xref: /netbsd-src/sys/dev/usb/if_ural.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$NetBSD: if_ural.c,v 1.48 2016/05/26 05:04:46 ozaki-r Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.48 2016/05/26 05:04:46 ozaki-r Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/usb/usb.h>
62 #include <dev/usb/usbdi.h>
63 #include <dev/usb/usbdi_util.h>
64 #include <dev/usb/usbdevs.h>
65 
66 #include <dev/usb/if_uralreg.h>
67 #include <dev/usb/if_uralvar.h>
68 
69 #ifdef URAL_DEBUG
70 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
71 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
72 int ural_debug = 0;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77 
78 /* various supported device vendors/products */
79 static const struct usb_devno ural_devs[] = {
80 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
81 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
82 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
83 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
84 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
85 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
86 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
87 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
88 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
89 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
90 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
91 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
92 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
93 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
94 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
95 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
96 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
97 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
98 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
99 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
100 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
101 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
102 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
103 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
104 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
105 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
106 };
107 
108 Static int		ural_alloc_tx_list(struct ural_softc *);
109 Static void		ural_free_tx_list(struct ural_softc *);
110 Static int		ural_alloc_rx_list(struct ural_softc *);
111 Static void		ural_free_rx_list(struct ural_softc *);
112 Static int		ural_media_change(struct ifnet *);
113 Static void		ural_next_scan(void *);
114 Static void		ural_task(void *);
115 Static int		ural_newstate(struct ieee80211com *,
116 			    enum ieee80211_state, int);
117 Static int		ural_rxrate(struct ural_rx_desc *);
118 Static void		ural_txeof(struct usbd_xfer *, void *,
119 			    usbd_status);
120 Static void		ural_rxeof(struct usbd_xfer *, void *,
121 			    usbd_status);
122 Static int		ural_ack_rate(struct ieee80211com *, int);
123 Static uint16_t		ural_txtime(int, int, uint32_t);
124 Static uint8_t		ural_plcp_signal(int);
125 Static void		ural_setup_tx_desc(struct ural_softc *,
126 			    struct ural_tx_desc *, uint32_t, int, int);
127 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
128 			    struct ieee80211_node *);
129 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
130 			    struct ieee80211_node *);
131 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
132 			    struct ieee80211_node *);
133 Static void		ural_start(struct ifnet *);
134 Static void		ural_watchdog(struct ifnet *);
135 Static int		ural_reset(struct ifnet *);
136 Static int		ural_ioctl(struct ifnet *, u_long, void *);
137 Static void		ural_set_testmode(struct ural_softc *);
138 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
139 			    int);
140 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
141 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
142 			    int);
143 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
144 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
145 			    int);
146 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
147 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
148 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
149 Static void		ural_set_chan(struct ural_softc *,
150 			    struct ieee80211_channel *);
151 Static void		ural_disable_rf_tune(struct ural_softc *);
152 Static void		ural_enable_tsf_sync(struct ural_softc *);
153 Static void		ural_update_slot(struct ifnet *);
154 Static void		ural_set_txpreamble(struct ural_softc *);
155 Static void		ural_set_basicrates(struct ural_softc *);
156 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
157 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
158 Static void		ural_update_promisc(struct ural_softc *);
159 Static const char	*ural_get_rf(int);
160 Static void		ural_read_eeprom(struct ural_softc *);
161 Static int		ural_bbp_init(struct ural_softc *);
162 Static void		ural_set_txantenna(struct ural_softc *, int);
163 Static void		ural_set_rxantenna(struct ural_softc *, int);
164 Static int		ural_init(struct ifnet *);
165 Static void		ural_stop(struct ifnet *, int);
166 Static void		ural_amrr_start(struct ural_softc *,
167 			    struct ieee80211_node *);
168 Static void		ural_amrr_timeout(void *);
169 Static void		ural_amrr_update(struct usbd_xfer *, void *,
170 			    usbd_status status);
171 
172 /*
173  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174  */
175 static const struct ieee80211_rateset ural_rateset_11a =
176 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177 
178 static const struct ieee80211_rateset ural_rateset_11b =
179 	{ 4, { 2, 4, 11, 22 } };
180 
181 static const struct ieee80211_rateset ural_rateset_11g =
182 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183 
184 /*
185  * Default values for MAC registers; values taken from the reference driver.
186  */
187 static const struct {
188 	uint16_t	reg;
189 	uint16_t	val;
190 } ural_def_mac[] = {
191 	{ RAL_TXRX_CSR5,  0x8c8d },
192 	{ RAL_TXRX_CSR6,  0x8b8a },
193 	{ RAL_TXRX_CSR7,  0x8687 },
194 	{ RAL_TXRX_CSR8,  0x0085 },
195 	{ RAL_MAC_CSR13,  0x1111 },
196 	{ RAL_MAC_CSR14,  0x1e11 },
197 	{ RAL_TXRX_CSR21, 0xe78f },
198 	{ RAL_MAC_CSR9,   0xff1d },
199 	{ RAL_MAC_CSR11,  0x0002 },
200 	{ RAL_MAC_CSR22,  0x0053 },
201 	{ RAL_MAC_CSR15,  0x0000 },
202 	{ RAL_MAC_CSR8,   0x0780 },
203 	{ RAL_TXRX_CSR19, 0x0000 },
204 	{ RAL_TXRX_CSR18, 0x005a },
205 	{ RAL_PHY_CSR2,   0x0000 },
206 	{ RAL_TXRX_CSR0,  0x1ec0 },
207 	{ RAL_PHY_CSR4,   0x000f }
208 };
209 
210 /*
211  * Default values for BBP registers; values taken from the reference driver.
212  */
213 static const struct {
214 	uint8_t	reg;
215 	uint8_t	val;
216 } ural_def_bbp[] = {
217 	{  3, 0x02 },
218 	{  4, 0x19 },
219 	{ 14, 0x1c },
220 	{ 15, 0x30 },
221 	{ 16, 0xac },
222 	{ 17, 0x48 },
223 	{ 18, 0x18 },
224 	{ 19, 0xff },
225 	{ 20, 0x1e },
226 	{ 21, 0x08 },
227 	{ 22, 0x08 },
228 	{ 23, 0x08 },
229 	{ 24, 0x80 },
230 	{ 25, 0x50 },
231 	{ 26, 0x08 },
232 	{ 27, 0x23 },
233 	{ 30, 0x10 },
234 	{ 31, 0x2b },
235 	{ 32, 0xb9 },
236 	{ 34, 0x12 },
237 	{ 35, 0x50 },
238 	{ 39, 0xc4 },
239 	{ 40, 0x02 },
240 	{ 41, 0x60 },
241 	{ 53, 0x10 },
242 	{ 54, 0x18 },
243 	{ 56, 0x08 },
244 	{ 57, 0x10 },
245 	{ 58, 0x08 },
246 	{ 61, 0x60 },
247 	{ 62, 0x10 },
248 	{ 75, 0xff }
249 };
250 
251 /*
252  * Default values for RF register R2 indexed by channel numbers.
253  */
254 static const uint32_t ural_rf2522_r2[] = {
255 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
256 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
257 };
258 
259 static const uint32_t ural_rf2523_r2[] = {
260 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
261 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 };
263 
264 static const uint32_t ural_rf2524_r2[] = {
265 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
266 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
267 };
268 
269 static const uint32_t ural_rf2525_r2[] = {
270 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
271 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
272 };
273 
274 static const uint32_t ural_rf2525_hi_r2[] = {
275 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
276 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
277 };
278 
279 static const uint32_t ural_rf2525e_r2[] = {
280 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
281 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
282 };
283 
284 static const uint32_t ural_rf2526_hi_r2[] = {
285 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
286 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
287 };
288 
289 static const uint32_t ural_rf2526_r2[] = {
290 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
291 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
292 };
293 
294 /*
295  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
296  * values taken from the reference driver.
297  */
298 static const struct {
299 	uint8_t		chan;
300 	uint32_t	r1;
301 	uint32_t	r2;
302 	uint32_t	r4;
303 } ural_rf5222[] = {
304 	{   1, 0x08808, 0x0044d, 0x00282 },
305 	{   2, 0x08808, 0x0044e, 0x00282 },
306 	{   3, 0x08808, 0x0044f, 0x00282 },
307 	{   4, 0x08808, 0x00460, 0x00282 },
308 	{   5, 0x08808, 0x00461, 0x00282 },
309 	{   6, 0x08808, 0x00462, 0x00282 },
310 	{   7, 0x08808, 0x00463, 0x00282 },
311 	{   8, 0x08808, 0x00464, 0x00282 },
312 	{   9, 0x08808, 0x00465, 0x00282 },
313 	{  10, 0x08808, 0x00466, 0x00282 },
314 	{  11, 0x08808, 0x00467, 0x00282 },
315 	{  12, 0x08808, 0x00468, 0x00282 },
316 	{  13, 0x08808, 0x00469, 0x00282 },
317 	{  14, 0x08808, 0x0046b, 0x00286 },
318 
319 	{  36, 0x08804, 0x06225, 0x00287 },
320 	{  40, 0x08804, 0x06226, 0x00287 },
321 	{  44, 0x08804, 0x06227, 0x00287 },
322 	{  48, 0x08804, 0x06228, 0x00287 },
323 	{  52, 0x08804, 0x06229, 0x00287 },
324 	{  56, 0x08804, 0x0622a, 0x00287 },
325 	{  60, 0x08804, 0x0622b, 0x00287 },
326 	{  64, 0x08804, 0x0622c, 0x00287 },
327 
328 	{ 100, 0x08804, 0x02200, 0x00283 },
329 	{ 104, 0x08804, 0x02201, 0x00283 },
330 	{ 108, 0x08804, 0x02202, 0x00283 },
331 	{ 112, 0x08804, 0x02203, 0x00283 },
332 	{ 116, 0x08804, 0x02204, 0x00283 },
333 	{ 120, 0x08804, 0x02205, 0x00283 },
334 	{ 124, 0x08804, 0x02206, 0x00283 },
335 	{ 128, 0x08804, 0x02207, 0x00283 },
336 	{ 132, 0x08804, 0x02208, 0x00283 },
337 	{ 136, 0x08804, 0x02209, 0x00283 },
338 	{ 140, 0x08804, 0x0220a, 0x00283 },
339 
340 	{ 149, 0x08808, 0x02429, 0x00281 },
341 	{ 153, 0x08808, 0x0242b, 0x00281 },
342 	{ 157, 0x08808, 0x0242d, 0x00281 },
343 	{ 161, 0x08808, 0x0242f, 0x00281 }
344 };
345 
346 int             ural_match(device_t, cfdata_t, void *);
347 void            ural_attach(device_t, device_t, void *);
348 int             ural_detach(device_t, int);
349 int             ural_activate(device_t, enum devact);
350 extern struct cfdriver ural_cd;
351 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
352 
353 int
354 ural_match(device_t parent, cfdata_t match, void *aux)
355 {
356 	struct usb_attach_arg *uaa = aux;
357 
358 	return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
359 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
360 }
361 
362 void
363 ural_attach(device_t parent, device_t self, void *aux)
364 {
365 	struct ural_softc *sc = device_private(self);
366 	struct usb_attach_arg *uaa = aux;
367 	struct ieee80211com *ic = &sc->sc_ic;
368 	struct ifnet *ifp = &sc->sc_if;
369 	usb_interface_descriptor_t *id;
370 	usb_endpoint_descriptor_t *ed;
371 	usbd_status error;
372 	char *devinfop;
373 	int i;
374 
375 	sc->sc_dev = self;
376 	sc->sc_udev = uaa->uaa_device;
377 
378 	aprint_naive("\n");
379 	aprint_normal("\n");
380 
381 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
382 	aprint_normal_dev(self, "%s\n", devinfop);
383 	usbd_devinfo_free(devinfop);
384 
385 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
386 	if (error != 0) {
387 		aprint_error_dev(self, "failed to set configuration"
388 		    ", err=%s\n", usbd_errstr(error));
389 		return;
390 	}
391 
392 	/* get the first interface handle */
393 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
394 	    &sc->sc_iface);
395 	if (error != 0) {
396 		aprint_error_dev(self, "could not get interface handle\n");
397 		return;
398 	}
399 
400 	/*
401 	 * Find endpoints.
402 	 */
403 	id = usbd_get_interface_descriptor(sc->sc_iface);
404 
405 	sc->sc_rx_no = sc->sc_tx_no = -1;
406 	for (i = 0; i < id->bNumEndpoints; i++) {
407 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
408 		if (ed == NULL) {
409 			aprint_error_dev(self,
410 			    "no endpoint descriptor for %d\n", i);
411 			return;
412 		}
413 
414 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
415 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 			sc->sc_rx_no = ed->bEndpointAddress;
417 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
418 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 			sc->sc_tx_no = ed->bEndpointAddress;
420 	}
421 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
422 		aprint_error_dev(self, "missing endpoint\n");
423 		return;
424 	}
425 
426 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
427 	callout_init(&sc->sc_scan_ch, 0);
428 	sc->amrr.amrr_min_success_threshold = 1;
429 	sc->amrr.amrr_max_success_threshold = 15;
430 	callout_init(&sc->sc_amrr_ch, 0);
431 
432 	/* retrieve RT2570 rev. no */
433 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
434 
435 	/* retrieve MAC address and various other things from EEPROM */
436 	ural_read_eeprom(sc);
437 
438 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
439 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
440 
441 	ifp->if_softc = sc;
442 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 	ifp->if_init = ural_init;
445 	ifp->if_ioctl = ural_ioctl;
446 	ifp->if_start = ural_start;
447 	ifp->if_watchdog = ural_watchdog;
448 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 	IFQ_SET_READY(&ifp->if_snd);
450 
451 	ic->ic_ifp = ifp;
452 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
453 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
454 	ic->ic_state = IEEE80211_S_INIT;
455 
456 	/* set device capabilities */
457 	ic->ic_caps =
458 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
459 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
460 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
461 	    IEEE80211_C_TXPMGT |	/* tx power management */
462 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
463 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
464 	    IEEE80211_C_WPA;		/* 802.11i */
465 
466 	if (sc->rf_rev == RAL_RF_5222) {
467 		/* set supported .11a rates */
468 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
469 
470 		/* set supported .11a channels */
471 		for (i = 36; i <= 64; i += 4) {
472 			ic->ic_channels[i].ic_freq =
473 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
474 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
475 		}
476 		for (i = 100; i <= 140; i += 4) {
477 			ic->ic_channels[i].ic_freq =
478 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 		}
481 		for (i = 149; i <= 161; i += 4) {
482 			ic->ic_channels[i].ic_freq =
483 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 		}
486 	}
487 
488 	/* set supported .11b and .11g rates */
489 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
490 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
491 
492 	/* set supported .11b and .11g channels (1 through 14) */
493 	for (i = 1; i <= 14; i++) {
494 		ic->ic_channels[i].ic_freq =
495 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
496 		ic->ic_channels[i].ic_flags =
497 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
498 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
499 	}
500 
501 	if_attach(ifp);
502 	ieee80211_ifattach(ic);
503 	ic->ic_reset = ural_reset;
504 
505 	/* override state transition machine */
506 	sc->sc_newstate = ic->ic_newstate;
507 	ic->ic_newstate = ural_newstate;
508 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
509 
510 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
511 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512 
513 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
514 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516 
517 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
518 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520 
521 	ieee80211_announce(ic);
522 
523 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 	    sc->sc_dev);
525 
526 	if (!pmf_device_register(self, NULL, NULL))
527 		aprint_error_dev(self, "couldn't establish power handler\n");
528 
529 	return;
530 }
531 
532 int
533 ural_detach(device_t self, int flags)
534 {
535 	struct ural_softc *sc = device_private(self);
536 	struct ieee80211com *ic = &sc->sc_ic;
537 	struct ifnet *ifp = &sc->sc_if;
538 	int s;
539 
540 	pmf_device_deregister(self);
541 
542 	s = splusb();
543 
544 	ural_stop(ifp, 1);
545 	usb_rem_task(sc->sc_udev, &sc->sc_task);
546 	callout_stop(&sc->sc_scan_ch);
547 	callout_stop(&sc->sc_amrr_ch);
548 
549 	bpf_detach(ifp);
550 	ieee80211_ifdetach(ic);
551 	if_detach(ifp);
552 
553 	splx(s);
554 
555 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
556 	    sc->sc_dev);
557 
558 	return 0;
559 }
560 
561 Static int
562 ural_alloc_tx_list(struct ural_softc *sc)
563 {
564 	struct ural_tx_data *data;
565 	int i, error;
566 
567 	sc->tx_queued = 0;
568 
569 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
570 		data = &sc->tx_data[i];
571 
572 		data->sc = sc;
573 		error = usbd_create_xfer(sc->sc_tx_pipeh,
574 		    RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
575 		    &data->xfer);
576 		if (error) {
577 			printf("%s: could not allocate tx xfer\n",
578 			    device_xname(sc->sc_dev));
579 			goto fail;
580 		}
581 
582 		data->buf = usbd_get_buffer(data->xfer);
583 	}
584 
585 	return 0;
586 
587 fail:	ural_free_tx_list(sc);
588 	return error;
589 }
590 
591 Static void
592 ural_free_tx_list(struct ural_softc *sc)
593 {
594 	struct ural_tx_data *data;
595 	int i;
596 
597 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
598 		data = &sc->tx_data[i];
599 
600 		if (data->xfer != NULL) {
601 			usbd_destroy_xfer(data->xfer);
602 			data->xfer = NULL;
603 		}
604 
605 		if (data->ni != NULL) {
606 			ieee80211_free_node(data->ni);
607 			data->ni = NULL;
608 		}
609 	}
610 }
611 
612 Static int
613 ural_alloc_rx_list(struct ural_softc *sc)
614 {
615 	struct ural_rx_data *data;
616 	int i, error;
617 
618 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
619 		data = &sc->rx_data[i];
620 
621 		data->sc = sc;
622 
623 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
624 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
625 		if (error) {
626 			printf("%s: could not allocate rx xfer\n",
627 			    device_xname(sc->sc_dev));
628 			goto fail;
629 		}
630 
631 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 		if (data->m == NULL) {
633 			printf("%s: could not allocate rx mbuf\n",
634 			    device_xname(sc->sc_dev));
635 			error = ENOMEM;
636 			goto fail;
637 		}
638 
639 		MCLGET(data->m, M_DONTWAIT);
640 		if (!(data->m->m_flags & M_EXT)) {
641 			printf("%s: could not allocate rx mbuf cluster\n",
642 			    device_xname(sc->sc_dev));
643 			error = ENOMEM;
644 			goto fail;
645 		}
646 
647 		data->buf = mtod(data->m, uint8_t *);
648 	}
649 
650 	return 0;
651 
652 fail:	ural_free_tx_list(sc);
653 	return error;
654 }
655 
656 Static void
657 ural_free_rx_list(struct ural_softc *sc)
658 {
659 	struct ural_rx_data *data;
660 	int i;
661 
662 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
663 		data = &sc->rx_data[i];
664 
665 		if (data->xfer != NULL) {
666 			usbd_destroy_xfer(data->xfer);
667 			data->xfer = NULL;
668 		}
669 
670 		if (data->m != NULL) {
671 			m_freem(data->m);
672 			data->m = NULL;
673 		}
674 	}
675 }
676 
677 Static int
678 ural_media_change(struct ifnet *ifp)
679 {
680 	int error;
681 
682 	error = ieee80211_media_change(ifp);
683 	if (error != ENETRESET)
684 		return error;
685 
686 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
687 		ural_init(ifp);
688 
689 	return 0;
690 }
691 
692 /*
693  * This function is called periodically (every 200ms) during scanning to
694  * switch from one channel to another.
695  */
696 Static void
697 ural_next_scan(void *arg)
698 {
699 	struct ural_softc *sc = arg;
700 	struct ieee80211com *ic = &sc->sc_ic;
701 
702 	if (ic->ic_state == IEEE80211_S_SCAN)
703 		ieee80211_next_scan(ic);
704 }
705 
706 Static void
707 ural_task(void *arg)
708 {
709 	struct ural_softc *sc = arg;
710 	struct ieee80211com *ic = &sc->sc_ic;
711 	enum ieee80211_state ostate;
712 	struct ieee80211_node *ni;
713 	struct mbuf *m;
714 
715 	ostate = ic->ic_state;
716 
717 	switch (sc->sc_state) {
718 	case IEEE80211_S_INIT:
719 		if (ostate == IEEE80211_S_RUN) {
720 			/* abort TSF synchronization */
721 			ural_write(sc, RAL_TXRX_CSR19, 0);
722 
723 			/* force tx led to stop blinking */
724 			ural_write(sc, RAL_MAC_CSR20, 0);
725 		}
726 		break;
727 
728 	case IEEE80211_S_SCAN:
729 		ural_set_chan(sc, ic->ic_curchan);
730 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
731 		break;
732 
733 	case IEEE80211_S_AUTH:
734 		ural_set_chan(sc, ic->ic_curchan);
735 		break;
736 
737 	case IEEE80211_S_ASSOC:
738 		ural_set_chan(sc, ic->ic_curchan);
739 		break;
740 
741 	case IEEE80211_S_RUN:
742 		ural_set_chan(sc, ic->ic_curchan);
743 
744 		ni = ic->ic_bss;
745 
746 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
747 			ural_update_slot(ic->ic_ifp);
748 			ural_set_txpreamble(sc);
749 			ural_set_basicrates(sc);
750 			ural_set_bssid(sc, ni->ni_bssid);
751 		}
752 
753 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
754 		    ic->ic_opmode == IEEE80211_M_IBSS) {
755 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
756 			if (m == NULL) {
757 				printf("%s: could not allocate beacon\n",
758 				    device_xname(sc->sc_dev));
759 				return;
760 			}
761 
762 			if (ural_tx_bcn(sc, m, ni) != 0) {
763 				m_freem(m);
764 				printf("%s: could not send beacon\n",
765 				    device_xname(sc->sc_dev));
766 				return;
767 			}
768 
769 			/* beacon is no longer needed */
770 			m_freem(m);
771 		}
772 
773 		/* make tx led blink on tx (controlled by ASIC) */
774 		ural_write(sc, RAL_MAC_CSR20, 1);
775 
776 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
777 			ural_enable_tsf_sync(sc);
778 
779 		/* enable automatic rate adaptation in STA mode */
780 		if (ic->ic_opmode == IEEE80211_M_STA &&
781 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
782 			ural_amrr_start(sc, ni);
783 
784 		break;
785 	}
786 
787 	sc->sc_newstate(ic, sc->sc_state, -1);
788 }
789 
790 Static int
791 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
792     int arg)
793 {
794 	struct ural_softc *sc = ic->ic_ifp->if_softc;
795 
796 	usb_rem_task(sc->sc_udev, &sc->sc_task);
797 	callout_stop(&sc->sc_scan_ch);
798 	callout_stop(&sc->sc_amrr_ch);
799 
800 	/* do it in a process context */
801 	sc->sc_state = nstate;
802 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
803 
804 	return 0;
805 }
806 
807 /* quickly determine if a given rate is CCK or OFDM */
808 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
809 
810 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
811 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
812 
813 #define RAL_SIFS		10	/* us */
814 
815 #define RAL_RXTX_TURNAROUND	5	/* us */
816 
817 /*
818  * This function is only used by the Rx radiotap code.
819  */
820 Static int
821 ural_rxrate(struct ural_rx_desc *desc)
822 {
823 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
824 		/* reverse function of ural_plcp_signal */
825 		switch (desc->rate) {
826 		case 0xb:	return 12;
827 		case 0xf:	return 18;
828 		case 0xa:	return 24;
829 		case 0xe:	return 36;
830 		case 0x9:	return 48;
831 		case 0xd:	return 72;
832 		case 0x8:	return 96;
833 		case 0xc:	return 108;
834 		}
835 	} else {
836 		if (desc->rate == 10)
837 			return 2;
838 		if (desc->rate == 20)
839 			return 4;
840 		if (desc->rate == 55)
841 			return 11;
842 		if (desc->rate == 110)
843 			return 22;
844 	}
845 	return 2;	/* should not get there */
846 }
847 
848 Static void
849 ural_txeof(struct usbd_xfer *xfer, void * priv,
850     usbd_status status)
851 {
852 	struct ural_tx_data *data = priv;
853 	struct ural_softc *sc = data->sc;
854 	struct ifnet *ifp = &sc->sc_if;
855 	int s;
856 
857 	if (status != USBD_NORMAL_COMPLETION) {
858 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
859 			return;
860 
861 		printf("%s: could not transmit buffer: %s\n",
862 		    device_xname(sc->sc_dev), usbd_errstr(status));
863 
864 		if (status == USBD_STALLED)
865 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
866 
867 		ifp->if_oerrors++;
868 		return;
869 	}
870 
871 	s = splnet();
872 
873 	m_freem(data->m);
874 	data->m = NULL;
875 	ieee80211_free_node(data->ni);
876 	data->ni = NULL;
877 
878 	sc->tx_queued--;
879 	ifp->if_opackets++;
880 
881 	DPRINTFN(10, ("tx done\n"));
882 
883 	sc->sc_tx_timer = 0;
884 	ifp->if_flags &= ~IFF_OACTIVE;
885 	ural_start(ifp);
886 
887 	splx(s);
888 }
889 
890 Static void
891 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
892 {
893 	struct ural_rx_data *data = priv;
894 	struct ural_softc *sc = data->sc;
895 	struct ieee80211com *ic = &sc->sc_ic;
896 	struct ifnet *ifp = &sc->sc_if;
897 	struct ural_rx_desc *desc;
898 	struct ieee80211_frame *wh;
899 	struct ieee80211_node *ni;
900 	struct mbuf *mnew, *m;
901 	int s, len;
902 
903 	if (status != USBD_NORMAL_COMPLETION) {
904 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
905 			return;
906 
907 		if (status == USBD_STALLED)
908 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
909 		goto skip;
910 	}
911 
912 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
913 
914 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
915 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
916 		    len));
917 		ifp->if_ierrors++;
918 		goto skip;
919 	}
920 
921 	/* rx descriptor is located at the end */
922 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
923 
924 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
925 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
926 		/*
927 		 * This should not happen since we did not request to receive
928 		 * those frames when we filled RAL_TXRX_CSR2.
929 		 */
930 		DPRINTFN(5, ("PHY or CRC error\n"));
931 		ifp->if_ierrors++;
932 		goto skip;
933 	}
934 
935 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
936 	if (mnew == NULL) {
937 		ifp->if_ierrors++;
938 		goto skip;
939 	}
940 
941 	MCLGET(mnew, M_DONTWAIT);
942 	if (!(mnew->m_flags & M_EXT)) {
943 		ifp->if_ierrors++;
944 		m_freem(mnew);
945 		goto skip;
946 	}
947 
948 	m = data->m;
949 	data->m = mnew;
950 	data->buf = mtod(data->m, uint8_t *);
951 
952 	/* finalize mbuf */
953 	m->m_pkthdr.rcvif = ifp;
954 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
955 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
956 
957 	s = splnet();
958 
959 	if (sc->sc_drvbpf != NULL) {
960 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
961 
962 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
963 		tap->wr_rate = ural_rxrate(desc);
964 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
965 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
966 		tap->wr_antenna = sc->rx_ant;
967 		tap->wr_antsignal = desc->rssi;
968 
969 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
970 	}
971 
972 	wh = mtod(m, struct ieee80211_frame *);
973 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
974 
975 	/* send the frame to the 802.11 layer */
976 	ieee80211_input(ic, m, ni, desc->rssi, 0);
977 
978 	/* node is no longer needed */
979 	ieee80211_free_node(ni);
980 
981 	splx(s);
982 
983 	DPRINTFN(15, ("rx done\n"));
984 
985 skip:	/* setup a new transfer */
986 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
987 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
988 	usbd_transfer(xfer);
989 }
990 
991 /*
992  * Return the expected ack rate for a frame transmitted at rate `rate'.
993  * XXX: this should depend on the destination node basic rate set.
994  */
995 Static int
996 ural_ack_rate(struct ieee80211com *ic, int rate)
997 {
998 	switch (rate) {
999 	/* CCK rates */
1000 	case 2:
1001 		return 2;
1002 	case 4:
1003 	case 11:
1004 	case 22:
1005 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1006 
1007 	/* OFDM rates */
1008 	case 12:
1009 	case 18:
1010 		return 12;
1011 	case 24:
1012 	case 36:
1013 		return 24;
1014 	case 48:
1015 	case 72:
1016 	case 96:
1017 	case 108:
1018 		return 48;
1019 	}
1020 
1021 	/* default to 1Mbps */
1022 	return 2;
1023 }
1024 
1025 /*
1026  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1027  * The function automatically determines the operating mode depending on the
1028  * given rate. `flags' indicates whether short preamble is in use or not.
1029  */
1030 Static uint16_t
1031 ural_txtime(int len, int rate, uint32_t flags)
1032 {
1033 	uint16_t txtime;
1034 
1035 	if (RAL_RATE_IS_OFDM(rate)) {
1036 		/* IEEE Std 802.11g-2003, pp. 37 */
1037 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1038 		txtime = 16 + 4 + 4 * txtime + 6;
1039 	} else {
1040 		/* IEEE Std 802.11b-1999, pp. 28 */
1041 		txtime = (16 * len + rate - 1) / rate;
1042 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1043 			txtime +=  72 + 24;
1044 		else
1045 			txtime += 144 + 48;
1046 	}
1047 	return txtime;
1048 }
1049 
1050 Static uint8_t
1051 ural_plcp_signal(int rate)
1052 {
1053 	switch (rate) {
1054 	/* CCK rates (returned values are device-dependent) */
1055 	case 2:		return 0x0;
1056 	case 4:		return 0x1;
1057 	case 11:	return 0x2;
1058 	case 22:	return 0x3;
1059 
1060 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1061 	case 12:	return 0xb;
1062 	case 18:	return 0xf;
1063 	case 24:	return 0xa;
1064 	case 36:	return 0xe;
1065 	case 48:	return 0x9;
1066 	case 72:	return 0xd;
1067 	case 96:	return 0x8;
1068 	case 108:	return 0xc;
1069 
1070 	/* unsupported rates (should not get there) */
1071 	default:	return 0xff;
1072 	}
1073 }
1074 
1075 Static void
1076 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1077     uint32_t flags, int len, int rate)
1078 {
1079 	struct ieee80211com *ic = &sc->sc_ic;
1080 	uint16_t plcp_length;
1081 	int remainder;
1082 
1083 	desc->flags = htole32(flags);
1084 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1085 	desc->flags |= htole32(len << 16);
1086 
1087 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1088 	desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1089 
1090 	/* setup PLCP fields */
1091 	desc->plcp_signal  = ural_plcp_signal(rate);
1092 	desc->plcp_service = 4;
1093 
1094 	len += IEEE80211_CRC_LEN;
1095 	if (RAL_RATE_IS_OFDM(rate)) {
1096 		desc->flags |= htole32(RAL_TX_OFDM);
1097 
1098 		plcp_length = len & 0xfff;
1099 		desc->plcp_length_hi = plcp_length >> 6;
1100 		desc->plcp_length_lo = plcp_length & 0x3f;
1101 	} else {
1102 		plcp_length = (16 * len + rate - 1) / rate;
1103 		if (rate == 22) {
1104 			remainder = (16 * len) % 22;
1105 			if (remainder != 0 && remainder < 7)
1106 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1107 		}
1108 		desc->plcp_length_hi = plcp_length >> 8;
1109 		desc->plcp_length_lo = plcp_length & 0xff;
1110 
1111 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1112 			desc->plcp_signal |= 0x08;
1113 	}
1114 
1115 	desc->iv = 0;
1116 	desc->eiv = 0;
1117 }
1118 
1119 #define RAL_TX_TIMEOUT	5000
1120 
1121 Static int
1122 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1123 {
1124 	struct ural_tx_desc *desc;
1125 	struct usbd_xfer *xfer;
1126 	uint8_t cmd = 0;
1127 	usbd_status error;
1128 	uint8_t *buf;
1129 	int xferlen, rate;
1130 
1131 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1132 
1133 	/* xfer length needs to be a multiple of two! */
1134 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1135 
1136 	error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1137 	    USBD_FORCE_SHORT_XFER, 0, &xfer);
1138 	if (error)
1139 		return error;
1140 
1141 	buf = usbd_get_buffer(xfer);
1142 
1143 	usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1144 	    RAL_TX_TIMEOUT, NULL);
1145 
1146 	error = usbd_sync_transfer(xfer);
1147 	if (error != 0) {
1148 		usbd_destroy_xfer(xfer);
1149 		return error;
1150 	}
1151 
1152 	desc = (struct ural_tx_desc *)buf;
1153 
1154 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1155 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1156 	    m0->m_pkthdr.len, rate);
1157 
1158 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1159 	    m0->m_pkthdr.len, rate, xferlen));
1160 
1161 	usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1162 	    RAL_TX_TIMEOUT, NULL);
1163 
1164 	error = usbd_sync_transfer(xfer);
1165 	usbd_destroy_xfer(xfer);
1166 
1167 	return error;
1168 }
1169 
1170 Static int
1171 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1172 {
1173 	struct ieee80211com *ic = &sc->sc_ic;
1174 	struct ural_tx_desc *desc;
1175 	struct ural_tx_data *data;
1176 	struct ieee80211_frame *wh;
1177 	struct ieee80211_key *k;
1178 	uint32_t flags = 0;
1179 	uint16_t dur;
1180 	usbd_status error;
1181 	int xferlen, rate;
1182 
1183 	data = &sc->tx_data[0];
1184 	desc = (struct ural_tx_desc *)data->buf;
1185 
1186 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1187 
1188 	wh = mtod(m0, struct ieee80211_frame *);
1189 
1190 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1191 		k = ieee80211_crypto_encap(ic, ni, m0);
1192 		if (k == NULL) {
1193 			m_freem(m0);
1194 			return ENOBUFS;
1195 		}
1196 	}
1197 
1198 	data->m = m0;
1199 	data->ni = ni;
1200 
1201 	wh = mtod(m0, struct ieee80211_frame *);
1202 
1203 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1204 		flags |= RAL_TX_ACK;
1205 
1206 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1207 		*(uint16_t *)wh->i_dur = htole16(dur);
1208 
1209 		/* tell hardware to add timestamp for probe responses */
1210 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1211 		    IEEE80211_FC0_TYPE_MGT &&
1212 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1213 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1214 			flags |= RAL_TX_TIMESTAMP;
1215 	}
1216 
1217 	if (sc->sc_drvbpf != NULL) {
1218 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1219 
1220 		tap->wt_flags = 0;
1221 		tap->wt_rate = rate;
1222 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1223 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1224 		tap->wt_antenna = sc->tx_ant;
1225 
1226 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1227 	}
1228 
1229 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1230 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1231 
1232 	/* align end on a 2-bytes boundary */
1233 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1234 
1235 	/*
1236 	 * No space left in the last URB to store the extra 2 bytes, force
1237 	 * sending of another URB.
1238 	 */
1239 	if ((xferlen % 64) == 0)
1240 		xferlen += 2;
1241 
1242 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1243 	    m0->m_pkthdr.len, rate, xferlen));
1244 
1245 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1246 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1247 
1248 	error = usbd_transfer(data->xfer);
1249 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1250 		m_freem(m0);
1251 		return error;
1252 	}
1253 
1254 	sc->tx_queued++;
1255 
1256 	return 0;
1257 }
1258 
1259 Static int
1260 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1261 {
1262 	struct ieee80211com *ic = &sc->sc_ic;
1263 	struct ural_tx_desc *desc;
1264 	struct ural_tx_data *data;
1265 	struct ieee80211_frame *wh;
1266 	struct ieee80211_key *k;
1267 	uint32_t flags = 0;
1268 	uint16_t dur;
1269 	usbd_status error;
1270 	int xferlen, rate;
1271 
1272 	wh = mtod(m0, struct ieee80211_frame *);
1273 
1274 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1275 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1276 	else
1277 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1278 
1279 	rate &= IEEE80211_RATE_VAL;
1280 
1281 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1282 		k = ieee80211_crypto_encap(ic, ni, m0);
1283 		if (k == NULL) {
1284 			m_freem(m0);
1285 			return ENOBUFS;
1286 		}
1287 
1288 		/* packet header may have moved, reset our local pointer */
1289 		wh = mtod(m0, struct ieee80211_frame *);
1290 	}
1291 
1292 	data = &sc->tx_data[0];
1293 	desc = (struct ural_tx_desc *)data->buf;
1294 
1295 	data->m = m0;
1296 	data->ni = ni;
1297 
1298 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1299 		flags |= RAL_TX_ACK;
1300 		flags |= RAL_TX_RETRY(7);
1301 
1302 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1303 		    ic->ic_flags) + RAL_SIFS;
1304 		*(uint16_t *)wh->i_dur = htole16(dur);
1305 	}
1306 
1307 	if (sc->sc_drvbpf != NULL) {
1308 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1309 
1310 		tap->wt_flags = 0;
1311 		tap->wt_rate = rate;
1312 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1313 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1314 		tap->wt_antenna = sc->tx_ant;
1315 
1316 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1317 	}
1318 
1319 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1320 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1321 
1322 	/* align end on a 2-bytes boundary */
1323 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1324 
1325 	/*
1326 	 * No space left in the last URB to store the extra 2 bytes, force
1327 	 * sending of another URB.
1328 	 */
1329 	if ((xferlen % 64) == 0)
1330 		xferlen += 2;
1331 
1332 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1333 	    m0->m_pkthdr.len, rate, xferlen));
1334 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1335 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1336 
1337 	error = usbd_transfer(data->xfer);
1338 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1339 		return error;
1340 
1341 	sc->tx_queued++;
1342 
1343 	return 0;
1344 }
1345 
1346 Static void
1347 ural_start(struct ifnet *ifp)
1348 {
1349 	struct ural_softc *sc = ifp->if_softc;
1350 	struct ieee80211com *ic = &sc->sc_ic;
1351 	struct mbuf *m0;
1352 	struct ether_header *eh;
1353 	struct ieee80211_node *ni;
1354 
1355 	for (;;) {
1356 		IF_POLL(&ic->ic_mgtq, m0);
1357 		if (m0 != NULL) {
1358 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1359 				ifp->if_flags |= IFF_OACTIVE;
1360 				break;
1361 			}
1362 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1363 
1364 			ni = M_GETCTX(m0, struct ieee80211_node *);
1365 			M_CLEARCTX(m0);
1366 			bpf_mtap3(ic->ic_rawbpf, m0);
1367 			if (ural_tx_mgt(sc, m0, ni) != 0)
1368 				break;
1369 
1370 		} else {
1371 			if (ic->ic_state != IEEE80211_S_RUN)
1372 				break;
1373 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1374 			if (m0 == NULL)
1375 				break;
1376 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1377 				IF_PREPEND(&ifp->if_snd, m0);
1378 				ifp->if_flags |= IFF_OACTIVE;
1379 				break;
1380 			}
1381 
1382 			if (m0->m_len < sizeof(struct ether_header) &&
1383 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1384 				continue;
1385 
1386 			eh = mtod(m0, struct ether_header *);
1387 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1388 			if (ni == NULL) {
1389 				m_freem(m0);
1390 				continue;
1391 			}
1392 			bpf_mtap(ifp, m0);
1393 			m0 = ieee80211_encap(ic, m0, ni);
1394 			if (m0 == NULL) {
1395 				ieee80211_free_node(ni);
1396 				continue;
1397 			}
1398 			bpf_mtap3(ic->ic_rawbpf, m0);
1399 			if (ural_tx_data(sc, m0, ni) != 0) {
1400 				ieee80211_free_node(ni);
1401 				ifp->if_oerrors++;
1402 				break;
1403 			}
1404 		}
1405 
1406 		sc->sc_tx_timer = 5;
1407 		ifp->if_timer = 1;
1408 	}
1409 }
1410 
1411 Static void
1412 ural_watchdog(struct ifnet *ifp)
1413 {
1414 	struct ural_softc *sc = ifp->if_softc;
1415 	struct ieee80211com *ic = &sc->sc_ic;
1416 
1417 	ifp->if_timer = 0;
1418 
1419 	if (sc->sc_tx_timer > 0) {
1420 		if (--sc->sc_tx_timer == 0) {
1421 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1422 			/*ural_init(sc); XXX needs a process context! */
1423 			ifp->if_oerrors++;
1424 			return;
1425 		}
1426 		ifp->if_timer = 1;
1427 	}
1428 
1429 	ieee80211_watchdog(ic);
1430 }
1431 
1432 /*
1433  * This function allows for fast channel switching in monitor mode (used by
1434  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1435  * generate a new beacon frame.
1436  */
1437 Static int
1438 ural_reset(struct ifnet *ifp)
1439 {
1440 	struct ural_softc *sc = ifp->if_softc;
1441 	struct ieee80211com *ic = &sc->sc_ic;
1442 
1443 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1444 		return ENETRESET;
1445 
1446 	ural_set_chan(sc, ic->ic_curchan);
1447 
1448 	return 0;
1449 }
1450 
1451 Static int
1452 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1453 {
1454 #define IS_RUNNING(ifp) \
1455 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1456 
1457 	struct ural_softc *sc = ifp->if_softc;
1458 	struct ieee80211com *ic = &sc->sc_ic;
1459 	int s, error = 0;
1460 
1461 	s = splnet();
1462 
1463 	switch (cmd) {
1464 	case SIOCSIFFLAGS:
1465 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1466 			break;
1467 		/* XXX re-use ether_ioctl() */
1468 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1469 		case IFF_UP|IFF_RUNNING:
1470 			ural_update_promisc(sc);
1471 			break;
1472 		case IFF_UP:
1473 			ural_init(ifp);
1474 			break;
1475 		case IFF_RUNNING:
1476 			ural_stop(ifp, 1);
1477 			break;
1478 		case 0:
1479 			break;
1480 		}
1481 		break;
1482 
1483 	case SIOCADDMULTI:
1484 	case SIOCDELMULTI:
1485 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1486 			error = 0;
1487 		}
1488 		break;
1489 
1490 	default:
1491 		error = ieee80211_ioctl(ic, cmd, data);
1492 	}
1493 
1494 	if (error == ENETRESET) {
1495 		if (IS_RUNNING(ifp) &&
1496 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1497 			ural_init(ifp);
1498 		error = 0;
1499 	}
1500 
1501 	splx(s);
1502 
1503 	return error;
1504 #undef IS_RUNNING
1505 }
1506 
1507 Static void
1508 ural_set_testmode(struct ural_softc *sc)
1509 {
1510 	usb_device_request_t req;
1511 	usbd_status error;
1512 
1513 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1514 	req.bRequest = RAL_VENDOR_REQUEST;
1515 	USETW(req.wValue, 4);
1516 	USETW(req.wIndex, 1);
1517 	USETW(req.wLength, 0);
1518 
1519 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1520 	if (error != 0) {
1521 		printf("%s: could not set test mode: %s\n",
1522 		    device_xname(sc->sc_dev), usbd_errstr(error));
1523 	}
1524 }
1525 
1526 Static void
1527 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1528 {
1529 	usb_device_request_t req;
1530 	usbd_status error;
1531 
1532 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1533 	req.bRequest = RAL_READ_EEPROM;
1534 	USETW(req.wValue, 0);
1535 	USETW(req.wIndex, addr);
1536 	USETW(req.wLength, len);
1537 
1538 	error = usbd_do_request(sc->sc_udev, &req, buf);
1539 	if (error != 0) {
1540 		printf("%s: could not read EEPROM: %s\n",
1541 		    device_xname(sc->sc_dev), usbd_errstr(error));
1542 	}
1543 }
1544 
1545 Static uint16_t
1546 ural_read(struct ural_softc *sc, uint16_t reg)
1547 {
1548 	usb_device_request_t req;
1549 	usbd_status error;
1550 	uint16_t val;
1551 
1552 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1553 	req.bRequest = RAL_READ_MAC;
1554 	USETW(req.wValue, 0);
1555 	USETW(req.wIndex, reg);
1556 	USETW(req.wLength, sizeof(uint16_t));
1557 
1558 	error = usbd_do_request(sc->sc_udev, &req, &val);
1559 	if (error != 0) {
1560 		printf("%s: could not read MAC register: %s\n",
1561 		    device_xname(sc->sc_dev), usbd_errstr(error));
1562 		return 0;
1563 	}
1564 
1565 	return le16toh(val);
1566 }
1567 
1568 Static void
1569 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1570 {
1571 	usb_device_request_t req;
1572 	usbd_status error;
1573 
1574 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1575 	req.bRequest = RAL_READ_MULTI_MAC;
1576 	USETW(req.wValue, 0);
1577 	USETW(req.wIndex, reg);
1578 	USETW(req.wLength, len);
1579 
1580 	error = usbd_do_request(sc->sc_udev, &req, buf);
1581 	if (error != 0) {
1582 		printf("%s: could not read MAC register: %s\n",
1583 		    device_xname(sc->sc_dev), usbd_errstr(error));
1584 	}
1585 }
1586 
1587 Static void
1588 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1589 {
1590 	usb_device_request_t req;
1591 	usbd_status error;
1592 
1593 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1594 	req.bRequest = RAL_WRITE_MAC;
1595 	USETW(req.wValue, val);
1596 	USETW(req.wIndex, reg);
1597 	USETW(req.wLength, 0);
1598 
1599 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1600 	if (error != 0) {
1601 		printf("%s: could not write MAC register: %s\n",
1602 		    device_xname(sc->sc_dev), usbd_errstr(error));
1603 	}
1604 }
1605 
1606 Static void
1607 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1608 {
1609 	usb_device_request_t req;
1610 	usbd_status error;
1611 
1612 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1613 	req.bRequest = RAL_WRITE_MULTI_MAC;
1614 	USETW(req.wValue, 0);
1615 	USETW(req.wIndex, reg);
1616 	USETW(req.wLength, len);
1617 
1618 	error = usbd_do_request(sc->sc_udev, &req, buf);
1619 	if (error != 0) {
1620 		printf("%s: could not write MAC register: %s\n",
1621 		    device_xname(sc->sc_dev), usbd_errstr(error));
1622 	}
1623 }
1624 
1625 Static void
1626 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1627 {
1628 	uint16_t tmp;
1629 	int ntries;
1630 
1631 	for (ntries = 0; ntries < 5; ntries++) {
1632 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1633 			break;
1634 	}
1635 	if (ntries == 5) {
1636 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1637 		return;
1638 	}
1639 
1640 	tmp = reg << 8 | val;
1641 	ural_write(sc, RAL_PHY_CSR7, tmp);
1642 }
1643 
1644 Static uint8_t
1645 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1646 {
1647 	uint16_t val;
1648 	int ntries;
1649 
1650 	val = RAL_BBP_WRITE | reg << 8;
1651 	ural_write(sc, RAL_PHY_CSR7, val);
1652 
1653 	for (ntries = 0; ntries < 5; ntries++) {
1654 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1655 			break;
1656 	}
1657 	if (ntries == 5) {
1658 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1659 		return 0;
1660 	}
1661 
1662 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1663 }
1664 
1665 Static void
1666 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1667 {
1668 	uint32_t tmp;
1669 	int ntries;
1670 
1671 	for (ntries = 0; ntries < 5; ntries++) {
1672 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1673 			break;
1674 	}
1675 	if (ntries == 5) {
1676 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1677 		return;
1678 	}
1679 
1680 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1681 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1682 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1683 
1684 	/* remember last written value in sc */
1685 	sc->rf_regs[reg] = val;
1686 
1687 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1688 }
1689 
1690 Static void
1691 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1692 {
1693 	struct ieee80211com *ic = &sc->sc_ic;
1694 	uint8_t power, tmp;
1695 	u_int i, chan;
1696 
1697 	chan = ieee80211_chan2ieee(ic, c);
1698 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1699 		return;
1700 
1701 	if (IEEE80211_IS_CHAN_2GHZ(c))
1702 		power = min(sc->txpow[chan - 1], 31);
1703 	else
1704 		power = 31;
1705 
1706 	/* adjust txpower using ifconfig settings */
1707 	power -= (100 - ic->ic_txpowlimit) / 8;
1708 
1709 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1710 
1711 	switch (sc->rf_rev) {
1712 	case RAL_RF_2522:
1713 		ural_rf_write(sc, RAL_RF1, 0x00814);
1714 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1715 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1716 		break;
1717 
1718 	case RAL_RF_2523:
1719 		ural_rf_write(sc, RAL_RF1, 0x08804);
1720 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1721 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1722 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1723 		break;
1724 
1725 	case RAL_RF_2524:
1726 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1727 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1728 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1729 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1730 		break;
1731 
1732 	case RAL_RF_2525:
1733 		ural_rf_write(sc, RAL_RF1, 0x08808);
1734 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1735 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1736 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1737 
1738 		ural_rf_write(sc, RAL_RF1, 0x08808);
1739 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1740 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1741 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1742 		break;
1743 
1744 	case RAL_RF_2525E:
1745 		ural_rf_write(sc, RAL_RF1, 0x08808);
1746 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1747 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1748 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1749 		break;
1750 
1751 	case RAL_RF_2526:
1752 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1753 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1754 		ural_rf_write(sc, RAL_RF1, 0x08804);
1755 
1756 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1757 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1758 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1759 		break;
1760 
1761 	/* dual-band RF */
1762 	case RAL_RF_5222:
1763 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1764 
1765 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1766 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1767 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1768 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1769 		break;
1770 	}
1771 
1772 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1773 	    ic->ic_state != IEEE80211_S_SCAN) {
1774 		/* set Japan filter bit for channel 14 */
1775 		tmp = ural_bbp_read(sc, 70);
1776 
1777 		tmp &= ~RAL_JAPAN_FILTER;
1778 		if (chan == 14)
1779 			tmp |= RAL_JAPAN_FILTER;
1780 
1781 		ural_bbp_write(sc, 70, tmp);
1782 
1783 		/* clear CRC errors */
1784 		ural_read(sc, RAL_STA_CSR0);
1785 
1786 		DELAY(10000);
1787 		ural_disable_rf_tune(sc);
1788 	}
1789 }
1790 
1791 /*
1792  * Disable RF auto-tuning.
1793  */
1794 Static void
1795 ural_disable_rf_tune(struct ural_softc *sc)
1796 {
1797 	uint32_t tmp;
1798 
1799 	if (sc->rf_rev != RAL_RF_2523) {
1800 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1801 		ural_rf_write(sc, RAL_RF1, tmp);
1802 	}
1803 
1804 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1805 	ural_rf_write(sc, RAL_RF3, tmp);
1806 
1807 	DPRINTFN(2, ("disabling RF autotune\n"));
1808 }
1809 
1810 /*
1811  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1812  * synchronization.
1813  */
1814 Static void
1815 ural_enable_tsf_sync(struct ural_softc *sc)
1816 {
1817 	struct ieee80211com *ic = &sc->sc_ic;
1818 	uint16_t logcwmin, preload, tmp;
1819 
1820 	/* first, disable TSF synchronization */
1821 	ural_write(sc, RAL_TXRX_CSR19, 0);
1822 
1823 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1824 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1825 
1826 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1827 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1828 	tmp = logcwmin << 12 | preload;
1829 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1830 
1831 	/* finally, enable TSF synchronization */
1832 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1833 	if (ic->ic_opmode == IEEE80211_M_STA)
1834 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1835 	else
1836 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1837 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1838 
1839 	DPRINTF(("enabling TSF synchronization\n"));
1840 }
1841 
1842 Static void
1843 ural_update_slot(struct ifnet *ifp)
1844 {
1845 	struct ural_softc *sc = ifp->if_softc;
1846 	struct ieee80211com *ic = &sc->sc_ic;
1847 	uint16_t slottime, sifs, eifs;
1848 
1849 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1850 
1851 	/*
1852 	 * These settings may sound a bit inconsistent but this is what the
1853 	 * reference driver does.
1854 	 */
1855 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1856 		sifs = 16 - RAL_RXTX_TURNAROUND;
1857 		eifs = 364;
1858 	} else {
1859 		sifs = 10 - RAL_RXTX_TURNAROUND;
1860 		eifs = 64;
1861 	}
1862 
1863 	ural_write(sc, RAL_MAC_CSR10, slottime);
1864 	ural_write(sc, RAL_MAC_CSR11, sifs);
1865 	ural_write(sc, RAL_MAC_CSR12, eifs);
1866 }
1867 
1868 Static void
1869 ural_set_txpreamble(struct ural_softc *sc)
1870 {
1871 	uint16_t tmp;
1872 
1873 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1874 
1875 	tmp &= ~RAL_SHORT_PREAMBLE;
1876 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1877 		tmp |= RAL_SHORT_PREAMBLE;
1878 
1879 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1880 }
1881 
1882 Static void
1883 ural_set_basicrates(struct ural_softc *sc)
1884 {
1885 	struct ieee80211com *ic = &sc->sc_ic;
1886 
1887 	/* update basic rate set */
1888 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1889 		/* 11b basic rates: 1, 2Mbps */
1890 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1891 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1892 		/* 11a basic rates: 6, 12, 24Mbps */
1893 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1894 	} else {
1895 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1896 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1897 	}
1898 }
1899 
1900 Static void
1901 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1902 {
1903 	uint16_t tmp;
1904 
1905 	tmp = bssid[0] | bssid[1] << 8;
1906 	ural_write(sc, RAL_MAC_CSR5, tmp);
1907 
1908 	tmp = bssid[2] | bssid[3] << 8;
1909 	ural_write(sc, RAL_MAC_CSR6, tmp);
1910 
1911 	tmp = bssid[4] | bssid[5] << 8;
1912 	ural_write(sc, RAL_MAC_CSR7, tmp);
1913 
1914 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1915 }
1916 
1917 Static void
1918 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1919 {
1920 	uint16_t tmp;
1921 
1922 	tmp = addr[0] | addr[1] << 8;
1923 	ural_write(sc, RAL_MAC_CSR2, tmp);
1924 
1925 	tmp = addr[2] | addr[3] << 8;
1926 	ural_write(sc, RAL_MAC_CSR3, tmp);
1927 
1928 	tmp = addr[4] | addr[5] << 8;
1929 	ural_write(sc, RAL_MAC_CSR4, tmp);
1930 
1931 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1932 }
1933 
1934 Static void
1935 ural_update_promisc(struct ural_softc *sc)
1936 {
1937 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1938 	uint32_t tmp;
1939 
1940 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1941 
1942 	tmp &= ~RAL_DROP_NOT_TO_ME;
1943 	if (!(ifp->if_flags & IFF_PROMISC))
1944 		tmp |= RAL_DROP_NOT_TO_ME;
1945 
1946 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1947 
1948 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1949 	    "entering" : "leaving"));
1950 }
1951 
1952 Static const char *
1953 ural_get_rf(int rev)
1954 {
1955 	switch (rev) {
1956 	case RAL_RF_2522:	return "RT2522";
1957 	case RAL_RF_2523:	return "RT2523";
1958 	case RAL_RF_2524:	return "RT2524";
1959 	case RAL_RF_2525:	return "RT2525";
1960 	case RAL_RF_2525E:	return "RT2525e";
1961 	case RAL_RF_2526:	return "RT2526";
1962 	case RAL_RF_5222:	return "RT5222";
1963 	default:		return "unknown";
1964 	}
1965 }
1966 
1967 Static void
1968 ural_read_eeprom(struct ural_softc *sc)
1969 {
1970 	struct ieee80211com *ic = &sc->sc_ic;
1971 	uint16_t val;
1972 
1973 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1974 	val = le16toh(val);
1975 	sc->rf_rev =   (val >> 11) & 0x7;
1976 	sc->hw_radio = (val >> 10) & 0x1;
1977 	sc->led_mode = (val >> 6)  & 0x7;
1978 	sc->rx_ant =   (val >> 4)  & 0x3;
1979 	sc->tx_ant =   (val >> 2)  & 0x3;
1980 	sc->nb_ant =   val & 0x3;
1981 
1982 	/* read MAC address */
1983 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1984 
1985 	/* read default values for BBP registers */
1986 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1987 
1988 	/* read Tx power for all b/g channels */
1989 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1990 }
1991 
1992 Static int
1993 ural_bbp_init(struct ural_softc *sc)
1994 {
1995 	int i, ntries;
1996 
1997 	/* wait for BBP to be ready */
1998 	for (ntries = 0; ntries < 100; ntries++) {
1999 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2000 			break;
2001 		DELAY(1000);
2002 	}
2003 	if (ntries == 100) {
2004 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2005 		return EIO;
2006 	}
2007 
2008 	/* initialize BBP registers to default values */
2009 	for (i = 0; i < __arraycount(ural_def_bbp); i++)
2010 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2011 
2012 #if 0
2013 	/* initialize BBP registers to values stored in EEPROM */
2014 	for (i = 0; i < 16; i++) {
2015 		if (sc->bbp_prom[i].reg == 0xff)
2016 			continue;
2017 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2018 	}
2019 #endif
2020 
2021 	return 0;
2022 }
2023 
2024 Static void
2025 ural_set_txantenna(struct ural_softc *sc, int antenna)
2026 {
2027 	uint16_t tmp;
2028 	uint8_t tx;
2029 
2030 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2031 	if (antenna == 1)
2032 		tx |= RAL_BBP_ANTA;
2033 	else if (antenna == 2)
2034 		tx |= RAL_BBP_ANTB;
2035 	else
2036 		tx |= RAL_BBP_DIVERSITY;
2037 
2038 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2039 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2040 	    sc->rf_rev == RAL_RF_5222)
2041 		tx |= RAL_BBP_FLIPIQ;
2042 
2043 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2044 
2045 	/* update values in PHY_CSR5 and PHY_CSR6 */
2046 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2047 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2048 
2049 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2050 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2051 }
2052 
2053 Static void
2054 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2055 {
2056 	uint8_t rx;
2057 
2058 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2059 	if (antenna == 1)
2060 		rx |= RAL_BBP_ANTA;
2061 	else if (antenna == 2)
2062 		rx |= RAL_BBP_ANTB;
2063 	else
2064 		rx |= RAL_BBP_DIVERSITY;
2065 
2066 	/* need to force no I/Q flip for RF 2525e and 2526 */
2067 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2068 		rx &= ~RAL_BBP_FLIPIQ;
2069 
2070 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2071 }
2072 
2073 Static int
2074 ural_init(struct ifnet *ifp)
2075 {
2076 	struct ural_softc *sc = ifp->if_softc;
2077 	struct ieee80211com *ic = &sc->sc_ic;
2078 	struct ieee80211_key *wk;
2079 	uint16_t tmp;
2080 	usbd_status error;
2081 	int i, ntries;
2082 
2083 	ural_set_testmode(sc);
2084 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2085 
2086 	ural_stop(ifp, 0);
2087 
2088 	/* initialize MAC registers to default values */
2089 	for (i = 0; i < __arraycount(ural_def_mac); i++)
2090 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2091 
2092 	/* wait for BBP and RF to wake up (this can take a long time!) */
2093 	for (ntries = 0; ntries < 100; ntries++) {
2094 		tmp = ural_read(sc, RAL_MAC_CSR17);
2095 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2096 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2097 			break;
2098 		DELAY(1000);
2099 	}
2100 	if (ntries == 100) {
2101 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2102 		    device_xname(sc->sc_dev));
2103 		error = EIO;
2104 		goto fail;
2105 	}
2106 
2107 	/* we're ready! */
2108 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2109 
2110 	/* set basic rate set (will be updated later) */
2111 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2112 
2113 	error = ural_bbp_init(sc);
2114 	if (error != 0)
2115 		goto fail;
2116 
2117 	/* set default BSS channel */
2118 	ural_set_chan(sc, ic->ic_curchan);
2119 
2120 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2121 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2122 
2123 	ural_set_txantenna(sc, sc->tx_ant);
2124 	ural_set_rxantenna(sc, sc->rx_ant);
2125 
2126 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2127 	ural_set_macaddr(sc, ic->ic_myaddr);
2128 
2129 	/*
2130 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2131 	 */
2132 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2133 		wk = &ic->ic_crypto.cs_nw_keys[i];
2134 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2135 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2136 	}
2137 
2138 	/*
2139 	 * Allocate xfer for AMRR statistics requests.
2140 	 */
2141 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2142 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2143 	if (error) {
2144 		printf("%s: could not allocate AMRR xfer\n",
2145 		    device_xname(sc->sc_dev));
2146 		goto fail;
2147 	}
2148 
2149 	/*
2150 	 * Open Tx and Rx USB bulk pipes.
2151 	 */
2152 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2153 	    &sc->sc_tx_pipeh);
2154 	if (error != 0) {
2155 		printf("%s: could not open Tx pipe: %s\n",
2156 		    device_xname(sc->sc_dev), usbd_errstr(error));
2157 		goto fail;
2158 	}
2159 
2160 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2161 	    &sc->sc_rx_pipeh);
2162 	if (error != 0) {
2163 		printf("%s: could not open Rx pipe: %s\n",
2164 		    device_xname(sc->sc_dev), usbd_errstr(error));
2165 		goto fail;
2166 	}
2167 
2168 	/*
2169 	 * Allocate Tx and Rx xfer queues.
2170 	 */
2171 	error = ural_alloc_tx_list(sc);
2172 	if (error != 0) {
2173 		printf("%s: could not allocate Tx list\n",
2174 		    device_xname(sc->sc_dev));
2175 		goto fail;
2176 	}
2177 
2178 	error = ural_alloc_rx_list(sc);
2179 	if (error != 0) {
2180 		printf("%s: could not allocate Rx list\n",
2181 		    device_xname(sc->sc_dev));
2182 		goto fail;
2183 	}
2184 
2185 	/*
2186 	 * Start up the receive pipe.
2187 	 */
2188 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2189 		struct ural_rx_data *data = &sc->rx_data[i];
2190 
2191 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2192 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2193 		usbd_transfer(data->xfer);
2194 	}
2195 
2196 	/* kick Rx */
2197 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2198 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2199 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2200 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2201 			tmp |= RAL_DROP_TODS;
2202 		if (!(ifp->if_flags & IFF_PROMISC))
2203 			tmp |= RAL_DROP_NOT_TO_ME;
2204 	}
2205 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2206 
2207 	ifp->if_flags &= ~IFF_OACTIVE;
2208 	ifp->if_flags |= IFF_RUNNING;
2209 
2210 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2211 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2212 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2213 	} else
2214 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2215 
2216 	return 0;
2217 
2218 fail:	ural_stop(ifp, 1);
2219 	return error;
2220 }
2221 
2222 Static void
2223 ural_stop(struct ifnet *ifp, int disable)
2224 {
2225 	struct ural_softc *sc = ifp->if_softc;
2226 	struct ieee80211com *ic = &sc->sc_ic;
2227 
2228 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2229 
2230 	sc->sc_tx_timer = 0;
2231 	ifp->if_timer = 0;
2232 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2233 
2234 	/* disable Rx */
2235 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2236 
2237 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2238 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2239 	ural_write(sc, RAL_MAC_CSR1, 0);
2240 
2241 	if (sc->amrr_xfer != NULL) {
2242 		usbd_destroy_xfer(sc->amrr_xfer);
2243 		sc->amrr_xfer = NULL;
2244 	}
2245 
2246 	if (sc->sc_rx_pipeh != NULL) {
2247 		usbd_abort_pipe(sc->sc_rx_pipeh);
2248 	}
2249 
2250 	if (sc->sc_tx_pipeh != NULL) {
2251 		usbd_abort_pipe(sc->sc_tx_pipeh);
2252 	}
2253 
2254 	ural_free_rx_list(sc);
2255 	ural_free_tx_list(sc);
2256 
2257 	if (sc->sc_rx_pipeh != NULL) {
2258 		usbd_close_pipe(sc->sc_rx_pipeh);
2259 		sc->sc_rx_pipeh = NULL;
2260 	}
2261 
2262 	if (sc->sc_tx_pipeh != NULL) {
2263 		usbd_close_pipe(sc->sc_tx_pipeh);
2264 		sc->sc_tx_pipeh = NULL;
2265 	}
2266 }
2267 
2268 int
2269 ural_activate(device_t self, enum devact act)
2270 {
2271 	struct ural_softc *sc = device_private(self);
2272 
2273 	switch (act) {
2274 	case DVACT_DEACTIVATE:
2275 		if_deactivate(&sc->sc_if);
2276 		return 0;
2277 	default:
2278 		return EOPNOTSUPP;
2279 	}
2280 }
2281 
2282 Static void
2283 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2284 {
2285 	int i;
2286 
2287 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2288 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2289 
2290 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2291 
2292 	/* set rate to some reasonable initial value */
2293 	for (i = ni->ni_rates.rs_nrates - 1;
2294 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2295 	     i--);
2296 	ni->ni_txrate = i;
2297 
2298 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2299 }
2300 
2301 Static void
2302 ural_amrr_timeout(void *arg)
2303 {
2304 	struct ural_softc *sc = (struct ural_softc *)arg;
2305 	usb_device_request_t req;
2306 	int s;
2307 
2308 	s = splusb();
2309 
2310 	/*
2311 	 * Asynchronously read statistic registers (cleared by read).
2312 	 */
2313 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2314 	req.bRequest = RAL_READ_MULTI_MAC;
2315 	USETW(req.wValue, 0);
2316 	USETW(req.wIndex, RAL_STA_CSR0);
2317 	USETW(req.wLength, sizeof(sc->sta));
2318 
2319 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2320 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2321 	    ural_amrr_update);
2322 	(void)usbd_transfer(sc->amrr_xfer);
2323 
2324 	splx(s);
2325 }
2326 
2327 Static void
2328 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2329     usbd_status status)
2330 {
2331 	struct ural_softc *sc = (struct ural_softc *)priv;
2332 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2333 
2334 	if (status != USBD_NORMAL_COMPLETION) {
2335 		printf("%s: could not retrieve Tx statistics - "
2336 		    "cancelling automatic rate control\n",
2337 		    device_xname(sc->sc_dev));
2338 		return;
2339 	}
2340 
2341 	/* count TX retry-fail as Tx errors */
2342 	ifp->if_oerrors += sc->sta[9];
2343 
2344 	sc->amn.amn_retrycnt =
2345 	    sc->sta[7] +	/* TX one-retry ok count */
2346 	    sc->sta[8] +	/* TX more-retry ok count */
2347 	    sc->sta[9];		/* TX retry-fail count */
2348 
2349 	sc->amn.amn_txcnt =
2350 	    sc->amn.amn_retrycnt +
2351 	    sc->sta[6];		/* TX no-retry ok count */
2352 
2353 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2354 
2355 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2356 }
2357