xref: /netbsd-src/sys/dev/usb/if_ural.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: if_ural.c,v 1.11 2006/03/04 01:22:31 nakayama Exp $ */
2 /*	$OpenBSD: if_ral.c,v 1.38 2005/07/07 08:33:22 jsg Exp $  */
3 /*	$FreeBSD: /a/cvsroot/freebsd.repo/ncvs/src/sys/dev/usb/if_ural.c,v 1.10 2005/07/10 00:17:05 sam Exp $	*/
4 
5 /*-
6  * Copyright (c) 2005
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2500USB chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.11 2006/03/04 01:22:31 nakayama Exp $");
29 
30 #include "bpfilter.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <machine/bus.h>
44 #include <machine/endian.h>
45 #include <machine/intr.h>
46 
47 #if NBPFILTER > 0
48 #include <net/bpf.h>
49 #endif
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73 
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77 
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
92 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
95 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
96 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
97 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
98 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
100 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
101 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
102 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
103 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
105 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
106 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
107 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
108 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
109 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
110 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
111 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
112 };
113 
114 Static int		ural_alloc_tx_list(struct ural_softc *);
115 Static void		ural_free_tx_list(struct ural_softc *);
116 Static int		ural_alloc_rx_list(struct ural_softc *);
117 Static void		ural_free_rx_list(struct ural_softc *);
118 Static int		ural_media_change(struct ifnet *);
119 Static void		ural_next_scan(void *);
120 Static void		ural_task(void *);
121 Static int		ural_newstate(struct ieee80211com *,
122 			    enum ieee80211_state, int);
123 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
124 			    usbd_status);
125 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
126 			    usbd_status);
127 Static int		ural_ack_rate(int);
128 Static uint16_t		ural_txtime(int, int, uint32_t);
129 Static uint8_t		ural_plcp_signal(int);
130 Static void		ural_setup_tx_desc(struct ural_softc *,
131 			    struct ural_tx_desc *, uint32_t, int, int);
132 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
133 			    struct ieee80211_node *);
134 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
135 			    struct ieee80211_node *);
136 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
137 			    struct ieee80211_node *);
138 Static void		ural_start(struct ifnet *);
139 Static void		ural_watchdog(struct ifnet *);
140 Static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
141 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
142 			    int);
143 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
144 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
145 			    int);
146 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
147 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
148 			    int);
149 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
150 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
151 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
152 Static void		ural_set_chan(struct ural_softc *,
153 			    struct ieee80211_channel *);
154 Static void		ural_disable_rf_tune(struct ural_softc *);
155 Static void		ural_enable_tsf_sync(struct ural_softc *);
156 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
157 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
158 Static void		ural_update_promisc(struct ural_softc *);
159 Static const char	*ural_get_rf(int);
160 Static void		ural_read_eeprom(struct ural_softc *);
161 Static int		ural_bbp_init(struct ural_softc *);
162 Static void		ural_set_txantenna(struct ural_softc *, int);
163 Static void		ural_set_rxantenna(struct ural_softc *, int);
164 Static int		ural_init(struct ifnet *);
165 Static void		ural_stop(struct ifnet *, int);
166 
167 /*
168  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
169  */
170 static const struct ieee80211_rateset ural_rateset_11a =
171 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
172 
173 static const struct ieee80211_rateset ural_rateset_11b =
174 	{ 4, { 2, 4, 11, 22 } };
175 
176 static const struct ieee80211_rateset ural_rateset_11g =
177 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
178 
179 /*
180  * Default values for MAC registers; values taken from the reference driver.
181  */
182 static const struct {
183 	uint16_t	reg;
184 	uint16_t	val;
185 } ural_def_mac[] = {
186 	{ RAL_TXRX_CSR5,  0x8c8d },
187 	{ RAL_TXRX_CSR6,  0x8b8a },
188 	{ RAL_TXRX_CSR7,  0x8687 },
189 	{ RAL_TXRX_CSR8,  0x0085 },
190 	{ RAL_MAC_CSR13,  0x1111 },
191 	{ RAL_MAC_CSR14,  0x1e11 },
192 	{ RAL_TXRX_CSR21, 0xe78f },
193 	{ RAL_MAC_CSR9,   0xff1d },
194 	{ RAL_MAC_CSR11,  0x0002 },
195 	{ RAL_MAC_CSR22,  0x0053 },
196 	{ RAL_MAC_CSR15,  0x0000 },
197 	{ RAL_MAC_CSR8,   0x0780 },
198 	{ RAL_TXRX_CSR19, 0x0000 },
199 	{ RAL_TXRX_CSR18, 0x005a },
200 	{ RAL_PHY_CSR2,   0x0000 },
201 	{ RAL_TXRX_CSR0,  0x1ec0 },
202 	{ RAL_PHY_CSR4,   0x000f }
203 };
204 
205 /*
206  * Default values for BBP registers; values taken from the reference driver.
207  */
208 static const struct {
209 	uint8_t	reg;
210 	uint8_t	val;
211 } ural_def_bbp[] = {
212 	{  3, 0x02 },
213 	{  4, 0x19 },
214 	{ 14, 0x1c },
215 	{ 15, 0x30 },
216 	{ 16, 0xac },
217 	{ 17, 0x48 },
218 	{ 18, 0x18 },
219 	{ 19, 0xff },
220 	{ 20, 0x1e },
221 	{ 21, 0x08 },
222 	{ 22, 0x08 },
223 	{ 23, 0x08 },
224 	{ 24, 0x80 },
225 	{ 25, 0x50 },
226 	{ 26, 0x08 },
227 	{ 27, 0x23 },
228 	{ 30, 0x10 },
229 	{ 31, 0x2b },
230 	{ 32, 0xb9 },
231 	{ 34, 0x12 },
232 	{ 35, 0x50 },
233 	{ 39, 0xc4 },
234 	{ 40, 0x02 },
235 	{ 41, 0x60 },
236 	{ 53, 0x10 },
237 	{ 54, 0x18 },
238 	{ 56, 0x08 },
239 	{ 57, 0x10 },
240 	{ 58, 0x08 },
241 	{ 61, 0x60 },
242 	{ 62, 0x10 },
243 	{ 75, 0xff }
244 };
245 
246 /*
247  * Default values for RF register R2 indexed by channel numbers.
248  */
249 static const uint32_t ural_rf2522_r2[] = {
250 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
251 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
252 };
253 
254 static const uint32_t ural_rf2523_r2[] = {
255 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
256 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
257 };
258 
259 static const uint32_t ural_rf2524_r2[] = {
260 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
261 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 };
263 
264 static const uint32_t ural_rf2525_r2[] = {
265 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
266 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
267 };
268 
269 static const uint32_t ural_rf2525_hi_r2[] = {
270 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
271 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
272 };
273 
274 static const uint32_t ural_rf2525e_r2[] = {
275 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
276 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
277 };
278 
279 static const uint32_t ural_rf2526_hi_r2[] = {
280 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
281 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
282 };
283 
284 static const uint32_t ural_rf2526_r2[] = {
285 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
286 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
287 };
288 
289 /*
290  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
291  * values taken from the reference driver.
292  */
293 static const struct {
294 	uint8_t		chan;
295 	uint32_t	r1;
296 	uint32_t	r2;
297 	uint32_t	r4;
298 } ural_rf5222[] = {
299 	/* channels in the 2.4GHz band */
300 	{   1, 0x08808, 0x0044d, 0x00282 },
301 	{   2, 0x08808, 0x0044e, 0x00282 },
302 	{   3, 0x08808, 0x0044f, 0x00282 },
303 	{   4, 0x08808, 0x00460, 0x00282 },
304 	{   5, 0x08808, 0x00461, 0x00282 },
305 	{   6, 0x08808, 0x00462, 0x00282 },
306 	{   7, 0x08808, 0x00463, 0x00282 },
307 	{   8, 0x08808, 0x00464, 0x00282 },
308 	{   9, 0x08808, 0x00465, 0x00282 },
309 	{  10, 0x08808, 0x00466, 0x00282 },
310 	{  11, 0x08808, 0x00467, 0x00282 },
311 	{  12, 0x08808, 0x00468, 0x00282 },
312 	{  13, 0x08808, 0x00469, 0x00282 },
313 	{  14, 0x08808, 0x0046b, 0x00286 },
314 
315 	/* channels in the 5.2GHz band */
316 	{  36, 0x08804, 0x06225, 0x00287 },
317 	{  40, 0x08804, 0x06226, 0x00287 },
318 	{  44, 0x08804, 0x06227, 0x00287 },
319 	{  48, 0x08804, 0x06228, 0x00287 },
320 	{  52, 0x08804, 0x06229, 0x00287 },
321 	{  56, 0x08804, 0x0622a, 0x00287 },
322 	{  60, 0x08804, 0x0622b, 0x00287 },
323 	{  64, 0x08804, 0x0622c, 0x00287 },
324 
325 	{ 100, 0x08804, 0x02200, 0x00283 },
326 	{ 104, 0x08804, 0x02201, 0x00283 },
327 	{ 108, 0x08804, 0x02202, 0x00283 },
328 	{ 112, 0x08804, 0x02203, 0x00283 },
329 	{ 116, 0x08804, 0x02204, 0x00283 },
330 	{ 120, 0x08804, 0x02205, 0x00283 },
331 	{ 124, 0x08804, 0x02206, 0x00283 },
332 	{ 128, 0x08804, 0x02207, 0x00283 },
333 	{ 132, 0x08804, 0x02208, 0x00283 },
334 	{ 136, 0x08804, 0x02209, 0x00283 },
335 	{ 140, 0x08804, 0x0220a, 0x00283 },
336 
337 	{ 149, 0x08808, 0x02429, 0x00281 },
338 	{ 153, 0x08808, 0x0242b, 0x00281 },
339 	{ 157, 0x08808, 0x0242d, 0x00281 },
340 	{ 161, 0x08808, 0x0242f, 0x00281 }
341 };
342 
343 USB_DECLARE_DRIVER(ural);
344 
345 USB_MATCH(ural)
346 {
347 	USB_MATCH_START(ural, uaa);
348 
349 	if (uaa->iface != NULL)
350 		return UMATCH_NONE;
351 
352 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
353 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
354 }
355 
356 USB_ATTACH(ural)
357 {
358 	USB_ATTACH_START(ural, sc, uaa);
359 	struct ieee80211com *ic = &sc->sc_ic;
360 	struct ifnet *ifp = &sc->sc_if;
361 	usb_interface_descriptor_t *id;
362 	usb_endpoint_descriptor_t *ed;
363 	usbd_status error;
364 	char *devinfop;
365 	int i;
366 
367 	sc->sc_udev = uaa->device;
368 
369 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
370 	USB_ATTACH_SETUP;
371 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
372 	usbd_devinfo_free(devinfop);
373 
374 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
375 		printf("%s: could not set configuration no\n",
376 		    USBDEVNAME(sc->sc_dev));
377 		USB_ATTACH_ERROR_RETURN;
378 	}
379 
380 	/* get the first interface handle */
381 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
382 	    &sc->sc_iface);
383 	if (error != 0) {
384 		printf("%s: could not get interface handle\n",
385 		    USBDEVNAME(sc->sc_dev));
386 		USB_ATTACH_ERROR_RETURN;
387 	}
388 
389 	/*
390 	 * Find endpoints.
391 	 */
392 	id = usbd_get_interface_descriptor(sc->sc_iface);
393 
394 	sc->sc_rx_no = sc->sc_tx_no = -1;
395 	for (i = 0; i < id->bNumEndpoints; i++) {
396 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
397 		if (ed == NULL) {
398 			printf("%s: no endpoint descriptor for iface %d\n",
399 			    USBDEVNAME(sc->sc_dev), i);
400 			USB_ATTACH_ERROR_RETURN;
401 		}
402 
403 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
404 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
405 			sc->sc_rx_no = ed->bEndpointAddress;
406 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
407 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
408 			sc->sc_tx_no = ed->bEndpointAddress;
409 	}
410 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
411 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
412 		USB_ATTACH_ERROR_RETURN;
413 	}
414 
415 	usb_init_task(&sc->sc_task, ural_task, sc);
416 	callout_init(&sc->scan_ch);
417 
418 	/* retrieve RT2570 rev. no */
419 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
420 
421 	/* retrieve MAC address and various other things from EEPROM */
422 	ural_read_eeprom(sc);
423 
424 	printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s, address %s\n",
425 	    USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev),
426 	    ether_sprintf(ic->ic_myaddr));
427 
428 	ic->ic_ifp = ifp;
429 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
430 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
431 	ic->ic_state = IEEE80211_S_INIT;
432 
433 	/* set device capabilities */
434 	ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
435 	    IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT |
436 	    IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA;
437 
438 	if (sc->rf_rev == RAL_RF_5222) {
439 		/* set supported .11a rates */
440 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
441 
442 		/* set supported .11a channels */
443 		for (i = 36; i <= 64; i += 4) {
444 			ic->ic_channels[i].ic_freq =
445 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
446 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
447 		}
448 		for (i = 100; i <= 140; i += 4) {
449 			ic->ic_channels[i].ic_freq =
450 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
451 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
452 		}
453 		for (i = 149; i <= 161; i += 4) {
454 			ic->ic_channels[i].ic_freq =
455 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
456 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
457 		}
458 	}
459 
460 	/* set supported .11b and .11g rates */
461 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
462 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
463 
464 	/* set supported .11b and .11g channels (1 through 14) */
465 	for (i = 1; i <= 14; i++) {
466 		ic->ic_channels[i].ic_freq =
467 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
468 		ic->ic_channels[i].ic_flags =
469 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
470 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
471 	}
472 
473 	ifp->if_softc = sc;
474 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
475 	ifp->if_init = ural_init;
476 	ifp->if_stop = ural_stop;
477 	ifp->if_ioctl = ural_ioctl;
478 	ifp->if_start = ural_start;
479 	ifp->if_watchdog = ural_watchdog;
480 	IFQ_SET_READY(&ifp->if_snd);
481 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
482 
483 	if_attach(ifp);
484 	ieee80211_ifattach(ic);
485 
486 	/* override state transition machine */
487 	sc->sc_newstate = ic->ic_newstate;
488 	ic->ic_newstate = ural_newstate;
489 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
490 
491 #if NBPFILTER > 0
492 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
493 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
494 
495 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
496 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
497 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
498 
499 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
500 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
501 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
502 #endif
503 
504 	ieee80211_announce(ic);
505 
506 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
507 	    USBDEV(sc->sc_dev));
508 
509 	USB_ATTACH_SUCCESS_RETURN;
510 }
511 
512 USB_DETACH(ural)
513 {
514 	USB_DETACH_START(ural, sc);
515 	struct ieee80211com *ic = &sc->sc_ic;
516 	struct ifnet *ifp = &sc->sc_if;
517 	int s;
518 
519 	s = splusb();
520 
521 	usb_rem_task(sc->sc_udev, &sc->sc_task);
522 	callout_stop(&sc->scan_ch);
523 
524 	if (sc->sc_rx_pipeh != NULL) {
525 		usbd_abort_pipe(sc->sc_rx_pipeh);
526 		usbd_close_pipe(sc->sc_rx_pipeh);
527 	}
528 
529 	if (sc->sc_tx_pipeh != NULL) {
530 		usbd_abort_pipe(sc->sc_tx_pipeh);
531 		usbd_close_pipe(sc->sc_tx_pipeh);
532 	}
533 
534 	ural_free_rx_list(sc);
535 	ural_free_tx_list(sc);
536 
537 #if NBPFILTER > 0
538 	bpfdetach(ifp);
539 #endif
540 	ieee80211_ifdetach(ic);
541 	if_detach(ifp);
542 
543 	splx(s);
544 
545 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
546 	    USBDEV(sc->sc_dev));
547 
548 	return 0;
549 }
550 
551 Static int
552 ural_alloc_tx_list(struct ural_softc *sc)
553 {
554 	struct ural_tx_data *data;
555 	int i, error;
556 
557 	sc->tx_queued = 0;
558 
559 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
560 		data = &sc->tx_data[i];
561 
562 		data->sc = sc;
563 
564 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
565 		if (data->xfer == NULL) {
566 			printf("%s: could not allocate tx xfer\n",
567 			    USBDEVNAME(sc->sc_dev));
568 			error = ENOMEM;
569 			goto fail;
570 		}
571 
572 		data->buf = usbd_alloc_buffer(data->xfer,
573 		    RAL_TX_DESC_SIZE + MCLBYTES);
574 		if (data->buf == NULL) {
575 			printf("%s: could not allocate tx buffer\n",
576 			    USBDEVNAME(sc->sc_dev));
577 			error = ENOMEM;
578 			goto fail;
579 		}
580 	}
581 
582 	return 0;
583 
584 fail:	ural_free_tx_list(sc);
585 	return error;
586 }
587 
588 Static void
589 ural_free_tx_list(struct ural_softc *sc)
590 {
591 	struct ural_tx_data *data;
592 	int i;
593 
594 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
595 		data = &sc->tx_data[i];
596 
597 		if (data->xfer != NULL) {
598 			usbd_free_xfer(data->xfer);
599 			data->xfer = NULL;
600 		}
601 
602 		if (data->ni != NULL) {
603 			ieee80211_free_node(data->ni);
604 			data->ni = NULL;
605 		}
606 	}
607 }
608 
609 Static int
610 ural_alloc_rx_list(struct ural_softc *sc)
611 {
612 	struct ural_rx_data *data;
613 	int i, error;
614 
615 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
616 		data = &sc->rx_data[i];
617 
618 		data->sc = sc;
619 
620 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
621 		if (data->xfer == NULL) {
622 			printf("%s: could not allocate rx xfer\n",
623 			    USBDEVNAME(sc->sc_dev));
624 			error = ENOMEM;
625 			goto fail;
626 		}
627 
628 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
629 			printf("%s: could not allocate rx buffer\n",
630 			    USBDEVNAME(sc->sc_dev));
631 			error = ENOMEM;
632 			goto fail;
633 		}
634 
635 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
636 		if (data->m == NULL) {
637 			printf("%s: could not allocate rx mbuf\n",
638 			    USBDEVNAME(sc->sc_dev));
639 			error = ENOMEM;
640 			goto fail;
641 		}
642 
643 		MCLGET(data->m, M_DONTWAIT);
644 		if (!(data->m->m_flags & M_EXT)) {
645 			printf("%s: could not allocate rx mbuf cluster\n",
646 			    USBDEVNAME(sc->sc_dev));
647 			error = ENOMEM;
648 			goto fail;
649 		}
650 
651 		data->buf = mtod(data->m, uint8_t *);
652 	}
653 
654 	return 0;
655 
656 fail:	ural_free_tx_list(sc);
657 	return error;
658 }
659 
660 Static void
661 ural_free_rx_list(struct ural_softc *sc)
662 {
663 	struct ural_rx_data *data;
664 	int i;
665 
666 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
667 		data = &sc->rx_data[i];
668 
669 		if (data->xfer != NULL) {
670 			usbd_free_xfer(data->xfer);
671 			data->xfer = NULL;
672 		}
673 
674 		if (data->m != NULL) {
675 			m_freem(data->m);
676 			data->m = NULL;
677 		}
678 	}
679 }
680 
681 Static int
682 ural_media_change(struct ifnet *ifp)
683 {
684 	int error;
685 
686 	error = ieee80211_media_change(ifp);
687 	if (error != ENETRESET)
688 		return error;
689 
690 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
691 		ural_init(ifp);
692 
693 	return 0;
694 }
695 
696 /*
697  * This function is called periodically (every 200ms) during scanning to
698  * switch from one channel to another.
699  */
700 Static void
701 ural_next_scan(void *arg)
702 {
703 	struct ural_softc *sc = arg;
704 	struct ieee80211com *ic = &sc->sc_ic;
705 
706 	if (ic->ic_state == IEEE80211_S_SCAN)
707 		ieee80211_next_scan(ic);
708 }
709 
710 Static void
711 ural_task(void *arg)
712 {
713 	struct ural_softc *sc = arg;
714 	struct ieee80211com *ic = &sc->sc_ic;
715 	enum ieee80211_state ostate;
716 	struct mbuf *m;
717 
718 	ostate = ic->ic_state;
719 
720 	switch (sc->sc_state) {
721 	case IEEE80211_S_INIT:
722 		if (ostate == IEEE80211_S_RUN) {
723 			/* abort TSF synchronization */
724 			ural_write(sc, RAL_TXRX_CSR19, 0);
725 
726 			/* force tx led to stop blinking */
727 			ural_write(sc, RAL_MAC_CSR20, 0);
728 		}
729 		break;
730 
731 	case IEEE80211_S_SCAN:
732 		ural_set_chan(sc, ic->ic_curchan);
733 		callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
734 		break;
735 
736 	case IEEE80211_S_AUTH:
737 		ural_set_chan(sc, ic->ic_curchan);
738 		break;
739 
740 	case IEEE80211_S_ASSOC:
741 		ural_set_chan(sc, ic->ic_curchan);
742 		break;
743 
744 	case IEEE80211_S_RUN:
745 		ural_set_chan(sc, ic->ic_curchan);
746 
747 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
748 			ural_set_bssid(sc, ic->ic_bss->ni_bssid);
749 
750 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
751 		    ic->ic_opmode == IEEE80211_M_IBSS) {
752 			m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
753 			if (m == NULL) {
754 				printf("%s: could not allocate beacon\n",
755 				    USBDEVNAME(sc->sc_dev));
756 				return;
757 			}
758 
759 			if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) {
760 				m_freem(m);
761 				printf("%s: could not transmit beacon\n",
762 				    USBDEVNAME(sc->sc_dev));
763 				return;
764 			}
765 
766 			/* beacon is no longer needed */
767 			m_freem(m);
768 		}
769 
770 		/* make tx led blink on tx (controlled by ASIC) */
771 		ural_write(sc, RAL_MAC_CSR20, 1);
772 
773 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
774 			ural_enable_tsf_sync(sc);
775 		break;
776 	}
777 
778 	sc->sc_newstate(ic, sc->sc_state, -1);
779 }
780 
781 Static int
782 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
783 {
784 	struct ural_softc *sc = ic->ic_ifp->if_softc;
785 
786 	usb_rem_task(sc->sc_udev, &sc->sc_task);
787 	callout_stop(&sc->scan_ch);
788 
789 	/* do it in a process context */
790 	sc->sc_state = nstate;
791 	usb_add_task(sc->sc_udev, &sc->sc_task);
792 
793 	return 0;
794 }
795 
796 /* quickly determine if a given rate is CCK or OFDM */
797 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
798 
799 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
800 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
801 #define RAL_SIFS	10
802 
803 Static void
804 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
805 {
806 	struct ural_tx_data *data = priv;
807 	struct ural_softc *sc = data->sc;
808 	struct ifnet *ifp = &sc->sc_if;
809 	int s;
810 
811 	if (status != USBD_NORMAL_COMPLETION) {
812 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
813 			return;
814 
815 		printf("%s: could not transmit buffer: %s\n",
816 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
817 
818 		if (status == USBD_STALLED)
819 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
820 
821 		ifp->if_oerrors++;
822 		return;
823 	}
824 
825 	s = splnet();
826 
827 	m_freem(data->m);
828 	data->m = NULL;
829 	ieee80211_free_node(data->ni);
830 	data->ni = NULL;
831 
832 	sc->tx_queued--;
833 	ifp->if_opackets++;
834 
835 	DPRINTFN(10, ("tx done\n"));
836 
837 	sc->sc_tx_timer = 0;
838 	ifp->if_flags &= ~IFF_OACTIVE;
839 	ural_start(ifp);
840 
841 	splx(s);
842 }
843 
844 Static void
845 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
846 {
847 	struct ural_rx_data *data = priv;
848 	struct ural_softc *sc = data->sc;
849 	struct ieee80211com *ic = &sc->sc_ic;
850 	struct ifnet *ifp = &sc->sc_if;
851 	struct ural_rx_desc *desc;
852 	struct ieee80211_frame_min *wh;
853 	struct ieee80211_node *ni;
854 	struct mbuf *m;
855 	int s, len;
856 
857 	if (status != USBD_NORMAL_COMPLETION) {
858 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
859 			return;
860 
861 		if (status == USBD_STALLED)
862 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
863 		goto skip;
864 	}
865 
866 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
867 
868 	if (len < RAL_RX_DESC_SIZE) {
869 		printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len);
870 		ifp->if_ierrors++;
871 		goto skip;
872 	}
873 
874 	/* rx descriptor is located at the end */
875 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
876 
877 	if (le32toh(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
878 		/*
879 		 * This should not happen since we did not request to receive
880 		 * those frames when we filled RAL_TXRX_CSR2.
881 		 */
882 		DPRINTFN(5, ("PHY or CRC error\n"));
883 		ifp->if_ierrors++;
884 		goto skip;
885 	}
886 
887 	/* finalize mbuf */
888 	m = data->m;
889 	m->m_pkthdr.rcvif = ifp;
890 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
891 	m->m_flags |= M_HASFCS; /* hardware appends FCS */
892 
893 	s = splnet();
894 
895 #if NBPFILTER > 0
896 	if (sc->sc_drvbpf != NULL) {
897 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
898 
899 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
900 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
901 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
902 		tap->wr_antenna = sc->rx_ant;
903 		tap->wr_antsignal = desc->rssi;
904 
905 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
906 	}
907 #endif
908 
909 	wh = mtod(m, struct ieee80211_frame_min *);
910 	ni = ieee80211_find_rxnode(ic, wh);
911 
912 	/* send the frame to the 802.11 layer */
913 	ieee80211_input(ic, m, ni, desc->rssi, 0);
914 
915 	/* node is no longer needed */
916 	ieee80211_free_node(ni);
917 
918 	splx(s);
919 
920 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
921 	if (data->m == NULL) {
922 		printf("%s: could not allocate rx mbuf\n",
923 		    USBDEVNAME(sc->sc_dev));
924 		return;
925 	}
926 
927 	MCLGET(data->m, M_DONTWAIT);
928 	if (!(data->m->m_flags & M_EXT)) {
929 		printf("%s: could not allocate rx mbuf cluster\n",
930 		    USBDEVNAME(sc->sc_dev));
931 		m_freem(data->m);
932 		data->m = NULL;
933 		return;
934 	}
935 
936 	data->buf = mtod(data->m, uint8_t *);
937 
938 	DPRINTFN(15, ("rx done\n"));
939 
940 skip:	/* setup a new transfer */
941 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
942 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
943 	usbd_transfer(xfer);
944 }
945 
946 /*
947  * Return the expected ack rate for a frame transmitted at rate `rate'.
948  * XXX: this should depend on the destination node basic rate set.
949  */
950 Static int
951 ural_ack_rate(int rate)
952 {
953 	switch (rate) {
954 	/* CCK rates */
955 	case 2:
956 		return 2;
957 	case 4:
958 	case 11:
959 	case 22:
960 		return 4;
961 
962 	/* OFDM rates */
963 	case 12:
964 	case 18:
965 		return 12;
966 	case 24:
967 	case 36:
968 		return 24;
969 	case 48:
970 	case 72:
971 	case 96:
972 	case 108:
973 		return 48;
974 	}
975 
976 	/* default to 1Mbps */
977 	return 2;
978 }
979 
980 /*
981  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
982  * The function automatically determines the operating mode depending on the
983  * given rate. `flags' indicates whether short preamble is in use or not.
984  */
985 Static uint16_t
986 ural_txtime(int len, int rate, uint32_t flags)
987 {
988 	uint16_t txtime;
989 	int ceil, dbps;
990 
991 	if (RAL_RATE_IS_OFDM(rate)) {
992 		/*
993 		 * OFDM TXTIME calculation.
994 		 * From IEEE Std 802.11a-1999, pp. 37.
995 		 */
996 		dbps = rate * 2; /* data bits per OFDM symbol */
997 
998 		ceil = (16 + 8 * len + 6) / dbps;
999 		if ((16 + 8 * len + 6) % dbps != 0)
1000 			ceil++;
1001 
1002 		txtime = 16 + 4 + 4 * ceil + 6;
1003 	} else {
1004 		/*
1005 		 * High Rate TXTIME calculation.
1006 		 * From IEEE Std 802.11b-1999, pp. 28.
1007 		 */
1008 		ceil = (8 * len * 2) / rate;
1009 		if ((8 * len * 2) % rate != 0)
1010 			ceil++;
1011 
1012 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1013 			txtime =  72 + 24 + ceil;
1014 		else
1015 			txtime = 144 + 48 + ceil;
1016 	}
1017 
1018 	return txtime;
1019 }
1020 
1021 Static uint8_t
1022 ural_plcp_signal(int rate)
1023 {
1024 	switch (rate) {
1025 	/* CCK rates (returned values are device-dependent) */
1026 	case 2:		return 0x0;
1027 	case 4:		return 0x1;
1028 	case 11:	return 0x2;
1029 	case 22:	return 0x3;
1030 
1031 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1032 	case 12:	return 0xb;
1033 	case 18:	return 0xf;
1034 	case 24:	return 0xa;
1035 	case 36:	return 0xe;
1036 	case 48:	return 0x9;
1037 	case 72:	return 0xd;
1038 	case 96:	return 0x8;
1039 	case 108:	return 0xc;
1040 
1041 	/* unsupported rates (should not get there) */
1042 	default:	return 0xff;
1043 	}
1044 }
1045 
1046 Static void
1047 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1048     uint32_t flags, int len, int rate)
1049 {
1050 	struct ieee80211com *ic = &sc->sc_ic;
1051 	uint16_t plcp_length;
1052 	int remainder;
1053 
1054 	desc->flags = htole32(flags);
1055 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1056 	desc->flags |= htole32(len << 16);
1057 
1058 	if (RAL_RATE_IS_OFDM(rate))
1059 		desc->flags |= htole32(RAL_TX_OFDM);
1060 
1061 	desc->wme = htole16(RAL_LOGCWMAX(5) | RAL_LOGCWMIN(3) | RAL_AIFSN(2));
1062 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1063 
1064 	/*
1065 	 * Fill PLCP fields.
1066 	 */
1067 	desc->plcp_service = 4;
1068 
1069 	len += 4; /* account for FCS */
1070 	if (RAL_RATE_IS_OFDM(rate)) {
1071 		/*
1072 		 * PLCP length field (LENGTH).
1073 		 * From IEEE Std 802.11a-1999, pp. 14.
1074 		 */
1075 		plcp_length = len & 0xfff;
1076 		desc->plcp_length = htole16((plcp_length >> 6) << 8 |
1077 		    (plcp_length & 0x3f));
1078 	} else {
1079 		/*
1080 		 * Long PLCP LENGTH field.
1081 		 * From IEEE Std 802.11b-1999, pp. 16.
1082 		 */
1083 		plcp_length = (8 * len * 2) / rate;
1084 		remainder = (8 * len * 2) % rate;
1085 		if (remainder != 0) {
1086 			if (rate == 22 && (rate - remainder) / 16 != 0)
1087 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1088 			plcp_length++;
1089 		}
1090 		desc->plcp_length = htole16(plcp_length);
1091 	}
1092 
1093 	desc->plcp_signal = ural_plcp_signal(rate);
1094 	if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1095 		desc->plcp_signal |= 0x08;
1096 
1097 	desc->iv = 0;
1098 	desc->eiv = 0;
1099 }
1100 
1101 #define RAL_TX_TIMEOUT	5000
1102 
1103 Static int
1104 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1105 {
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	struct ural_tx_desc *desc;
1108 	usbd_xfer_handle xfer;
1109 	usbd_status error;
1110 	uint8_t cmd = 0;
1111 	uint8_t *buf;
1112 	int xferlen, rate;
1113 
1114 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 4;
1115 
1116 	xfer = usbd_alloc_xfer(sc->sc_udev);
1117 	if (xfer == NULL)
1118 		return ENOMEM;
1119 
1120 	/* xfer length needs to be a multiple of two! */
1121 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1122 
1123 	buf = usbd_alloc_buffer(xfer, xferlen);
1124 	if (buf == NULL) {
1125 		usbd_free_xfer(xfer);
1126 		return ENOMEM;
1127 	}
1128 
1129 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1130 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1131 
1132 	error = usbd_sync_transfer(xfer);
1133 	if (error != 0) {
1134 		usbd_free_xfer(xfer);
1135 		return error;
1136 	}
1137 
1138 	desc = (struct ural_tx_desc *)buf;
1139 
1140 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1141 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1142 	    m0->m_pkthdr.len, rate);
1143 
1144 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1145 	    m0->m_pkthdr.len, rate, xferlen));
1146 
1147 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1148 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1149 
1150 	error = usbd_sync_transfer(xfer);
1151 	usbd_free_xfer(xfer);
1152 
1153 	return error;
1154 }
1155 
1156 Static int
1157 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1158 {
1159 	struct ieee80211com *ic = &sc->sc_ic;
1160 	struct ural_tx_desc *desc;
1161 	struct ural_tx_data *data;
1162 	struct ieee80211_frame *wh;
1163 	uint32_t flags = 0;
1164 	uint16_t dur;
1165 	usbd_status error;
1166 	int xferlen, rate;
1167 
1168 	data = &sc->tx_data[0];
1169 	desc = (struct ural_tx_desc *)data->buf;
1170 
1171 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 4;
1172 	data->m = m0;
1173 	data->ni = ni;
1174 
1175 	wh = mtod(m0, struct ieee80211_frame *);
1176 
1177 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1178 		flags |= RAL_TX_ACK;
1179 
1180 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1181 		*(uint16_t *)wh->i_dur = htole16(dur);
1182 
1183 		/* tell hardware to add timestamp for probe responses */
1184 		if ((wh->i_fc[0] &
1185 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1186 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1187 			flags |= RAL_TX_TIMESTAMP;
1188 	}
1189 
1190 #if NBPFILTER > 0
1191 	if (sc->sc_drvbpf != NULL) {
1192 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1193 
1194 		tap->wt_flags = 0;
1195 		tap->wt_rate = rate;
1196 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1197 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1198 		tap->wt_antenna = sc->tx_ant;
1199 
1200 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1201 	}
1202 #endif
1203 
1204 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1205 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1206 
1207 	/* xfer length needs to be a multiple of two! */
1208 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1209 
1210 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1211 	    m0->m_pkthdr.len, rate, xferlen));
1212 
1213 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1214 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1215 
1216 	error = usbd_transfer(data->xfer);
1217 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1218 		m_freem(m0);
1219 		return error;
1220 	}
1221 
1222 	sc->tx_queued++;
1223 
1224 	return 0;
1225 }
1226 
1227 Static int
1228 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1229 {
1230 	struct ieee80211com *ic = &sc->sc_ic;
1231 	struct ieee80211_rateset *rs;
1232 	struct ural_tx_desc *desc;
1233 	struct ural_tx_data *data;
1234 	struct ieee80211_frame *wh;
1235 	struct ieee80211_key *k;
1236 	uint32_t flags = 0;
1237 	uint16_t dur;
1238 	usbd_status error;
1239 	int xferlen, rate;
1240 
1241 	wh = mtod(m0, struct ieee80211_frame *);
1242 
1243 	/* XXX this should be reworked! */
1244 	if (ic->ic_fixed_rate != -1) {
1245 		if (ic->ic_curmode != IEEE80211_MODE_AUTO)
1246 			rs = &ic->ic_sup_rates[ic->ic_curmode];
1247 		else
1248 			rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
1249 
1250 		rate = rs->rs_rates[ic->ic_fixed_rate];
1251 	} else {
1252 		rs = &ni->ni_rates;
1253 		rate = rs->rs_rates[ni->ni_txrate];
1254 	}
1255 	rate &= IEEE80211_RATE_VAL;
1256 
1257 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1258 		k = ieee80211_crypto_encap(ic, ni, m0);
1259 		if (k == NULL) {
1260 			m_freem(m0);
1261 			return ENOBUFS;
1262 		}
1263 
1264 		/* packet header may have moved, reset our local pointer */
1265 		wh = mtod(m0, struct ieee80211_frame *);
1266 	}
1267 
1268 #if NBPFILTER > 0
1269 	if (sc->sc_drvbpf != NULL) {
1270 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1271 
1272 		tap->wt_flags = 0;
1273 		tap->wt_rate = rate;
1274 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1275 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1276 		tap->wt_antenna = sc->tx_ant;
1277 
1278 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1279 	}
1280 #endif
1281 
1282 	data = &sc->tx_data[0];
1283 	desc = (struct ural_tx_desc *)data->buf;
1284 
1285 	data->m = m0;
1286 	data->ni = ni;
1287 
1288 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1289 		flags |= RAL_TX_ACK;
1290 		flags |= RAL_TX_RETRY(7);
1291 
1292 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(rate),
1293 		    ic->ic_flags) + RAL_SIFS;
1294 		*(uint16_t *)wh->i_dur = htole16(dur);
1295 	}
1296 
1297 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1298 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1299 
1300 	/* xfer length needs to be a multiple of two! */
1301 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1302 
1303 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1304 	    m0->m_pkthdr.len, rate, xferlen));
1305 
1306 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1307 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1308 
1309 	error = usbd_transfer(data->xfer);
1310 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1311 		m_freem(m0);
1312 		return error;
1313 	}
1314 
1315 	sc->tx_queued++;
1316 
1317 	return 0;
1318 }
1319 
1320 Static void
1321 ural_start(struct ifnet *ifp)
1322 {
1323 	struct ural_softc *sc = ifp->if_softc;
1324 	struct ieee80211com *ic = &sc->sc_ic;
1325 	struct ether_header *eh;
1326 	struct ieee80211_node *ni;
1327 	struct mbuf *m0;
1328 
1329 	for (;;) {
1330 		IF_POLL(&ic->ic_mgtq, m0);
1331 		if (m0 != NULL) {
1332 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1333 				ifp->if_flags |= IFF_OACTIVE;
1334 				break;
1335 			}
1336 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1337 
1338 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1339 			m0->m_pkthdr.rcvif = NULL;
1340 #if NBPFILTER > 0
1341 			if (ic->ic_rawbpf != NULL)
1342 				bpf_mtap(ic->ic_rawbpf, m0);
1343 #endif
1344 			if (ural_tx_mgt(sc, m0, ni) != 0)
1345 				break;
1346 
1347 		} else {
1348 			if (ic->ic_state != IEEE80211_S_RUN)
1349 				break;
1350 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1351 			if (m0 == NULL)
1352 				break;
1353 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1354 				IF_PREPEND(&ifp->if_snd, m0);
1355 				ifp->if_flags |= IFF_OACTIVE;
1356 				break;
1357 			}
1358 
1359 			if (m0->m_len < sizeof (struct ether_header) &&
1360 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1361 				continue;
1362 
1363 			eh = mtod(m0, struct ether_header *);
1364 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1365 			if (ni == NULL) {
1366 				m_freem(m0);
1367 				continue;
1368 			}
1369 #if NBPFILTER > 0
1370 			if (ifp->if_bpf != NULL)
1371 				bpf_mtap(ifp->if_bpf, m0);
1372 #endif
1373 			m0 = ieee80211_encap(ic, m0, ni);
1374 			if (m0 == NULL) {
1375 				ieee80211_free_node(ni);
1376 				continue;
1377 			}
1378 #if NBPFILTER > 0
1379 			if (ic->ic_rawbpf != NULL)
1380 				bpf_mtap(ic->ic_rawbpf, m0);
1381 #endif
1382 			if (ural_tx_data(sc, m0, ni) != 0) {
1383 				ieee80211_free_node(ni);
1384 				ifp->if_oerrors++;
1385 				break;
1386 			}
1387 		}
1388 
1389 		sc->sc_tx_timer = 5;
1390 		ifp->if_timer = 1;
1391 	}
1392 }
1393 
1394 Static void
1395 ural_watchdog(struct ifnet *ifp)
1396 {
1397 	struct ural_softc *sc = ifp->if_softc;
1398 	struct ieee80211com *ic = &sc->sc_ic;
1399 
1400 	ifp->if_timer = 0;
1401 
1402 	if (sc->sc_tx_timer > 0) {
1403 		if (--sc->sc_tx_timer == 0) {
1404 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1405 			/*ural_init(ifp); XXX needs a process context! */
1406 			ifp->if_oerrors++;
1407 			return;
1408 		}
1409 		ifp->if_timer = 1;
1410 	}
1411 
1412 	ieee80211_watchdog(ic);
1413 }
1414 
1415 Static int
1416 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1417 {
1418 	struct ural_softc *sc = ifp->if_softc;
1419 	struct ieee80211com *ic = &sc->sc_ic;
1420 	struct ifreq *ifr;
1421 	int s, error = 0;
1422 
1423 	s = splnet();
1424 
1425 	switch (cmd) {
1426 	case SIOCSIFFLAGS:
1427 		if (ifp->if_flags & IFF_UP) {
1428 			if (ifp->if_flags & IFF_RUNNING)
1429 				ural_update_promisc(sc);
1430 			else
1431 				ural_init(ifp);
1432 		} else {
1433 			if (ifp->if_flags & IFF_RUNNING)
1434 				ural_stop(ifp, 1);
1435 		}
1436 		break;
1437 
1438 	case SIOCADDMULTI:
1439 	case SIOCDELMULTI:
1440 		ifr = (struct ifreq *)data;
1441 		error = (cmd == SIOCADDMULTI) ?
1442 		    ether_addmulti(ifr, &sc->sc_ec) :
1443 		    ether_delmulti(ifr, &sc->sc_ec);
1444 
1445 		if (error == ENETRESET)
1446 			error = 0;
1447 		break;
1448 
1449 	case SIOCS80211CHANNEL:
1450 		/*
1451 		 * This allows for fast channel switching in monitor mode
1452 		 * (used by kismet). In IBSS mode, we must explicitly reset
1453 		 * the interface to generate a new beacon frame.
1454 		 */
1455 		error = ieee80211_ioctl(ic, cmd, data);
1456 		if (error == ENETRESET &&
1457 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1458 			ural_set_chan(sc, ic->ic_ibss_chan);
1459 			error = 0;
1460 		}
1461 		break;
1462 
1463 	default:
1464 		error = ieee80211_ioctl(ic, cmd, data);
1465 	}
1466 
1467 	if (error == ENETRESET) {
1468 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1469 		    (IFF_UP | IFF_RUNNING))
1470 			ural_init(ifp);
1471 		error = 0;
1472 	}
1473 
1474 	splx(s);
1475 
1476 	return error;
1477 }
1478 
1479 Static void
1480 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1481 {
1482 	usb_device_request_t req;
1483 	usbd_status error;
1484 
1485 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1486 	req.bRequest = RAL_READ_EEPROM;
1487 	USETW(req.wValue, 0);
1488 	USETW(req.wIndex, addr);
1489 	USETW(req.wLength, len);
1490 
1491 	error = usbd_do_request(sc->sc_udev, &req, buf);
1492 	if (error != 0) {
1493 		printf("%s: could not read EEPROM: %s\n",
1494 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1495 	}
1496 }
1497 
1498 Static uint16_t
1499 ural_read(struct ural_softc *sc, uint16_t reg)
1500 {
1501 	usb_device_request_t req;
1502 	usbd_status error;
1503 	uint16_t val;
1504 
1505 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1506 	req.bRequest = RAL_READ_MAC;
1507 	USETW(req.wValue, 0);
1508 	USETW(req.wIndex, reg);
1509 	USETW(req.wLength, sizeof (uint16_t));
1510 
1511 	error = usbd_do_request(sc->sc_udev, &req, &val);
1512 	if (error != 0) {
1513 		printf("%s: could not read MAC register: %s\n",
1514 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1515 		return 0;
1516 	}
1517 
1518 	return le16toh(val);
1519 }
1520 
1521 Static void
1522 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1523 {
1524 	usb_device_request_t req;
1525 	usbd_status error;
1526 
1527 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1528 	req.bRequest = RAL_READ_MULTI_MAC;
1529 	USETW(req.wValue, 0);
1530 	USETW(req.wIndex, reg);
1531 	USETW(req.wLength, len);
1532 
1533 	error = usbd_do_request(sc->sc_udev, &req, buf);
1534 	if (error != 0) {
1535 		printf("%s: could not read MAC register: %s\n",
1536 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1537 		return;
1538 	}
1539 }
1540 
1541 Static void
1542 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1543 {
1544 	usb_device_request_t req;
1545 	usbd_status error;
1546 
1547 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1548 	req.bRequest = RAL_WRITE_MAC;
1549 	USETW(req.wValue, val);
1550 	USETW(req.wIndex, reg);
1551 	USETW(req.wLength, 0);
1552 
1553 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1554 	if (error != 0) {
1555 		printf("%s: could not write MAC register: %s\n",
1556 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1557 	}
1558 }
1559 
1560 Static void
1561 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1562 {
1563 	usb_device_request_t req;
1564 	usbd_status error;
1565 
1566 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1567 	req.bRequest = RAL_WRITE_MULTI_MAC;
1568 	USETW(req.wValue, 0);
1569 	USETW(req.wIndex, reg);
1570 	USETW(req.wLength, len);
1571 
1572 	error = usbd_do_request(sc->sc_udev, &req, buf);
1573 	if (error != 0) {
1574 		printf("%s: could not write MAC register: %s\n",
1575 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1576 	}
1577 }
1578 
1579 Static void
1580 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1581 {
1582 	uint16_t tmp;
1583 	int ntries;
1584 
1585 	for (ntries = 0; ntries < 5; ntries++) {
1586 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1587 			break;
1588 	}
1589 	if (ntries == 5) {
1590 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1591 		return;
1592 	}
1593 
1594 	tmp = reg << 8 | val;
1595 	ural_write(sc, RAL_PHY_CSR7, tmp);
1596 }
1597 
1598 Static uint8_t
1599 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1600 {
1601 	uint16_t val;
1602 	int ntries;
1603 
1604 	val = RAL_BBP_WRITE | reg << 8;
1605 	ural_write(sc, RAL_PHY_CSR7, val);
1606 
1607 	for (ntries = 0; ntries < 5; ntries++) {
1608 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1609 			break;
1610 	}
1611 	if (ntries == 5) {
1612 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1613 		return 0;
1614 	}
1615 
1616 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1617 }
1618 
1619 Static void
1620 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1621 {
1622 	uint32_t tmp;
1623 	int ntries;
1624 
1625 	for (ntries = 0; ntries < 5; ntries++) {
1626 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1627 			break;
1628 	}
1629 	if (ntries == 5) {
1630 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1631 		return;
1632 	}
1633 
1634 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1635 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1636 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1637 
1638 	/* remember last written value in sc */
1639 	sc->rf_regs[reg] = val;
1640 
1641 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1642 }
1643 
1644 Static void
1645 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1646 {
1647 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1648 	struct ieee80211com *ic = &sc->sc_ic;
1649 	uint8_t power, tmp;
1650 	u_int i, chan;
1651 
1652 	chan = ieee80211_chan2ieee(ic, c);
1653 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1654 		return;
1655 
1656 	if (IEEE80211_IS_CHAN_2GHZ(c))
1657 		power = min(sc->txpow[chan - 1], 31);
1658 	else
1659 		power = 31;
1660 
1661 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1662 
1663 	switch (sc->rf_rev) {
1664 	case RAL_RF_2522:
1665 		ural_rf_write(sc, RAL_RF1, 0x00814);
1666 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1667 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1668 		break;
1669 
1670 	case RAL_RF_2523:
1671 		ural_rf_write(sc, RAL_RF1, 0x08804);
1672 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1673 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1674 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1675 		break;
1676 
1677 	case RAL_RF_2524:
1678 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1679 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1680 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1681 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1682 		break;
1683 
1684 	case RAL_RF_2525:
1685 		ural_rf_write(sc, RAL_RF1, 0x08808);
1686 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1687 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1688 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1689 
1690 		ural_rf_write(sc, RAL_RF1, 0x08808);
1691 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1692 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1693 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1694 		break;
1695 
1696 	case RAL_RF_2525E:
1697 		ural_rf_write(sc, RAL_RF1, 0x08808);
1698 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1699 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1700 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1701 		break;
1702 
1703 	case RAL_RF_2526:
1704 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1705 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1706 		ural_rf_write(sc, RAL_RF1, 0x08804);
1707 
1708 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1709 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1710 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1711 		break;
1712 
1713 	/* dual-band RF */
1714 	case RAL_RF_5222:
1715 		for (i = 0; i < N(ural_rf5222); i++)
1716 			if (ural_rf5222[i].chan == chan)
1717 				break;
1718 
1719 		if (i < N(ural_rf5222)) {
1720 			ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1721 			ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1722 			ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1723 			ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1724 		}
1725 		break;
1726 	}
1727 
1728 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1729 	    ic->ic_state != IEEE80211_S_SCAN) {
1730 		/* set Japan filter bit for channel 14 */
1731 		tmp = ural_bbp_read(sc, 70);
1732 
1733 		tmp &= ~RAL_JAPAN_FILTER;
1734 		if (chan == 14)
1735 			tmp |= RAL_JAPAN_FILTER;
1736 
1737 		ural_bbp_write(sc, 70, tmp);
1738 
1739 		/* clear CRC errors */
1740 		ural_read(sc, RAL_STA_CSR0);
1741 
1742 		DELAY(1000); /* RF needs a 1ms delay here */
1743 		ural_disable_rf_tune(sc);
1744 	}
1745 #undef N
1746 }
1747 
1748 /*
1749  * Disable RF auto-tuning.
1750  */
1751 Static void
1752 ural_disable_rf_tune(struct ural_softc *sc)
1753 {
1754 	uint32_t tmp;
1755 
1756 	if (sc->rf_rev != RAL_RF_2523) {
1757 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1758 		ural_rf_write(sc, RAL_RF1, tmp);
1759 	}
1760 
1761 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1762 	ural_rf_write(sc, RAL_RF3, tmp);
1763 
1764 	DPRINTFN(2, ("disabling RF autotune\n"));
1765 }
1766 
1767 /*
1768  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1769  * synchronization.
1770  */
1771 Static void
1772 ural_enable_tsf_sync(struct ural_softc *sc)
1773 {
1774 	struct ieee80211com *ic = &sc->sc_ic;
1775 	uint16_t logcwmin, preload, tmp;
1776 
1777 	/* first, disable TSF synchronization */
1778 	ural_write(sc, RAL_TXRX_CSR19, 0);
1779 
1780 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1781 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1782 
1783 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1784 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1785 	tmp = logcwmin << 12 | preload;
1786 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1787 
1788 	/* finally, enable TSF synchronization */
1789 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1790 	if (ic->ic_opmode == IEEE80211_M_STA)
1791 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1792 	else
1793 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1794 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1795 
1796 	DPRINTF(("enabling TSF synchronization\n"));
1797 }
1798 
1799 Static void
1800 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1801 {
1802 	uint16_t tmp;
1803 
1804 	tmp = bssid[0] | bssid[1] << 8;
1805 	ural_write(sc, RAL_MAC_CSR5, tmp);
1806 
1807 	tmp = bssid[2] | bssid[3] << 8;
1808 	ural_write(sc, RAL_MAC_CSR6, tmp);
1809 
1810 	tmp = bssid[4] | bssid[5] << 8;
1811 	ural_write(sc, RAL_MAC_CSR7, tmp);
1812 
1813 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1814 }
1815 
1816 Static void
1817 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1818 {
1819 	uint16_t tmp;
1820 
1821 	tmp = addr[0] | addr[1] << 8;
1822 	ural_write(sc, RAL_MAC_CSR2, tmp);
1823 
1824 	tmp = addr[2] | addr[3] << 8;
1825 	ural_write(sc, RAL_MAC_CSR3, tmp);
1826 
1827 	tmp = addr[4] | addr[5] << 8;
1828 	ural_write(sc, RAL_MAC_CSR4, tmp);
1829 
1830 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1831 }
1832 
1833 Static void
1834 ural_update_promisc(struct ural_softc *sc)
1835 {
1836 	struct ifnet *ifp = &sc->sc_if;
1837 	uint16_t tmp;
1838 
1839 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1840 
1841 	tmp &= ~RAL_DROP_NOT_TO_ME;
1842 	if (!(ifp->if_flags & IFF_PROMISC))
1843 		tmp |= RAL_DROP_NOT_TO_ME;
1844 
1845 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1846 
1847 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1848 	    "entering" : "leaving"));
1849 }
1850 
1851 Static const char *
1852 ural_get_rf(int rev)
1853 {
1854 	switch (rev) {
1855 	case RAL_RF_2522:	return "RT2522";
1856 	case RAL_RF_2523:	return "RT2523";
1857 	case RAL_RF_2524:	return "RT2524";
1858 	case RAL_RF_2525:	return "RT2525";
1859 	case RAL_RF_2525E:	return "RT2525e";
1860 	case RAL_RF_2526:	return "RT2526";
1861 	case RAL_RF_5222:	return "RT5222";
1862 	default:		return "unknown";
1863 	}
1864 }
1865 
1866 Static void
1867 ural_read_eeprom(struct ural_softc *sc)
1868 {
1869 	struct ieee80211com *ic = &sc->sc_ic;
1870 	uint16_t val;
1871 
1872 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1873 	val = le16toh(val);
1874 	sc->rf_rev =   (val >> 11) & 0x7;
1875 	sc->hw_radio = (val >> 10) & 0x1;
1876 	sc->led_mode = (val >> 6)  & 0x7;
1877 	sc->rx_ant =   (val >> 4)  & 0x3;
1878 	sc->tx_ant =   (val >> 2)  & 0x3;
1879 	sc->nb_ant =   val & 0x3;
1880 
1881 	/* read MAC address */
1882 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1883 
1884 	/* read default values for BBP registers */
1885 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1886 
1887 	/* read Tx power for all b/g channels */
1888 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1889 }
1890 
1891 Static int
1892 ural_bbp_init(struct ural_softc *sc)
1893 {
1894 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1895 	int i, ntries;
1896 
1897 	/* wait for BBP to be ready */
1898 	for (ntries = 0; ntries < 100; ntries++) {
1899 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1900 			break;
1901 		DELAY(1000);
1902 	}
1903 	if (ntries == 100) {
1904 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
1905 		return EIO;
1906 	}
1907 
1908 	/* initialize BBP registers to default values */
1909 	for (i = 0; i < N(ural_def_bbp); i++)
1910 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1911 
1912 #if 0
1913 	/* initialize BBP registers to values stored in EEPROM */
1914 	for (i = 0; i < 16; i++) {
1915 		if (sc->bbp_prom[i].reg == 0xff)
1916 			continue;
1917 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1918 	}
1919 #endif
1920 
1921 	return 0;
1922 #undef N
1923 }
1924 
1925 Static void
1926 ural_set_txantenna(struct ural_softc *sc, int antenna)
1927 {
1928 	uint16_t tmp;
1929 	uint8_t tx;
1930 
1931 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1932 	if (antenna == 1)
1933 		tx |= RAL_BBP_ANTA;
1934 	else if (antenna == 2)
1935 		tx |= RAL_BBP_ANTB;
1936 	else
1937 		tx |= RAL_BBP_DIVERSITY;
1938 
1939 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1940 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1941 	    sc->rf_rev == RAL_RF_5222)
1942 		tx |= RAL_BBP_FLIPIQ;
1943 
1944 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1945 
1946 	/* update flags in PHY_CSR5 and PHY_CSR6 too */
1947 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1948 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1949 
1950 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1951 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1952 }
1953 
1954 Static void
1955 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1956 {
1957 	uint8_t rx;
1958 
1959 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1960 	if (antenna == 1)
1961 		rx |= RAL_BBP_ANTA;
1962 	else if (antenna == 2)
1963 		rx |= RAL_BBP_ANTB;
1964 	else
1965 		rx |= RAL_BBP_DIVERSITY;
1966 
1967 	/* need to force no I/Q flip for RF 2525e and 2526 */
1968 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
1969 		rx &= ~RAL_BBP_FLIPIQ;
1970 
1971 	ural_bbp_write(sc, RAL_BBP_RX, rx);
1972 }
1973 
1974 Static int
1975 ural_init(struct ifnet *ifp)
1976 {
1977 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1978 	struct ural_softc *sc = ifp->if_softc;
1979 	struct ieee80211com *ic = &sc->sc_ic;
1980 	struct ieee80211_key *wk;
1981 	struct ural_rx_data *data;
1982 	uint16_t sta_tmp[11], tmp;
1983 	usbd_status error;
1984 	int i, ntries;
1985 
1986 	ural_stop(ifp, 0);
1987 
1988 	/* initialize MAC registers to default values */
1989 	for (i = 0; i < N(ural_def_mac); i++)
1990 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
1991 
1992 	/* wait for BBP and RF to wake up (this can take a long time!) */
1993 	for (ntries = 0; ntries < 100; ntries++) {
1994 		tmp = ural_read(sc, RAL_MAC_CSR17);
1995 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
1996 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
1997 			break;
1998 		DELAY(1000);
1999 	}
2000 	if (ntries == 100) {
2001 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2002 		    USBDEVNAME(sc->sc_dev));
2003 		error = EIO;
2004 		goto fail;
2005 	}
2006 
2007 	/* we're ready! */
2008 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2009 
2010 	/* set supported basic rates (1, 2, 6, 12, 24) */
2011 	ural_write(sc, RAL_TXRX_CSR11, 0x153);
2012 
2013 	error = ural_bbp_init(sc);
2014 	if (error != 0)
2015 		goto fail;
2016 
2017 	/* set default BSS channel */
2018 	ic->ic_curchan = ic->ic_ibss_chan;
2019 	ural_set_chan(sc, ic->ic_curchan);
2020 
2021 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2022 	ural_read_multi(sc, RAL_STA_CSR0, sta_tmp, sizeof sta_tmp);
2023 
2024 	ural_set_txantenna(sc, 1);
2025 	ural_set_rxantenna(sc, 1);
2026 
2027 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2028 	ural_set_macaddr(sc, ic->ic_myaddr);
2029 
2030 	/*
2031 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2032 	 */
2033 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2034 		wk = &ic->ic_nw_keys[i];
2035 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2036 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2037 	}
2038 
2039 	/*
2040 	 * Open Tx and Rx USB bulk pipes.
2041 	 */
2042 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2043 	    &sc->sc_tx_pipeh);
2044 	if (error != 0) {
2045 		printf("%s: could not open Tx pipe: %s\n",
2046 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2047 		goto fail;
2048 	}
2049 
2050 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2051 	    &sc->sc_rx_pipeh);
2052 	if (error != 0) {
2053 		printf("%s: could not open Rx pipe: %s\n",
2054 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2055 		goto fail;
2056 	}
2057 
2058 	/*
2059 	 * Allocate Tx and Rx xfer queues.
2060 	 */
2061 	error = ural_alloc_tx_list(sc);
2062 	if (error != 0) {
2063 		printf("%s: could not allocate Tx list\n",
2064 		    USBDEVNAME(sc->sc_dev));
2065 		goto fail;
2066 	}
2067 
2068 	error = ural_alloc_rx_list(sc);
2069 	if (error != 0) {
2070 		printf("%s: could not allocate Rx list\n",
2071 		    USBDEVNAME(sc->sc_dev));
2072 		goto fail;
2073 	}
2074 
2075 	/*
2076 	 * Start up the receive pipe.
2077 	 */
2078 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2079 		data = &sc->rx_data[i];
2080 
2081 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2082 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2083 		usbd_transfer(data->xfer);
2084 	}
2085 
2086 	/* kick Rx */
2087 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2088 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2089 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2090 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2091 			tmp |= RAL_DROP_TODS;
2092 		if (!(ifp->if_flags & IFF_PROMISC))
2093 			tmp |= RAL_DROP_NOT_TO_ME;
2094 	}
2095 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2096 
2097 	ifp->if_flags &= ~IFF_OACTIVE;
2098 	ifp->if_flags |= IFF_RUNNING;
2099 
2100 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2101 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2102 	else
2103 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2104 
2105 	return 0;
2106 
2107 fail:	ural_stop(ifp, 1);
2108 	return error;
2109 #undef N
2110 }
2111 
2112 Static void
2113 ural_stop(struct ifnet *ifp, int disable)
2114 {
2115 	struct ural_softc *sc = ifp->if_softc;
2116 	struct ieee80211com *ic = &sc->sc_ic;
2117 
2118 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2119 
2120 	sc->sc_tx_timer = 0;
2121 	ifp->if_timer = 0;
2122 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2123 
2124 	/* disable Rx */
2125 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2126 
2127 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2128 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2129 	ural_write(sc, RAL_MAC_CSR1, 0);
2130 
2131 	if (sc->sc_rx_pipeh != NULL) {
2132 		usbd_abort_pipe(sc->sc_rx_pipeh);
2133 		usbd_close_pipe(sc->sc_rx_pipeh);
2134 		sc->sc_rx_pipeh = NULL;
2135 	}
2136 
2137 	if (sc->sc_tx_pipeh != NULL) {
2138 		usbd_abort_pipe(sc->sc_tx_pipeh);
2139 		usbd_close_pipe(sc->sc_tx_pipeh);
2140 		sc->sc_tx_pipeh = NULL;
2141 	}
2142 
2143 	ural_free_rx_list(sc);
2144 	ural_free_tx_list(sc);
2145 }
2146 
2147 int
2148 ural_activate(device_ptr_t self, enum devact act)
2149 {
2150 	struct ural_softc *sc = (struct ural_softc *)self;
2151 
2152 	switch (act) {
2153 	case DVACT_ACTIVATE:
2154 		return EOPNOTSUPP;
2155 		break;
2156 
2157 	case DVACT_DEACTIVATE:
2158 		if_deactivate(&sc->sc_if);
2159 		break;
2160 	}
2161 
2162 	return 0;
2163 }
2164