if (sc->sc_drvbpf != NULL) {
956 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
957 
958 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
959 		tap->wr_rate = ural_rxrate(desc);
960 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
961 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
962 		tap->wr_antenna = sc->rx_ant;
963 		tap->wr_antsignal = desc->rssi;
964 
965 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
966 	}
967 
968 	wh = mtod(m, struct ieee80211_frame *);
969 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
970 
971 	/* send the frame to the 802.11 layer */
972 	ieee80211_input(ic, m, ni, desc->rssi, 0);
973 
974 	/* node is no longer needed */
975 	ieee80211_free_node(ni);
976 
977 	splx(s);
978 
979 	DPRINTFN(15, ("rx done\n"));
980 
981 skip:	/* setup a new transfer */
982 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
983 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
984 	usbd_transfer(xfer);
985 }
986 
987 /*
988  * Return the expected ack rate for a frame transmitted at rate `rate'.
989  * XXX: this should depend on the destination node basic rate set.
990  */
991 Static int
992 ural_ack_rate(struct ieee80211com *ic, int rate)
993 {
994 	switch (rate) {
995 	/* CCK rates */
996 	case 2:
997 		return 2;
998 	case 4:
999 	case 11:
1000 	case 22:
1001 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1002 
1003 	/* OFDM rates */
1004 	case 12:
1005 	case 18:
1006 		return 12;
1007 	case 24:
1008 	case 36:
1009 		return 24;
1010 	case 48:
1011 	case 72:
1012 	case 96:
1013 	case 108:
1014 		return 48;
1015 	}
1016 
1017 	/* default to 1Mbps */
1018 	return 2;
1019 }
1020 
1021 /*
1022  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1023  * The function automatically determines the operating mode depending on the
1024  * given rate. `flags' indicates whether short preamble is in use or not.
1025  */
1026 Static uint16_t
1027 ural_txtime(int len, int rate, uint32_t flags)
1028 {
1029 	uint16_t txtime;
1030 
1031 	if (RAL_RATE_IS_OFDM(rate)) {
1032 		/* IEEE Std 802.11g-2003, pp. 37 */
1033 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1034 		txtime = 16 + 4 + 4 * txtime + 6;
1035 	} else {
1036 		/* IEEE Std 802.11b-1999, pp. 28 */
1037 		txtime = (16 * len + rate - 1) / rate;
1038 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1039 			txtime +=  72 + 24;
1040 		else
1041 			txtime += 144 + 48;
1042 	}
1043 	return txtime;
1044 }
1045 
1046 Static uint8_t
1047 ural_plcp_signal(int rate)
1048 {
1049 	switch (rate) {
1050 	/* CCK rates (returned values are device-dependent) */
1051 	case 2:		return 0x0;
1052 	case 4:		return 0x1;
1053 	case 11:	return 0x2;
1054 	case 22:	return 0x3;
1055 
1056 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1057 	case 12:	return 0xb;
1058 	case 18:	return 0xf;
1059 	case 24:	return 0xa;
1060 	case 36:	return 0xe;
1061 	case 48:	return 0x9;
1062 	case 72:	return 0xd;
1063 	case 96:	return 0x8;
1064 	case 108:	return 0xc;
1065 
1066 	/* unsupported rates (should not get there) */
1067 	default:	return 0xff;
1068 	}
1069 }
1070 
1071 Static void
1072 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1073     uint32_t flags, int len, int rate)
1074 {
1075 	struct ieee80211com *ic = &sc->sc_ic;
1076 	uint16_t plcp_length;
1077 	int remainder;
1078 
1079 	desc->flags = htole32(flags);
1080 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1081 	desc->flags |= htole32(len << 16);
1082 
1083 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1084 	desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1085 
1086 	/* setup PLCP fields */
1087 	desc->plcp_signal  = ural_plcp_signal(rate);
1088 	desc->plcp_service = 4;
1089 
1090 	len += IEEE80211_CRC_LEN;
1091 	if (RAL_RATE_IS_OFDM(rate)) {
1092 		desc->flags |= htole32(RAL_TX_OFDM);
1093 
1094 		plcp_length = len & 0xfff;
1095 		desc->plcp_length_hi = plcp_length >> 6;
1096 		desc->plcp_length_lo = plcp_length & 0x3f;
1097 	} else {
1098 		plcp_length = (16 * len + rate - 1) / rate;
1099 		if (rate == 22) {
1100 			remainder = (16 * len) % 22;
1101 			if (remainder != 0 && remainder < 7)
1102 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1103 		}
1104 		desc->plcp_length_hi = plcp_length >> 8;
1105 		desc->plcp_length_lo = plcp_length & 0xff;
1106 
1107 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1108 			desc->plcp_signal |= 0x08;
1109 	}
1110 
1111 	desc->iv = 0;
1112 	desc->eiv = 0;
1113 }
1114 
1115 #define RAL_TX_TIMEOUT	5000
1116 
1117 Static int
1118 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1119 {
1120 	struct ural_tx_desc *desc;
1121 	struct usbd_xfer *xfer;
1122 	uint8_t cmd = 0;
1123 	usbd_status error;
1124 	uint8_t *buf;
1125 	int xferlen, rate;
1126 
1127 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1128 
1129 	/* xfer length needs to be a multiple of two! */
1130 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1131 
1132 	error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1133 	    USBD_FORCE_SHORT_XFER, 0, &xfer);
1134 	if (error)
1135 		return error;
1136 
1137 	buf = usbd_get_buffer(xfer);
1138 
1139 	usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1140 	    RAL_TX_TIMEOUT, NULL);
1141 
1142 	error = usbd_sync_transfer(xfer);
1143 	if (error != 0) {
1144 		usbd_destroy_xfer(xfer);
1145 		return error;
1146 	}
1147 
1148 	desc = (struct ural_tx_desc *)buf;
1149 
1150 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1151 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1152 	    m0->m_pkthdr.len, rate);
1153 
1154 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1155 	    m0->m_pkthdr.len, rate, xferlen));
1156 
1157 	usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1158 	    RAL_TX_TIMEOUT, NULL);
1159 
1160 	error = usbd_sync_transfer(xfer);
1161 	usbd_destroy_xfer(xfer);
1162 
1163 	return error;
1164 }
1165 
1166 Static int
1167 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1168 {
1169 	struct ieee80211com *ic = &sc->sc_ic;
1170 	struct ural_tx_desc *desc;
1171 	struct ural_tx_data *data;
1172 	struct ieee80211_frame *wh;
1173 	struct ieee80211_key *k;
1174 	uint32_t flags = 0;
1175 	uint16_t dur;
1176 	usbd_status error;
1177 	int xferlen, rate;
1178 
1179 	data = &sc->tx_data[0];
1180 	desc = (struct ural_tx_desc *)data->buf;
1181 
1182 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1183 
1184 	wh = mtod(m0, struct ieee80211_frame *);
1185 
1186 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1187 		k = ieee80211_crypto_encap(ic, ni, m0);
1188 		if (k == NULL) {
1189 			m_freem(m0);
1190 			return ENOBUFS;
1191 		}
1192 	}
1193 
1194 	data->m = m0;
1195 	data->ni = ni;
1196 
1197 	wh = mtod(m0, struct ieee80211_frame *);
1198 
1199 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1200 		flags |= RAL_TX_ACK;
1201 
1202 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1203 		*(uint16_t *)wh->i_dur = htole16(dur);
1204 
1205 		/* tell hardware to add timestamp for probe responses */
1206 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1207 		    IEEE80211_FC0_TYPE_MGT &&
1208 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1209 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1210 			flags |= RAL_TX_TIMESTAMP;
1211 	}
1212 
1213 	if (sc->sc_drvbpf != NULL) {
1214 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1215 
1216 		tap->wt_flags = 0;
1217 		tap->wt_rate = rate;
1218 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1219 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1220 		tap->wt_antenna = sc->tx_ant;
1221 
1222 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1223 	}
1224 
1225 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1226 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1227 
1228 	/* align end on a 2-bytes boundary */
1229 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1230 
1231 	/*
1232 	 * No space left in the last URB to store the extra 2 bytes, force
1233 	 * sending of another URB.
1234 	 */
1235 	if ((xferlen % 64) == 0)
1236 		xferlen += 2;
1237 
1238 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1239 	    m0->m_pkthdr.len, rate, xferlen));
1240 
1241 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1242 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1243 
1244 	error = usbd_transfer(data->xfer);
1245 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1246 		m_freem(m0);
1247 		return error;
1248 	}
1249 
1250 	sc->tx_queued++;
1251 
1252 	return 0;
1253 }
1254 
1255 Static int
1256 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1257 {
1258 	struct ieee80211com *ic = &sc->sc_ic;
1259 	struct ural_tx_desc *desc;
1260 	struct ural_tx_data *data;
1261 	struct ieee80211_frame *wh;
1262 	struct ieee80211_key *k;
1263 	uint32_t flags = 0;
1264 	uint16_t dur;
1265 	usbd_status error;
1266 	int xferlen, rate;
1267 
1268 	wh = mtod(m0, struct ieee80211_frame *);
1269 
1270 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1271 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1272 	else
1273 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1274 
1275 	rate &= IEEE80211_RATE_VAL;
1276 
1277 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1278 		k = ieee80211_crypto_encap(ic, ni, m0);
1279 		if (k == NULL) {
1280 			m_freem(m0);
1281 			return ENOBUFS;
1282 		}
1283 
1284 		/* packet header may have moved, reset our local pointer */
1285 		wh = mtod(m0, struct ieee80211_frame *);
1286 	}
1287 
1288 	data = &sc->tx_data[0];
1289 	desc = (struct ural_tx_desc *)data->buf;
1290 
1291 	data->m = m0;
1292 	data->ni = ni;
1293 
1294 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1295 		flags |= RAL_TX_ACK;
1296 		flags |= RAL_TX_RETRY(7);
1297 
1298 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1299 		    ic->ic_flags) + RAL_SIFS;
1300 		*(uint16_t *)wh->i_dur = htole16(dur);
1301 	}
1302 
1303 	if (sc->sc_drvbpf != NULL) {
1304 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1305 
1306 		tap->wt_flags = 0;
1307 		tap->wt_rate = rate;
1308 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1309 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1310 		tap->wt_antenna = sc->tx_ant;
1311 
1312 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1313 	}
1314 
1315 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1316 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1317 
1318 	/* align end on a 2-bytes boundary */
1319 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1320 
1321 	/*
1322 	 * No space left in the last URB to store the extra 2 bytes, force
1323 	 * sending of another URB.
1324 	 */
1325 	if ((xferlen % 64) == 0)
1326 		xferlen += 2;
1327 
1328 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1329 	    m0->m_pkthdr.len, rate, xferlen));
1330 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1331 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1332 
1333 	error = usbd_transfer(data->xfer);
1334 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1335 		return error;
1336 
1337 	sc->tx_queued++;
1338 
1339 	return 0;
1340 }
1341 
1342 Static void
1343 ural_start(struct ifnet *ifp)
1344 {
1345 	struct ural_softc *sc = ifp->if_softc;
1346 	struct ieee80211com *ic = &sc->sc_ic;
1347 	struct mbuf *m0;
1348 	struct ether_header *eh;
1349 	struct ieee80211_node *ni;
1350 
1351 	for (;;) {
1352 		IF_POLL(&ic->ic_mgtq, m0);
1353 		if (m0 != NULL) {
1354 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1355 				ifp->if_flags |= IFF_OACTIVE;
1356 				break;
1357 			}
1358 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1359 
1360 			ni = M_GETCTX(m0, struct ieee80211_node *);
1361 			M_CLEARCTX(m0);
1362 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1363 			if (ural_tx_mgt(sc, m0, ni) != 0)
1364 				break;
1365 
1366 		} else {
1367 			if (ic->ic_state != IEEE80211_S_RUN)
1368 				break;
1369 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1370 			if (m0 == NULL)
1371 				break;
1372 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1373 				IF_PREPEND(&ifp->if_snd, m0);
1374 				ifp->if_flags |= IFF_OACTIVE;
1375 				break;
1376 			}
1377 
1378 			if (m0->m_len < sizeof(struct ether_header) &&
1379 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1380 				continue;
1381 
1382 			eh = mtod(m0, struct ether_header *);
1383 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1384 			if (ni == NULL) {
1385 				m_freem(m0);
1386 				continue;
1387 			}
1388 			bpf_mtap(ifp, m0, BPF_D_OUT);
1389 			m0 = ieee80211_encap(ic, m0, ni);
1390 			if (m0 == NULL) {
1391 				ieee80211_free_node(ni);
1392 				continue;
1393 			}
1394 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1395 			if (ural_tx_data(sc, m0, ni) != 0) {
1396 				ieee80211_free_node(ni);
1397 				ifp->if_oerrors++;
1398 				break;
1399 			}
1400 		}
1401 
1402 		sc->sc_tx_timer = 5;
1403 		ifp->if_timer = 1;
1404 	}
1405 }
1406 
1407 Static void
1408 ural_watchdog(struct ifnet *ifp)
1409 {
1410 	struct ural_softc *sc = ifp->if_softc;
1411 	struct ieee80211com *ic = &sc->sc_ic;
1412 
1413 	ifp->if_timer = 0;
1414 
1415 	if (sc->sc_tx_timer > 0) {
1416 		if (--sc->sc_tx_timer == 0) {
1417 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1418 			/*ural_init(sc); XXX needs a process context! */
1419 			ifp->if_oerrors++;
1420 			return;
1421 		}
1422 		ifp->if_timer = 1;
1423 	}
1424 
1425 	ieee80211_watchdog(ic);
1426 }
1427 
1428 /*
1429  * This function allows for fast channel switching in monitor mode (used by
1430  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1431  * generate a new beacon frame.
1432  */
1433 Static int
1434 ural_reset(struct ifnet *ifp)
1435 {
1436 	struct ural_softc *sc = ifp->if_softc;
1437 	struct ieee80211com *ic = &sc->sc_ic;
1438 
1439 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1440 		return ENETRESET;
1441 
1442 	ural_set_chan(sc, ic->ic_curchan);
1443 
1444 	return 0;
1445 }
1446 
1447 Static int
1448 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1449 {
1450 #define IS_RUNNING(ifp) \
1451 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1452 
1453 	struct ural_softc *sc = ifp->if_softc;
1454 	struct ieee80211com *ic = &sc->sc_ic;
1455 	int s, error = 0;
1456 
1457 	s = splnet();
1458 
1459 	switch (cmd) {
1460 	case SIOCSIFFLAGS:
1461 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1462 			break;
1463 		/* XXX re-use ether_ioctl() */
1464 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1465 		case IFF_UP|IFF_RUNNING:
1466 			ural_update_promisc(sc);
1467 			break;
1468 		case IFF_UP:
1469 			ural_init(ifp);
1470 			break;
1471 		case IFF_RUNNING:
1472 			ural_stop(ifp, 1);
1473 			break;
1474 		case 0:
1475 			break;
1476 		}
1477 		break;
1478 
1479 	case SIOCADDMULTI:
1480 	case SIOCDELMULTI:
1481 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1482 			error = 0;
1483 		}
1484 		break;
1485 
1486 	default:
1487 		error = ieee80211_ioctl(ic, cmd, data);
1488 	}
1489 
1490 	if (error == ENETRESET) {
1491 		if (IS_RUNNING(ifp) &&
1492 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1493 			ural_init(ifp);
1494 		error = 0;
1495 	}
1496 
1497 	splx(s);
1498 
1499 	return error;
1500 #undef IS_RUNNING
1501 }
1502 
1503 Static void
1504 ural_set_testmode(struct ural_softc *sc)
1505 {
1506 	usb_device_request_t req;
1507 	usbd_status error;
1508 
1509 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1510 	req.bRequest = RAL_VENDOR_REQUEST;
1511 	USETW(req.wValue, 4);
1512 	USETW(req.wIndex, 1);
1513 	USETW(req.wLength, 0);
1514 
1515 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1516 	if (error != 0) {
1517 		printf("%s: could not set test mode: %s\n",
1518 		    device_xname(sc->sc_dev), usbd_errstr(error));
1519 	}
1520 }
1521 
1522 Static void
1523 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1524 {
1525 	usb_device_request_t req;
1526 	usbd_status error;
1527 
1528 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1529 	req.bRequest = RAL_READ_EEPROM;
1530 	USETW(req.wValue, 0);
1531 	USETW(req.wIndex, addr);
1532 	USETW(req.wLength, len);
1533 
1534 	error = usbd_do_request(sc->sc_udev, &req, buf);
1535 	if (error != 0) {
1536 		printf("%s: could not read EEPROM: %s\n",
1537 		    device_xname(sc->sc_dev), usbd_errstr(error));
1538 	}
1539 }
1540 
1541 Static uint16_t
1542 ural_read(struct ural_softc *sc, uint16_t reg)
1543 {
1544 	usb_device_request_t req;
1545 	usbd_status error;
1546 	uint16_t val;
1547 
1548 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1549 	req.bRequest = RAL_READ_MAC;
1550 	USETW(req.wValue, 0);
1551 	USETW(req.wIndex, reg);
1552 	USETW(req.wLength, sizeof(uint16_t));
1553 
1554 	error = usbd_do_request(sc->sc_udev, &req, &val);
1555 	if (error != 0) {
1556 		printf("%s: could not read MAC register: %s\n",
1557 		    device_xname(sc->sc_dev), usbd_errstr(error));
1558 		return 0;
1559 	}
1560 
1561 	return le16toh(val);
1562 }
1563 
1564 Static void
1565 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1566 {
1567 	usb_device_request_t req;
1568 	usbd_status error;
1569 
1570 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1571 	req.bRequest = RAL_READ_MULTI_MAC;
1572 	USETW(req.wValue, 0);
1573 	USETW(req.wIndex, reg);
1574 	USETW(req.wLength, len);
1575 
1576 	error = usbd_do_request(sc->sc_udev, &req, buf);
1577 	if (error != 0) {
1578 		printf("%s: could not read MAC register: %s\n",
1579 		    device_xname(sc->sc_dev), usbd_errstr(error));
1580 	}
1581 }
1582 
1583 Static void
1584 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1585 {
1586 	usb_device_request_t req;
1587 	usbd_status error;
1588 
1589 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1590 	req.bRequest = RAL_WRITE_MAC;
1591 	USETW(req.wValue, val);
1592 	USETW(req.wIndex, reg);
1593 	USETW(req.wLength, 0);
1594 
1595 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1596 	if (error != 0) {
1597 		printf("%s: could not write MAC register: %s\n",
1598 		    device_xname(sc->sc_dev), usbd_errstr(error));
1599 	}
1600 }
1601 
1602 Static void
1603 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1604 {
1605 	usb_device_request_t req;
1606 	usbd_status error;
1607 
1608 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1609 	req.bRequest = RAL_WRITE_MULTI_MAC;
1610 	USETW(req.wValue, 0);
1611 	USETW(req.wIndex, reg);
1612 	USETW(req.wLength, len);
1613 
1614 	error = usbd_do_request(sc->sc_udev, &req, buf);
1615 	if (error != 0) {
1616 		printf("%s: could not write MAC register: %s\n",
1617 		    device_xname(sc->sc_dev), usbd_errstr(error));
1618 	}
1619 }
1620 
1621 Static void
1622 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1623 {
1624 	uint16_t tmp;
1625 	int ntries;
1626 
1627 	for (ntries = 0; ntries < 5; ntries++) {
1628 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1629 			break;
1630 	}
1631 	if (ntries == 5) {
1632 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1633 		return;
1634 	}
1635 
1636 	tmp = reg << 8 | val;
1637 	ural_write(sc, RAL_PHY_CSR7, tmp);
1638 }
1639 
1640 Static uint8_t
1641 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1642 {
1643 	uint16_t val;
1644 	int ntries;
1645 
1646 	val = RAL_BBP_WRITE | reg << 8;
1647 	ural_write(sc, RAL_PHY_CSR7, val);
1648 
1649 	for (ntries = 0; ntries < 5; ntries++) {
1650 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1651 			break;
1652 	}
1653 	if (ntries == 5) {
1654 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1655 		return 0;
1656 	}
1657 
1658 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1659 }
1660 
1661 Static void
1662 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1663 {
1664 	uint32_t tmp;
1665 	int ntries;
1666 
1667 	for (ntries = 0; ntries < 5; ntries++) {
1668 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1669 			break;
1670 	}
1671 	if (ntries == 5) {
1672 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1673 		return;
1674 	}
1675 
1676 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1677 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1678 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1679 
1680 	/* remember last written value in sc */
1681 	sc->rf_regs[reg] = val;
1682 
1683 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1684 }
1685 
1686 Static void
1687 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1688 {
1689 	struct ieee80211com *ic = &sc->sc_ic;
1690 	uint8_t power, tmp;
1691 	u_int i, chan;
1692 
1693 	chan = ieee80211_chan2ieee(ic, c);
1694 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1695 		return;
1696 
1697 	if (IEEE80211_IS_CHAN_2GHZ(c))
1698 		power = uimin(sc->txpow[chan - 1], 31);
1699 	else
1700 		power = 31;
1701 
1702 	/* adjust txpower using ifconfig settings */
1703 	power -= (100 - ic->ic_txpowlimit) / 8;
1704 
1705 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1706 
1707 	switch (sc->rf_rev) {
1708 	case RAL_RF_2522:
1709 		ural_rf_write(sc, RAL_RF1, 0x00814);
1710 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1711 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1712 		break;
1713 
1714 	case RAL_RF_2523:
1715 		ural_rf_write(sc, RAL_RF1, 0x08804);
1716 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1717 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1718 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1719 		break;
1720 
1721 	case RAL_RF_2524:
1722 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1723 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1724 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1725 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1726 		break;
1727 
1728 	case RAL_RF_2525:
1729 		ural_rf_write(sc, RAL_RF1, 0x08808);
1730 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1731 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1732 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1733 
1734 		ural_rf_write(sc, RAL_RF1, 0x08808);
1735 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1736 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1737 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1738 		break;
1739 
1740 	case RAL_RF_2525E:
1741 		ural_rf_write(sc, RAL_RF1, 0x08808);
1742 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1743 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1744 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1745 		break;
1746 
1747 	case RAL_RF_2526:
1748 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1749 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1750 		ural_rf_write(sc, RAL_RF1, 0x08804);
1751 
1752 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1753 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1754 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1755 		break;
1756 
1757 	/* dual-band RF */
1758 	case RAL_RF_5222:
1759 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1760 
1761 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1762 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1763 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1764 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1765 		break;
1766 	}
1767 
1768 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1769 	    ic->ic_state != IEEE80211_S_SCAN) {
1770 		/* set Japan filter bit for channel 14 */
1771 		tmp = ural_bbp_read(sc, 70);
1772 
1773 		tmp &= ~RAL_JAPAN_FILTER;
1774 		if (chan == 14)
1775 			tmp |= RAL_JAPAN_FILTER;
1776 
1777 		ural_bbp_write(sc, 70, tmp);
1778 
1779 		/* clear CRC errors */
1780 		ural_read(sc, RAL_STA_CSR0);
1781 
1782 		DELAY(10000);
1783 		ural_disable_rf_tune(sc);
1784 	}
1785 }
1786 
1787 /*
1788  * Disable RF auto-tuning.
1789  */
1790 Static void
1791 ural_disable_rf_tune(struct ural_softc *sc)
1792 {
1793 	uint32_t tmp;
1794 
1795 	if (sc->rf_rev != RAL_RF_2523) {
1796 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1797 		ural_rf_write(sc, RAL_RF1, tmp);
1798 	}
1799 
1800 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1801 	ural_rf_write(sc, RAL_RF3, tmp);
1802 
1803 	DPRINTFN(2, ("disabling RF autotune\n"));
1804 }
1805 
1806 /*
1807  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1808  * synchronization.
1809  */
1810 Static void
1811 ural_enable_tsf_sync(struct ural_softc *sc)
1812 {
1813 	struct ieee80211com *ic = &sc->sc_ic;
1814 	uint16_t logcwmin, preload, tmp;
1815 
1816 	/* first, disable TSF synchronization */
1817 	ural_write(sc, RAL_TXRX_CSR19, 0);
1818 
1819 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1820 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1821 
1822 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1823 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1824 	tmp = logcwmin << 12 | preload;
1825 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1826 
1827 	/* finally, enable TSF synchronization */
1828 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1829 	if (ic->ic_opmode == IEEE80211_M_STA)
1830 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1831 	else
1832 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1833 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1834 
1835 	DPRINTF(("enabling TSF synchronization\n"));
1836 }
1837 
1838 Static void
1839 ural_update_slot(struct ifnet *ifp)
1840 {
1841 	struct ural_softc *sc = ifp->if_softc;
1842 	struct ieee80211com *ic = &sc->sc_ic;
1843 	uint16_t slottime, sifs, eifs;
1844 
1845 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1846 
1847 	/*
1848 	 * These settings may sound a bit inconsistent but this is what the
1849 	 * reference driver does.
1850 	 */
1851 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1852 		sifs = 16 - RAL_RXTX_TURNAROUND;
1853 		eifs = 364;
1854 	} else {
1855 		sifs = 10 - RAL_RXTX_TURNAROUND;
1856 		eifs = 64;
1857 	}
1858 
1859 	ural_write(sc, RAL_MAC_CSR10, slottime);
1860 	ural_write(sc, RAL_MAC_CSR11, sifs);
1861 	ural_write(sc, RAL_MAC_CSR12, eifs);
1862 }
1863 
1864 Static void
1865 ural_set_txpreamble(struct ural_softc *sc)
1866 {
1867 	uint16_t tmp;
1868 
1869 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1870 
1871 	tmp &= ~RAL_SHORT_PREAMBLE;
1872 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1873 		tmp |= RAL_SHORT_PREAMBLE;
1874 
1875 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1876 }
1877 
1878 Static void
1879 ural_set_basicrates(struct ural_softc *sc)
1880 {
1881 	struct ieee80211com *ic = &sc->sc_ic;
1882 
1883 	/* update basic rate set */
1884 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1885 		/* 11b basic rates: 1, 2Mbps */
1886 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1887 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1888 		/* 11a basic rates: 6, 12, 24Mbps */
1889 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1890 	} else {
1891 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1892 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1893 	}
1894 }
1895 
1896 Static void
1897 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1898 {
1899 	uint16_t tmp;
1900 
1901 	tmp = bssid[0] | bssid[1] << 8;
1902 	ural_write(sc, RAL_MAC_CSR5, tmp);
1903 
1904 	tmp = bssid[2] | bssid[3] << 8;
1905 	ural_write(sc, RAL_MAC_CSR6, tmp);
1906 
1907 	tmp = bssid[4] | bssid[5] << 8;
1908 	ural_write(sc, RAL_MAC_CSR7, tmp);
1909 
1910 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1911 }
1912 
1913 Static void
1914 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1915 {
1916 	uint16_t tmp;
1917 
1918 	tmp = addr[0] | addr[1] << 8;
1919 	ural_write(sc, RAL_MAC_CSR2, tmp);
1920 
1921 	tmp = addr[2] | addr[3] << 8;
1922 	ural_write(sc, RAL_MAC_CSR3, tmp);
1923 
1924 	tmp = addr[4] | addr[5] << 8;
1925 	ural_write(sc, RAL_MAC_CSR4, tmp);
1926 
1927 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1928 }
1929 
1930 Static void
1931 ural_update_promisc(struct ural_softc *sc)
1932 {
1933 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1934 	uint32_t tmp;
1935 
1936 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1937 
1938 	tmp &= ~RAL_DROP_NOT_TO_ME;
1939 	if (!(ifp->if_flags & IFF_PROMISC))
1940 		tmp |= RAL_DROP_NOT_TO_ME;
1941 
1942 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1943 
1944 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1945 	    "entering" : "leaving"));
1946 }
1947 
1948 Static const char *
1949 ural_get_rf(int rev)
1950 {
1951 	switch (rev) {
1952 	case RAL_RF_2522:	return "RT2522";
1953 	case RAL_RF_2523:	return "RT2523";
1954 	case RAL_RF_2524:	return "RT2524";
1955 	case RAL_RF_2525:	return "RT2525";
1956 	case RAL_RF_2525E:	return "RT2525e";
1957 	case RAL_RF_2526:	return "RT2526";
1958 	case RAL_RF_5222:	return "RT5222";
1959 	default:		return "unknown";
1960 	}
1961 }
1962 
1963 Static void
1964 ural_read_eeprom(struct ural_softc *sc)
1965 {
1966 	struct ieee80211com *ic = &sc->sc_ic;
1967 	uint16_t val;
1968 
1969 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1970 	val = le16toh(val);
1971 	sc->rf_rev =   (val >> 11) & 0x7;
1972 	sc->hw_radio = (val >> 10) & 0x1;
1973 	sc->led_mode = (val >> 6)  & 0x7;
1974 	sc->rx_ant =   (val >> 4)  & 0x3;
1975 	sc->tx_ant =   (val >> 2)  & 0x3;
1976 	sc->nb_ant =   val & 0x3;
1977 
1978 	/* read MAC address */
1979 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1980 
1981 	/* read default values for BBP registers */
1982 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1983 
1984 	/* read Tx power for all b/g channels */
1985 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1986 }
1987 
1988 Static int
1989 ural_bbp_init(struct ural_softc *sc)
1990 {
1991 	int i, ntries;
1992 
1993 	/* wait for BBP to be ready */
1994 	for (ntries = 0; ntries < 100; ntries++) {
1995 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1996 			break;
1997 		DELAY(1000);
1998 	}
1999 	if (ntries == 100) {
2000 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2001 		return EIO;
2002 	}
2003 
2004 	/* initialize BBP registers to default values */
2005 	for (i = 0; i < __arraycount(ural_def_bbp); i++)
2006 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2007 
2008 #if 0
2009 	/* initialize BBP registers to values stored in EEPROM */
2010 	for (i = 0; i < 16; i++) {
2011 		if (sc->bbp_prom[i].reg == 0xff)
2012 			continue;
2013 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2014 	}
2015 #endif
2016 
2017 	return 0;
2018 }
2019 
2020 Static void
2021 ural_set_txantenna(struct ural_softc *sc, int antenna)
2022 {
2023 	uint16_t tmp;
2024 	uint8_t tx;
2025 
2026 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2027 	if (antenna == 1)
2028 		tx |= RAL_BBP_ANTA;
2029 	else if (antenna == 2)
2030 		tx |= RAL_BBP_ANTB;
2031 	else
2032 		tx |= RAL_BBP_DIVERSITY;
2033 
2034 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2035 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2036 	    sc->rf_rev == RAL_RF_5222)
2037 		tx |= RAL_BBP_FLIPIQ;
2038 
2039 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2040 
2041 	/* update values in PHY_CSR5 and PHY_CSR6 */
2042 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2043 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2044 
2045 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2046 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2047 }
2048 
2049 Static void
2050 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2051 {
2052 	uint8_t rx;
2053 
2054 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2055 	if (antenna == 1)
2056 		rx |= RAL_BBP_ANTA;
2057 	else if (antenna == 2)
2058 		rx |= RAL_BBP_ANTB;
2059 	else
2060 		rx |= RAL_BBP_DIVERSITY;
2061 
2062 	/* need to force no I/Q flip for RF 2525e and 2526 */
2063 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2064 		rx &= ~RAL_BBP_FLIPIQ;
2065 
2066 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2067 }
2068 
2069 Static int
2070 ural_init(struct ifnet *ifp)
2071 {
2072 	struct ural_softc *sc = ifp->if_softc;
2073 	struct ieee80211com *ic = &sc->sc_ic;
2074 	struct ieee80211_key *wk;
2075 	uint16_t tmp;
2076 	usbd_status error;
2077 	int i, ntries;
2078 
2079 	ural_set_testmode(sc);
2080 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2081 
2082 	ural_stop(ifp, 0);
2083 
2084 	/* initialize MAC registers to default values */
2085 	for (i = 0; i < __arraycount(ural_def_mac); i++)
2086 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2087 
2088 	/* wait for BBP and RF to wake up (this can take a long time!) */
2089 	for (ntries = 0; ntries < 100; ntries++) {
2090 		tmp = ural_read(sc, RAL_MAC_CSR17);
2091 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2092 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2093 			break;
2094 		DELAY(1000);
2095 	}
2096 	if (ntries == 100) {
2097 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2098 		    device_xname(sc->sc_dev));
2099 		error = EIO;
2100 		goto fail;
2101 	}
2102 
2103 	/* we're ready! */
2104 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2105 
2106 	/* set basic rate set (will be updated later) */
2107 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2108 
2109 	error = ural_bbp_init(sc);
2110 	if (error != 0)
2111 		goto fail;
2112 
2113 	/* set default BSS channel */
2114 	ural_set_chan(sc, ic->ic_curchan);
2115 
2116 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2117 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2118 
2119 	ural_set_txantenna(sc, sc->tx_ant);
2120 	ural_set_rxantenna(sc, sc->rx_ant);
2121 
2122 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2123 	ural_set_macaddr(sc, ic->ic_myaddr);
2124 
2125 	/*
2126 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2127 	 */
2128 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2129 		wk = &ic->ic_crypto.cs_nw_keys[i];
2130 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2131 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2132 	}
2133 
2134 	/*
2135 	 * Allocate xfer for AMRR statistics requests.
2136 	 */
2137 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2138 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2139 	if (error) {
2140 		printf("%s: could not allocate AMRR xfer\n",
2141 		    device_xname(sc->sc_dev));
2142 		goto fail;
2143 	}
2144 
2145 	/*
2146 	 * Open Tx and Rx USB bulk pipes.
2147 	 */
2148 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2149 	    &sc->sc_tx_pipeh);
2150 	if (error != 0) {
2151 		printf("%s: could not open Tx pipe: %s\n",
2152 		    device_xname(sc->sc_dev), usbd_errstr(error));
2153 		goto fail;
2154 	}
2155 
2156 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2157 	    &sc->sc_rx_pipeh);
2158 	if (error != 0) {
2159 		printf("%s: could not open Rx pipe: %s\n",
2160 		    device_xname(sc->sc_dev), usbd_errstr(error));
2161 		goto fail;
2162 	}
2163 
2164 	/*
2165 	 * Allocate Tx and Rx xfer queues.
2166 	 */
2167 	error = ural_alloc_tx_list(sc);
2168 	if (error != 0) {
2169 		printf("%s: could not allocate Tx list\n",
2170 		    device_xname(sc->sc_dev));
2171 		goto fail;
2172 	}
2173 
2174 	error = ural_alloc_rx_list(sc);
2175 	if (error != 0) {
2176 		printf("%s: could not allocate Rx list\n",
2177 		    device_xname(sc->sc_dev));
2178 		goto fail;
2179 	}
2180 
2181 	/*
2182 	 * Start up the receive pipe.
2183 	 */
2184 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2185 		struct ural_rx_data *data = &sc->rx_data[i];
2186 
2187 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2188 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2189 		usbd_transfer(data->xfer);
2190 	}
2191 
2192 	/* kick Rx */
2193 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2194 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2195 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2196 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2197 			tmp |= RAL_DROP_TODS;
2198 		if (!(ifp->if_flags & IFF_PROMISC))
2199 			tmp |= RAL_DROP_NOT_TO_ME;
2200 	}
2201 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2202 
2203 	ifp->if_flags &= ~IFF_OACTIVE;
2204 	ifp->if_flags |= IFF_RUNNING;
2205 
2206 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2207 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2208 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2209 	} else
2210 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2211 
2212 	return 0;
2213 
2214 fail:	ural_stop(ifp, 1);
2215 	return error;
2216 }
2217 
2218 Static void
2219 ural_stop(struct ifnet *ifp, int disable)
2220 {
2221 	struct ural_softc *sc = ifp->if_softc;
2222 	struct ieee80211com *ic = &sc->sc_ic;
2223 
2224 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2225 
2226 	sc->sc_tx_timer = 0;
2227 	ifp->if_timer = 0;
2228 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2229 
2230 	/* disable Rx */
2231 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2232 
2233 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2234 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2235 	ural_write(sc, RAL_MAC_CSR1, 0);
2236 
2237 	if (sc->amrr_xfer != NULL) {
2238 		usbd_destroy_xfer(sc->amrr_xfer);
2239 		sc->amrr_xfer = NULL;
2240 	}
2241 
2242 	if (sc->sc_rx_pipeh != NULL) {
2243 		usbd_abort_pipe(sc->sc_rx_pipeh);
2244 	}
2245 
2246 	if (sc->sc_tx_pipeh != NULL) {
2247 		usbd_abort_pipe(sc->sc_tx_pipeh);
2248 	}
2249 
2250 	ural_free_rx_list(sc);
2251 	ural_free_tx_list(sc);
2252 
2253 	if (sc->sc_rx_pipeh != NULL) {
2254 		usbd_close_pipe(sc->sc_rx_pipeh);
2255 		sc->sc_rx_pipeh = NULL;
2256 	}
2257 
2258 	if (sc->sc_tx_pipeh != NULL) {
2259 		usbd_close_pipe(sc->sc_tx_pipeh);
2260 		sc->sc_tx_pipeh = NULL;
2261 	}
2262 }
2263 
2264 int
2265 ural_activate(device_t self, enum devact act)
2266 {
2267 	struct ural_softc *sc = device_private(self);
2268 
2269 	switch (act) {
2270 	case DVACT_DEACTIVATE:
2271 		if_deactivate(&sc->sc_if);
2272 		return 0;
2273 	default:
2274 		return EOPNOTSUPP;
2275 	}
2276 }
2277 
2278 Static void
2279 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2280 {
2281 	int i;
2282 
2283 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2284 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2285 
2286 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2287 
2288 	/* set rate to some reasonable initial value */
2289 	for (i = ni->ni_rates.rs_nrates - 1;
2290 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2291 	     i--);
2292 	ni->ni_txrate = i;
2293 
2294 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2295 }
2296 
2297 Static void
2298 ural_amrr_timeout(void *arg)
2299 {
2300 	struct ural_softc *sc = (struct ural_softc *)arg;
2301 	usb_device_request_t req;
2302 	int s;
2303 
2304 	s = splusb();
2305 
2306 	/*
2307 	 * Asynchronously read statistic registers (cleared by read).
2308 	 */
2309 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2310 	req.bRequest = RAL_READ_MULTI_MAC;
2311 	USETW(req.wValue, 0);
2312 	USETW(req.wIndex, RAL_STA_CSR0);
2313 	USETW(req.wLength, sizeof(sc->sta));
2314 
2315 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2316 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2317 	    ural_amrr_update);
2318 	(void)usbd_transfer(sc->amrr_xfer);
2319 
2320 	splx(s);
2321 }
2322 
2323 Static void
2324 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2325     usbd_status status)
2326 {
2327 	struct ural_softc *sc = (struct ural_softc *)priv;
2328 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2329 
2330 	if (status != USBD_NORMAL_COMPLETION) {
2331 		printf("%s: could not retrieve Tx statistics - "
2332 		    "cancelling automatic rate control\n",
2333 		    device_xname(sc->sc_dev));
2334 		return;
2335 	}
2336 
2337 	/* count TX retry-fail as Tx errors */
2338 	ifp->if_oerrors += sc->sta[9];
2339 
2340 	sc->amn.amn_retrycnt =
2341 	    sc->sta[7] +	/* TX one-retry ok count */
2342 	    sc->sta[8] +	/* TX more-retry ok count */
2343 	    sc->sta[9];		/* TX retry-fail count */
2344 
2345 	sc->amn.amn_txcnt =
2346 	    sc->amn.amn_retrycnt +
2347 	    sc->sta[6];		/* TX no-retry ok count */
2348 
2349 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2350 
2351 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2352 }
2353