xref: /netbsd-src/sys/dev/usb/if_ural.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: if_ural.c,v 1.44 2013/01/22 12:40:43 jmcneill Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.44 2013/01/22 12:40:43 jmcneill Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 #include <sys/intr.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66 
67 #include <dev/usb/if_uralreg.h>
68 #include <dev/usb/if_uralvar.h>
69 
70 #ifdef URAL_DEBUG
71 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
72 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
73 int ural_debug = 0;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78 
79 /* various supported device vendors/products */
80 static const struct usb_devno ural_devs[] = {
81 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
82 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
83 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
84 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
85 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
86 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
87 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
88 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
89 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
90 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
91 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
92 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
93 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
94 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
95 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
96 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
97 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
98 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
99 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
100 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
101 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
102 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
103 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
104 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
105 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
106 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
107 };
108 
109 Static int		ural_alloc_tx_list(struct ural_softc *);
110 Static void		ural_free_tx_list(struct ural_softc *);
111 Static int		ural_alloc_rx_list(struct ural_softc *);
112 Static void		ural_free_rx_list(struct ural_softc *);
113 Static int		ural_media_change(struct ifnet *);
114 Static void		ural_next_scan(void *);
115 Static void		ural_task(void *);
116 Static int		ural_newstate(struct ieee80211com *,
117 			    enum ieee80211_state, int);
118 Static int		ural_rxrate(struct ural_rx_desc *);
119 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
120 			    usbd_status);
121 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
122 			    usbd_status);
123 Static int		ural_ack_rate(struct ieee80211com *, int);
124 Static uint16_t		ural_txtime(int, int, uint32_t);
125 Static uint8_t		ural_plcp_signal(int);
126 Static void		ural_setup_tx_desc(struct ural_softc *,
127 			    struct ural_tx_desc *, uint32_t, int, int);
128 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
129 			    struct ieee80211_node *);
130 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
131 			    struct ieee80211_node *);
132 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
133 			    struct ieee80211_node *);
134 Static void		ural_start(struct ifnet *);
135 Static void		ural_watchdog(struct ifnet *);
136 Static int		ural_reset(struct ifnet *);
137 Static int		ural_ioctl(struct ifnet *, u_long, void *);
138 Static void		ural_set_testmode(struct ural_softc *);
139 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
140 			    int);
141 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
142 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
145 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
148 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
149 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
150 Static void		ural_set_chan(struct ural_softc *,
151 			    struct ieee80211_channel *);
152 Static void		ural_disable_rf_tune(struct ural_softc *);
153 Static void		ural_enable_tsf_sync(struct ural_softc *);
154 Static void		ural_update_slot(struct ifnet *);
155 Static void		ural_set_txpreamble(struct ural_softc *);
156 Static void		ural_set_basicrates(struct ural_softc *);
157 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
158 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
159 Static void		ural_update_promisc(struct ural_softc *);
160 Static const char	*ural_get_rf(int);
161 Static void		ural_read_eeprom(struct ural_softc *);
162 Static int		ural_bbp_init(struct ural_softc *);
163 Static void		ural_set_txantenna(struct ural_softc *, int);
164 Static void		ural_set_rxantenna(struct ural_softc *, int);
165 Static int		ural_init(struct ifnet *);
166 Static void		ural_stop(struct ifnet *, int);
167 Static void		ural_amrr_start(struct ural_softc *,
168 			    struct ieee80211_node *);
169 Static void		ural_amrr_timeout(void *);
170 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
171 			    usbd_status status);
172 
173 /*
174  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
175  */
176 static const struct ieee80211_rateset ural_rateset_11a =
177 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
178 
179 static const struct ieee80211_rateset ural_rateset_11b =
180 	{ 4, { 2, 4, 11, 22 } };
181 
182 static const struct ieee80211_rateset ural_rateset_11g =
183 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
184 
185 /*
186  * Default values for MAC registers; values taken from the reference driver.
187  */
188 static const struct {
189 	uint16_t	reg;
190 	uint16_t	val;
191 } ural_def_mac[] = {
192 	{ RAL_TXRX_CSR5,  0x8c8d },
193 	{ RAL_TXRX_CSR6,  0x8b8a },
194 	{ RAL_TXRX_CSR7,  0x8687 },
195 	{ RAL_TXRX_CSR8,  0x0085 },
196 	{ RAL_MAC_CSR13,  0x1111 },
197 	{ RAL_MAC_CSR14,  0x1e11 },
198 	{ RAL_TXRX_CSR21, 0xe78f },
199 	{ RAL_MAC_CSR9,   0xff1d },
200 	{ RAL_MAC_CSR11,  0x0002 },
201 	{ RAL_MAC_CSR22,  0x0053 },
202 	{ RAL_MAC_CSR15,  0x0000 },
203 	{ RAL_MAC_CSR8,   0x0780 },
204 	{ RAL_TXRX_CSR19, 0x0000 },
205 	{ RAL_TXRX_CSR18, 0x005a },
206 	{ RAL_PHY_CSR2,   0x0000 },
207 	{ RAL_TXRX_CSR0,  0x1ec0 },
208 	{ RAL_PHY_CSR4,   0x000f }
209 };
210 
211 /*
212  * Default values for BBP registers; values taken from the reference driver.
213  */
214 static const struct {
215 	uint8_t	reg;
216 	uint8_t	val;
217 } ural_def_bbp[] = {
218 	{  3, 0x02 },
219 	{  4, 0x19 },
220 	{ 14, 0x1c },
221 	{ 15, 0x30 },
222 	{ 16, 0xac },
223 	{ 17, 0x48 },
224 	{ 18, 0x18 },
225 	{ 19, 0xff },
226 	{ 20, 0x1e },
227 	{ 21, 0x08 },
228 	{ 22, 0x08 },
229 	{ 23, 0x08 },
230 	{ 24, 0x80 },
231 	{ 25, 0x50 },
232 	{ 26, 0x08 },
233 	{ 27, 0x23 },
234 	{ 30, 0x10 },
235 	{ 31, 0x2b },
236 	{ 32, 0xb9 },
237 	{ 34, 0x12 },
238 	{ 35, 0x50 },
239 	{ 39, 0xc4 },
240 	{ 40, 0x02 },
241 	{ 41, 0x60 },
242 	{ 53, 0x10 },
243 	{ 54, 0x18 },
244 	{ 56, 0x08 },
245 	{ 57, 0x10 },
246 	{ 58, 0x08 },
247 	{ 61, 0x60 },
248 	{ 62, 0x10 },
249 	{ 75, 0xff }
250 };
251 
252 /*
253  * Default values for RF register R2 indexed by channel numbers.
254  */
255 static const uint32_t ural_rf2522_r2[] = {
256 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
257 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
258 };
259 
260 static const uint32_t ural_rf2523_r2[] = {
261 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
262 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
263 };
264 
265 static const uint32_t ural_rf2524_r2[] = {
266 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
267 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
268 };
269 
270 static const uint32_t ural_rf2525_r2[] = {
271 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
272 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
273 };
274 
275 static const uint32_t ural_rf2525_hi_r2[] = {
276 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
277 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
278 };
279 
280 static const uint32_t ural_rf2525e_r2[] = {
281 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
282 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
283 };
284 
285 static const uint32_t ural_rf2526_hi_r2[] = {
286 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
287 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
288 };
289 
290 static const uint32_t ural_rf2526_r2[] = {
291 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
292 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
293 };
294 
295 /*
296  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
297  * values taken from the reference driver.
298  */
299 static const struct {
300 	uint8_t		chan;
301 	uint32_t	r1;
302 	uint32_t	r2;
303 	uint32_t	r4;
304 } ural_rf5222[] = {
305 	{   1, 0x08808, 0x0044d, 0x00282 },
306 	{   2, 0x08808, 0x0044e, 0x00282 },
307 	{   3, 0x08808, 0x0044f, 0x00282 },
308 	{   4, 0x08808, 0x00460, 0x00282 },
309 	{   5, 0x08808, 0x00461, 0x00282 },
310 	{   6, 0x08808, 0x00462, 0x00282 },
311 	{   7, 0x08808, 0x00463, 0x00282 },
312 	{   8, 0x08808, 0x00464, 0x00282 },
313 	{   9, 0x08808, 0x00465, 0x00282 },
314 	{  10, 0x08808, 0x00466, 0x00282 },
315 	{  11, 0x08808, 0x00467, 0x00282 },
316 	{  12, 0x08808, 0x00468, 0x00282 },
317 	{  13, 0x08808, 0x00469, 0x00282 },
318 	{  14, 0x08808, 0x0046b, 0x00286 },
319 
320 	{  36, 0x08804, 0x06225, 0x00287 },
321 	{  40, 0x08804, 0x06226, 0x00287 },
322 	{  44, 0x08804, 0x06227, 0x00287 },
323 	{  48, 0x08804, 0x06228, 0x00287 },
324 	{  52, 0x08804, 0x06229, 0x00287 },
325 	{  56, 0x08804, 0x0622a, 0x00287 },
326 	{  60, 0x08804, 0x0622b, 0x00287 },
327 	{  64, 0x08804, 0x0622c, 0x00287 },
328 
329 	{ 100, 0x08804, 0x02200, 0x00283 },
330 	{ 104, 0x08804, 0x02201, 0x00283 },
331 	{ 108, 0x08804, 0x02202, 0x00283 },
332 	{ 112, 0x08804, 0x02203, 0x00283 },
333 	{ 116, 0x08804, 0x02204, 0x00283 },
334 	{ 120, 0x08804, 0x02205, 0x00283 },
335 	{ 124, 0x08804, 0x02206, 0x00283 },
336 	{ 128, 0x08804, 0x02207, 0x00283 },
337 	{ 132, 0x08804, 0x02208, 0x00283 },
338 	{ 136, 0x08804, 0x02209, 0x00283 },
339 	{ 140, 0x08804, 0x0220a, 0x00283 },
340 
341 	{ 149, 0x08808, 0x02429, 0x00281 },
342 	{ 153, 0x08808, 0x0242b, 0x00281 },
343 	{ 157, 0x08808, 0x0242d, 0x00281 },
344 	{ 161, 0x08808, 0x0242f, 0x00281 }
345 };
346 
347 int             ural_match(device_t, cfdata_t, void *);
348 void            ural_attach(device_t, device_t, void *);
349 int             ural_detach(device_t, int);
350 int             ural_activate(device_t, enum devact);
351 extern struct cfdriver ural_cd;
352 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
353 
354 int
355 ural_match(device_t parent, cfdata_t match, void *aux)
356 {
357 	struct usb_attach_arg *uaa = aux;
358 
359 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
360 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
361 }
362 
363 void
364 ural_attach(device_t parent, device_t self, void *aux)
365 {
366 	struct ural_softc *sc = device_private(self);
367 	struct usb_attach_arg *uaa = aux;
368 	struct ieee80211com *ic = &sc->sc_ic;
369 	struct ifnet *ifp = &sc->sc_if;
370 	usb_interface_descriptor_t *id;
371 	usb_endpoint_descriptor_t *ed;
372 	usbd_status error;
373 	char *devinfop;
374 	int i;
375 
376 	sc->sc_dev = self;
377 	sc->sc_udev = uaa->device;
378 
379 	aprint_naive("\n");
380 	aprint_normal("\n");
381 
382 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
383 	aprint_normal_dev(self, "%s\n", devinfop);
384 	usbd_devinfo_free(devinfop);
385 
386 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
387 	if (error != 0) {
388 		aprint_error_dev(self, "failed to set configuration"
389 		    ", err=%s\n", usbd_errstr(error));
390 		return;
391 	}
392 
393 	/* get the first interface handle */
394 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
395 	    &sc->sc_iface);
396 	if (error != 0) {
397 		aprint_error_dev(self, "could not get interface handle\n");
398 		return;
399 	}
400 
401 	/*
402 	 * Find endpoints.
403 	 */
404 	id = usbd_get_interface_descriptor(sc->sc_iface);
405 
406 	sc->sc_rx_no = sc->sc_tx_no = -1;
407 	for (i = 0; i < id->bNumEndpoints; i++) {
408 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
409 		if (ed == NULL) {
410 			aprint_error_dev(self,
411 			    "no endpoint descriptor for %d\n", i);
412 			return;
413 		}
414 
415 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
416 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 			sc->sc_rx_no = ed->bEndpointAddress;
418 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
419 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
420 			sc->sc_tx_no = ed->bEndpointAddress;
421 	}
422 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
423 		aprint_error_dev(self, "missing endpoint\n");
424 		return;
425 	}
426 
427 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
428 	callout_init(&sc->sc_scan_ch, 0);
429 	sc->amrr.amrr_min_success_threshold = 1;
430 	sc->amrr.amrr_max_success_threshold = 15;
431 	callout_init(&sc->sc_amrr_ch, 0);
432 
433 	/* retrieve RT2570 rev. no */
434 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
435 
436 	/* retrieve MAC address and various other things from EEPROM */
437 	ural_read_eeprom(sc);
438 
439 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
440 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
441 
442 	ifp->if_softc = sc;
443 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 	ifp->if_init = ural_init;
446 	ifp->if_ioctl = ural_ioctl;
447 	ifp->if_start = ural_start;
448 	ifp->if_watchdog = ural_watchdog;
449 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
450 	IFQ_SET_READY(&ifp->if_snd);
451 
452 	ic->ic_ifp = ifp;
453 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
454 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
455 	ic->ic_state = IEEE80211_S_INIT;
456 
457 	/* set device capabilities */
458 	ic->ic_caps =
459 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
460 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
461 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
462 	    IEEE80211_C_TXPMGT |	/* tx power management */
463 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
464 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
465 	    IEEE80211_C_WPA;		/* 802.11i */
466 
467 	if (sc->rf_rev == RAL_RF_5222) {
468 		/* set supported .11a rates */
469 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
470 
471 		/* set supported .11a channels */
472 		for (i = 36; i <= 64; i += 4) {
473 			ic->ic_channels[i].ic_freq =
474 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
475 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
476 		}
477 		for (i = 100; i <= 140; i += 4) {
478 			ic->ic_channels[i].ic_freq =
479 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
480 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
481 		}
482 		for (i = 149; i <= 161; i += 4) {
483 			ic->ic_channels[i].ic_freq =
484 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
485 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
486 		}
487 	}
488 
489 	/* set supported .11b and .11g rates */
490 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
491 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
492 
493 	/* set supported .11b and .11g channels (1 through 14) */
494 	for (i = 1; i <= 14; i++) {
495 		ic->ic_channels[i].ic_freq =
496 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
497 		ic->ic_channels[i].ic_flags =
498 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
499 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
500 	}
501 
502 	if_attach(ifp);
503 	ieee80211_ifattach(ic);
504 	ic->ic_reset = ural_reset;
505 
506 	/* override state transition machine */
507 	sc->sc_newstate = ic->ic_newstate;
508 	ic->ic_newstate = ural_newstate;
509 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
510 
511 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
512 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
513 
514 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
515 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
516 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
517 
518 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
519 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
520 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
521 
522 	ieee80211_announce(ic);
523 
524 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
525 	    sc->sc_dev);
526 
527 	return;
528 }
529 
530 int
531 ural_detach(device_t self, int flags)
532 {
533 	struct ural_softc *sc = device_private(self);
534 	struct ieee80211com *ic = &sc->sc_ic;
535 	struct ifnet *ifp = &sc->sc_if;
536 	int s;
537 
538 	s = splusb();
539 
540 	ural_stop(ifp, 1);
541 	usb_rem_task(sc->sc_udev, &sc->sc_task);
542 	callout_stop(&sc->sc_scan_ch);
543 	callout_stop(&sc->sc_amrr_ch);
544 
545 	if (sc->amrr_xfer != NULL) {
546 		usbd_free_xfer(sc->amrr_xfer);
547 		sc->amrr_xfer = NULL;
548 	}
549 
550 	if (sc->sc_rx_pipeh != NULL) {
551 		usbd_abort_pipe(sc->sc_rx_pipeh);
552 		usbd_close_pipe(sc->sc_rx_pipeh);
553 	}
554 
555 	if (sc->sc_tx_pipeh != NULL) {
556 		usbd_abort_pipe(sc->sc_tx_pipeh);
557 		usbd_close_pipe(sc->sc_tx_pipeh);
558 	}
559 
560 	bpf_detach(ifp);
561 	ieee80211_ifdetach(ic);
562 	if_detach(ifp);
563 
564 	splx(s);
565 
566 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
567 	    sc->sc_dev);
568 
569 	return 0;
570 }
571 
572 Static int
573 ural_alloc_tx_list(struct ural_softc *sc)
574 {
575 	struct ural_tx_data *data;
576 	int i, error;
577 
578 	sc->tx_queued = 0;
579 
580 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
581 		data = &sc->tx_data[i];
582 
583 		data->sc = sc;
584 
585 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
586 		if (data->xfer == NULL) {
587 			printf("%s: could not allocate tx xfer\n",
588 			    device_xname(sc->sc_dev));
589 			error = ENOMEM;
590 			goto fail;
591 		}
592 
593 		data->buf = usbd_alloc_buffer(data->xfer,
594 		    RAL_TX_DESC_SIZE + MCLBYTES);
595 		if (data->buf == NULL) {
596 			printf("%s: could not allocate tx buffer\n",
597 			    device_xname(sc->sc_dev));
598 			error = ENOMEM;
599 			goto fail;
600 		}
601 	}
602 
603 	return 0;
604 
605 fail:	ural_free_tx_list(sc);
606 	return error;
607 }
608 
609 Static void
610 ural_free_tx_list(struct ural_softc *sc)
611 {
612 	struct ural_tx_data *data;
613 	int i;
614 
615 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
616 		data = &sc->tx_data[i];
617 
618 		if (data->xfer != NULL) {
619 			usbd_free_xfer(data->xfer);
620 			data->xfer = NULL;
621 		}
622 
623 		if (data->ni != NULL) {
624 			ieee80211_free_node(data->ni);
625 			data->ni = NULL;
626 		}
627 	}
628 }
629 
630 Static int
631 ural_alloc_rx_list(struct ural_softc *sc)
632 {
633 	struct ural_rx_data *data;
634 	int i, error;
635 
636 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
637 		data = &sc->rx_data[i];
638 
639 		data->sc = sc;
640 
641 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
642 		if (data->xfer == NULL) {
643 			printf("%s: could not allocate rx xfer\n",
644 			    device_xname(sc->sc_dev));
645 			error = ENOMEM;
646 			goto fail;
647 		}
648 
649 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
650 			printf("%s: could not allocate rx buffer\n",
651 			    device_xname(sc->sc_dev));
652 			error = ENOMEM;
653 			goto fail;
654 		}
655 
656 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
657 		if (data->m == NULL) {
658 			printf("%s: could not allocate rx mbuf\n",
659 			    device_xname(sc->sc_dev));
660 			error = ENOMEM;
661 			goto fail;
662 		}
663 
664 		MCLGET(data->m, M_DONTWAIT);
665 		if (!(data->m->m_flags & M_EXT)) {
666 			printf("%s: could not allocate rx mbuf cluster\n",
667 			    device_xname(sc->sc_dev));
668 			error = ENOMEM;
669 			goto fail;
670 		}
671 
672 		data->buf = mtod(data->m, uint8_t *);
673 	}
674 
675 	return 0;
676 
677 fail:	ural_free_tx_list(sc);
678 	return error;
679 }
680 
681 Static void
682 ural_free_rx_list(struct ural_softc *sc)
683 {
684 	struct ural_rx_data *data;
685 	int i;
686 
687 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
688 		data = &sc->rx_data[i];
689 
690 		if (data->xfer != NULL) {
691 			usbd_free_xfer(data->xfer);
692 			data->xfer = NULL;
693 		}
694 
695 		if (data->m != NULL) {
696 			m_freem(data->m);
697 			data->m = NULL;
698 		}
699 	}
700 }
701 
702 Static int
703 ural_media_change(struct ifnet *ifp)
704 {
705 	int error;
706 
707 	error = ieee80211_media_change(ifp);
708 	if (error != ENETRESET)
709 		return error;
710 
711 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 		ural_init(ifp);
713 
714 	return 0;
715 }
716 
717 /*
718  * This function is called periodically (every 200ms) during scanning to
719  * switch from one channel to another.
720  */
721 Static void
722 ural_next_scan(void *arg)
723 {
724 	struct ural_softc *sc = arg;
725 	struct ieee80211com *ic = &sc->sc_ic;
726 
727 	if (ic->ic_state == IEEE80211_S_SCAN)
728 		ieee80211_next_scan(ic);
729 }
730 
731 Static void
732 ural_task(void *arg)
733 {
734 	struct ural_softc *sc = arg;
735 	struct ieee80211com *ic = &sc->sc_ic;
736 	enum ieee80211_state ostate;
737 	struct ieee80211_node *ni;
738 	struct mbuf *m;
739 
740 	ostate = ic->ic_state;
741 
742 	switch (sc->sc_state) {
743 	case IEEE80211_S_INIT:
744 		if (ostate == IEEE80211_S_RUN) {
745 			/* abort TSF synchronization */
746 			ural_write(sc, RAL_TXRX_CSR19, 0);
747 
748 			/* force tx led to stop blinking */
749 			ural_write(sc, RAL_MAC_CSR20, 0);
750 		}
751 		break;
752 
753 	case IEEE80211_S_SCAN:
754 		ural_set_chan(sc, ic->ic_curchan);
755 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
756 		break;
757 
758 	case IEEE80211_S_AUTH:
759 		ural_set_chan(sc, ic->ic_curchan);
760 		break;
761 
762 	case IEEE80211_S_ASSOC:
763 		ural_set_chan(sc, ic->ic_curchan);
764 		break;
765 
766 	case IEEE80211_S_RUN:
767 		ural_set_chan(sc, ic->ic_curchan);
768 
769 		ni = ic->ic_bss;
770 
771 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
772 			ural_update_slot(ic->ic_ifp);
773 			ural_set_txpreamble(sc);
774 			ural_set_basicrates(sc);
775 			ural_set_bssid(sc, ni->ni_bssid);
776 		}
777 
778 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
779 		    ic->ic_opmode == IEEE80211_M_IBSS) {
780 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
781 			if (m == NULL) {
782 				printf("%s: could not allocate beacon\n",
783 				    device_xname(sc->sc_dev));
784 				return;
785 			}
786 
787 			if (ural_tx_bcn(sc, m, ni) != 0) {
788 				m_freem(m);
789 				printf("%s: could not send beacon\n",
790 				    device_xname(sc->sc_dev));
791 				return;
792 			}
793 
794 			/* beacon is no longer needed */
795 			m_freem(m);
796 		}
797 
798 		/* make tx led blink on tx (controlled by ASIC) */
799 		ural_write(sc, RAL_MAC_CSR20, 1);
800 
801 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
802 			ural_enable_tsf_sync(sc);
803 
804 		/* enable automatic rate adaptation in STA mode */
805 		if (ic->ic_opmode == IEEE80211_M_STA &&
806 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
807 			ural_amrr_start(sc, ni);
808 
809 		break;
810 	}
811 
812 	sc->sc_newstate(ic, sc->sc_state, -1);
813 }
814 
815 Static int
816 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
817     int arg)
818 {
819 	struct ural_softc *sc = ic->ic_ifp->if_softc;
820 
821 	usb_rem_task(sc->sc_udev, &sc->sc_task);
822 	callout_stop(&sc->sc_scan_ch);
823 	callout_stop(&sc->sc_amrr_ch);
824 
825 	/* do it in a process context */
826 	sc->sc_state = nstate;
827 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
828 
829 	return 0;
830 }
831 
832 /* quickly determine if a given rate is CCK or OFDM */
833 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
834 
835 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
836 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
837 
838 #define RAL_SIFS		10	/* us */
839 
840 #define RAL_RXTX_TURNAROUND	5	/* us */
841 
842 /*
843  * This function is only used by the Rx radiotap code.
844  */
845 Static int
846 ural_rxrate(struct ural_rx_desc *desc)
847 {
848 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
849 		/* reverse function of ural_plcp_signal */
850 		switch (desc->rate) {
851 		case 0xb:	return 12;
852 		case 0xf:	return 18;
853 		case 0xa:	return 24;
854 		case 0xe:	return 36;
855 		case 0x9:	return 48;
856 		case 0xd:	return 72;
857 		case 0x8:	return 96;
858 		case 0xc:	return 108;
859 		}
860 	} else {
861 		if (desc->rate == 10)
862 			return 2;
863 		if (desc->rate == 20)
864 			return 4;
865 		if (desc->rate == 55)
866 			return 11;
867 		if (desc->rate == 110)
868 			return 22;
869 	}
870 	return 2;	/* should not get there */
871 }
872 
873 Static void
874 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
875     usbd_status status)
876 {
877 	struct ural_tx_data *data = priv;
878 	struct ural_softc *sc = data->sc;
879 	struct ifnet *ifp = &sc->sc_if;
880 	int s;
881 
882 	if (status != USBD_NORMAL_COMPLETION) {
883 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
884 			return;
885 
886 		printf("%s: could not transmit buffer: %s\n",
887 		    device_xname(sc->sc_dev), usbd_errstr(status));
888 
889 		if (status == USBD_STALLED)
890 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
891 
892 		ifp->if_oerrors++;
893 		return;
894 	}
895 
896 	s = splnet();
897 
898 	m_freem(data->m);
899 	data->m = NULL;
900 	ieee80211_free_node(data->ni);
901 	data->ni = NULL;
902 
903 	sc->tx_queued--;
904 	ifp->if_opackets++;
905 
906 	DPRINTFN(10, ("tx done\n"));
907 
908 	sc->sc_tx_timer = 0;
909 	ifp->if_flags &= ~IFF_OACTIVE;
910 	ural_start(ifp);
911 
912 	splx(s);
913 }
914 
915 Static void
916 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
917 {
918 	struct ural_rx_data *data = priv;
919 	struct ural_softc *sc = data->sc;
920 	struct ieee80211com *ic = &sc->sc_ic;
921 	struct ifnet *ifp = &sc->sc_if;
922 	struct ural_rx_desc *desc;
923 	struct ieee80211_frame *wh;
924 	struct ieee80211_node *ni;
925 	struct mbuf *mnew, *m;
926 	int s, len;
927 
928 	if (status != USBD_NORMAL_COMPLETION) {
929 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
930 			return;
931 
932 		if (status == USBD_STALLED)
933 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
934 		goto skip;
935 	}
936 
937 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
938 
939 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
940 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
941 		    len));
942 		ifp->if_ierrors++;
943 		goto skip;
944 	}
945 
946 	/* rx descriptor is located at the end */
947 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
948 
949 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
950 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
951 		/*
952 		 * This should not happen since we did not request to receive
953 		 * those frames when we filled RAL_TXRX_CSR2.
954 		 */
955 		DPRINTFN(5, ("PHY or CRC error\n"));
956 		ifp->if_ierrors++;
957 		goto skip;
958 	}
959 
960 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
961 	if (mnew == NULL) {
962 		ifp->if_ierrors++;
963 		goto skip;
964 	}
965 
966 	MCLGET(mnew, M_DONTWAIT);
967 	if (!(mnew->m_flags & M_EXT)) {
968 		ifp->if_ierrors++;
969 		m_freem(mnew);
970 		goto skip;
971 	}
972 
973 	m = data->m;
974 	data->m = mnew;
975 	data->buf = mtod(data->m, uint8_t *);
976 
977 	/* finalize mbuf */
978 	m->m_pkthdr.rcvif = ifp;
979 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
980 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
981 
982 	s = splnet();
983 
984 	if (sc->sc_drvbpf != NULL) {
985 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
986 
987 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
988 		tap->wr_rate = ural_rxrate(desc);
989 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
990 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
991 		tap->wr_antenna = sc->rx_ant;
992 		tap->wr_antsignal = desc->rssi;
993 
994 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
995 	}
996 
997 	wh = mtod(m, struct ieee80211_frame *);
998 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
999 
1000 	/* send the frame to the 802.11 layer */
1001 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1002 
1003 	/* node is no longer needed */
1004 	ieee80211_free_node(ni);
1005 
1006 	splx(s);
1007 
1008 	DPRINTFN(15, ("rx done\n"));
1009 
1010 skip:	/* setup a new transfer */
1011 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1012 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1013 	usbd_transfer(xfer);
1014 }
1015 
1016 /*
1017  * Return the expected ack rate for a frame transmitted at rate `rate'.
1018  * XXX: this should depend on the destination node basic rate set.
1019  */
1020 Static int
1021 ural_ack_rate(struct ieee80211com *ic, int rate)
1022 {
1023 	switch (rate) {
1024 	/* CCK rates */
1025 	case 2:
1026 		return 2;
1027 	case 4:
1028 	case 11:
1029 	case 22:
1030 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1031 
1032 	/* OFDM rates */
1033 	case 12:
1034 	case 18:
1035 		return 12;
1036 	case 24:
1037 	case 36:
1038 		return 24;
1039 	case 48:
1040 	case 72:
1041 	case 96:
1042 	case 108:
1043 		return 48;
1044 	}
1045 
1046 	/* default to 1Mbps */
1047 	return 2;
1048 }
1049 
1050 /*
1051  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1052  * The function automatically determines the operating mode depending on the
1053  * given rate. `flags' indicates whether short preamble is in use or not.
1054  */
1055 Static uint16_t
1056 ural_txtime(int len, int rate, uint32_t flags)
1057 {
1058 	uint16_t txtime;
1059 
1060 	if (RAL_RATE_IS_OFDM(rate)) {
1061 		/* IEEE Std 802.11g-2003, pp. 37 */
1062 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1063 		txtime = 16 + 4 + 4 * txtime + 6;
1064 	} else {
1065 		/* IEEE Std 802.11b-1999, pp. 28 */
1066 		txtime = (16 * len + rate - 1) / rate;
1067 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1068 			txtime +=  72 + 24;
1069 		else
1070 			txtime += 144 + 48;
1071 	}
1072 	return txtime;
1073 }
1074 
1075 Static uint8_t
1076 ural_plcp_signal(int rate)
1077 {
1078 	switch (rate) {
1079 	/* CCK rates (returned values are device-dependent) */
1080 	case 2:		return 0x0;
1081 	case 4:		return 0x1;
1082 	case 11:	return 0x2;
1083 	case 22:	return 0x3;
1084 
1085 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1086 	case 12:	return 0xb;
1087 	case 18:	return 0xf;
1088 	case 24:	return 0xa;
1089 	case 36:	return 0xe;
1090 	case 48:	return 0x9;
1091 	case 72:	return 0xd;
1092 	case 96:	return 0x8;
1093 	case 108:	return 0xc;
1094 
1095 	/* unsupported rates (should not get there) */
1096 	default:	return 0xff;
1097 	}
1098 }
1099 
1100 Static void
1101 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1102     uint32_t flags, int len, int rate)
1103 {
1104 	struct ieee80211com *ic = &sc->sc_ic;
1105 	uint16_t plcp_length;
1106 	int remainder;
1107 
1108 	desc->flags = htole32(flags);
1109 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1110 	desc->flags |= htole32(len << 16);
1111 
1112 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1113 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1114 
1115 	/* setup PLCP fields */
1116 	desc->plcp_signal  = ural_plcp_signal(rate);
1117 	desc->plcp_service = 4;
1118 
1119 	len += IEEE80211_CRC_LEN;
1120 	if (RAL_RATE_IS_OFDM(rate)) {
1121 		desc->flags |= htole32(RAL_TX_OFDM);
1122 
1123 		plcp_length = len & 0xfff;
1124 		desc->plcp_length_hi = plcp_length >> 6;
1125 		desc->plcp_length_lo = plcp_length & 0x3f;
1126 	} else {
1127 		plcp_length = (16 * len + rate - 1) / rate;
1128 		if (rate == 22) {
1129 			remainder = (16 * len) % 22;
1130 			if (remainder != 0 && remainder < 7)
1131 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1132 		}
1133 		desc->plcp_length_hi = plcp_length >> 8;
1134 		desc->plcp_length_lo = plcp_length & 0xff;
1135 
1136 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1137 			desc->plcp_signal |= 0x08;
1138 	}
1139 
1140 	desc->iv = 0;
1141 	desc->eiv = 0;
1142 }
1143 
1144 #define RAL_TX_TIMEOUT	5000
1145 
1146 Static int
1147 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1148 {
1149 	struct ural_tx_desc *desc;
1150 	usbd_xfer_handle xfer;
1151 	uint8_t cmd = 0;
1152 	usbd_status error;
1153 	uint8_t *buf;
1154 	int xferlen, rate;
1155 
1156 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1157 
1158 	xfer = usbd_alloc_xfer(sc->sc_udev);
1159 	if (xfer == NULL)
1160 		return ENOMEM;
1161 
1162 	/* xfer length needs to be a multiple of two! */
1163 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1164 
1165 	buf = usbd_alloc_buffer(xfer, xferlen);
1166 	if (buf == NULL) {
1167 		usbd_free_xfer(xfer);
1168 		return ENOMEM;
1169 	}
1170 
1171 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1172 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1173 
1174 	error = usbd_sync_transfer(xfer);
1175 	if (error != 0) {
1176 		usbd_free_xfer(xfer);
1177 		return error;
1178 	}
1179 
1180 	desc = (struct ural_tx_desc *)buf;
1181 
1182 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1183 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1184 	    m0->m_pkthdr.len, rate);
1185 
1186 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1187 	    m0->m_pkthdr.len, rate, xferlen));
1188 
1189 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1190 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1191 
1192 	error = usbd_sync_transfer(xfer);
1193 	usbd_free_xfer(xfer);
1194 
1195 	return error;
1196 }
1197 
1198 Static int
1199 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1200 {
1201 	struct ieee80211com *ic = &sc->sc_ic;
1202 	struct ural_tx_desc *desc;
1203 	struct ural_tx_data *data;
1204 	struct ieee80211_frame *wh;
1205 	struct ieee80211_key *k;
1206 	uint32_t flags = 0;
1207 	uint16_t dur;
1208 	usbd_status error;
1209 	int xferlen, rate;
1210 
1211 	data = &sc->tx_data[0];
1212 	desc = (struct ural_tx_desc *)data->buf;
1213 
1214 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1215 
1216 	wh = mtod(m0, struct ieee80211_frame *);
1217 
1218 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1219 		k = ieee80211_crypto_encap(ic, ni, m0);
1220 		if (k == NULL) {
1221 			m_freem(m0);
1222 			return ENOBUFS;
1223 		}
1224 	}
1225 
1226 	data->m = m0;
1227 	data->ni = ni;
1228 
1229 	wh = mtod(m0, struct ieee80211_frame *);
1230 
1231 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1232 		flags |= RAL_TX_ACK;
1233 
1234 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1235 		*(uint16_t *)wh->i_dur = htole16(dur);
1236 
1237 		/* tell hardware to add timestamp for probe responses */
1238 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1239 		    IEEE80211_FC0_TYPE_MGT &&
1240 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1241 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1242 			flags |= RAL_TX_TIMESTAMP;
1243 	}
1244 
1245 	if (sc->sc_drvbpf != NULL) {
1246 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1247 
1248 		tap->wt_flags = 0;
1249 		tap->wt_rate = rate;
1250 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1251 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1252 		tap->wt_antenna = sc->tx_ant;
1253 
1254 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1255 	}
1256 
1257 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1258 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1259 
1260 	/* align end on a 2-bytes boundary */
1261 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1262 
1263 	/*
1264 	 * No space left in the last URB to store the extra 2 bytes, force
1265 	 * sending of another URB.
1266 	 */
1267 	if ((xferlen % 64) == 0)
1268 		xferlen += 2;
1269 
1270 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1271 	    m0->m_pkthdr.len, rate, xferlen));
1272 
1273 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1274 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1275 	    ural_txeof);
1276 
1277 	error = usbd_transfer(data->xfer);
1278 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1279 		m_freem(m0);
1280 		return error;
1281 	}
1282 
1283 	sc->tx_queued++;
1284 
1285 	return 0;
1286 }
1287 
1288 Static int
1289 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1290 {
1291 	struct ieee80211com *ic = &sc->sc_ic;
1292 	struct ural_tx_desc *desc;
1293 	struct ural_tx_data *data;
1294 	struct ieee80211_frame *wh;
1295 	struct ieee80211_key *k;
1296 	uint32_t flags = 0;
1297 	uint16_t dur;
1298 	usbd_status error;
1299 	int xferlen, rate;
1300 
1301 	wh = mtod(m0, struct ieee80211_frame *);
1302 
1303 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1304 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1305 	else
1306 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1307 
1308 	rate &= IEEE80211_RATE_VAL;
1309 
1310 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1311 		k = ieee80211_crypto_encap(ic, ni, m0);
1312 		if (k == NULL) {
1313 			m_freem(m0);
1314 			return ENOBUFS;
1315 		}
1316 
1317 		/* packet header may have moved, reset our local pointer */
1318 		wh = mtod(m0, struct ieee80211_frame *);
1319 	}
1320 
1321 	data = &sc->tx_data[0];
1322 	desc = (struct ural_tx_desc *)data->buf;
1323 
1324 	data->m = m0;
1325 	data->ni = ni;
1326 
1327 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1328 		flags |= RAL_TX_ACK;
1329 		flags |= RAL_TX_RETRY(7);
1330 
1331 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1332 		    ic->ic_flags) + RAL_SIFS;
1333 		*(uint16_t *)wh->i_dur = htole16(dur);
1334 	}
1335 
1336 	if (sc->sc_drvbpf != NULL) {
1337 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1338 
1339 		tap->wt_flags = 0;
1340 		tap->wt_rate = rate;
1341 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1342 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1343 		tap->wt_antenna = sc->tx_ant;
1344 
1345 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1346 	}
1347 
1348 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1349 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1350 
1351 	/* align end on a 2-bytes boundary */
1352 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1353 
1354 	/*
1355 	 * No space left in the last URB to store the extra 2 bytes, force
1356 	 * sending of another URB.
1357 	 */
1358 	if ((xferlen % 64) == 0)
1359 		xferlen += 2;
1360 
1361 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1362 	    m0->m_pkthdr.len, rate, xferlen));
1363 
1364 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1365 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1366 	    ural_txeof);
1367 
1368 	error = usbd_transfer(data->xfer);
1369 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1370 		return error;
1371 
1372 	sc->tx_queued++;
1373 
1374 	return 0;
1375 }
1376 
1377 Static void
1378 ural_start(struct ifnet *ifp)
1379 {
1380 	struct ural_softc *sc = ifp->if_softc;
1381 	struct ieee80211com *ic = &sc->sc_ic;
1382 	struct mbuf *m0;
1383 	struct ether_header *eh;
1384 	struct ieee80211_node *ni;
1385 
1386 	for (;;) {
1387 		IF_POLL(&ic->ic_mgtq, m0);
1388 		if (m0 != NULL) {
1389 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1390 				ifp->if_flags |= IFF_OACTIVE;
1391 				break;
1392 			}
1393 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1394 
1395 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1396 			m0->m_pkthdr.rcvif = NULL;
1397 			bpf_mtap3(ic->ic_rawbpf, m0);
1398 			if (ural_tx_mgt(sc, m0, ni) != 0)
1399 				break;
1400 
1401 		} else {
1402 			if (ic->ic_state != IEEE80211_S_RUN)
1403 				break;
1404 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1405 			if (m0 == NULL)
1406 				break;
1407 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1408 				IF_PREPEND(&ifp->if_snd, m0);
1409 				ifp->if_flags |= IFF_OACTIVE;
1410 				break;
1411 			}
1412 
1413 			if (m0->m_len < sizeof (struct ether_header) &&
1414 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1415 				continue;
1416 
1417 			eh = mtod(m0, struct ether_header *);
1418 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1419 			if (ni == NULL) {
1420 				m_freem(m0);
1421 				continue;
1422 			}
1423 			bpf_mtap(ifp, m0);
1424 			m0 = ieee80211_encap(ic, m0, ni);
1425 			if (m0 == NULL) {
1426 				ieee80211_free_node(ni);
1427 				continue;
1428 			}
1429 			bpf_mtap3(ic->ic_rawbpf, m0);
1430 			if (ural_tx_data(sc, m0, ni) != 0) {
1431 				ieee80211_free_node(ni);
1432 				ifp->if_oerrors++;
1433 				break;
1434 			}
1435 		}
1436 
1437 		sc->sc_tx_timer = 5;
1438 		ifp->if_timer = 1;
1439 	}
1440 }
1441 
1442 Static void
1443 ural_watchdog(struct ifnet *ifp)
1444 {
1445 	struct ural_softc *sc = ifp->if_softc;
1446 	struct ieee80211com *ic = &sc->sc_ic;
1447 
1448 	ifp->if_timer = 0;
1449 
1450 	if (sc->sc_tx_timer > 0) {
1451 		if (--sc->sc_tx_timer == 0) {
1452 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1453 			/*ural_init(sc); XXX needs a process context! */
1454 			ifp->if_oerrors++;
1455 			return;
1456 		}
1457 		ifp->if_timer = 1;
1458 	}
1459 
1460 	ieee80211_watchdog(ic);
1461 }
1462 
1463 /*
1464  * This function allows for fast channel switching in monitor mode (used by
1465  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1466  * generate a new beacon frame.
1467  */
1468 Static int
1469 ural_reset(struct ifnet *ifp)
1470 {
1471 	struct ural_softc *sc = ifp->if_softc;
1472 	struct ieee80211com *ic = &sc->sc_ic;
1473 
1474 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1475 		return ENETRESET;
1476 
1477 	ural_set_chan(sc, ic->ic_curchan);
1478 
1479 	return 0;
1480 }
1481 
1482 Static int
1483 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1484 {
1485 #define IS_RUNNING(ifp) \
1486 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1487 
1488 	struct ural_softc *sc = ifp->if_softc;
1489 	struct ieee80211com *ic = &sc->sc_ic;
1490 	int s, error = 0;
1491 
1492 	s = splnet();
1493 
1494 	switch (cmd) {
1495 	case SIOCSIFFLAGS:
1496 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1497 			break;
1498 		/* XXX re-use ether_ioctl() */
1499 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1500 		case IFF_UP|IFF_RUNNING:
1501 			ural_update_promisc(sc);
1502 			break;
1503 		case IFF_UP:
1504 			ural_init(ifp);
1505 			break;
1506 		case IFF_RUNNING:
1507 			ural_stop(ifp, 1);
1508 			break;
1509 		case 0:
1510 			break;
1511 		}
1512 		break;
1513 
1514 	case SIOCADDMULTI:
1515 	case SIOCDELMULTI:
1516 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1517 			error = 0;
1518 		}
1519 		break;
1520 
1521 	default:
1522 		error = ieee80211_ioctl(ic, cmd, data);
1523 	}
1524 
1525 	if (error == ENETRESET) {
1526 		if (IS_RUNNING(ifp) &&
1527 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1528 			ural_init(ifp);
1529 		error = 0;
1530 	}
1531 
1532 	splx(s);
1533 
1534 	return error;
1535 #undef IS_RUNNING
1536 }
1537 
1538 Static void
1539 ural_set_testmode(struct ural_softc *sc)
1540 {
1541 	usb_device_request_t req;
1542 	usbd_status error;
1543 
1544 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1545 	req.bRequest = RAL_VENDOR_REQUEST;
1546 	USETW(req.wValue, 4);
1547 	USETW(req.wIndex, 1);
1548 	USETW(req.wLength, 0);
1549 
1550 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1551 	if (error != 0) {
1552 		printf("%s: could not set test mode: %s\n",
1553 		    device_xname(sc->sc_dev), usbd_errstr(error));
1554 	}
1555 }
1556 
1557 Static void
1558 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1559 {
1560 	usb_device_request_t req;
1561 	usbd_status error;
1562 
1563 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1564 	req.bRequest = RAL_READ_EEPROM;
1565 	USETW(req.wValue, 0);
1566 	USETW(req.wIndex, addr);
1567 	USETW(req.wLength, len);
1568 
1569 	error = usbd_do_request(sc->sc_udev, &req, buf);
1570 	if (error != 0) {
1571 		printf("%s: could not read EEPROM: %s\n",
1572 		    device_xname(sc->sc_dev), usbd_errstr(error));
1573 	}
1574 }
1575 
1576 Static uint16_t
1577 ural_read(struct ural_softc *sc, uint16_t reg)
1578 {
1579 	usb_device_request_t req;
1580 	usbd_status error;
1581 	uint16_t val;
1582 
1583 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1584 	req.bRequest = RAL_READ_MAC;
1585 	USETW(req.wValue, 0);
1586 	USETW(req.wIndex, reg);
1587 	USETW(req.wLength, sizeof (uint16_t));
1588 
1589 	error = usbd_do_request(sc->sc_udev, &req, &val);
1590 	if (error != 0) {
1591 		printf("%s: could not read MAC register: %s\n",
1592 		    device_xname(sc->sc_dev), usbd_errstr(error));
1593 		return 0;
1594 	}
1595 
1596 	return le16toh(val);
1597 }
1598 
1599 Static void
1600 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1601 {
1602 	usb_device_request_t req;
1603 	usbd_status error;
1604 
1605 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1606 	req.bRequest = RAL_READ_MULTI_MAC;
1607 	USETW(req.wValue, 0);
1608 	USETW(req.wIndex, reg);
1609 	USETW(req.wLength, len);
1610 
1611 	error = usbd_do_request(sc->sc_udev, &req, buf);
1612 	if (error != 0) {
1613 		printf("%s: could not read MAC register: %s\n",
1614 		    device_xname(sc->sc_dev), usbd_errstr(error));
1615 	}
1616 }
1617 
1618 Static void
1619 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1620 {
1621 	usb_device_request_t req;
1622 	usbd_status error;
1623 
1624 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1625 	req.bRequest = RAL_WRITE_MAC;
1626 	USETW(req.wValue, val);
1627 	USETW(req.wIndex, reg);
1628 	USETW(req.wLength, 0);
1629 
1630 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1631 	if (error != 0) {
1632 		printf("%s: could not write MAC register: %s\n",
1633 		    device_xname(sc->sc_dev), usbd_errstr(error));
1634 	}
1635 }
1636 
1637 Static void
1638 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1639 {
1640 	usb_device_request_t req;
1641 	usbd_status error;
1642 
1643 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1644 	req.bRequest = RAL_WRITE_MULTI_MAC;
1645 	USETW(req.wValue, 0);
1646 	USETW(req.wIndex, reg);
1647 	USETW(req.wLength, len);
1648 
1649 	error = usbd_do_request(sc->sc_udev, &req, buf);
1650 	if (error != 0) {
1651 		printf("%s: could not write MAC register: %s\n",
1652 		    device_xname(sc->sc_dev), usbd_errstr(error));
1653 	}
1654 }
1655 
1656 Static void
1657 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1658 {
1659 	uint16_t tmp;
1660 	int ntries;
1661 
1662 	for (ntries = 0; ntries < 5; ntries++) {
1663 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1664 			break;
1665 	}
1666 	if (ntries == 5) {
1667 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1668 		return;
1669 	}
1670 
1671 	tmp = reg << 8 | val;
1672 	ural_write(sc, RAL_PHY_CSR7, tmp);
1673 }
1674 
1675 Static uint8_t
1676 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1677 {
1678 	uint16_t val;
1679 	int ntries;
1680 
1681 	val = RAL_BBP_WRITE | reg << 8;
1682 	ural_write(sc, RAL_PHY_CSR7, val);
1683 
1684 	for (ntries = 0; ntries < 5; ntries++) {
1685 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1686 			break;
1687 	}
1688 	if (ntries == 5) {
1689 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1690 		return 0;
1691 	}
1692 
1693 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1694 }
1695 
1696 Static void
1697 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1698 {
1699 	uint32_t tmp;
1700 	int ntries;
1701 
1702 	for (ntries = 0; ntries < 5; ntries++) {
1703 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1704 			break;
1705 	}
1706 	if (ntries == 5) {
1707 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1708 		return;
1709 	}
1710 
1711 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1712 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1713 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1714 
1715 	/* remember last written value in sc */
1716 	sc->rf_regs[reg] = val;
1717 
1718 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1719 }
1720 
1721 Static void
1722 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1723 {
1724 	struct ieee80211com *ic = &sc->sc_ic;
1725 	uint8_t power, tmp;
1726 	u_int i, chan;
1727 
1728 	chan = ieee80211_chan2ieee(ic, c);
1729 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1730 		return;
1731 
1732 	if (IEEE80211_IS_CHAN_2GHZ(c))
1733 		power = min(sc->txpow[chan - 1], 31);
1734 	else
1735 		power = 31;
1736 
1737 	/* adjust txpower using ifconfig settings */
1738 	power -= (100 - ic->ic_txpowlimit) / 8;
1739 
1740 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1741 
1742 	switch (sc->rf_rev) {
1743 	case RAL_RF_2522:
1744 		ural_rf_write(sc, RAL_RF1, 0x00814);
1745 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1746 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1747 		break;
1748 
1749 	case RAL_RF_2523:
1750 		ural_rf_write(sc, RAL_RF1, 0x08804);
1751 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1752 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1753 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1754 		break;
1755 
1756 	case RAL_RF_2524:
1757 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1758 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1759 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1760 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1761 		break;
1762 
1763 	case RAL_RF_2525:
1764 		ural_rf_write(sc, RAL_RF1, 0x08808);
1765 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1766 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1767 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1768 
1769 		ural_rf_write(sc, RAL_RF1, 0x08808);
1770 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1771 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1772 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1773 		break;
1774 
1775 	case RAL_RF_2525E:
1776 		ural_rf_write(sc, RAL_RF1, 0x08808);
1777 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1778 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1779 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1780 		break;
1781 
1782 	case RAL_RF_2526:
1783 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1784 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1785 		ural_rf_write(sc, RAL_RF1, 0x08804);
1786 
1787 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1788 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1789 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1790 		break;
1791 
1792 	/* dual-band RF */
1793 	case RAL_RF_5222:
1794 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1795 
1796 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1797 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1798 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1799 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1800 		break;
1801 	}
1802 
1803 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1804 	    ic->ic_state != IEEE80211_S_SCAN) {
1805 		/* set Japan filter bit for channel 14 */
1806 		tmp = ural_bbp_read(sc, 70);
1807 
1808 		tmp &= ~RAL_JAPAN_FILTER;
1809 		if (chan == 14)
1810 			tmp |= RAL_JAPAN_FILTER;
1811 
1812 		ural_bbp_write(sc, 70, tmp);
1813 
1814 		/* clear CRC errors */
1815 		ural_read(sc, RAL_STA_CSR0);
1816 
1817 		DELAY(10000);
1818 		ural_disable_rf_tune(sc);
1819 	}
1820 }
1821 
1822 /*
1823  * Disable RF auto-tuning.
1824  */
1825 Static void
1826 ural_disable_rf_tune(struct ural_softc *sc)
1827 {
1828 	uint32_t tmp;
1829 
1830 	if (sc->rf_rev != RAL_RF_2523) {
1831 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1832 		ural_rf_write(sc, RAL_RF1, tmp);
1833 	}
1834 
1835 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1836 	ural_rf_write(sc, RAL_RF3, tmp);
1837 
1838 	DPRINTFN(2, ("disabling RF autotune\n"));
1839 }
1840 
1841 /*
1842  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1843  * synchronization.
1844  */
1845 Static void
1846 ural_enable_tsf_sync(struct ural_softc *sc)
1847 {
1848 	struct ieee80211com *ic = &sc->sc_ic;
1849 	uint16_t logcwmin, preload, tmp;
1850 
1851 	/* first, disable TSF synchronization */
1852 	ural_write(sc, RAL_TXRX_CSR19, 0);
1853 
1854 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1855 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1856 
1857 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1858 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1859 	tmp = logcwmin << 12 | preload;
1860 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1861 
1862 	/* finally, enable TSF synchronization */
1863 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1864 	if (ic->ic_opmode == IEEE80211_M_STA)
1865 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1866 	else
1867 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1868 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1869 
1870 	DPRINTF(("enabling TSF synchronization\n"));
1871 }
1872 
1873 Static void
1874 ural_update_slot(struct ifnet *ifp)
1875 {
1876 	struct ural_softc *sc = ifp->if_softc;
1877 	struct ieee80211com *ic = &sc->sc_ic;
1878 	uint16_t slottime, sifs, eifs;
1879 
1880 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1881 
1882 	/*
1883 	 * These settings may sound a bit inconsistent but this is what the
1884 	 * reference driver does.
1885 	 */
1886 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1887 		sifs = 16 - RAL_RXTX_TURNAROUND;
1888 		eifs = 364;
1889 	} else {
1890 		sifs = 10 - RAL_RXTX_TURNAROUND;
1891 		eifs = 64;
1892 	}
1893 
1894 	ural_write(sc, RAL_MAC_CSR10, slottime);
1895 	ural_write(sc, RAL_MAC_CSR11, sifs);
1896 	ural_write(sc, RAL_MAC_CSR12, eifs);
1897 }
1898 
1899 Static void
1900 ural_set_txpreamble(struct ural_softc *sc)
1901 {
1902 	uint16_t tmp;
1903 
1904 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1905 
1906 	tmp &= ~RAL_SHORT_PREAMBLE;
1907 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1908 		tmp |= RAL_SHORT_PREAMBLE;
1909 
1910 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1911 }
1912 
1913 Static void
1914 ural_set_basicrates(struct ural_softc *sc)
1915 {
1916 	struct ieee80211com *ic = &sc->sc_ic;
1917 
1918 	/* update basic rate set */
1919 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1920 		/* 11b basic rates: 1, 2Mbps */
1921 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1922 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1923 		/* 11a basic rates: 6, 12, 24Mbps */
1924 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1925 	} else {
1926 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1927 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1928 	}
1929 }
1930 
1931 Static void
1932 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1933 {
1934 	uint16_t tmp;
1935 
1936 	tmp = bssid[0] | bssid[1] << 8;
1937 	ural_write(sc, RAL_MAC_CSR5, tmp);
1938 
1939 	tmp = bssid[2] | bssid[3] << 8;
1940 	ural_write(sc, RAL_MAC_CSR6, tmp);
1941 
1942 	tmp = bssid[4] | bssid[5] << 8;
1943 	ural_write(sc, RAL_MAC_CSR7, tmp);
1944 
1945 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1946 }
1947 
1948 Static void
1949 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1950 {
1951 	uint16_t tmp;
1952 
1953 	tmp = addr[0] | addr[1] << 8;
1954 	ural_write(sc, RAL_MAC_CSR2, tmp);
1955 
1956 	tmp = addr[2] | addr[3] << 8;
1957 	ural_write(sc, RAL_MAC_CSR3, tmp);
1958 
1959 	tmp = addr[4] | addr[5] << 8;
1960 	ural_write(sc, RAL_MAC_CSR4, tmp);
1961 
1962 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1963 }
1964 
1965 Static void
1966 ural_update_promisc(struct ural_softc *sc)
1967 {
1968 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1969 	uint32_t tmp;
1970 
1971 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1972 
1973 	tmp &= ~RAL_DROP_NOT_TO_ME;
1974 	if (!(ifp->if_flags & IFF_PROMISC))
1975 		tmp |= RAL_DROP_NOT_TO_ME;
1976 
1977 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1978 
1979 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1980 	    "entering" : "leaving"));
1981 }
1982 
1983 Static const char *
1984 ural_get_rf(int rev)
1985 {
1986 	switch (rev) {
1987 	case RAL_RF_2522:	return "RT2522";
1988 	case RAL_RF_2523:	return "RT2523";
1989 	case RAL_RF_2524:	return "RT2524";
1990 	case RAL_RF_2525:	return "RT2525";
1991 	case RAL_RF_2525E:	return "RT2525e";
1992 	case RAL_RF_2526:	return "RT2526";
1993 	case RAL_RF_5222:	return "RT5222";
1994 	default:		return "unknown";
1995 	}
1996 }
1997 
1998 Static void
1999 ural_read_eeprom(struct ural_softc *sc)
2000 {
2001 	struct ieee80211com *ic = &sc->sc_ic;
2002 	uint16_t val;
2003 
2004 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2005 	val = le16toh(val);
2006 	sc->rf_rev =   (val >> 11) & 0x7;
2007 	sc->hw_radio = (val >> 10) & 0x1;
2008 	sc->led_mode = (val >> 6)  & 0x7;
2009 	sc->rx_ant =   (val >> 4)  & 0x3;
2010 	sc->tx_ant =   (val >> 2)  & 0x3;
2011 	sc->nb_ant =   val & 0x3;
2012 
2013 	/* read MAC address */
2014 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2015 
2016 	/* read default values for BBP registers */
2017 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2018 
2019 	/* read Tx power for all b/g channels */
2020 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2021 }
2022 
2023 Static int
2024 ural_bbp_init(struct ural_softc *sc)
2025 {
2026 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2027 	int i, ntries;
2028 
2029 	/* wait for BBP to be ready */
2030 	for (ntries = 0; ntries < 100; ntries++) {
2031 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2032 			break;
2033 		DELAY(1000);
2034 	}
2035 	if (ntries == 100) {
2036 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2037 		return EIO;
2038 	}
2039 
2040 	/* initialize BBP registers to default values */
2041 	for (i = 0; i < N(ural_def_bbp); i++)
2042 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2043 
2044 #if 0
2045 	/* initialize BBP registers to values stored in EEPROM */
2046 	for (i = 0; i < 16; i++) {
2047 		if (sc->bbp_prom[i].reg == 0xff)
2048 			continue;
2049 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2050 	}
2051 #endif
2052 
2053 	return 0;
2054 #undef N
2055 }
2056 
2057 Static void
2058 ural_set_txantenna(struct ural_softc *sc, int antenna)
2059 {
2060 	uint16_t tmp;
2061 	uint8_t tx;
2062 
2063 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2064 	if (antenna == 1)
2065 		tx |= RAL_BBP_ANTA;
2066 	else if (antenna == 2)
2067 		tx |= RAL_BBP_ANTB;
2068 	else
2069 		tx |= RAL_BBP_DIVERSITY;
2070 
2071 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2072 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2073 	    sc->rf_rev == RAL_RF_5222)
2074 		tx |= RAL_BBP_FLIPIQ;
2075 
2076 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2077 
2078 	/* update values in PHY_CSR5 and PHY_CSR6 */
2079 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2080 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2081 
2082 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2083 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2084 }
2085 
2086 Static void
2087 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2088 {
2089 	uint8_t rx;
2090 
2091 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2092 	if (antenna == 1)
2093 		rx |= RAL_BBP_ANTA;
2094 	else if (antenna == 2)
2095 		rx |= RAL_BBP_ANTB;
2096 	else
2097 		rx |= RAL_BBP_DIVERSITY;
2098 
2099 	/* need to force no I/Q flip for RF 2525e and 2526 */
2100 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2101 		rx &= ~RAL_BBP_FLIPIQ;
2102 
2103 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2104 }
2105 
2106 Static int
2107 ural_init(struct ifnet *ifp)
2108 {
2109 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2110 	struct ural_softc *sc = ifp->if_softc;
2111 	struct ieee80211com *ic = &sc->sc_ic;
2112 	struct ieee80211_key *wk;
2113 	struct ural_rx_data *data;
2114 	uint16_t tmp;
2115 	usbd_status error;
2116 	int i, ntries;
2117 
2118 	ural_set_testmode(sc);
2119 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2120 
2121 	ural_stop(ifp, 0);
2122 
2123 	/* initialize MAC registers to default values */
2124 	for (i = 0; i < N(ural_def_mac); i++)
2125 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2126 
2127 	/* wait for BBP and RF to wake up (this can take a long time!) */
2128 	for (ntries = 0; ntries < 100; ntries++) {
2129 		tmp = ural_read(sc, RAL_MAC_CSR17);
2130 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2131 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2132 			break;
2133 		DELAY(1000);
2134 	}
2135 	if (ntries == 100) {
2136 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2137 		    device_xname(sc->sc_dev));
2138 		error = EIO;
2139 		goto fail;
2140 	}
2141 
2142 	/* we're ready! */
2143 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2144 
2145 	/* set basic rate set (will be updated later) */
2146 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2147 
2148 	error = ural_bbp_init(sc);
2149 	if (error != 0)
2150 		goto fail;
2151 
2152 	/* set default BSS channel */
2153 	ural_set_chan(sc, ic->ic_curchan);
2154 
2155 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2156 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2157 
2158 	ural_set_txantenna(sc, sc->tx_ant);
2159 	ural_set_rxantenna(sc, sc->rx_ant);
2160 
2161 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2162 	ural_set_macaddr(sc, ic->ic_myaddr);
2163 
2164 	/*
2165 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2166 	 */
2167 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2168 		wk = &ic->ic_crypto.cs_nw_keys[i];
2169 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2170 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2171 	}
2172 
2173 	/*
2174 	 * Allocate xfer for AMRR statistics requests.
2175 	 */
2176 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2177 	if (sc->amrr_xfer == NULL) {
2178 		printf("%s: could not allocate AMRR xfer\n",
2179 		    device_xname(sc->sc_dev));
2180 		goto fail;
2181 	}
2182 
2183 	/*
2184 	 * Open Tx and Rx USB bulk pipes.
2185 	 */
2186 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2187 	    &sc->sc_tx_pipeh);
2188 	if (error != 0) {
2189 		printf("%s: could not open Tx pipe: %s\n",
2190 		    device_xname(sc->sc_dev), usbd_errstr(error));
2191 		goto fail;
2192 	}
2193 
2194 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2195 	    &sc->sc_rx_pipeh);
2196 	if (error != 0) {
2197 		printf("%s: could not open Rx pipe: %s\n",
2198 		    device_xname(sc->sc_dev), usbd_errstr(error));
2199 		goto fail;
2200 	}
2201 
2202 	/*
2203 	 * Allocate Tx and Rx xfer queues.
2204 	 */
2205 	error = ural_alloc_tx_list(sc);
2206 	if (error != 0) {
2207 		printf("%s: could not allocate Tx list\n",
2208 		    device_xname(sc->sc_dev));
2209 		goto fail;
2210 	}
2211 
2212 	error = ural_alloc_rx_list(sc);
2213 	if (error != 0) {
2214 		printf("%s: could not allocate Rx list\n",
2215 		    device_xname(sc->sc_dev));
2216 		goto fail;
2217 	}
2218 
2219 	/*
2220 	 * Start up the receive pipe.
2221 	 */
2222 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2223 		data = &sc->rx_data[i];
2224 
2225 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2226 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2227 		usbd_transfer(data->xfer);
2228 	}
2229 
2230 	/* kick Rx */
2231 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2232 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2233 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2234 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2235 			tmp |= RAL_DROP_TODS;
2236 		if (!(ifp->if_flags & IFF_PROMISC))
2237 			tmp |= RAL_DROP_NOT_TO_ME;
2238 	}
2239 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2240 
2241 	ifp->if_flags &= ~IFF_OACTIVE;
2242 	ifp->if_flags |= IFF_RUNNING;
2243 
2244 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2245 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2246 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2247 	} else
2248 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2249 
2250 	return 0;
2251 
2252 fail:	ural_stop(ifp, 1);
2253 	return error;
2254 #undef N
2255 }
2256 
2257 Static void
2258 ural_stop(struct ifnet *ifp, int disable)
2259 {
2260 	struct ural_softc *sc = ifp->if_softc;
2261 	struct ieee80211com *ic = &sc->sc_ic;
2262 
2263 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2264 
2265 	sc->sc_tx_timer = 0;
2266 	ifp->if_timer = 0;
2267 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2268 
2269 	/* disable Rx */
2270 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2271 
2272 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2273 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2274 	ural_write(sc, RAL_MAC_CSR1, 0);
2275 
2276 	if (sc->amrr_xfer != NULL) {
2277 		usbd_free_xfer(sc->amrr_xfer);
2278 		sc->amrr_xfer = NULL;
2279 	}
2280 
2281 	if (sc->sc_rx_pipeh != NULL) {
2282 		usbd_abort_pipe(sc->sc_rx_pipeh);
2283 		usbd_close_pipe(sc->sc_rx_pipeh);
2284 		sc->sc_rx_pipeh = NULL;
2285 	}
2286 
2287 	if (sc->sc_tx_pipeh != NULL) {
2288 		usbd_abort_pipe(sc->sc_tx_pipeh);
2289 		usbd_close_pipe(sc->sc_tx_pipeh);
2290 		sc->sc_tx_pipeh = NULL;
2291 	}
2292 
2293 	ural_free_rx_list(sc);
2294 	ural_free_tx_list(sc);
2295 }
2296 
2297 int
2298 ural_activate(device_t self, enum devact act)
2299 {
2300 	struct ural_softc *sc = device_private(self);
2301 
2302 	switch (act) {
2303 	case DVACT_DEACTIVATE:
2304 		if_deactivate(&sc->sc_if);
2305 		return 0;
2306 	default:
2307 		return EOPNOTSUPP;
2308 	}
2309 }
2310 
2311 Static void
2312 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2313 {
2314 	int i;
2315 
2316 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2317 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2318 
2319 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2320 
2321 	/* set rate to some reasonable initial value */
2322 	for (i = ni->ni_rates.rs_nrates - 1;
2323 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2324 	     i--);
2325 	ni->ni_txrate = i;
2326 
2327 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2328 }
2329 
2330 Static void
2331 ural_amrr_timeout(void *arg)
2332 {
2333 	struct ural_softc *sc = (struct ural_softc *)arg;
2334 	usb_device_request_t req;
2335 	int s;
2336 
2337 	s = splusb();
2338 
2339 	/*
2340 	 * Asynchronously read statistic registers (cleared by read).
2341 	 */
2342 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2343 	req.bRequest = RAL_READ_MULTI_MAC;
2344 	USETW(req.wValue, 0);
2345 	USETW(req.wIndex, RAL_STA_CSR0);
2346 	USETW(req.wLength, sizeof sc->sta);
2347 
2348 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2349 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2350 	    ural_amrr_update);
2351 	(void)usbd_transfer(sc->amrr_xfer);
2352 
2353 	splx(s);
2354 }
2355 
2356 Static void
2357 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2358     usbd_status status)
2359 {
2360 	struct ural_softc *sc = (struct ural_softc *)priv;
2361 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2362 
2363 	if (status != USBD_NORMAL_COMPLETION) {
2364 		printf("%s: could not retrieve Tx statistics - "
2365 		    "cancelling automatic rate control\n",
2366 		    device_xname(sc->sc_dev));
2367 		return;
2368 	}
2369 
2370 	/* count TX retry-fail as Tx errors */
2371 	ifp->if_oerrors += sc->sta[9];
2372 
2373 	sc->amn.amn_retrycnt =
2374 	    sc->sta[7] +	/* TX one-retry ok count */
2375 	    sc->sta[8] +	/* TX more-retry ok count */
2376 	    sc->sta[9];		/* TX retry-fail count */
2377 
2378 	sc->amn.amn_txcnt =
2379 	    sc->amn.amn_retrycnt +
2380 	    sc->sta[6];		/* TX no-retry ok count */
2381 
2382 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2383 
2384 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2385 }
2386