xref: /netbsd-src/sys/dev/usb/if_ural.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: if_ural.c,v 1.13 2006/10/12 01:31:59 christos Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.13 2006/10/12 01:31:59 christos Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72 
73 #ifdef USB_DEBUG
74 #define URAL_DEBUG
75 #endif
76 
77 #ifdef URAL_DEBUG
78 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
79 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
80 int ural_debug = 0;
81 #else
82 #define DPRINTF(x)
83 #define DPRINTFN(n, x)
84 #endif
85 
86 /* various supported device vendors/products */
87 static const struct usb_devno ural_devs[] = {
88 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
90 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
91 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
92 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
93 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
94 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
95 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
96 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
98 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
101 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
102 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
103 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
105 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
106 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
107 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
108 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
109 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
110 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
111 };
112 
113 Static int		ural_alloc_tx_list(struct ural_softc *);
114 Static void		ural_free_tx_list(struct ural_softc *);
115 Static int		ural_alloc_rx_list(struct ural_softc *);
116 Static void		ural_free_rx_list(struct ural_softc *);
117 Static int		ural_media_change(struct ifnet *);
118 Static void		ural_next_scan(void *);
119 Static void		ural_task(void *);
120 Static int		ural_newstate(struct ieee80211com *,
121 			    enum ieee80211_state, int);
122 Static int		ural_rxrate(struct ural_rx_desc *);
123 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
124 			    usbd_status);
125 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
126 			    usbd_status);
127 Static int		ural_ack_rate(struct ieee80211com *, int);
128 Static uint16_t		ural_txtime(int, int, uint32_t);
129 Static uint8_t		ural_plcp_signal(int);
130 Static void		ural_setup_tx_desc(struct ural_softc *,
131 			    struct ural_tx_desc *, uint32_t, int, int);
132 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
133 			    struct ieee80211_node *);
134 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
135 			    struct ieee80211_node *);
136 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
137 			    struct ieee80211_node *);
138 Static void		ural_start(struct ifnet *);
139 Static void		ural_watchdog(struct ifnet *);
140 Static int		ural_reset(struct ifnet *);
141 Static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
142 Static void		ural_set_testmode(struct ural_softc *);
143 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
144 			    int);
145 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
146 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
147 			    int);
148 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
149 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
150 			    int);
151 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
152 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
153 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
154 Static void		ural_set_chan(struct ural_softc *,
155 			    struct ieee80211_channel *);
156 Static void		ural_disable_rf_tune(struct ural_softc *);
157 Static void		ural_enable_tsf_sync(struct ural_softc *);
158 Static void		ural_update_slot(struct ifnet *);
159 Static void		ural_set_txpreamble(struct ural_softc *);
160 Static void		ural_set_basicrates(struct ural_softc *);
161 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
162 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
163 Static void		ural_update_promisc(struct ural_softc *);
164 Static const char	*ural_get_rf(int);
165 Static void		ural_read_eeprom(struct ural_softc *);
166 Static int		ural_bbp_init(struct ural_softc *);
167 Static void		ural_set_txantenna(struct ural_softc *, int);
168 Static void		ural_set_rxantenna(struct ural_softc *, int);
169 Static int		ural_init(struct ifnet *);
170 Static void		ural_stop(struct ifnet *, int);
171 Static void		ural_amrr_start(struct ural_softc *,
172 			    struct ieee80211_node *);
173 Static void		ural_amrr_timeout(void *);
174 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
175 			    usbd_status status);
176 Static void		ural_ratectl(struct ural_amrr *,
177 			    struct ieee80211_node *);
178 
179 /*
180  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
181  */
182 static const struct ieee80211_rateset ural_rateset_11a =
183 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
184 
185 static const struct ieee80211_rateset ural_rateset_11b =
186 	{ 4, { 2, 4, 11, 22 } };
187 
188 static const struct ieee80211_rateset ural_rateset_11g =
189 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
190 
191 /*
192  * Default values for MAC registers; values taken from the reference driver.
193  */
194 static const struct {
195 	uint16_t	reg;
196 	uint16_t	val;
197 } ural_def_mac[] = {
198 	{ RAL_TXRX_CSR5,  0x8c8d },
199 	{ RAL_TXRX_CSR6,  0x8b8a },
200 	{ RAL_TXRX_CSR7,  0x8687 },
201 	{ RAL_TXRX_CSR8,  0x0085 },
202 	{ RAL_MAC_CSR13,  0x1111 },
203 	{ RAL_MAC_CSR14,  0x1e11 },
204 	{ RAL_TXRX_CSR21, 0xe78f },
205 	{ RAL_MAC_CSR9,   0xff1d },
206 	{ RAL_MAC_CSR11,  0x0002 },
207 	{ RAL_MAC_CSR22,  0x0053 },
208 	{ RAL_MAC_CSR15,  0x0000 },
209 	{ RAL_MAC_CSR8,   0x0780 },
210 	{ RAL_TXRX_CSR19, 0x0000 },
211 	{ RAL_TXRX_CSR18, 0x005a },
212 	{ RAL_PHY_CSR2,   0x0000 },
213 	{ RAL_TXRX_CSR0,  0x1ec0 },
214 	{ RAL_PHY_CSR4,   0x000f }
215 };
216 
217 /*
218  * Default values for BBP registers; values taken from the reference driver.
219  */
220 static const struct {
221 	uint8_t	reg;
222 	uint8_t	val;
223 } ural_def_bbp[] = {
224 	{  3, 0x02 },
225 	{  4, 0x19 },
226 	{ 14, 0x1c },
227 	{ 15, 0x30 },
228 	{ 16, 0xac },
229 	{ 17, 0x48 },
230 	{ 18, 0x18 },
231 	{ 19, 0xff },
232 	{ 20, 0x1e },
233 	{ 21, 0x08 },
234 	{ 22, 0x08 },
235 	{ 23, 0x08 },
236 	{ 24, 0x80 },
237 	{ 25, 0x50 },
238 	{ 26, 0x08 },
239 	{ 27, 0x23 },
240 	{ 30, 0x10 },
241 	{ 31, 0x2b },
242 	{ 32, 0xb9 },
243 	{ 34, 0x12 },
244 	{ 35, 0x50 },
245 	{ 39, 0xc4 },
246 	{ 40, 0x02 },
247 	{ 41, 0x60 },
248 	{ 53, 0x10 },
249 	{ 54, 0x18 },
250 	{ 56, 0x08 },
251 	{ 57, 0x10 },
252 	{ 58, 0x08 },
253 	{ 61, 0x60 },
254 	{ 62, 0x10 },
255 	{ 75, 0xff }
256 };
257 
258 /*
259  * Default values for RF register R2 indexed by channel numbers.
260  */
261 static const uint32_t ural_rf2522_r2[] = {
262 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
263 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
264 };
265 
266 static const uint32_t ural_rf2523_r2[] = {
267 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
268 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
269 };
270 
271 static const uint32_t ural_rf2524_r2[] = {
272 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275 
276 static const uint32_t ural_rf2525_r2[] = {
277 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
278 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
279 };
280 
281 static const uint32_t ural_rf2525_hi_r2[] = {
282 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
283 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
284 };
285 
286 static const uint32_t ural_rf2525e_r2[] = {
287 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
288 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
289 };
290 
291 static const uint32_t ural_rf2526_hi_r2[] = {
292 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
293 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
294 };
295 
296 static const uint32_t ural_rf2526_r2[] = {
297 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
298 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
299 };
300 
301 /*
302  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
303  * values taken from the reference driver.
304  */
305 static const struct {
306 	uint8_t		chan;
307 	uint32_t	r1;
308 	uint32_t	r2;
309 	uint32_t	r4;
310 } ural_rf5222[] = {
311 	{   1, 0x08808, 0x0044d, 0x00282 },
312 	{   2, 0x08808, 0x0044e, 0x00282 },
313 	{   3, 0x08808, 0x0044f, 0x00282 },
314 	{   4, 0x08808, 0x00460, 0x00282 },
315 	{   5, 0x08808, 0x00461, 0x00282 },
316 	{   6, 0x08808, 0x00462, 0x00282 },
317 	{   7, 0x08808, 0x00463, 0x00282 },
318 	{   8, 0x08808, 0x00464, 0x00282 },
319 	{   9, 0x08808, 0x00465, 0x00282 },
320 	{  10, 0x08808, 0x00466, 0x00282 },
321 	{  11, 0x08808, 0x00467, 0x00282 },
322 	{  12, 0x08808, 0x00468, 0x00282 },
323 	{  13, 0x08808, 0x00469, 0x00282 },
324 	{  14, 0x08808, 0x0046b, 0x00286 },
325 
326 	{  36, 0x08804, 0x06225, 0x00287 },
327 	{  40, 0x08804, 0x06226, 0x00287 },
328 	{  44, 0x08804, 0x06227, 0x00287 },
329 	{  48, 0x08804, 0x06228, 0x00287 },
330 	{  52, 0x08804, 0x06229, 0x00287 },
331 	{  56, 0x08804, 0x0622a, 0x00287 },
332 	{  60, 0x08804, 0x0622b, 0x00287 },
333 	{  64, 0x08804, 0x0622c, 0x00287 },
334 
335 	{ 100, 0x08804, 0x02200, 0x00283 },
336 	{ 104, 0x08804, 0x02201, 0x00283 },
337 	{ 108, 0x08804, 0x02202, 0x00283 },
338 	{ 112, 0x08804, 0x02203, 0x00283 },
339 	{ 116, 0x08804, 0x02204, 0x00283 },
340 	{ 120, 0x08804, 0x02205, 0x00283 },
341 	{ 124, 0x08804, 0x02206, 0x00283 },
342 	{ 128, 0x08804, 0x02207, 0x00283 },
343 	{ 132, 0x08804, 0x02208, 0x00283 },
344 	{ 136, 0x08804, 0x02209, 0x00283 },
345 	{ 140, 0x08804, 0x0220a, 0x00283 },
346 
347 	{ 149, 0x08808, 0x02429, 0x00281 },
348 	{ 153, 0x08808, 0x0242b, 0x00281 },
349 	{ 157, 0x08808, 0x0242d, 0x00281 },
350 	{ 161, 0x08808, 0x0242f, 0x00281 }
351 };
352 
353 USB_DECLARE_DRIVER(ural);
354 
355 USB_MATCH(ural)
356 {
357 	USB_MATCH_START(ural, uaa);
358 
359 	if (uaa->iface != NULL)
360 		return UMATCH_NONE;
361 
362 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365 
366 USB_ATTACH(ural)
367 {
368 	USB_ATTACH_START(ural, sc, uaa);
369 	struct ieee80211com *ic = &sc->sc_ic;
370 	struct ifnet *ifp = &sc->sc_if;
371 	usb_interface_descriptor_t *id;
372 	usb_endpoint_descriptor_t *ed;
373 	usbd_status error;
374 	char *devinfop;
375 	int i;
376 
377 	sc->sc_udev = uaa->device;
378 
379 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
380 	USB_ATTACH_SETUP;
381 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
382 	usbd_devinfo_free(devinfop);
383 
384 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 		printf("%s: could not set configuration no\n",
386 		    USBDEVNAME(sc->sc_dev));
387 		USB_ATTACH_ERROR_RETURN;
388 	}
389 
390 	/* get the first interface handle */
391 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 	    &sc->sc_iface);
393 	if (error != 0) {
394 		printf("%s: could not get interface handle\n",
395 		    USBDEVNAME(sc->sc_dev));
396 		USB_ATTACH_ERROR_RETURN;
397 	}
398 
399 	/*
400 	 * Find endpoints.
401 	 */
402 	id = usbd_get_interface_descriptor(sc->sc_iface);
403 
404 	sc->sc_rx_no = sc->sc_tx_no = -1;
405 	for (i = 0; i < id->bNumEndpoints; i++) {
406 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
407 		if (ed == NULL) {
408 			printf("%s: no endpoint descriptor for %d\n",
409 			    USBDEVNAME(sc->sc_dev), i);
410 			USB_ATTACH_ERROR_RETURN;
411 		}
412 
413 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
414 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
415 			sc->sc_rx_no = ed->bEndpointAddress;
416 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
417 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
418 			sc->sc_tx_no = ed->bEndpointAddress;
419 	}
420 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
421 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
422 		USB_ATTACH_ERROR_RETURN;
423 	}
424 
425 	usb_init_task(&sc->sc_task, ural_task, sc);
426 	callout_init(&sc->scan_ch);
427 	callout_init(&sc->amrr_ch);
428 
429 	/* retrieve RT2570 rev. no */
430 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
431 
432 	/* retrieve MAC address and various other things from EEPROM */
433 	ural_read_eeprom(sc);
434 
435 	printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
436 	    USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
437 
438 	ifp->if_softc = sc;
439 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
440 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
441 	ifp->if_init = ural_init;
442 	ifp->if_ioctl = ural_ioctl;
443 	ifp->if_start = ural_start;
444 	ifp->if_watchdog = ural_watchdog;
445 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
446 	IFQ_SET_READY(&ifp->if_snd);
447 
448 	ic->ic_ifp = ifp;
449 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
450 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
451 	ic->ic_state = IEEE80211_S_INIT;
452 
453 	/* set device capabilities */
454 	ic->ic_caps =
455 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
456 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
457 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
458 	    IEEE80211_C_TXPMGT |	/* tx power management */
459 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
460 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
461 	    IEEE80211_C_WPA;		/* 802.11i */
462 
463 	if (sc->rf_rev == RAL_RF_5222) {
464 		/* set supported .11a rates */
465 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
466 
467 		/* set supported .11a channels */
468 		for (i = 36; i <= 64; i += 4) {
469 			ic->ic_channels[i].ic_freq =
470 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
471 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
472 		}
473 		for (i = 100; i <= 140; i += 4) {
474 			ic->ic_channels[i].ic_freq =
475 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
476 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
477 		}
478 		for (i = 149; i <= 161; i += 4) {
479 			ic->ic_channels[i].ic_freq =
480 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
481 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
482 		}
483 	}
484 
485 	/* set supported .11b and .11g rates */
486 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
487 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
488 
489 	/* set supported .11b and .11g channels (1 through 14) */
490 	for (i = 1; i <= 14; i++) {
491 		ic->ic_channels[i].ic_freq =
492 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
493 		ic->ic_channels[i].ic_flags =
494 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
495 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
496 	}
497 
498 	if_attach(ifp);
499 	ieee80211_ifattach(ic);
500 	ic->ic_reset = ural_reset;
501 
502 	/* override state transition machine */
503 	sc->sc_newstate = ic->ic_newstate;
504 	ic->ic_newstate = ural_newstate;
505 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
506 
507 #if NBPFILTER > 0
508 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
509 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
510 
511 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
512 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
513 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
514 
515 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
516 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
517 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
518 #endif
519 
520 	ieee80211_announce(ic);
521 
522 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
523 	    USBDEV(sc->sc_dev));
524 
525 	USB_ATTACH_SUCCESS_RETURN;
526 }
527 
528 USB_DETACH(ural)
529 {
530 	USB_DETACH_START(ural, sc);
531 	struct ieee80211com *ic = &sc->sc_ic;
532 	struct ifnet *ifp = &sc->sc_if;
533 	int s;
534 
535 	s = splusb();
536 
537 	ural_stop(ifp, 1);
538 	usb_rem_task(sc->sc_udev, &sc->sc_task);
539 	callout_stop(&sc->scan_ch);
540 	callout_stop(&sc->amrr_ch);
541 
542 	if (sc->amrr_xfer != NULL) {
543 		usbd_free_xfer(sc->amrr_xfer);
544 		sc->amrr_xfer = NULL;
545 	}
546 
547 	if (sc->sc_rx_pipeh != NULL) {
548 		usbd_abort_pipe(sc->sc_rx_pipeh);
549 		usbd_close_pipe(sc->sc_rx_pipeh);
550 	}
551 
552 	if (sc->sc_tx_pipeh != NULL) {
553 		usbd_abort_pipe(sc->sc_tx_pipeh);
554 		usbd_close_pipe(sc->sc_tx_pipeh);
555 	}
556 
557 	ural_free_rx_list(sc);
558 	ural_free_tx_list(sc);
559 
560 #if NBPFILTER > 0
561 	bpfdetach(ifp);
562 #endif
563 	ieee80211_ifdetach(ic);
564 	if_detach(ifp);
565 
566 	splx(s);
567 
568 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
569 	    USBDEV(sc->sc_dev));
570 
571 	return 0;
572 }
573 
574 Static int
575 ural_alloc_tx_list(struct ural_softc *sc)
576 {
577 	struct ural_tx_data *data;
578 	int i, error;
579 
580 	sc->tx_queued = 0;
581 
582 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
583 		data = &sc->tx_data[i];
584 
585 		data->sc = sc;
586 
587 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
588 		if (data->xfer == NULL) {
589 			printf("%s: could not allocate tx xfer\n",
590 			    USBDEVNAME(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		data->buf = usbd_alloc_buffer(data->xfer,
596 		    RAL_TX_DESC_SIZE + MCLBYTES);
597 		if (data->buf == NULL) {
598 			printf("%s: could not allocate tx buffer\n",
599 			    USBDEVNAME(sc->sc_dev));
600 			error = ENOMEM;
601 			goto fail;
602 		}
603 	}
604 
605 	return 0;
606 
607 fail:	ural_free_tx_list(sc);
608 	return error;
609 }
610 
611 Static void
612 ural_free_tx_list(struct ural_softc *sc)
613 {
614 	struct ural_tx_data *data;
615 	int i;
616 
617 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
618 		data = &sc->tx_data[i];
619 
620 		if (data->xfer != NULL) {
621 			usbd_free_xfer(data->xfer);
622 			data->xfer = NULL;
623 		}
624 
625 		if (data->ni != NULL) {
626 			ieee80211_free_node(data->ni);
627 			data->ni = NULL;
628 		}
629 	}
630 }
631 
632 Static int
633 ural_alloc_rx_list(struct ural_softc *sc)
634 {
635 	struct ural_rx_data *data;
636 	int i, error;
637 
638 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
639 		data = &sc->rx_data[i];
640 
641 		data->sc = sc;
642 
643 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
644 		if (data->xfer == NULL) {
645 			printf("%s: could not allocate rx xfer\n",
646 			    USBDEVNAME(sc->sc_dev));
647 			error = ENOMEM;
648 			goto fail;
649 		}
650 
651 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
652 			printf("%s: could not allocate rx buffer\n",
653 			    USBDEVNAME(sc->sc_dev));
654 			error = ENOMEM;
655 			goto fail;
656 		}
657 
658 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
659 		if (data->m == NULL) {
660 			printf("%s: could not allocate rx mbuf\n",
661 			    USBDEVNAME(sc->sc_dev));
662 			error = ENOMEM;
663 			goto fail;
664 		}
665 
666 		MCLGET(data->m, M_DONTWAIT);
667 		if (!(data->m->m_flags & M_EXT)) {
668 			printf("%s: could not allocate rx mbuf cluster\n",
669 			    USBDEVNAME(sc->sc_dev));
670 			error = ENOMEM;
671 			goto fail;
672 		}
673 
674 		data->buf = mtod(data->m, uint8_t *);
675 	}
676 
677 	return 0;
678 
679 fail:	ural_free_tx_list(sc);
680 	return error;
681 }
682 
683 Static void
684 ural_free_rx_list(struct ural_softc *sc)
685 {
686 	struct ural_rx_data *data;
687 	int i;
688 
689 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
690 		data = &sc->rx_data[i];
691 
692 		if (data->xfer != NULL) {
693 			usbd_free_xfer(data->xfer);
694 			data->xfer = NULL;
695 		}
696 
697 		if (data->m != NULL) {
698 			m_freem(data->m);
699 			data->m = NULL;
700 		}
701 	}
702 }
703 
704 Static int
705 ural_media_change(struct ifnet *ifp)
706 {
707 	int error;
708 
709 	error = ieee80211_media_change(ifp);
710 	if (error != ENETRESET)
711 		return error;
712 
713 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
714 		ural_init(ifp);
715 
716 	return 0;
717 }
718 
719 /*
720  * This function is called periodically (every 200ms) during scanning to
721  * switch from one channel to another.
722  */
723 Static void
724 ural_next_scan(void *arg)
725 {
726 	struct ural_softc *sc = arg;
727 	struct ieee80211com *ic = &sc->sc_ic;
728 
729 	if (ic->ic_state == IEEE80211_S_SCAN)
730 		ieee80211_next_scan(ic);
731 }
732 
733 Static void
734 ural_task(void *arg)
735 {
736 	struct ural_softc *sc = arg;
737 	struct ieee80211com *ic = &sc->sc_ic;
738 	enum ieee80211_state ostate;
739 	struct ieee80211_node *ni;
740 	struct mbuf *m;
741 
742 	ostate = ic->ic_state;
743 
744 	switch (sc->sc_state) {
745 	case IEEE80211_S_INIT:
746 		if (ostate == IEEE80211_S_RUN) {
747 			/* abort TSF synchronization */
748 			ural_write(sc, RAL_TXRX_CSR19, 0);
749 
750 			/* force tx led to stop blinking */
751 			ural_write(sc, RAL_MAC_CSR20, 0);
752 		}
753 		break;
754 
755 	case IEEE80211_S_SCAN:
756 		ural_set_chan(sc, ic->ic_curchan);
757 		callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
758 		break;
759 
760 	case IEEE80211_S_AUTH:
761 		ural_set_chan(sc, ic->ic_curchan);
762 		break;
763 
764 	case IEEE80211_S_ASSOC:
765 		ural_set_chan(sc, ic->ic_curchan);
766 		break;
767 
768 	case IEEE80211_S_RUN:
769 		ural_set_chan(sc, ic->ic_curchan);
770 
771 		ni = ic->ic_bss;
772 
773 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
774 			ural_update_slot(ic->ic_ifp);
775 			ural_set_txpreamble(sc);
776 			ural_set_basicrates(sc);
777 			ural_set_bssid(sc, ni->ni_bssid);
778 		}
779 
780 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
781 		    ic->ic_opmode == IEEE80211_M_IBSS) {
782 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
783 			if (m == NULL) {
784 				printf("%s: could not allocate beacon\n",
785 				    USBDEVNAME(sc->sc_dev));
786 				return;
787 			}
788 
789 			if (ural_tx_bcn(sc, m, ni) != 0) {
790 				m_freem(m);
791 				printf("%s: could not send beacon\n",
792 				    USBDEVNAME(sc->sc_dev));
793 				return;
794 			}
795 
796 			/* beacon is no longer needed */
797 			m_freem(m);
798 		}
799 
800 		/* make tx led blink on tx (controlled by ASIC) */
801 		ural_write(sc, RAL_MAC_CSR20, 1);
802 
803 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
804 			ural_enable_tsf_sync(sc);
805 
806 		/* enable automatic rate adaptation in STA mode */
807 		if (ic->ic_opmode == IEEE80211_M_STA &&
808 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
809 			ural_amrr_start(sc, ni);
810 
811 		break;
812 	}
813 
814 	sc->sc_newstate(ic, sc->sc_state, -1);
815 }
816 
817 Static int
818 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
819     int arg __unused)
820 {
821 	struct ural_softc *sc = ic->ic_ifp->if_softc;
822 
823 	usb_rem_task(sc->sc_udev, &sc->sc_task);
824 	callout_stop(&sc->scan_ch);
825 	callout_stop(&sc->amrr_ch);
826 
827 	/* do it in a process context */
828 	sc->sc_state = nstate;
829 	usb_add_task(sc->sc_udev, &sc->sc_task);
830 
831 	return 0;
832 }
833 
834 /* quickly determine if a given rate is CCK or OFDM */
835 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
836 
837 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
838 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
839 
840 #define RAL_SIFS		10	/* us */
841 
842 #define RAL_RXTX_TURNAROUND	5	/* us */
843 
844 /*
845  * This function is only used by the Rx radiotap code.
846  */
847 Static int
848 ural_rxrate(struct ural_rx_desc *desc)
849 {
850 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
851 		/* reverse function of ural_plcp_signal */
852 		switch (desc->rate) {
853 		case 0xb:	return 12;
854 		case 0xf:	return 18;
855 		case 0xa:	return 24;
856 		case 0xe:	return 36;
857 		case 0x9:	return 48;
858 		case 0xd:	return 72;
859 		case 0x8:	return 96;
860 		case 0xc:	return 108;
861 		}
862 	} else {
863 		if (desc->rate == 10)
864 			return 2;
865 		if (desc->rate == 20)
866 			return 4;
867 		if (desc->rate == 55)
868 			return 11;
869 		if (desc->rate == 110)
870 			return 22;
871 	}
872 	return 2;	/* should not get there */
873 }
874 
875 Static void
876 ural_txeof(usbd_xfer_handle xfer __unused, usbd_private_handle priv,
877     usbd_status status)
878 {
879 	struct ural_tx_data *data = priv;
880 	struct ural_softc *sc = data->sc;
881 	struct ifnet *ifp = &sc->sc_if;
882 	int s;
883 
884 	if (status != USBD_NORMAL_COMPLETION) {
885 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
886 			return;
887 
888 		printf("%s: could not transmit buffer: %s\n",
889 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
890 
891 		if (status == USBD_STALLED)
892 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
893 
894 		ifp->if_oerrors++;
895 		return;
896 	}
897 
898 	s = splnet();
899 
900 	m_freem(data->m);
901 	data->m = NULL;
902 	ieee80211_free_node(data->ni);
903 	data->ni = NULL;
904 
905 	sc->tx_queued--;
906 	ifp->if_opackets++;
907 
908 	DPRINTFN(10, ("tx done\n"));
909 
910 	sc->sc_tx_timer = 0;
911 	ifp->if_flags &= ~IFF_OACTIVE;
912 	ural_start(ifp);
913 
914 	splx(s);
915 }
916 
917 Static void
918 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
919 {
920 	struct ural_rx_data *data = priv;
921 	struct ural_softc *sc = data->sc;
922 	struct ieee80211com *ic = &sc->sc_ic;
923 	struct ifnet *ifp = &sc->sc_if;
924 	struct ural_rx_desc *desc;
925 	struct ieee80211_frame *wh;
926 	struct ieee80211_node *ni;
927 	struct mbuf *mnew, *m;
928 	int s, len;
929 
930 	if (status != USBD_NORMAL_COMPLETION) {
931 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
932 			return;
933 
934 		if (status == USBD_STALLED)
935 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
936 		goto skip;
937 	}
938 
939 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
940 
941 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
942 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
943 		    len));
944 		ifp->if_ierrors++;
945 		goto skip;
946 	}
947 
948 	/* rx descriptor is located at the end */
949 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
950 
951 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
952 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
953 		/*
954 		 * This should not happen since we did not request to receive
955 		 * those frames when we filled RAL_TXRX_CSR2.
956 		 */
957 		DPRINTFN(5, ("PHY or CRC error\n"));
958 		ifp->if_ierrors++;
959 		goto skip;
960 	}
961 
962 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
963 	if (mnew == NULL) {
964 		ifp->if_ierrors++;
965 		goto skip;
966 	}
967 
968 	MCLGET(mnew, M_DONTWAIT);
969 	if (!(mnew->m_flags & M_EXT)) {
970 		ifp->if_ierrors++;
971 		m_freem(mnew);
972 		goto skip;
973 	}
974 
975 	m = data->m;
976 	data->m = mnew;
977 	data->buf = mtod(data->m, uint8_t *);
978 
979 	/* finalize mbuf */
980 	m->m_pkthdr.rcvif = ifp;
981 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
982 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
983 
984 	s = splnet();
985 
986 #if NBPFILTER > 0
987 	if (sc->sc_drvbpf != NULL) {
988 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
989 
990 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
991 		tap->wr_rate = ural_rxrate(desc);
992 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
993 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
994 		tap->wr_antenna = sc->rx_ant;
995 		tap->wr_antsignal = desc->rssi;
996 
997 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
998 	}
999 #endif
1000 
1001 	wh = mtod(m, struct ieee80211_frame *);
1002 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1003 
1004 	/* send the frame to the 802.11 layer */
1005 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1006 
1007 	/* node is no longer needed */
1008 	ieee80211_free_node(ni);
1009 
1010 	splx(s);
1011 
1012 	DPRINTFN(15, ("rx done\n"));
1013 
1014 skip:	/* setup a new transfer */
1015 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1016 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1017 	usbd_transfer(xfer);
1018 }
1019 
1020 /*
1021  * Return the expected ack rate for a frame transmitted at rate `rate'.
1022  * XXX: this should depend on the destination node basic rate set.
1023  */
1024 Static int
1025 ural_ack_rate(struct ieee80211com *ic, int rate)
1026 {
1027 	switch (rate) {
1028 	/* CCK rates */
1029 	case 2:
1030 		return 2;
1031 	case 4:
1032 	case 11:
1033 	case 22:
1034 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1035 
1036 	/* OFDM rates */
1037 	case 12:
1038 	case 18:
1039 		return 12;
1040 	case 24:
1041 	case 36:
1042 		return 24;
1043 	case 48:
1044 	case 72:
1045 	case 96:
1046 	case 108:
1047 		return 48;
1048 	}
1049 
1050 	/* default to 1Mbps */
1051 	return 2;
1052 }
1053 
1054 /*
1055  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1056  * The function automatically determines the operating mode depending on the
1057  * given rate. `flags' indicates whether short preamble is in use or not.
1058  */
1059 Static uint16_t
1060 ural_txtime(int len, int rate, uint32_t flags)
1061 {
1062 	uint16_t txtime;
1063 
1064 	if (RAL_RATE_IS_OFDM(rate)) {
1065 		/* IEEE Std 802.11a-1999, pp. 37 */
1066 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1067 		txtime = 16 + 4 + 4 * txtime + 6;
1068 	} else {
1069 		/* IEEE Std 802.11b-1999, pp. 28 */
1070 		txtime = (16 * len + rate - 1) / rate;
1071 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1072 			txtime +=  72 + 24;
1073 		else
1074 			txtime += 144 + 48;
1075 	}
1076 	return txtime;
1077 }
1078 
1079 Static uint8_t
1080 ural_plcp_signal(int rate)
1081 {
1082 	switch (rate) {
1083 	/* CCK rates (returned values are device-dependent) */
1084 	case 2:		return 0x0;
1085 	case 4:		return 0x1;
1086 	case 11:	return 0x2;
1087 	case 22:	return 0x3;
1088 
1089 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1090 	case 12:	return 0xb;
1091 	case 18:	return 0xf;
1092 	case 24:	return 0xa;
1093 	case 36:	return 0xe;
1094 	case 48:	return 0x9;
1095 	case 72:	return 0xd;
1096 	case 96:	return 0x8;
1097 	case 108:	return 0xc;
1098 
1099 	/* unsupported rates (should not get there) */
1100 	default:	return 0xff;
1101 	}
1102 }
1103 
1104 Static void
1105 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1106     uint32_t flags, int len, int rate)
1107 {
1108 	struct ieee80211com *ic = &sc->sc_ic;
1109 	uint16_t plcp_length;
1110 	int remainder;
1111 
1112 	desc->flags = htole32(flags);
1113 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1114 	desc->flags |= htole32(len << 16);
1115 
1116 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1117 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1118 
1119 	/* setup PLCP fields */
1120 	desc->plcp_signal  = ural_plcp_signal(rate);
1121 	desc->plcp_service = 4;
1122 
1123 	len += IEEE80211_CRC_LEN;
1124 	if (RAL_RATE_IS_OFDM(rate)) {
1125 		desc->flags |= htole32(RAL_TX_OFDM);
1126 
1127 		plcp_length = len & 0xfff;
1128 		desc->plcp_length_hi = plcp_length >> 6;
1129 		desc->plcp_length_lo = plcp_length & 0x3f;
1130 	} else {
1131 		plcp_length = (16 * len + rate - 1) / rate;
1132 		if (rate == 22) {
1133 			remainder = (16 * len) % 22;
1134 			if (remainder != 0 && remainder < 7)
1135 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1136 		}
1137 		desc->plcp_length_hi = plcp_length >> 8;
1138 		desc->plcp_length_lo = plcp_length & 0xff;
1139 
1140 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1141 			desc->plcp_signal |= 0x08;
1142 	}
1143 
1144 	desc->iv = 0;
1145 	desc->eiv = 0;
1146 }
1147 
1148 #define RAL_TX_TIMEOUT	5000
1149 
1150 Static int
1151 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1152 {
1153 	struct ural_tx_desc *desc;
1154 	usbd_xfer_handle xfer;
1155 	uint8_t cmd = 0;
1156 	usbd_status error;
1157 	uint8_t *buf;
1158 	int xferlen, rate;
1159 
1160 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1161 
1162 	xfer = usbd_alloc_xfer(sc->sc_udev);
1163 	if (xfer == NULL)
1164 		return ENOMEM;
1165 
1166 	/* xfer length needs to be a multiple of two! */
1167 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1168 
1169 	buf = usbd_alloc_buffer(xfer, xferlen);
1170 	if (buf == NULL) {
1171 		usbd_free_xfer(xfer);
1172 		return ENOMEM;
1173 	}
1174 
1175 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1176 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1177 
1178 	error = usbd_sync_transfer(xfer);
1179 	if (error != 0) {
1180 		usbd_free_xfer(xfer);
1181 		return error;
1182 	}
1183 
1184 	desc = (struct ural_tx_desc *)buf;
1185 
1186 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1187 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1188 	    m0->m_pkthdr.len, rate);
1189 
1190 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1191 	    m0->m_pkthdr.len, rate, xferlen));
1192 
1193 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1194 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1195 
1196 	error = usbd_sync_transfer(xfer);
1197 	usbd_free_xfer(xfer);
1198 
1199 	return error;
1200 }
1201 
1202 Static int
1203 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1204 {
1205 	struct ieee80211com *ic = &sc->sc_ic;
1206 	struct ural_tx_desc *desc;
1207 	struct ural_tx_data *data;
1208 	struct ieee80211_frame *wh;
1209 	uint32_t flags = 0;
1210 	uint16_t dur;
1211 	usbd_status error;
1212 	int xferlen, rate;
1213 
1214 	data = &sc->tx_data[0];
1215 	desc = (struct ural_tx_desc *)data->buf;
1216 
1217 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1218 
1219 	data->m = m0;
1220 	data->ni = ni;
1221 
1222 	wh = mtod(m0, struct ieee80211_frame *);
1223 
1224 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1225 		flags |= RAL_TX_ACK;
1226 
1227 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1228 		*(uint16_t *)wh->i_dur = htole16(dur);
1229 
1230 		/* tell hardware to add timestamp for probe responses */
1231 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1232 		    IEEE80211_FC0_TYPE_MGT &&
1233 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1234 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1235 			flags |= RAL_TX_TIMESTAMP;
1236 	}
1237 
1238 #if NBPFILTER > 0
1239 	if (sc->sc_drvbpf != NULL) {
1240 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1241 
1242 		tap->wt_flags = 0;
1243 		tap->wt_rate = rate;
1244 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1245 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1246 		tap->wt_antenna = sc->tx_ant;
1247 
1248 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1249 	}
1250 #endif
1251 
1252 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1253 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1254 
1255 	/* align end on a 2-bytes boundary */
1256 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1257 
1258 	/*
1259 	 * No space left in the last URB to store the extra 2 bytes, force
1260 	 * sending of another URB.
1261 	 */
1262 	if ((xferlen % 64) == 0)
1263 		xferlen += 2;
1264 
1265 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1266 	    m0->m_pkthdr.len, rate, xferlen));
1267 
1268 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1269 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1270 	    ural_txeof);
1271 
1272 	error = usbd_transfer(data->xfer);
1273 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1274 		return error;
1275 
1276 	sc->tx_queued++;
1277 
1278 	return 0;
1279 }
1280 
1281 Static int
1282 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1283 {
1284 	struct ieee80211com *ic = &sc->sc_ic;
1285 	struct ural_tx_desc *desc;
1286 	struct ural_tx_data *data;
1287 	struct ieee80211_frame *wh;
1288 	struct ieee80211_key *k;
1289 	uint32_t flags = 0;
1290 	uint16_t dur;
1291 	usbd_status error;
1292 	int xferlen, rate;
1293 
1294 	wh = mtod(m0, struct ieee80211_frame *);
1295 
1296 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1297 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1298 	else
1299 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1300 
1301 	rate &= IEEE80211_RATE_VAL;
1302 
1303 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1304 		k = ieee80211_crypto_encap(ic, ni, m0);
1305 		if (k == NULL) {
1306 			m_freem(m0);
1307 			return ENOBUFS;
1308 		}
1309 
1310 		/* packet header may have moved, reset our local pointer */
1311 		wh = mtod(m0, struct ieee80211_frame *);
1312 	}
1313 
1314 	data = &sc->tx_data[0];
1315 	desc = (struct ural_tx_desc *)data->buf;
1316 
1317 	data->m = m0;
1318 	data->ni = ni;
1319 
1320 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1321 		flags |= RAL_TX_ACK;
1322 		flags |= RAL_TX_RETRY(7);
1323 
1324 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1325 		    ic->ic_flags) + RAL_SIFS;
1326 		*(uint16_t *)wh->i_dur = htole16(dur);
1327 	}
1328 
1329 #if NBPFILTER > 0
1330 	if (sc->sc_drvbpf != NULL) {
1331 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1332 
1333 		tap->wt_flags = 0;
1334 		tap->wt_rate = rate;
1335 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1336 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1337 		tap->wt_antenna = sc->tx_ant;
1338 
1339 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1340 	}
1341 #endif
1342 
1343 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1344 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1345 
1346 	/* align end on a 2-bytes boundary */
1347 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1348 
1349 	/*
1350 	 * No space left in the last URB to store the extra 2 bytes, force
1351 	 * sending of another URB.
1352 	 */
1353 	if ((xferlen % 64) == 0)
1354 		xferlen += 2;
1355 
1356 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1357 	    m0->m_pkthdr.len, rate, xferlen));
1358 
1359 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1360 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1361 	    ural_txeof);
1362 
1363 	error = usbd_transfer(data->xfer);
1364 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1365 		return error;
1366 
1367 	sc->tx_queued++;
1368 
1369 	return 0;
1370 }
1371 
1372 Static void
1373 ural_start(struct ifnet *ifp)
1374 {
1375 	struct ural_softc *sc = ifp->if_softc;
1376 	struct ieee80211com *ic = &sc->sc_ic;
1377 	struct mbuf *m0;
1378 	struct ether_header *eh;
1379 	struct ieee80211_node *ni;
1380 
1381 	for (;;) {
1382 		IF_POLL(&ic->ic_mgtq, m0);
1383 		if (m0 != NULL) {
1384 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1385 				ifp->if_flags |= IFF_OACTIVE;
1386 				break;
1387 			}
1388 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1389 
1390 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1391 			m0->m_pkthdr.rcvif = NULL;
1392 #if NBPFILTER > 0
1393 			if (ic->ic_rawbpf != NULL)
1394 				bpf_mtap(ic->ic_rawbpf, m0);
1395 #endif
1396 			if (ural_tx_mgt(sc, m0, ni) != 0)
1397 				break;
1398 
1399 		} else {
1400 			if (ic->ic_state != IEEE80211_S_RUN)
1401 				break;
1402 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1403 			if (m0 == NULL)
1404 				break;
1405 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1406 				IF_PREPEND(&ifp->if_snd, m0);
1407 				ifp->if_flags |= IFF_OACTIVE;
1408 				break;
1409 			}
1410 
1411 			if (m0->m_len < sizeof (struct ether_header) &&
1412 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1413 				continue;
1414 
1415 			eh = mtod(m0, struct ether_header *);
1416 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1417 			if (ni == NULL) {
1418 				m_freem(m0);
1419 				continue;
1420 			}
1421 #if NBPFILTER > 0
1422 			if (ifp->if_bpf != NULL)
1423 				bpf_mtap(ifp->if_bpf, m0);
1424 #endif
1425 			m0 = ieee80211_encap(ic, m0, ni);
1426 			if (m0 == NULL) {
1427 				ieee80211_free_node(ni);
1428 				continue;
1429 			}
1430 #if NBPFILTER > 0
1431 			if (ic->ic_rawbpf != NULL)
1432 				bpf_mtap(ic->ic_rawbpf, m0);
1433 #endif
1434 			if (ural_tx_data(sc, m0, ni) != 0) {
1435 				ieee80211_free_node(ni);
1436 				ifp->if_oerrors++;
1437 				break;
1438 			}
1439 		}
1440 
1441 		sc->sc_tx_timer = 5;
1442 		ifp->if_timer = 1;
1443 	}
1444 }
1445 
1446 Static void
1447 ural_watchdog(struct ifnet *ifp)
1448 {
1449 	struct ural_softc *sc = ifp->if_softc;
1450 	struct ieee80211com *ic = &sc->sc_ic;
1451 
1452 	ifp->if_timer = 0;
1453 
1454 	if (sc->sc_tx_timer > 0) {
1455 		if (--sc->sc_tx_timer == 0) {
1456 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1457 			/*ural_init(sc); XXX needs a process context! */
1458 			ifp->if_oerrors++;
1459 			return;
1460 		}
1461 		ifp->if_timer = 1;
1462 	}
1463 
1464 	ieee80211_watchdog(ic);
1465 }
1466 
1467 /*
1468  * This function allows for fast channel switching in monitor mode (used by
1469  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1470  * generate a new beacon frame.
1471  */
1472 Static int
1473 ural_reset(struct ifnet *ifp)
1474 {
1475 	struct ural_softc *sc = ifp->if_softc;
1476 	struct ieee80211com *ic = &sc->sc_ic;
1477 
1478 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1479 		return ENETRESET;
1480 
1481 	ural_set_chan(sc, ic->ic_curchan);
1482 
1483 	return 0;
1484 }
1485 
1486 Static int
1487 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1488 {
1489 	struct ural_softc *sc = ifp->if_softc;
1490 	struct ieee80211com *ic = &sc->sc_ic;
1491 	int s, error = 0;
1492 
1493 	s = splnet();
1494 
1495 	switch (cmd) {
1496 	case SIOCSIFFLAGS:
1497 		if (ifp->if_flags & IFF_UP) {
1498 			if (ifp->if_flags & IFF_RUNNING)
1499 				ural_update_promisc(sc);
1500 			else
1501 				ural_init(ifp);
1502 		} else {
1503 			if (ifp->if_flags & IFF_RUNNING)
1504 				ural_stop(ifp, 1);
1505 		}
1506 		break;
1507 
1508 	default:
1509 		error = ieee80211_ioctl(ic, cmd, data);
1510 	}
1511 
1512 	if (error == ENETRESET) {
1513 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1514 		    (IFF_UP | IFF_RUNNING))
1515 			ural_init(ifp);
1516 		error = 0;
1517 	}
1518 
1519 	splx(s);
1520 
1521 	return error;
1522 }
1523 
1524 Static void
1525 ural_set_testmode(struct ural_softc *sc)
1526 {
1527 	usb_device_request_t req;
1528 	usbd_status error;
1529 
1530 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1531 	req.bRequest = RAL_VENDOR_REQUEST;
1532 	USETW(req.wValue, 4);
1533 	USETW(req.wIndex, 1);
1534 	USETW(req.wLength, 0);
1535 
1536 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1537 	if (error != 0) {
1538 		printf("%s: could not set test mode: %s\n",
1539 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1540 	}
1541 }
1542 
1543 Static void
1544 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1545 {
1546 	usb_device_request_t req;
1547 	usbd_status error;
1548 
1549 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1550 	req.bRequest = RAL_READ_EEPROM;
1551 	USETW(req.wValue, 0);
1552 	USETW(req.wIndex, addr);
1553 	USETW(req.wLength, len);
1554 
1555 	error = usbd_do_request(sc->sc_udev, &req, buf);
1556 	if (error != 0) {
1557 		printf("%s: could not read EEPROM: %s\n",
1558 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1559 	}
1560 }
1561 
1562 Static uint16_t
1563 ural_read(struct ural_softc *sc, uint16_t reg)
1564 {
1565 	usb_device_request_t req;
1566 	usbd_status error;
1567 	uint16_t val;
1568 
1569 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1570 	req.bRequest = RAL_READ_MAC;
1571 	USETW(req.wValue, 0);
1572 	USETW(req.wIndex, reg);
1573 	USETW(req.wLength, sizeof (uint16_t));
1574 
1575 	error = usbd_do_request(sc->sc_udev, &req, &val);
1576 	if (error != 0) {
1577 		printf("%s: could not read MAC register: %s\n",
1578 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1579 		return 0;
1580 	}
1581 
1582 	return le16toh(val);
1583 }
1584 
1585 Static void
1586 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1587 {
1588 	usb_device_request_t req;
1589 	usbd_status error;
1590 
1591 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1592 	req.bRequest = RAL_READ_MULTI_MAC;
1593 	USETW(req.wValue, 0);
1594 	USETW(req.wIndex, reg);
1595 	USETW(req.wLength, len);
1596 
1597 	error = usbd_do_request(sc->sc_udev, &req, buf);
1598 	if (error != 0) {
1599 		printf("%s: could not read MAC register: %s\n",
1600 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1601 	}
1602 }
1603 
1604 Static void
1605 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1606 {
1607 	usb_device_request_t req;
1608 	usbd_status error;
1609 
1610 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1611 	req.bRequest = RAL_WRITE_MAC;
1612 	USETW(req.wValue, val);
1613 	USETW(req.wIndex, reg);
1614 	USETW(req.wLength, 0);
1615 
1616 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1617 	if (error != 0) {
1618 		printf("%s: could not write MAC register: %s\n",
1619 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1620 	}
1621 }
1622 
1623 Static void
1624 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1625 {
1626 	usb_device_request_t req;
1627 	usbd_status error;
1628 
1629 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1630 	req.bRequest = RAL_WRITE_MULTI_MAC;
1631 	USETW(req.wValue, 0);
1632 	USETW(req.wIndex, reg);
1633 	USETW(req.wLength, len);
1634 
1635 	error = usbd_do_request(sc->sc_udev, &req, buf);
1636 	if (error != 0) {
1637 		printf("%s: could not write MAC register: %s\n",
1638 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1639 	}
1640 }
1641 
1642 Static void
1643 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1644 {
1645 	uint16_t tmp;
1646 	int ntries;
1647 
1648 	for (ntries = 0; ntries < 5; ntries++) {
1649 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1650 			break;
1651 	}
1652 	if (ntries == 5) {
1653 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1654 		return;
1655 	}
1656 
1657 	tmp = reg << 8 | val;
1658 	ural_write(sc, RAL_PHY_CSR7, tmp);
1659 }
1660 
1661 Static uint8_t
1662 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1663 {
1664 	uint16_t val;
1665 	int ntries;
1666 
1667 	val = RAL_BBP_WRITE | reg << 8;
1668 	ural_write(sc, RAL_PHY_CSR7, val);
1669 
1670 	for (ntries = 0; ntries < 5; ntries++) {
1671 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1672 			break;
1673 	}
1674 	if (ntries == 5) {
1675 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1676 		return 0;
1677 	}
1678 
1679 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1680 }
1681 
1682 Static void
1683 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1684 {
1685 	uint32_t tmp;
1686 	int ntries;
1687 
1688 	for (ntries = 0; ntries < 5; ntries++) {
1689 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1690 			break;
1691 	}
1692 	if (ntries == 5) {
1693 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1694 		return;
1695 	}
1696 
1697 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1698 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1699 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1700 
1701 	/* remember last written value in sc */
1702 	sc->rf_regs[reg] = val;
1703 
1704 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1705 }
1706 
1707 Static void
1708 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1709 {
1710 	struct ieee80211com *ic = &sc->sc_ic;
1711 	uint8_t power, tmp;
1712 	u_int i, chan;
1713 
1714 	chan = ieee80211_chan2ieee(ic, c);
1715 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1716 		return;
1717 
1718 	if (IEEE80211_IS_CHAN_2GHZ(c))
1719 		power = min(sc->txpow[chan - 1], 31);
1720 	else
1721 		power = 31;
1722 
1723 	/* adjust txpower using ifconfig settings */
1724 	power -= (100 - ic->ic_txpowlimit) / 8;
1725 
1726 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1727 
1728 	switch (sc->rf_rev) {
1729 	case RAL_RF_2522:
1730 		ural_rf_write(sc, RAL_RF1, 0x00814);
1731 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1732 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1733 		break;
1734 
1735 	case RAL_RF_2523:
1736 		ural_rf_write(sc, RAL_RF1, 0x08804);
1737 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1738 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1739 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1740 		break;
1741 
1742 	case RAL_RF_2524:
1743 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1744 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1745 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1746 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1747 		break;
1748 
1749 	case RAL_RF_2525:
1750 		ural_rf_write(sc, RAL_RF1, 0x08808);
1751 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1752 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1753 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1754 
1755 		ural_rf_write(sc, RAL_RF1, 0x08808);
1756 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1757 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1758 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1759 		break;
1760 
1761 	case RAL_RF_2525E:
1762 		ural_rf_write(sc, RAL_RF1, 0x08808);
1763 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1764 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1765 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1766 		break;
1767 
1768 	case RAL_RF_2526:
1769 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1770 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1771 		ural_rf_write(sc, RAL_RF1, 0x08804);
1772 
1773 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1774 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1775 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1776 		break;
1777 
1778 	/* dual-band RF */
1779 	case RAL_RF_5222:
1780 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1781 
1782 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1783 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1784 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1785 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1786 		break;
1787 	}
1788 
1789 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1790 	    ic->ic_state != IEEE80211_S_SCAN) {
1791 		/* set Japan filter bit for channel 14 */
1792 		tmp = ural_bbp_read(sc, 70);
1793 
1794 		tmp &= ~RAL_JAPAN_FILTER;
1795 		if (chan == 14)
1796 			tmp |= RAL_JAPAN_FILTER;
1797 
1798 		ural_bbp_write(sc, 70, tmp);
1799 
1800 		/* clear CRC errors */
1801 		ural_read(sc, RAL_STA_CSR0);
1802 
1803 		DELAY(10000);
1804 		ural_disable_rf_tune(sc);
1805 	}
1806 }
1807 
1808 /*
1809  * Disable RF auto-tuning.
1810  */
1811 Static void
1812 ural_disable_rf_tune(struct ural_softc *sc)
1813 {
1814 	uint32_t tmp;
1815 
1816 	if (sc->rf_rev != RAL_RF_2523) {
1817 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1818 		ural_rf_write(sc, RAL_RF1, tmp);
1819 	}
1820 
1821 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1822 	ural_rf_write(sc, RAL_RF3, tmp);
1823 
1824 	DPRINTFN(2, ("disabling RF autotune\n"));
1825 }
1826 
1827 /*
1828  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1829  * synchronization.
1830  */
1831 Static void
1832 ural_enable_tsf_sync(struct ural_softc *sc)
1833 {
1834 	struct ieee80211com *ic = &sc->sc_ic;
1835 	uint16_t logcwmin, preload, tmp;
1836 
1837 	/* first, disable TSF synchronization */
1838 	ural_write(sc, RAL_TXRX_CSR19, 0);
1839 
1840 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1841 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1842 
1843 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1844 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1845 	tmp = logcwmin << 12 | preload;
1846 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1847 
1848 	/* finally, enable TSF synchronization */
1849 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1850 	if (ic->ic_opmode == IEEE80211_M_STA)
1851 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1852 	else
1853 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1854 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1855 
1856 	DPRINTF(("enabling TSF synchronization\n"));
1857 }
1858 
1859 Static void
1860 ural_update_slot(struct ifnet *ifp)
1861 {
1862 	struct ural_softc *sc = ifp->if_softc;
1863 	struct ieee80211com *ic = &sc->sc_ic;
1864 	uint16_t slottime, sifs, eifs;
1865 
1866 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1867 
1868 	/*
1869 	 * These settings may sound a bit inconsistent but this is what the
1870 	 * reference driver does.
1871 	 */
1872 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1873 		sifs = 16 - RAL_RXTX_TURNAROUND;
1874 		eifs = 364;
1875 	} else {
1876 		sifs = 10 - RAL_RXTX_TURNAROUND;
1877 		eifs = 64;
1878 	}
1879 
1880 	ural_write(sc, RAL_MAC_CSR10, slottime);
1881 	ural_write(sc, RAL_MAC_CSR11, sifs);
1882 	ural_write(sc, RAL_MAC_CSR12, eifs);
1883 }
1884 
1885 Static void
1886 ural_set_txpreamble(struct ural_softc *sc)
1887 {
1888 	uint16_t tmp;
1889 
1890 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1891 
1892 	tmp &= ~RAL_SHORT_PREAMBLE;
1893 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1894 		tmp |= RAL_SHORT_PREAMBLE;
1895 
1896 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1897 }
1898 
1899 Static void
1900 ural_set_basicrates(struct ural_softc *sc)
1901 {
1902 	struct ieee80211com *ic = &sc->sc_ic;
1903 
1904 	/* update basic rate set */
1905 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1906 		/* 11b basic rates: 1, 2Mbps */
1907 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1908 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1909 		/* 11a basic rates: 6, 12, 24Mbps */
1910 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1911 	} else {
1912 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1913 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1914 	}
1915 }
1916 
1917 Static void
1918 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1919 {
1920 	uint16_t tmp;
1921 
1922 	tmp = bssid[0] | bssid[1] << 8;
1923 	ural_write(sc, RAL_MAC_CSR5, tmp);
1924 
1925 	tmp = bssid[2] | bssid[3] << 8;
1926 	ural_write(sc, RAL_MAC_CSR6, tmp);
1927 
1928 	tmp = bssid[4] | bssid[5] << 8;
1929 	ural_write(sc, RAL_MAC_CSR7, tmp);
1930 
1931 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1932 }
1933 
1934 Static void
1935 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1936 {
1937 	uint16_t tmp;
1938 
1939 	tmp = addr[0] | addr[1] << 8;
1940 	ural_write(sc, RAL_MAC_CSR2, tmp);
1941 
1942 	tmp = addr[2] | addr[3] << 8;
1943 	ural_write(sc, RAL_MAC_CSR3, tmp);
1944 
1945 	tmp = addr[4] | addr[5] << 8;
1946 	ural_write(sc, RAL_MAC_CSR4, tmp);
1947 
1948 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1949 }
1950 
1951 Static void
1952 ural_update_promisc(struct ural_softc *sc)
1953 {
1954 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1955 	uint32_t tmp;
1956 
1957 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1958 
1959 	tmp &= ~RAL_DROP_NOT_TO_ME;
1960 	if (!(ifp->if_flags & IFF_PROMISC))
1961 		tmp |= RAL_DROP_NOT_TO_ME;
1962 
1963 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1964 
1965 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1966 	    "entering" : "leaving"));
1967 }
1968 
1969 Static const char *
1970 ural_get_rf(int rev)
1971 {
1972 	switch (rev) {
1973 	case RAL_RF_2522:	return "RT2522";
1974 	case RAL_RF_2523:	return "RT2523";
1975 	case RAL_RF_2524:	return "RT2524";
1976 	case RAL_RF_2525:	return "RT2525";
1977 	case RAL_RF_2525E:	return "RT2525e";
1978 	case RAL_RF_2526:	return "RT2526";
1979 	case RAL_RF_5222:	return "RT5222";
1980 	default:		return "unknown";
1981 	}
1982 }
1983 
1984 Static void
1985 ural_read_eeprom(struct ural_softc *sc)
1986 {
1987 	struct ieee80211com *ic = &sc->sc_ic;
1988 	uint16_t val;
1989 
1990 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1991 	val = le16toh(val);
1992 	sc->rf_rev =   (val >> 11) & 0x7;
1993 	sc->hw_radio = (val >> 10) & 0x1;
1994 	sc->led_mode = (val >> 6)  & 0x7;
1995 	sc->rx_ant =   (val >> 4)  & 0x3;
1996 	sc->tx_ant =   (val >> 2)  & 0x3;
1997 	sc->nb_ant =   val & 0x3;
1998 
1999 	/* read MAC address */
2000 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2001 
2002 	/* read default values for BBP registers */
2003 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2004 
2005 	/* read Tx power for all b/g channels */
2006 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2007 }
2008 
2009 Static int
2010 ural_bbp_init(struct ural_softc *sc)
2011 {
2012 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2013 	int i, ntries;
2014 
2015 	/* wait for BBP to be ready */
2016 	for (ntries = 0; ntries < 100; ntries++) {
2017 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2018 			break;
2019 		DELAY(1000);
2020 	}
2021 	if (ntries == 100) {
2022 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2023 		return EIO;
2024 	}
2025 
2026 	/* initialize BBP registers to default values */
2027 	for (i = 0; i < N(ural_def_bbp); i++)
2028 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2029 
2030 #if 0
2031 	/* initialize BBP registers to values stored in EEPROM */
2032 	for (i = 0; i < 16; i++) {
2033 		if (sc->bbp_prom[i].reg == 0xff)
2034 			continue;
2035 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2036 	}
2037 #endif
2038 
2039 	return 0;
2040 #undef N
2041 }
2042 
2043 Static void
2044 ural_set_txantenna(struct ural_softc *sc, int antenna)
2045 {
2046 	uint16_t tmp;
2047 	uint8_t tx;
2048 
2049 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2050 	if (antenna == 1)
2051 		tx |= RAL_BBP_ANTA;
2052 	else if (antenna == 2)
2053 		tx |= RAL_BBP_ANTB;
2054 	else
2055 		tx |= RAL_BBP_DIVERSITY;
2056 
2057 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2058 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2059 	    sc->rf_rev == RAL_RF_5222)
2060 		tx |= RAL_BBP_FLIPIQ;
2061 
2062 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2063 
2064 	/* update values in PHY_CSR5 and PHY_CSR6 */
2065 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2066 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2067 
2068 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2069 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2070 }
2071 
2072 Static void
2073 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2074 {
2075 	uint8_t rx;
2076 
2077 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2078 	if (antenna == 1)
2079 		rx |= RAL_BBP_ANTA;
2080 	else if (antenna == 2)
2081 		rx |= RAL_BBP_ANTB;
2082 	else
2083 		rx |= RAL_BBP_DIVERSITY;
2084 
2085 	/* need to force no I/Q flip for RF 2525e and 2526 */
2086 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2087 		rx &= ~RAL_BBP_FLIPIQ;
2088 
2089 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2090 }
2091 
2092 Static int
2093 ural_init(struct ifnet *ifp)
2094 {
2095 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2096 	struct ural_softc *sc = ifp->if_softc;
2097 	struct ieee80211com *ic = &sc->sc_ic;
2098 	struct ieee80211_key *wk;
2099 	struct ural_rx_data *data;
2100 	uint16_t tmp;
2101 	usbd_status error;
2102 	int i, ntries;
2103 
2104 	ural_set_testmode(sc);
2105 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2106 
2107 	ural_stop(ifp, 0);
2108 
2109 	/* initialize MAC registers to default values */
2110 	for (i = 0; i < N(ural_def_mac); i++)
2111 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2112 
2113 	/* wait for BBP and RF to wake up (this can take a long time!) */
2114 	for (ntries = 0; ntries < 100; ntries++) {
2115 		tmp = ural_read(sc, RAL_MAC_CSR17);
2116 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2117 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2118 			break;
2119 		DELAY(1000);
2120 	}
2121 	if (ntries == 100) {
2122 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2123 		    USBDEVNAME(sc->sc_dev));
2124 		error = EIO;
2125 		goto fail;
2126 	}
2127 
2128 	/* we're ready! */
2129 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2130 
2131 	/* set basic rate set (will be updated later) */
2132 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2133 
2134 	error = ural_bbp_init(sc);
2135 	if (error != 0)
2136 		goto fail;
2137 
2138 	/* set default BSS channel */
2139 	ural_set_chan(sc, ic->ic_curchan);
2140 
2141 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2142 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2143 
2144 	ural_set_txantenna(sc, sc->tx_ant);
2145 	ural_set_rxantenna(sc, sc->rx_ant);
2146 
2147 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2148 	ural_set_macaddr(sc, ic->ic_myaddr);
2149 
2150 	/*
2151 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2152 	 */
2153 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2154 		wk = &ic->ic_crypto.cs_nw_keys[i];
2155 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2156 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2157 	}
2158 
2159 	/*
2160 	 * Allocate xfer for AMRR statistics requests.
2161 	 */
2162 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2163 	if (sc->amrr_xfer == NULL) {
2164 		printf("%s: could not allocate AMRR xfer\n",
2165 		    USBDEVNAME(sc->sc_dev));
2166 		goto fail;
2167 	}
2168 
2169 	/*
2170 	 * Open Tx and Rx USB bulk pipes.
2171 	 */
2172 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2173 	    &sc->sc_tx_pipeh);
2174 	if (error != 0) {
2175 		printf("%s: could not open Tx pipe: %s\n",
2176 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2177 		goto fail;
2178 	}
2179 
2180 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2181 	    &sc->sc_rx_pipeh);
2182 	if (error != 0) {
2183 		printf("%s: could not open Rx pipe: %s\n",
2184 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2185 		goto fail;
2186 	}
2187 
2188 	/*
2189 	 * Allocate Tx and Rx xfer queues.
2190 	 */
2191 	error = ural_alloc_tx_list(sc);
2192 	if (error != 0) {
2193 		printf("%s: could not allocate Tx list\n",
2194 		    USBDEVNAME(sc->sc_dev));
2195 		goto fail;
2196 	}
2197 
2198 	error = ural_alloc_rx_list(sc);
2199 	if (error != 0) {
2200 		printf("%s: could not allocate Rx list\n",
2201 		    USBDEVNAME(sc->sc_dev));
2202 		goto fail;
2203 	}
2204 
2205 	/*
2206 	 * Start up the receive pipe.
2207 	 */
2208 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2209 		data = &sc->rx_data[i];
2210 
2211 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2212 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2213 		usbd_transfer(data->xfer);
2214 	}
2215 
2216 	/* kick Rx */
2217 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2218 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2219 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2220 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2221 			tmp |= RAL_DROP_TODS;
2222 		if (!(ifp->if_flags & IFF_PROMISC))
2223 			tmp |= RAL_DROP_NOT_TO_ME;
2224 	}
2225 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2226 
2227 	ifp->if_flags &= ~IFF_OACTIVE;
2228 	ifp->if_flags |= IFF_RUNNING;
2229 
2230 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2231 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2232 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2233 	} else
2234 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2235 
2236 	return 0;
2237 
2238 fail:	ural_stop(ifp, 1);
2239 	return error;
2240 #undef N
2241 }
2242 
2243 Static void
2244 ural_stop(struct ifnet *ifp, int disable __unused)
2245 {
2246 	struct ural_softc *sc = ifp->if_softc;
2247 	struct ieee80211com *ic = &sc->sc_ic;
2248 
2249 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2250 
2251 	sc->sc_tx_timer = 0;
2252 	ifp->if_timer = 0;
2253 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2254 
2255 	/* disable Rx */
2256 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2257 
2258 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2259 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2260 	ural_write(sc, RAL_MAC_CSR1, 0);
2261 
2262 	if (sc->amrr_xfer != NULL) {
2263 		usbd_free_xfer(sc->amrr_xfer);
2264 		sc->amrr_xfer = NULL;
2265 	}
2266 
2267 	if (sc->sc_rx_pipeh != NULL) {
2268 		usbd_abort_pipe(sc->sc_rx_pipeh);
2269 		usbd_close_pipe(sc->sc_rx_pipeh);
2270 		sc->sc_rx_pipeh = NULL;
2271 	}
2272 
2273 	if (sc->sc_tx_pipeh != NULL) {
2274 		usbd_abort_pipe(sc->sc_tx_pipeh);
2275 		usbd_close_pipe(sc->sc_tx_pipeh);
2276 		sc->sc_tx_pipeh = NULL;
2277 	}
2278 
2279 	ural_free_rx_list(sc);
2280 	ural_free_tx_list(sc);
2281 }
2282 
2283 int
2284 ural_activate(device_ptr_t self, enum devact act)
2285 {
2286 	struct ural_softc *sc = (struct ural_softc *)self;
2287 
2288 	switch (act) {
2289 	case DVACT_ACTIVATE:
2290 		return EOPNOTSUPP;
2291 		break;
2292 
2293 	case DVACT_DEACTIVATE:
2294 		if_deactivate(&sc->sc_if);
2295 		break;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 #define URAL_AMRR_MIN_SUCCESS_THRESHOLD	 1
2302 #define URAL_AMRR_MAX_SUCCESS_THRESHOLD	10
2303 
2304 Static void
2305 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2306 {
2307 	struct ural_amrr *amrr = &sc->amrr;
2308 	int i;
2309 
2310 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2311 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2312 
2313 	amrr->success = 0;
2314 	amrr->recovery = 0;
2315 	amrr->txcnt = amrr->retrycnt = 0;
2316 	amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
2317 
2318 	/* set rate to some reasonable initial value */
2319 	for (i = ni->ni_rates.rs_nrates - 1;
2320 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2321 	     i--);
2322 
2323 	ni->ni_txrate = i;
2324 
2325 	callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2326 }
2327 
2328 Static void
2329 ural_amrr_timeout(void *arg)
2330 {
2331 	struct ural_softc *sc = (struct ural_softc *)arg;
2332 	usb_device_request_t req;
2333 	int s;
2334 
2335 	s = splusb();
2336 
2337 	/*
2338 	 * Asynchronously read statistic registers (cleared by read).
2339 	 */
2340 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2341 	req.bRequest = RAL_READ_MULTI_MAC;
2342 	USETW(req.wValue, 0);
2343 	USETW(req.wIndex, RAL_STA_CSR0);
2344 	USETW(req.wLength, sizeof sc->sta);
2345 
2346 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2347 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2348 	    ural_amrr_update);
2349 	(void)usbd_transfer(sc->amrr_xfer);
2350 
2351 	splx(s);
2352 }
2353 
2354 Static void
2355 ural_amrr_update(usbd_xfer_handle xfer __unused, usbd_private_handle priv,
2356     usbd_status status)
2357 {
2358 	struct ural_softc *sc = (struct ural_softc *)priv;
2359 	struct ural_amrr *amrr = &sc->amrr;
2360 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2361 
2362 	if (status != USBD_NORMAL_COMPLETION) {
2363 		printf("%s: could not retrieve Tx statistics - "
2364 		    "cancelling automatic rate control\n",
2365 		    USBDEVNAME(sc->sc_dev));
2366 		return;
2367 	}
2368 
2369 	/* count TX retry-fail as Tx errors */
2370 	ifp->if_oerrors += sc->sta[9];
2371 
2372 	amrr->retrycnt =
2373 	    sc->sta[7] +	/* TX one-retry ok count */
2374 	    sc->sta[8] +	/* TX more-retry ok count */
2375 	    sc->sta[9];		/* TX retry-fail count */
2376 
2377 	amrr->txcnt =
2378 	    amrr->retrycnt +
2379 	    sc->sta[6];		/* TX no-retry ok count */
2380 
2381 	ural_ratectl(amrr, sc->sc_ic.ic_bss);
2382 
2383 	callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2384 }
2385 
2386 /*-
2387  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2388  *     "IEEE 802.11 Rate Adaptation: A Practical Approach"
2389  *     Mathieu Lacage, Hossein Manshaei, Thierry Turletti
2390  *     INRIA Sophia - Projet Planete
2391  *     http://www-sop.inria.fr/rapports/sophia/RR-5208.html
2392  *
2393  * This algorithm is particularly well suited for ural since it does not
2394  * require per-frame retry statistics.  Note however that since h/w does
2395  * not provide per-frame stats, we can't do per-node rate adaptation and
2396  * thus automatic rate adaptation is only enabled in STA operating mode.
2397  */
2398 #define is_success(amrr)	\
2399 	((amrr)->retrycnt < (amrr)->txcnt / 10)
2400 #define is_failure(amrr)	\
2401 	((amrr)->retrycnt > (amrr)->txcnt / 3)
2402 #define is_enough(amrr)		\
2403 	((amrr)->txcnt > 10)
2404 #define is_min_rate(ni)		\
2405 	((ni)->ni_txrate == 0)
2406 #define is_max_rate(ni)		\
2407 	((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
2408 #define increase_rate(ni)	\
2409 	((ni)->ni_txrate++)
2410 #define decrease_rate(ni)	\
2411 	((ni)->ni_txrate--)
2412 #define reset_cnt(amrr)		\
2413 	do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
2414 Static void
2415 ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
2416 {
2417 	int need_change = 0;
2418 
2419 	if (is_success(amrr) && is_enough(amrr)) {
2420 		amrr->success++;
2421 		if (amrr->success >= amrr->success_threshold &&
2422 		    !is_max_rate(ni)) {
2423 			amrr->recovery = 1;
2424 			amrr->success = 0;
2425 			increase_rate(ni);
2426 			need_change = 1;
2427 		} else {
2428 			amrr->recovery = 0;
2429 		}
2430 	} else if (is_failure(amrr)) {
2431 		amrr->success = 0;
2432 		if (!is_min_rate(ni)) {
2433 			if (amrr->recovery) {
2434 				amrr->success_threshold *= 2;
2435 				if (amrr->success_threshold >
2436 				    URAL_AMRR_MAX_SUCCESS_THRESHOLD)
2437 					amrr->success_threshold =
2438 					    URAL_AMRR_MAX_SUCCESS_THRESHOLD;
2439 			} else {
2440 				amrr->success_threshold =
2441 				    URAL_AMRR_MIN_SUCCESS_THRESHOLD;
2442 			}
2443 			decrease_rate(ni);
2444 			need_change = 1;
2445 		}
2446 		amrr->recovery = 0;	/* original paper was incorrect */
2447 	}
2448 
2449 	if (is_enough(amrr) || need_change)
2450 		reset_cnt(amrr);
2451 }
2452