xref: /netbsd-src/sys/dev/usb/if_ural.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: if_ural.c,v 1.36 2010/11/03 22:28:31 dyoung Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.36 2010/11/03 22:28:31 dyoung Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67 
68 #include <dev/usb/if_uralreg.h>
69 #include <dev/usb/if_uralvar.h>
70 
71 #ifdef USB_DEBUG
72 #define URAL_DEBUG
73 #endif
74 
75 #ifdef URAL_DEBUG
76 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
77 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
78 int ural_debug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83 
84 /* various supported device vendors/products */
85 static const struct usb_devno ural_devs[] = {
86 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
87 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
88 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
90 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
91 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
92 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
93 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
94 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
95 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
98 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
101 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
102 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
103 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
105 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
106 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
107 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
108 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
109 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
110 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
111 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
112 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
113 };
114 
115 Static int		ural_alloc_tx_list(struct ural_softc *);
116 Static void		ural_free_tx_list(struct ural_softc *);
117 Static int		ural_alloc_rx_list(struct ural_softc *);
118 Static void		ural_free_rx_list(struct ural_softc *);
119 Static int		ural_media_change(struct ifnet *);
120 Static void		ural_next_scan(void *);
121 Static void		ural_task(void *);
122 Static int		ural_newstate(struct ieee80211com *,
123 			    enum ieee80211_state, int);
124 Static int		ural_rxrate(struct ural_rx_desc *);
125 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
126 			    usbd_status);
127 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
128 			    usbd_status);
129 Static int		ural_ack_rate(struct ieee80211com *, int);
130 Static uint16_t		ural_txtime(int, int, uint32_t);
131 Static uint8_t		ural_plcp_signal(int);
132 Static void		ural_setup_tx_desc(struct ural_softc *,
133 			    struct ural_tx_desc *, uint32_t, int, int);
134 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
135 			    struct ieee80211_node *);
136 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
137 			    struct ieee80211_node *);
138 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
139 			    struct ieee80211_node *);
140 Static void		ural_start(struct ifnet *);
141 Static void		ural_watchdog(struct ifnet *);
142 Static int		ural_reset(struct ifnet *);
143 Static int		ural_ioctl(struct ifnet *, u_long, void *);
144 Static void		ural_set_testmode(struct ural_softc *);
145 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
148 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
151 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
152 			    int);
153 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
154 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
155 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
156 Static void		ural_set_chan(struct ural_softc *,
157 			    struct ieee80211_channel *);
158 Static void		ural_disable_rf_tune(struct ural_softc *);
159 Static void		ural_enable_tsf_sync(struct ural_softc *);
160 Static void		ural_update_slot(struct ifnet *);
161 Static void		ural_set_txpreamble(struct ural_softc *);
162 Static void		ural_set_basicrates(struct ural_softc *);
163 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
164 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
165 Static void		ural_update_promisc(struct ural_softc *);
166 Static const char	*ural_get_rf(int);
167 Static void		ural_read_eeprom(struct ural_softc *);
168 Static int		ural_bbp_init(struct ural_softc *);
169 Static void		ural_set_txantenna(struct ural_softc *, int);
170 Static void		ural_set_rxantenna(struct ural_softc *, int);
171 Static int		ural_init(struct ifnet *);
172 Static void		ural_stop(struct ifnet *, int);
173 Static void		ural_amrr_start(struct ural_softc *,
174 			    struct ieee80211_node *);
175 Static void		ural_amrr_timeout(void *);
176 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
177 			    usbd_status status);
178 
179 /*
180  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
181  */
182 static const struct ieee80211_rateset ural_rateset_11a =
183 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
184 
185 static const struct ieee80211_rateset ural_rateset_11b =
186 	{ 4, { 2, 4, 11, 22 } };
187 
188 static const struct ieee80211_rateset ural_rateset_11g =
189 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
190 
191 /*
192  * Default values for MAC registers; values taken from the reference driver.
193  */
194 static const struct {
195 	uint16_t	reg;
196 	uint16_t	val;
197 } ural_def_mac[] = {
198 	{ RAL_TXRX_CSR5,  0x8c8d },
199 	{ RAL_TXRX_CSR6,  0x8b8a },
200 	{ RAL_TXRX_CSR7,  0x8687 },
201 	{ RAL_TXRX_CSR8,  0x0085 },
202 	{ RAL_MAC_CSR13,  0x1111 },
203 	{ RAL_MAC_CSR14,  0x1e11 },
204 	{ RAL_TXRX_CSR21, 0xe78f },
205 	{ RAL_MAC_CSR9,   0xff1d },
206 	{ RAL_MAC_CSR11,  0x0002 },
207 	{ RAL_MAC_CSR22,  0x0053 },
208 	{ RAL_MAC_CSR15,  0x0000 },
209 	{ RAL_MAC_CSR8,   0x0780 },
210 	{ RAL_TXRX_CSR19, 0x0000 },
211 	{ RAL_TXRX_CSR18, 0x005a },
212 	{ RAL_PHY_CSR2,   0x0000 },
213 	{ RAL_TXRX_CSR0,  0x1ec0 },
214 	{ RAL_PHY_CSR4,   0x000f }
215 };
216 
217 /*
218  * Default values for BBP registers; values taken from the reference driver.
219  */
220 static const struct {
221 	uint8_t	reg;
222 	uint8_t	val;
223 } ural_def_bbp[] = {
224 	{  3, 0x02 },
225 	{  4, 0x19 },
226 	{ 14, 0x1c },
227 	{ 15, 0x30 },
228 	{ 16, 0xac },
229 	{ 17, 0x48 },
230 	{ 18, 0x18 },
231 	{ 19, 0xff },
232 	{ 20, 0x1e },
233 	{ 21, 0x08 },
234 	{ 22, 0x08 },
235 	{ 23, 0x08 },
236 	{ 24, 0x80 },
237 	{ 25, 0x50 },
238 	{ 26, 0x08 },
239 	{ 27, 0x23 },
240 	{ 30, 0x10 },
241 	{ 31, 0x2b },
242 	{ 32, 0xb9 },
243 	{ 34, 0x12 },
244 	{ 35, 0x50 },
245 	{ 39, 0xc4 },
246 	{ 40, 0x02 },
247 	{ 41, 0x60 },
248 	{ 53, 0x10 },
249 	{ 54, 0x18 },
250 	{ 56, 0x08 },
251 	{ 57, 0x10 },
252 	{ 58, 0x08 },
253 	{ 61, 0x60 },
254 	{ 62, 0x10 },
255 	{ 75, 0xff }
256 };
257 
258 /*
259  * Default values for RF register R2 indexed by channel numbers.
260  */
261 static const uint32_t ural_rf2522_r2[] = {
262 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
263 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
264 };
265 
266 static const uint32_t ural_rf2523_r2[] = {
267 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
268 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
269 };
270 
271 static const uint32_t ural_rf2524_r2[] = {
272 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275 
276 static const uint32_t ural_rf2525_r2[] = {
277 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
278 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
279 };
280 
281 static const uint32_t ural_rf2525_hi_r2[] = {
282 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
283 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
284 };
285 
286 static const uint32_t ural_rf2525e_r2[] = {
287 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
288 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
289 };
290 
291 static const uint32_t ural_rf2526_hi_r2[] = {
292 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
293 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
294 };
295 
296 static const uint32_t ural_rf2526_r2[] = {
297 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
298 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
299 };
300 
301 /*
302  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
303  * values taken from the reference driver.
304  */
305 static const struct {
306 	uint8_t		chan;
307 	uint32_t	r1;
308 	uint32_t	r2;
309 	uint32_t	r4;
310 } ural_rf5222[] = {
311 	{   1, 0x08808, 0x0044d, 0x00282 },
312 	{   2, 0x08808, 0x0044e, 0x00282 },
313 	{   3, 0x08808, 0x0044f, 0x00282 },
314 	{   4, 0x08808, 0x00460, 0x00282 },
315 	{   5, 0x08808, 0x00461, 0x00282 },
316 	{   6, 0x08808, 0x00462, 0x00282 },
317 	{   7, 0x08808, 0x00463, 0x00282 },
318 	{   8, 0x08808, 0x00464, 0x00282 },
319 	{   9, 0x08808, 0x00465, 0x00282 },
320 	{  10, 0x08808, 0x00466, 0x00282 },
321 	{  11, 0x08808, 0x00467, 0x00282 },
322 	{  12, 0x08808, 0x00468, 0x00282 },
323 	{  13, 0x08808, 0x00469, 0x00282 },
324 	{  14, 0x08808, 0x0046b, 0x00286 },
325 
326 	{  36, 0x08804, 0x06225, 0x00287 },
327 	{  40, 0x08804, 0x06226, 0x00287 },
328 	{  44, 0x08804, 0x06227, 0x00287 },
329 	{  48, 0x08804, 0x06228, 0x00287 },
330 	{  52, 0x08804, 0x06229, 0x00287 },
331 	{  56, 0x08804, 0x0622a, 0x00287 },
332 	{  60, 0x08804, 0x0622b, 0x00287 },
333 	{  64, 0x08804, 0x0622c, 0x00287 },
334 
335 	{ 100, 0x08804, 0x02200, 0x00283 },
336 	{ 104, 0x08804, 0x02201, 0x00283 },
337 	{ 108, 0x08804, 0x02202, 0x00283 },
338 	{ 112, 0x08804, 0x02203, 0x00283 },
339 	{ 116, 0x08804, 0x02204, 0x00283 },
340 	{ 120, 0x08804, 0x02205, 0x00283 },
341 	{ 124, 0x08804, 0x02206, 0x00283 },
342 	{ 128, 0x08804, 0x02207, 0x00283 },
343 	{ 132, 0x08804, 0x02208, 0x00283 },
344 	{ 136, 0x08804, 0x02209, 0x00283 },
345 	{ 140, 0x08804, 0x0220a, 0x00283 },
346 
347 	{ 149, 0x08808, 0x02429, 0x00281 },
348 	{ 153, 0x08808, 0x0242b, 0x00281 },
349 	{ 157, 0x08808, 0x0242d, 0x00281 },
350 	{ 161, 0x08808, 0x0242f, 0x00281 }
351 };
352 
353 int             ural_match(device_t, cfdata_t, void *);
354 void            ural_attach(device_t, device_t, void *);
355 int             ural_detach(device_t, int);
356 int             ural_activate(device_t, enum devact);
357 extern struct cfdriver ural_cd;
358 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
359 
360 int
361 ural_match(device_t parent, cfdata_t match, void *aux)
362 {
363 	struct usb_attach_arg *uaa = aux;
364 
365 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
366 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
367 }
368 
369 void
370 ural_attach(device_t parent, device_t self, void *aux)
371 {
372 	struct ural_softc *sc = device_private(self);
373 	struct usb_attach_arg *uaa = aux;
374 	struct ieee80211com *ic = &sc->sc_ic;
375 	struct ifnet *ifp = &sc->sc_if;
376 	usb_interface_descriptor_t *id;
377 	usb_endpoint_descriptor_t *ed;
378 	usbd_status error;
379 	char *devinfop;
380 	int i;
381 
382 	sc->sc_dev = self;
383 	sc->sc_udev = uaa->device;
384 
385 	aprint_naive("\n");
386 	aprint_normal("\n");
387 
388 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
389 	aprint_normal_dev(self, "%s\n", devinfop);
390 	usbd_devinfo_free(devinfop);
391 
392 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
393 		aprint_error_dev(self, "could not set configuration no\n");
394 		return;
395 	}
396 
397 	/* get the first interface handle */
398 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
399 	    &sc->sc_iface);
400 	if (error != 0) {
401 		aprint_error_dev(self, "could not get interface handle\n");
402 		return;
403 	}
404 
405 	/*
406 	 * Find endpoints.
407 	 */
408 	id = usbd_get_interface_descriptor(sc->sc_iface);
409 
410 	sc->sc_rx_no = sc->sc_tx_no = -1;
411 	for (i = 0; i < id->bNumEndpoints; i++) {
412 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
413 		if (ed == NULL) {
414 			aprint_error_dev(self,
415 			    "no endpoint descriptor for %d\n", i);
416 			return;
417 		}
418 
419 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
420 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
421 			sc->sc_rx_no = ed->bEndpointAddress;
422 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
423 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424 			sc->sc_tx_no = ed->bEndpointAddress;
425 	}
426 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
427 		aprint_error_dev(self, "missing endpoint\n");
428 		return;
429 	}
430 
431 	usb_init_task(&sc->sc_task, ural_task, sc);
432 	callout_init(&sc->sc_scan_ch, 0);
433 	sc->amrr.amrr_min_success_threshold = 1;
434 	sc->amrr.amrr_max_success_threshold = 15;
435 	callout_init(&sc->sc_amrr_ch, 0);
436 
437 	/* retrieve RT2570 rev. no */
438 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
439 
440 	/* retrieve MAC address and various other things from EEPROM */
441 	ural_read_eeprom(sc);
442 
443 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
444 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
445 
446 	ifp->if_softc = sc;
447 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
448 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 	ifp->if_init = ural_init;
450 	ifp->if_ioctl = ural_ioctl;
451 	ifp->if_start = ural_start;
452 	ifp->if_watchdog = ural_watchdog;
453 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
454 	IFQ_SET_READY(&ifp->if_snd);
455 
456 	ic->ic_ifp = ifp;
457 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
458 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
459 	ic->ic_state = IEEE80211_S_INIT;
460 
461 	/* set device capabilities */
462 	ic->ic_caps =
463 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
464 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
465 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
466 	    IEEE80211_C_TXPMGT |	/* tx power management */
467 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
468 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
469 	    IEEE80211_C_WPA;		/* 802.11i */
470 
471 	if (sc->rf_rev == RAL_RF_5222) {
472 		/* set supported .11a rates */
473 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
474 
475 		/* set supported .11a channels */
476 		for (i = 36; i <= 64; i += 4) {
477 			ic->ic_channels[i].ic_freq =
478 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 		}
481 		for (i = 100; i <= 140; i += 4) {
482 			ic->ic_channels[i].ic_freq =
483 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 		}
486 		for (i = 149; i <= 161; i += 4) {
487 			ic->ic_channels[i].ic_freq =
488 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
489 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
490 		}
491 	}
492 
493 	/* set supported .11b and .11g rates */
494 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
495 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
496 
497 	/* set supported .11b and .11g channels (1 through 14) */
498 	for (i = 1; i <= 14; i++) {
499 		ic->ic_channels[i].ic_freq =
500 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
501 		ic->ic_channels[i].ic_flags =
502 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
503 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
504 	}
505 
506 	if_attach(ifp);
507 	ieee80211_ifattach(ic);
508 	ic->ic_reset = ural_reset;
509 
510 	/* override state transition machine */
511 	sc->sc_newstate = ic->ic_newstate;
512 	ic->ic_newstate = ural_newstate;
513 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
514 
515 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
516 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
517 
518 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
519 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
520 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
521 
522 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
523 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
524 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
525 
526 	ieee80211_announce(ic);
527 
528 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
529 	    sc->sc_dev);
530 
531 	return;
532 }
533 
534 int
535 ural_detach(device_t self, int flags)
536 {
537 	struct ural_softc *sc = device_private(self);
538 	struct ieee80211com *ic = &sc->sc_ic;
539 	struct ifnet *ifp = &sc->sc_if;
540 	int s;
541 
542 	s = splusb();
543 
544 	ural_stop(ifp, 1);
545 	usb_rem_task(sc->sc_udev, &sc->sc_task);
546 	callout_stop(&sc->sc_scan_ch);
547 	callout_stop(&sc->sc_amrr_ch);
548 
549 	if (sc->amrr_xfer != NULL) {
550 		usbd_free_xfer(sc->amrr_xfer);
551 		sc->amrr_xfer = NULL;
552 	}
553 
554 	if (sc->sc_rx_pipeh != NULL) {
555 		usbd_abort_pipe(sc->sc_rx_pipeh);
556 		usbd_close_pipe(sc->sc_rx_pipeh);
557 	}
558 
559 	if (sc->sc_tx_pipeh != NULL) {
560 		usbd_abort_pipe(sc->sc_tx_pipeh);
561 		usbd_close_pipe(sc->sc_tx_pipeh);
562 	}
563 
564 	bpf_detach(ifp);
565 	ieee80211_ifdetach(ic);
566 	if_detach(ifp);
567 
568 	splx(s);
569 
570 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
571 	    sc->sc_dev);
572 
573 	return 0;
574 }
575 
576 Static int
577 ural_alloc_tx_list(struct ural_softc *sc)
578 {
579 	struct ural_tx_data *data;
580 	int i, error;
581 
582 	sc->tx_queued = 0;
583 
584 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
585 		data = &sc->tx_data[i];
586 
587 		data->sc = sc;
588 
589 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
590 		if (data->xfer == NULL) {
591 			printf("%s: could not allocate tx xfer\n",
592 			    device_xname(sc->sc_dev));
593 			error = ENOMEM;
594 			goto fail;
595 		}
596 
597 		data->buf = usbd_alloc_buffer(data->xfer,
598 		    RAL_TX_DESC_SIZE + MCLBYTES);
599 		if (data->buf == NULL) {
600 			printf("%s: could not allocate tx buffer\n",
601 			    device_xname(sc->sc_dev));
602 			error = ENOMEM;
603 			goto fail;
604 		}
605 	}
606 
607 	return 0;
608 
609 fail:	ural_free_tx_list(sc);
610 	return error;
611 }
612 
613 Static void
614 ural_free_tx_list(struct ural_softc *sc)
615 {
616 	struct ural_tx_data *data;
617 	int i;
618 
619 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
620 		data = &sc->tx_data[i];
621 
622 		if (data->xfer != NULL) {
623 			usbd_free_xfer(data->xfer);
624 			data->xfer = NULL;
625 		}
626 
627 		if (data->ni != NULL) {
628 			ieee80211_free_node(data->ni);
629 			data->ni = NULL;
630 		}
631 	}
632 }
633 
634 Static int
635 ural_alloc_rx_list(struct ural_softc *sc)
636 {
637 	struct ural_rx_data *data;
638 	int i, error;
639 
640 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
641 		data = &sc->rx_data[i];
642 
643 		data->sc = sc;
644 
645 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
646 		if (data->xfer == NULL) {
647 			printf("%s: could not allocate rx xfer\n",
648 			    device_xname(sc->sc_dev));
649 			error = ENOMEM;
650 			goto fail;
651 		}
652 
653 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
654 			printf("%s: could not allocate rx buffer\n",
655 			    device_xname(sc->sc_dev));
656 			error = ENOMEM;
657 			goto fail;
658 		}
659 
660 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
661 		if (data->m == NULL) {
662 			printf("%s: could not allocate rx mbuf\n",
663 			    device_xname(sc->sc_dev));
664 			error = ENOMEM;
665 			goto fail;
666 		}
667 
668 		MCLGET(data->m, M_DONTWAIT);
669 		if (!(data->m->m_flags & M_EXT)) {
670 			printf("%s: could not allocate rx mbuf cluster\n",
671 			    device_xname(sc->sc_dev));
672 			error = ENOMEM;
673 			goto fail;
674 		}
675 
676 		data->buf = mtod(data->m, uint8_t *);
677 	}
678 
679 	return 0;
680 
681 fail:	ural_free_tx_list(sc);
682 	return error;
683 }
684 
685 Static void
686 ural_free_rx_list(struct ural_softc *sc)
687 {
688 	struct ural_rx_data *data;
689 	int i;
690 
691 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
692 		data = &sc->rx_data[i];
693 
694 		if (data->xfer != NULL) {
695 			usbd_free_xfer(data->xfer);
696 			data->xfer = NULL;
697 		}
698 
699 		if (data->m != NULL) {
700 			m_freem(data->m);
701 			data->m = NULL;
702 		}
703 	}
704 }
705 
706 Static int
707 ural_media_change(struct ifnet *ifp)
708 {
709 	int error;
710 
711 	error = ieee80211_media_change(ifp);
712 	if (error != ENETRESET)
713 		return error;
714 
715 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
716 		ural_init(ifp);
717 
718 	return 0;
719 }
720 
721 /*
722  * This function is called periodically (every 200ms) during scanning to
723  * switch from one channel to another.
724  */
725 Static void
726 ural_next_scan(void *arg)
727 {
728 	struct ural_softc *sc = arg;
729 	struct ieee80211com *ic = &sc->sc_ic;
730 
731 	if (ic->ic_state == IEEE80211_S_SCAN)
732 		ieee80211_next_scan(ic);
733 }
734 
735 Static void
736 ural_task(void *arg)
737 {
738 	struct ural_softc *sc = arg;
739 	struct ieee80211com *ic = &sc->sc_ic;
740 	enum ieee80211_state ostate;
741 	struct ieee80211_node *ni;
742 	struct mbuf *m;
743 
744 	ostate = ic->ic_state;
745 
746 	switch (sc->sc_state) {
747 	case IEEE80211_S_INIT:
748 		if (ostate == IEEE80211_S_RUN) {
749 			/* abort TSF synchronization */
750 			ural_write(sc, RAL_TXRX_CSR19, 0);
751 
752 			/* force tx led to stop blinking */
753 			ural_write(sc, RAL_MAC_CSR20, 0);
754 		}
755 		break;
756 
757 	case IEEE80211_S_SCAN:
758 		ural_set_chan(sc, ic->ic_curchan);
759 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
760 		break;
761 
762 	case IEEE80211_S_AUTH:
763 		ural_set_chan(sc, ic->ic_curchan);
764 		break;
765 
766 	case IEEE80211_S_ASSOC:
767 		ural_set_chan(sc, ic->ic_curchan);
768 		break;
769 
770 	case IEEE80211_S_RUN:
771 		ural_set_chan(sc, ic->ic_curchan);
772 
773 		ni = ic->ic_bss;
774 
775 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
776 			ural_update_slot(ic->ic_ifp);
777 			ural_set_txpreamble(sc);
778 			ural_set_basicrates(sc);
779 			ural_set_bssid(sc, ni->ni_bssid);
780 		}
781 
782 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
783 		    ic->ic_opmode == IEEE80211_M_IBSS) {
784 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
785 			if (m == NULL) {
786 				printf("%s: could not allocate beacon\n",
787 				    device_xname(sc->sc_dev));
788 				return;
789 			}
790 
791 			if (ural_tx_bcn(sc, m, ni) != 0) {
792 				m_freem(m);
793 				printf("%s: could not send beacon\n",
794 				    device_xname(sc->sc_dev));
795 				return;
796 			}
797 
798 			/* beacon is no longer needed */
799 			m_freem(m);
800 		}
801 
802 		/* make tx led blink on tx (controlled by ASIC) */
803 		ural_write(sc, RAL_MAC_CSR20, 1);
804 
805 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
806 			ural_enable_tsf_sync(sc);
807 
808 		/* enable automatic rate adaptation in STA mode */
809 		if (ic->ic_opmode == IEEE80211_M_STA &&
810 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
811 			ural_amrr_start(sc, ni);
812 
813 		break;
814 	}
815 
816 	sc->sc_newstate(ic, sc->sc_state, -1);
817 }
818 
819 Static int
820 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
821     int arg)
822 {
823 	struct ural_softc *sc = ic->ic_ifp->if_softc;
824 
825 	usb_rem_task(sc->sc_udev, &sc->sc_task);
826 	callout_stop(&sc->sc_scan_ch);
827 	callout_stop(&sc->sc_amrr_ch);
828 
829 	/* do it in a process context */
830 	sc->sc_state = nstate;
831 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
832 
833 	return 0;
834 }
835 
836 /* quickly determine if a given rate is CCK or OFDM */
837 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
838 
839 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
840 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
841 
842 #define RAL_SIFS		10	/* us */
843 
844 #define RAL_RXTX_TURNAROUND	5	/* us */
845 
846 /*
847  * This function is only used by the Rx radiotap code.
848  */
849 Static int
850 ural_rxrate(struct ural_rx_desc *desc)
851 {
852 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
853 		/* reverse function of ural_plcp_signal */
854 		switch (desc->rate) {
855 		case 0xb:	return 12;
856 		case 0xf:	return 18;
857 		case 0xa:	return 24;
858 		case 0xe:	return 36;
859 		case 0x9:	return 48;
860 		case 0xd:	return 72;
861 		case 0x8:	return 96;
862 		case 0xc:	return 108;
863 		}
864 	} else {
865 		if (desc->rate == 10)
866 			return 2;
867 		if (desc->rate == 20)
868 			return 4;
869 		if (desc->rate == 55)
870 			return 11;
871 		if (desc->rate == 110)
872 			return 22;
873 	}
874 	return 2;	/* should not get there */
875 }
876 
877 Static void
878 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
879     usbd_status status)
880 {
881 	struct ural_tx_data *data = priv;
882 	struct ural_softc *sc = data->sc;
883 	struct ifnet *ifp = &sc->sc_if;
884 	int s;
885 
886 	if (status != USBD_NORMAL_COMPLETION) {
887 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
888 			return;
889 
890 		printf("%s: could not transmit buffer: %s\n",
891 		    device_xname(sc->sc_dev), usbd_errstr(status));
892 
893 		if (status == USBD_STALLED)
894 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
895 
896 		ifp->if_oerrors++;
897 		return;
898 	}
899 
900 	s = splnet();
901 
902 	m_freem(data->m);
903 	data->m = NULL;
904 	ieee80211_free_node(data->ni);
905 	data->ni = NULL;
906 
907 	sc->tx_queued--;
908 	ifp->if_opackets++;
909 
910 	DPRINTFN(10, ("tx done\n"));
911 
912 	sc->sc_tx_timer = 0;
913 	ifp->if_flags &= ~IFF_OACTIVE;
914 	ural_start(ifp);
915 
916 	splx(s);
917 }
918 
919 Static void
920 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
921 {
922 	struct ural_rx_data *data = priv;
923 	struct ural_softc *sc = data->sc;
924 	struct ieee80211com *ic = &sc->sc_ic;
925 	struct ifnet *ifp = &sc->sc_if;
926 	struct ural_rx_desc *desc;
927 	struct ieee80211_frame *wh;
928 	struct ieee80211_node *ni;
929 	struct mbuf *mnew, *m;
930 	int s, len;
931 
932 	if (status != USBD_NORMAL_COMPLETION) {
933 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
934 			return;
935 
936 		if (status == USBD_STALLED)
937 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
938 		goto skip;
939 	}
940 
941 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
942 
943 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
944 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
945 		    len));
946 		ifp->if_ierrors++;
947 		goto skip;
948 	}
949 
950 	/* rx descriptor is located at the end */
951 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
952 
953 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
954 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
955 		/*
956 		 * This should not happen since we did not request to receive
957 		 * those frames when we filled RAL_TXRX_CSR2.
958 		 */
959 		DPRINTFN(5, ("PHY or CRC error\n"));
960 		ifp->if_ierrors++;
961 		goto skip;
962 	}
963 
964 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
965 	if (mnew == NULL) {
966 		ifp->if_ierrors++;
967 		goto skip;
968 	}
969 
970 	MCLGET(mnew, M_DONTWAIT);
971 	if (!(mnew->m_flags & M_EXT)) {
972 		ifp->if_ierrors++;
973 		m_freem(mnew);
974 		goto skip;
975 	}
976 
977 	m = data->m;
978 	data->m = mnew;
979 	data->buf = mtod(data->m, uint8_t *);
980 
981 	/* finalize mbuf */
982 	m->m_pkthdr.rcvif = ifp;
983 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
984 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
985 
986 	s = splnet();
987 
988 	if (sc->sc_drvbpf != NULL) {
989 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
990 
991 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
992 		tap->wr_rate = ural_rxrate(desc);
993 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
994 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
995 		tap->wr_antenna = sc->rx_ant;
996 		tap->wr_antsignal = desc->rssi;
997 
998 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
999 	}
1000 
1001 	wh = mtod(m, struct ieee80211_frame *);
1002 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1003 
1004 	/* send the frame to the 802.11 layer */
1005 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1006 
1007 	/* node is no longer needed */
1008 	ieee80211_free_node(ni);
1009 
1010 	splx(s);
1011 
1012 	DPRINTFN(15, ("rx done\n"));
1013 
1014 skip:	/* setup a new transfer */
1015 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1016 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1017 	usbd_transfer(xfer);
1018 }
1019 
1020 /*
1021  * Return the expected ack rate for a frame transmitted at rate `rate'.
1022  * XXX: this should depend on the destination node basic rate set.
1023  */
1024 Static int
1025 ural_ack_rate(struct ieee80211com *ic, int rate)
1026 {
1027 	switch (rate) {
1028 	/* CCK rates */
1029 	case 2:
1030 		return 2;
1031 	case 4:
1032 	case 11:
1033 	case 22:
1034 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1035 
1036 	/* OFDM rates */
1037 	case 12:
1038 	case 18:
1039 		return 12;
1040 	case 24:
1041 	case 36:
1042 		return 24;
1043 	case 48:
1044 	case 72:
1045 	case 96:
1046 	case 108:
1047 		return 48;
1048 	}
1049 
1050 	/* default to 1Mbps */
1051 	return 2;
1052 }
1053 
1054 /*
1055  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1056  * The function automatically determines the operating mode depending on the
1057  * given rate. `flags' indicates whether short preamble is in use or not.
1058  */
1059 Static uint16_t
1060 ural_txtime(int len, int rate, uint32_t flags)
1061 {
1062 	uint16_t txtime;
1063 
1064 	if (RAL_RATE_IS_OFDM(rate)) {
1065 		/* IEEE Std 802.11g-2003, pp. 37 */
1066 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1067 		txtime = 16 + 4 + 4 * txtime + 6;
1068 	} else {
1069 		/* IEEE Std 802.11b-1999, pp. 28 */
1070 		txtime = (16 * len + rate - 1) / rate;
1071 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1072 			txtime +=  72 + 24;
1073 		else
1074 			txtime += 144 + 48;
1075 	}
1076 	return txtime;
1077 }
1078 
1079 Static uint8_t
1080 ural_plcp_signal(int rate)
1081 {
1082 	switch (rate) {
1083 	/* CCK rates (returned values are device-dependent) */
1084 	case 2:		return 0x0;
1085 	case 4:		return 0x1;
1086 	case 11:	return 0x2;
1087 	case 22:	return 0x3;
1088 
1089 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1090 	case 12:	return 0xb;
1091 	case 18:	return 0xf;
1092 	case 24:	return 0xa;
1093 	case 36:	return 0xe;
1094 	case 48:	return 0x9;
1095 	case 72:	return 0xd;
1096 	case 96:	return 0x8;
1097 	case 108:	return 0xc;
1098 
1099 	/* unsupported rates (should not get there) */
1100 	default:	return 0xff;
1101 	}
1102 }
1103 
1104 Static void
1105 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1106     uint32_t flags, int len, int rate)
1107 {
1108 	struct ieee80211com *ic = &sc->sc_ic;
1109 	uint16_t plcp_length;
1110 	int remainder;
1111 
1112 	desc->flags = htole32(flags);
1113 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1114 	desc->flags |= htole32(len << 16);
1115 
1116 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1117 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1118 
1119 	/* setup PLCP fields */
1120 	desc->plcp_signal  = ural_plcp_signal(rate);
1121 	desc->plcp_service = 4;
1122 
1123 	len += IEEE80211_CRC_LEN;
1124 	if (RAL_RATE_IS_OFDM(rate)) {
1125 		desc->flags |= htole32(RAL_TX_OFDM);
1126 
1127 		plcp_length = len & 0xfff;
1128 		desc->plcp_length_hi = plcp_length >> 6;
1129 		desc->plcp_length_lo = plcp_length & 0x3f;
1130 	} else {
1131 		plcp_length = (16 * len + rate - 1) / rate;
1132 		if (rate == 22) {
1133 			remainder = (16 * len) % 22;
1134 			if (remainder != 0 && remainder < 7)
1135 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1136 		}
1137 		desc->plcp_length_hi = plcp_length >> 8;
1138 		desc->plcp_length_lo = plcp_length & 0xff;
1139 
1140 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1141 			desc->plcp_signal |= 0x08;
1142 	}
1143 
1144 	desc->iv = 0;
1145 	desc->eiv = 0;
1146 }
1147 
1148 #define RAL_TX_TIMEOUT	5000
1149 
1150 Static int
1151 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1152 {
1153 	struct ural_tx_desc *desc;
1154 	usbd_xfer_handle xfer;
1155 	uint8_t cmd = 0;
1156 	usbd_status error;
1157 	uint8_t *buf;
1158 	int xferlen, rate;
1159 
1160 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1161 
1162 	xfer = usbd_alloc_xfer(sc->sc_udev);
1163 	if (xfer == NULL)
1164 		return ENOMEM;
1165 
1166 	/* xfer length needs to be a multiple of two! */
1167 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1168 
1169 	buf = usbd_alloc_buffer(xfer, xferlen);
1170 	if (buf == NULL) {
1171 		usbd_free_xfer(xfer);
1172 		return ENOMEM;
1173 	}
1174 
1175 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1176 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1177 
1178 	error = usbd_sync_transfer(xfer);
1179 	if (error != 0) {
1180 		usbd_free_xfer(xfer);
1181 		return error;
1182 	}
1183 
1184 	desc = (struct ural_tx_desc *)buf;
1185 
1186 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1187 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1188 	    m0->m_pkthdr.len, rate);
1189 
1190 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1191 	    m0->m_pkthdr.len, rate, xferlen));
1192 
1193 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1194 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1195 
1196 	error = usbd_sync_transfer(xfer);
1197 	usbd_free_xfer(xfer);
1198 
1199 	return error;
1200 }
1201 
1202 Static int
1203 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1204 {
1205 	struct ieee80211com *ic = &sc->sc_ic;
1206 	struct ural_tx_desc *desc;
1207 	struct ural_tx_data *data;
1208 	struct ieee80211_frame *wh;
1209 	struct ieee80211_key *k;
1210 	uint32_t flags = 0;
1211 	uint16_t dur;
1212 	usbd_status error;
1213 	int xferlen, rate;
1214 
1215 	data = &sc->tx_data[0];
1216 	desc = (struct ural_tx_desc *)data->buf;
1217 
1218 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1219 
1220 	wh = mtod(m0, struct ieee80211_frame *);
1221 
1222 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1223 		k = ieee80211_crypto_encap(ic, ni, m0);
1224 		if (k == NULL) {
1225 			m_freem(m0);
1226 			return ENOBUFS;
1227 		}
1228 	}
1229 
1230 	data->m = m0;
1231 	data->ni = ni;
1232 
1233 	wh = mtod(m0, struct ieee80211_frame *);
1234 
1235 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1236 		flags |= RAL_TX_ACK;
1237 
1238 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1239 		*(uint16_t *)wh->i_dur = htole16(dur);
1240 
1241 		/* tell hardware to add timestamp for probe responses */
1242 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1243 		    IEEE80211_FC0_TYPE_MGT &&
1244 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1245 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1246 			flags |= RAL_TX_TIMESTAMP;
1247 	}
1248 
1249 	if (sc->sc_drvbpf != NULL) {
1250 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1251 
1252 		tap->wt_flags = 0;
1253 		tap->wt_rate = rate;
1254 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1255 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1256 		tap->wt_antenna = sc->tx_ant;
1257 
1258 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1259 	}
1260 
1261 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1262 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1263 
1264 	/* align end on a 2-bytes boundary */
1265 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1266 
1267 	/*
1268 	 * No space left in the last URB to store the extra 2 bytes, force
1269 	 * sending of another URB.
1270 	 */
1271 	if ((xferlen % 64) == 0)
1272 		xferlen += 2;
1273 
1274 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1275 	    m0->m_pkthdr.len, rate, xferlen));
1276 
1277 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1278 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1279 	    ural_txeof);
1280 
1281 	error = usbd_transfer(data->xfer);
1282 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1283 		m_freem(m0);
1284 		return error;
1285 	}
1286 
1287 	sc->tx_queued++;
1288 
1289 	return 0;
1290 }
1291 
1292 Static int
1293 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1294 {
1295 	struct ieee80211com *ic = &sc->sc_ic;
1296 	struct ural_tx_desc *desc;
1297 	struct ural_tx_data *data;
1298 	struct ieee80211_frame *wh;
1299 	struct ieee80211_key *k;
1300 	uint32_t flags = 0;
1301 	uint16_t dur;
1302 	usbd_status error;
1303 	int xferlen, rate;
1304 
1305 	wh = mtod(m0, struct ieee80211_frame *);
1306 
1307 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1308 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1309 	else
1310 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1311 
1312 	rate &= IEEE80211_RATE_VAL;
1313 
1314 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1315 		k = ieee80211_crypto_encap(ic, ni, m0);
1316 		if (k == NULL) {
1317 			m_freem(m0);
1318 			return ENOBUFS;
1319 		}
1320 
1321 		/* packet header may have moved, reset our local pointer */
1322 		wh = mtod(m0, struct ieee80211_frame *);
1323 	}
1324 
1325 	data = &sc->tx_data[0];
1326 	desc = (struct ural_tx_desc *)data->buf;
1327 
1328 	data->m = m0;
1329 	data->ni = ni;
1330 
1331 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1332 		flags |= RAL_TX_ACK;
1333 		flags |= RAL_TX_RETRY(7);
1334 
1335 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1336 		    ic->ic_flags) + RAL_SIFS;
1337 		*(uint16_t *)wh->i_dur = htole16(dur);
1338 	}
1339 
1340 	if (sc->sc_drvbpf != NULL) {
1341 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1342 
1343 		tap->wt_flags = 0;
1344 		tap->wt_rate = rate;
1345 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1346 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1347 		tap->wt_antenna = sc->tx_ant;
1348 
1349 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1350 	}
1351 
1352 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1353 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1354 
1355 	/* align end on a 2-bytes boundary */
1356 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1357 
1358 	/*
1359 	 * No space left in the last URB to store the extra 2 bytes, force
1360 	 * sending of another URB.
1361 	 */
1362 	if ((xferlen % 64) == 0)
1363 		xferlen += 2;
1364 
1365 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1366 	    m0->m_pkthdr.len, rate, xferlen));
1367 
1368 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1369 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1370 	    ural_txeof);
1371 
1372 	error = usbd_transfer(data->xfer);
1373 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1374 		return error;
1375 
1376 	sc->tx_queued++;
1377 
1378 	return 0;
1379 }
1380 
1381 Static void
1382 ural_start(struct ifnet *ifp)
1383 {
1384 	struct ural_softc *sc = ifp->if_softc;
1385 	struct ieee80211com *ic = &sc->sc_ic;
1386 	struct mbuf *m0;
1387 	struct ether_header *eh;
1388 	struct ieee80211_node *ni;
1389 
1390 	for (;;) {
1391 		IF_POLL(&ic->ic_mgtq, m0);
1392 		if (m0 != NULL) {
1393 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1394 				ifp->if_flags |= IFF_OACTIVE;
1395 				break;
1396 			}
1397 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1398 
1399 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1400 			m0->m_pkthdr.rcvif = NULL;
1401 			bpf_mtap3(ic->ic_rawbpf, m0);
1402 			if (ural_tx_mgt(sc, m0, ni) != 0)
1403 				break;
1404 
1405 		} else {
1406 			if (ic->ic_state != IEEE80211_S_RUN)
1407 				break;
1408 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1409 			if (m0 == NULL)
1410 				break;
1411 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1412 				IF_PREPEND(&ifp->if_snd, m0);
1413 				ifp->if_flags |= IFF_OACTIVE;
1414 				break;
1415 			}
1416 
1417 			if (m0->m_len < sizeof (struct ether_header) &&
1418 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1419 				continue;
1420 
1421 			eh = mtod(m0, struct ether_header *);
1422 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1423 			if (ni == NULL) {
1424 				m_freem(m0);
1425 				continue;
1426 			}
1427 			bpf_mtap(ifp, m0);
1428 			m0 = ieee80211_encap(ic, m0, ni);
1429 			if (m0 == NULL) {
1430 				ieee80211_free_node(ni);
1431 				continue;
1432 			}
1433 			bpf_mtap3(ic->ic_rawbpf, m0);
1434 			if (ural_tx_data(sc, m0, ni) != 0) {
1435 				ieee80211_free_node(ni);
1436 				ifp->if_oerrors++;
1437 				break;
1438 			}
1439 		}
1440 
1441 		sc->sc_tx_timer = 5;
1442 		ifp->if_timer = 1;
1443 	}
1444 }
1445 
1446 Static void
1447 ural_watchdog(struct ifnet *ifp)
1448 {
1449 	struct ural_softc *sc = ifp->if_softc;
1450 	struct ieee80211com *ic = &sc->sc_ic;
1451 
1452 	ifp->if_timer = 0;
1453 
1454 	if (sc->sc_tx_timer > 0) {
1455 		if (--sc->sc_tx_timer == 0) {
1456 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1457 			/*ural_init(sc); XXX needs a process context! */
1458 			ifp->if_oerrors++;
1459 			return;
1460 		}
1461 		ifp->if_timer = 1;
1462 	}
1463 
1464 	ieee80211_watchdog(ic);
1465 }
1466 
1467 /*
1468  * This function allows for fast channel switching in monitor mode (used by
1469  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1470  * generate a new beacon frame.
1471  */
1472 Static int
1473 ural_reset(struct ifnet *ifp)
1474 {
1475 	struct ural_softc *sc = ifp->if_softc;
1476 	struct ieee80211com *ic = &sc->sc_ic;
1477 
1478 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1479 		return ENETRESET;
1480 
1481 	ural_set_chan(sc, ic->ic_curchan);
1482 
1483 	return 0;
1484 }
1485 
1486 Static int
1487 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1488 {
1489 	struct ural_softc *sc = ifp->if_softc;
1490 	struct ieee80211com *ic = &sc->sc_ic;
1491 	int s, error = 0;
1492 
1493 	s = splnet();
1494 
1495 	switch (cmd) {
1496 	case SIOCSIFFLAGS:
1497 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1498 			break;
1499 		/* XXX re-use ether_ioctl() */
1500 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1501 		case IFF_UP|IFF_RUNNING:
1502 			ural_update_promisc(sc);
1503 			break;
1504 		case IFF_UP:
1505 			ural_init(ifp);
1506 			break;
1507 		case IFF_RUNNING:
1508 			ural_stop(ifp, 1);
1509 			break;
1510 		case 0:
1511 			break;
1512 		}
1513 		break;
1514 
1515 	default:
1516 		error = ieee80211_ioctl(ic, cmd, data);
1517 	}
1518 
1519 	if (error == ENETRESET) {
1520 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1521 		    (IFF_UP | IFF_RUNNING))
1522 			ural_init(ifp);
1523 		error = 0;
1524 	}
1525 
1526 	splx(s);
1527 
1528 	return error;
1529 }
1530 
1531 Static void
1532 ural_set_testmode(struct ural_softc *sc)
1533 {
1534 	usb_device_request_t req;
1535 	usbd_status error;
1536 
1537 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1538 	req.bRequest = RAL_VENDOR_REQUEST;
1539 	USETW(req.wValue, 4);
1540 	USETW(req.wIndex, 1);
1541 	USETW(req.wLength, 0);
1542 
1543 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1544 	if (error != 0) {
1545 		printf("%s: could not set test mode: %s\n",
1546 		    device_xname(sc->sc_dev), usbd_errstr(error));
1547 	}
1548 }
1549 
1550 Static void
1551 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1552 {
1553 	usb_device_request_t req;
1554 	usbd_status error;
1555 
1556 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1557 	req.bRequest = RAL_READ_EEPROM;
1558 	USETW(req.wValue, 0);
1559 	USETW(req.wIndex, addr);
1560 	USETW(req.wLength, len);
1561 
1562 	error = usbd_do_request(sc->sc_udev, &req, buf);
1563 	if (error != 0) {
1564 		printf("%s: could not read EEPROM: %s\n",
1565 		    device_xname(sc->sc_dev), usbd_errstr(error));
1566 	}
1567 }
1568 
1569 Static uint16_t
1570 ural_read(struct ural_softc *sc, uint16_t reg)
1571 {
1572 	usb_device_request_t req;
1573 	usbd_status error;
1574 	uint16_t val;
1575 
1576 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1577 	req.bRequest = RAL_READ_MAC;
1578 	USETW(req.wValue, 0);
1579 	USETW(req.wIndex, reg);
1580 	USETW(req.wLength, sizeof (uint16_t));
1581 
1582 	error = usbd_do_request(sc->sc_udev, &req, &val);
1583 	if (error != 0) {
1584 		printf("%s: could not read MAC register: %s\n",
1585 		    device_xname(sc->sc_dev), usbd_errstr(error));
1586 		return 0;
1587 	}
1588 
1589 	return le16toh(val);
1590 }
1591 
1592 Static void
1593 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1594 {
1595 	usb_device_request_t req;
1596 	usbd_status error;
1597 
1598 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1599 	req.bRequest = RAL_READ_MULTI_MAC;
1600 	USETW(req.wValue, 0);
1601 	USETW(req.wIndex, reg);
1602 	USETW(req.wLength, len);
1603 
1604 	error = usbd_do_request(sc->sc_udev, &req, buf);
1605 	if (error != 0) {
1606 		printf("%s: could not read MAC register: %s\n",
1607 		    device_xname(sc->sc_dev), usbd_errstr(error));
1608 	}
1609 }
1610 
1611 Static void
1612 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1613 {
1614 	usb_device_request_t req;
1615 	usbd_status error;
1616 
1617 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1618 	req.bRequest = RAL_WRITE_MAC;
1619 	USETW(req.wValue, val);
1620 	USETW(req.wIndex, reg);
1621 	USETW(req.wLength, 0);
1622 
1623 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1624 	if (error != 0) {
1625 		printf("%s: could not write MAC register: %s\n",
1626 		    device_xname(sc->sc_dev), usbd_errstr(error));
1627 	}
1628 }
1629 
1630 Static void
1631 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1632 {
1633 	usb_device_request_t req;
1634 	usbd_status error;
1635 
1636 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1637 	req.bRequest = RAL_WRITE_MULTI_MAC;
1638 	USETW(req.wValue, 0);
1639 	USETW(req.wIndex, reg);
1640 	USETW(req.wLength, len);
1641 
1642 	error = usbd_do_request(sc->sc_udev, &req, buf);
1643 	if (error != 0) {
1644 		printf("%s: could not write MAC register: %s\n",
1645 		    device_xname(sc->sc_dev), usbd_errstr(error));
1646 	}
1647 }
1648 
1649 Static void
1650 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1651 {
1652 	uint16_t tmp;
1653 	int ntries;
1654 
1655 	for (ntries = 0; ntries < 5; ntries++) {
1656 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1657 			break;
1658 	}
1659 	if (ntries == 5) {
1660 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1661 		return;
1662 	}
1663 
1664 	tmp = reg << 8 | val;
1665 	ural_write(sc, RAL_PHY_CSR7, tmp);
1666 }
1667 
1668 Static uint8_t
1669 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1670 {
1671 	uint16_t val;
1672 	int ntries;
1673 
1674 	val = RAL_BBP_WRITE | reg << 8;
1675 	ural_write(sc, RAL_PHY_CSR7, val);
1676 
1677 	for (ntries = 0; ntries < 5; ntries++) {
1678 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1679 			break;
1680 	}
1681 	if (ntries == 5) {
1682 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1683 		return 0;
1684 	}
1685 
1686 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1687 }
1688 
1689 Static void
1690 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1691 {
1692 	uint32_t tmp;
1693 	int ntries;
1694 
1695 	for (ntries = 0; ntries < 5; ntries++) {
1696 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1697 			break;
1698 	}
1699 	if (ntries == 5) {
1700 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1701 		return;
1702 	}
1703 
1704 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1705 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1706 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1707 
1708 	/* remember last written value in sc */
1709 	sc->rf_regs[reg] = val;
1710 
1711 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1712 }
1713 
1714 Static void
1715 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1716 {
1717 	struct ieee80211com *ic = &sc->sc_ic;
1718 	uint8_t power, tmp;
1719 	u_int i, chan;
1720 
1721 	chan = ieee80211_chan2ieee(ic, c);
1722 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1723 		return;
1724 
1725 	if (IEEE80211_IS_CHAN_2GHZ(c))
1726 		power = min(sc->txpow[chan - 1], 31);
1727 	else
1728 		power = 31;
1729 
1730 	/* adjust txpower using ifconfig settings */
1731 	power -= (100 - ic->ic_txpowlimit) / 8;
1732 
1733 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1734 
1735 	switch (sc->rf_rev) {
1736 	case RAL_RF_2522:
1737 		ural_rf_write(sc, RAL_RF1, 0x00814);
1738 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1739 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1740 		break;
1741 
1742 	case RAL_RF_2523:
1743 		ural_rf_write(sc, RAL_RF1, 0x08804);
1744 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1745 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1746 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1747 		break;
1748 
1749 	case RAL_RF_2524:
1750 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1751 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1752 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1753 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1754 		break;
1755 
1756 	case RAL_RF_2525:
1757 		ural_rf_write(sc, RAL_RF1, 0x08808);
1758 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1759 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1760 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1761 
1762 		ural_rf_write(sc, RAL_RF1, 0x08808);
1763 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1764 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1765 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1766 		break;
1767 
1768 	case RAL_RF_2525E:
1769 		ural_rf_write(sc, RAL_RF1, 0x08808);
1770 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1771 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1772 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1773 		break;
1774 
1775 	case RAL_RF_2526:
1776 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1777 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1778 		ural_rf_write(sc, RAL_RF1, 0x08804);
1779 
1780 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1781 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1782 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1783 		break;
1784 
1785 	/* dual-band RF */
1786 	case RAL_RF_5222:
1787 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1788 
1789 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1790 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1791 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1792 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1793 		break;
1794 	}
1795 
1796 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1797 	    ic->ic_state != IEEE80211_S_SCAN) {
1798 		/* set Japan filter bit for channel 14 */
1799 		tmp = ural_bbp_read(sc, 70);
1800 
1801 		tmp &= ~RAL_JAPAN_FILTER;
1802 		if (chan == 14)
1803 			tmp |= RAL_JAPAN_FILTER;
1804 
1805 		ural_bbp_write(sc, 70, tmp);
1806 
1807 		/* clear CRC errors */
1808 		ural_read(sc, RAL_STA_CSR0);
1809 
1810 		DELAY(10000);
1811 		ural_disable_rf_tune(sc);
1812 	}
1813 }
1814 
1815 /*
1816  * Disable RF auto-tuning.
1817  */
1818 Static void
1819 ural_disable_rf_tune(struct ural_softc *sc)
1820 {
1821 	uint32_t tmp;
1822 
1823 	if (sc->rf_rev != RAL_RF_2523) {
1824 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1825 		ural_rf_write(sc, RAL_RF1, tmp);
1826 	}
1827 
1828 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1829 	ural_rf_write(sc, RAL_RF3, tmp);
1830 
1831 	DPRINTFN(2, ("disabling RF autotune\n"));
1832 }
1833 
1834 /*
1835  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1836  * synchronization.
1837  */
1838 Static void
1839 ural_enable_tsf_sync(struct ural_softc *sc)
1840 {
1841 	struct ieee80211com *ic = &sc->sc_ic;
1842 	uint16_t logcwmin, preload, tmp;
1843 
1844 	/* first, disable TSF synchronization */
1845 	ural_write(sc, RAL_TXRX_CSR19, 0);
1846 
1847 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1848 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1849 
1850 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1851 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1852 	tmp = logcwmin << 12 | preload;
1853 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1854 
1855 	/* finally, enable TSF synchronization */
1856 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1857 	if (ic->ic_opmode == IEEE80211_M_STA)
1858 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1859 	else
1860 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1861 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1862 
1863 	DPRINTF(("enabling TSF synchronization\n"));
1864 }
1865 
1866 Static void
1867 ural_update_slot(struct ifnet *ifp)
1868 {
1869 	struct ural_softc *sc = ifp->if_softc;
1870 	struct ieee80211com *ic = &sc->sc_ic;
1871 	uint16_t slottime, sifs, eifs;
1872 
1873 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1874 
1875 	/*
1876 	 * These settings may sound a bit inconsistent but this is what the
1877 	 * reference driver does.
1878 	 */
1879 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1880 		sifs = 16 - RAL_RXTX_TURNAROUND;
1881 		eifs = 364;
1882 	} else {
1883 		sifs = 10 - RAL_RXTX_TURNAROUND;
1884 		eifs = 64;
1885 	}
1886 
1887 	ural_write(sc, RAL_MAC_CSR10, slottime);
1888 	ural_write(sc, RAL_MAC_CSR11, sifs);
1889 	ural_write(sc, RAL_MAC_CSR12, eifs);
1890 }
1891 
1892 Static void
1893 ural_set_txpreamble(struct ural_softc *sc)
1894 {
1895 	uint16_t tmp;
1896 
1897 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1898 
1899 	tmp &= ~RAL_SHORT_PREAMBLE;
1900 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1901 		tmp |= RAL_SHORT_PREAMBLE;
1902 
1903 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1904 }
1905 
1906 Static void
1907 ural_set_basicrates(struct ural_softc *sc)
1908 {
1909 	struct ieee80211com *ic = &sc->sc_ic;
1910 
1911 	/* update basic rate set */
1912 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1913 		/* 11b basic rates: 1, 2Mbps */
1914 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1915 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1916 		/* 11a basic rates: 6, 12, 24Mbps */
1917 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1918 	} else {
1919 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1920 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1921 	}
1922 }
1923 
1924 Static void
1925 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1926 {
1927 	uint16_t tmp;
1928 
1929 	tmp = bssid[0] | bssid[1] << 8;
1930 	ural_write(sc, RAL_MAC_CSR5, tmp);
1931 
1932 	tmp = bssid[2] | bssid[3] << 8;
1933 	ural_write(sc, RAL_MAC_CSR6, tmp);
1934 
1935 	tmp = bssid[4] | bssid[5] << 8;
1936 	ural_write(sc, RAL_MAC_CSR7, tmp);
1937 
1938 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1939 }
1940 
1941 Static void
1942 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1943 {
1944 	uint16_t tmp;
1945 
1946 	tmp = addr[0] | addr[1] << 8;
1947 	ural_write(sc, RAL_MAC_CSR2, tmp);
1948 
1949 	tmp = addr[2] | addr[3] << 8;
1950 	ural_write(sc, RAL_MAC_CSR3, tmp);
1951 
1952 	tmp = addr[4] | addr[5] << 8;
1953 	ural_write(sc, RAL_MAC_CSR4, tmp);
1954 
1955 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1956 }
1957 
1958 Static void
1959 ural_update_promisc(struct ural_softc *sc)
1960 {
1961 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1962 	uint32_t tmp;
1963 
1964 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1965 
1966 	tmp &= ~RAL_DROP_NOT_TO_ME;
1967 	if (!(ifp->if_flags & IFF_PROMISC))
1968 		tmp |= RAL_DROP_NOT_TO_ME;
1969 
1970 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1971 
1972 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1973 	    "entering" : "leaving"));
1974 }
1975 
1976 Static const char *
1977 ural_get_rf(int rev)
1978 {
1979 	switch (rev) {
1980 	case RAL_RF_2522:	return "RT2522";
1981 	case RAL_RF_2523:	return "RT2523";
1982 	case RAL_RF_2524:	return "RT2524";
1983 	case RAL_RF_2525:	return "RT2525";
1984 	case RAL_RF_2525E:	return "RT2525e";
1985 	case RAL_RF_2526:	return "RT2526";
1986 	case RAL_RF_5222:	return "RT5222";
1987 	default:		return "unknown";
1988 	}
1989 }
1990 
1991 Static void
1992 ural_read_eeprom(struct ural_softc *sc)
1993 {
1994 	struct ieee80211com *ic = &sc->sc_ic;
1995 	uint16_t val;
1996 
1997 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1998 	val = le16toh(val);
1999 	sc->rf_rev =   (val >> 11) & 0x7;
2000 	sc->hw_radio = (val >> 10) & 0x1;
2001 	sc->led_mode = (val >> 6)  & 0x7;
2002 	sc->rx_ant =   (val >> 4)  & 0x3;
2003 	sc->tx_ant =   (val >> 2)  & 0x3;
2004 	sc->nb_ant =   val & 0x3;
2005 
2006 	/* read MAC address */
2007 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2008 
2009 	/* read default values for BBP registers */
2010 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2011 
2012 	/* read Tx power for all b/g channels */
2013 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2014 }
2015 
2016 Static int
2017 ural_bbp_init(struct ural_softc *sc)
2018 {
2019 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2020 	int i, ntries;
2021 
2022 	/* wait for BBP to be ready */
2023 	for (ntries = 0; ntries < 100; ntries++) {
2024 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2025 			break;
2026 		DELAY(1000);
2027 	}
2028 	if (ntries == 100) {
2029 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2030 		return EIO;
2031 	}
2032 
2033 	/* initialize BBP registers to default values */
2034 	for (i = 0; i < N(ural_def_bbp); i++)
2035 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2036 
2037 #if 0
2038 	/* initialize BBP registers to values stored in EEPROM */
2039 	for (i = 0; i < 16; i++) {
2040 		if (sc->bbp_prom[i].reg == 0xff)
2041 			continue;
2042 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2043 	}
2044 #endif
2045 
2046 	return 0;
2047 #undef N
2048 }
2049 
2050 Static void
2051 ural_set_txantenna(struct ural_softc *sc, int antenna)
2052 {
2053 	uint16_t tmp;
2054 	uint8_t tx;
2055 
2056 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2057 	if (antenna == 1)
2058 		tx |= RAL_BBP_ANTA;
2059 	else if (antenna == 2)
2060 		tx |= RAL_BBP_ANTB;
2061 	else
2062 		tx |= RAL_BBP_DIVERSITY;
2063 
2064 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2065 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2066 	    sc->rf_rev == RAL_RF_5222)
2067 		tx |= RAL_BBP_FLIPIQ;
2068 
2069 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2070 
2071 	/* update values in PHY_CSR5 and PHY_CSR6 */
2072 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2073 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2074 
2075 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2076 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2077 }
2078 
2079 Static void
2080 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2081 {
2082 	uint8_t rx;
2083 
2084 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2085 	if (antenna == 1)
2086 		rx |= RAL_BBP_ANTA;
2087 	else if (antenna == 2)
2088 		rx |= RAL_BBP_ANTB;
2089 	else
2090 		rx |= RAL_BBP_DIVERSITY;
2091 
2092 	/* need to force no I/Q flip for RF 2525e and 2526 */
2093 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2094 		rx &= ~RAL_BBP_FLIPIQ;
2095 
2096 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2097 }
2098 
2099 Static int
2100 ural_init(struct ifnet *ifp)
2101 {
2102 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2103 	struct ural_softc *sc = ifp->if_softc;
2104 	struct ieee80211com *ic = &sc->sc_ic;
2105 	struct ieee80211_key *wk;
2106 	struct ural_rx_data *data;
2107 	uint16_t tmp;
2108 	usbd_status error;
2109 	int i, ntries;
2110 
2111 	ural_set_testmode(sc);
2112 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2113 
2114 	ural_stop(ifp, 0);
2115 
2116 	/* initialize MAC registers to default values */
2117 	for (i = 0; i < N(ural_def_mac); i++)
2118 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2119 
2120 	/* wait for BBP and RF to wake up (this can take a long time!) */
2121 	for (ntries = 0; ntries < 100; ntries++) {
2122 		tmp = ural_read(sc, RAL_MAC_CSR17);
2123 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2124 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2125 			break;
2126 		DELAY(1000);
2127 	}
2128 	if (ntries == 100) {
2129 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2130 		    device_xname(sc->sc_dev));
2131 		error = EIO;
2132 		goto fail;
2133 	}
2134 
2135 	/* we're ready! */
2136 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2137 
2138 	/* set basic rate set (will be updated later) */
2139 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2140 
2141 	error = ural_bbp_init(sc);
2142 	if (error != 0)
2143 		goto fail;
2144 
2145 	/* set default BSS channel */
2146 	ural_set_chan(sc, ic->ic_curchan);
2147 
2148 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2149 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2150 
2151 	ural_set_txantenna(sc, sc->tx_ant);
2152 	ural_set_rxantenna(sc, sc->rx_ant);
2153 
2154 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2155 	ural_set_macaddr(sc, ic->ic_myaddr);
2156 
2157 	/*
2158 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2159 	 */
2160 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2161 		wk = &ic->ic_crypto.cs_nw_keys[i];
2162 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2163 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2164 	}
2165 
2166 	/*
2167 	 * Allocate xfer for AMRR statistics requests.
2168 	 */
2169 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2170 	if (sc->amrr_xfer == NULL) {
2171 		printf("%s: could not allocate AMRR xfer\n",
2172 		    device_xname(sc->sc_dev));
2173 		goto fail;
2174 	}
2175 
2176 	/*
2177 	 * Open Tx and Rx USB bulk pipes.
2178 	 */
2179 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2180 	    &sc->sc_tx_pipeh);
2181 	if (error != 0) {
2182 		printf("%s: could not open Tx pipe: %s\n",
2183 		    device_xname(sc->sc_dev), usbd_errstr(error));
2184 		goto fail;
2185 	}
2186 
2187 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2188 	    &sc->sc_rx_pipeh);
2189 	if (error != 0) {
2190 		printf("%s: could not open Rx pipe: %s\n",
2191 		    device_xname(sc->sc_dev), usbd_errstr(error));
2192 		goto fail;
2193 	}
2194 
2195 	/*
2196 	 * Allocate Tx and Rx xfer queues.
2197 	 */
2198 	error = ural_alloc_tx_list(sc);
2199 	if (error != 0) {
2200 		printf("%s: could not allocate Tx list\n",
2201 		    device_xname(sc->sc_dev));
2202 		goto fail;
2203 	}
2204 
2205 	error = ural_alloc_rx_list(sc);
2206 	if (error != 0) {
2207 		printf("%s: could not allocate Rx list\n",
2208 		    device_xname(sc->sc_dev));
2209 		goto fail;
2210 	}
2211 
2212 	/*
2213 	 * Start up the receive pipe.
2214 	 */
2215 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2216 		data = &sc->rx_data[i];
2217 
2218 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2219 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2220 		usbd_transfer(data->xfer);
2221 	}
2222 
2223 	/* kick Rx */
2224 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2225 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2226 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2227 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2228 			tmp |= RAL_DROP_TODS;
2229 		if (!(ifp->if_flags & IFF_PROMISC))
2230 			tmp |= RAL_DROP_NOT_TO_ME;
2231 	}
2232 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2233 
2234 	ifp->if_flags &= ~IFF_OACTIVE;
2235 	ifp->if_flags |= IFF_RUNNING;
2236 
2237 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2238 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2239 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2240 	} else
2241 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2242 
2243 	return 0;
2244 
2245 fail:	ural_stop(ifp, 1);
2246 	return error;
2247 #undef N
2248 }
2249 
2250 Static void
2251 ural_stop(struct ifnet *ifp, int disable)
2252 {
2253 	struct ural_softc *sc = ifp->if_softc;
2254 	struct ieee80211com *ic = &sc->sc_ic;
2255 
2256 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2257 
2258 	sc->sc_tx_timer = 0;
2259 	ifp->if_timer = 0;
2260 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2261 
2262 	/* disable Rx */
2263 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2264 
2265 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2266 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2267 	ural_write(sc, RAL_MAC_CSR1, 0);
2268 
2269 	if (sc->amrr_xfer != NULL) {
2270 		usbd_free_xfer(sc->amrr_xfer);
2271 		sc->amrr_xfer = NULL;
2272 	}
2273 
2274 	if (sc->sc_rx_pipeh != NULL) {
2275 		usbd_abort_pipe(sc->sc_rx_pipeh);
2276 		usbd_close_pipe(sc->sc_rx_pipeh);
2277 		sc->sc_rx_pipeh = NULL;
2278 	}
2279 
2280 	if (sc->sc_tx_pipeh != NULL) {
2281 		usbd_abort_pipe(sc->sc_tx_pipeh);
2282 		usbd_close_pipe(sc->sc_tx_pipeh);
2283 		sc->sc_tx_pipeh = NULL;
2284 	}
2285 
2286 	ural_free_rx_list(sc);
2287 	ural_free_tx_list(sc);
2288 }
2289 
2290 int
2291 ural_activate(device_t self, enum devact act)
2292 {
2293 	struct ural_softc *sc = device_private(self);
2294 
2295 	switch (act) {
2296 	case DVACT_DEACTIVATE:
2297 		if_deactivate(&sc->sc_if);
2298 		return 0;
2299 	default:
2300 		return EOPNOTSUPP;
2301 	}
2302 }
2303 
2304 Static void
2305 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2306 {
2307 	int i;
2308 
2309 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2310 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2311 
2312 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2313 
2314 	/* set rate to some reasonable initial value */
2315 	for (i = ni->ni_rates.rs_nrates - 1;
2316 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2317 	     i--);
2318 	ni->ni_txrate = i;
2319 
2320 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2321 }
2322 
2323 Static void
2324 ural_amrr_timeout(void *arg)
2325 {
2326 	struct ural_softc *sc = (struct ural_softc *)arg;
2327 	usb_device_request_t req;
2328 	int s;
2329 
2330 	s = splusb();
2331 
2332 	/*
2333 	 * Asynchronously read statistic registers (cleared by read).
2334 	 */
2335 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2336 	req.bRequest = RAL_READ_MULTI_MAC;
2337 	USETW(req.wValue, 0);
2338 	USETW(req.wIndex, RAL_STA_CSR0);
2339 	USETW(req.wLength, sizeof sc->sta);
2340 
2341 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2342 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2343 	    ural_amrr_update);
2344 	(void)usbd_transfer(sc->amrr_xfer);
2345 
2346 	splx(s);
2347 }
2348 
2349 Static void
2350 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2351     usbd_status status)
2352 {
2353 	struct ural_softc *sc = (struct ural_softc *)priv;
2354 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2355 
2356 	if (status != USBD_NORMAL_COMPLETION) {
2357 		printf("%s: could not retrieve Tx statistics - "
2358 		    "cancelling automatic rate control\n",
2359 		    device_xname(sc->sc_dev));
2360 		return;
2361 	}
2362 
2363 	/* count TX retry-fail as Tx errors */
2364 	ifp->if_oerrors += sc->sta[9];
2365 
2366 	sc->amn.amn_retrycnt =
2367 	    sc->sta[7] +	/* TX one-retry ok count */
2368 	    sc->sta[8] +	/* TX more-retry ok count */
2369 	    sc->sta[9];		/* TX retry-fail count */
2370 
2371 	sc->amn.amn_txcnt =
2372 	    sc->amn.amn_retrycnt +
2373 	    sc->sta[6];		/* TX no-retry ok count */
2374 
2375 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2376 
2377 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2378 }
2379