xref: /netbsd-src/sys/dev/usb/if_ural.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: if_ural.c,v 1.35 2010/04/05 07:21:48 joerg Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.35 2010/04/05 07:21:48 joerg Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67 
68 #include <dev/usb/if_uralreg.h>
69 #include <dev/usb/if_uralvar.h>
70 
71 #ifdef USB_DEBUG
72 #define URAL_DEBUG
73 #endif
74 
75 #ifdef URAL_DEBUG
76 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
77 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
78 int ural_debug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83 
84 /* various supported device vendors/products */
85 static const struct usb_devno ural_devs[] = {
86 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
87 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
88 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
90 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
91 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
92 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
93 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
94 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
95 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
98 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
101 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
102 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
103 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
105 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
106 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
107 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
108 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
109 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
110 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
111 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
112 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
113 };
114 
115 Static int		ural_alloc_tx_list(struct ural_softc *);
116 Static void		ural_free_tx_list(struct ural_softc *);
117 Static int		ural_alloc_rx_list(struct ural_softc *);
118 Static void		ural_free_rx_list(struct ural_softc *);
119 Static int		ural_media_change(struct ifnet *);
120 Static void		ural_next_scan(void *);
121 Static void		ural_task(void *);
122 Static int		ural_newstate(struct ieee80211com *,
123 			    enum ieee80211_state, int);
124 Static int		ural_rxrate(struct ural_rx_desc *);
125 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
126 			    usbd_status);
127 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
128 			    usbd_status);
129 Static int		ural_ack_rate(struct ieee80211com *, int);
130 Static uint16_t		ural_txtime(int, int, uint32_t);
131 Static uint8_t		ural_plcp_signal(int);
132 Static void		ural_setup_tx_desc(struct ural_softc *,
133 			    struct ural_tx_desc *, uint32_t, int, int);
134 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
135 			    struct ieee80211_node *);
136 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
137 			    struct ieee80211_node *);
138 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
139 			    struct ieee80211_node *);
140 Static void		ural_start(struct ifnet *);
141 Static void		ural_watchdog(struct ifnet *);
142 Static int		ural_reset(struct ifnet *);
143 Static int		ural_ioctl(struct ifnet *, u_long, void *);
144 Static void		ural_set_testmode(struct ural_softc *);
145 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
148 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
151 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
152 			    int);
153 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
154 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
155 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
156 Static void		ural_set_chan(struct ural_softc *,
157 			    struct ieee80211_channel *);
158 Static void		ural_disable_rf_tune(struct ural_softc *);
159 Static void		ural_enable_tsf_sync(struct ural_softc *);
160 Static void		ural_update_slot(struct ifnet *);
161 Static void		ural_set_txpreamble(struct ural_softc *);
162 Static void		ural_set_basicrates(struct ural_softc *);
163 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
164 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
165 Static void		ural_update_promisc(struct ural_softc *);
166 Static const char	*ural_get_rf(int);
167 Static void		ural_read_eeprom(struct ural_softc *);
168 Static int		ural_bbp_init(struct ural_softc *);
169 Static void		ural_set_txantenna(struct ural_softc *, int);
170 Static void		ural_set_rxantenna(struct ural_softc *, int);
171 Static int		ural_init(struct ifnet *);
172 Static void		ural_stop(struct ifnet *, int);
173 Static void		ural_amrr_start(struct ural_softc *,
174 			    struct ieee80211_node *);
175 Static void		ural_amrr_timeout(void *);
176 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
177 			    usbd_status status);
178 
179 /*
180  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
181  */
182 static const struct ieee80211_rateset ural_rateset_11a =
183 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
184 
185 static const struct ieee80211_rateset ural_rateset_11b =
186 	{ 4, { 2, 4, 11, 22 } };
187 
188 static const struct ieee80211_rateset ural_rateset_11g =
189 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
190 
191 /*
192  * Default values for MAC registers; values taken from the reference driver.
193  */
194 static const struct {
195 	uint16_t	reg;
196 	uint16_t	val;
197 } ural_def_mac[] = {
198 	{ RAL_TXRX_CSR5,  0x8c8d },
199 	{ RAL_TXRX_CSR6,  0x8b8a },
200 	{ RAL_TXRX_CSR7,  0x8687 },
201 	{ RAL_TXRX_CSR8,  0x0085 },
202 	{ RAL_MAC_CSR13,  0x1111 },
203 	{ RAL_MAC_CSR14,  0x1e11 },
204 	{ RAL_TXRX_CSR21, 0xe78f },
205 	{ RAL_MAC_CSR9,   0xff1d },
206 	{ RAL_MAC_CSR11,  0x0002 },
207 	{ RAL_MAC_CSR22,  0x0053 },
208 	{ RAL_MAC_CSR15,  0x0000 },
209 	{ RAL_MAC_CSR8,   0x0780 },
210 	{ RAL_TXRX_CSR19, 0x0000 },
211 	{ RAL_TXRX_CSR18, 0x005a },
212 	{ RAL_PHY_CSR2,   0x0000 },
213 	{ RAL_TXRX_CSR0,  0x1ec0 },
214 	{ RAL_PHY_CSR4,   0x000f }
215 };
216 
217 /*
218  * Default values for BBP registers; values taken from the reference driver.
219  */
220 static const struct {
221 	uint8_t	reg;
222 	uint8_t	val;
223 } ural_def_bbp[] = {
224 	{  3, 0x02 },
225 	{  4, 0x19 },
226 	{ 14, 0x1c },
227 	{ 15, 0x30 },
228 	{ 16, 0xac },
229 	{ 17, 0x48 },
230 	{ 18, 0x18 },
231 	{ 19, 0xff },
232 	{ 20, 0x1e },
233 	{ 21, 0x08 },
234 	{ 22, 0x08 },
235 	{ 23, 0x08 },
236 	{ 24, 0x80 },
237 	{ 25, 0x50 },
238 	{ 26, 0x08 },
239 	{ 27, 0x23 },
240 	{ 30, 0x10 },
241 	{ 31, 0x2b },
242 	{ 32, 0xb9 },
243 	{ 34, 0x12 },
244 	{ 35, 0x50 },
245 	{ 39, 0xc4 },
246 	{ 40, 0x02 },
247 	{ 41, 0x60 },
248 	{ 53, 0x10 },
249 	{ 54, 0x18 },
250 	{ 56, 0x08 },
251 	{ 57, 0x10 },
252 	{ 58, 0x08 },
253 	{ 61, 0x60 },
254 	{ 62, 0x10 },
255 	{ 75, 0xff }
256 };
257 
258 /*
259  * Default values for RF register R2 indexed by channel numbers.
260  */
261 static const uint32_t ural_rf2522_r2[] = {
262 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
263 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
264 };
265 
266 static const uint32_t ural_rf2523_r2[] = {
267 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
268 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
269 };
270 
271 static const uint32_t ural_rf2524_r2[] = {
272 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275 
276 static const uint32_t ural_rf2525_r2[] = {
277 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
278 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
279 };
280 
281 static const uint32_t ural_rf2525_hi_r2[] = {
282 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
283 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
284 };
285 
286 static const uint32_t ural_rf2525e_r2[] = {
287 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
288 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
289 };
290 
291 static const uint32_t ural_rf2526_hi_r2[] = {
292 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
293 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
294 };
295 
296 static const uint32_t ural_rf2526_r2[] = {
297 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
298 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
299 };
300 
301 /*
302  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
303  * values taken from the reference driver.
304  */
305 static const struct {
306 	uint8_t		chan;
307 	uint32_t	r1;
308 	uint32_t	r2;
309 	uint32_t	r4;
310 } ural_rf5222[] = {
311 	{   1, 0x08808, 0x0044d, 0x00282 },
312 	{   2, 0x08808, 0x0044e, 0x00282 },
313 	{   3, 0x08808, 0x0044f, 0x00282 },
314 	{   4, 0x08808, 0x00460, 0x00282 },
315 	{   5, 0x08808, 0x00461, 0x00282 },
316 	{   6, 0x08808, 0x00462, 0x00282 },
317 	{   7, 0x08808, 0x00463, 0x00282 },
318 	{   8, 0x08808, 0x00464, 0x00282 },
319 	{   9, 0x08808, 0x00465, 0x00282 },
320 	{  10, 0x08808, 0x00466, 0x00282 },
321 	{  11, 0x08808, 0x00467, 0x00282 },
322 	{  12, 0x08808, 0x00468, 0x00282 },
323 	{  13, 0x08808, 0x00469, 0x00282 },
324 	{  14, 0x08808, 0x0046b, 0x00286 },
325 
326 	{  36, 0x08804, 0x06225, 0x00287 },
327 	{  40, 0x08804, 0x06226, 0x00287 },
328 	{  44, 0x08804, 0x06227, 0x00287 },
329 	{  48, 0x08804, 0x06228, 0x00287 },
330 	{  52, 0x08804, 0x06229, 0x00287 },
331 	{  56, 0x08804, 0x0622a, 0x00287 },
332 	{  60, 0x08804, 0x0622b, 0x00287 },
333 	{  64, 0x08804, 0x0622c, 0x00287 },
334 
335 	{ 100, 0x08804, 0x02200, 0x00283 },
336 	{ 104, 0x08804, 0x02201, 0x00283 },
337 	{ 108, 0x08804, 0x02202, 0x00283 },
338 	{ 112, 0x08804, 0x02203, 0x00283 },
339 	{ 116, 0x08804, 0x02204, 0x00283 },
340 	{ 120, 0x08804, 0x02205, 0x00283 },
341 	{ 124, 0x08804, 0x02206, 0x00283 },
342 	{ 128, 0x08804, 0x02207, 0x00283 },
343 	{ 132, 0x08804, 0x02208, 0x00283 },
344 	{ 136, 0x08804, 0x02209, 0x00283 },
345 	{ 140, 0x08804, 0x0220a, 0x00283 },
346 
347 	{ 149, 0x08808, 0x02429, 0x00281 },
348 	{ 153, 0x08808, 0x0242b, 0x00281 },
349 	{ 157, 0x08808, 0x0242d, 0x00281 },
350 	{ 161, 0x08808, 0x0242f, 0x00281 }
351 };
352 
353 USB_DECLARE_DRIVER(ural);
354 
355 USB_MATCH(ural)
356 {
357 	USB_MATCH_START(ural, uaa);
358 
359 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
360 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
361 }
362 
363 USB_ATTACH(ural)
364 {
365 	USB_ATTACH_START(ural, sc, uaa);
366 	struct ieee80211com *ic = &sc->sc_ic;
367 	struct ifnet *ifp = &sc->sc_if;
368 	usb_interface_descriptor_t *id;
369 	usb_endpoint_descriptor_t *ed;
370 	usbd_status error;
371 	char *devinfop;
372 	int i;
373 
374 	sc->sc_dev = self;
375 	sc->sc_udev = uaa->device;
376 
377 	aprint_naive("\n");
378 	aprint_normal("\n");
379 
380 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
381 	aprint_normal_dev(self, "%s\n", devinfop);
382 	usbd_devinfo_free(devinfop);
383 
384 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 		aprint_error_dev(self, "could not set configuration no\n");
386 		USB_ATTACH_ERROR_RETURN;
387 	}
388 
389 	/* get the first interface handle */
390 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
391 	    &sc->sc_iface);
392 	if (error != 0) {
393 		aprint_error_dev(self, "could not get interface handle\n");
394 		USB_ATTACH_ERROR_RETURN;
395 	}
396 
397 	/*
398 	 * Find endpoints.
399 	 */
400 	id = usbd_get_interface_descriptor(sc->sc_iface);
401 
402 	sc->sc_rx_no = sc->sc_tx_no = -1;
403 	for (i = 0; i < id->bNumEndpoints; i++) {
404 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
405 		if (ed == NULL) {
406 			aprint_error_dev(self,
407 			    "no endpoint descriptor for %d\n", i);
408 			USB_ATTACH_ERROR_RETURN;
409 		}
410 
411 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
412 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413 			sc->sc_rx_no = ed->bEndpointAddress;
414 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
415 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 			sc->sc_tx_no = ed->bEndpointAddress;
417 	}
418 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
419 		aprint_error_dev(self, "missing endpoint\n");
420 		USB_ATTACH_ERROR_RETURN;
421 	}
422 
423 	usb_init_task(&sc->sc_task, ural_task, sc);
424 	usb_callout_init(sc->sc_scan_ch);
425 	sc->amrr.amrr_min_success_threshold = 1;
426 	sc->amrr.amrr_max_success_threshold = 15;
427 	usb_callout_init(sc->sc_amrr_ch);
428 
429 	/* retrieve RT2570 rev. no */
430 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
431 
432 	/* retrieve MAC address and various other things from EEPROM */
433 	ural_read_eeprom(sc);
434 
435 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
436 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
437 
438 	ifp->if_softc = sc;
439 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
440 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
441 	ifp->if_init = ural_init;
442 	ifp->if_ioctl = ural_ioctl;
443 	ifp->if_start = ural_start;
444 	ifp->if_watchdog = ural_watchdog;
445 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
446 	IFQ_SET_READY(&ifp->if_snd);
447 
448 	ic->ic_ifp = ifp;
449 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
450 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
451 	ic->ic_state = IEEE80211_S_INIT;
452 
453 	/* set device capabilities */
454 	ic->ic_caps =
455 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
456 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
457 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
458 	    IEEE80211_C_TXPMGT |	/* tx power management */
459 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
460 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
461 	    IEEE80211_C_WPA;		/* 802.11i */
462 
463 	if (sc->rf_rev == RAL_RF_5222) {
464 		/* set supported .11a rates */
465 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
466 
467 		/* set supported .11a channels */
468 		for (i = 36; i <= 64; i += 4) {
469 			ic->ic_channels[i].ic_freq =
470 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
471 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
472 		}
473 		for (i = 100; i <= 140; i += 4) {
474 			ic->ic_channels[i].ic_freq =
475 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
476 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
477 		}
478 		for (i = 149; i <= 161; i += 4) {
479 			ic->ic_channels[i].ic_freq =
480 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
481 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
482 		}
483 	}
484 
485 	/* set supported .11b and .11g rates */
486 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
487 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
488 
489 	/* set supported .11b and .11g channels (1 through 14) */
490 	for (i = 1; i <= 14; i++) {
491 		ic->ic_channels[i].ic_freq =
492 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
493 		ic->ic_channels[i].ic_flags =
494 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
495 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
496 	}
497 
498 	if_attach(ifp);
499 	ieee80211_ifattach(ic);
500 	ic->ic_reset = ural_reset;
501 
502 	/* override state transition machine */
503 	sc->sc_newstate = ic->ic_newstate;
504 	ic->ic_newstate = ural_newstate;
505 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
506 
507 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
508 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
509 
510 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
511 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
512 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
513 
514 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
515 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
516 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
517 
518 	ieee80211_announce(ic);
519 
520 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
521 	    USBDEV(sc->sc_dev));
522 
523 	USB_ATTACH_SUCCESS_RETURN;
524 }
525 
526 USB_DETACH(ural)
527 {
528 	USB_DETACH_START(ural, sc);
529 	struct ieee80211com *ic = &sc->sc_ic;
530 	struct ifnet *ifp = &sc->sc_if;
531 	int s;
532 
533 	s = splusb();
534 
535 	ural_stop(ifp, 1);
536 	usb_rem_task(sc->sc_udev, &sc->sc_task);
537 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
538 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
539 
540 	if (sc->amrr_xfer != NULL) {
541 		usbd_free_xfer(sc->amrr_xfer);
542 		sc->amrr_xfer = NULL;
543 	}
544 
545 	if (sc->sc_rx_pipeh != NULL) {
546 		usbd_abort_pipe(sc->sc_rx_pipeh);
547 		usbd_close_pipe(sc->sc_rx_pipeh);
548 	}
549 
550 	if (sc->sc_tx_pipeh != NULL) {
551 		usbd_abort_pipe(sc->sc_tx_pipeh);
552 		usbd_close_pipe(sc->sc_tx_pipeh);
553 	}
554 
555 	bpf_detach(ifp);
556 	ieee80211_ifdetach(ic);
557 	if_detach(ifp);
558 
559 	splx(s);
560 
561 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
562 	    USBDEV(sc->sc_dev));
563 
564 	return 0;
565 }
566 
567 Static int
568 ural_alloc_tx_list(struct ural_softc *sc)
569 {
570 	struct ural_tx_data *data;
571 	int i, error;
572 
573 	sc->tx_queued = 0;
574 
575 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
576 		data = &sc->tx_data[i];
577 
578 		data->sc = sc;
579 
580 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 		if (data->xfer == NULL) {
582 			printf("%s: could not allocate tx xfer\n",
583 			    USBDEVNAME(sc->sc_dev));
584 			error = ENOMEM;
585 			goto fail;
586 		}
587 
588 		data->buf = usbd_alloc_buffer(data->xfer,
589 		    RAL_TX_DESC_SIZE + MCLBYTES);
590 		if (data->buf == NULL) {
591 			printf("%s: could not allocate tx buffer\n",
592 			    USBDEVNAME(sc->sc_dev));
593 			error = ENOMEM;
594 			goto fail;
595 		}
596 	}
597 
598 	return 0;
599 
600 fail:	ural_free_tx_list(sc);
601 	return error;
602 }
603 
604 Static void
605 ural_free_tx_list(struct ural_softc *sc)
606 {
607 	struct ural_tx_data *data;
608 	int i;
609 
610 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
611 		data = &sc->tx_data[i];
612 
613 		if (data->xfer != NULL) {
614 			usbd_free_xfer(data->xfer);
615 			data->xfer = NULL;
616 		}
617 
618 		if (data->ni != NULL) {
619 			ieee80211_free_node(data->ni);
620 			data->ni = NULL;
621 		}
622 	}
623 }
624 
625 Static int
626 ural_alloc_rx_list(struct ural_softc *sc)
627 {
628 	struct ural_rx_data *data;
629 	int i, error;
630 
631 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
632 		data = &sc->rx_data[i];
633 
634 		data->sc = sc;
635 
636 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
637 		if (data->xfer == NULL) {
638 			printf("%s: could not allocate rx xfer\n",
639 			    USBDEVNAME(sc->sc_dev));
640 			error = ENOMEM;
641 			goto fail;
642 		}
643 
644 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
645 			printf("%s: could not allocate rx buffer\n",
646 			    USBDEVNAME(sc->sc_dev));
647 			error = ENOMEM;
648 			goto fail;
649 		}
650 
651 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
652 		if (data->m == NULL) {
653 			printf("%s: could not allocate rx mbuf\n",
654 			    USBDEVNAME(sc->sc_dev));
655 			error = ENOMEM;
656 			goto fail;
657 		}
658 
659 		MCLGET(data->m, M_DONTWAIT);
660 		if (!(data->m->m_flags & M_EXT)) {
661 			printf("%s: could not allocate rx mbuf cluster\n",
662 			    USBDEVNAME(sc->sc_dev));
663 			error = ENOMEM;
664 			goto fail;
665 		}
666 
667 		data->buf = mtod(data->m, uint8_t *);
668 	}
669 
670 	return 0;
671 
672 fail:	ural_free_tx_list(sc);
673 	return error;
674 }
675 
676 Static void
677 ural_free_rx_list(struct ural_softc *sc)
678 {
679 	struct ural_rx_data *data;
680 	int i;
681 
682 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
683 		data = &sc->rx_data[i];
684 
685 		if (data->xfer != NULL) {
686 			usbd_free_xfer(data->xfer);
687 			data->xfer = NULL;
688 		}
689 
690 		if (data->m != NULL) {
691 			m_freem(data->m);
692 			data->m = NULL;
693 		}
694 	}
695 }
696 
697 Static int
698 ural_media_change(struct ifnet *ifp)
699 {
700 	int error;
701 
702 	error = ieee80211_media_change(ifp);
703 	if (error != ENETRESET)
704 		return error;
705 
706 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
707 		ural_init(ifp);
708 
709 	return 0;
710 }
711 
712 /*
713  * This function is called periodically (every 200ms) during scanning to
714  * switch from one channel to another.
715  */
716 Static void
717 ural_next_scan(void *arg)
718 {
719 	struct ural_softc *sc = arg;
720 	struct ieee80211com *ic = &sc->sc_ic;
721 
722 	if (ic->ic_state == IEEE80211_S_SCAN)
723 		ieee80211_next_scan(ic);
724 }
725 
726 Static void
727 ural_task(void *arg)
728 {
729 	struct ural_softc *sc = arg;
730 	struct ieee80211com *ic = &sc->sc_ic;
731 	enum ieee80211_state ostate;
732 	struct ieee80211_node *ni;
733 	struct mbuf *m;
734 
735 	ostate = ic->ic_state;
736 
737 	switch (sc->sc_state) {
738 	case IEEE80211_S_INIT:
739 		if (ostate == IEEE80211_S_RUN) {
740 			/* abort TSF synchronization */
741 			ural_write(sc, RAL_TXRX_CSR19, 0);
742 
743 			/* force tx led to stop blinking */
744 			ural_write(sc, RAL_MAC_CSR20, 0);
745 		}
746 		break;
747 
748 	case IEEE80211_S_SCAN:
749 		ural_set_chan(sc, ic->ic_curchan);
750 		usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
751 		break;
752 
753 	case IEEE80211_S_AUTH:
754 		ural_set_chan(sc, ic->ic_curchan);
755 		break;
756 
757 	case IEEE80211_S_ASSOC:
758 		ural_set_chan(sc, ic->ic_curchan);
759 		break;
760 
761 	case IEEE80211_S_RUN:
762 		ural_set_chan(sc, ic->ic_curchan);
763 
764 		ni = ic->ic_bss;
765 
766 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
767 			ural_update_slot(ic->ic_ifp);
768 			ural_set_txpreamble(sc);
769 			ural_set_basicrates(sc);
770 			ural_set_bssid(sc, ni->ni_bssid);
771 		}
772 
773 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
774 		    ic->ic_opmode == IEEE80211_M_IBSS) {
775 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
776 			if (m == NULL) {
777 				printf("%s: could not allocate beacon\n",
778 				    USBDEVNAME(sc->sc_dev));
779 				return;
780 			}
781 
782 			if (ural_tx_bcn(sc, m, ni) != 0) {
783 				m_freem(m);
784 				printf("%s: could not send beacon\n",
785 				    USBDEVNAME(sc->sc_dev));
786 				return;
787 			}
788 
789 			/* beacon is no longer needed */
790 			m_freem(m);
791 		}
792 
793 		/* make tx led blink on tx (controlled by ASIC) */
794 		ural_write(sc, RAL_MAC_CSR20, 1);
795 
796 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
797 			ural_enable_tsf_sync(sc);
798 
799 		/* enable automatic rate adaptation in STA mode */
800 		if (ic->ic_opmode == IEEE80211_M_STA &&
801 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
802 			ural_amrr_start(sc, ni);
803 
804 		break;
805 	}
806 
807 	sc->sc_newstate(ic, sc->sc_state, -1);
808 }
809 
810 Static int
811 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
812     int arg)
813 {
814 	struct ural_softc *sc = ic->ic_ifp->if_softc;
815 
816 	usb_rem_task(sc->sc_udev, &sc->sc_task);
817 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
818 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
819 
820 	/* do it in a process context */
821 	sc->sc_state = nstate;
822 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
823 
824 	return 0;
825 }
826 
827 /* quickly determine if a given rate is CCK or OFDM */
828 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
829 
830 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
831 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
832 
833 #define RAL_SIFS		10	/* us */
834 
835 #define RAL_RXTX_TURNAROUND	5	/* us */
836 
837 /*
838  * This function is only used by the Rx radiotap code.
839  */
840 Static int
841 ural_rxrate(struct ural_rx_desc *desc)
842 {
843 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
844 		/* reverse function of ural_plcp_signal */
845 		switch (desc->rate) {
846 		case 0xb:	return 12;
847 		case 0xf:	return 18;
848 		case 0xa:	return 24;
849 		case 0xe:	return 36;
850 		case 0x9:	return 48;
851 		case 0xd:	return 72;
852 		case 0x8:	return 96;
853 		case 0xc:	return 108;
854 		}
855 	} else {
856 		if (desc->rate == 10)
857 			return 2;
858 		if (desc->rate == 20)
859 			return 4;
860 		if (desc->rate == 55)
861 			return 11;
862 		if (desc->rate == 110)
863 			return 22;
864 	}
865 	return 2;	/* should not get there */
866 }
867 
868 Static void
869 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
870     usbd_status status)
871 {
872 	struct ural_tx_data *data = priv;
873 	struct ural_softc *sc = data->sc;
874 	struct ifnet *ifp = &sc->sc_if;
875 	int s;
876 
877 	if (status != USBD_NORMAL_COMPLETION) {
878 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
879 			return;
880 
881 		printf("%s: could not transmit buffer: %s\n",
882 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
883 
884 		if (status == USBD_STALLED)
885 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
886 
887 		ifp->if_oerrors++;
888 		return;
889 	}
890 
891 	s = splnet();
892 
893 	m_freem(data->m);
894 	data->m = NULL;
895 	ieee80211_free_node(data->ni);
896 	data->ni = NULL;
897 
898 	sc->tx_queued--;
899 	ifp->if_opackets++;
900 
901 	DPRINTFN(10, ("tx done\n"));
902 
903 	sc->sc_tx_timer = 0;
904 	ifp->if_flags &= ~IFF_OACTIVE;
905 	ural_start(ifp);
906 
907 	splx(s);
908 }
909 
910 Static void
911 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
912 {
913 	struct ural_rx_data *data = priv;
914 	struct ural_softc *sc = data->sc;
915 	struct ieee80211com *ic = &sc->sc_ic;
916 	struct ifnet *ifp = &sc->sc_if;
917 	struct ural_rx_desc *desc;
918 	struct ieee80211_frame *wh;
919 	struct ieee80211_node *ni;
920 	struct mbuf *mnew, *m;
921 	int s, len;
922 
923 	if (status != USBD_NORMAL_COMPLETION) {
924 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
925 			return;
926 
927 		if (status == USBD_STALLED)
928 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
929 		goto skip;
930 	}
931 
932 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
933 
934 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
935 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
936 		    len));
937 		ifp->if_ierrors++;
938 		goto skip;
939 	}
940 
941 	/* rx descriptor is located at the end */
942 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
943 
944 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
945 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
946 		/*
947 		 * This should not happen since we did not request to receive
948 		 * those frames when we filled RAL_TXRX_CSR2.
949 		 */
950 		DPRINTFN(5, ("PHY or CRC error\n"));
951 		ifp->if_ierrors++;
952 		goto skip;
953 	}
954 
955 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
956 	if (mnew == NULL) {
957 		ifp->if_ierrors++;
958 		goto skip;
959 	}
960 
961 	MCLGET(mnew, M_DONTWAIT);
962 	if (!(mnew->m_flags & M_EXT)) {
963 		ifp->if_ierrors++;
964 		m_freem(mnew);
965 		goto skip;
966 	}
967 
968 	m = data->m;
969 	data->m = mnew;
970 	data->buf = mtod(data->m, uint8_t *);
971 
972 	/* finalize mbuf */
973 	m->m_pkthdr.rcvif = ifp;
974 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
975 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
976 
977 	s = splnet();
978 
979 	if (sc->sc_drvbpf != NULL) {
980 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
981 
982 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
983 		tap->wr_rate = ural_rxrate(desc);
984 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
985 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
986 		tap->wr_antenna = sc->rx_ant;
987 		tap->wr_antsignal = desc->rssi;
988 
989 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
990 	}
991 
992 	wh = mtod(m, struct ieee80211_frame *);
993 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
994 
995 	/* send the frame to the 802.11 layer */
996 	ieee80211_input(ic, m, ni, desc->rssi, 0);
997 
998 	/* node is no longer needed */
999 	ieee80211_free_node(ni);
1000 
1001 	splx(s);
1002 
1003 	DPRINTFN(15, ("rx done\n"));
1004 
1005 skip:	/* setup a new transfer */
1006 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1007 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1008 	usbd_transfer(xfer);
1009 }
1010 
1011 /*
1012  * Return the expected ack rate for a frame transmitted at rate `rate'.
1013  * XXX: this should depend on the destination node basic rate set.
1014  */
1015 Static int
1016 ural_ack_rate(struct ieee80211com *ic, int rate)
1017 {
1018 	switch (rate) {
1019 	/* CCK rates */
1020 	case 2:
1021 		return 2;
1022 	case 4:
1023 	case 11:
1024 	case 22:
1025 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1026 
1027 	/* OFDM rates */
1028 	case 12:
1029 	case 18:
1030 		return 12;
1031 	case 24:
1032 	case 36:
1033 		return 24;
1034 	case 48:
1035 	case 72:
1036 	case 96:
1037 	case 108:
1038 		return 48;
1039 	}
1040 
1041 	/* default to 1Mbps */
1042 	return 2;
1043 }
1044 
1045 /*
1046  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1047  * The function automatically determines the operating mode depending on the
1048  * given rate. `flags' indicates whether short preamble is in use or not.
1049  */
1050 Static uint16_t
1051 ural_txtime(int len, int rate, uint32_t flags)
1052 {
1053 	uint16_t txtime;
1054 
1055 	if (RAL_RATE_IS_OFDM(rate)) {
1056 		/* IEEE Std 802.11g-2003, pp. 37 */
1057 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1058 		txtime = 16 + 4 + 4 * txtime + 6;
1059 	} else {
1060 		/* IEEE Std 802.11b-1999, pp. 28 */
1061 		txtime = (16 * len + rate - 1) / rate;
1062 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1063 			txtime +=  72 + 24;
1064 		else
1065 			txtime += 144 + 48;
1066 	}
1067 	return txtime;
1068 }
1069 
1070 Static uint8_t
1071 ural_plcp_signal(int rate)
1072 {
1073 	switch (rate) {
1074 	/* CCK rates (returned values are device-dependent) */
1075 	case 2:		return 0x0;
1076 	case 4:		return 0x1;
1077 	case 11:	return 0x2;
1078 	case 22:	return 0x3;
1079 
1080 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1081 	case 12:	return 0xb;
1082 	case 18:	return 0xf;
1083 	case 24:	return 0xa;
1084 	case 36:	return 0xe;
1085 	case 48:	return 0x9;
1086 	case 72:	return 0xd;
1087 	case 96:	return 0x8;
1088 	case 108:	return 0xc;
1089 
1090 	/* unsupported rates (should not get there) */
1091 	default:	return 0xff;
1092 	}
1093 }
1094 
1095 Static void
1096 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1097     uint32_t flags, int len, int rate)
1098 {
1099 	struct ieee80211com *ic = &sc->sc_ic;
1100 	uint16_t plcp_length;
1101 	int remainder;
1102 
1103 	desc->flags = htole32(flags);
1104 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1105 	desc->flags |= htole32(len << 16);
1106 
1107 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1108 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1109 
1110 	/* setup PLCP fields */
1111 	desc->plcp_signal  = ural_plcp_signal(rate);
1112 	desc->plcp_service = 4;
1113 
1114 	len += IEEE80211_CRC_LEN;
1115 	if (RAL_RATE_IS_OFDM(rate)) {
1116 		desc->flags |= htole32(RAL_TX_OFDM);
1117 
1118 		plcp_length = len & 0xfff;
1119 		desc->plcp_length_hi = plcp_length >> 6;
1120 		desc->plcp_length_lo = plcp_length & 0x3f;
1121 	} else {
1122 		plcp_length = (16 * len + rate - 1) / rate;
1123 		if (rate == 22) {
1124 			remainder = (16 * len) % 22;
1125 			if (remainder != 0 && remainder < 7)
1126 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1127 		}
1128 		desc->plcp_length_hi = plcp_length >> 8;
1129 		desc->plcp_length_lo = plcp_length & 0xff;
1130 
1131 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1132 			desc->plcp_signal |= 0x08;
1133 	}
1134 
1135 	desc->iv = 0;
1136 	desc->eiv = 0;
1137 }
1138 
1139 #define RAL_TX_TIMEOUT	5000
1140 
1141 Static int
1142 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1143 {
1144 	struct ural_tx_desc *desc;
1145 	usbd_xfer_handle xfer;
1146 	uint8_t cmd = 0;
1147 	usbd_status error;
1148 	uint8_t *buf;
1149 	int xferlen, rate;
1150 
1151 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1152 
1153 	xfer = usbd_alloc_xfer(sc->sc_udev);
1154 	if (xfer == NULL)
1155 		return ENOMEM;
1156 
1157 	/* xfer length needs to be a multiple of two! */
1158 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1159 
1160 	buf = usbd_alloc_buffer(xfer, xferlen);
1161 	if (buf == NULL) {
1162 		usbd_free_xfer(xfer);
1163 		return ENOMEM;
1164 	}
1165 
1166 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1167 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1168 
1169 	error = usbd_sync_transfer(xfer);
1170 	if (error != 0) {
1171 		usbd_free_xfer(xfer);
1172 		return error;
1173 	}
1174 
1175 	desc = (struct ural_tx_desc *)buf;
1176 
1177 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1178 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1179 	    m0->m_pkthdr.len, rate);
1180 
1181 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1182 	    m0->m_pkthdr.len, rate, xferlen));
1183 
1184 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1185 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1186 
1187 	error = usbd_sync_transfer(xfer);
1188 	usbd_free_xfer(xfer);
1189 
1190 	return error;
1191 }
1192 
1193 Static int
1194 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1195 {
1196 	struct ieee80211com *ic = &sc->sc_ic;
1197 	struct ural_tx_desc *desc;
1198 	struct ural_tx_data *data;
1199 	struct ieee80211_frame *wh;
1200 	struct ieee80211_key *k;
1201 	uint32_t flags = 0;
1202 	uint16_t dur;
1203 	usbd_status error;
1204 	int xferlen, rate;
1205 
1206 	data = &sc->tx_data[0];
1207 	desc = (struct ural_tx_desc *)data->buf;
1208 
1209 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1210 
1211 	wh = mtod(m0, struct ieee80211_frame *);
1212 
1213 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1214 		k = ieee80211_crypto_encap(ic, ni, m0);
1215 		if (k == NULL) {
1216 			m_freem(m0);
1217 			return ENOBUFS;
1218 		}
1219 	}
1220 
1221 	data->m = m0;
1222 	data->ni = ni;
1223 
1224 	wh = mtod(m0, struct ieee80211_frame *);
1225 
1226 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1227 		flags |= RAL_TX_ACK;
1228 
1229 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1230 		*(uint16_t *)wh->i_dur = htole16(dur);
1231 
1232 		/* tell hardware to add timestamp for probe responses */
1233 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1234 		    IEEE80211_FC0_TYPE_MGT &&
1235 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1236 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1237 			flags |= RAL_TX_TIMESTAMP;
1238 	}
1239 
1240 	if (sc->sc_drvbpf != NULL) {
1241 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1242 
1243 		tap->wt_flags = 0;
1244 		tap->wt_rate = rate;
1245 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1246 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1247 		tap->wt_antenna = sc->tx_ant;
1248 
1249 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1250 	}
1251 
1252 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1253 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1254 
1255 	/* align end on a 2-bytes boundary */
1256 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1257 
1258 	/*
1259 	 * No space left in the last URB to store the extra 2 bytes, force
1260 	 * sending of another URB.
1261 	 */
1262 	if ((xferlen % 64) == 0)
1263 		xferlen += 2;
1264 
1265 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1266 	    m0->m_pkthdr.len, rate, xferlen));
1267 
1268 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1269 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1270 	    ural_txeof);
1271 
1272 	error = usbd_transfer(data->xfer);
1273 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1274 		m_freem(m0);
1275 		return error;
1276 	}
1277 
1278 	sc->tx_queued++;
1279 
1280 	return 0;
1281 }
1282 
1283 Static int
1284 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1285 {
1286 	struct ieee80211com *ic = &sc->sc_ic;
1287 	struct ural_tx_desc *desc;
1288 	struct ural_tx_data *data;
1289 	struct ieee80211_frame *wh;
1290 	struct ieee80211_key *k;
1291 	uint32_t flags = 0;
1292 	uint16_t dur;
1293 	usbd_status error;
1294 	int xferlen, rate;
1295 
1296 	wh = mtod(m0, struct ieee80211_frame *);
1297 
1298 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1299 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1300 	else
1301 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1302 
1303 	rate &= IEEE80211_RATE_VAL;
1304 
1305 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1306 		k = ieee80211_crypto_encap(ic, ni, m0);
1307 		if (k == NULL) {
1308 			m_freem(m0);
1309 			return ENOBUFS;
1310 		}
1311 
1312 		/* packet header may have moved, reset our local pointer */
1313 		wh = mtod(m0, struct ieee80211_frame *);
1314 	}
1315 
1316 	data = &sc->tx_data[0];
1317 	desc = (struct ural_tx_desc *)data->buf;
1318 
1319 	data->m = m0;
1320 	data->ni = ni;
1321 
1322 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1323 		flags |= RAL_TX_ACK;
1324 		flags |= RAL_TX_RETRY(7);
1325 
1326 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1327 		    ic->ic_flags) + RAL_SIFS;
1328 		*(uint16_t *)wh->i_dur = htole16(dur);
1329 	}
1330 
1331 	if (sc->sc_drvbpf != NULL) {
1332 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1333 
1334 		tap->wt_flags = 0;
1335 		tap->wt_rate = rate;
1336 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1337 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1338 		tap->wt_antenna = sc->tx_ant;
1339 
1340 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1341 	}
1342 
1343 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1344 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1345 
1346 	/* align end on a 2-bytes boundary */
1347 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1348 
1349 	/*
1350 	 * No space left in the last URB to store the extra 2 bytes, force
1351 	 * sending of another URB.
1352 	 */
1353 	if ((xferlen % 64) == 0)
1354 		xferlen += 2;
1355 
1356 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1357 	    m0->m_pkthdr.len, rate, xferlen));
1358 
1359 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1360 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1361 	    ural_txeof);
1362 
1363 	error = usbd_transfer(data->xfer);
1364 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1365 		return error;
1366 
1367 	sc->tx_queued++;
1368 
1369 	return 0;
1370 }
1371 
1372 Static void
1373 ural_start(struct ifnet *ifp)
1374 {
1375 	struct ural_softc *sc = ifp->if_softc;
1376 	struct ieee80211com *ic = &sc->sc_ic;
1377 	struct mbuf *m0;
1378 	struct ether_header *eh;
1379 	struct ieee80211_node *ni;
1380 
1381 	for (;;) {
1382 		IF_POLL(&ic->ic_mgtq, m0);
1383 		if (m0 != NULL) {
1384 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1385 				ifp->if_flags |= IFF_OACTIVE;
1386 				break;
1387 			}
1388 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1389 
1390 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1391 			m0->m_pkthdr.rcvif = NULL;
1392 			bpf_mtap3(ic->ic_rawbpf, m0);
1393 			if (ural_tx_mgt(sc, m0, ni) != 0)
1394 				break;
1395 
1396 		} else {
1397 			if (ic->ic_state != IEEE80211_S_RUN)
1398 				break;
1399 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1400 			if (m0 == NULL)
1401 				break;
1402 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1403 				IF_PREPEND(&ifp->if_snd, m0);
1404 				ifp->if_flags |= IFF_OACTIVE;
1405 				break;
1406 			}
1407 
1408 			if (m0->m_len < sizeof (struct ether_header) &&
1409 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1410 				continue;
1411 
1412 			eh = mtod(m0, struct ether_header *);
1413 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1414 			if (ni == NULL) {
1415 				m_freem(m0);
1416 				continue;
1417 			}
1418 			bpf_mtap(ifp, m0);
1419 			m0 = ieee80211_encap(ic, m0, ni);
1420 			if (m0 == NULL) {
1421 				ieee80211_free_node(ni);
1422 				continue;
1423 			}
1424 			bpf_mtap3(ic->ic_rawbpf, m0);
1425 			if (ural_tx_data(sc, m0, ni) != 0) {
1426 				ieee80211_free_node(ni);
1427 				ifp->if_oerrors++;
1428 				break;
1429 			}
1430 		}
1431 
1432 		sc->sc_tx_timer = 5;
1433 		ifp->if_timer = 1;
1434 	}
1435 }
1436 
1437 Static void
1438 ural_watchdog(struct ifnet *ifp)
1439 {
1440 	struct ural_softc *sc = ifp->if_softc;
1441 	struct ieee80211com *ic = &sc->sc_ic;
1442 
1443 	ifp->if_timer = 0;
1444 
1445 	if (sc->sc_tx_timer > 0) {
1446 		if (--sc->sc_tx_timer == 0) {
1447 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1448 			/*ural_init(sc); XXX needs a process context! */
1449 			ifp->if_oerrors++;
1450 			return;
1451 		}
1452 		ifp->if_timer = 1;
1453 	}
1454 
1455 	ieee80211_watchdog(ic);
1456 }
1457 
1458 /*
1459  * This function allows for fast channel switching in monitor mode (used by
1460  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1461  * generate a new beacon frame.
1462  */
1463 Static int
1464 ural_reset(struct ifnet *ifp)
1465 {
1466 	struct ural_softc *sc = ifp->if_softc;
1467 	struct ieee80211com *ic = &sc->sc_ic;
1468 
1469 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1470 		return ENETRESET;
1471 
1472 	ural_set_chan(sc, ic->ic_curchan);
1473 
1474 	return 0;
1475 }
1476 
1477 Static int
1478 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1479 {
1480 	struct ural_softc *sc = ifp->if_softc;
1481 	struct ieee80211com *ic = &sc->sc_ic;
1482 	int s, error = 0;
1483 
1484 	s = splnet();
1485 
1486 	switch (cmd) {
1487 	case SIOCSIFFLAGS:
1488 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1489 			break;
1490 		/* XXX re-use ether_ioctl() */
1491 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1492 		case IFF_UP|IFF_RUNNING:
1493 			ural_update_promisc(sc);
1494 			break;
1495 		case IFF_UP:
1496 			ural_init(ifp);
1497 			break;
1498 		case IFF_RUNNING:
1499 			ural_stop(ifp, 1);
1500 			break;
1501 		case 0:
1502 			break;
1503 		}
1504 		break;
1505 
1506 	default:
1507 		error = ieee80211_ioctl(ic, cmd, data);
1508 	}
1509 
1510 	if (error == ENETRESET) {
1511 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1512 		    (IFF_UP | IFF_RUNNING))
1513 			ural_init(ifp);
1514 		error = 0;
1515 	}
1516 
1517 	splx(s);
1518 
1519 	return error;
1520 }
1521 
1522 Static void
1523 ural_set_testmode(struct ural_softc *sc)
1524 {
1525 	usb_device_request_t req;
1526 	usbd_status error;
1527 
1528 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1529 	req.bRequest = RAL_VENDOR_REQUEST;
1530 	USETW(req.wValue, 4);
1531 	USETW(req.wIndex, 1);
1532 	USETW(req.wLength, 0);
1533 
1534 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1535 	if (error != 0) {
1536 		printf("%s: could not set test mode: %s\n",
1537 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1538 	}
1539 }
1540 
1541 Static void
1542 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1543 {
1544 	usb_device_request_t req;
1545 	usbd_status error;
1546 
1547 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1548 	req.bRequest = RAL_READ_EEPROM;
1549 	USETW(req.wValue, 0);
1550 	USETW(req.wIndex, addr);
1551 	USETW(req.wLength, len);
1552 
1553 	error = usbd_do_request(sc->sc_udev, &req, buf);
1554 	if (error != 0) {
1555 		printf("%s: could not read EEPROM: %s\n",
1556 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1557 	}
1558 }
1559 
1560 Static uint16_t
1561 ural_read(struct ural_softc *sc, uint16_t reg)
1562 {
1563 	usb_device_request_t req;
1564 	usbd_status error;
1565 	uint16_t val;
1566 
1567 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1568 	req.bRequest = RAL_READ_MAC;
1569 	USETW(req.wValue, 0);
1570 	USETW(req.wIndex, reg);
1571 	USETW(req.wLength, sizeof (uint16_t));
1572 
1573 	error = usbd_do_request(sc->sc_udev, &req, &val);
1574 	if (error != 0) {
1575 		printf("%s: could not read MAC register: %s\n",
1576 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1577 		return 0;
1578 	}
1579 
1580 	return le16toh(val);
1581 }
1582 
1583 Static void
1584 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1585 {
1586 	usb_device_request_t req;
1587 	usbd_status error;
1588 
1589 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1590 	req.bRequest = RAL_READ_MULTI_MAC;
1591 	USETW(req.wValue, 0);
1592 	USETW(req.wIndex, reg);
1593 	USETW(req.wLength, len);
1594 
1595 	error = usbd_do_request(sc->sc_udev, &req, buf);
1596 	if (error != 0) {
1597 		printf("%s: could not read MAC register: %s\n",
1598 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1599 	}
1600 }
1601 
1602 Static void
1603 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1604 {
1605 	usb_device_request_t req;
1606 	usbd_status error;
1607 
1608 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1609 	req.bRequest = RAL_WRITE_MAC;
1610 	USETW(req.wValue, val);
1611 	USETW(req.wIndex, reg);
1612 	USETW(req.wLength, 0);
1613 
1614 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1615 	if (error != 0) {
1616 		printf("%s: could not write MAC register: %s\n",
1617 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1618 	}
1619 }
1620 
1621 Static void
1622 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1623 {
1624 	usb_device_request_t req;
1625 	usbd_status error;
1626 
1627 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1628 	req.bRequest = RAL_WRITE_MULTI_MAC;
1629 	USETW(req.wValue, 0);
1630 	USETW(req.wIndex, reg);
1631 	USETW(req.wLength, len);
1632 
1633 	error = usbd_do_request(sc->sc_udev, &req, buf);
1634 	if (error != 0) {
1635 		printf("%s: could not write MAC register: %s\n",
1636 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1637 	}
1638 }
1639 
1640 Static void
1641 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1642 {
1643 	uint16_t tmp;
1644 	int ntries;
1645 
1646 	for (ntries = 0; ntries < 5; ntries++) {
1647 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1648 			break;
1649 	}
1650 	if (ntries == 5) {
1651 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1652 		return;
1653 	}
1654 
1655 	tmp = reg << 8 | val;
1656 	ural_write(sc, RAL_PHY_CSR7, tmp);
1657 }
1658 
1659 Static uint8_t
1660 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1661 {
1662 	uint16_t val;
1663 	int ntries;
1664 
1665 	val = RAL_BBP_WRITE | reg << 8;
1666 	ural_write(sc, RAL_PHY_CSR7, val);
1667 
1668 	for (ntries = 0; ntries < 5; ntries++) {
1669 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1670 			break;
1671 	}
1672 	if (ntries == 5) {
1673 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1674 		return 0;
1675 	}
1676 
1677 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1678 }
1679 
1680 Static void
1681 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1682 {
1683 	uint32_t tmp;
1684 	int ntries;
1685 
1686 	for (ntries = 0; ntries < 5; ntries++) {
1687 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1688 			break;
1689 	}
1690 	if (ntries == 5) {
1691 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1692 		return;
1693 	}
1694 
1695 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1696 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1697 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1698 
1699 	/* remember last written value in sc */
1700 	sc->rf_regs[reg] = val;
1701 
1702 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1703 }
1704 
1705 Static void
1706 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1707 {
1708 	struct ieee80211com *ic = &sc->sc_ic;
1709 	uint8_t power, tmp;
1710 	u_int i, chan;
1711 
1712 	chan = ieee80211_chan2ieee(ic, c);
1713 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1714 		return;
1715 
1716 	if (IEEE80211_IS_CHAN_2GHZ(c))
1717 		power = min(sc->txpow[chan - 1], 31);
1718 	else
1719 		power = 31;
1720 
1721 	/* adjust txpower using ifconfig settings */
1722 	power -= (100 - ic->ic_txpowlimit) / 8;
1723 
1724 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1725 
1726 	switch (sc->rf_rev) {
1727 	case RAL_RF_2522:
1728 		ural_rf_write(sc, RAL_RF1, 0x00814);
1729 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1730 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1731 		break;
1732 
1733 	case RAL_RF_2523:
1734 		ural_rf_write(sc, RAL_RF1, 0x08804);
1735 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1736 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1737 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1738 		break;
1739 
1740 	case RAL_RF_2524:
1741 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1742 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1743 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1744 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1745 		break;
1746 
1747 	case RAL_RF_2525:
1748 		ural_rf_write(sc, RAL_RF1, 0x08808);
1749 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1750 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1751 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1752 
1753 		ural_rf_write(sc, RAL_RF1, 0x08808);
1754 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1755 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1756 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1757 		break;
1758 
1759 	case RAL_RF_2525E:
1760 		ural_rf_write(sc, RAL_RF1, 0x08808);
1761 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1762 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1763 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1764 		break;
1765 
1766 	case RAL_RF_2526:
1767 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1768 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1769 		ural_rf_write(sc, RAL_RF1, 0x08804);
1770 
1771 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1772 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1773 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1774 		break;
1775 
1776 	/* dual-band RF */
1777 	case RAL_RF_5222:
1778 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1779 
1780 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1781 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1782 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1783 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1784 		break;
1785 	}
1786 
1787 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1788 	    ic->ic_state != IEEE80211_S_SCAN) {
1789 		/* set Japan filter bit for channel 14 */
1790 		tmp = ural_bbp_read(sc, 70);
1791 
1792 		tmp &= ~RAL_JAPAN_FILTER;
1793 		if (chan == 14)
1794 			tmp |= RAL_JAPAN_FILTER;
1795 
1796 		ural_bbp_write(sc, 70, tmp);
1797 
1798 		/* clear CRC errors */
1799 		ural_read(sc, RAL_STA_CSR0);
1800 
1801 		DELAY(10000);
1802 		ural_disable_rf_tune(sc);
1803 	}
1804 }
1805 
1806 /*
1807  * Disable RF auto-tuning.
1808  */
1809 Static void
1810 ural_disable_rf_tune(struct ural_softc *sc)
1811 {
1812 	uint32_t tmp;
1813 
1814 	if (sc->rf_rev != RAL_RF_2523) {
1815 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1816 		ural_rf_write(sc, RAL_RF1, tmp);
1817 	}
1818 
1819 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1820 	ural_rf_write(sc, RAL_RF3, tmp);
1821 
1822 	DPRINTFN(2, ("disabling RF autotune\n"));
1823 }
1824 
1825 /*
1826  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1827  * synchronization.
1828  */
1829 Static void
1830 ural_enable_tsf_sync(struct ural_softc *sc)
1831 {
1832 	struct ieee80211com *ic = &sc->sc_ic;
1833 	uint16_t logcwmin, preload, tmp;
1834 
1835 	/* first, disable TSF synchronization */
1836 	ural_write(sc, RAL_TXRX_CSR19, 0);
1837 
1838 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1839 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1840 
1841 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1842 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1843 	tmp = logcwmin << 12 | preload;
1844 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1845 
1846 	/* finally, enable TSF synchronization */
1847 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1848 	if (ic->ic_opmode == IEEE80211_M_STA)
1849 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1850 	else
1851 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1852 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1853 
1854 	DPRINTF(("enabling TSF synchronization\n"));
1855 }
1856 
1857 Static void
1858 ural_update_slot(struct ifnet *ifp)
1859 {
1860 	struct ural_softc *sc = ifp->if_softc;
1861 	struct ieee80211com *ic = &sc->sc_ic;
1862 	uint16_t slottime, sifs, eifs;
1863 
1864 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1865 
1866 	/*
1867 	 * These settings may sound a bit inconsistent but this is what the
1868 	 * reference driver does.
1869 	 */
1870 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1871 		sifs = 16 - RAL_RXTX_TURNAROUND;
1872 		eifs = 364;
1873 	} else {
1874 		sifs = 10 - RAL_RXTX_TURNAROUND;
1875 		eifs = 64;
1876 	}
1877 
1878 	ural_write(sc, RAL_MAC_CSR10, slottime);
1879 	ural_write(sc, RAL_MAC_CSR11, sifs);
1880 	ural_write(sc, RAL_MAC_CSR12, eifs);
1881 }
1882 
1883 Static void
1884 ural_set_txpreamble(struct ural_softc *sc)
1885 {
1886 	uint16_t tmp;
1887 
1888 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1889 
1890 	tmp &= ~RAL_SHORT_PREAMBLE;
1891 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1892 		tmp |= RAL_SHORT_PREAMBLE;
1893 
1894 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1895 }
1896 
1897 Static void
1898 ural_set_basicrates(struct ural_softc *sc)
1899 {
1900 	struct ieee80211com *ic = &sc->sc_ic;
1901 
1902 	/* update basic rate set */
1903 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1904 		/* 11b basic rates: 1, 2Mbps */
1905 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1906 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1907 		/* 11a basic rates: 6, 12, 24Mbps */
1908 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1909 	} else {
1910 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1911 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1912 	}
1913 }
1914 
1915 Static void
1916 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1917 {
1918 	uint16_t tmp;
1919 
1920 	tmp = bssid[0] | bssid[1] << 8;
1921 	ural_write(sc, RAL_MAC_CSR5, tmp);
1922 
1923 	tmp = bssid[2] | bssid[3] << 8;
1924 	ural_write(sc, RAL_MAC_CSR6, tmp);
1925 
1926 	tmp = bssid[4] | bssid[5] << 8;
1927 	ural_write(sc, RAL_MAC_CSR7, tmp);
1928 
1929 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1930 }
1931 
1932 Static void
1933 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1934 {
1935 	uint16_t tmp;
1936 
1937 	tmp = addr[0] | addr[1] << 8;
1938 	ural_write(sc, RAL_MAC_CSR2, tmp);
1939 
1940 	tmp = addr[2] | addr[3] << 8;
1941 	ural_write(sc, RAL_MAC_CSR3, tmp);
1942 
1943 	tmp = addr[4] | addr[5] << 8;
1944 	ural_write(sc, RAL_MAC_CSR4, tmp);
1945 
1946 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1947 }
1948 
1949 Static void
1950 ural_update_promisc(struct ural_softc *sc)
1951 {
1952 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1953 	uint32_t tmp;
1954 
1955 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1956 
1957 	tmp &= ~RAL_DROP_NOT_TO_ME;
1958 	if (!(ifp->if_flags & IFF_PROMISC))
1959 		tmp |= RAL_DROP_NOT_TO_ME;
1960 
1961 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1962 
1963 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1964 	    "entering" : "leaving"));
1965 }
1966 
1967 Static const char *
1968 ural_get_rf(int rev)
1969 {
1970 	switch (rev) {
1971 	case RAL_RF_2522:	return "RT2522";
1972 	case RAL_RF_2523:	return "RT2523";
1973 	case RAL_RF_2524:	return "RT2524";
1974 	case RAL_RF_2525:	return "RT2525";
1975 	case RAL_RF_2525E:	return "RT2525e";
1976 	case RAL_RF_2526:	return "RT2526";
1977 	case RAL_RF_5222:	return "RT5222";
1978 	default:		return "unknown";
1979 	}
1980 }
1981 
1982 Static void
1983 ural_read_eeprom(struct ural_softc *sc)
1984 {
1985 	struct ieee80211com *ic = &sc->sc_ic;
1986 	uint16_t val;
1987 
1988 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1989 	val = le16toh(val);
1990 	sc->rf_rev =   (val >> 11) & 0x7;
1991 	sc->hw_radio = (val >> 10) & 0x1;
1992 	sc->led_mode = (val >> 6)  & 0x7;
1993 	sc->rx_ant =   (val >> 4)  & 0x3;
1994 	sc->tx_ant =   (val >> 2)  & 0x3;
1995 	sc->nb_ant =   val & 0x3;
1996 
1997 	/* read MAC address */
1998 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1999 
2000 	/* read default values for BBP registers */
2001 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2002 
2003 	/* read Tx power for all b/g channels */
2004 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2005 }
2006 
2007 Static int
2008 ural_bbp_init(struct ural_softc *sc)
2009 {
2010 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2011 	int i, ntries;
2012 
2013 	/* wait for BBP to be ready */
2014 	for (ntries = 0; ntries < 100; ntries++) {
2015 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2016 			break;
2017 		DELAY(1000);
2018 	}
2019 	if (ntries == 100) {
2020 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2021 		return EIO;
2022 	}
2023 
2024 	/* initialize BBP registers to default values */
2025 	for (i = 0; i < N(ural_def_bbp); i++)
2026 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2027 
2028 #if 0
2029 	/* initialize BBP registers to values stored in EEPROM */
2030 	for (i = 0; i < 16; i++) {
2031 		if (sc->bbp_prom[i].reg == 0xff)
2032 			continue;
2033 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2034 	}
2035 #endif
2036 
2037 	return 0;
2038 #undef N
2039 }
2040 
2041 Static void
2042 ural_set_txantenna(struct ural_softc *sc, int antenna)
2043 {
2044 	uint16_t tmp;
2045 	uint8_t tx;
2046 
2047 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2048 	if (antenna == 1)
2049 		tx |= RAL_BBP_ANTA;
2050 	else if (antenna == 2)
2051 		tx |= RAL_BBP_ANTB;
2052 	else
2053 		tx |= RAL_BBP_DIVERSITY;
2054 
2055 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2056 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2057 	    sc->rf_rev == RAL_RF_5222)
2058 		tx |= RAL_BBP_FLIPIQ;
2059 
2060 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2061 
2062 	/* update values in PHY_CSR5 and PHY_CSR6 */
2063 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2064 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2065 
2066 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2067 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2068 }
2069 
2070 Static void
2071 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2072 {
2073 	uint8_t rx;
2074 
2075 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2076 	if (antenna == 1)
2077 		rx |= RAL_BBP_ANTA;
2078 	else if (antenna == 2)
2079 		rx |= RAL_BBP_ANTB;
2080 	else
2081 		rx |= RAL_BBP_DIVERSITY;
2082 
2083 	/* need to force no I/Q flip for RF 2525e and 2526 */
2084 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2085 		rx &= ~RAL_BBP_FLIPIQ;
2086 
2087 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2088 }
2089 
2090 Static int
2091 ural_init(struct ifnet *ifp)
2092 {
2093 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2094 	struct ural_softc *sc = ifp->if_softc;
2095 	struct ieee80211com *ic = &sc->sc_ic;
2096 	struct ieee80211_key *wk;
2097 	struct ural_rx_data *data;
2098 	uint16_t tmp;
2099 	usbd_status error;
2100 	int i, ntries;
2101 
2102 	ural_set_testmode(sc);
2103 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2104 
2105 	ural_stop(ifp, 0);
2106 
2107 	/* initialize MAC registers to default values */
2108 	for (i = 0; i < N(ural_def_mac); i++)
2109 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2110 
2111 	/* wait for BBP and RF to wake up (this can take a long time!) */
2112 	for (ntries = 0; ntries < 100; ntries++) {
2113 		tmp = ural_read(sc, RAL_MAC_CSR17);
2114 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2115 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2116 			break;
2117 		DELAY(1000);
2118 	}
2119 	if (ntries == 100) {
2120 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2121 		    USBDEVNAME(sc->sc_dev));
2122 		error = EIO;
2123 		goto fail;
2124 	}
2125 
2126 	/* we're ready! */
2127 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2128 
2129 	/* set basic rate set (will be updated later) */
2130 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2131 
2132 	error = ural_bbp_init(sc);
2133 	if (error != 0)
2134 		goto fail;
2135 
2136 	/* set default BSS channel */
2137 	ural_set_chan(sc, ic->ic_curchan);
2138 
2139 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2140 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2141 
2142 	ural_set_txantenna(sc, sc->tx_ant);
2143 	ural_set_rxantenna(sc, sc->rx_ant);
2144 
2145 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2146 	ural_set_macaddr(sc, ic->ic_myaddr);
2147 
2148 	/*
2149 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2150 	 */
2151 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2152 		wk = &ic->ic_crypto.cs_nw_keys[i];
2153 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2154 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2155 	}
2156 
2157 	/*
2158 	 * Allocate xfer for AMRR statistics requests.
2159 	 */
2160 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2161 	if (sc->amrr_xfer == NULL) {
2162 		printf("%s: could not allocate AMRR xfer\n",
2163 		    USBDEVNAME(sc->sc_dev));
2164 		goto fail;
2165 	}
2166 
2167 	/*
2168 	 * Open Tx and Rx USB bulk pipes.
2169 	 */
2170 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2171 	    &sc->sc_tx_pipeh);
2172 	if (error != 0) {
2173 		printf("%s: could not open Tx pipe: %s\n",
2174 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2175 		goto fail;
2176 	}
2177 
2178 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2179 	    &sc->sc_rx_pipeh);
2180 	if (error != 0) {
2181 		printf("%s: could not open Rx pipe: %s\n",
2182 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2183 		goto fail;
2184 	}
2185 
2186 	/*
2187 	 * Allocate Tx and Rx xfer queues.
2188 	 */
2189 	error = ural_alloc_tx_list(sc);
2190 	if (error != 0) {
2191 		printf("%s: could not allocate Tx list\n",
2192 		    USBDEVNAME(sc->sc_dev));
2193 		goto fail;
2194 	}
2195 
2196 	error = ural_alloc_rx_list(sc);
2197 	if (error != 0) {
2198 		printf("%s: could not allocate Rx list\n",
2199 		    USBDEVNAME(sc->sc_dev));
2200 		goto fail;
2201 	}
2202 
2203 	/*
2204 	 * Start up the receive pipe.
2205 	 */
2206 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2207 		data = &sc->rx_data[i];
2208 
2209 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2210 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2211 		usbd_transfer(data->xfer);
2212 	}
2213 
2214 	/* kick Rx */
2215 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2216 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2218 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2219 			tmp |= RAL_DROP_TODS;
2220 		if (!(ifp->if_flags & IFF_PROMISC))
2221 			tmp |= RAL_DROP_NOT_TO_ME;
2222 	}
2223 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2224 
2225 	ifp->if_flags &= ~IFF_OACTIVE;
2226 	ifp->if_flags |= IFF_RUNNING;
2227 
2228 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2229 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2230 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2231 	} else
2232 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2233 
2234 	return 0;
2235 
2236 fail:	ural_stop(ifp, 1);
2237 	return error;
2238 #undef N
2239 }
2240 
2241 Static void
2242 ural_stop(struct ifnet *ifp, int disable)
2243 {
2244 	struct ural_softc *sc = ifp->if_softc;
2245 	struct ieee80211com *ic = &sc->sc_ic;
2246 
2247 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2248 
2249 	sc->sc_tx_timer = 0;
2250 	ifp->if_timer = 0;
2251 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2252 
2253 	/* disable Rx */
2254 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2255 
2256 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2257 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2258 	ural_write(sc, RAL_MAC_CSR1, 0);
2259 
2260 	if (sc->amrr_xfer != NULL) {
2261 		usbd_free_xfer(sc->amrr_xfer);
2262 		sc->amrr_xfer = NULL;
2263 	}
2264 
2265 	if (sc->sc_rx_pipeh != NULL) {
2266 		usbd_abort_pipe(sc->sc_rx_pipeh);
2267 		usbd_close_pipe(sc->sc_rx_pipeh);
2268 		sc->sc_rx_pipeh = NULL;
2269 	}
2270 
2271 	if (sc->sc_tx_pipeh != NULL) {
2272 		usbd_abort_pipe(sc->sc_tx_pipeh);
2273 		usbd_close_pipe(sc->sc_tx_pipeh);
2274 		sc->sc_tx_pipeh = NULL;
2275 	}
2276 
2277 	ural_free_rx_list(sc);
2278 	ural_free_tx_list(sc);
2279 }
2280 
2281 int
2282 ural_activate(device_ptr_t self, enum devact act)
2283 {
2284 	struct ural_softc *sc = device_private(self);
2285 
2286 	switch (act) {
2287 	case DVACT_DEACTIVATE:
2288 		if_deactivate(&sc->sc_if);
2289 		return 0;
2290 	default:
2291 		return EOPNOTSUPP;
2292 	}
2293 }
2294 
2295 Static void
2296 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2297 {
2298 	int i;
2299 
2300 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2301 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2302 
2303 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2304 
2305 	/* set rate to some reasonable initial value */
2306 	for (i = ni->ni_rates.rs_nrates - 1;
2307 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2308 	     i--);
2309 	ni->ni_txrate = i;
2310 
2311 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2312 }
2313 
2314 Static void
2315 ural_amrr_timeout(void *arg)
2316 {
2317 	struct ural_softc *sc = (struct ural_softc *)arg;
2318 	usb_device_request_t req;
2319 	int s;
2320 
2321 	s = splusb();
2322 
2323 	/*
2324 	 * Asynchronously read statistic registers (cleared by read).
2325 	 */
2326 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2327 	req.bRequest = RAL_READ_MULTI_MAC;
2328 	USETW(req.wValue, 0);
2329 	USETW(req.wIndex, RAL_STA_CSR0);
2330 	USETW(req.wLength, sizeof sc->sta);
2331 
2332 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2333 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2334 	    ural_amrr_update);
2335 	(void)usbd_transfer(sc->amrr_xfer);
2336 
2337 	splx(s);
2338 }
2339 
2340 Static void
2341 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2342     usbd_status status)
2343 {
2344 	struct ural_softc *sc = (struct ural_softc *)priv;
2345 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2346 
2347 	if (status != USBD_NORMAL_COMPLETION) {
2348 		printf("%s: could not retrieve Tx statistics - "
2349 		    "cancelling automatic rate control\n",
2350 		    USBDEVNAME(sc->sc_dev));
2351 		return;
2352 	}
2353 
2354 	/* count TX retry-fail as Tx errors */
2355 	ifp->if_oerrors += sc->sta[9];
2356 
2357 	sc->amn.amn_retrycnt =
2358 	    sc->sta[7] +	/* TX one-retry ok count */
2359 	    sc->sta[8] +	/* TX more-retry ok count */
2360 	    sc->sta[9];		/* TX retry-fail count */
2361 
2362 	sc->amn.amn_txcnt =
2363 	    sc->amn.amn_retrycnt +
2364 	    sc->sta[6];		/* TX no-retry ok count */
2365 
2366 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2367 
2368 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2369 }
2370