xref: /netbsd-src/sys/dev/usb/if_ural.c (revision e61202360d5611414dd6f6115934a96aa1f50b1a)
1 /*	$NetBSD: if_ural.c,v 1.40 2012/05/31 12:32:35 nonaka Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.40 2012/05/31 12:32:35 nonaka Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67 
68 #include <dev/usb/if_uralreg.h>
69 #include <dev/usb/if_uralvar.h>
70 
71 #ifdef USB_DEBUG
72 #define URAL_DEBUG
73 #endif
74 
75 #ifdef URAL_DEBUG
76 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
77 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
78 int ural_debug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83 
84 /* various supported device vendors/products */
85 static const struct usb_devno ural_devs[] = {
86 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
87 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
88 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
90 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
91 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
92 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
93 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
94 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
95 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
98 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
101 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
102 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
103 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
105 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
106 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
107 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
108 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
109 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
110 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
111 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
112 };
113 
114 Static int		ural_alloc_tx_list(struct ural_softc *);
115 Static void		ural_free_tx_list(struct ural_softc *);
116 Static int		ural_alloc_rx_list(struct ural_softc *);
117 Static void		ural_free_rx_list(struct ural_softc *);
118 Static int		ural_media_change(struct ifnet *);
119 Static void		ural_next_scan(void *);
120 Static void		ural_task(void *);
121 Static int		ural_newstate(struct ieee80211com *,
122 			    enum ieee80211_state, int);
123 Static int		ural_rxrate(struct ural_rx_desc *);
124 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
125 			    usbd_status);
126 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
127 			    usbd_status);
128 Static int		ural_ack_rate(struct ieee80211com *, int);
129 Static uint16_t		ural_txtime(int, int, uint32_t);
130 Static uint8_t		ural_plcp_signal(int);
131 Static void		ural_setup_tx_desc(struct ural_softc *,
132 			    struct ural_tx_desc *, uint32_t, int, int);
133 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
134 			    struct ieee80211_node *);
135 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
136 			    struct ieee80211_node *);
137 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
138 			    struct ieee80211_node *);
139 Static void		ural_start(struct ifnet *);
140 Static void		ural_watchdog(struct ifnet *);
141 Static int		ural_reset(struct ifnet *);
142 Static int		ural_ioctl(struct ifnet *, u_long, void *);
143 Static void		ural_set_testmode(struct ural_softc *);
144 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
145 			    int);
146 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
147 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
148 			    int);
149 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
150 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
151 			    int);
152 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
153 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
154 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
155 Static void		ural_set_chan(struct ural_softc *,
156 			    struct ieee80211_channel *);
157 Static void		ural_disable_rf_tune(struct ural_softc *);
158 Static void		ural_enable_tsf_sync(struct ural_softc *);
159 Static void		ural_update_slot(struct ifnet *);
160 Static void		ural_set_txpreamble(struct ural_softc *);
161 Static void		ural_set_basicrates(struct ural_softc *);
162 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
163 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
164 Static void		ural_update_promisc(struct ural_softc *);
165 Static const char	*ural_get_rf(int);
166 Static void		ural_read_eeprom(struct ural_softc *);
167 Static int		ural_bbp_init(struct ural_softc *);
168 Static void		ural_set_txantenna(struct ural_softc *, int);
169 Static void		ural_set_rxantenna(struct ural_softc *, int);
170 Static int		ural_init(struct ifnet *);
171 Static void		ural_stop(struct ifnet *, int);
172 Static void		ural_amrr_start(struct ural_softc *,
173 			    struct ieee80211_node *);
174 Static void		ural_amrr_timeout(void *);
175 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
176 			    usbd_status status);
177 
178 /*
179  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
180  */
181 static const struct ieee80211_rateset ural_rateset_11a =
182 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
183 
184 static const struct ieee80211_rateset ural_rateset_11b =
185 	{ 4, { 2, 4, 11, 22 } };
186 
187 static const struct ieee80211_rateset ural_rateset_11g =
188 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
189 
190 /*
191  * Default values for MAC registers; values taken from the reference driver.
192  */
193 static const struct {
194 	uint16_t	reg;
195 	uint16_t	val;
196 } ural_def_mac[] = {
197 	{ RAL_TXRX_CSR5,  0x8c8d },
198 	{ RAL_TXRX_CSR6,  0x8b8a },
199 	{ RAL_TXRX_CSR7,  0x8687 },
200 	{ RAL_TXRX_CSR8,  0x0085 },
201 	{ RAL_MAC_CSR13,  0x1111 },
202 	{ RAL_MAC_CSR14,  0x1e11 },
203 	{ RAL_TXRX_CSR21, 0xe78f },
204 	{ RAL_MAC_CSR9,   0xff1d },
205 	{ RAL_MAC_CSR11,  0x0002 },
206 	{ RAL_MAC_CSR22,  0x0053 },
207 	{ RAL_MAC_CSR15,  0x0000 },
208 	{ RAL_MAC_CSR8,   0x0780 },
209 	{ RAL_TXRX_CSR19, 0x0000 },
210 	{ RAL_TXRX_CSR18, 0x005a },
211 	{ RAL_PHY_CSR2,   0x0000 },
212 	{ RAL_TXRX_CSR0,  0x1ec0 },
213 	{ RAL_PHY_CSR4,   0x000f }
214 };
215 
216 /*
217  * Default values for BBP registers; values taken from the reference driver.
218  */
219 static const struct {
220 	uint8_t	reg;
221 	uint8_t	val;
222 } ural_def_bbp[] = {
223 	{  3, 0x02 },
224 	{  4, 0x19 },
225 	{ 14, 0x1c },
226 	{ 15, 0x30 },
227 	{ 16, 0xac },
228 	{ 17, 0x48 },
229 	{ 18, 0x18 },
230 	{ 19, 0xff },
231 	{ 20, 0x1e },
232 	{ 21, 0x08 },
233 	{ 22, 0x08 },
234 	{ 23, 0x08 },
235 	{ 24, 0x80 },
236 	{ 25, 0x50 },
237 	{ 26, 0x08 },
238 	{ 27, 0x23 },
239 	{ 30, 0x10 },
240 	{ 31, 0x2b },
241 	{ 32, 0xb9 },
242 	{ 34, 0x12 },
243 	{ 35, 0x50 },
244 	{ 39, 0xc4 },
245 	{ 40, 0x02 },
246 	{ 41, 0x60 },
247 	{ 53, 0x10 },
248 	{ 54, 0x18 },
249 	{ 56, 0x08 },
250 	{ 57, 0x10 },
251 	{ 58, 0x08 },
252 	{ 61, 0x60 },
253 	{ 62, 0x10 },
254 	{ 75, 0xff }
255 };
256 
257 /*
258  * Default values for RF register R2 indexed by channel numbers.
259  */
260 static const uint32_t ural_rf2522_r2[] = {
261 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
262 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
263 };
264 
265 static const uint32_t ural_rf2523_r2[] = {
266 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
267 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
268 };
269 
270 static const uint32_t ural_rf2524_r2[] = {
271 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
272 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
273 };
274 
275 static const uint32_t ural_rf2525_r2[] = {
276 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
277 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
278 };
279 
280 static const uint32_t ural_rf2525_hi_r2[] = {
281 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
282 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
283 };
284 
285 static const uint32_t ural_rf2525e_r2[] = {
286 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
287 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
288 };
289 
290 static const uint32_t ural_rf2526_hi_r2[] = {
291 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
292 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
293 };
294 
295 static const uint32_t ural_rf2526_r2[] = {
296 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
297 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
298 };
299 
300 /*
301  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
302  * values taken from the reference driver.
303  */
304 static const struct {
305 	uint8_t		chan;
306 	uint32_t	r1;
307 	uint32_t	r2;
308 	uint32_t	r4;
309 } ural_rf5222[] = {
310 	{   1, 0x08808, 0x0044d, 0x00282 },
311 	{   2, 0x08808, 0x0044e, 0x00282 },
312 	{   3, 0x08808, 0x0044f, 0x00282 },
313 	{   4, 0x08808, 0x00460, 0x00282 },
314 	{   5, 0x08808, 0x00461, 0x00282 },
315 	{   6, 0x08808, 0x00462, 0x00282 },
316 	{   7, 0x08808, 0x00463, 0x00282 },
317 	{   8, 0x08808, 0x00464, 0x00282 },
318 	{   9, 0x08808, 0x00465, 0x00282 },
319 	{  10, 0x08808, 0x00466, 0x00282 },
320 	{  11, 0x08808, 0x00467, 0x00282 },
321 	{  12, 0x08808, 0x00468, 0x00282 },
322 	{  13, 0x08808, 0x00469, 0x00282 },
323 	{  14, 0x08808, 0x0046b, 0x00286 },
324 
325 	{  36, 0x08804, 0x06225, 0x00287 },
326 	{  40, 0x08804, 0x06226, 0x00287 },
327 	{  44, 0x08804, 0x06227, 0x00287 },
328 	{  48, 0x08804, 0x06228, 0x00287 },
329 	{  52, 0x08804, 0x06229, 0x00287 },
330 	{  56, 0x08804, 0x0622a, 0x00287 },
331 	{  60, 0x08804, 0x0622b, 0x00287 },
332 	{  64, 0x08804, 0x0622c, 0x00287 },
333 
334 	{ 100, 0x08804, 0x02200, 0x00283 },
335 	{ 104, 0x08804, 0x02201, 0x00283 },
336 	{ 108, 0x08804, 0x02202, 0x00283 },
337 	{ 112, 0x08804, 0x02203, 0x00283 },
338 	{ 116, 0x08804, 0x02204, 0x00283 },
339 	{ 120, 0x08804, 0x02205, 0x00283 },
340 	{ 124, 0x08804, 0x02206, 0x00283 },
341 	{ 128, 0x08804, 0x02207, 0x00283 },
342 	{ 132, 0x08804, 0x02208, 0x00283 },
343 	{ 136, 0x08804, 0x02209, 0x00283 },
344 	{ 140, 0x08804, 0x0220a, 0x00283 },
345 
346 	{ 149, 0x08808, 0x02429, 0x00281 },
347 	{ 153, 0x08808, 0x0242b, 0x00281 },
348 	{ 157, 0x08808, 0x0242d, 0x00281 },
349 	{ 161, 0x08808, 0x0242f, 0x00281 }
350 };
351 
352 int             ural_match(device_t, cfdata_t, void *);
353 void            ural_attach(device_t, device_t, void *);
354 int             ural_detach(device_t, int);
355 int             ural_activate(device_t, enum devact);
356 extern struct cfdriver ural_cd;
357 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
358 
359 int
360 ural_match(device_t parent, cfdata_t match, void *aux)
361 {
362 	struct usb_attach_arg *uaa = aux;
363 
364 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
365 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
366 }
367 
368 void
369 ural_attach(device_t parent, device_t self, void *aux)
370 {
371 	struct ural_softc *sc = device_private(self);
372 	struct usb_attach_arg *uaa = aux;
373 	struct ieee80211com *ic = &sc->sc_ic;
374 	struct ifnet *ifp = &sc->sc_if;
375 	usb_interface_descriptor_t *id;
376 	usb_endpoint_descriptor_t *ed;
377 	usbd_status error;
378 	char *devinfop;
379 	int i;
380 
381 	sc->sc_dev = self;
382 	sc->sc_udev = uaa->device;
383 
384 	aprint_naive("\n");
385 	aprint_normal("\n");
386 
387 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
388 	aprint_normal_dev(self, "%s\n", devinfop);
389 	usbd_devinfo_free(devinfop);
390 
391 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
392 		aprint_error_dev(self, "could not set configuration no\n");
393 		return;
394 	}
395 
396 	/* get the first interface handle */
397 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
398 	    &sc->sc_iface);
399 	if (error != 0) {
400 		aprint_error_dev(self, "could not get interface handle\n");
401 		return;
402 	}
403 
404 	/*
405 	 * Find endpoints.
406 	 */
407 	id = usbd_get_interface_descriptor(sc->sc_iface);
408 
409 	sc->sc_rx_no = sc->sc_tx_no = -1;
410 	for (i = 0; i < id->bNumEndpoints; i++) {
411 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
412 		if (ed == NULL) {
413 			aprint_error_dev(self,
414 			    "no endpoint descriptor for %d\n", i);
415 			return;
416 		}
417 
418 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
419 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
420 			sc->sc_rx_no = ed->bEndpointAddress;
421 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
422 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
423 			sc->sc_tx_no = ed->bEndpointAddress;
424 	}
425 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
426 		aprint_error_dev(self, "missing endpoint\n");
427 		return;
428 	}
429 
430 	usb_init_task(&sc->sc_task, ural_task, sc);
431 	callout_init(&sc->sc_scan_ch, 0);
432 	sc->amrr.amrr_min_success_threshold = 1;
433 	sc->amrr.amrr_max_success_threshold = 15;
434 	callout_init(&sc->sc_amrr_ch, 0);
435 
436 	/* retrieve RT2570 rev. no */
437 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
438 
439 	/* retrieve MAC address and various other things from EEPROM */
440 	ural_read_eeprom(sc);
441 
442 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
443 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
444 
445 	ifp->if_softc = sc;
446 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
447 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
448 	ifp->if_init = ural_init;
449 	ifp->if_ioctl = ural_ioctl;
450 	ifp->if_start = ural_start;
451 	ifp->if_watchdog = ural_watchdog;
452 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
453 	IFQ_SET_READY(&ifp->if_snd);
454 
455 	ic->ic_ifp = ifp;
456 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
457 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
458 	ic->ic_state = IEEE80211_S_INIT;
459 
460 	/* set device capabilities */
461 	ic->ic_caps =
462 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
463 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
464 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
465 	    IEEE80211_C_TXPMGT |	/* tx power management */
466 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
467 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
468 	    IEEE80211_C_WPA;		/* 802.11i */
469 
470 	if (sc->rf_rev == RAL_RF_5222) {
471 		/* set supported .11a rates */
472 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
473 
474 		/* set supported .11a channels */
475 		for (i = 36; i <= 64; i += 4) {
476 			ic->ic_channels[i].ic_freq =
477 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 		}
480 		for (i = 100; i <= 140; i += 4) {
481 			ic->ic_channels[i].ic_freq =
482 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
483 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
484 		}
485 		for (i = 149; i <= 161; i += 4) {
486 			ic->ic_channels[i].ic_freq =
487 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
488 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
489 		}
490 	}
491 
492 	/* set supported .11b and .11g rates */
493 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
494 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
495 
496 	/* set supported .11b and .11g channels (1 through 14) */
497 	for (i = 1; i <= 14; i++) {
498 		ic->ic_channels[i].ic_freq =
499 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
500 		ic->ic_channels[i].ic_flags =
501 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
502 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
503 	}
504 
505 	if_attach(ifp);
506 	ieee80211_ifattach(ic);
507 	ic->ic_reset = ural_reset;
508 
509 	/* override state transition machine */
510 	sc->sc_newstate = ic->ic_newstate;
511 	ic->ic_newstate = ural_newstate;
512 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
513 
514 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
515 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
516 
517 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
518 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
519 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
520 
521 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
522 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
523 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
524 
525 	ieee80211_announce(ic);
526 
527 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
528 	    sc->sc_dev);
529 
530 	return;
531 }
532 
533 int
534 ural_detach(device_t self, int flags)
535 {
536 	struct ural_softc *sc = device_private(self);
537 	struct ieee80211com *ic = &sc->sc_ic;
538 	struct ifnet *ifp = &sc->sc_if;
539 	int s;
540 
541 	s = splusb();
542 
543 	ural_stop(ifp, 1);
544 	usb_rem_task(sc->sc_udev, &sc->sc_task);
545 	callout_stop(&sc->sc_scan_ch);
546 	callout_stop(&sc->sc_amrr_ch);
547 
548 	if (sc->amrr_xfer != NULL) {
549 		usbd_free_xfer(sc->amrr_xfer);
550 		sc->amrr_xfer = NULL;
551 	}
552 
553 	if (sc->sc_rx_pipeh != NULL) {
554 		usbd_abort_pipe(sc->sc_rx_pipeh);
555 		usbd_close_pipe(sc->sc_rx_pipeh);
556 	}
557 
558 	if (sc->sc_tx_pipeh != NULL) {
559 		usbd_abort_pipe(sc->sc_tx_pipeh);
560 		usbd_close_pipe(sc->sc_tx_pipeh);
561 	}
562 
563 	bpf_detach(ifp);
564 	ieee80211_ifdetach(ic);
565 	if_detach(ifp);
566 
567 	splx(s);
568 
569 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
570 	    sc->sc_dev);
571 
572 	return 0;
573 }
574 
575 Static int
576 ural_alloc_tx_list(struct ural_softc *sc)
577 {
578 	struct ural_tx_data *data;
579 	int i, error;
580 
581 	sc->tx_queued = 0;
582 
583 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
584 		data = &sc->tx_data[i];
585 
586 		data->sc = sc;
587 
588 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
589 		if (data->xfer == NULL) {
590 			printf("%s: could not allocate tx xfer\n",
591 			    device_xname(sc->sc_dev));
592 			error = ENOMEM;
593 			goto fail;
594 		}
595 
596 		data->buf = usbd_alloc_buffer(data->xfer,
597 		    RAL_TX_DESC_SIZE + MCLBYTES);
598 		if (data->buf == NULL) {
599 			printf("%s: could not allocate tx buffer\n",
600 			    device_xname(sc->sc_dev));
601 			error = ENOMEM;
602 			goto fail;
603 		}
604 	}
605 
606 	return 0;
607 
608 fail:	ural_free_tx_list(sc);
609 	return error;
610 }
611 
612 Static void
613 ural_free_tx_list(struct ural_softc *sc)
614 {
615 	struct ural_tx_data *data;
616 	int i;
617 
618 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
619 		data = &sc->tx_data[i];
620 
621 		if (data->xfer != NULL) {
622 			usbd_free_xfer(data->xfer);
623 			data->xfer = NULL;
624 		}
625 
626 		if (data->ni != NULL) {
627 			ieee80211_free_node(data->ni);
628 			data->ni = NULL;
629 		}
630 	}
631 }
632 
633 Static int
634 ural_alloc_rx_list(struct ural_softc *sc)
635 {
636 	struct ural_rx_data *data;
637 	int i, error;
638 
639 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
640 		data = &sc->rx_data[i];
641 
642 		data->sc = sc;
643 
644 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
645 		if (data->xfer == NULL) {
646 			printf("%s: could not allocate rx xfer\n",
647 			    device_xname(sc->sc_dev));
648 			error = ENOMEM;
649 			goto fail;
650 		}
651 
652 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
653 			printf("%s: could not allocate rx buffer\n",
654 			    device_xname(sc->sc_dev));
655 			error = ENOMEM;
656 			goto fail;
657 		}
658 
659 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
660 		if (data->m == NULL) {
661 			printf("%s: could not allocate rx mbuf\n",
662 			    device_xname(sc->sc_dev));
663 			error = ENOMEM;
664 			goto fail;
665 		}
666 
667 		MCLGET(data->m, M_DONTWAIT);
668 		if (!(data->m->m_flags & M_EXT)) {
669 			printf("%s: could not allocate rx mbuf cluster\n",
670 			    device_xname(sc->sc_dev));
671 			error = ENOMEM;
672 			goto fail;
673 		}
674 
675 		data->buf = mtod(data->m, uint8_t *);
676 	}
677 
678 	return 0;
679 
680 fail:	ural_free_tx_list(sc);
681 	return error;
682 }
683 
684 Static void
685 ural_free_rx_list(struct ural_softc *sc)
686 {
687 	struct ural_rx_data *data;
688 	int i;
689 
690 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
691 		data = &sc->rx_data[i];
692 
693 		if (data->xfer != NULL) {
694 			usbd_free_xfer(data->xfer);
695 			data->xfer = NULL;
696 		}
697 
698 		if (data->m != NULL) {
699 			m_freem(data->m);
700 			data->m = NULL;
701 		}
702 	}
703 }
704 
705 Static int
706 ural_media_change(struct ifnet *ifp)
707 {
708 	int error;
709 
710 	error = ieee80211_media_change(ifp);
711 	if (error != ENETRESET)
712 		return error;
713 
714 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
715 		ural_init(ifp);
716 
717 	return 0;
718 }
719 
720 /*
721  * This function is called periodically (every 200ms) during scanning to
722  * switch from one channel to another.
723  */
724 Static void
725 ural_next_scan(void *arg)
726 {
727 	struct ural_softc *sc = arg;
728 	struct ieee80211com *ic = &sc->sc_ic;
729 
730 	if (ic->ic_state == IEEE80211_S_SCAN)
731 		ieee80211_next_scan(ic);
732 }
733 
734 Static void
735 ural_task(void *arg)
736 {
737 	struct ural_softc *sc = arg;
738 	struct ieee80211com *ic = &sc->sc_ic;
739 	enum ieee80211_state ostate;
740 	struct ieee80211_node *ni;
741 	struct mbuf *m;
742 
743 	ostate = ic->ic_state;
744 
745 	switch (sc->sc_state) {
746 	case IEEE80211_S_INIT:
747 		if (ostate == IEEE80211_S_RUN) {
748 			/* abort TSF synchronization */
749 			ural_write(sc, RAL_TXRX_CSR19, 0);
750 
751 			/* force tx led to stop blinking */
752 			ural_write(sc, RAL_MAC_CSR20, 0);
753 		}
754 		break;
755 
756 	case IEEE80211_S_SCAN:
757 		ural_set_chan(sc, ic->ic_curchan);
758 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
759 		break;
760 
761 	case IEEE80211_S_AUTH:
762 		ural_set_chan(sc, ic->ic_curchan);
763 		break;
764 
765 	case IEEE80211_S_ASSOC:
766 		ural_set_chan(sc, ic->ic_curchan);
767 		break;
768 
769 	case IEEE80211_S_RUN:
770 		ural_set_chan(sc, ic->ic_curchan);
771 
772 		ni = ic->ic_bss;
773 
774 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
775 			ural_update_slot(ic->ic_ifp);
776 			ural_set_txpreamble(sc);
777 			ural_set_basicrates(sc);
778 			ural_set_bssid(sc, ni->ni_bssid);
779 		}
780 
781 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
782 		    ic->ic_opmode == IEEE80211_M_IBSS) {
783 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
784 			if (m == NULL) {
785 				printf("%s: could not allocate beacon\n",
786 				    device_xname(sc->sc_dev));
787 				return;
788 			}
789 
790 			if (ural_tx_bcn(sc, m, ni) != 0) {
791 				m_freem(m);
792 				printf("%s: could not send beacon\n",
793 				    device_xname(sc->sc_dev));
794 				return;
795 			}
796 
797 			/* beacon is no longer needed */
798 			m_freem(m);
799 		}
800 
801 		/* make tx led blink on tx (controlled by ASIC) */
802 		ural_write(sc, RAL_MAC_CSR20, 1);
803 
804 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
805 			ural_enable_tsf_sync(sc);
806 
807 		/* enable automatic rate adaptation in STA mode */
808 		if (ic->ic_opmode == IEEE80211_M_STA &&
809 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
810 			ural_amrr_start(sc, ni);
811 
812 		break;
813 	}
814 
815 	sc->sc_newstate(ic, sc->sc_state, -1);
816 }
817 
818 Static int
819 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
820     int arg)
821 {
822 	struct ural_softc *sc = ic->ic_ifp->if_softc;
823 
824 	usb_rem_task(sc->sc_udev, &sc->sc_task);
825 	callout_stop(&sc->sc_scan_ch);
826 	callout_stop(&sc->sc_amrr_ch);
827 
828 	/* do it in a process context */
829 	sc->sc_state = nstate;
830 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
831 
832 	return 0;
833 }
834 
835 /* quickly determine if a given rate is CCK or OFDM */
836 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
837 
838 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
839 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
840 
841 #define RAL_SIFS		10	/* us */
842 
843 #define RAL_RXTX_TURNAROUND	5	/* us */
844 
845 /*
846  * This function is only used by the Rx radiotap code.
847  */
848 Static int
849 ural_rxrate(struct ural_rx_desc *desc)
850 {
851 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
852 		/* reverse function of ural_plcp_signal */
853 		switch (desc->rate) {
854 		case 0xb:	return 12;
855 		case 0xf:	return 18;
856 		case 0xa:	return 24;
857 		case 0xe:	return 36;
858 		case 0x9:	return 48;
859 		case 0xd:	return 72;
860 		case 0x8:	return 96;
861 		case 0xc:	return 108;
862 		}
863 	} else {
864 		if (desc->rate == 10)
865 			return 2;
866 		if (desc->rate == 20)
867 			return 4;
868 		if (desc->rate == 55)
869 			return 11;
870 		if (desc->rate == 110)
871 			return 22;
872 	}
873 	return 2;	/* should not get there */
874 }
875 
876 Static void
877 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
878     usbd_status status)
879 {
880 	struct ural_tx_data *data = priv;
881 	struct ural_softc *sc = data->sc;
882 	struct ifnet *ifp = &sc->sc_if;
883 	int s;
884 
885 	if (status != USBD_NORMAL_COMPLETION) {
886 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
887 			return;
888 
889 		printf("%s: could not transmit buffer: %s\n",
890 		    device_xname(sc->sc_dev), usbd_errstr(status));
891 
892 		if (status == USBD_STALLED)
893 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
894 
895 		ifp->if_oerrors++;
896 		return;
897 	}
898 
899 	s = splnet();
900 
901 	m_freem(data->m);
902 	data->m = NULL;
903 	ieee80211_free_node(data->ni);
904 	data->ni = NULL;
905 
906 	sc->tx_queued--;
907 	ifp->if_opackets++;
908 
909 	DPRINTFN(10, ("tx done\n"));
910 
911 	sc->sc_tx_timer = 0;
912 	ifp->if_flags &= ~IFF_OACTIVE;
913 	ural_start(ifp);
914 
915 	splx(s);
916 }
917 
918 Static void
919 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
920 {
921 	struct ural_rx_data *data = priv;
922 	struct ural_softc *sc = data->sc;
923 	struct ieee80211com *ic = &sc->sc_ic;
924 	struct ifnet *ifp = &sc->sc_if;
925 	struct ural_rx_desc *desc;
926 	struct ieee80211_frame *wh;
927 	struct ieee80211_node *ni;
928 	struct mbuf *mnew, *m;
929 	int s, len;
930 
931 	if (status != USBD_NORMAL_COMPLETION) {
932 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
933 			return;
934 
935 		if (status == USBD_STALLED)
936 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
937 		goto skip;
938 	}
939 
940 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
941 
942 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
943 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
944 		    len));
945 		ifp->if_ierrors++;
946 		goto skip;
947 	}
948 
949 	/* rx descriptor is located at the end */
950 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
951 
952 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
953 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
954 		/*
955 		 * This should not happen since we did not request to receive
956 		 * those frames when we filled RAL_TXRX_CSR2.
957 		 */
958 		DPRINTFN(5, ("PHY or CRC error\n"));
959 		ifp->if_ierrors++;
960 		goto skip;
961 	}
962 
963 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
964 	if (mnew == NULL) {
965 		ifp->if_ierrors++;
966 		goto skip;
967 	}
968 
969 	MCLGET(mnew, M_DONTWAIT);
970 	if (!(mnew->m_flags & M_EXT)) {
971 		ifp->if_ierrors++;
972 		m_freem(mnew);
973 		goto skip;
974 	}
975 
976 	m = data->m;
977 	data->m = mnew;
978 	data->buf = mtod(data->m, uint8_t *);
979 
980 	/* finalize mbuf */
981 	m->m_pkthdr.rcvif = ifp;
982 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
983 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
984 
985 	s = splnet();
986 
987 	if (sc->sc_drvbpf != NULL) {
988 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
989 
990 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
991 		tap->wr_rate = ural_rxrate(desc);
992 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
993 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
994 		tap->wr_antenna = sc->rx_ant;
995 		tap->wr_antsignal = desc->rssi;
996 
997 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
998 	}
999 
1000 	wh = mtod(m, struct ieee80211_frame *);
1001 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1002 
1003 	/* send the frame to the 802.11 layer */
1004 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1005 
1006 	/* node is no longer needed */
1007 	ieee80211_free_node(ni);
1008 
1009 	splx(s);
1010 
1011 	DPRINTFN(15, ("rx done\n"));
1012 
1013 skip:	/* setup a new transfer */
1014 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1015 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1016 	usbd_transfer(xfer);
1017 }
1018 
1019 /*
1020  * Return the expected ack rate for a frame transmitted at rate `rate'.
1021  * XXX: this should depend on the destination node basic rate set.
1022  */
1023 Static int
1024 ural_ack_rate(struct ieee80211com *ic, int rate)
1025 {
1026 	switch (rate) {
1027 	/* CCK rates */
1028 	case 2:
1029 		return 2;
1030 	case 4:
1031 	case 11:
1032 	case 22:
1033 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1034 
1035 	/* OFDM rates */
1036 	case 12:
1037 	case 18:
1038 		return 12;
1039 	case 24:
1040 	case 36:
1041 		return 24;
1042 	case 48:
1043 	case 72:
1044 	case 96:
1045 	case 108:
1046 		return 48;
1047 	}
1048 
1049 	/* default to 1Mbps */
1050 	return 2;
1051 }
1052 
1053 /*
1054  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1055  * The function automatically determines the operating mode depending on the
1056  * given rate. `flags' indicates whether short preamble is in use or not.
1057  */
1058 Static uint16_t
1059 ural_txtime(int len, int rate, uint32_t flags)
1060 {
1061 	uint16_t txtime;
1062 
1063 	if (RAL_RATE_IS_OFDM(rate)) {
1064 		/* IEEE Std 802.11g-2003, pp. 37 */
1065 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1066 		txtime = 16 + 4 + 4 * txtime + 6;
1067 	} else {
1068 		/* IEEE Std 802.11b-1999, pp. 28 */
1069 		txtime = (16 * len + rate - 1) / rate;
1070 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1071 			txtime +=  72 + 24;
1072 		else
1073 			txtime += 144 + 48;
1074 	}
1075 	return txtime;
1076 }
1077 
1078 Static uint8_t
1079 ural_plcp_signal(int rate)
1080 {
1081 	switch (rate) {
1082 	/* CCK rates (returned values are device-dependent) */
1083 	case 2:		return 0x0;
1084 	case 4:		return 0x1;
1085 	case 11:	return 0x2;
1086 	case 22:	return 0x3;
1087 
1088 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1089 	case 12:	return 0xb;
1090 	case 18:	return 0xf;
1091 	case 24:	return 0xa;
1092 	case 36:	return 0xe;
1093 	case 48:	return 0x9;
1094 	case 72:	return 0xd;
1095 	case 96:	return 0x8;
1096 	case 108:	return 0xc;
1097 
1098 	/* unsupported rates (should not get there) */
1099 	default:	return 0xff;
1100 	}
1101 }
1102 
1103 Static void
1104 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1105     uint32_t flags, int len, int rate)
1106 {
1107 	struct ieee80211com *ic = &sc->sc_ic;
1108 	uint16_t plcp_length;
1109 	int remainder;
1110 
1111 	desc->flags = htole32(flags);
1112 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1113 	desc->flags |= htole32(len << 16);
1114 
1115 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1116 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1117 
1118 	/* setup PLCP fields */
1119 	desc->plcp_signal  = ural_plcp_signal(rate);
1120 	desc->plcp_service = 4;
1121 
1122 	len += IEEE80211_CRC_LEN;
1123 	if (RAL_RATE_IS_OFDM(rate)) {
1124 		desc->flags |= htole32(RAL_TX_OFDM);
1125 
1126 		plcp_length = len & 0xfff;
1127 		desc->plcp_length_hi = plcp_length >> 6;
1128 		desc->plcp_length_lo = plcp_length & 0x3f;
1129 	} else {
1130 		plcp_length = (16 * len + rate - 1) / rate;
1131 		if (rate == 22) {
1132 			remainder = (16 * len) % 22;
1133 			if (remainder != 0 && remainder < 7)
1134 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1135 		}
1136 		desc->plcp_length_hi = plcp_length >> 8;
1137 		desc->plcp_length_lo = plcp_length & 0xff;
1138 
1139 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1140 			desc->plcp_signal |= 0x08;
1141 	}
1142 
1143 	desc->iv = 0;
1144 	desc->eiv = 0;
1145 }
1146 
1147 #define RAL_TX_TIMEOUT	5000
1148 
1149 Static int
1150 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1151 {
1152 	struct ural_tx_desc *desc;
1153 	usbd_xfer_handle xfer;
1154 	uint8_t cmd = 0;
1155 	usbd_status error;
1156 	uint8_t *buf;
1157 	int xferlen, rate;
1158 
1159 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1160 
1161 	xfer = usbd_alloc_xfer(sc->sc_udev);
1162 	if (xfer == NULL)
1163 		return ENOMEM;
1164 
1165 	/* xfer length needs to be a multiple of two! */
1166 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1167 
1168 	buf = usbd_alloc_buffer(xfer, xferlen);
1169 	if (buf == NULL) {
1170 		usbd_free_xfer(xfer);
1171 		return ENOMEM;
1172 	}
1173 
1174 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1175 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1176 
1177 	error = usbd_sync_transfer(xfer);
1178 	if (error != 0) {
1179 		usbd_free_xfer(xfer);
1180 		return error;
1181 	}
1182 
1183 	desc = (struct ural_tx_desc *)buf;
1184 
1185 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1186 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1187 	    m0->m_pkthdr.len, rate);
1188 
1189 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1190 	    m0->m_pkthdr.len, rate, xferlen));
1191 
1192 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1193 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1194 
1195 	error = usbd_sync_transfer(xfer);
1196 	usbd_free_xfer(xfer);
1197 
1198 	return error;
1199 }
1200 
1201 Static int
1202 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1203 {
1204 	struct ieee80211com *ic = &sc->sc_ic;
1205 	struct ural_tx_desc *desc;
1206 	struct ural_tx_data *data;
1207 	struct ieee80211_frame *wh;
1208 	struct ieee80211_key *k;
1209 	uint32_t flags = 0;
1210 	uint16_t dur;
1211 	usbd_status error;
1212 	int xferlen, rate;
1213 
1214 	data = &sc->tx_data[0];
1215 	desc = (struct ural_tx_desc *)data->buf;
1216 
1217 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1218 
1219 	wh = mtod(m0, struct ieee80211_frame *);
1220 
1221 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1222 		k = ieee80211_crypto_encap(ic, ni, m0);
1223 		if (k == NULL) {
1224 			m_freem(m0);
1225 			return ENOBUFS;
1226 		}
1227 	}
1228 
1229 	data->m = m0;
1230 	data->ni = ni;
1231 
1232 	wh = mtod(m0, struct ieee80211_frame *);
1233 
1234 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1235 		flags |= RAL_TX_ACK;
1236 
1237 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1238 		*(uint16_t *)wh->i_dur = htole16(dur);
1239 
1240 		/* tell hardware to add timestamp for probe responses */
1241 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1242 		    IEEE80211_FC0_TYPE_MGT &&
1243 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1244 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1245 			flags |= RAL_TX_TIMESTAMP;
1246 	}
1247 
1248 	if (sc->sc_drvbpf != NULL) {
1249 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1250 
1251 		tap->wt_flags = 0;
1252 		tap->wt_rate = rate;
1253 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1254 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1255 		tap->wt_antenna = sc->tx_ant;
1256 
1257 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1258 	}
1259 
1260 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1261 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1262 
1263 	/* align end on a 2-bytes boundary */
1264 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1265 
1266 	/*
1267 	 * No space left in the last URB to store the extra 2 bytes, force
1268 	 * sending of another URB.
1269 	 */
1270 	if ((xferlen % 64) == 0)
1271 		xferlen += 2;
1272 
1273 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1274 	    m0->m_pkthdr.len, rate, xferlen));
1275 
1276 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1277 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1278 	    ural_txeof);
1279 
1280 	error = usbd_transfer(data->xfer);
1281 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1282 		m_freem(m0);
1283 		return error;
1284 	}
1285 
1286 	sc->tx_queued++;
1287 
1288 	return 0;
1289 }
1290 
1291 Static int
1292 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1293 {
1294 	struct ieee80211com *ic = &sc->sc_ic;
1295 	struct ural_tx_desc *desc;
1296 	struct ural_tx_data *data;
1297 	struct ieee80211_frame *wh;
1298 	struct ieee80211_key *k;
1299 	uint32_t flags = 0;
1300 	uint16_t dur;
1301 	usbd_status error;
1302 	int xferlen, rate;
1303 
1304 	wh = mtod(m0, struct ieee80211_frame *);
1305 
1306 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1307 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1308 	else
1309 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1310 
1311 	rate &= IEEE80211_RATE_VAL;
1312 
1313 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1314 		k = ieee80211_crypto_encap(ic, ni, m0);
1315 		if (k == NULL) {
1316 			m_freem(m0);
1317 			return ENOBUFS;
1318 		}
1319 
1320 		/* packet header may have moved, reset our local pointer */
1321 		wh = mtod(m0, struct ieee80211_frame *);
1322 	}
1323 
1324 	data = &sc->tx_data[0];
1325 	desc = (struct ural_tx_desc *)data->buf;
1326 
1327 	data->m = m0;
1328 	data->ni = ni;
1329 
1330 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1331 		flags |= RAL_TX_ACK;
1332 		flags |= RAL_TX_RETRY(7);
1333 
1334 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1335 		    ic->ic_flags) + RAL_SIFS;
1336 		*(uint16_t *)wh->i_dur = htole16(dur);
1337 	}
1338 
1339 	if (sc->sc_drvbpf != NULL) {
1340 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1341 
1342 		tap->wt_flags = 0;
1343 		tap->wt_rate = rate;
1344 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1345 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1346 		tap->wt_antenna = sc->tx_ant;
1347 
1348 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1349 	}
1350 
1351 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1352 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1353 
1354 	/* align end on a 2-bytes boundary */
1355 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1356 
1357 	/*
1358 	 * No space left in the last URB to store the extra 2 bytes, force
1359 	 * sending of another URB.
1360 	 */
1361 	if ((xferlen % 64) == 0)
1362 		xferlen += 2;
1363 
1364 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1365 	    m0->m_pkthdr.len, rate, xferlen));
1366 
1367 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1368 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1369 	    ural_txeof);
1370 
1371 	error = usbd_transfer(data->xfer);
1372 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1373 		return error;
1374 
1375 	sc->tx_queued++;
1376 
1377 	return 0;
1378 }
1379 
1380 Static void
1381 ural_start(struct ifnet *ifp)
1382 {
1383 	struct ural_softc *sc = ifp->if_softc;
1384 	struct ieee80211com *ic = &sc->sc_ic;
1385 	struct mbuf *m0;
1386 	struct ether_header *eh;
1387 	struct ieee80211_node *ni;
1388 
1389 	for (;;) {
1390 		IF_POLL(&ic->ic_mgtq, m0);
1391 		if (m0 != NULL) {
1392 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1393 				ifp->if_flags |= IFF_OACTIVE;
1394 				break;
1395 			}
1396 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1397 
1398 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1399 			m0->m_pkthdr.rcvif = NULL;
1400 			bpf_mtap3(ic->ic_rawbpf, m0);
1401 			if (ural_tx_mgt(sc, m0, ni) != 0)
1402 				break;
1403 
1404 		} else {
1405 			if (ic->ic_state != IEEE80211_S_RUN)
1406 				break;
1407 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1408 			if (m0 == NULL)
1409 				break;
1410 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1411 				IF_PREPEND(&ifp->if_snd, m0);
1412 				ifp->if_flags |= IFF_OACTIVE;
1413 				break;
1414 			}
1415 
1416 			if (m0->m_len < sizeof (struct ether_header) &&
1417 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1418 				continue;
1419 
1420 			eh = mtod(m0, struct ether_header *);
1421 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1422 			if (ni == NULL) {
1423 				m_freem(m0);
1424 				continue;
1425 			}
1426 			bpf_mtap(ifp, m0);
1427 			m0 = ieee80211_encap(ic, m0, ni);
1428 			if (m0 == NULL) {
1429 				ieee80211_free_node(ni);
1430 				continue;
1431 			}
1432 			bpf_mtap3(ic->ic_rawbpf, m0);
1433 			if (ural_tx_data(sc, m0, ni) != 0) {
1434 				ieee80211_free_node(ni);
1435 				ifp->if_oerrors++;
1436 				break;
1437 			}
1438 		}
1439 
1440 		sc->sc_tx_timer = 5;
1441 		ifp->if_timer = 1;
1442 	}
1443 }
1444 
1445 Static void
1446 ural_watchdog(struct ifnet *ifp)
1447 {
1448 	struct ural_softc *sc = ifp->if_softc;
1449 	struct ieee80211com *ic = &sc->sc_ic;
1450 
1451 	ifp->if_timer = 0;
1452 
1453 	if (sc->sc_tx_timer > 0) {
1454 		if (--sc->sc_tx_timer == 0) {
1455 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1456 			/*ural_init(sc); XXX needs a process context! */
1457 			ifp->if_oerrors++;
1458 			return;
1459 		}
1460 		ifp->if_timer = 1;
1461 	}
1462 
1463 	ieee80211_watchdog(ic);
1464 }
1465 
1466 /*
1467  * This function allows for fast channel switching in monitor mode (used by
1468  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1469  * generate a new beacon frame.
1470  */
1471 Static int
1472 ural_reset(struct ifnet *ifp)
1473 {
1474 	struct ural_softc *sc = ifp->if_softc;
1475 	struct ieee80211com *ic = &sc->sc_ic;
1476 
1477 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1478 		return ENETRESET;
1479 
1480 	ural_set_chan(sc, ic->ic_curchan);
1481 
1482 	return 0;
1483 }
1484 
1485 Static int
1486 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1487 {
1488 #define IS_RUNNING(ifp) \
1489 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1490 
1491 	struct ural_softc *sc = ifp->if_softc;
1492 	struct ieee80211com *ic = &sc->sc_ic;
1493 	int s, error = 0;
1494 
1495 	s = splnet();
1496 
1497 	switch (cmd) {
1498 	case SIOCSIFFLAGS:
1499 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1500 			break;
1501 		/* XXX re-use ether_ioctl() */
1502 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1503 		case IFF_UP|IFF_RUNNING:
1504 			ural_update_promisc(sc);
1505 			break;
1506 		case IFF_UP:
1507 			ural_init(ifp);
1508 			break;
1509 		case IFF_RUNNING:
1510 			ural_stop(ifp, 1);
1511 			break;
1512 		case 0:
1513 			break;
1514 		}
1515 		break;
1516 
1517 	case SIOCADDMULTI:
1518 	case SIOCDELMULTI:
1519 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1520 			error = 0;
1521 		}
1522 		break;
1523 
1524 	default:
1525 		error = ieee80211_ioctl(ic, cmd, data);
1526 	}
1527 
1528 	if (error == ENETRESET) {
1529 		if (IS_RUNNING(ifp) &&
1530 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1531 			ural_init(ifp);
1532 		error = 0;
1533 	}
1534 
1535 	splx(s);
1536 
1537 	return error;
1538 #undef IS_RUNNING
1539 }
1540 
1541 Static void
1542 ural_set_testmode(struct ural_softc *sc)
1543 {
1544 	usb_device_request_t req;
1545 	usbd_status error;
1546 
1547 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1548 	req.bRequest = RAL_VENDOR_REQUEST;
1549 	USETW(req.wValue, 4);
1550 	USETW(req.wIndex, 1);
1551 	USETW(req.wLength, 0);
1552 
1553 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1554 	if (error != 0) {
1555 		printf("%s: could not set test mode: %s\n",
1556 		    device_xname(sc->sc_dev), usbd_errstr(error));
1557 	}
1558 }
1559 
1560 Static void
1561 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1562 {
1563 	usb_device_request_t req;
1564 	usbd_status error;
1565 
1566 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1567 	req.bRequest = RAL_READ_EEPROM;
1568 	USETW(req.wValue, 0);
1569 	USETW(req.wIndex, addr);
1570 	USETW(req.wLength, len);
1571 
1572 	error = usbd_do_request(sc->sc_udev, &req, buf);
1573 	if (error != 0) {
1574 		printf("%s: could not read EEPROM: %s\n",
1575 		    device_xname(sc->sc_dev), usbd_errstr(error));
1576 	}
1577 }
1578 
1579 Static uint16_t
1580 ural_read(struct ural_softc *sc, uint16_t reg)
1581 {
1582 	usb_device_request_t req;
1583 	usbd_status error;
1584 	uint16_t val;
1585 
1586 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1587 	req.bRequest = RAL_READ_MAC;
1588 	USETW(req.wValue, 0);
1589 	USETW(req.wIndex, reg);
1590 	USETW(req.wLength, sizeof (uint16_t));
1591 
1592 	error = usbd_do_request(sc->sc_udev, &req, &val);
1593 	if (error != 0) {
1594 		printf("%s: could not read MAC register: %s\n",
1595 		    device_xname(sc->sc_dev), usbd_errstr(error));
1596 		return 0;
1597 	}
1598 
1599 	return le16toh(val);
1600 }
1601 
1602 Static void
1603 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1604 {
1605 	usb_device_request_t req;
1606 	usbd_status error;
1607 
1608 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1609 	req.bRequest = RAL_READ_MULTI_MAC;
1610 	USETW(req.wValue, 0);
1611 	USETW(req.wIndex, reg);
1612 	USETW(req.wLength, len);
1613 
1614 	error = usbd_do_request(sc->sc_udev, &req, buf);
1615 	if (error != 0) {
1616 		printf("%s: could not read MAC register: %s\n",
1617 		    device_xname(sc->sc_dev), usbd_errstr(error));
1618 	}
1619 }
1620 
1621 Static void
1622 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1623 {
1624 	usb_device_request_t req;
1625 	usbd_status error;
1626 
1627 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1628 	req.bRequest = RAL_WRITE_MAC;
1629 	USETW(req.wValue, val);
1630 	USETW(req.wIndex, reg);
1631 	USETW(req.wLength, 0);
1632 
1633 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1634 	if (error != 0) {
1635 		printf("%s: could not write MAC register: %s\n",
1636 		    device_xname(sc->sc_dev), usbd_errstr(error));
1637 	}
1638 }
1639 
1640 Static void
1641 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1642 {
1643 	usb_device_request_t req;
1644 	usbd_status error;
1645 
1646 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1647 	req.bRequest = RAL_WRITE_MULTI_MAC;
1648 	USETW(req.wValue, 0);
1649 	USETW(req.wIndex, reg);
1650 	USETW(req.wLength, len);
1651 
1652 	error = usbd_do_request(sc->sc_udev, &req, buf);
1653 	if (error != 0) {
1654 		printf("%s: could not write MAC register: %s\n",
1655 		    device_xname(sc->sc_dev), usbd_errstr(error));
1656 	}
1657 }
1658 
1659 Static void
1660 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1661 {
1662 	uint16_t tmp;
1663 	int ntries;
1664 
1665 	for (ntries = 0; ntries < 5; ntries++) {
1666 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1667 			break;
1668 	}
1669 	if (ntries == 5) {
1670 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1671 		return;
1672 	}
1673 
1674 	tmp = reg << 8 | val;
1675 	ural_write(sc, RAL_PHY_CSR7, tmp);
1676 }
1677 
1678 Static uint8_t
1679 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1680 {
1681 	uint16_t val;
1682 	int ntries;
1683 
1684 	val = RAL_BBP_WRITE | reg << 8;
1685 	ural_write(sc, RAL_PHY_CSR7, val);
1686 
1687 	for (ntries = 0; ntries < 5; ntries++) {
1688 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1689 			break;
1690 	}
1691 	if (ntries == 5) {
1692 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1693 		return 0;
1694 	}
1695 
1696 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1697 }
1698 
1699 Static void
1700 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1701 {
1702 	uint32_t tmp;
1703 	int ntries;
1704 
1705 	for (ntries = 0; ntries < 5; ntries++) {
1706 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1707 			break;
1708 	}
1709 	if (ntries == 5) {
1710 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1711 		return;
1712 	}
1713 
1714 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1715 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1716 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1717 
1718 	/* remember last written value in sc */
1719 	sc->rf_regs[reg] = val;
1720 
1721 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1722 }
1723 
1724 Static void
1725 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1726 {
1727 	struct ieee80211com *ic = &sc->sc_ic;
1728 	uint8_t power, tmp;
1729 	u_int i, chan;
1730 
1731 	chan = ieee80211_chan2ieee(ic, c);
1732 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1733 		return;
1734 
1735 	if (IEEE80211_IS_CHAN_2GHZ(c))
1736 		power = min(sc->txpow[chan - 1], 31);
1737 	else
1738 		power = 31;
1739 
1740 	/* adjust txpower using ifconfig settings */
1741 	power -= (100 - ic->ic_txpowlimit) / 8;
1742 
1743 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1744 
1745 	switch (sc->rf_rev) {
1746 	case RAL_RF_2522:
1747 		ural_rf_write(sc, RAL_RF1, 0x00814);
1748 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1749 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1750 		break;
1751 
1752 	case RAL_RF_2523:
1753 		ural_rf_write(sc, RAL_RF1, 0x08804);
1754 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1755 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1756 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1757 		break;
1758 
1759 	case RAL_RF_2524:
1760 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1761 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1762 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1763 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1764 		break;
1765 
1766 	case RAL_RF_2525:
1767 		ural_rf_write(sc, RAL_RF1, 0x08808);
1768 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1769 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1770 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1771 
1772 		ural_rf_write(sc, RAL_RF1, 0x08808);
1773 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1774 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1775 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1776 		break;
1777 
1778 	case RAL_RF_2525E:
1779 		ural_rf_write(sc, RAL_RF1, 0x08808);
1780 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1781 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1782 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1783 		break;
1784 
1785 	case RAL_RF_2526:
1786 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1787 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1788 		ural_rf_write(sc, RAL_RF1, 0x08804);
1789 
1790 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1791 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1792 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1793 		break;
1794 
1795 	/* dual-band RF */
1796 	case RAL_RF_5222:
1797 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1798 
1799 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1800 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1801 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1802 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1803 		break;
1804 	}
1805 
1806 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1807 	    ic->ic_state != IEEE80211_S_SCAN) {
1808 		/* set Japan filter bit for channel 14 */
1809 		tmp = ural_bbp_read(sc, 70);
1810 
1811 		tmp &= ~RAL_JAPAN_FILTER;
1812 		if (chan == 14)
1813 			tmp |= RAL_JAPAN_FILTER;
1814 
1815 		ural_bbp_write(sc, 70, tmp);
1816 
1817 		/* clear CRC errors */
1818 		ural_read(sc, RAL_STA_CSR0);
1819 
1820 		DELAY(10000);
1821 		ural_disable_rf_tune(sc);
1822 	}
1823 }
1824 
1825 /*
1826  * Disable RF auto-tuning.
1827  */
1828 Static void
1829 ural_disable_rf_tune(struct ural_softc *sc)
1830 {
1831 	uint32_t tmp;
1832 
1833 	if (sc->rf_rev != RAL_RF_2523) {
1834 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1835 		ural_rf_write(sc, RAL_RF1, tmp);
1836 	}
1837 
1838 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1839 	ural_rf_write(sc, RAL_RF3, tmp);
1840 
1841 	DPRINTFN(2, ("disabling RF autotune\n"));
1842 }
1843 
1844 /*
1845  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1846  * synchronization.
1847  */
1848 Static void
1849 ural_enable_tsf_sync(struct ural_softc *sc)
1850 {
1851 	struct ieee80211com *ic = &sc->sc_ic;
1852 	uint16_t logcwmin, preload, tmp;
1853 
1854 	/* first, disable TSF synchronization */
1855 	ural_write(sc, RAL_TXRX_CSR19, 0);
1856 
1857 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1858 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1859 
1860 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1861 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1862 	tmp = logcwmin << 12 | preload;
1863 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1864 
1865 	/* finally, enable TSF synchronization */
1866 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1867 	if (ic->ic_opmode == IEEE80211_M_STA)
1868 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1869 	else
1870 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1871 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1872 
1873 	DPRINTF(("enabling TSF synchronization\n"));
1874 }
1875 
1876 Static void
1877 ural_update_slot(struct ifnet *ifp)
1878 {
1879 	struct ural_softc *sc = ifp->if_softc;
1880 	struct ieee80211com *ic = &sc->sc_ic;
1881 	uint16_t slottime, sifs, eifs;
1882 
1883 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1884 
1885 	/*
1886 	 * These settings may sound a bit inconsistent but this is what the
1887 	 * reference driver does.
1888 	 */
1889 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1890 		sifs = 16 - RAL_RXTX_TURNAROUND;
1891 		eifs = 364;
1892 	} else {
1893 		sifs = 10 - RAL_RXTX_TURNAROUND;
1894 		eifs = 64;
1895 	}
1896 
1897 	ural_write(sc, RAL_MAC_CSR10, slottime);
1898 	ural_write(sc, RAL_MAC_CSR11, sifs);
1899 	ural_write(sc, RAL_MAC_CSR12, eifs);
1900 }
1901 
1902 Static void
1903 ural_set_txpreamble(struct ural_softc *sc)
1904 {
1905 	uint16_t tmp;
1906 
1907 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1908 
1909 	tmp &= ~RAL_SHORT_PREAMBLE;
1910 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1911 		tmp |= RAL_SHORT_PREAMBLE;
1912 
1913 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1914 }
1915 
1916 Static void
1917 ural_set_basicrates(struct ural_softc *sc)
1918 {
1919 	struct ieee80211com *ic = &sc->sc_ic;
1920 
1921 	/* update basic rate set */
1922 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1923 		/* 11b basic rates: 1, 2Mbps */
1924 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1925 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1926 		/* 11a basic rates: 6, 12, 24Mbps */
1927 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1928 	} else {
1929 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1930 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1931 	}
1932 }
1933 
1934 Static void
1935 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1936 {
1937 	uint16_t tmp;
1938 
1939 	tmp = bssid[0] | bssid[1] << 8;
1940 	ural_write(sc, RAL_MAC_CSR5, tmp);
1941 
1942 	tmp = bssid[2] | bssid[3] << 8;
1943 	ural_write(sc, RAL_MAC_CSR6, tmp);
1944 
1945 	tmp = bssid[4] | bssid[5] << 8;
1946 	ural_write(sc, RAL_MAC_CSR7, tmp);
1947 
1948 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1949 }
1950 
1951 Static void
1952 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1953 {
1954 	uint16_t tmp;
1955 
1956 	tmp = addr[0] | addr[1] << 8;
1957 	ural_write(sc, RAL_MAC_CSR2, tmp);
1958 
1959 	tmp = addr[2] | addr[3] << 8;
1960 	ural_write(sc, RAL_MAC_CSR3, tmp);
1961 
1962 	tmp = addr[4] | addr[5] << 8;
1963 	ural_write(sc, RAL_MAC_CSR4, tmp);
1964 
1965 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1966 }
1967 
1968 Static void
1969 ural_update_promisc(struct ural_softc *sc)
1970 {
1971 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1972 	uint32_t tmp;
1973 
1974 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1975 
1976 	tmp &= ~RAL_DROP_NOT_TO_ME;
1977 	if (!(ifp->if_flags & IFF_PROMISC))
1978 		tmp |= RAL_DROP_NOT_TO_ME;
1979 
1980 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1981 
1982 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1983 	    "entering" : "leaving"));
1984 }
1985 
1986 Static const char *
1987 ural_get_rf(int rev)
1988 {
1989 	switch (rev) {
1990 	case RAL_RF_2522:	return "RT2522";
1991 	case RAL_RF_2523:	return "RT2523";
1992 	case RAL_RF_2524:	return "RT2524";
1993 	case RAL_RF_2525:	return "RT2525";
1994 	case RAL_RF_2525E:	return "RT2525e";
1995 	case RAL_RF_2526:	return "RT2526";
1996 	case RAL_RF_5222:	return "RT5222";
1997 	default:		return "unknown";
1998 	}
1999 }
2000 
2001 Static void
2002 ural_read_eeprom(struct ural_softc *sc)
2003 {
2004 	struct ieee80211com *ic = &sc->sc_ic;
2005 	uint16_t val;
2006 
2007 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2008 	val = le16toh(val);
2009 	sc->rf_rev =   (val >> 11) & 0x7;
2010 	sc->hw_radio = (val >> 10) & 0x1;
2011 	sc->led_mode = (val >> 6)  & 0x7;
2012 	sc->rx_ant =   (val >> 4)  & 0x3;
2013 	sc->tx_ant =   (val >> 2)  & 0x3;
2014 	sc->nb_ant =   val & 0x3;
2015 
2016 	/* read MAC address */
2017 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2018 
2019 	/* read default values for BBP registers */
2020 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2021 
2022 	/* read Tx power for all b/g channels */
2023 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2024 }
2025 
2026 Static int
2027 ural_bbp_init(struct ural_softc *sc)
2028 {
2029 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2030 	int i, ntries;
2031 
2032 	/* wait for BBP to be ready */
2033 	for (ntries = 0; ntries < 100; ntries++) {
2034 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2035 			break;
2036 		DELAY(1000);
2037 	}
2038 	if (ntries == 100) {
2039 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2040 		return EIO;
2041 	}
2042 
2043 	/* initialize BBP registers to default values */
2044 	for (i = 0; i < N(ural_def_bbp); i++)
2045 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2046 
2047 #if 0
2048 	/* initialize BBP registers to values stored in EEPROM */
2049 	for (i = 0; i < 16; i++) {
2050 		if (sc->bbp_prom[i].reg == 0xff)
2051 			continue;
2052 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2053 	}
2054 #endif
2055 
2056 	return 0;
2057 #undef N
2058 }
2059 
2060 Static void
2061 ural_set_txantenna(struct ural_softc *sc, int antenna)
2062 {
2063 	uint16_t tmp;
2064 	uint8_t tx;
2065 
2066 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2067 	if (antenna == 1)
2068 		tx |= RAL_BBP_ANTA;
2069 	else if (antenna == 2)
2070 		tx |= RAL_BBP_ANTB;
2071 	else
2072 		tx |= RAL_BBP_DIVERSITY;
2073 
2074 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2075 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2076 	    sc->rf_rev == RAL_RF_5222)
2077 		tx |= RAL_BBP_FLIPIQ;
2078 
2079 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2080 
2081 	/* update values in PHY_CSR5 and PHY_CSR6 */
2082 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2083 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2084 
2085 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2086 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2087 }
2088 
2089 Static void
2090 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2091 {
2092 	uint8_t rx;
2093 
2094 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2095 	if (antenna == 1)
2096 		rx |= RAL_BBP_ANTA;
2097 	else if (antenna == 2)
2098 		rx |= RAL_BBP_ANTB;
2099 	else
2100 		rx |= RAL_BBP_DIVERSITY;
2101 
2102 	/* need to force no I/Q flip for RF 2525e and 2526 */
2103 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2104 		rx &= ~RAL_BBP_FLIPIQ;
2105 
2106 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2107 }
2108 
2109 Static int
2110 ural_init(struct ifnet *ifp)
2111 {
2112 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2113 	struct ural_softc *sc = ifp->if_softc;
2114 	struct ieee80211com *ic = &sc->sc_ic;
2115 	struct ieee80211_key *wk;
2116 	struct ural_rx_data *data;
2117 	uint16_t tmp;
2118 	usbd_status error;
2119 	int i, ntries;
2120 
2121 	ural_set_testmode(sc);
2122 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2123 
2124 	ural_stop(ifp, 0);
2125 
2126 	/* initialize MAC registers to default values */
2127 	for (i = 0; i < N(ural_def_mac); i++)
2128 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2129 
2130 	/* wait for BBP and RF to wake up (this can take a long time!) */
2131 	for (ntries = 0; ntries < 100; ntries++) {
2132 		tmp = ural_read(sc, RAL_MAC_CSR17);
2133 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2134 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2135 			break;
2136 		DELAY(1000);
2137 	}
2138 	if (ntries == 100) {
2139 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2140 		    device_xname(sc->sc_dev));
2141 		error = EIO;
2142 		goto fail;
2143 	}
2144 
2145 	/* we're ready! */
2146 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2147 
2148 	/* set basic rate set (will be updated later) */
2149 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2150 
2151 	error = ural_bbp_init(sc);
2152 	if (error != 0)
2153 		goto fail;
2154 
2155 	/* set default BSS channel */
2156 	ural_set_chan(sc, ic->ic_curchan);
2157 
2158 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2159 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2160 
2161 	ural_set_txantenna(sc, sc->tx_ant);
2162 	ural_set_rxantenna(sc, sc->rx_ant);
2163 
2164 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2165 	ural_set_macaddr(sc, ic->ic_myaddr);
2166 
2167 	/*
2168 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2169 	 */
2170 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2171 		wk = &ic->ic_crypto.cs_nw_keys[i];
2172 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2173 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2174 	}
2175 
2176 	/*
2177 	 * Allocate xfer for AMRR statistics requests.
2178 	 */
2179 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2180 	if (sc->amrr_xfer == NULL) {
2181 		printf("%s: could not allocate AMRR xfer\n",
2182 		    device_xname(sc->sc_dev));
2183 		goto fail;
2184 	}
2185 
2186 	/*
2187 	 * Open Tx and Rx USB bulk pipes.
2188 	 */
2189 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2190 	    &sc->sc_tx_pipeh);
2191 	if (error != 0) {
2192 		printf("%s: could not open Tx pipe: %s\n",
2193 		    device_xname(sc->sc_dev), usbd_errstr(error));
2194 		goto fail;
2195 	}
2196 
2197 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2198 	    &sc->sc_rx_pipeh);
2199 	if (error != 0) {
2200 		printf("%s: could not open Rx pipe: %s\n",
2201 		    device_xname(sc->sc_dev), usbd_errstr(error));
2202 		goto fail;
2203 	}
2204 
2205 	/*
2206 	 * Allocate Tx and Rx xfer queues.
2207 	 */
2208 	error = ural_alloc_tx_list(sc);
2209 	if (error != 0) {
2210 		printf("%s: could not allocate Tx list\n",
2211 		    device_xname(sc->sc_dev));
2212 		goto fail;
2213 	}
2214 
2215 	error = ural_alloc_rx_list(sc);
2216 	if (error != 0) {
2217 		printf("%s: could not allocate Rx list\n",
2218 		    device_xname(sc->sc_dev));
2219 		goto fail;
2220 	}
2221 
2222 	/*
2223 	 * Start up the receive pipe.
2224 	 */
2225 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2226 		data = &sc->rx_data[i];
2227 
2228 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2229 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2230 		usbd_transfer(data->xfer);
2231 	}
2232 
2233 	/* kick Rx */
2234 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2235 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2236 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2237 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2238 			tmp |= RAL_DROP_TODS;
2239 		if (!(ifp->if_flags & IFF_PROMISC))
2240 			tmp |= RAL_DROP_NOT_TO_ME;
2241 	}
2242 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2243 
2244 	ifp->if_flags &= ~IFF_OACTIVE;
2245 	ifp->if_flags |= IFF_RUNNING;
2246 
2247 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2248 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2249 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2250 	} else
2251 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2252 
2253 	return 0;
2254 
2255 fail:	ural_stop(ifp, 1);
2256 	return error;
2257 #undef N
2258 }
2259 
2260 Static void
2261 ural_stop(struct ifnet *ifp, int disable)
2262 {
2263 	struct ural_softc *sc = ifp->if_softc;
2264 	struct ieee80211com *ic = &sc->sc_ic;
2265 
2266 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2267 
2268 	sc->sc_tx_timer = 0;
2269 	ifp->if_timer = 0;
2270 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2271 
2272 	/* disable Rx */
2273 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2274 
2275 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2276 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2277 	ural_write(sc, RAL_MAC_CSR1, 0);
2278 
2279 	if (sc->amrr_xfer != NULL) {
2280 		usbd_free_xfer(sc->amrr_xfer);
2281 		sc->amrr_xfer = NULL;
2282 	}
2283 
2284 	if (sc->sc_rx_pipeh != NULL) {
2285 		usbd_abort_pipe(sc->sc_rx_pipeh);
2286 		usbd_close_pipe(sc->sc_rx_pipeh);
2287 		sc->sc_rx_pipeh = NULL;
2288 	}
2289 
2290 	if (sc->sc_tx_pipeh != NULL) {
2291 		usbd_abort_pipe(sc->sc_tx_pipeh);
2292 		usbd_close_pipe(sc->sc_tx_pipeh);
2293 		sc->sc_tx_pipeh = NULL;
2294 	}
2295 
2296 	ural_free_rx_list(sc);
2297 	ural_free_tx_list(sc);
2298 }
2299 
2300 int
2301 ural_activate(device_t self, enum devact act)
2302 {
2303 	struct ural_softc *sc = device_private(self);
2304 
2305 	switch (act) {
2306 	case DVACT_DEACTIVATE:
2307 		if_deactivate(&sc->sc_if);
2308 		return 0;
2309 	default:
2310 		return EOPNOTSUPP;
2311 	}
2312 }
2313 
2314 Static void
2315 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2316 {
2317 	int i;
2318 
2319 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2320 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2321 
2322 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2323 
2324 	/* set rate to some reasonable initial value */
2325 	for (i = ni->ni_rates.rs_nrates - 1;
2326 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2327 	     i--);
2328 	ni->ni_txrate = i;
2329 
2330 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2331 }
2332 
2333 Static void
2334 ural_amrr_timeout(void *arg)
2335 {
2336 	struct ural_softc *sc = (struct ural_softc *)arg;
2337 	usb_device_request_t req;
2338 	int s;
2339 
2340 	s = splusb();
2341 
2342 	/*
2343 	 * Asynchronously read statistic registers (cleared by read).
2344 	 */
2345 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2346 	req.bRequest = RAL_READ_MULTI_MAC;
2347 	USETW(req.wValue, 0);
2348 	USETW(req.wIndex, RAL_STA_CSR0);
2349 	USETW(req.wLength, sizeof sc->sta);
2350 
2351 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2352 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2353 	    ural_amrr_update);
2354 	(void)usbd_transfer(sc->amrr_xfer);
2355 
2356 	splx(s);
2357 }
2358 
2359 Static void
2360 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2361     usbd_status status)
2362 {
2363 	struct ural_softc *sc = (struct ural_softc *)priv;
2364 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2365 
2366 	if (status != USBD_NORMAL_COMPLETION) {
2367 		printf("%s: could not retrieve Tx statistics - "
2368 		    "cancelling automatic rate control\n",
2369 		    device_xname(sc->sc_dev));
2370 		return;
2371 	}
2372 
2373 	/* count TX retry-fail as Tx errors */
2374 	ifp->if_oerrors += sc->sta[9];
2375 
2376 	sc->amn.amn_retrycnt =
2377 	    sc->sta[7] +	/* TX one-retry ok count */
2378 	    sc->sta[8] +	/* TX more-retry ok count */
2379 	    sc->sta[9];		/* TX retry-fail count */
2380 
2381 	sc->amn.amn_txcnt =
2382 	    sc->amn.amn_retrycnt +
2383 	    sc->sta[6];		/* TX no-retry ok count */
2384 
2385 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2386 
2387 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2388 }
2389