1 /* $NetBSD: if_ural.c,v 1.55 2018/06/26 06:48:02 msaitoh Exp $ */ 2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */ 3 4 /*- 5 * Copyright (c) 2005, 2006 6 * Damien Bergamini <damien.bergamini@free.fr> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2500USB chipset driver 23 * http://www.ralinktech.com/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.55 2018/06/26 06:48:02 msaitoh Exp $"); 28 29 #ifdef _KERNEL_OPT 30 #include "opt_usb.h" 31 #endif 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/conf.h> 41 #include <sys/device.h> 42 43 #include <sys/bus.h> 44 #include <machine/endian.h> 45 #include <sys/intr.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/if_dl.h> 51 #include <net/if_ether.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 55 #include <netinet/in.h> 56 #include <netinet/in_systm.h> 57 #include <netinet/in_var.h> 58 #include <netinet/ip.h> 59 60 #include <net80211/ieee80211_netbsd.h> 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_amrr.h> 63 #include <net80211/ieee80211_radiotap.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include <dev/usb/usbdevs.h> 69 70 #include <dev/usb/if_uralreg.h> 71 #include <dev/usb/if_uralvar.h> 72 73 #ifdef URAL_DEBUG 74 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0) 76 int ural_debug = 0; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 /* various supported device vendors/products */ 83 static const struct usb_devno ural_devs[] = { 84 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G }, 85 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 }, 86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, 88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, 89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, 90 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU }, 91 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 }, 92 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, 93 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, 94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, 95 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, 96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, 97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, 98 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 }, 99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 }, 100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 }, 101 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W }, 102 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, 103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, 104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, 105 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 106 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, 107 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G }, 108 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, 109 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 }, 110 }; 111 112 Static int ural_alloc_tx_list(struct ural_softc *); 113 Static void ural_free_tx_list(struct ural_softc *); 114 Static int ural_alloc_rx_list(struct ural_softc *); 115 Static void ural_free_rx_list(struct ural_softc *); 116 Static int ural_media_change(struct ifnet *); 117 Static void ural_next_scan(void *); 118 Static void ural_task(void *); 119 Static int ural_newstate(struct ieee80211com *, 120 enum ieee80211_state, int); 121 Static int ural_rxrate(struct ural_rx_desc *); 122 Static void ural_txeof(struct usbd_xfer *, void *, 123 usbd_status); 124 Static void ural_rxeof(struct usbd_xfer *, void *, 125 usbd_status); 126 Static int ural_ack_rate(struct ieee80211com *, int); 127 Static uint16_t ural_txtime(int, int, uint32_t); 128 Static uint8_t ural_plcp_signal(int); 129 Static void ural_setup_tx_desc(struct ural_softc *, 130 struct ural_tx_desc *, uint32_t, int, int); 131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 132 struct ieee80211_node *); 133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 134 struct ieee80211_node *); 135 Static int ural_tx_data(struct ural_softc *, struct mbuf *, 136 struct ieee80211_node *); 137 Static void ural_start(struct ifnet *); 138 Static void ural_watchdog(struct ifnet *); 139 Static int ural_reset(struct ifnet *); 140 Static int ural_ioctl(struct ifnet *, u_long, void *); 141 Static void ural_set_testmode(struct ural_softc *); 142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 143 int); 144 Static uint16_t ural_read(struct ural_softc *, uint16_t); 145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *, 146 int); 147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t); 148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *, 149 int); 150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 153 Static void ural_set_chan(struct ural_softc *, 154 struct ieee80211_channel *); 155 Static void ural_disable_rf_tune(struct ural_softc *); 156 Static void ural_enable_tsf_sync(struct ural_softc *); 157 Static void ural_update_slot(struct ifnet *); 158 Static void ural_set_txpreamble(struct ural_softc *); 159 Static void ural_set_basicrates(struct ural_softc *); 160 Static void ural_set_bssid(struct ural_softc *, uint8_t *); 161 Static void ural_set_macaddr(struct ural_softc *, uint8_t *); 162 Static void ural_update_promisc(struct ural_softc *); 163 Static const char *ural_get_rf(int); 164 Static void ural_read_eeprom(struct ural_softc *); 165 Static int ural_bbp_init(struct ural_softc *); 166 Static void ural_set_txantenna(struct ural_softc *, int); 167 Static void ural_set_rxantenna(struct ural_softc *, int); 168 Static int ural_init(struct ifnet *); 169 Static void ural_stop(struct ifnet *, int); 170 Static void ural_amrr_start(struct ural_softc *, 171 struct ieee80211_node *); 172 Static void ural_amrr_timeout(void *); 173 Static void ural_amrr_update(struct usbd_xfer *, void *, 174 usbd_status status); 175 176 /* 177 * Default values for MAC registers; values taken from the reference driver. 178 */ 179 static const struct { 180 uint16_t reg; 181 uint16_t val; 182 } ural_def_mac[] = { 183 { RAL_TXRX_CSR5, 0x8c8d }, 184 { RAL_TXRX_CSR6, 0x8b8a }, 185 { RAL_TXRX_CSR7, 0x8687 }, 186 { RAL_TXRX_CSR8, 0x0085 }, 187 { RAL_MAC_CSR13, 0x1111 }, 188 { RAL_MAC_CSR14, 0x1e11 }, 189 { RAL_TXRX_CSR21, 0xe78f }, 190 { RAL_MAC_CSR9, 0xff1d }, 191 { RAL_MAC_CSR11, 0x0002 }, 192 { RAL_MAC_CSR22, 0x0053 }, 193 { RAL_MAC_CSR15, 0x0000 }, 194 { RAL_MAC_CSR8, 0x0780 }, 195 { RAL_TXRX_CSR19, 0x0000 }, 196 { RAL_TXRX_CSR18, 0x005a }, 197 { RAL_PHY_CSR2, 0x0000 }, 198 { RAL_TXRX_CSR0, 0x1ec0 }, 199 { RAL_PHY_CSR4, 0x000f } 200 }; 201 202 /* 203 * Default values for BBP registers; values taken from the reference driver. 204 */ 205 static const struct { 206 uint8_t reg; 207 uint8_t val; 208 } ural_def_bbp[] = { 209 { 3, 0x02 }, 210 { 4, 0x19 }, 211 { 14, 0x1c }, 212 { 15, 0x30 }, 213 { 16, 0xac }, 214 { 17, 0x48 }, 215 { 18, 0x18 }, 216 { 19, 0xff }, 217 { 20, 0x1e }, 218 { 21, 0x08 }, 219 { 22, 0x08 }, 220 { 23, 0x08 }, 221 { 24, 0x80 }, 222 { 25, 0x50 }, 223 { 26, 0x08 }, 224 { 27, 0x23 }, 225 { 30, 0x10 }, 226 { 31, 0x2b }, 227 { 32, 0xb9 }, 228 { 34, 0x12 }, 229 { 35, 0x50 }, 230 { 39, 0xc4 }, 231 { 40, 0x02 }, 232 { 41, 0x60 }, 233 { 53, 0x10 }, 234 { 54, 0x18 }, 235 { 56, 0x08 }, 236 { 57, 0x10 }, 237 { 58, 0x08 }, 238 { 61, 0x60 }, 239 { 62, 0x10 }, 240 { 75, 0xff } 241 }; 242 243 /* 244 * Default values for RF register R2 indexed by channel numbers. 245 */ 246 static const uint32_t ural_rf2522_r2[] = { 247 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 248 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 249 }; 250 251 static const uint32_t ural_rf2523_r2[] = { 252 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 253 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 254 }; 255 256 static const uint32_t ural_rf2524_r2[] = { 257 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 258 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 259 }; 260 261 static const uint32_t ural_rf2525_r2[] = { 262 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 263 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 264 }; 265 266 static const uint32_t ural_rf2525_hi_r2[] = { 267 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 268 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 269 }; 270 271 static const uint32_t ural_rf2525e_r2[] = { 272 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 273 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 274 }; 275 276 static const uint32_t ural_rf2526_hi_r2[] = { 277 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 278 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 279 }; 280 281 static const uint32_t ural_rf2526_r2[] = { 282 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 283 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 284 }; 285 286 /* 287 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 288 * values taken from the reference driver. 289 */ 290 static const struct { 291 uint8_t chan; 292 uint32_t r1; 293 uint32_t r2; 294 uint32_t r4; 295 } ural_rf5222[] = { 296 { 1, 0x08808, 0x0044d, 0x00282 }, 297 { 2, 0x08808, 0x0044e, 0x00282 }, 298 { 3, 0x08808, 0x0044f, 0x00282 }, 299 { 4, 0x08808, 0x00460, 0x00282 }, 300 { 5, 0x08808, 0x00461, 0x00282 }, 301 { 6, 0x08808, 0x00462, 0x00282 }, 302 { 7, 0x08808, 0x00463, 0x00282 }, 303 { 8, 0x08808, 0x00464, 0x00282 }, 304 { 9, 0x08808, 0x00465, 0x00282 }, 305 { 10, 0x08808, 0x00466, 0x00282 }, 306 { 11, 0x08808, 0x00467, 0x00282 }, 307 { 12, 0x08808, 0x00468, 0x00282 }, 308 { 13, 0x08808, 0x00469, 0x00282 }, 309 { 14, 0x08808, 0x0046b, 0x00286 }, 310 311 { 36, 0x08804, 0x06225, 0x00287 }, 312 { 40, 0x08804, 0x06226, 0x00287 }, 313 { 44, 0x08804, 0x06227, 0x00287 }, 314 { 48, 0x08804, 0x06228, 0x00287 }, 315 { 52, 0x08804, 0x06229, 0x00287 }, 316 { 56, 0x08804, 0x0622a, 0x00287 }, 317 { 60, 0x08804, 0x0622b, 0x00287 }, 318 { 64, 0x08804, 0x0622c, 0x00287 }, 319 320 { 100, 0x08804, 0x02200, 0x00283 }, 321 { 104, 0x08804, 0x02201, 0x00283 }, 322 { 108, 0x08804, 0x02202, 0x00283 }, 323 { 112, 0x08804, 0x02203, 0x00283 }, 324 { 116, 0x08804, 0x02204, 0x00283 }, 325 { 120, 0x08804, 0x02205, 0x00283 }, 326 { 124, 0x08804, 0x02206, 0x00283 }, 327 { 128, 0x08804, 0x02207, 0x00283 }, 328 { 132, 0x08804, 0x02208, 0x00283 }, 329 { 136, 0x08804, 0x02209, 0x00283 }, 330 { 140, 0x08804, 0x0220a, 0x00283 }, 331 332 { 149, 0x08808, 0x02429, 0x00281 }, 333 { 153, 0x08808, 0x0242b, 0x00281 }, 334 { 157, 0x08808, 0x0242d, 0x00281 }, 335 { 161, 0x08808, 0x0242f, 0x00281 } 336 }; 337 338 int ural_match(device_t, cfdata_t, void *); 339 void ural_attach(device_t, device_t, void *); 340 int ural_detach(device_t, int); 341 int ural_activate(device_t, enum devact); 342 extern struct cfdriver ural_cd; 343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, 344 ural_detach, ural_activate); 345 346 int 347 ural_match(device_t parent, cfdata_t match, void *aux) 348 { 349 struct usb_attach_arg *uaa = aux; 350 351 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 352 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 353 } 354 355 void 356 ural_attach(device_t parent, device_t self, void *aux) 357 { 358 struct ural_softc *sc = device_private(self); 359 struct usb_attach_arg *uaa = aux; 360 struct ieee80211com *ic = &sc->sc_ic; 361 struct ifnet *ifp = &sc->sc_if; 362 usb_interface_descriptor_t *id; 363 usb_endpoint_descriptor_t *ed; 364 usbd_status error; 365 char *devinfop; 366 int i; 367 368 sc->sc_dev = self; 369 sc->sc_udev = uaa->uaa_device; 370 371 aprint_naive("\n"); 372 aprint_normal("\n"); 373 374 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 375 aprint_normal_dev(self, "%s\n", devinfop); 376 usbd_devinfo_free(devinfop); 377 378 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0); 379 if (error != 0) { 380 aprint_error_dev(self, "failed to set configuration" 381 ", err=%s\n", usbd_errstr(error)); 382 return; 383 } 384 385 /* get the first interface handle */ 386 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, 387 &sc->sc_iface); 388 if (error != 0) { 389 aprint_error_dev(self, "could not get interface handle\n"); 390 return; 391 } 392 393 /* 394 * Find endpoints. 395 */ 396 id = usbd_get_interface_descriptor(sc->sc_iface); 397 398 sc->sc_rx_no = sc->sc_tx_no = -1; 399 for (i = 0; i < id->bNumEndpoints; i++) { 400 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 401 if (ed == NULL) { 402 aprint_error_dev(self, 403 "no endpoint descriptor for %d\n", i); 404 return; 405 } 406 407 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 408 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 409 sc->sc_rx_no = ed->bEndpointAddress; 410 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 411 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 412 sc->sc_tx_no = ed->bEndpointAddress; 413 } 414 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 415 aprint_error_dev(self, "missing endpoint\n"); 416 return; 417 } 418 419 usb_init_task(&sc->sc_task, ural_task, sc, 0); 420 callout_init(&sc->sc_scan_ch, 0); 421 sc->amrr.amrr_min_success_threshold = 1; 422 sc->amrr.amrr_max_success_threshold = 15; 423 callout_init(&sc->sc_amrr_ch, 0); 424 425 /* retrieve RT2570 rev. no */ 426 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 427 428 /* retrieve MAC address and various other things from EEPROM */ 429 ural_read_eeprom(sc); 430 431 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 432 sc->asic_rev, ural_get_rf(sc->rf_rev)); 433 434 ifp->if_softc = sc; 435 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 436 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 437 ifp->if_init = ural_init; 438 ifp->if_ioctl = ural_ioctl; 439 ifp->if_start = ural_start; 440 ifp->if_watchdog = ural_watchdog; 441 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 442 IFQ_SET_READY(&ifp->if_snd); 443 444 ic->ic_ifp = ifp; 445 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 446 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 447 ic->ic_state = IEEE80211_S_INIT; 448 449 /* set device capabilities */ 450 ic->ic_caps = 451 IEEE80211_C_IBSS | /* IBSS mode supported */ 452 IEEE80211_C_MONITOR | /* monitor mode supported */ 453 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 454 IEEE80211_C_TXPMGT | /* tx power management */ 455 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 456 IEEE80211_C_SHSLOT | /* short slot time supported */ 457 IEEE80211_C_WPA; /* 802.11i */ 458 459 if (sc->rf_rev == RAL_RF_5222) { 460 /* set supported .11a rates */ 461 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 462 463 /* set supported .11a channels */ 464 for (i = 36; i <= 64; i += 4) { 465 ic->ic_channels[i].ic_freq = 466 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 467 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 468 } 469 for (i = 100; i <= 140; i += 4) { 470 ic->ic_channels[i].ic_freq = 471 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 472 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 473 } 474 for (i = 149; i <= 161; i += 4) { 475 ic->ic_channels[i].ic_freq = 476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 478 } 479 } 480 481 /* set supported .11b and .11g rates */ 482 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 483 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 484 485 /* set supported .11b and .11g channels (1 through 14) */ 486 for (i = 1; i <= 14; i++) { 487 ic->ic_channels[i].ic_freq = 488 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 489 ic->ic_channels[i].ic_flags = 490 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 491 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 492 } 493 494 if_attach(ifp); 495 ieee80211_ifattach(ic); 496 ic->ic_reset = ural_reset; 497 498 /* override state transition machine */ 499 sc->sc_newstate = ic->ic_newstate; 500 ic->ic_newstate = ural_newstate; 501 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status); 502 503 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 504 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 505 506 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 507 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 508 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); 509 510 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 511 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 512 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); 513 514 ieee80211_announce(ic); 515 516 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 517 518 if (!pmf_device_register(self, NULL, NULL)) 519 aprint_error_dev(self, "couldn't establish power handler\n"); 520 521 return; 522 } 523 524 int 525 ural_detach(device_t self, int flags) 526 { 527 struct ural_softc *sc = device_private(self); 528 struct ieee80211com *ic = &sc->sc_ic; 529 struct ifnet *ifp = &sc->sc_if; 530 int s; 531 532 pmf_device_deregister(self); 533 534 s = splusb(); 535 536 ural_stop(ifp, 1); 537 usb_rem_task(sc->sc_udev, &sc->sc_task); 538 callout_stop(&sc->sc_scan_ch); 539 callout_stop(&sc->sc_amrr_ch); 540 541 bpf_detach(ifp); 542 ieee80211_ifdetach(ic); 543 if_detach(ifp); 544 545 splx(s); 546 547 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 548 549 return 0; 550 } 551 552 Static int 553 ural_alloc_tx_list(struct ural_softc *sc) 554 { 555 struct ural_tx_data *data; 556 int i, error; 557 558 sc->tx_queued = 0; 559 560 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 561 data = &sc->tx_data[i]; 562 563 data->sc = sc; 564 error = usbd_create_xfer(sc->sc_tx_pipeh, 565 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0, 566 &data->xfer); 567 if (error) { 568 printf("%s: could not allocate tx xfer\n", 569 device_xname(sc->sc_dev)); 570 goto fail; 571 } 572 573 data->buf = usbd_get_buffer(data->xfer); 574 } 575 576 return 0; 577 578 fail: ural_free_tx_list(sc); 579 return error; 580 } 581 582 Static void 583 ural_free_tx_list(struct ural_softc *sc) 584 { 585 struct ural_tx_data *data; 586 int i; 587 588 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 589 data = &sc->tx_data[i]; 590 591 if (data->xfer != NULL) { 592 usbd_destroy_xfer(data->xfer); 593 data->xfer = NULL; 594 } 595 596 if (data->ni != NULL) { 597 ieee80211_free_node(data->ni); 598 data->ni = NULL; 599 } 600 } 601 } 602 603 Static int 604 ural_alloc_rx_list(struct ural_softc *sc) 605 { 606 struct ural_rx_data *data; 607 int i, error; 608 609 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 610 data = &sc->rx_data[i]; 611 612 data->sc = sc; 613 614 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 615 0, 0, &data->xfer); 616 if (error) { 617 printf("%s: could not allocate rx xfer\n", 618 device_xname(sc->sc_dev)); 619 goto fail; 620 } 621 622 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 623 if (data->m == NULL) { 624 printf("%s: could not allocate rx mbuf\n", 625 device_xname(sc->sc_dev)); 626 error = ENOMEM; 627 goto fail; 628 } 629 630 MCLGET(data->m, M_DONTWAIT); 631 if (!(data->m->m_flags & M_EXT)) { 632 printf("%s: could not allocate rx mbuf cluster\n", 633 device_xname(sc->sc_dev)); 634 error = ENOMEM; 635 goto fail; 636 } 637 638 data->buf = mtod(data->m, uint8_t *); 639 } 640 641 return 0; 642 643 fail: ural_free_rx_list(sc); 644 return error; 645 } 646 647 Static void 648 ural_free_rx_list(struct ural_softc *sc) 649 { 650 struct ural_rx_data *data; 651 int i; 652 653 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 654 data = &sc->rx_data[i]; 655 656 if (data->xfer != NULL) { 657 usbd_destroy_xfer(data->xfer); 658 data->xfer = NULL; 659 } 660 661 if (data->m != NULL) { 662 m_freem(data->m); 663 data->m = NULL; 664 } 665 } 666 } 667 668 Static int 669 ural_media_change(struct ifnet *ifp) 670 { 671 int error; 672 673 error = ieee80211_media_change(ifp); 674 if (error != ENETRESET) 675 return error; 676 677 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 678 ural_init(ifp); 679 680 return 0; 681 } 682 683 /* 684 * This function is called periodically (every 200ms) during scanning to 685 * switch from one channel to another. 686 */ 687 Static void 688 ural_next_scan(void *arg) 689 { 690 struct ural_softc *sc = arg; 691 struct ieee80211com *ic = &sc->sc_ic; 692 693 if (ic->ic_state == IEEE80211_S_SCAN) 694 ieee80211_next_scan(ic); 695 } 696 697 Static void 698 ural_task(void *arg) 699 { 700 struct ural_softc *sc = arg; 701 struct ieee80211com *ic = &sc->sc_ic; 702 enum ieee80211_state ostate; 703 struct ieee80211_node *ni; 704 struct mbuf *m; 705 706 ostate = ic->ic_state; 707 708 switch (sc->sc_state) { 709 case IEEE80211_S_INIT: 710 if (ostate == IEEE80211_S_RUN) { 711 /* abort TSF synchronization */ 712 ural_write(sc, RAL_TXRX_CSR19, 0); 713 714 /* force tx led to stop blinking */ 715 ural_write(sc, RAL_MAC_CSR20, 0); 716 } 717 break; 718 719 case IEEE80211_S_SCAN: 720 ural_set_chan(sc, ic->ic_curchan); 721 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc); 722 break; 723 724 case IEEE80211_S_AUTH: 725 ural_set_chan(sc, ic->ic_curchan); 726 break; 727 728 case IEEE80211_S_ASSOC: 729 ural_set_chan(sc, ic->ic_curchan); 730 break; 731 732 case IEEE80211_S_RUN: 733 ural_set_chan(sc, ic->ic_curchan); 734 735 ni = ic->ic_bss; 736 737 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 738 ural_update_slot(ic->ic_ifp); 739 ural_set_txpreamble(sc); 740 ural_set_basicrates(sc); 741 ural_set_bssid(sc, ni->ni_bssid); 742 } 743 744 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 745 ic->ic_opmode == IEEE80211_M_IBSS) { 746 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 747 if (m == NULL) { 748 printf("%s: could not allocate beacon\n", 749 device_xname(sc->sc_dev)); 750 return; 751 } 752 753 if (ural_tx_bcn(sc, m, ni) != 0) { 754 m_freem(m); 755 printf("%s: could not send beacon\n", 756 device_xname(sc->sc_dev)); 757 return; 758 } 759 760 /* beacon is no longer needed */ 761 m_freem(m); 762 } 763 764 /* make tx led blink on tx (controlled by ASIC) */ 765 ural_write(sc, RAL_MAC_CSR20, 1); 766 767 if (ic->ic_opmode != IEEE80211_M_MONITOR) 768 ural_enable_tsf_sync(sc); 769 770 /* enable automatic rate adaptation in STA mode */ 771 if (ic->ic_opmode == IEEE80211_M_STA && 772 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 773 ural_amrr_start(sc, ni); 774 775 break; 776 } 777 778 sc->sc_newstate(ic, sc->sc_state, -1); 779 } 780 781 Static int 782 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, 783 int arg) 784 { 785 struct ural_softc *sc = ic->ic_ifp->if_softc; 786 787 usb_rem_task(sc->sc_udev, &sc->sc_task); 788 callout_stop(&sc->sc_scan_ch); 789 callout_stop(&sc->sc_amrr_ch); 790 791 /* do it in a process context */ 792 sc->sc_state = nstate; 793 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 794 795 return 0; 796 } 797 798 /* quickly determine if a given rate is CCK or OFDM */ 799 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 800 801 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 802 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 803 804 #define RAL_SIFS 10 /* us */ 805 806 #define RAL_RXTX_TURNAROUND 5 /* us */ 807 808 /* 809 * This function is only used by the Rx radiotap code. 810 */ 811 Static int 812 ural_rxrate(struct ural_rx_desc *desc) 813 { 814 if (le32toh(desc->flags) & RAL_RX_OFDM) { 815 /* reverse function of ural_plcp_signal */ 816 switch (desc->rate) { 817 case 0xb: return 12; 818 case 0xf: return 18; 819 case 0xa: return 24; 820 case 0xe: return 36; 821 case 0x9: return 48; 822 case 0xd: return 72; 823 case 0x8: return 96; 824 case 0xc: return 108; 825 } 826 } else { 827 if (desc->rate == 10) 828 return 2; 829 if (desc->rate == 20) 830 return 4; 831 if (desc->rate == 55) 832 return 11; 833 if (desc->rate == 110) 834 return 22; 835 } 836 return 2; /* should not get there */ 837 } 838 839 Static void 840 ural_txeof(struct usbd_xfer *xfer, void * priv, 841 usbd_status status) 842 { 843 struct ural_tx_data *data = priv; 844 struct ural_softc *sc = data->sc; 845 struct ifnet *ifp = &sc->sc_if; 846 int s; 847 848 if (status != USBD_NORMAL_COMPLETION) { 849 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 850 return; 851 852 printf("%s: could not transmit buffer: %s\n", 853 device_xname(sc->sc_dev), usbd_errstr(status)); 854 855 if (status == USBD_STALLED) 856 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 857 858 ifp->if_oerrors++; 859 return; 860 } 861 862 s = splnet(); 863 864 m_freem(data->m); 865 data->m = NULL; 866 ieee80211_free_node(data->ni); 867 data->ni = NULL; 868 869 sc->tx_queued--; 870 ifp->if_opackets++; 871 872 DPRINTFN(10, ("tx done\n")); 873 874 sc->sc_tx_timer = 0; 875 ifp->if_flags &= ~IFF_OACTIVE; 876 ural_start(ifp); 877 878 splx(s); 879 } 880 881 Static void 882 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status) 883 { 884 struct ural_rx_data *data = priv; 885 struct ural_softc *sc = data->sc; 886 struct ieee80211com *ic = &sc->sc_ic; 887 struct ifnet *ifp = &sc->sc_if; 888 struct ural_rx_desc *desc; 889 struct ieee80211_frame *wh; 890 struct ieee80211_node *ni; 891 struct mbuf *mnew, *m; 892 int s, len; 893 894 if (status != USBD_NORMAL_COMPLETION) { 895 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 896 return; 897 898 if (status == USBD_STALLED) 899 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 900 goto skip; 901 } 902 903 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 904 905 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 906 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 907 len)); 908 ifp->if_ierrors++; 909 goto skip; 910 } 911 912 /* rx descriptor is located at the end */ 913 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); 914 915 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) || 916 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) { 917 /* 918 * This should not happen since we did not request to receive 919 * those frames when we filled RAL_TXRX_CSR2. 920 */ 921 DPRINTFN(5, ("PHY or CRC error\n")); 922 ifp->if_ierrors++; 923 goto skip; 924 } 925 926 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 927 if (mnew == NULL) { 928 ifp->if_ierrors++; 929 goto skip; 930 } 931 932 MCLGET(mnew, M_DONTWAIT); 933 if (!(mnew->m_flags & M_EXT)) { 934 ifp->if_ierrors++; 935 m_freem(mnew); 936 goto skip; 937 } 938 939 m = data->m; 940 data->m = mnew; 941 data->buf = mtod(data->m, uint8_t *); 942 943 /* finalize mbuf */ 944 m_set_rcvif(m, ifp); 945 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 946 m->m_flags |= M_HASFCS; /* h/w leaves FCS */ 947 948 s = splnet(); 949 950 if (sc->sc_drvbpf != NULL) { 951 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 952 953 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 954 tap->wr_rate = ural_rxrate(desc); 955 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 956 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 957 tap->wr_antenna = sc->rx_ant; 958 tap->wr_antsignal = desc->rssi; 959 960 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 961 } 962 963 wh = mtod(m, struct ieee80211_frame *); 964 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 965 966 /* send the frame to the 802.11 layer */ 967 ieee80211_input(ic, m, ni, desc->rssi, 0); 968 969 /* node is no longer needed */ 970 ieee80211_free_node(ni); 971 972 splx(s); 973 974 DPRINTFN(15, ("rx done\n")); 975 976 skip: /* setup a new transfer */ 977 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, 978 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 979 usbd_transfer(xfer); 980 } 981 982 /* 983 * Return the expected ack rate for a frame transmitted at rate `rate'. 984 * XXX: this should depend on the destination node basic rate set. 985 */ 986 Static int 987 ural_ack_rate(struct ieee80211com *ic, int rate) 988 { 989 switch (rate) { 990 /* CCK rates */ 991 case 2: 992 return 2; 993 case 4: 994 case 11: 995 case 22: 996 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 997 998 /* OFDM rates */ 999 case 12: 1000 case 18: 1001 return 12; 1002 case 24: 1003 case 36: 1004 return 24; 1005 case 48: 1006 case 72: 1007 case 96: 1008 case 108: 1009 return 48; 1010 } 1011 1012 /* default to 1Mbps */ 1013 return 2; 1014 } 1015 1016 /* 1017 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1018 * The function automatically determines the operating mode depending on the 1019 * given rate. `flags' indicates whether short preamble is in use or not. 1020 */ 1021 Static uint16_t 1022 ural_txtime(int len, int rate, uint32_t flags) 1023 { 1024 uint16_t txtime; 1025 1026 if (RAL_RATE_IS_OFDM(rate)) { 1027 /* IEEE Std 802.11g-2003, pp. 37 */ 1028 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1029 txtime = 16 + 4 + 4 * txtime + 6; 1030 } else { 1031 /* IEEE Std 802.11b-1999, pp. 28 */ 1032 txtime = (16 * len + rate - 1) / rate; 1033 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1034 txtime += 72 + 24; 1035 else 1036 txtime += 144 + 48; 1037 } 1038 return txtime; 1039 } 1040 1041 Static uint8_t 1042 ural_plcp_signal(int rate) 1043 { 1044 switch (rate) { 1045 /* CCK rates (returned values are device-dependent) */ 1046 case 2: return 0x0; 1047 case 4: return 0x1; 1048 case 11: return 0x2; 1049 case 22: return 0x3; 1050 1051 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1052 case 12: return 0xb; 1053 case 18: return 0xf; 1054 case 24: return 0xa; 1055 case 36: return 0xe; 1056 case 48: return 0x9; 1057 case 72: return 0xd; 1058 case 96: return 0x8; 1059 case 108: return 0xc; 1060 1061 /* unsupported rates (should not get there) */ 1062 default: return 0xff; 1063 } 1064 } 1065 1066 Static void 1067 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1068 uint32_t flags, int len, int rate) 1069 { 1070 struct ieee80211com *ic = &sc->sc_ic; 1071 uint16_t plcp_length; 1072 int remainder; 1073 1074 desc->flags = htole32(flags); 1075 desc->flags |= htole32(RAL_TX_NEWSEQ); 1076 desc->flags |= htole32(len << 16); 1077 1078 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1079 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame))); 1080 1081 /* setup PLCP fields */ 1082 desc->plcp_signal = ural_plcp_signal(rate); 1083 desc->plcp_service = 4; 1084 1085 len += IEEE80211_CRC_LEN; 1086 if (RAL_RATE_IS_OFDM(rate)) { 1087 desc->flags |= htole32(RAL_TX_OFDM); 1088 1089 plcp_length = len & 0xfff; 1090 desc->plcp_length_hi = plcp_length >> 6; 1091 desc->plcp_length_lo = plcp_length & 0x3f; 1092 } else { 1093 plcp_length = (16 * len + rate - 1) / rate; 1094 if (rate == 22) { 1095 remainder = (16 * len) % 22; 1096 if (remainder != 0 && remainder < 7) 1097 desc->plcp_service |= RAL_PLCP_LENGEXT; 1098 } 1099 desc->plcp_length_hi = plcp_length >> 8; 1100 desc->plcp_length_lo = plcp_length & 0xff; 1101 1102 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1103 desc->plcp_signal |= 0x08; 1104 } 1105 1106 desc->iv = 0; 1107 desc->eiv = 0; 1108 } 1109 1110 #define RAL_TX_TIMEOUT 5000 1111 1112 Static int 1113 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1114 { 1115 struct ural_tx_desc *desc; 1116 struct usbd_xfer *xfer; 1117 uint8_t cmd = 0; 1118 usbd_status error; 1119 uint8_t *buf; 1120 int xferlen, rate; 1121 1122 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1123 1124 /* xfer length needs to be a multiple of two! */ 1125 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1126 1127 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen, 1128 USBD_FORCE_SHORT_XFER, 0, &xfer); 1129 if (error) 1130 return error; 1131 1132 buf = usbd_get_buffer(xfer); 1133 1134 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER, 1135 RAL_TX_TIMEOUT, NULL); 1136 1137 error = usbd_sync_transfer(xfer); 1138 if (error != 0) { 1139 usbd_destroy_xfer(xfer); 1140 return error; 1141 } 1142 1143 desc = (struct ural_tx_desc *)buf; 1144 1145 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); 1146 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, 1147 m0->m_pkthdr.len, rate); 1148 1149 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", 1150 m0->m_pkthdr.len, rate, xferlen)); 1151 1152 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER, 1153 RAL_TX_TIMEOUT, NULL); 1154 1155 error = usbd_sync_transfer(xfer); 1156 usbd_destroy_xfer(xfer); 1157 1158 return error; 1159 } 1160 1161 Static int 1162 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1163 { 1164 struct ieee80211com *ic = &sc->sc_ic; 1165 struct ural_tx_desc *desc; 1166 struct ural_tx_data *data; 1167 struct ieee80211_frame *wh; 1168 struct ieee80211_key *k; 1169 uint32_t flags = 0; 1170 uint16_t dur; 1171 usbd_status error; 1172 int xferlen, rate; 1173 1174 data = &sc->tx_data[0]; 1175 desc = (struct ural_tx_desc *)data->buf; 1176 1177 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1178 1179 wh = mtod(m0, struct ieee80211_frame *); 1180 1181 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1182 k = ieee80211_crypto_encap(ic, ni, m0); 1183 if (k == NULL) { 1184 m_freem(m0); 1185 return ENOBUFS; 1186 } 1187 } 1188 1189 data->m = m0; 1190 data->ni = ni; 1191 1192 wh = mtod(m0, struct ieee80211_frame *); 1193 1194 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1195 flags |= RAL_TX_ACK; 1196 1197 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; 1198 *(uint16_t *)wh->i_dur = htole16(dur); 1199 1200 /* tell hardware to add timestamp for probe responses */ 1201 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1202 IEEE80211_FC0_TYPE_MGT && 1203 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1204 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1205 flags |= RAL_TX_TIMESTAMP; 1206 } 1207 1208 if (sc->sc_drvbpf != NULL) { 1209 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1210 1211 tap->wt_flags = 0; 1212 tap->wt_rate = rate; 1213 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1214 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1215 tap->wt_antenna = sc->tx_ant; 1216 1217 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1218 } 1219 1220 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1221 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1222 1223 /* align end on a 2-bytes boundary */ 1224 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1225 1226 /* 1227 * No space left in the last URB to store the extra 2 bytes, force 1228 * sending of another URB. 1229 */ 1230 if ((xferlen % 64) == 0) 1231 xferlen += 2; 1232 1233 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n", 1234 m0->m_pkthdr.len, rate, xferlen)); 1235 1236 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1237 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof); 1238 1239 error = usbd_transfer(data->xfer); 1240 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1241 m_freem(m0); 1242 return error; 1243 } 1244 1245 sc->tx_queued++; 1246 1247 return 0; 1248 } 1249 1250 Static int 1251 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1252 { 1253 struct ieee80211com *ic = &sc->sc_ic; 1254 struct ural_tx_desc *desc; 1255 struct ural_tx_data *data; 1256 struct ieee80211_frame *wh; 1257 struct ieee80211_key *k; 1258 uint32_t flags = 0; 1259 uint16_t dur; 1260 usbd_status error; 1261 int xferlen, rate; 1262 1263 wh = mtod(m0, struct ieee80211_frame *); 1264 1265 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1266 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1267 else 1268 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1269 1270 rate &= IEEE80211_RATE_VAL; 1271 1272 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1273 k = ieee80211_crypto_encap(ic, ni, m0); 1274 if (k == NULL) { 1275 m_freem(m0); 1276 return ENOBUFS; 1277 } 1278 1279 /* packet header may have moved, reset our local pointer */ 1280 wh = mtod(m0, struct ieee80211_frame *); 1281 } 1282 1283 data = &sc->tx_data[0]; 1284 desc = (struct ural_tx_desc *)data->buf; 1285 1286 data->m = m0; 1287 data->ni = ni; 1288 1289 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1290 flags |= RAL_TX_ACK; 1291 flags |= RAL_TX_RETRY(7); 1292 1293 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), 1294 ic->ic_flags) + RAL_SIFS; 1295 *(uint16_t *)wh->i_dur = htole16(dur); 1296 } 1297 1298 if (sc->sc_drvbpf != NULL) { 1299 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1300 1301 tap->wt_flags = 0; 1302 tap->wt_rate = rate; 1303 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1304 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1305 tap->wt_antenna = sc->tx_ant; 1306 1307 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1308 } 1309 1310 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1311 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1312 1313 /* align end on a 2-bytes boundary */ 1314 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1315 1316 /* 1317 * No space left in the last URB to store the extra 2 bytes, force 1318 * sending of another URB. 1319 */ 1320 if ((xferlen % 64) == 0) 1321 xferlen += 2; 1322 1323 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n", 1324 m0->m_pkthdr.len, rate, xferlen)); 1325 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1326 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof); 1327 1328 error = usbd_transfer(data->xfer); 1329 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1330 return error; 1331 1332 sc->tx_queued++; 1333 1334 return 0; 1335 } 1336 1337 Static void 1338 ural_start(struct ifnet *ifp) 1339 { 1340 struct ural_softc *sc = ifp->if_softc; 1341 struct ieee80211com *ic = &sc->sc_ic; 1342 struct mbuf *m0; 1343 struct ether_header *eh; 1344 struct ieee80211_node *ni; 1345 1346 for (;;) { 1347 IF_POLL(&ic->ic_mgtq, m0); 1348 if (m0 != NULL) { 1349 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1350 ifp->if_flags |= IFF_OACTIVE; 1351 break; 1352 } 1353 IF_DEQUEUE(&ic->ic_mgtq, m0); 1354 1355 ni = M_GETCTX(m0, struct ieee80211_node *); 1356 M_CLEARCTX(m0); 1357 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1358 if (ural_tx_mgt(sc, m0, ni) != 0) 1359 break; 1360 1361 } else { 1362 if (ic->ic_state != IEEE80211_S_RUN) 1363 break; 1364 IFQ_DEQUEUE(&ifp->if_snd, m0); 1365 if (m0 == NULL) 1366 break; 1367 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1368 IF_PREPEND(&ifp->if_snd, m0); 1369 ifp->if_flags |= IFF_OACTIVE; 1370 break; 1371 } 1372 1373 if (m0->m_len < sizeof(struct ether_header) && 1374 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1375 continue; 1376 1377 eh = mtod(m0, struct ether_header *); 1378 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1379 if (ni == NULL) { 1380 m_freem(m0); 1381 continue; 1382 } 1383 bpf_mtap(ifp, m0, BPF_D_OUT); 1384 m0 = ieee80211_encap(ic, m0, ni); 1385 if (m0 == NULL) { 1386 ieee80211_free_node(ni); 1387 continue; 1388 } 1389 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1390 if (ural_tx_data(sc, m0, ni) != 0) { 1391 ieee80211_free_node(ni); 1392 ifp->if_oerrors++; 1393 break; 1394 } 1395 } 1396 1397 sc->sc_tx_timer = 5; 1398 ifp->if_timer = 1; 1399 } 1400 } 1401 1402 Static void 1403 ural_watchdog(struct ifnet *ifp) 1404 { 1405 struct ural_softc *sc = ifp->if_softc; 1406 struct ieee80211com *ic = &sc->sc_ic; 1407 1408 ifp->if_timer = 0; 1409 1410 if (sc->sc_tx_timer > 0) { 1411 if (--sc->sc_tx_timer == 0) { 1412 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1413 /*ural_init(sc); XXX needs a process context! */ 1414 ifp->if_oerrors++; 1415 return; 1416 } 1417 ifp->if_timer = 1; 1418 } 1419 1420 ieee80211_watchdog(ic); 1421 } 1422 1423 /* 1424 * This function allows for fast channel switching in monitor mode (used by 1425 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 1426 * generate a new beacon frame. 1427 */ 1428 Static int 1429 ural_reset(struct ifnet *ifp) 1430 { 1431 struct ural_softc *sc = ifp->if_softc; 1432 struct ieee80211com *ic = &sc->sc_ic; 1433 1434 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1435 return ENETRESET; 1436 1437 ural_set_chan(sc, ic->ic_curchan); 1438 1439 return 0; 1440 } 1441 1442 Static int 1443 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1444 { 1445 #define IS_RUNNING(ifp) \ 1446 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1447 1448 struct ural_softc *sc = ifp->if_softc; 1449 struct ieee80211com *ic = &sc->sc_ic; 1450 int s, error = 0; 1451 1452 s = splnet(); 1453 1454 switch (cmd) { 1455 case SIOCSIFFLAGS: 1456 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1457 break; 1458 /* XXX re-use ether_ioctl() */ 1459 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1460 case IFF_UP|IFF_RUNNING: 1461 ural_update_promisc(sc); 1462 break; 1463 case IFF_UP: 1464 ural_init(ifp); 1465 break; 1466 case IFF_RUNNING: 1467 ural_stop(ifp, 1); 1468 break; 1469 case 0: 1470 break; 1471 } 1472 break; 1473 1474 case SIOCADDMULTI: 1475 case SIOCDELMULTI: 1476 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1477 error = 0; 1478 } 1479 break; 1480 1481 default: 1482 error = ieee80211_ioctl(ic, cmd, data); 1483 } 1484 1485 if (error == ENETRESET) { 1486 if (IS_RUNNING(ifp) && 1487 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1488 ural_init(ifp); 1489 error = 0; 1490 } 1491 1492 splx(s); 1493 1494 return error; 1495 #undef IS_RUNNING 1496 } 1497 1498 Static void 1499 ural_set_testmode(struct ural_softc *sc) 1500 { 1501 usb_device_request_t req; 1502 usbd_status error; 1503 1504 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1505 req.bRequest = RAL_VENDOR_REQUEST; 1506 USETW(req.wValue, 4); 1507 USETW(req.wIndex, 1); 1508 USETW(req.wLength, 0); 1509 1510 error = usbd_do_request(sc->sc_udev, &req, NULL); 1511 if (error != 0) { 1512 printf("%s: could not set test mode: %s\n", 1513 device_xname(sc->sc_dev), usbd_errstr(error)); 1514 } 1515 } 1516 1517 Static void 1518 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1519 { 1520 usb_device_request_t req; 1521 usbd_status error; 1522 1523 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1524 req.bRequest = RAL_READ_EEPROM; 1525 USETW(req.wValue, 0); 1526 USETW(req.wIndex, addr); 1527 USETW(req.wLength, len); 1528 1529 error = usbd_do_request(sc->sc_udev, &req, buf); 1530 if (error != 0) { 1531 printf("%s: could not read EEPROM: %s\n", 1532 device_xname(sc->sc_dev), usbd_errstr(error)); 1533 } 1534 } 1535 1536 Static uint16_t 1537 ural_read(struct ural_softc *sc, uint16_t reg) 1538 { 1539 usb_device_request_t req; 1540 usbd_status error; 1541 uint16_t val; 1542 1543 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1544 req.bRequest = RAL_READ_MAC; 1545 USETW(req.wValue, 0); 1546 USETW(req.wIndex, reg); 1547 USETW(req.wLength, sizeof(uint16_t)); 1548 1549 error = usbd_do_request(sc->sc_udev, &req, &val); 1550 if (error != 0) { 1551 printf("%s: could not read MAC register: %s\n", 1552 device_xname(sc->sc_dev), usbd_errstr(error)); 1553 return 0; 1554 } 1555 1556 return le16toh(val); 1557 } 1558 1559 Static void 1560 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1561 { 1562 usb_device_request_t req; 1563 usbd_status error; 1564 1565 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1566 req.bRequest = RAL_READ_MULTI_MAC; 1567 USETW(req.wValue, 0); 1568 USETW(req.wIndex, reg); 1569 USETW(req.wLength, len); 1570 1571 error = usbd_do_request(sc->sc_udev, &req, buf); 1572 if (error != 0) { 1573 printf("%s: could not read MAC register: %s\n", 1574 device_xname(sc->sc_dev), usbd_errstr(error)); 1575 } 1576 } 1577 1578 Static void 1579 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1580 { 1581 usb_device_request_t req; 1582 usbd_status error; 1583 1584 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1585 req.bRequest = RAL_WRITE_MAC; 1586 USETW(req.wValue, val); 1587 USETW(req.wIndex, reg); 1588 USETW(req.wLength, 0); 1589 1590 error = usbd_do_request(sc->sc_udev, &req, NULL); 1591 if (error != 0) { 1592 printf("%s: could not write MAC register: %s\n", 1593 device_xname(sc->sc_dev), usbd_errstr(error)); 1594 } 1595 } 1596 1597 Static void 1598 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1599 { 1600 usb_device_request_t req; 1601 usbd_status error; 1602 1603 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1604 req.bRequest = RAL_WRITE_MULTI_MAC; 1605 USETW(req.wValue, 0); 1606 USETW(req.wIndex, reg); 1607 USETW(req.wLength, len); 1608 1609 error = usbd_do_request(sc->sc_udev, &req, buf); 1610 if (error != 0) { 1611 printf("%s: could not write MAC register: %s\n", 1612 device_xname(sc->sc_dev), usbd_errstr(error)); 1613 } 1614 } 1615 1616 Static void 1617 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1618 { 1619 uint16_t tmp; 1620 int ntries; 1621 1622 for (ntries = 0; ntries < 5; ntries++) { 1623 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1624 break; 1625 } 1626 if (ntries == 5) { 1627 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1628 return; 1629 } 1630 1631 tmp = reg << 8 | val; 1632 ural_write(sc, RAL_PHY_CSR7, tmp); 1633 } 1634 1635 Static uint8_t 1636 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1637 { 1638 uint16_t val; 1639 int ntries; 1640 1641 val = RAL_BBP_WRITE | reg << 8; 1642 ural_write(sc, RAL_PHY_CSR7, val); 1643 1644 for (ntries = 0; ntries < 5; ntries++) { 1645 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1646 break; 1647 } 1648 if (ntries == 5) { 1649 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1650 return 0; 1651 } 1652 1653 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1654 } 1655 1656 Static void 1657 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1658 { 1659 uint32_t tmp; 1660 int ntries; 1661 1662 for (ntries = 0; ntries < 5; ntries++) { 1663 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1664 break; 1665 } 1666 if (ntries == 5) { 1667 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1668 return; 1669 } 1670 1671 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1672 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1673 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1674 1675 /* remember last written value in sc */ 1676 sc->rf_regs[reg] = val; 1677 1678 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 1679 } 1680 1681 Static void 1682 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1683 { 1684 struct ieee80211com *ic = &sc->sc_ic; 1685 uint8_t power, tmp; 1686 u_int i, chan; 1687 1688 chan = ieee80211_chan2ieee(ic, c); 1689 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1690 return; 1691 1692 if (IEEE80211_IS_CHAN_2GHZ(c)) 1693 power = min(sc->txpow[chan - 1], 31); 1694 else 1695 power = 31; 1696 1697 /* adjust txpower using ifconfig settings */ 1698 power -= (100 - ic->ic_txpowlimit) / 8; 1699 1700 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 1701 1702 switch (sc->rf_rev) { 1703 case RAL_RF_2522: 1704 ural_rf_write(sc, RAL_RF1, 0x00814); 1705 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1706 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1707 break; 1708 1709 case RAL_RF_2523: 1710 ural_rf_write(sc, RAL_RF1, 0x08804); 1711 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1712 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1713 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1714 break; 1715 1716 case RAL_RF_2524: 1717 ural_rf_write(sc, RAL_RF1, 0x0c808); 1718 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1719 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1720 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1721 break; 1722 1723 case RAL_RF_2525: 1724 ural_rf_write(sc, RAL_RF1, 0x08808); 1725 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1726 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1727 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1728 1729 ural_rf_write(sc, RAL_RF1, 0x08808); 1730 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1731 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1732 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1733 break; 1734 1735 case RAL_RF_2525E: 1736 ural_rf_write(sc, RAL_RF1, 0x08808); 1737 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1738 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1739 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1740 break; 1741 1742 case RAL_RF_2526: 1743 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1744 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1745 ural_rf_write(sc, RAL_RF1, 0x08804); 1746 1747 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1748 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1749 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1750 break; 1751 1752 /* dual-band RF */ 1753 case RAL_RF_5222: 1754 for (i = 0; ural_rf5222[i].chan != chan; i++); 1755 1756 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1757 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1758 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1759 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1760 break; 1761 } 1762 1763 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1764 ic->ic_state != IEEE80211_S_SCAN) { 1765 /* set Japan filter bit for channel 14 */ 1766 tmp = ural_bbp_read(sc, 70); 1767 1768 tmp &= ~RAL_JAPAN_FILTER; 1769 if (chan == 14) 1770 tmp |= RAL_JAPAN_FILTER; 1771 1772 ural_bbp_write(sc, 70, tmp); 1773 1774 /* clear CRC errors */ 1775 ural_read(sc, RAL_STA_CSR0); 1776 1777 DELAY(10000); 1778 ural_disable_rf_tune(sc); 1779 } 1780 } 1781 1782 /* 1783 * Disable RF auto-tuning. 1784 */ 1785 Static void 1786 ural_disable_rf_tune(struct ural_softc *sc) 1787 { 1788 uint32_t tmp; 1789 1790 if (sc->rf_rev != RAL_RF_2523) { 1791 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1792 ural_rf_write(sc, RAL_RF1, tmp); 1793 } 1794 1795 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1796 ural_rf_write(sc, RAL_RF3, tmp); 1797 1798 DPRINTFN(2, ("disabling RF autotune\n")); 1799 } 1800 1801 /* 1802 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1803 * synchronization. 1804 */ 1805 Static void 1806 ural_enable_tsf_sync(struct ural_softc *sc) 1807 { 1808 struct ieee80211com *ic = &sc->sc_ic; 1809 uint16_t logcwmin, preload, tmp; 1810 1811 /* first, disable TSF synchronization */ 1812 ural_write(sc, RAL_TXRX_CSR19, 0); 1813 1814 tmp = (16 * ic->ic_bss->ni_intval) << 4; 1815 ural_write(sc, RAL_TXRX_CSR18, tmp); 1816 1817 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1818 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1819 tmp = logcwmin << 12 | preload; 1820 ural_write(sc, RAL_TXRX_CSR20, tmp); 1821 1822 /* finally, enable TSF synchronization */ 1823 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1824 if (ic->ic_opmode == IEEE80211_M_STA) 1825 tmp |= RAL_ENABLE_TSF_SYNC(1); 1826 else 1827 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1828 ural_write(sc, RAL_TXRX_CSR19, tmp); 1829 1830 DPRINTF(("enabling TSF synchronization\n")); 1831 } 1832 1833 Static void 1834 ural_update_slot(struct ifnet *ifp) 1835 { 1836 struct ural_softc *sc = ifp->if_softc; 1837 struct ieee80211com *ic = &sc->sc_ic; 1838 uint16_t slottime, sifs, eifs; 1839 1840 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1841 1842 /* 1843 * These settings may sound a bit inconsistent but this is what the 1844 * reference driver does. 1845 */ 1846 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1847 sifs = 16 - RAL_RXTX_TURNAROUND; 1848 eifs = 364; 1849 } else { 1850 sifs = 10 - RAL_RXTX_TURNAROUND; 1851 eifs = 64; 1852 } 1853 1854 ural_write(sc, RAL_MAC_CSR10, slottime); 1855 ural_write(sc, RAL_MAC_CSR11, sifs); 1856 ural_write(sc, RAL_MAC_CSR12, eifs); 1857 } 1858 1859 Static void 1860 ural_set_txpreamble(struct ural_softc *sc) 1861 { 1862 uint16_t tmp; 1863 1864 tmp = ural_read(sc, RAL_TXRX_CSR10); 1865 1866 tmp &= ~RAL_SHORT_PREAMBLE; 1867 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1868 tmp |= RAL_SHORT_PREAMBLE; 1869 1870 ural_write(sc, RAL_TXRX_CSR10, tmp); 1871 } 1872 1873 Static void 1874 ural_set_basicrates(struct ural_softc *sc) 1875 { 1876 struct ieee80211com *ic = &sc->sc_ic; 1877 1878 /* update basic rate set */ 1879 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1880 /* 11b basic rates: 1, 2Mbps */ 1881 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1882 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { 1883 /* 11a basic rates: 6, 12, 24Mbps */ 1884 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1885 } else { 1886 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1887 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1888 } 1889 } 1890 1891 Static void 1892 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid) 1893 { 1894 uint16_t tmp; 1895 1896 tmp = bssid[0] | bssid[1] << 8; 1897 ural_write(sc, RAL_MAC_CSR5, tmp); 1898 1899 tmp = bssid[2] | bssid[3] << 8; 1900 ural_write(sc, RAL_MAC_CSR6, tmp); 1901 1902 tmp = bssid[4] | bssid[5] << 8; 1903 ural_write(sc, RAL_MAC_CSR7, tmp); 1904 1905 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); 1906 } 1907 1908 Static void 1909 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1910 { 1911 uint16_t tmp; 1912 1913 tmp = addr[0] | addr[1] << 8; 1914 ural_write(sc, RAL_MAC_CSR2, tmp); 1915 1916 tmp = addr[2] | addr[3] << 8; 1917 ural_write(sc, RAL_MAC_CSR3, tmp); 1918 1919 tmp = addr[4] | addr[5] << 8; 1920 ural_write(sc, RAL_MAC_CSR4, tmp); 1921 1922 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); 1923 } 1924 1925 Static void 1926 ural_update_promisc(struct ural_softc *sc) 1927 { 1928 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1929 uint32_t tmp; 1930 1931 tmp = ural_read(sc, RAL_TXRX_CSR2); 1932 1933 tmp &= ~RAL_DROP_NOT_TO_ME; 1934 if (!(ifp->if_flags & IFF_PROMISC)) 1935 tmp |= RAL_DROP_NOT_TO_ME; 1936 1937 ural_write(sc, RAL_TXRX_CSR2, tmp); 1938 1939 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1940 "entering" : "leaving")); 1941 } 1942 1943 Static const char * 1944 ural_get_rf(int rev) 1945 { 1946 switch (rev) { 1947 case RAL_RF_2522: return "RT2522"; 1948 case RAL_RF_2523: return "RT2523"; 1949 case RAL_RF_2524: return "RT2524"; 1950 case RAL_RF_2525: return "RT2525"; 1951 case RAL_RF_2525E: return "RT2525e"; 1952 case RAL_RF_2526: return "RT2526"; 1953 case RAL_RF_5222: return "RT5222"; 1954 default: return "unknown"; 1955 } 1956 } 1957 1958 Static void 1959 ural_read_eeprom(struct ural_softc *sc) 1960 { 1961 struct ieee80211com *ic = &sc->sc_ic; 1962 uint16_t val; 1963 1964 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1965 val = le16toh(val); 1966 sc->rf_rev = (val >> 11) & 0x7; 1967 sc->hw_radio = (val >> 10) & 0x1; 1968 sc->led_mode = (val >> 6) & 0x7; 1969 sc->rx_ant = (val >> 4) & 0x3; 1970 sc->tx_ant = (val >> 2) & 0x3; 1971 sc->nb_ant = val & 0x3; 1972 1973 /* read MAC address */ 1974 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1975 1976 /* read default values for BBP registers */ 1977 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1978 1979 /* read Tx power for all b/g channels */ 1980 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1981 } 1982 1983 Static int 1984 ural_bbp_init(struct ural_softc *sc) 1985 { 1986 int i, ntries; 1987 1988 /* wait for BBP to be ready */ 1989 for (ntries = 0; ntries < 100; ntries++) { 1990 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1991 break; 1992 DELAY(1000); 1993 } 1994 if (ntries == 100) { 1995 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev)); 1996 return EIO; 1997 } 1998 1999 /* initialize BBP registers to default values */ 2000 for (i = 0; i < __arraycount(ural_def_bbp); i++) 2001 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 2002 2003 #if 0 2004 /* initialize BBP registers to values stored in EEPROM */ 2005 for (i = 0; i < 16; i++) { 2006 if (sc->bbp_prom[i].reg == 0xff) 2007 continue; 2008 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2009 } 2010 #endif 2011 2012 return 0; 2013 } 2014 2015 Static void 2016 ural_set_txantenna(struct ural_softc *sc, int antenna) 2017 { 2018 uint16_t tmp; 2019 uint8_t tx; 2020 2021 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 2022 if (antenna == 1) 2023 tx |= RAL_BBP_ANTA; 2024 else if (antenna == 2) 2025 tx |= RAL_BBP_ANTB; 2026 else 2027 tx |= RAL_BBP_DIVERSITY; 2028 2029 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2030 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2031 sc->rf_rev == RAL_RF_5222) 2032 tx |= RAL_BBP_FLIPIQ; 2033 2034 ural_bbp_write(sc, RAL_BBP_TX, tx); 2035 2036 /* update values in PHY_CSR5 and PHY_CSR6 */ 2037 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2038 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2039 2040 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2041 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2042 } 2043 2044 Static void 2045 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2046 { 2047 uint8_t rx; 2048 2049 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2050 if (antenna == 1) 2051 rx |= RAL_BBP_ANTA; 2052 else if (antenna == 2) 2053 rx |= RAL_BBP_ANTB; 2054 else 2055 rx |= RAL_BBP_DIVERSITY; 2056 2057 /* need to force no I/Q flip for RF 2525e and 2526 */ 2058 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2059 rx &= ~RAL_BBP_FLIPIQ; 2060 2061 ural_bbp_write(sc, RAL_BBP_RX, rx); 2062 } 2063 2064 Static int 2065 ural_init(struct ifnet *ifp) 2066 { 2067 struct ural_softc *sc = ifp->if_softc; 2068 struct ieee80211com *ic = &sc->sc_ic; 2069 struct ieee80211_key *wk; 2070 uint16_t tmp; 2071 usbd_status error; 2072 int i, ntries; 2073 2074 ural_set_testmode(sc); 2075 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2076 2077 ural_stop(ifp, 0); 2078 2079 /* initialize MAC registers to default values */ 2080 for (i = 0; i < __arraycount(ural_def_mac); i++) 2081 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2082 2083 /* wait for BBP and RF to wake up (this can take a long time!) */ 2084 for (ntries = 0; ntries < 100; ntries++) { 2085 tmp = ural_read(sc, RAL_MAC_CSR17); 2086 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2087 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2088 break; 2089 DELAY(1000); 2090 } 2091 if (ntries == 100) { 2092 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2093 device_xname(sc->sc_dev)); 2094 error = EIO; 2095 goto fail; 2096 } 2097 2098 /* we're ready! */ 2099 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2100 2101 /* set basic rate set (will be updated later) */ 2102 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2103 2104 error = ural_bbp_init(sc); 2105 if (error != 0) 2106 goto fail; 2107 2108 /* set default BSS channel */ 2109 ural_set_chan(sc, ic->ic_curchan); 2110 2111 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2112 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2113 2114 ural_set_txantenna(sc, sc->tx_ant); 2115 ural_set_rxantenna(sc, sc->rx_ant); 2116 2117 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2118 ural_set_macaddr(sc, ic->ic_myaddr); 2119 2120 /* 2121 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). 2122 */ 2123 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2124 wk = &ic->ic_crypto.cs_nw_keys[i]; 2125 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE + 2126 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE); 2127 } 2128 2129 /* 2130 * Allocate xfer for AMRR statistics requests. 2131 */ 2132 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 2133 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer); 2134 if (error) { 2135 printf("%s: could not allocate AMRR xfer\n", 2136 device_xname(sc->sc_dev)); 2137 goto fail; 2138 } 2139 2140 /* 2141 * Open Tx and Rx USB bulk pipes. 2142 */ 2143 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2144 &sc->sc_tx_pipeh); 2145 if (error != 0) { 2146 printf("%s: could not open Tx pipe: %s\n", 2147 device_xname(sc->sc_dev), usbd_errstr(error)); 2148 goto fail; 2149 } 2150 2151 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2152 &sc->sc_rx_pipeh); 2153 if (error != 0) { 2154 printf("%s: could not open Rx pipe: %s\n", 2155 device_xname(sc->sc_dev), usbd_errstr(error)); 2156 goto fail; 2157 } 2158 2159 /* 2160 * Allocate Tx and Rx xfer queues. 2161 */ 2162 error = ural_alloc_tx_list(sc); 2163 if (error != 0) { 2164 printf("%s: could not allocate Tx list\n", 2165 device_xname(sc->sc_dev)); 2166 goto fail; 2167 } 2168 2169 error = ural_alloc_rx_list(sc); 2170 if (error != 0) { 2171 printf("%s: could not allocate Rx list\n", 2172 device_xname(sc->sc_dev)); 2173 goto fail; 2174 } 2175 2176 /* 2177 * Start up the receive pipe. 2178 */ 2179 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 2180 struct ural_rx_data *data = &sc->rx_data[i]; 2181 2182 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2183 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 2184 usbd_transfer(data->xfer); 2185 } 2186 2187 /* kick Rx */ 2188 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; 2189 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2190 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; 2191 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2192 tmp |= RAL_DROP_TODS; 2193 if (!(ifp->if_flags & IFF_PROMISC)) 2194 tmp |= RAL_DROP_NOT_TO_ME; 2195 } 2196 ural_write(sc, RAL_TXRX_CSR2, tmp); 2197 2198 ifp->if_flags &= ~IFF_OACTIVE; 2199 ifp->if_flags |= IFF_RUNNING; 2200 2201 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2202 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2203 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2204 } else 2205 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2206 2207 return 0; 2208 2209 fail: ural_stop(ifp, 1); 2210 return error; 2211 } 2212 2213 Static void 2214 ural_stop(struct ifnet *ifp, int disable) 2215 { 2216 struct ural_softc *sc = ifp->if_softc; 2217 struct ieee80211com *ic = &sc->sc_ic; 2218 2219 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2220 2221 sc->sc_tx_timer = 0; 2222 ifp->if_timer = 0; 2223 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2224 2225 /* disable Rx */ 2226 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2227 2228 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2229 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2230 ural_write(sc, RAL_MAC_CSR1, 0); 2231 2232 if (sc->amrr_xfer != NULL) { 2233 usbd_destroy_xfer(sc->amrr_xfer); 2234 sc->amrr_xfer = NULL; 2235 } 2236 2237 if (sc->sc_rx_pipeh != NULL) { 2238 usbd_abort_pipe(sc->sc_rx_pipeh); 2239 } 2240 2241 if (sc->sc_tx_pipeh != NULL) { 2242 usbd_abort_pipe(sc->sc_tx_pipeh); 2243 } 2244 2245 ural_free_rx_list(sc); 2246 ural_free_tx_list(sc); 2247 2248 if (sc->sc_rx_pipeh != NULL) { 2249 usbd_close_pipe(sc->sc_rx_pipeh); 2250 sc->sc_rx_pipeh = NULL; 2251 } 2252 2253 if (sc->sc_tx_pipeh != NULL) { 2254 usbd_close_pipe(sc->sc_tx_pipeh); 2255 sc->sc_tx_pipeh = NULL; 2256 } 2257 } 2258 2259 int 2260 ural_activate(device_t self, enum devact act) 2261 { 2262 struct ural_softc *sc = device_private(self); 2263 2264 switch (act) { 2265 case DVACT_DEACTIVATE: 2266 if_deactivate(&sc->sc_if); 2267 return 0; 2268 default: 2269 return EOPNOTSUPP; 2270 } 2271 } 2272 2273 Static void 2274 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) 2275 { 2276 int i; 2277 2278 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2279 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2280 2281 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2282 2283 /* set rate to some reasonable initial value */ 2284 for (i = ni->ni_rates.rs_nrates - 1; 2285 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2286 i--); 2287 ni->ni_txrate = i; 2288 2289 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2290 } 2291 2292 Static void 2293 ural_amrr_timeout(void *arg) 2294 { 2295 struct ural_softc *sc = (struct ural_softc *)arg; 2296 usb_device_request_t req; 2297 int s; 2298 2299 s = splusb(); 2300 2301 /* 2302 * Asynchronously read statistic registers (cleared by read). 2303 */ 2304 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2305 req.bRequest = RAL_READ_MULTI_MAC; 2306 USETW(req.wValue, 0); 2307 USETW(req.wIndex, RAL_STA_CSR0); 2308 USETW(req.wLength, sizeof(sc->sta)); 2309 2310 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2311 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2312 ural_amrr_update); 2313 (void)usbd_transfer(sc->amrr_xfer); 2314 2315 splx(s); 2316 } 2317 2318 Static void 2319 ural_amrr_update(struct usbd_xfer *xfer, void * priv, 2320 usbd_status status) 2321 { 2322 struct ural_softc *sc = (struct ural_softc *)priv; 2323 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2324 2325 if (status != USBD_NORMAL_COMPLETION) { 2326 printf("%s: could not retrieve Tx statistics - " 2327 "cancelling automatic rate control\n", 2328 device_xname(sc->sc_dev)); 2329 return; 2330 } 2331 2332 /* count TX retry-fail as Tx errors */ 2333 ifp->if_oerrors += sc->sta[9]; 2334 2335 sc->amn.amn_retrycnt = 2336 sc->sta[7] + /* TX one-retry ok count */ 2337 sc->sta[8] + /* TX more-retry ok count */ 2338 sc->sta[9]; /* TX retry-fail count */ 2339 2340 sc->amn.amn_txcnt = 2341 sc->amn.amn_retrycnt + 2342 sc->sta[6]; /* TX no-retry ok count */ 2343 2344 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2345 2346 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2347 } 2348