1 /* $NetBSD: if_ural.c,v 1.11 2006/03/04 01:22:31 nakayama Exp $ */ 2 /* $OpenBSD: if_ral.c,v 1.38 2005/07/07 08:33:22 jsg Exp $ */ 3 /* $FreeBSD: /a/cvsroot/freebsd.repo/ncvs/src/sys/dev/usb/if_ural.c,v 1.10 2005/07/10 00:17:05 sam Exp $ */ 4 5 /*- 6 * Copyright (c) 2005 7 * Damien Bergamini <damien.bergamini@free.fr> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /*- 23 * Ralink Technology RT2500USB chipset driver 24 * http://www.ralinktech.com/ 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.11 2006/03/04 01:22:31 nakayama Exp $"); 29 30 #include "bpfilter.h" 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/sysctl.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/conf.h> 41 #include <sys/device.h> 42 43 #include <machine/bus.h> 44 #include <machine/endian.h> 45 #include <machine/intr.h> 46 47 #if NBPFILTER > 0 48 #include <net/bpf.h> 49 #endif 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/if_dl.h> 53 #include <net/if_ether.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 62 #include <net80211/ieee80211_netbsd.h> 63 #include <net80211/ieee80211_var.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include <dev/usb/usbdi_util.h> 69 #include <dev/usb/usbdevs.h> 70 71 #include <dev/usb/if_uralreg.h> 72 #include <dev/usb/if_uralvar.h> 73 74 #ifdef USB_DEBUG 75 #define URAL_DEBUG 76 #endif 77 78 #ifdef URAL_DEBUG 79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0) 80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0) 81 int ural_debug = 0; 82 #else 83 #define DPRINTF(x) 84 #define DPRINTFN(n, x) 85 #endif 86 87 /* various supported device vendors/products */ 88 static const struct usb_devno ural_devs[] = { 89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G }, 90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 }, 91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, 93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, 94 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU }, 95 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 }, 96 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, 97 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, 98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, 99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, 100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, 101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 }, 102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 }, 103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 }, 104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, 105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, 106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, 107 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 }, 108 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 109 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G }, 110 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, 111 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 }, 112 }; 113 114 Static int ural_alloc_tx_list(struct ural_softc *); 115 Static void ural_free_tx_list(struct ural_softc *); 116 Static int ural_alloc_rx_list(struct ural_softc *); 117 Static void ural_free_rx_list(struct ural_softc *); 118 Static int ural_media_change(struct ifnet *); 119 Static void ural_next_scan(void *); 120 Static void ural_task(void *); 121 Static int ural_newstate(struct ieee80211com *, 122 enum ieee80211_state, int); 123 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle, 124 usbd_status); 125 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle, 126 usbd_status); 127 Static int ural_ack_rate(int); 128 Static uint16_t ural_txtime(int, int, uint32_t); 129 Static uint8_t ural_plcp_signal(int); 130 Static void ural_setup_tx_desc(struct ural_softc *, 131 struct ural_tx_desc *, uint32_t, int, int); 132 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 133 struct ieee80211_node *); 134 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 135 struct ieee80211_node *); 136 Static int ural_tx_data(struct ural_softc *, struct mbuf *, 137 struct ieee80211_node *); 138 Static void ural_start(struct ifnet *); 139 Static void ural_watchdog(struct ifnet *); 140 Static int ural_ioctl(struct ifnet *, u_long, caddr_t); 141 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 142 int); 143 Static uint16_t ural_read(struct ural_softc *, uint16_t); 144 Static void ural_read_multi(struct ural_softc *, uint16_t, void *, 145 int); 146 Static void ural_write(struct ural_softc *, uint16_t, uint16_t); 147 Static void ural_write_multi(struct ural_softc *, uint16_t, void *, 148 int); 149 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 150 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 151 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 152 Static void ural_set_chan(struct ural_softc *, 153 struct ieee80211_channel *); 154 Static void ural_disable_rf_tune(struct ural_softc *); 155 Static void ural_enable_tsf_sync(struct ural_softc *); 156 Static void ural_set_bssid(struct ural_softc *, uint8_t *); 157 Static void ural_set_macaddr(struct ural_softc *, uint8_t *); 158 Static void ural_update_promisc(struct ural_softc *); 159 Static const char *ural_get_rf(int); 160 Static void ural_read_eeprom(struct ural_softc *); 161 Static int ural_bbp_init(struct ural_softc *); 162 Static void ural_set_txantenna(struct ural_softc *, int); 163 Static void ural_set_rxantenna(struct ural_softc *, int); 164 Static int ural_init(struct ifnet *); 165 Static void ural_stop(struct ifnet *, int); 166 167 /* 168 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 169 */ 170 static const struct ieee80211_rateset ural_rateset_11a = 171 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 172 173 static const struct ieee80211_rateset ural_rateset_11b = 174 { 4, { 2, 4, 11, 22 } }; 175 176 static const struct ieee80211_rateset ural_rateset_11g = 177 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 178 179 /* 180 * Default values for MAC registers; values taken from the reference driver. 181 */ 182 static const struct { 183 uint16_t reg; 184 uint16_t val; 185 } ural_def_mac[] = { 186 { RAL_TXRX_CSR5, 0x8c8d }, 187 { RAL_TXRX_CSR6, 0x8b8a }, 188 { RAL_TXRX_CSR7, 0x8687 }, 189 { RAL_TXRX_CSR8, 0x0085 }, 190 { RAL_MAC_CSR13, 0x1111 }, 191 { RAL_MAC_CSR14, 0x1e11 }, 192 { RAL_TXRX_CSR21, 0xe78f }, 193 { RAL_MAC_CSR9, 0xff1d }, 194 { RAL_MAC_CSR11, 0x0002 }, 195 { RAL_MAC_CSR22, 0x0053 }, 196 { RAL_MAC_CSR15, 0x0000 }, 197 { RAL_MAC_CSR8, 0x0780 }, 198 { RAL_TXRX_CSR19, 0x0000 }, 199 { RAL_TXRX_CSR18, 0x005a }, 200 { RAL_PHY_CSR2, 0x0000 }, 201 { RAL_TXRX_CSR0, 0x1ec0 }, 202 { RAL_PHY_CSR4, 0x000f } 203 }; 204 205 /* 206 * Default values for BBP registers; values taken from the reference driver. 207 */ 208 static const struct { 209 uint8_t reg; 210 uint8_t val; 211 } ural_def_bbp[] = { 212 { 3, 0x02 }, 213 { 4, 0x19 }, 214 { 14, 0x1c }, 215 { 15, 0x30 }, 216 { 16, 0xac }, 217 { 17, 0x48 }, 218 { 18, 0x18 }, 219 { 19, 0xff }, 220 { 20, 0x1e }, 221 { 21, 0x08 }, 222 { 22, 0x08 }, 223 { 23, 0x08 }, 224 { 24, 0x80 }, 225 { 25, 0x50 }, 226 { 26, 0x08 }, 227 { 27, 0x23 }, 228 { 30, 0x10 }, 229 { 31, 0x2b }, 230 { 32, 0xb9 }, 231 { 34, 0x12 }, 232 { 35, 0x50 }, 233 { 39, 0xc4 }, 234 { 40, 0x02 }, 235 { 41, 0x60 }, 236 { 53, 0x10 }, 237 { 54, 0x18 }, 238 { 56, 0x08 }, 239 { 57, 0x10 }, 240 { 58, 0x08 }, 241 { 61, 0x60 }, 242 { 62, 0x10 }, 243 { 75, 0xff } 244 }; 245 246 /* 247 * Default values for RF register R2 indexed by channel numbers. 248 */ 249 static const uint32_t ural_rf2522_r2[] = { 250 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 251 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 252 }; 253 254 static const uint32_t ural_rf2523_r2[] = { 255 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 256 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 257 }; 258 259 static const uint32_t ural_rf2524_r2[] = { 260 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 261 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 262 }; 263 264 static const uint32_t ural_rf2525_r2[] = { 265 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 266 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 267 }; 268 269 static const uint32_t ural_rf2525_hi_r2[] = { 270 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 271 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 272 }; 273 274 static const uint32_t ural_rf2525e_r2[] = { 275 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 276 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 277 }; 278 279 static const uint32_t ural_rf2526_hi_r2[] = { 280 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 281 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 282 }; 283 284 static const uint32_t ural_rf2526_r2[] = { 285 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 286 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 287 }; 288 289 /* 290 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 291 * values taken from the reference driver. 292 */ 293 static const struct { 294 uint8_t chan; 295 uint32_t r1; 296 uint32_t r2; 297 uint32_t r4; 298 } ural_rf5222[] = { 299 /* channels in the 2.4GHz band */ 300 { 1, 0x08808, 0x0044d, 0x00282 }, 301 { 2, 0x08808, 0x0044e, 0x00282 }, 302 { 3, 0x08808, 0x0044f, 0x00282 }, 303 { 4, 0x08808, 0x00460, 0x00282 }, 304 { 5, 0x08808, 0x00461, 0x00282 }, 305 { 6, 0x08808, 0x00462, 0x00282 }, 306 { 7, 0x08808, 0x00463, 0x00282 }, 307 { 8, 0x08808, 0x00464, 0x00282 }, 308 { 9, 0x08808, 0x00465, 0x00282 }, 309 { 10, 0x08808, 0x00466, 0x00282 }, 310 { 11, 0x08808, 0x00467, 0x00282 }, 311 { 12, 0x08808, 0x00468, 0x00282 }, 312 { 13, 0x08808, 0x00469, 0x00282 }, 313 { 14, 0x08808, 0x0046b, 0x00286 }, 314 315 /* channels in the 5.2GHz band */ 316 { 36, 0x08804, 0x06225, 0x00287 }, 317 { 40, 0x08804, 0x06226, 0x00287 }, 318 { 44, 0x08804, 0x06227, 0x00287 }, 319 { 48, 0x08804, 0x06228, 0x00287 }, 320 { 52, 0x08804, 0x06229, 0x00287 }, 321 { 56, 0x08804, 0x0622a, 0x00287 }, 322 { 60, 0x08804, 0x0622b, 0x00287 }, 323 { 64, 0x08804, 0x0622c, 0x00287 }, 324 325 { 100, 0x08804, 0x02200, 0x00283 }, 326 { 104, 0x08804, 0x02201, 0x00283 }, 327 { 108, 0x08804, 0x02202, 0x00283 }, 328 { 112, 0x08804, 0x02203, 0x00283 }, 329 { 116, 0x08804, 0x02204, 0x00283 }, 330 { 120, 0x08804, 0x02205, 0x00283 }, 331 { 124, 0x08804, 0x02206, 0x00283 }, 332 { 128, 0x08804, 0x02207, 0x00283 }, 333 { 132, 0x08804, 0x02208, 0x00283 }, 334 { 136, 0x08804, 0x02209, 0x00283 }, 335 { 140, 0x08804, 0x0220a, 0x00283 }, 336 337 { 149, 0x08808, 0x02429, 0x00281 }, 338 { 153, 0x08808, 0x0242b, 0x00281 }, 339 { 157, 0x08808, 0x0242d, 0x00281 }, 340 { 161, 0x08808, 0x0242f, 0x00281 } 341 }; 342 343 USB_DECLARE_DRIVER(ural); 344 345 USB_MATCH(ural) 346 { 347 USB_MATCH_START(ural, uaa); 348 349 if (uaa->iface != NULL) 350 return UMATCH_NONE; 351 352 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ? 353 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 354 } 355 356 USB_ATTACH(ural) 357 { 358 USB_ATTACH_START(ural, sc, uaa); 359 struct ieee80211com *ic = &sc->sc_ic; 360 struct ifnet *ifp = &sc->sc_if; 361 usb_interface_descriptor_t *id; 362 usb_endpoint_descriptor_t *ed; 363 usbd_status error; 364 char *devinfop; 365 int i; 366 367 sc->sc_udev = uaa->device; 368 369 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 370 USB_ATTACH_SETUP; 371 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop); 372 usbd_devinfo_free(devinfop); 373 374 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) { 375 printf("%s: could not set configuration no\n", 376 USBDEVNAME(sc->sc_dev)); 377 USB_ATTACH_ERROR_RETURN; 378 } 379 380 /* get the first interface handle */ 381 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, 382 &sc->sc_iface); 383 if (error != 0) { 384 printf("%s: could not get interface handle\n", 385 USBDEVNAME(sc->sc_dev)); 386 USB_ATTACH_ERROR_RETURN; 387 } 388 389 /* 390 * Find endpoints. 391 */ 392 id = usbd_get_interface_descriptor(sc->sc_iface); 393 394 sc->sc_rx_no = sc->sc_tx_no = -1; 395 for (i = 0; i < id->bNumEndpoints; i++) { 396 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 397 if (ed == NULL) { 398 printf("%s: no endpoint descriptor for iface %d\n", 399 USBDEVNAME(sc->sc_dev), i); 400 USB_ATTACH_ERROR_RETURN; 401 } 402 403 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 404 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 405 sc->sc_rx_no = ed->bEndpointAddress; 406 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 407 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 408 sc->sc_tx_no = ed->bEndpointAddress; 409 } 410 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 411 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev)); 412 USB_ATTACH_ERROR_RETURN; 413 } 414 415 usb_init_task(&sc->sc_task, ural_task, sc); 416 callout_init(&sc->scan_ch); 417 418 /* retrieve RT2570 rev. no */ 419 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 420 421 /* retrieve MAC address and various other things from EEPROM */ 422 ural_read_eeprom(sc); 423 424 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s, address %s\n", 425 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev), 426 ether_sprintf(ic->ic_myaddr)); 427 428 ic->ic_ifp = ifp; 429 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 430 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 431 ic->ic_state = IEEE80211_S_INIT; 432 433 /* set device capabilities */ 434 ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS | 435 IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT | 436 IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA; 437 438 if (sc->rf_rev == RAL_RF_5222) { 439 /* set supported .11a rates */ 440 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a; 441 442 /* set supported .11a channels */ 443 for (i = 36; i <= 64; i += 4) { 444 ic->ic_channels[i].ic_freq = 445 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 446 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 447 } 448 for (i = 100; i <= 140; i += 4) { 449 ic->ic_channels[i].ic_freq = 450 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 451 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 452 } 453 for (i = 149; i <= 161; i += 4) { 454 ic->ic_channels[i].ic_freq = 455 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 456 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 457 } 458 } 459 460 /* set supported .11b and .11g rates */ 461 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b; 462 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g; 463 464 /* set supported .11b and .11g channels (1 through 14) */ 465 for (i = 1; i <= 14; i++) { 466 ic->ic_channels[i].ic_freq = 467 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 468 ic->ic_channels[i].ic_flags = 469 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 470 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 471 } 472 473 ifp->if_softc = sc; 474 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 475 ifp->if_init = ural_init; 476 ifp->if_stop = ural_stop; 477 ifp->if_ioctl = ural_ioctl; 478 ifp->if_start = ural_start; 479 ifp->if_watchdog = ural_watchdog; 480 IFQ_SET_READY(&ifp->if_snd); 481 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 482 483 if_attach(ifp); 484 ieee80211_ifattach(ic); 485 486 /* override state transition machine */ 487 sc->sc_newstate = ic->ic_newstate; 488 ic->ic_newstate = ural_newstate; 489 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status); 490 491 #if NBPFILTER > 0 492 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 493 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 494 495 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 496 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 497 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); 498 499 sc->sc_txtap_len = sizeof sc->sc_txtapu; 500 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 501 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); 502 #endif 503 504 ieee80211_announce(ic); 505 506 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 507 USBDEV(sc->sc_dev)); 508 509 USB_ATTACH_SUCCESS_RETURN; 510 } 511 512 USB_DETACH(ural) 513 { 514 USB_DETACH_START(ural, sc); 515 struct ieee80211com *ic = &sc->sc_ic; 516 struct ifnet *ifp = &sc->sc_if; 517 int s; 518 519 s = splusb(); 520 521 usb_rem_task(sc->sc_udev, &sc->sc_task); 522 callout_stop(&sc->scan_ch); 523 524 if (sc->sc_rx_pipeh != NULL) { 525 usbd_abort_pipe(sc->sc_rx_pipeh); 526 usbd_close_pipe(sc->sc_rx_pipeh); 527 } 528 529 if (sc->sc_tx_pipeh != NULL) { 530 usbd_abort_pipe(sc->sc_tx_pipeh); 531 usbd_close_pipe(sc->sc_tx_pipeh); 532 } 533 534 ural_free_rx_list(sc); 535 ural_free_tx_list(sc); 536 537 #if NBPFILTER > 0 538 bpfdetach(ifp); 539 #endif 540 ieee80211_ifdetach(ic); 541 if_detach(ifp); 542 543 splx(s); 544 545 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 546 USBDEV(sc->sc_dev)); 547 548 return 0; 549 } 550 551 Static int 552 ural_alloc_tx_list(struct ural_softc *sc) 553 { 554 struct ural_tx_data *data; 555 int i, error; 556 557 sc->tx_queued = 0; 558 559 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 560 data = &sc->tx_data[i]; 561 562 data->sc = sc; 563 564 data->xfer = usbd_alloc_xfer(sc->sc_udev); 565 if (data->xfer == NULL) { 566 printf("%s: could not allocate tx xfer\n", 567 USBDEVNAME(sc->sc_dev)); 568 error = ENOMEM; 569 goto fail; 570 } 571 572 data->buf = usbd_alloc_buffer(data->xfer, 573 RAL_TX_DESC_SIZE + MCLBYTES); 574 if (data->buf == NULL) { 575 printf("%s: could not allocate tx buffer\n", 576 USBDEVNAME(sc->sc_dev)); 577 error = ENOMEM; 578 goto fail; 579 } 580 } 581 582 return 0; 583 584 fail: ural_free_tx_list(sc); 585 return error; 586 } 587 588 Static void 589 ural_free_tx_list(struct ural_softc *sc) 590 { 591 struct ural_tx_data *data; 592 int i; 593 594 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 595 data = &sc->tx_data[i]; 596 597 if (data->xfer != NULL) { 598 usbd_free_xfer(data->xfer); 599 data->xfer = NULL; 600 } 601 602 if (data->ni != NULL) { 603 ieee80211_free_node(data->ni); 604 data->ni = NULL; 605 } 606 } 607 } 608 609 Static int 610 ural_alloc_rx_list(struct ural_softc *sc) 611 { 612 struct ural_rx_data *data; 613 int i, error; 614 615 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 616 data = &sc->rx_data[i]; 617 618 data->sc = sc; 619 620 data->xfer = usbd_alloc_xfer(sc->sc_udev); 621 if (data->xfer == NULL) { 622 printf("%s: could not allocate rx xfer\n", 623 USBDEVNAME(sc->sc_dev)); 624 error = ENOMEM; 625 goto fail; 626 } 627 628 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 629 printf("%s: could not allocate rx buffer\n", 630 USBDEVNAME(sc->sc_dev)); 631 error = ENOMEM; 632 goto fail; 633 } 634 635 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 636 if (data->m == NULL) { 637 printf("%s: could not allocate rx mbuf\n", 638 USBDEVNAME(sc->sc_dev)); 639 error = ENOMEM; 640 goto fail; 641 } 642 643 MCLGET(data->m, M_DONTWAIT); 644 if (!(data->m->m_flags & M_EXT)) { 645 printf("%s: could not allocate rx mbuf cluster\n", 646 USBDEVNAME(sc->sc_dev)); 647 error = ENOMEM; 648 goto fail; 649 } 650 651 data->buf = mtod(data->m, uint8_t *); 652 } 653 654 return 0; 655 656 fail: ural_free_tx_list(sc); 657 return error; 658 } 659 660 Static void 661 ural_free_rx_list(struct ural_softc *sc) 662 { 663 struct ural_rx_data *data; 664 int i; 665 666 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 667 data = &sc->rx_data[i]; 668 669 if (data->xfer != NULL) { 670 usbd_free_xfer(data->xfer); 671 data->xfer = NULL; 672 } 673 674 if (data->m != NULL) { 675 m_freem(data->m); 676 data->m = NULL; 677 } 678 } 679 } 680 681 Static int 682 ural_media_change(struct ifnet *ifp) 683 { 684 int error; 685 686 error = ieee80211_media_change(ifp); 687 if (error != ENETRESET) 688 return error; 689 690 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 691 ural_init(ifp); 692 693 return 0; 694 } 695 696 /* 697 * This function is called periodically (every 200ms) during scanning to 698 * switch from one channel to another. 699 */ 700 Static void 701 ural_next_scan(void *arg) 702 { 703 struct ural_softc *sc = arg; 704 struct ieee80211com *ic = &sc->sc_ic; 705 706 if (ic->ic_state == IEEE80211_S_SCAN) 707 ieee80211_next_scan(ic); 708 } 709 710 Static void 711 ural_task(void *arg) 712 { 713 struct ural_softc *sc = arg; 714 struct ieee80211com *ic = &sc->sc_ic; 715 enum ieee80211_state ostate; 716 struct mbuf *m; 717 718 ostate = ic->ic_state; 719 720 switch (sc->sc_state) { 721 case IEEE80211_S_INIT: 722 if (ostate == IEEE80211_S_RUN) { 723 /* abort TSF synchronization */ 724 ural_write(sc, RAL_TXRX_CSR19, 0); 725 726 /* force tx led to stop blinking */ 727 ural_write(sc, RAL_MAC_CSR20, 0); 728 } 729 break; 730 731 case IEEE80211_S_SCAN: 732 ural_set_chan(sc, ic->ic_curchan); 733 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc); 734 break; 735 736 case IEEE80211_S_AUTH: 737 ural_set_chan(sc, ic->ic_curchan); 738 break; 739 740 case IEEE80211_S_ASSOC: 741 ural_set_chan(sc, ic->ic_curchan); 742 break; 743 744 case IEEE80211_S_RUN: 745 ural_set_chan(sc, ic->ic_curchan); 746 747 if (ic->ic_opmode != IEEE80211_M_MONITOR) 748 ural_set_bssid(sc, ic->ic_bss->ni_bssid); 749 750 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 751 ic->ic_opmode == IEEE80211_M_IBSS) { 752 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 753 if (m == NULL) { 754 printf("%s: could not allocate beacon\n", 755 USBDEVNAME(sc->sc_dev)); 756 return; 757 } 758 759 if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) { 760 m_freem(m); 761 printf("%s: could not transmit beacon\n", 762 USBDEVNAME(sc->sc_dev)); 763 return; 764 } 765 766 /* beacon is no longer needed */ 767 m_freem(m); 768 } 769 770 /* make tx led blink on tx (controlled by ASIC) */ 771 ural_write(sc, RAL_MAC_CSR20, 1); 772 773 if (ic->ic_opmode != IEEE80211_M_MONITOR) 774 ural_enable_tsf_sync(sc); 775 break; 776 } 777 778 sc->sc_newstate(ic, sc->sc_state, -1); 779 } 780 781 Static int 782 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 783 { 784 struct ural_softc *sc = ic->ic_ifp->if_softc; 785 786 usb_rem_task(sc->sc_udev, &sc->sc_task); 787 callout_stop(&sc->scan_ch); 788 789 /* do it in a process context */ 790 sc->sc_state = nstate; 791 usb_add_task(sc->sc_udev, &sc->sc_task); 792 793 return 0; 794 } 795 796 /* quickly determine if a given rate is CCK or OFDM */ 797 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 798 799 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 800 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 801 #define RAL_SIFS 10 802 803 Static void 804 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 805 { 806 struct ural_tx_data *data = priv; 807 struct ural_softc *sc = data->sc; 808 struct ifnet *ifp = &sc->sc_if; 809 int s; 810 811 if (status != USBD_NORMAL_COMPLETION) { 812 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 813 return; 814 815 printf("%s: could not transmit buffer: %s\n", 816 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 817 818 if (status == USBD_STALLED) 819 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 820 821 ifp->if_oerrors++; 822 return; 823 } 824 825 s = splnet(); 826 827 m_freem(data->m); 828 data->m = NULL; 829 ieee80211_free_node(data->ni); 830 data->ni = NULL; 831 832 sc->tx_queued--; 833 ifp->if_opackets++; 834 835 DPRINTFN(10, ("tx done\n")); 836 837 sc->sc_tx_timer = 0; 838 ifp->if_flags &= ~IFF_OACTIVE; 839 ural_start(ifp); 840 841 splx(s); 842 } 843 844 Static void 845 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 846 { 847 struct ural_rx_data *data = priv; 848 struct ural_softc *sc = data->sc; 849 struct ieee80211com *ic = &sc->sc_ic; 850 struct ifnet *ifp = &sc->sc_if; 851 struct ural_rx_desc *desc; 852 struct ieee80211_frame_min *wh; 853 struct ieee80211_node *ni; 854 struct mbuf *m; 855 int s, len; 856 857 if (status != USBD_NORMAL_COMPLETION) { 858 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 859 return; 860 861 if (status == USBD_STALLED) 862 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 863 goto skip; 864 } 865 866 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 867 868 if (len < RAL_RX_DESC_SIZE) { 869 printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len); 870 ifp->if_ierrors++; 871 goto skip; 872 } 873 874 /* rx descriptor is located at the end */ 875 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); 876 877 if (le32toh(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 878 /* 879 * This should not happen since we did not request to receive 880 * those frames when we filled RAL_TXRX_CSR2. 881 */ 882 DPRINTFN(5, ("PHY or CRC error\n")); 883 ifp->if_ierrors++; 884 goto skip; 885 } 886 887 /* finalize mbuf */ 888 m = data->m; 889 m->m_pkthdr.rcvif = ifp; 890 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 891 m->m_flags |= M_HASFCS; /* hardware appends FCS */ 892 893 s = splnet(); 894 895 #if NBPFILTER > 0 896 if (sc->sc_drvbpf != NULL) { 897 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 898 899 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 900 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); 901 tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); 902 tap->wr_antenna = sc->rx_ant; 903 tap->wr_antsignal = desc->rssi; 904 905 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 906 } 907 #endif 908 909 wh = mtod(m, struct ieee80211_frame_min *); 910 ni = ieee80211_find_rxnode(ic, wh); 911 912 /* send the frame to the 802.11 layer */ 913 ieee80211_input(ic, m, ni, desc->rssi, 0); 914 915 /* node is no longer needed */ 916 ieee80211_free_node(ni); 917 918 splx(s); 919 920 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 921 if (data->m == NULL) { 922 printf("%s: could not allocate rx mbuf\n", 923 USBDEVNAME(sc->sc_dev)); 924 return; 925 } 926 927 MCLGET(data->m, M_DONTWAIT); 928 if (!(data->m->m_flags & M_EXT)) { 929 printf("%s: could not allocate rx mbuf cluster\n", 930 USBDEVNAME(sc->sc_dev)); 931 m_freem(data->m); 932 data->m = NULL; 933 return; 934 } 935 936 data->buf = mtod(data->m, uint8_t *); 937 938 DPRINTFN(15, ("rx done\n")); 939 940 skip: /* setup a new transfer */ 941 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 942 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 943 usbd_transfer(xfer); 944 } 945 946 /* 947 * Return the expected ack rate for a frame transmitted at rate `rate'. 948 * XXX: this should depend on the destination node basic rate set. 949 */ 950 Static int 951 ural_ack_rate(int rate) 952 { 953 switch (rate) { 954 /* CCK rates */ 955 case 2: 956 return 2; 957 case 4: 958 case 11: 959 case 22: 960 return 4; 961 962 /* OFDM rates */ 963 case 12: 964 case 18: 965 return 12; 966 case 24: 967 case 36: 968 return 24; 969 case 48: 970 case 72: 971 case 96: 972 case 108: 973 return 48; 974 } 975 976 /* default to 1Mbps */ 977 return 2; 978 } 979 980 /* 981 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 982 * The function automatically determines the operating mode depending on the 983 * given rate. `flags' indicates whether short preamble is in use or not. 984 */ 985 Static uint16_t 986 ural_txtime(int len, int rate, uint32_t flags) 987 { 988 uint16_t txtime; 989 int ceil, dbps; 990 991 if (RAL_RATE_IS_OFDM(rate)) { 992 /* 993 * OFDM TXTIME calculation. 994 * From IEEE Std 802.11a-1999, pp. 37. 995 */ 996 dbps = rate * 2; /* data bits per OFDM symbol */ 997 998 ceil = (16 + 8 * len + 6) / dbps; 999 if ((16 + 8 * len + 6) % dbps != 0) 1000 ceil++; 1001 1002 txtime = 16 + 4 + 4 * ceil + 6; 1003 } else { 1004 /* 1005 * High Rate TXTIME calculation. 1006 * From IEEE Std 802.11b-1999, pp. 28. 1007 */ 1008 ceil = (8 * len * 2) / rate; 1009 if ((8 * len * 2) % rate != 0) 1010 ceil++; 1011 1012 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1013 txtime = 72 + 24 + ceil; 1014 else 1015 txtime = 144 + 48 + ceil; 1016 } 1017 1018 return txtime; 1019 } 1020 1021 Static uint8_t 1022 ural_plcp_signal(int rate) 1023 { 1024 switch (rate) { 1025 /* CCK rates (returned values are device-dependent) */ 1026 case 2: return 0x0; 1027 case 4: return 0x1; 1028 case 11: return 0x2; 1029 case 22: return 0x3; 1030 1031 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1032 case 12: return 0xb; 1033 case 18: return 0xf; 1034 case 24: return 0xa; 1035 case 36: return 0xe; 1036 case 48: return 0x9; 1037 case 72: return 0xd; 1038 case 96: return 0x8; 1039 case 108: return 0xc; 1040 1041 /* unsupported rates (should not get there) */ 1042 default: return 0xff; 1043 } 1044 } 1045 1046 Static void 1047 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1048 uint32_t flags, int len, int rate) 1049 { 1050 struct ieee80211com *ic = &sc->sc_ic; 1051 uint16_t plcp_length; 1052 int remainder; 1053 1054 desc->flags = htole32(flags); 1055 desc->flags |= htole32(RAL_TX_NEWSEQ); 1056 desc->flags |= htole32(len << 16); 1057 1058 if (RAL_RATE_IS_OFDM(rate)) 1059 desc->flags |= htole32(RAL_TX_OFDM); 1060 1061 desc->wme = htole16(RAL_LOGCWMAX(5) | RAL_LOGCWMIN(3) | RAL_AIFSN(2)); 1062 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1063 1064 /* 1065 * Fill PLCP fields. 1066 */ 1067 desc->plcp_service = 4; 1068 1069 len += 4; /* account for FCS */ 1070 if (RAL_RATE_IS_OFDM(rate)) { 1071 /* 1072 * PLCP length field (LENGTH). 1073 * From IEEE Std 802.11a-1999, pp. 14. 1074 */ 1075 plcp_length = len & 0xfff; 1076 desc->plcp_length = htole16((plcp_length >> 6) << 8 | 1077 (plcp_length & 0x3f)); 1078 } else { 1079 /* 1080 * Long PLCP LENGTH field. 1081 * From IEEE Std 802.11b-1999, pp. 16. 1082 */ 1083 plcp_length = (8 * len * 2) / rate; 1084 remainder = (8 * len * 2) % rate; 1085 if (remainder != 0) { 1086 if (rate == 22 && (rate - remainder) / 16 != 0) 1087 desc->plcp_service |= RAL_PLCP_LENGEXT; 1088 plcp_length++; 1089 } 1090 desc->plcp_length = htole16(plcp_length); 1091 } 1092 1093 desc->plcp_signal = ural_plcp_signal(rate); 1094 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1095 desc->plcp_signal |= 0x08; 1096 1097 desc->iv = 0; 1098 desc->eiv = 0; 1099 } 1100 1101 #define RAL_TX_TIMEOUT 5000 1102 1103 Static int 1104 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1105 { 1106 struct ieee80211com *ic = &sc->sc_ic; 1107 struct ural_tx_desc *desc; 1108 usbd_xfer_handle xfer; 1109 usbd_status error; 1110 uint8_t cmd = 0; 1111 uint8_t *buf; 1112 int xferlen, rate; 1113 1114 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 4; 1115 1116 xfer = usbd_alloc_xfer(sc->sc_udev); 1117 if (xfer == NULL) 1118 return ENOMEM; 1119 1120 /* xfer length needs to be a multiple of two! */ 1121 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1122 1123 buf = usbd_alloc_buffer(xfer, xferlen); 1124 if (buf == NULL) { 1125 usbd_free_xfer(xfer); 1126 return ENOMEM; 1127 } 1128 1129 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, 1130 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL); 1131 1132 error = usbd_sync_transfer(xfer); 1133 if (error != 0) { 1134 usbd_free_xfer(xfer); 1135 return error; 1136 } 1137 1138 desc = (struct ural_tx_desc *)buf; 1139 1140 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); 1141 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, 1142 m0->m_pkthdr.len, rate); 1143 1144 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", 1145 m0->m_pkthdr.len, rate, xferlen)); 1146 1147 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, 1148 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL); 1149 1150 error = usbd_sync_transfer(xfer); 1151 usbd_free_xfer(xfer); 1152 1153 return error; 1154 } 1155 1156 Static int 1157 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1158 { 1159 struct ieee80211com *ic = &sc->sc_ic; 1160 struct ural_tx_desc *desc; 1161 struct ural_tx_data *data; 1162 struct ieee80211_frame *wh; 1163 uint32_t flags = 0; 1164 uint16_t dur; 1165 usbd_status error; 1166 int xferlen, rate; 1167 1168 data = &sc->tx_data[0]; 1169 desc = (struct ural_tx_desc *)data->buf; 1170 1171 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 4; 1172 data->m = m0; 1173 data->ni = ni; 1174 1175 wh = mtod(m0, struct ieee80211_frame *); 1176 1177 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1178 flags |= RAL_TX_ACK; 1179 1180 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; 1181 *(uint16_t *)wh->i_dur = htole16(dur); 1182 1183 /* tell hardware to add timestamp for probe responses */ 1184 if ((wh->i_fc[0] & 1185 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1186 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1187 flags |= RAL_TX_TIMESTAMP; 1188 } 1189 1190 #if NBPFILTER > 0 1191 if (sc->sc_drvbpf != NULL) { 1192 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1193 1194 tap->wt_flags = 0; 1195 tap->wt_rate = rate; 1196 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1197 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1198 tap->wt_antenna = sc->tx_ant; 1199 1200 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1201 } 1202 #endif 1203 1204 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1205 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1206 1207 /* xfer length needs to be a multiple of two! */ 1208 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1209 1210 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n", 1211 m0->m_pkthdr.len, rate, xferlen)); 1212 1213 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1214 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); 1215 1216 error = usbd_transfer(data->xfer); 1217 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1218 m_freem(m0); 1219 return error; 1220 } 1221 1222 sc->tx_queued++; 1223 1224 return 0; 1225 } 1226 1227 Static int 1228 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1229 { 1230 struct ieee80211com *ic = &sc->sc_ic; 1231 struct ieee80211_rateset *rs; 1232 struct ural_tx_desc *desc; 1233 struct ural_tx_data *data; 1234 struct ieee80211_frame *wh; 1235 struct ieee80211_key *k; 1236 uint32_t flags = 0; 1237 uint16_t dur; 1238 usbd_status error; 1239 int xferlen, rate; 1240 1241 wh = mtod(m0, struct ieee80211_frame *); 1242 1243 /* XXX this should be reworked! */ 1244 if (ic->ic_fixed_rate != -1) { 1245 if (ic->ic_curmode != IEEE80211_MODE_AUTO) 1246 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1247 else 1248 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 1249 1250 rate = rs->rs_rates[ic->ic_fixed_rate]; 1251 } else { 1252 rs = &ni->ni_rates; 1253 rate = rs->rs_rates[ni->ni_txrate]; 1254 } 1255 rate &= IEEE80211_RATE_VAL; 1256 1257 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1258 k = ieee80211_crypto_encap(ic, ni, m0); 1259 if (k == NULL) { 1260 m_freem(m0); 1261 return ENOBUFS; 1262 } 1263 1264 /* packet header may have moved, reset our local pointer */ 1265 wh = mtod(m0, struct ieee80211_frame *); 1266 } 1267 1268 #if NBPFILTER > 0 1269 if (sc->sc_drvbpf != NULL) { 1270 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1271 1272 tap->wt_flags = 0; 1273 tap->wt_rate = rate; 1274 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1275 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1276 tap->wt_antenna = sc->tx_ant; 1277 1278 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1279 } 1280 #endif 1281 1282 data = &sc->tx_data[0]; 1283 desc = (struct ural_tx_desc *)data->buf; 1284 1285 data->m = m0; 1286 data->ni = ni; 1287 1288 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1289 flags |= RAL_TX_ACK; 1290 flags |= RAL_TX_RETRY(7); 1291 1292 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(rate), 1293 ic->ic_flags) + RAL_SIFS; 1294 *(uint16_t *)wh->i_dur = htole16(dur); 1295 } 1296 1297 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1298 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1299 1300 /* xfer length needs to be a multiple of two! */ 1301 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1302 1303 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n", 1304 m0->m_pkthdr.len, rate, xferlen)); 1305 1306 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1307 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); 1308 1309 error = usbd_transfer(data->xfer); 1310 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1311 m_freem(m0); 1312 return error; 1313 } 1314 1315 sc->tx_queued++; 1316 1317 return 0; 1318 } 1319 1320 Static void 1321 ural_start(struct ifnet *ifp) 1322 { 1323 struct ural_softc *sc = ifp->if_softc; 1324 struct ieee80211com *ic = &sc->sc_ic; 1325 struct ether_header *eh; 1326 struct ieee80211_node *ni; 1327 struct mbuf *m0; 1328 1329 for (;;) { 1330 IF_POLL(&ic->ic_mgtq, m0); 1331 if (m0 != NULL) { 1332 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1333 ifp->if_flags |= IFF_OACTIVE; 1334 break; 1335 } 1336 IF_DEQUEUE(&ic->ic_mgtq, m0); 1337 1338 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1339 m0->m_pkthdr.rcvif = NULL; 1340 #if NBPFILTER > 0 1341 if (ic->ic_rawbpf != NULL) 1342 bpf_mtap(ic->ic_rawbpf, m0); 1343 #endif 1344 if (ural_tx_mgt(sc, m0, ni) != 0) 1345 break; 1346 1347 } else { 1348 if (ic->ic_state != IEEE80211_S_RUN) 1349 break; 1350 IFQ_DEQUEUE(&ifp->if_snd, m0); 1351 if (m0 == NULL) 1352 break; 1353 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1354 IF_PREPEND(&ifp->if_snd, m0); 1355 ifp->if_flags |= IFF_OACTIVE; 1356 break; 1357 } 1358 1359 if (m0->m_len < sizeof (struct ether_header) && 1360 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1361 continue; 1362 1363 eh = mtod(m0, struct ether_header *); 1364 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1365 if (ni == NULL) { 1366 m_freem(m0); 1367 continue; 1368 } 1369 #if NBPFILTER > 0 1370 if (ifp->if_bpf != NULL) 1371 bpf_mtap(ifp->if_bpf, m0); 1372 #endif 1373 m0 = ieee80211_encap(ic, m0, ni); 1374 if (m0 == NULL) { 1375 ieee80211_free_node(ni); 1376 continue; 1377 } 1378 #if NBPFILTER > 0 1379 if (ic->ic_rawbpf != NULL) 1380 bpf_mtap(ic->ic_rawbpf, m0); 1381 #endif 1382 if (ural_tx_data(sc, m0, ni) != 0) { 1383 ieee80211_free_node(ni); 1384 ifp->if_oerrors++; 1385 break; 1386 } 1387 } 1388 1389 sc->sc_tx_timer = 5; 1390 ifp->if_timer = 1; 1391 } 1392 } 1393 1394 Static void 1395 ural_watchdog(struct ifnet *ifp) 1396 { 1397 struct ural_softc *sc = ifp->if_softc; 1398 struct ieee80211com *ic = &sc->sc_ic; 1399 1400 ifp->if_timer = 0; 1401 1402 if (sc->sc_tx_timer > 0) { 1403 if (--sc->sc_tx_timer == 0) { 1404 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 1405 /*ural_init(ifp); XXX needs a process context! */ 1406 ifp->if_oerrors++; 1407 return; 1408 } 1409 ifp->if_timer = 1; 1410 } 1411 1412 ieee80211_watchdog(ic); 1413 } 1414 1415 Static int 1416 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1417 { 1418 struct ural_softc *sc = ifp->if_softc; 1419 struct ieee80211com *ic = &sc->sc_ic; 1420 struct ifreq *ifr; 1421 int s, error = 0; 1422 1423 s = splnet(); 1424 1425 switch (cmd) { 1426 case SIOCSIFFLAGS: 1427 if (ifp->if_flags & IFF_UP) { 1428 if (ifp->if_flags & IFF_RUNNING) 1429 ural_update_promisc(sc); 1430 else 1431 ural_init(ifp); 1432 } else { 1433 if (ifp->if_flags & IFF_RUNNING) 1434 ural_stop(ifp, 1); 1435 } 1436 break; 1437 1438 case SIOCADDMULTI: 1439 case SIOCDELMULTI: 1440 ifr = (struct ifreq *)data; 1441 error = (cmd == SIOCADDMULTI) ? 1442 ether_addmulti(ifr, &sc->sc_ec) : 1443 ether_delmulti(ifr, &sc->sc_ec); 1444 1445 if (error == ENETRESET) 1446 error = 0; 1447 break; 1448 1449 case SIOCS80211CHANNEL: 1450 /* 1451 * This allows for fast channel switching in monitor mode 1452 * (used by kismet). In IBSS mode, we must explicitly reset 1453 * the interface to generate a new beacon frame. 1454 */ 1455 error = ieee80211_ioctl(ic, cmd, data); 1456 if (error == ENETRESET && 1457 ic->ic_opmode == IEEE80211_M_MONITOR) { 1458 ural_set_chan(sc, ic->ic_ibss_chan); 1459 error = 0; 1460 } 1461 break; 1462 1463 default: 1464 error = ieee80211_ioctl(ic, cmd, data); 1465 } 1466 1467 if (error == ENETRESET) { 1468 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1469 (IFF_UP | IFF_RUNNING)) 1470 ural_init(ifp); 1471 error = 0; 1472 } 1473 1474 splx(s); 1475 1476 return error; 1477 } 1478 1479 Static void 1480 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1481 { 1482 usb_device_request_t req; 1483 usbd_status error; 1484 1485 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1486 req.bRequest = RAL_READ_EEPROM; 1487 USETW(req.wValue, 0); 1488 USETW(req.wIndex, addr); 1489 USETW(req.wLength, len); 1490 1491 error = usbd_do_request(sc->sc_udev, &req, buf); 1492 if (error != 0) { 1493 printf("%s: could not read EEPROM: %s\n", 1494 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1495 } 1496 } 1497 1498 Static uint16_t 1499 ural_read(struct ural_softc *sc, uint16_t reg) 1500 { 1501 usb_device_request_t req; 1502 usbd_status error; 1503 uint16_t val; 1504 1505 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1506 req.bRequest = RAL_READ_MAC; 1507 USETW(req.wValue, 0); 1508 USETW(req.wIndex, reg); 1509 USETW(req.wLength, sizeof (uint16_t)); 1510 1511 error = usbd_do_request(sc->sc_udev, &req, &val); 1512 if (error != 0) { 1513 printf("%s: could not read MAC register: %s\n", 1514 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1515 return 0; 1516 } 1517 1518 return le16toh(val); 1519 } 1520 1521 Static void 1522 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1523 { 1524 usb_device_request_t req; 1525 usbd_status error; 1526 1527 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1528 req.bRequest = RAL_READ_MULTI_MAC; 1529 USETW(req.wValue, 0); 1530 USETW(req.wIndex, reg); 1531 USETW(req.wLength, len); 1532 1533 error = usbd_do_request(sc->sc_udev, &req, buf); 1534 if (error != 0) { 1535 printf("%s: could not read MAC register: %s\n", 1536 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1537 return; 1538 } 1539 } 1540 1541 Static void 1542 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1543 { 1544 usb_device_request_t req; 1545 usbd_status error; 1546 1547 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1548 req.bRequest = RAL_WRITE_MAC; 1549 USETW(req.wValue, val); 1550 USETW(req.wIndex, reg); 1551 USETW(req.wLength, 0); 1552 1553 error = usbd_do_request(sc->sc_udev, &req, NULL); 1554 if (error != 0) { 1555 printf("%s: could not write MAC register: %s\n", 1556 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1557 } 1558 } 1559 1560 Static void 1561 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1562 { 1563 usb_device_request_t req; 1564 usbd_status error; 1565 1566 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1567 req.bRequest = RAL_WRITE_MULTI_MAC; 1568 USETW(req.wValue, 0); 1569 USETW(req.wIndex, reg); 1570 USETW(req.wLength, len); 1571 1572 error = usbd_do_request(sc->sc_udev, &req, buf); 1573 if (error != 0) { 1574 printf("%s: could not write MAC register: %s\n", 1575 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1576 } 1577 } 1578 1579 Static void 1580 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1581 { 1582 uint16_t tmp; 1583 int ntries; 1584 1585 for (ntries = 0; ntries < 5; ntries++) { 1586 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1587 break; 1588 } 1589 if (ntries == 5) { 1590 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); 1591 return; 1592 } 1593 1594 tmp = reg << 8 | val; 1595 ural_write(sc, RAL_PHY_CSR7, tmp); 1596 } 1597 1598 Static uint8_t 1599 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1600 { 1601 uint16_t val; 1602 int ntries; 1603 1604 val = RAL_BBP_WRITE | reg << 8; 1605 ural_write(sc, RAL_PHY_CSR7, val); 1606 1607 for (ntries = 0; ntries < 5; ntries++) { 1608 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1609 break; 1610 } 1611 if (ntries == 5) { 1612 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1613 return 0; 1614 } 1615 1616 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1617 } 1618 1619 Static void 1620 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1621 { 1622 uint32_t tmp; 1623 int ntries; 1624 1625 for (ntries = 0; ntries < 5; ntries++) { 1626 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1627 break; 1628 } 1629 if (ntries == 5) { 1630 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); 1631 return; 1632 } 1633 1634 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1635 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1636 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1637 1638 /* remember last written value in sc */ 1639 sc->rf_regs[reg] = val; 1640 1641 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 1642 } 1643 1644 Static void 1645 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1646 { 1647 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1648 struct ieee80211com *ic = &sc->sc_ic; 1649 uint8_t power, tmp; 1650 u_int i, chan; 1651 1652 chan = ieee80211_chan2ieee(ic, c); 1653 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1654 return; 1655 1656 if (IEEE80211_IS_CHAN_2GHZ(c)) 1657 power = min(sc->txpow[chan - 1], 31); 1658 else 1659 power = 31; 1660 1661 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 1662 1663 switch (sc->rf_rev) { 1664 case RAL_RF_2522: 1665 ural_rf_write(sc, RAL_RF1, 0x00814); 1666 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1667 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1668 break; 1669 1670 case RAL_RF_2523: 1671 ural_rf_write(sc, RAL_RF1, 0x08804); 1672 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1673 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1674 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1675 break; 1676 1677 case RAL_RF_2524: 1678 ural_rf_write(sc, RAL_RF1, 0x0c808); 1679 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1680 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1681 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1682 break; 1683 1684 case RAL_RF_2525: 1685 ural_rf_write(sc, RAL_RF1, 0x08808); 1686 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1687 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1688 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1689 1690 ural_rf_write(sc, RAL_RF1, 0x08808); 1691 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1692 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1693 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1694 break; 1695 1696 case RAL_RF_2525E: 1697 ural_rf_write(sc, RAL_RF1, 0x08808); 1698 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1699 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1700 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1701 break; 1702 1703 case RAL_RF_2526: 1704 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1705 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1706 ural_rf_write(sc, RAL_RF1, 0x08804); 1707 1708 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1709 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1710 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1711 break; 1712 1713 /* dual-band RF */ 1714 case RAL_RF_5222: 1715 for (i = 0; i < N(ural_rf5222); i++) 1716 if (ural_rf5222[i].chan == chan) 1717 break; 1718 1719 if (i < N(ural_rf5222)) { 1720 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1721 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1722 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1723 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1724 } 1725 break; 1726 } 1727 1728 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1729 ic->ic_state != IEEE80211_S_SCAN) { 1730 /* set Japan filter bit for channel 14 */ 1731 tmp = ural_bbp_read(sc, 70); 1732 1733 tmp &= ~RAL_JAPAN_FILTER; 1734 if (chan == 14) 1735 tmp |= RAL_JAPAN_FILTER; 1736 1737 ural_bbp_write(sc, 70, tmp); 1738 1739 /* clear CRC errors */ 1740 ural_read(sc, RAL_STA_CSR0); 1741 1742 DELAY(1000); /* RF needs a 1ms delay here */ 1743 ural_disable_rf_tune(sc); 1744 } 1745 #undef N 1746 } 1747 1748 /* 1749 * Disable RF auto-tuning. 1750 */ 1751 Static void 1752 ural_disable_rf_tune(struct ural_softc *sc) 1753 { 1754 uint32_t tmp; 1755 1756 if (sc->rf_rev != RAL_RF_2523) { 1757 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1758 ural_rf_write(sc, RAL_RF1, tmp); 1759 } 1760 1761 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1762 ural_rf_write(sc, RAL_RF3, tmp); 1763 1764 DPRINTFN(2, ("disabling RF autotune\n")); 1765 } 1766 1767 /* 1768 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1769 * synchronization. 1770 */ 1771 Static void 1772 ural_enable_tsf_sync(struct ural_softc *sc) 1773 { 1774 struct ieee80211com *ic = &sc->sc_ic; 1775 uint16_t logcwmin, preload, tmp; 1776 1777 /* first, disable TSF synchronization */ 1778 ural_write(sc, RAL_TXRX_CSR19, 0); 1779 1780 tmp = (16 * ic->ic_bss->ni_intval) << 4; 1781 ural_write(sc, RAL_TXRX_CSR18, tmp); 1782 1783 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1784 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1785 tmp = logcwmin << 12 | preload; 1786 ural_write(sc, RAL_TXRX_CSR20, tmp); 1787 1788 /* finally, enable TSF synchronization */ 1789 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1790 if (ic->ic_opmode == IEEE80211_M_STA) 1791 tmp |= RAL_ENABLE_TSF_SYNC(1); 1792 else 1793 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1794 ural_write(sc, RAL_TXRX_CSR19, tmp); 1795 1796 DPRINTF(("enabling TSF synchronization\n")); 1797 } 1798 1799 Static void 1800 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid) 1801 { 1802 uint16_t tmp; 1803 1804 tmp = bssid[0] | bssid[1] << 8; 1805 ural_write(sc, RAL_MAC_CSR5, tmp); 1806 1807 tmp = bssid[2] | bssid[3] << 8; 1808 ural_write(sc, RAL_MAC_CSR6, tmp); 1809 1810 tmp = bssid[4] | bssid[5] << 8; 1811 ural_write(sc, RAL_MAC_CSR7, tmp); 1812 1813 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); 1814 } 1815 1816 Static void 1817 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1818 { 1819 uint16_t tmp; 1820 1821 tmp = addr[0] | addr[1] << 8; 1822 ural_write(sc, RAL_MAC_CSR2, tmp); 1823 1824 tmp = addr[2] | addr[3] << 8; 1825 ural_write(sc, RAL_MAC_CSR3, tmp); 1826 1827 tmp = addr[4] | addr[5] << 8; 1828 ural_write(sc, RAL_MAC_CSR4, tmp); 1829 1830 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); 1831 } 1832 1833 Static void 1834 ural_update_promisc(struct ural_softc *sc) 1835 { 1836 struct ifnet *ifp = &sc->sc_if; 1837 uint16_t tmp; 1838 1839 tmp = ural_read(sc, RAL_TXRX_CSR2); 1840 1841 tmp &= ~RAL_DROP_NOT_TO_ME; 1842 if (!(ifp->if_flags & IFF_PROMISC)) 1843 tmp |= RAL_DROP_NOT_TO_ME; 1844 1845 ural_write(sc, RAL_TXRX_CSR2, tmp); 1846 1847 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1848 "entering" : "leaving")); 1849 } 1850 1851 Static const char * 1852 ural_get_rf(int rev) 1853 { 1854 switch (rev) { 1855 case RAL_RF_2522: return "RT2522"; 1856 case RAL_RF_2523: return "RT2523"; 1857 case RAL_RF_2524: return "RT2524"; 1858 case RAL_RF_2525: return "RT2525"; 1859 case RAL_RF_2525E: return "RT2525e"; 1860 case RAL_RF_2526: return "RT2526"; 1861 case RAL_RF_5222: return "RT5222"; 1862 default: return "unknown"; 1863 } 1864 } 1865 1866 Static void 1867 ural_read_eeprom(struct ural_softc *sc) 1868 { 1869 struct ieee80211com *ic = &sc->sc_ic; 1870 uint16_t val; 1871 1872 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1873 val = le16toh(val); 1874 sc->rf_rev = (val >> 11) & 0x7; 1875 sc->hw_radio = (val >> 10) & 0x1; 1876 sc->led_mode = (val >> 6) & 0x7; 1877 sc->rx_ant = (val >> 4) & 0x3; 1878 sc->tx_ant = (val >> 2) & 0x3; 1879 sc->nb_ant = val & 0x3; 1880 1881 /* read MAC address */ 1882 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1883 1884 /* read default values for BBP registers */ 1885 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1886 1887 /* read Tx power for all b/g channels */ 1888 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1889 } 1890 1891 Static int 1892 ural_bbp_init(struct ural_softc *sc) 1893 { 1894 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1895 int i, ntries; 1896 1897 /* wait for BBP to be ready */ 1898 for (ntries = 0; ntries < 100; ntries++) { 1899 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1900 break; 1901 DELAY(1000); 1902 } 1903 if (ntries == 100) { 1904 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev)); 1905 return EIO; 1906 } 1907 1908 /* initialize BBP registers to default values */ 1909 for (i = 0; i < N(ural_def_bbp); i++) 1910 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1911 1912 #if 0 1913 /* initialize BBP registers to values stored in EEPROM */ 1914 for (i = 0; i < 16; i++) { 1915 if (sc->bbp_prom[i].reg == 0xff) 1916 continue; 1917 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1918 } 1919 #endif 1920 1921 return 0; 1922 #undef N 1923 } 1924 1925 Static void 1926 ural_set_txantenna(struct ural_softc *sc, int antenna) 1927 { 1928 uint16_t tmp; 1929 uint8_t tx; 1930 1931 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 1932 if (antenna == 1) 1933 tx |= RAL_BBP_ANTA; 1934 else if (antenna == 2) 1935 tx |= RAL_BBP_ANTB; 1936 else 1937 tx |= RAL_BBP_DIVERSITY; 1938 1939 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 1940 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 1941 sc->rf_rev == RAL_RF_5222) 1942 tx |= RAL_BBP_FLIPIQ; 1943 1944 ural_bbp_write(sc, RAL_BBP_TX, tx); 1945 1946 /* update flags in PHY_CSR5 and PHY_CSR6 too */ 1947 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 1948 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 1949 1950 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 1951 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 1952 } 1953 1954 Static void 1955 ural_set_rxantenna(struct ural_softc *sc, int antenna) 1956 { 1957 uint8_t rx; 1958 1959 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 1960 if (antenna == 1) 1961 rx |= RAL_BBP_ANTA; 1962 else if (antenna == 2) 1963 rx |= RAL_BBP_ANTB; 1964 else 1965 rx |= RAL_BBP_DIVERSITY; 1966 1967 /* need to force no I/Q flip for RF 2525e and 2526 */ 1968 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 1969 rx &= ~RAL_BBP_FLIPIQ; 1970 1971 ural_bbp_write(sc, RAL_BBP_RX, rx); 1972 } 1973 1974 Static int 1975 ural_init(struct ifnet *ifp) 1976 { 1977 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1978 struct ural_softc *sc = ifp->if_softc; 1979 struct ieee80211com *ic = &sc->sc_ic; 1980 struct ieee80211_key *wk; 1981 struct ural_rx_data *data; 1982 uint16_t sta_tmp[11], tmp; 1983 usbd_status error; 1984 int i, ntries; 1985 1986 ural_stop(ifp, 0); 1987 1988 /* initialize MAC registers to default values */ 1989 for (i = 0; i < N(ural_def_mac); i++) 1990 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 1991 1992 /* wait for BBP and RF to wake up (this can take a long time!) */ 1993 for (ntries = 0; ntries < 100; ntries++) { 1994 tmp = ural_read(sc, RAL_MAC_CSR17); 1995 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 1996 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 1997 break; 1998 DELAY(1000); 1999 } 2000 if (ntries == 100) { 2001 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2002 USBDEVNAME(sc->sc_dev)); 2003 error = EIO; 2004 goto fail; 2005 } 2006 2007 /* we're ready! */ 2008 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2009 2010 /* set supported basic rates (1, 2, 6, 12, 24) */ 2011 ural_write(sc, RAL_TXRX_CSR11, 0x153); 2012 2013 error = ural_bbp_init(sc); 2014 if (error != 0) 2015 goto fail; 2016 2017 /* set default BSS channel */ 2018 ic->ic_curchan = ic->ic_ibss_chan; 2019 ural_set_chan(sc, ic->ic_curchan); 2020 2021 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2022 ural_read_multi(sc, RAL_STA_CSR0, sta_tmp, sizeof sta_tmp); 2023 2024 ural_set_txantenna(sc, 1); 2025 ural_set_rxantenna(sc, 1); 2026 2027 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2028 ural_set_macaddr(sc, ic->ic_myaddr); 2029 2030 /* 2031 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). 2032 */ 2033 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2034 wk = &ic->ic_nw_keys[i]; 2035 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE + 2036 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE); 2037 } 2038 2039 /* 2040 * Open Tx and Rx USB bulk pipes. 2041 */ 2042 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2043 &sc->sc_tx_pipeh); 2044 if (error != 0) { 2045 printf("%s: could not open Tx pipe: %s\n", 2046 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2047 goto fail; 2048 } 2049 2050 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2051 &sc->sc_rx_pipeh); 2052 if (error != 0) { 2053 printf("%s: could not open Rx pipe: %s\n", 2054 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2055 goto fail; 2056 } 2057 2058 /* 2059 * Allocate Tx and Rx xfer queues. 2060 */ 2061 error = ural_alloc_tx_list(sc); 2062 if (error != 0) { 2063 printf("%s: could not allocate Tx list\n", 2064 USBDEVNAME(sc->sc_dev)); 2065 goto fail; 2066 } 2067 2068 error = ural_alloc_rx_list(sc); 2069 if (error != 0) { 2070 printf("%s: could not allocate Rx list\n", 2071 USBDEVNAME(sc->sc_dev)); 2072 goto fail; 2073 } 2074 2075 /* 2076 * Start up the receive pipe. 2077 */ 2078 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 2079 data = &sc->rx_data[i]; 2080 2081 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2082 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 2083 usbd_transfer(data->xfer); 2084 } 2085 2086 /* kick Rx */ 2087 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; 2088 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2089 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; 2090 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2091 tmp |= RAL_DROP_TODS; 2092 if (!(ifp->if_flags & IFF_PROMISC)) 2093 tmp |= RAL_DROP_NOT_TO_ME; 2094 } 2095 ural_write(sc, RAL_TXRX_CSR2, tmp); 2096 2097 ifp->if_flags &= ~IFF_OACTIVE; 2098 ifp->if_flags |= IFF_RUNNING; 2099 2100 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2101 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2102 else 2103 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2104 2105 return 0; 2106 2107 fail: ural_stop(ifp, 1); 2108 return error; 2109 #undef N 2110 } 2111 2112 Static void 2113 ural_stop(struct ifnet *ifp, int disable) 2114 { 2115 struct ural_softc *sc = ifp->if_softc; 2116 struct ieee80211com *ic = &sc->sc_ic; 2117 2118 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2119 2120 sc->sc_tx_timer = 0; 2121 ifp->if_timer = 0; 2122 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2123 2124 /* disable Rx */ 2125 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2126 2127 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2128 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2129 ural_write(sc, RAL_MAC_CSR1, 0); 2130 2131 if (sc->sc_rx_pipeh != NULL) { 2132 usbd_abort_pipe(sc->sc_rx_pipeh); 2133 usbd_close_pipe(sc->sc_rx_pipeh); 2134 sc->sc_rx_pipeh = NULL; 2135 } 2136 2137 if (sc->sc_tx_pipeh != NULL) { 2138 usbd_abort_pipe(sc->sc_tx_pipeh); 2139 usbd_close_pipe(sc->sc_tx_pipeh); 2140 sc->sc_tx_pipeh = NULL; 2141 } 2142 2143 ural_free_rx_list(sc); 2144 ural_free_tx_list(sc); 2145 } 2146 2147 int 2148 ural_activate(device_ptr_t self, enum devact act) 2149 { 2150 struct ural_softc *sc = (struct ural_softc *)self; 2151 2152 switch (act) { 2153 case DVACT_ACTIVATE: 2154 return EOPNOTSUPP; 2155 break; 2156 2157 case DVACT_DEACTIVATE: 2158 if_deactivate(&sc->sc_if); 2159 break; 2160 } 2161 2162 return 0; 2163 } 2164