xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: if_ural.c,v 1.45 2015/04/08 12:29:42 nonaka Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.45 2015/04/08 12:29:42 nonaka Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 #include <sys/intr.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66 
67 #include <dev/usb/if_uralreg.h>
68 #include <dev/usb/if_uralvar.h>
69 
70 #ifdef URAL_DEBUG
71 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
72 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
73 int ural_debug = 0;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78 
79 /* various supported device vendors/products */
80 static const struct usb_devno ural_devs[] = {
81 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
82 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
83 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
84 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
85 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
86 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
87 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
88 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
89 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
90 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
91 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
92 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
93 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
94 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
95 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
96 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
97 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
98 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
99 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
100 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
101 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
102 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
103 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
104 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
105 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
106 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
107 };
108 
109 Static int		ural_alloc_tx_list(struct ural_softc *);
110 Static void		ural_free_tx_list(struct ural_softc *);
111 Static int		ural_alloc_rx_list(struct ural_softc *);
112 Static void		ural_free_rx_list(struct ural_softc *);
113 Static int		ural_media_change(struct ifnet *);
114 Static void		ural_next_scan(void *);
115 Static void		ural_task(void *);
116 Static int		ural_newstate(struct ieee80211com *,
117 			    enum ieee80211_state, int);
118 Static int		ural_rxrate(struct ural_rx_desc *);
119 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
120 			    usbd_status);
121 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
122 			    usbd_status);
123 Static int		ural_ack_rate(struct ieee80211com *, int);
124 Static uint16_t		ural_txtime(int, int, uint32_t);
125 Static uint8_t		ural_plcp_signal(int);
126 Static void		ural_setup_tx_desc(struct ural_softc *,
127 			    struct ural_tx_desc *, uint32_t, int, int);
128 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
129 			    struct ieee80211_node *);
130 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
131 			    struct ieee80211_node *);
132 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
133 			    struct ieee80211_node *);
134 Static void		ural_start(struct ifnet *);
135 Static void		ural_watchdog(struct ifnet *);
136 Static int		ural_reset(struct ifnet *);
137 Static int		ural_ioctl(struct ifnet *, u_long, void *);
138 Static void		ural_set_testmode(struct ural_softc *);
139 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
140 			    int);
141 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
142 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
145 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
148 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
149 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
150 Static void		ural_set_chan(struct ural_softc *,
151 			    struct ieee80211_channel *);
152 Static void		ural_disable_rf_tune(struct ural_softc *);
153 Static void		ural_enable_tsf_sync(struct ural_softc *);
154 Static void		ural_update_slot(struct ifnet *);
155 Static void		ural_set_txpreamble(struct ural_softc *);
156 Static void		ural_set_basicrates(struct ural_softc *);
157 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
158 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
159 Static void		ural_update_promisc(struct ural_softc *);
160 Static const char	*ural_get_rf(int);
161 Static void		ural_read_eeprom(struct ural_softc *);
162 Static int		ural_bbp_init(struct ural_softc *);
163 Static void		ural_set_txantenna(struct ural_softc *, int);
164 Static void		ural_set_rxantenna(struct ural_softc *, int);
165 Static int		ural_init(struct ifnet *);
166 Static void		ural_stop(struct ifnet *, int);
167 Static void		ural_amrr_start(struct ural_softc *,
168 			    struct ieee80211_node *);
169 Static void		ural_amrr_timeout(void *);
170 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
171 			    usbd_status status);
172 
173 /*
174  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
175  */
176 static const struct ieee80211_rateset ural_rateset_11a =
177 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
178 
179 static const struct ieee80211_rateset ural_rateset_11b =
180 	{ 4, { 2, 4, 11, 22 } };
181 
182 static const struct ieee80211_rateset ural_rateset_11g =
183 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
184 
185 /*
186  * Default values for MAC registers; values taken from the reference driver.
187  */
188 static const struct {
189 	uint16_t	reg;
190 	uint16_t	val;
191 } ural_def_mac[] = {
192 	{ RAL_TXRX_CSR5,  0x8c8d },
193 	{ RAL_TXRX_CSR6,  0x8b8a },
194 	{ RAL_TXRX_CSR7,  0x8687 },
195 	{ RAL_TXRX_CSR8,  0x0085 },
196 	{ RAL_MAC_CSR13,  0x1111 },
197 	{ RAL_MAC_CSR14,  0x1e11 },
198 	{ RAL_TXRX_CSR21, 0xe78f },
199 	{ RAL_MAC_CSR9,   0xff1d },
200 	{ RAL_MAC_CSR11,  0x0002 },
201 	{ RAL_MAC_CSR22,  0x0053 },
202 	{ RAL_MAC_CSR15,  0x0000 },
203 	{ RAL_MAC_CSR8,   0x0780 },
204 	{ RAL_TXRX_CSR19, 0x0000 },
205 	{ RAL_TXRX_CSR18, 0x005a },
206 	{ RAL_PHY_CSR2,   0x0000 },
207 	{ RAL_TXRX_CSR0,  0x1ec0 },
208 	{ RAL_PHY_CSR4,   0x000f }
209 };
210 
211 /*
212  * Default values for BBP registers; values taken from the reference driver.
213  */
214 static const struct {
215 	uint8_t	reg;
216 	uint8_t	val;
217 } ural_def_bbp[] = {
218 	{  3, 0x02 },
219 	{  4, 0x19 },
220 	{ 14, 0x1c },
221 	{ 15, 0x30 },
222 	{ 16, 0xac },
223 	{ 17, 0x48 },
224 	{ 18, 0x18 },
225 	{ 19, 0xff },
226 	{ 20, 0x1e },
227 	{ 21, 0x08 },
228 	{ 22, 0x08 },
229 	{ 23, 0x08 },
230 	{ 24, 0x80 },
231 	{ 25, 0x50 },
232 	{ 26, 0x08 },
233 	{ 27, 0x23 },
234 	{ 30, 0x10 },
235 	{ 31, 0x2b },
236 	{ 32, 0xb9 },
237 	{ 34, 0x12 },
238 	{ 35, 0x50 },
239 	{ 39, 0xc4 },
240 	{ 40, 0x02 },
241 	{ 41, 0x60 },
242 	{ 53, 0x10 },
243 	{ 54, 0x18 },
244 	{ 56, 0x08 },
245 	{ 57, 0x10 },
246 	{ 58, 0x08 },
247 	{ 61, 0x60 },
248 	{ 62, 0x10 },
249 	{ 75, 0xff }
250 };
251 
252 /*
253  * Default values for RF register R2 indexed by channel numbers.
254  */
255 static const uint32_t ural_rf2522_r2[] = {
256 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
257 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
258 };
259 
260 static const uint32_t ural_rf2523_r2[] = {
261 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
262 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
263 };
264 
265 static const uint32_t ural_rf2524_r2[] = {
266 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
267 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
268 };
269 
270 static const uint32_t ural_rf2525_r2[] = {
271 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
272 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
273 };
274 
275 static const uint32_t ural_rf2525_hi_r2[] = {
276 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
277 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
278 };
279 
280 static const uint32_t ural_rf2525e_r2[] = {
281 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
282 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
283 };
284 
285 static const uint32_t ural_rf2526_hi_r2[] = {
286 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
287 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
288 };
289 
290 static const uint32_t ural_rf2526_r2[] = {
291 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
292 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
293 };
294 
295 /*
296  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
297  * values taken from the reference driver.
298  */
299 static const struct {
300 	uint8_t		chan;
301 	uint32_t	r1;
302 	uint32_t	r2;
303 	uint32_t	r4;
304 } ural_rf5222[] = {
305 	{   1, 0x08808, 0x0044d, 0x00282 },
306 	{   2, 0x08808, 0x0044e, 0x00282 },
307 	{   3, 0x08808, 0x0044f, 0x00282 },
308 	{   4, 0x08808, 0x00460, 0x00282 },
309 	{   5, 0x08808, 0x00461, 0x00282 },
310 	{   6, 0x08808, 0x00462, 0x00282 },
311 	{   7, 0x08808, 0x00463, 0x00282 },
312 	{   8, 0x08808, 0x00464, 0x00282 },
313 	{   9, 0x08808, 0x00465, 0x00282 },
314 	{  10, 0x08808, 0x00466, 0x00282 },
315 	{  11, 0x08808, 0x00467, 0x00282 },
316 	{  12, 0x08808, 0x00468, 0x00282 },
317 	{  13, 0x08808, 0x00469, 0x00282 },
318 	{  14, 0x08808, 0x0046b, 0x00286 },
319 
320 	{  36, 0x08804, 0x06225, 0x00287 },
321 	{  40, 0x08804, 0x06226, 0x00287 },
322 	{  44, 0x08804, 0x06227, 0x00287 },
323 	{  48, 0x08804, 0x06228, 0x00287 },
324 	{  52, 0x08804, 0x06229, 0x00287 },
325 	{  56, 0x08804, 0x0622a, 0x00287 },
326 	{  60, 0x08804, 0x0622b, 0x00287 },
327 	{  64, 0x08804, 0x0622c, 0x00287 },
328 
329 	{ 100, 0x08804, 0x02200, 0x00283 },
330 	{ 104, 0x08804, 0x02201, 0x00283 },
331 	{ 108, 0x08804, 0x02202, 0x00283 },
332 	{ 112, 0x08804, 0x02203, 0x00283 },
333 	{ 116, 0x08804, 0x02204, 0x00283 },
334 	{ 120, 0x08804, 0x02205, 0x00283 },
335 	{ 124, 0x08804, 0x02206, 0x00283 },
336 	{ 128, 0x08804, 0x02207, 0x00283 },
337 	{ 132, 0x08804, 0x02208, 0x00283 },
338 	{ 136, 0x08804, 0x02209, 0x00283 },
339 	{ 140, 0x08804, 0x0220a, 0x00283 },
340 
341 	{ 149, 0x08808, 0x02429, 0x00281 },
342 	{ 153, 0x08808, 0x0242b, 0x00281 },
343 	{ 157, 0x08808, 0x0242d, 0x00281 },
344 	{ 161, 0x08808, 0x0242f, 0x00281 }
345 };
346 
347 int             ural_match(device_t, cfdata_t, void *);
348 void            ural_attach(device_t, device_t, void *);
349 int             ural_detach(device_t, int);
350 int             ural_activate(device_t, enum devact);
351 extern struct cfdriver ural_cd;
352 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
353 
354 int
355 ural_match(device_t parent, cfdata_t match, void *aux)
356 {
357 	struct usb_attach_arg *uaa = aux;
358 
359 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
360 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
361 }
362 
363 void
364 ural_attach(device_t parent, device_t self, void *aux)
365 {
366 	struct ural_softc *sc = device_private(self);
367 	struct usb_attach_arg *uaa = aux;
368 	struct ieee80211com *ic = &sc->sc_ic;
369 	struct ifnet *ifp = &sc->sc_if;
370 	usb_interface_descriptor_t *id;
371 	usb_endpoint_descriptor_t *ed;
372 	usbd_status error;
373 	char *devinfop;
374 	int i;
375 
376 	sc->sc_dev = self;
377 	sc->sc_udev = uaa->device;
378 
379 	aprint_naive("\n");
380 	aprint_normal("\n");
381 
382 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
383 	aprint_normal_dev(self, "%s\n", devinfop);
384 	usbd_devinfo_free(devinfop);
385 
386 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
387 	if (error != 0) {
388 		aprint_error_dev(self, "failed to set configuration"
389 		    ", err=%s\n", usbd_errstr(error));
390 		return;
391 	}
392 
393 	/* get the first interface handle */
394 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
395 	    &sc->sc_iface);
396 	if (error != 0) {
397 		aprint_error_dev(self, "could not get interface handle\n");
398 		return;
399 	}
400 
401 	/*
402 	 * Find endpoints.
403 	 */
404 	id = usbd_get_interface_descriptor(sc->sc_iface);
405 
406 	sc->sc_rx_no = sc->sc_tx_no = -1;
407 	for (i = 0; i < id->bNumEndpoints; i++) {
408 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
409 		if (ed == NULL) {
410 			aprint_error_dev(self,
411 			    "no endpoint descriptor for %d\n", i);
412 			return;
413 		}
414 
415 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
416 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 			sc->sc_rx_no = ed->bEndpointAddress;
418 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
419 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
420 			sc->sc_tx_no = ed->bEndpointAddress;
421 	}
422 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
423 		aprint_error_dev(self, "missing endpoint\n");
424 		return;
425 	}
426 
427 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
428 	callout_init(&sc->sc_scan_ch, 0);
429 	sc->amrr.amrr_min_success_threshold = 1;
430 	sc->amrr.amrr_max_success_threshold = 15;
431 	callout_init(&sc->sc_amrr_ch, 0);
432 
433 	/* retrieve RT2570 rev. no */
434 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
435 
436 	/* retrieve MAC address and various other things from EEPROM */
437 	ural_read_eeprom(sc);
438 
439 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
440 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
441 
442 	ifp->if_softc = sc;
443 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 	ifp->if_init = ural_init;
446 	ifp->if_ioctl = ural_ioctl;
447 	ifp->if_start = ural_start;
448 	ifp->if_watchdog = ural_watchdog;
449 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
450 	IFQ_SET_READY(&ifp->if_snd);
451 
452 	ic->ic_ifp = ifp;
453 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
454 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
455 	ic->ic_state = IEEE80211_S_INIT;
456 
457 	/* set device capabilities */
458 	ic->ic_caps =
459 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
460 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
461 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
462 	    IEEE80211_C_TXPMGT |	/* tx power management */
463 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
464 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
465 	    IEEE80211_C_WPA;		/* 802.11i */
466 
467 	if (sc->rf_rev == RAL_RF_5222) {
468 		/* set supported .11a rates */
469 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
470 
471 		/* set supported .11a channels */
472 		for (i = 36; i <= 64; i += 4) {
473 			ic->ic_channels[i].ic_freq =
474 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
475 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
476 		}
477 		for (i = 100; i <= 140; i += 4) {
478 			ic->ic_channels[i].ic_freq =
479 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
480 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
481 		}
482 		for (i = 149; i <= 161; i += 4) {
483 			ic->ic_channels[i].ic_freq =
484 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
485 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
486 		}
487 	}
488 
489 	/* set supported .11b and .11g rates */
490 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
491 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
492 
493 	/* set supported .11b and .11g channels (1 through 14) */
494 	for (i = 1; i <= 14; i++) {
495 		ic->ic_channels[i].ic_freq =
496 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
497 		ic->ic_channels[i].ic_flags =
498 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
499 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
500 	}
501 
502 	if_attach(ifp);
503 	ieee80211_ifattach(ic);
504 	ic->ic_reset = ural_reset;
505 
506 	/* override state transition machine */
507 	sc->sc_newstate = ic->ic_newstate;
508 	ic->ic_newstate = ural_newstate;
509 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
510 
511 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
512 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
513 
514 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
515 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
516 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
517 
518 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
519 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
520 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
521 
522 	ieee80211_announce(ic);
523 
524 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
525 	    sc->sc_dev);
526 
527 	if (!pmf_device_register(self, NULL, NULL))
528 		aprint_error_dev(self, "couldn't establish power handler\n");
529 
530 	return;
531 }
532 
533 int
534 ural_detach(device_t self, int flags)
535 {
536 	struct ural_softc *sc = device_private(self);
537 	struct ieee80211com *ic = &sc->sc_ic;
538 	struct ifnet *ifp = &sc->sc_if;
539 	int s;
540 
541 	pmf_device_deregister(self);
542 
543 	s = splusb();
544 
545 	ural_stop(ifp, 1);
546 	usb_rem_task(sc->sc_udev, &sc->sc_task);
547 	callout_stop(&sc->sc_scan_ch);
548 	callout_stop(&sc->sc_amrr_ch);
549 
550 	if (sc->amrr_xfer != NULL) {
551 		usbd_free_xfer(sc->amrr_xfer);
552 		sc->amrr_xfer = NULL;
553 	}
554 
555 	if (sc->sc_rx_pipeh != NULL) {
556 		usbd_abort_pipe(sc->sc_rx_pipeh);
557 		usbd_close_pipe(sc->sc_rx_pipeh);
558 	}
559 
560 	if (sc->sc_tx_pipeh != NULL) {
561 		usbd_abort_pipe(sc->sc_tx_pipeh);
562 		usbd_close_pipe(sc->sc_tx_pipeh);
563 	}
564 
565 	bpf_detach(ifp);
566 	ieee80211_ifdetach(ic);
567 	if_detach(ifp);
568 
569 	splx(s);
570 
571 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
572 	    sc->sc_dev);
573 
574 	return 0;
575 }
576 
577 Static int
578 ural_alloc_tx_list(struct ural_softc *sc)
579 {
580 	struct ural_tx_data *data;
581 	int i, error;
582 
583 	sc->tx_queued = 0;
584 
585 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
586 		data = &sc->tx_data[i];
587 
588 		data->sc = sc;
589 
590 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
591 		if (data->xfer == NULL) {
592 			printf("%s: could not allocate tx xfer\n",
593 			    device_xname(sc->sc_dev));
594 			error = ENOMEM;
595 			goto fail;
596 		}
597 
598 		data->buf = usbd_alloc_buffer(data->xfer,
599 		    RAL_TX_DESC_SIZE + MCLBYTES);
600 		if (data->buf == NULL) {
601 			printf("%s: could not allocate tx buffer\n",
602 			    device_xname(sc->sc_dev));
603 			error = ENOMEM;
604 			goto fail;
605 		}
606 	}
607 
608 	return 0;
609 
610 fail:	ural_free_tx_list(sc);
611 	return error;
612 }
613 
614 Static void
615 ural_free_tx_list(struct ural_softc *sc)
616 {
617 	struct ural_tx_data *data;
618 	int i;
619 
620 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
621 		data = &sc->tx_data[i];
622 
623 		if (data->xfer != NULL) {
624 			usbd_free_xfer(data->xfer);
625 			data->xfer = NULL;
626 		}
627 
628 		if (data->ni != NULL) {
629 			ieee80211_free_node(data->ni);
630 			data->ni = NULL;
631 		}
632 	}
633 }
634 
635 Static int
636 ural_alloc_rx_list(struct ural_softc *sc)
637 {
638 	struct ural_rx_data *data;
639 	int i, error;
640 
641 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
642 		data = &sc->rx_data[i];
643 
644 		data->sc = sc;
645 
646 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
647 		if (data->xfer == NULL) {
648 			printf("%s: could not allocate rx xfer\n",
649 			    device_xname(sc->sc_dev));
650 			error = ENOMEM;
651 			goto fail;
652 		}
653 
654 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
655 			printf("%s: could not allocate rx buffer\n",
656 			    device_xname(sc->sc_dev));
657 			error = ENOMEM;
658 			goto fail;
659 		}
660 
661 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
662 		if (data->m == NULL) {
663 			printf("%s: could not allocate rx mbuf\n",
664 			    device_xname(sc->sc_dev));
665 			error = ENOMEM;
666 			goto fail;
667 		}
668 
669 		MCLGET(data->m, M_DONTWAIT);
670 		if (!(data->m->m_flags & M_EXT)) {
671 			printf("%s: could not allocate rx mbuf cluster\n",
672 			    device_xname(sc->sc_dev));
673 			error = ENOMEM;
674 			goto fail;
675 		}
676 
677 		data->buf = mtod(data->m, uint8_t *);
678 	}
679 
680 	return 0;
681 
682 fail:	ural_free_tx_list(sc);
683 	return error;
684 }
685 
686 Static void
687 ural_free_rx_list(struct ural_softc *sc)
688 {
689 	struct ural_rx_data *data;
690 	int i;
691 
692 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
693 		data = &sc->rx_data[i];
694 
695 		if (data->xfer != NULL) {
696 			usbd_free_xfer(data->xfer);
697 			data->xfer = NULL;
698 		}
699 
700 		if (data->m != NULL) {
701 			m_freem(data->m);
702 			data->m = NULL;
703 		}
704 	}
705 }
706 
707 Static int
708 ural_media_change(struct ifnet *ifp)
709 {
710 	int error;
711 
712 	error = ieee80211_media_change(ifp);
713 	if (error != ENETRESET)
714 		return error;
715 
716 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
717 		ural_init(ifp);
718 
719 	return 0;
720 }
721 
722 /*
723  * This function is called periodically (every 200ms) during scanning to
724  * switch from one channel to another.
725  */
726 Static void
727 ural_next_scan(void *arg)
728 {
729 	struct ural_softc *sc = arg;
730 	struct ieee80211com *ic = &sc->sc_ic;
731 
732 	if (ic->ic_state == IEEE80211_S_SCAN)
733 		ieee80211_next_scan(ic);
734 }
735 
736 Static void
737 ural_task(void *arg)
738 {
739 	struct ural_softc *sc = arg;
740 	struct ieee80211com *ic = &sc->sc_ic;
741 	enum ieee80211_state ostate;
742 	struct ieee80211_node *ni;
743 	struct mbuf *m;
744 
745 	ostate = ic->ic_state;
746 
747 	switch (sc->sc_state) {
748 	case IEEE80211_S_INIT:
749 		if (ostate == IEEE80211_S_RUN) {
750 			/* abort TSF synchronization */
751 			ural_write(sc, RAL_TXRX_CSR19, 0);
752 
753 			/* force tx led to stop blinking */
754 			ural_write(sc, RAL_MAC_CSR20, 0);
755 		}
756 		break;
757 
758 	case IEEE80211_S_SCAN:
759 		ural_set_chan(sc, ic->ic_curchan);
760 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
761 		break;
762 
763 	case IEEE80211_S_AUTH:
764 		ural_set_chan(sc, ic->ic_curchan);
765 		break;
766 
767 	case IEEE80211_S_ASSOC:
768 		ural_set_chan(sc, ic->ic_curchan);
769 		break;
770 
771 	case IEEE80211_S_RUN:
772 		ural_set_chan(sc, ic->ic_curchan);
773 
774 		ni = ic->ic_bss;
775 
776 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
777 			ural_update_slot(ic->ic_ifp);
778 			ural_set_txpreamble(sc);
779 			ural_set_basicrates(sc);
780 			ural_set_bssid(sc, ni->ni_bssid);
781 		}
782 
783 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
784 		    ic->ic_opmode == IEEE80211_M_IBSS) {
785 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
786 			if (m == NULL) {
787 				printf("%s: could not allocate beacon\n",
788 				    device_xname(sc->sc_dev));
789 				return;
790 			}
791 
792 			if (ural_tx_bcn(sc, m, ni) != 0) {
793 				m_freem(m);
794 				printf("%s: could not send beacon\n",
795 				    device_xname(sc->sc_dev));
796 				return;
797 			}
798 
799 			/* beacon is no longer needed */
800 			m_freem(m);
801 		}
802 
803 		/* make tx led blink on tx (controlled by ASIC) */
804 		ural_write(sc, RAL_MAC_CSR20, 1);
805 
806 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
807 			ural_enable_tsf_sync(sc);
808 
809 		/* enable automatic rate adaptation in STA mode */
810 		if (ic->ic_opmode == IEEE80211_M_STA &&
811 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
812 			ural_amrr_start(sc, ni);
813 
814 		break;
815 	}
816 
817 	sc->sc_newstate(ic, sc->sc_state, -1);
818 }
819 
820 Static int
821 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
822     int arg)
823 {
824 	struct ural_softc *sc = ic->ic_ifp->if_softc;
825 
826 	usb_rem_task(sc->sc_udev, &sc->sc_task);
827 	callout_stop(&sc->sc_scan_ch);
828 	callout_stop(&sc->sc_amrr_ch);
829 
830 	/* do it in a process context */
831 	sc->sc_state = nstate;
832 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
833 
834 	return 0;
835 }
836 
837 /* quickly determine if a given rate is CCK or OFDM */
838 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
839 
840 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
841 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
842 
843 #define RAL_SIFS		10	/* us */
844 
845 #define RAL_RXTX_TURNAROUND	5	/* us */
846 
847 /*
848  * This function is only used by the Rx radiotap code.
849  */
850 Static int
851 ural_rxrate(struct ural_rx_desc *desc)
852 {
853 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
854 		/* reverse function of ural_plcp_signal */
855 		switch (desc->rate) {
856 		case 0xb:	return 12;
857 		case 0xf:	return 18;
858 		case 0xa:	return 24;
859 		case 0xe:	return 36;
860 		case 0x9:	return 48;
861 		case 0xd:	return 72;
862 		case 0x8:	return 96;
863 		case 0xc:	return 108;
864 		}
865 	} else {
866 		if (desc->rate == 10)
867 			return 2;
868 		if (desc->rate == 20)
869 			return 4;
870 		if (desc->rate == 55)
871 			return 11;
872 		if (desc->rate == 110)
873 			return 22;
874 	}
875 	return 2;	/* should not get there */
876 }
877 
878 Static void
879 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
880     usbd_status status)
881 {
882 	struct ural_tx_data *data = priv;
883 	struct ural_softc *sc = data->sc;
884 	struct ifnet *ifp = &sc->sc_if;
885 	int s;
886 
887 	if (status != USBD_NORMAL_COMPLETION) {
888 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
889 			return;
890 
891 		printf("%s: could not transmit buffer: %s\n",
892 		    device_xname(sc->sc_dev), usbd_errstr(status));
893 
894 		if (status == USBD_STALLED)
895 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
896 
897 		ifp->if_oerrors++;
898 		return;
899 	}
900 
901 	s = splnet();
902 
903 	m_freem(data->m);
904 	data->m = NULL;
905 	ieee80211_free_node(data->ni);
906 	data->ni = NULL;
907 
908 	sc->tx_queued--;
909 	ifp->if_opackets++;
910 
911 	DPRINTFN(10, ("tx done\n"));
912 
913 	sc->sc_tx_timer = 0;
914 	ifp->if_flags &= ~IFF_OACTIVE;
915 	ural_start(ifp);
916 
917 	splx(s);
918 }
919 
920 Static void
921 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
922 {
923 	struct ural_rx_data *data = priv;
924 	struct ural_softc *sc = data->sc;
925 	struct ieee80211com *ic = &sc->sc_ic;
926 	struct ifnet *ifp = &sc->sc_if;
927 	struct ural_rx_desc *desc;
928 	struct ieee80211_frame *wh;
929 	struct ieee80211_node *ni;
930 	struct mbuf *mnew, *m;
931 	int s, len;
932 
933 	if (status != USBD_NORMAL_COMPLETION) {
934 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
935 			return;
936 
937 		if (status == USBD_STALLED)
938 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
939 		goto skip;
940 	}
941 
942 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
943 
944 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
945 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
946 		    len));
947 		ifp->if_ierrors++;
948 		goto skip;
949 	}
950 
951 	/* rx descriptor is located at the end */
952 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
953 
954 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
955 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
956 		/*
957 		 * This should not happen since we did not request to receive
958 		 * those frames when we filled RAL_TXRX_CSR2.
959 		 */
960 		DPRINTFN(5, ("PHY or CRC error\n"));
961 		ifp->if_ierrors++;
962 		goto skip;
963 	}
964 
965 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
966 	if (mnew == NULL) {
967 		ifp->if_ierrors++;
968 		goto skip;
969 	}
970 
971 	MCLGET(mnew, M_DONTWAIT);
972 	if (!(mnew->m_flags & M_EXT)) {
973 		ifp->if_ierrors++;
974 		m_freem(mnew);
975 		goto skip;
976 	}
977 
978 	m = data->m;
979 	data->m = mnew;
980 	data->buf = mtod(data->m, uint8_t *);
981 
982 	/* finalize mbuf */
983 	m->m_pkthdr.rcvif = ifp;
984 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
985 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
986 
987 	s = splnet();
988 
989 	if (sc->sc_drvbpf != NULL) {
990 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
991 
992 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
993 		tap->wr_rate = ural_rxrate(desc);
994 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
995 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
996 		tap->wr_antenna = sc->rx_ant;
997 		tap->wr_antsignal = desc->rssi;
998 
999 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1000 	}
1001 
1002 	wh = mtod(m, struct ieee80211_frame *);
1003 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1004 
1005 	/* send the frame to the 802.11 layer */
1006 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1007 
1008 	/* node is no longer needed */
1009 	ieee80211_free_node(ni);
1010 
1011 	splx(s);
1012 
1013 	DPRINTFN(15, ("rx done\n"));
1014 
1015 skip:	/* setup a new transfer */
1016 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1017 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1018 	usbd_transfer(xfer);
1019 }
1020 
1021 /*
1022  * Return the expected ack rate for a frame transmitted at rate `rate'.
1023  * XXX: this should depend on the destination node basic rate set.
1024  */
1025 Static int
1026 ural_ack_rate(struct ieee80211com *ic, int rate)
1027 {
1028 	switch (rate) {
1029 	/* CCK rates */
1030 	case 2:
1031 		return 2;
1032 	case 4:
1033 	case 11:
1034 	case 22:
1035 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1036 
1037 	/* OFDM rates */
1038 	case 12:
1039 	case 18:
1040 		return 12;
1041 	case 24:
1042 	case 36:
1043 		return 24;
1044 	case 48:
1045 	case 72:
1046 	case 96:
1047 	case 108:
1048 		return 48;
1049 	}
1050 
1051 	/* default to 1Mbps */
1052 	return 2;
1053 }
1054 
1055 /*
1056  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1057  * The function automatically determines the operating mode depending on the
1058  * given rate. `flags' indicates whether short preamble is in use or not.
1059  */
1060 Static uint16_t
1061 ural_txtime(int len, int rate, uint32_t flags)
1062 {
1063 	uint16_t txtime;
1064 
1065 	if (RAL_RATE_IS_OFDM(rate)) {
1066 		/* IEEE Std 802.11g-2003, pp. 37 */
1067 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1068 		txtime = 16 + 4 + 4 * txtime + 6;
1069 	} else {
1070 		/* IEEE Std 802.11b-1999, pp. 28 */
1071 		txtime = (16 * len + rate - 1) / rate;
1072 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1073 			txtime +=  72 + 24;
1074 		else
1075 			txtime += 144 + 48;
1076 	}
1077 	return txtime;
1078 }
1079 
1080 Static uint8_t
1081 ural_plcp_signal(int rate)
1082 {
1083 	switch (rate) {
1084 	/* CCK rates (returned values are device-dependent) */
1085 	case 2:		return 0x0;
1086 	case 4:		return 0x1;
1087 	case 11:	return 0x2;
1088 	case 22:	return 0x3;
1089 
1090 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1091 	case 12:	return 0xb;
1092 	case 18:	return 0xf;
1093 	case 24:	return 0xa;
1094 	case 36:	return 0xe;
1095 	case 48:	return 0x9;
1096 	case 72:	return 0xd;
1097 	case 96:	return 0x8;
1098 	case 108:	return 0xc;
1099 
1100 	/* unsupported rates (should not get there) */
1101 	default:	return 0xff;
1102 	}
1103 }
1104 
1105 Static void
1106 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1107     uint32_t flags, int len, int rate)
1108 {
1109 	struct ieee80211com *ic = &sc->sc_ic;
1110 	uint16_t plcp_length;
1111 	int remainder;
1112 
1113 	desc->flags = htole32(flags);
1114 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1115 	desc->flags |= htole32(len << 16);
1116 
1117 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1118 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1119 
1120 	/* setup PLCP fields */
1121 	desc->plcp_signal  = ural_plcp_signal(rate);
1122 	desc->plcp_service = 4;
1123 
1124 	len += IEEE80211_CRC_LEN;
1125 	if (RAL_RATE_IS_OFDM(rate)) {
1126 		desc->flags |= htole32(RAL_TX_OFDM);
1127 
1128 		plcp_length = len & 0xfff;
1129 		desc->plcp_length_hi = plcp_length >> 6;
1130 		desc->plcp_length_lo = plcp_length & 0x3f;
1131 	} else {
1132 		plcp_length = (16 * len + rate - 1) / rate;
1133 		if (rate == 22) {
1134 			remainder = (16 * len) % 22;
1135 			if (remainder != 0 && remainder < 7)
1136 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1137 		}
1138 		desc->plcp_length_hi = plcp_length >> 8;
1139 		desc->plcp_length_lo = plcp_length & 0xff;
1140 
1141 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1142 			desc->plcp_signal |= 0x08;
1143 	}
1144 
1145 	desc->iv = 0;
1146 	desc->eiv = 0;
1147 }
1148 
1149 #define RAL_TX_TIMEOUT	5000
1150 
1151 Static int
1152 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1153 {
1154 	struct ural_tx_desc *desc;
1155 	usbd_xfer_handle xfer;
1156 	uint8_t cmd = 0;
1157 	usbd_status error;
1158 	uint8_t *buf;
1159 	int xferlen, rate;
1160 
1161 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1162 
1163 	xfer = usbd_alloc_xfer(sc->sc_udev);
1164 	if (xfer == NULL)
1165 		return ENOMEM;
1166 
1167 	/* xfer length needs to be a multiple of two! */
1168 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1169 
1170 	buf = usbd_alloc_buffer(xfer, xferlen);
1171 	if (buf == NULL) {
1172 		usbd_free_xfer(xfer);
1173 		return ENOMEM;
1174 	}
1175 
1176 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1177 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1178 
1179 	error = usbd_sync_transfer(xfer);
1180 	if (error != 0) {
1181 		usbd_free_xfer(xfer);
1182 		return error;
1183 	}
1184 
1185 	desc = (struct ural_tx_desc *)buf;
1186 
1187 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1188 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1189 	    m0->m_pkthdr.len, rate);
1190 
1191 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1192 	    m0->m_pkthdr.len, rate, xferlen));
1193 
1194 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1195 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1196 
1197 	error = usbd_sync_transfer(xfer);
1198 	usbd_free_xfer(xfer);
1199 
1200 	return error;
1201 }
1202 
1203 Static int
1204 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1205 {
1206 	struct ieee80211com *ic = &sc->sc_ic;
1207 	struct ural_tx_desc *desc;
1208 	struct ural_tx_data *data;
1209 	struct ieee80211_frame *wh;
1210 	struct ieee80211_key *k;
1211 	uint32_t flags = 0;
1212 	uint16_t dur;
1213 	usbd_status error;
1214 	int xferlen, rate;
1215 
1216 	data = &sc->tx_data[0];
1217 	desc = (struct ural_tx_desc *)data->buf;
1218 
1219 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1220 
1221 	wh = mtod(m0, struct ieee80211_frame *);
1222 
1223 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1224 		k = ieee80211_crypto_encap(ic, ni, m0);
1225 		if (k == NULL) {
1226 			m_freem(m0);
1227 			return ENOBUFS;
1228 		}
1229 	}
1230 
1231 	data->m = m0;
1232 	data->ni = ni;
1233 
1234 	wh = mtod(m0, struct ieee80211_frame *);
1235 
1236 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1237 		flags |= RAL_TX_ACK;
1238 
1239 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1240 		*(uint16_t *)wh->i_dur = htole16(dur);
1241 
1242 		/* tell hardware to add timestamp for probe responses */
1243 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1244 		    IEEE80211_FC0_TYPE_MGT &&
1245 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1246 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1247 			flags |= RAL_TX_TIMESTAMP;
1248 	}
1249 
1250 	if (sc->sc_drvbpf != NULL) {
1251 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1252 
1253 		tap->wt_flags = 0;
1254 		tap->wt_rate = rate;
1255 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1256 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1257 		tap->wt_antenna = sc->tx_ant;
1258 
1259 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1260 	}
1261 
1262 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1263 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1264 
1265 	/* align end on a 2-bytes boundary */
1266 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1267 
1268 	/*
1269 	 * No space left in the last URB to store the extra 2 bytes, force
1270 	 * sending of another URB.
1271 	 */
1272 	if ((xferlen % 64) == 0)
1273 		xferlen += 2;
1274 
1275 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1276 	    m0->m_pkthdr.len, rate, xferlen));
1277 
1278 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1279 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1280 	    ural_txeof);
1281 
1282 	error = usbd_transfer(data->xfer);
1283 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1284 		m_freem(m0);
1285 		return error;
1286 	}
1287 
1288 	sc->tx_queued++;
1289 
1290 	return 0;
1291 }
1292 
1293 Static int
1294 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1295 {
1296 	struct ieee80211com *ic = &sc->sc_ic;
1297 	struct ural_tx_desc *desc;
1298 	struct ural_tx_data *data;
1299 	struct ieee80211_frame *wh;
1300 	struct ieee80211_key *k;
1301 	uint32_t flags = 0;
1302 	uint16_t dur;
1303 	usbd_status error;
1304 	int xferlen, rate;
1305 
1306 	wh = mtod(m0, struct ieee80211_frame *);
1307 
1308 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1309 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1310 	else
1311 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1312 
1313 	rate &= IEEE80211_RATE_VAL;
1314 
1315 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1316 		k = ieee80211_crypto_encap(ic, ni, m0);
1317 		if (k == NULL) {
1318 			m_freem(m0);
1319 			return ENOBUFS;
1320 		}
1321 
1322 		/* packet header may have moved, reset our local pointer */
1323 		wh = mtod(m0, struct ieee80211_frame *);
1324 	}
1325 
1326 	data = &sc->tx_data[0];
1327 	desc = (struct ural_tx_desc *)data->buf;
1328 
1329 	data->m = m0;
1330 	data->ni = ni;
1331 
1332 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1333 		flags |= RAL_TX_ACK;
1334 		flags |= RAL_TX_RETRY(7);
1335 
1336 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1337 		    ic->ic_flags) + RAL_SIFS;
1338 		*(uint16_t *)wh->i_dur = htole16(dur);
1339 	}
1340 
1341 	if (sc->sc_drvbpf != NULL) {
1342 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1343 
1344 		tap->wt_flags = 0;
1345 		tap->wt_rate = rate;
1346 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1347 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1348 		tap->wt_antenna = sc->tx_ant;
1349 
1350 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1351 	}
1352 
1353 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1354 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1355 
1356 	/* align end on a 2-bytes boundary */
1357 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1358 
1359 	/*
1360 	 * No space left in the last URB to store the extra 2 bytes, force
1361 	 * sending of another URB.
1362 	 */
1363 	if ((xferlen % 64) == 0)
1364 		xferlen += 2;
1365 
1366 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1367 	    m0->m_pkthdr.len, rate, xferlen));
1368 
1369 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1370 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1371 	    ural_txeof);
1372 
1373 	error = usbd_transfer(data->xfer);
1374 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1375 		return error;
1376 
1377 	sc->tx_queued++;
1378 
1379 	return 0;
1380 }
1381 
1382 Static void
1383 ural_start(struct ifnet *ifp)
1384 {
1385 	struct ural_softc *sc = ifp->if_softc;
1386 	struct ieee80211com *ic = &sc->sc_ic;
1387 	struct mbuf *m0;
1388 	struct ether_header *eh;
1389 	struct ieee80211_node *ni;
1390 
1391 	for (;;) {
1392 		IF_POLL(&ic->ic_mgtq, m0);
1393 		if (m0 != NULL) {
1394 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1395 				ifp->if_flags |= IFF_OACTIVE;
1396 				break;
1397 			}
1398 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1399 
1400 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1401 			m0->m_pkthdr.rcvif = NULL;
1402 			bpf_mtap3(ic->ic_rawbpf, m0);
1403 			if (ural_tx_mgt(sc, m0, ni) != 0)
1404 				break;
1405 
1406 		} else {
1407 			if (ic->ic_state != IEEE80211_S_RUN)
1408 				break;
1409 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1410 			if (m0 == NULL)
1411 				break;
1412 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1413 				IF_PREPEND(&ifp->if_snd, m0);
1414 				ifp->if_flags |= IFF_OACTIVE;
1415 				break;
1416 			}
1417 
1418 			if (m0->m_len < sizeof (struct ether_header) &&
1419 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1420 				continue;
1421 
1422 			eh = mtod(m0, struct ether_header *);
1423 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1424 			if (ni == NULL) {
1425 				m_freem(m0);
1426 				continue;
1427 			}
1428 			bpf_mtap(ifp, m0);
1429 			m0 = ieee80211_encap(ic, m0, ni);
1430 			if (m0 == NULL) {
1431 				ieee80211_free_node(ni);
1432 				continue;
1433 			}
1434 			bpf_mtap3(ic->ic_rawbpf, m0);
1435 			if (ural_tx_data(sc, m0, ni) != 0) {
1436 				ieee80211_free_node(ni);
1437 				ifp->if_oerrors++;
1438 				break;
1439 			}
1440 		}
1441 
1442 		sc->sc_tx_timer = 5;
1443 		ifp->if_timer = 1;
1444 	}
1445 }
1446 
1447 Static void
1448 ural_watchdog(struct ifnet *ifp)
1449 {
1450 	struct ural_softc *sc = ifp->if_softc;
1451 	struct ieee80211com *ic = &sc->sc_ic;
1452 
1453 	ifp->if_timer = 0;
1454 
1455 	if (sc->sc_tx_timer > 0) {
1456 		if (--sc->sc_tx_timer == 0) {
1457 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1458 			/*ural_init(sc); XXX needs a process context! */
1459 			ifp->if_oerrors++;
1460 			return;
1461 		}
1462 		ifp->if_timer = 1;
1463 	}
1464 
1465 	ieee80211_watchdog(ic);
1466 }
1467 
1468 /*
1469  * This function allows for fast channel switching in monitor mode (used by
1470  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1471  * generate a new beacon frame.
1472  */
1473 Static int
1474 ural_reset(struct ifnet *ifp)
1475 {
1476 	struct ural_softc *sc = ifp->if_softc;
1477 	struct ieee80211com *ic = &sc->sc_ic;
1478 
1479 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1480 		return ENETRESET;
1481 
1482 	ural_set_chan(sc, ic->ic_curchan);
1483 
1484 	return 0;
1485 }
1486 
1487 Static int
1488 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1489 {
1490 #define IS_RUNNING(ifp) \
1491 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1492 
1493 	struct ural_softc *sc = ifp->if_softc;
1494 	struct ieee80211com *ic = &sc->sc_ic;
1495 	int s, error = 0;
1496 
1497 	s = splnet();
1498 
1499 	switch (cmd) {
1500 	case SIOCSIFFLAGS:
1501 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1502 			break;
1503 		/* XXX re-use ether_ioctl() */
1504 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1505 		case IFF_UP|IFF_RUNNING:
1506 			ural_update_promisc(sc);
1507 			break;
1508 		case IFF_UP:
1509 			ural_init(ifp);
1510 			break;
1511 		case IFF_RUNNING:
1512 			ural_stop(ifp, 1);
1513 			break;
1514 		case 0:
1515 			break;
1516 		}
1517 		break;
1518 
1519 	case SIOCADDMULTI:
1520 	case SIOCDELMULTI:
1521 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1522 			error = 0;
1523 		}
1524 		break;
1525 
1526 	default:
1527 		error = ieee80211_ioctl(ic, cmd, data);
1528 	}
1529 
1530 	if (error == ENETRESET) {
1531 		if (IS_RUNNING(ifp) &&
1532 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1533 			ural_init(ifp);
1534 		error = 0;
1535 	}
1536 
1537 	splx(s);
1538 
1539 	return error;
1540 #undef IS_RUNNING
1541 }
1542 
1543 Static void
1544 ural_set_testmode(struct ural_softc *sc)
1545 {
1546 	usb_device_request_t req;
1547 	usbd_status error;
1548 
1549 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1550 	req.bRequest = RAL_VENDOR_REQUEST;
1551 	USETW(req.wValue, 4);
1552 	USETW(req.wIndex, 1);
1553 	USETW(req.wLength, 0);
1554 
1555 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1556 	if (error != 0) {
1557 		printf("%s: could not set test mode: %s\n",
1558 		    device_xname(sc->sc_dev), usbd_errstr(error));
1559 	}
1560 }
1561 
1562 Static void
1563 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1564 {
1565 	usb_device_request_t req;
1566 	usbd_status error;
1567 
1568 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1569 	req.bRequest = RAL_READ_EEPROM;
1570 	USETW(req.wValue, 0);
1571 	USETW(req.wIndex, addr);
1572 	USETW(req.wLength, len);
1573 
1574 	error = usbd_do_request(sc->sc_udev, &req, buf);
1575 	if (error != 0) {
1576 		printf("%s: could not read EEPROM: %s\n",
1577 		    device_xname(sc->sc_dev), usbd_errstr(error));
1578 	}
1579 }
1580 
1581 Static uint16_t
1582 ural_read(struct ural_softc *sc, uint16_t reg)
1583 {
1584 	usb_device_request_t req;
1585 	usbd_status error;
1586 	uint16_t val;
1587 
1588 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1589 	req.bRequest = RAL_READ_MAC;
1590 	USETW(req.wValue, 0);
1591 	USETW(req.wIndex, reg);
1592 	USETW(req.wLength, sizeof (uint16_t));
1593 
1594 	error = usbd_do_request(sc->sc_udev, &req, &val);
1595 	if (error != 0) {
1596 		printf("%s: could not read MAC register: %s\n",
1597 		    device_xname(sc->sc_dev), usbd_errstr(error));
1598 		return 0;
1599 	}
1600 
1601 	return le16toh(val);
1602 }
1603 
1604 Static void
1605 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1606 {
1607 	usb_device_request_t req;
1608 	usbd_status error;
1609 
1610 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1611 	req.bRequest = RAL_READ_MULTI_MAC;
1612 	USETW(req.wValue, 0);
1613 	USETW(req.wIndex, reg);
1614 	USETW(req.wLength, len);
1615 
1616 	error = usbd_do_request(sc->sc_udev, &req, buf);
1617 	if (error != 0) {
1618 		printf("%s: could not read MAC register: %s\n",
1619 		    device_xname(sc->sc_dev), usbd_errstr(error));
1620 	}
1621 }
1622 
1623 Static void
1624 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1625 {
1626 	usb_device_request_t req;
1627 	usbd_status error;
1628 
1629 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1630 	req.bRequest = RAL_WRITE_MAC;
1631 	USETW(req.wValue, val);
1632 	USETW(req.wIndex, reg);
1633 	USETW(req.wLength, 0);
1634 
1635 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1636 	if (error != 0) {
1637 		printf("%s: could not write MAC register: %s\n",
1638 		    device_xname(sc->sc_dev), usbd_errstr(error));
1639 	}
1640 }
1641 
1642 Static void
1643 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1644 {
1645 	usb_device_request_t req;
1646 	usbd_status error;
1647 
1648 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1649 	req.bRequest = RAL_WRITE_MULTI_MAC;
1650 	USETW(req.wValue, 0);
1651 	USETW(req.wIndex, reg);
1652 	USETW(req.wLength, len);
1653 
1654 	error = usbd_do_request(sc->sc_udev, &req, buf);
1655 	if (error != 0) {
1656 		printf("%s: could not write MAC register: %s\n",
1657 		    device_xname(sc->sc_dev), usbd_errstr(error));
1658 	}
1659 }
1660 
1661 Static void
1662 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1663 {
1664 	uint16_t tmp;
1665 	int ntries;
1666 
1667 	for (ntries = 0; ntries < 5; ntries++) {
1668 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1669 			break;
1670 	}
1671 	if (ntries == 5) {
1672 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1673 		return;
1674 	}
1675 
1676 	tmp = reg << 8 | val;
1677 	ural_write(sc, RAL_PHY_CSR7, tmp);
1678 }
1679 
1680 Static uint8_t
1681 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1682 {
1683 	uint16_t val;
1684 	int ntries;
1685 
1686 	val = RAL_BBP_WRITE | reg << 8;
1687 	ural_write(sc, RAL_PHY_CSR7, val);
1688 
1689 	for (ntries = 0; ntries < 5; ntries++) {
1690 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1691 			break;
1692 	}
1693 	if (ntries == 5) {
1694 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1695 		return 0;
1696 	}
1697 
1698 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1699 }
1700 
1701 Static void
1702 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1703 {
1704 	uint32_t tmp;
1705 	int ntries;
1706 
1707 	for (ntries = 0; ntries < 5; ntries++) {
1708 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1709 			break;
1710 	}
1711 	if (ntries == 5) {
1712 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1713 		return;
1714 	}
1715 
1716 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1717 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1718 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1719 
1720 	/* remember last written value in sc */
1721 	sc->rf_regs[reg] = val;
1722 
1723 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1724 }
1725 
1726 Static void
1727 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1728 {
1729 	struct ieee80211com *ic = &sc->sc_ic;
1730 	uint8_t power, tmp;
1731 	u_int i, chan;
1732 
1733 	chan = ieee80211_chan2ieee(ic, c);
1734 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1735 		return;
1736 
1737 	if (IEEE80211_IS_CHAN_2GHZ(c))
1738 		power = min(sc->txpow[chan - 1], 31);
1739 	else
1740 		power = 31;
1741 
1742 	/* adjust txpower using ifconfig settings */
1743 	power -= (100 - ic->ic_txpowlimit) / 8;
1744 
1745 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1746 
1747 	switch (sc->rf_rev) {
1748 	case RAL_RF_2522:
1749 		ural_rf_write(sc, RAL_RF1, 0x00814);
1750 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1751 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1752 		break;
1753 
1754 	case RAL_RF_2523:
1755 		ural_rf_write(sc, RAL_RF1, 0x08804);
1756 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1757 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1758 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1759 		break;
1760 
1761 	case RAL_RF_2524:
1762 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1763 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1764 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1765 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1766 		break;
1767 
1768 	case RAL_RF_2525:
1769 		ural_rf_write(sc, RAL_RF1, 0x08808);
1770 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1771 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1772 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1773 
1774 		ural_rf_write(sc, RAL_RF1, 0x08808);
1775 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1776 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1777 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1778 		break;
1779 
1780 	case RAL_RF_2525E:
1781 		ural_rf_write(sc, RAL_RF1, 0x08808);
1782 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1783 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1784 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1785 		break;
1786 
1787 	case RAL_RF_2526:
1788 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1789 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1790 		ural_rf_write(sc, RAL_RF1, 0x08804);
1791 
1792 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1793 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1794 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1795 		break;
1796 
1797 	/* dual-band RF */
1798 	case RAL_RF_5222:
1799 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1800 
1801 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1802 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1803 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1804 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1805 		break;
1806 	}
1807 
1808 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1809 	    ic->ic_state != IEEE80211_S_SCAN) {
1810 		/* set Japan filter bit for channel 14 */
1811 		tmp = ural_bbp_read(sc, 70);
1812 
1813 		tmp &= ~RAL_JAPAN_FILTER;
1814 		if (chan == 14)
1815 			tmp |= RAL_JAPAN_FILTER;
1816 
1817 		ural_bbp_write(sc, 70, tmp);
1818 
1819 		/* clear CRC errors */
1820 		ural_read(sc, RAL_STA_CSR0);
1821 
1822 		DELAY(10000);
1823 		ural_disable_rf_tune(sc);
1824 	}
1825 }
1826 
1827 /*
1828  * Disable RF auto-tuning.
1829  */
1830 Static void
1831 ural_disable_rf_tune(struct ural_softc *sc)
1832 {
1833 	uint32_t tmp;
1834 
1835 	if (sc->rf_rev != RAL_RF_2523) {
1836 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1837 		ural_rf_write(sc, RAL_RF1, tmp);
1838 	}
1839 
1840 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1841 	ural_rf_write(sc, RAL_RF3, tmp);
1842 
1843 	DPRINTFN(2, ("disabling RF autotune\n"));
1844 }
1845 
1846 /*
1847  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1848  * synchronization.
1849  */
1850 Static void
1851 ural_enable_tsf_sync(struct ural_softc *sc)
1852 {
1853 	struct ieee80211com *ic = &sc->sc_ic;
1854 	uint16_t logcwmin, preload, tmp;
1855 
1856 	/* first, disable TSF synchronization */
1857 	ural_write(sc, RAL_TXRX_CSR19, 0);
1858 
1859 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1860 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1861 
1862 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1863 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1864 	tmp = logcwmin << 12 | preload;
1865 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1866 
1867 	/* finally, enable TSF synchronization */
1868 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1869 	if (ic->ic_opmode == IEEE80211_M_STA)
1870 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1871 	else
1872 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1873 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1874 
1875 	DPRINTF(("enabling TSF synchronization\n"));
1876 }
1877 
1878 Static void
1879 ural_update_slot(struct ifnet *ifp)
1880 {
1881 	struct ural_softc *sc = ifp->if_softc;
1882 	struct ieee80211com *ic = &sc->sc_ic;
1883 	uint16_t slottime, sifs, eifs;
1884 
1885 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1886 
1887 	/*
1888 	 * These settings may sound a bit inconsistent but this is what the
1889 	 * reference driver does.
1890 	 */
1891 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1892 		sifs = 16 - RAL_RXTX_TURNAROUND;
1893 		eifs = 364;
1894 	} else {
1895 		sifs = 10 - RAL_RXTX_TURNAROUND;
1896 		eifs = 64;
1897 	}
1898 
1899 	ural_write(sc, RAL_MAC_CSR10, slottime);
1900 	ural_write(sc, RAL_MAC_CSR11, sifs);
1901 	ural_write(sc, RAL_MAC_CSR12, eifs);
1902 }
1903 
1904 Static void
1905 ural_set_txpreamble(struct ural_softc *sc)
1906 {
1907 	uint16_t tmp;
1908 
1909 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1910 
1911 	tmp &= ~RAL_SHORT_PREAMBLE;
1912 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1913 		tmp |= RAL_SHORT_PREAMBLE;
1914 
1915 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1916 }
1917 
1918 Static void
1919 ural_set_basicrates(struct ural_softc *sc)
1920 {
1921 	struct ieee80211com *ic = &sc->sc_ic;
1922 
1923 	/* update basic rate set */
1924 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1925 		/* 11b basic rates: 1, 2Mbps */
1926 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1927 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1928 		/* 11a basic rates: 6, 12, 24Mbps */
1929 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1930 	} else {
1931 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1932 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1933 	}
1934 }
1935 
1936 Static void
1937 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1938 {
1939 	uint16_t tmp;
1940 
1941 	tmp = bssid[0] | bssid[1] << 8;
1942 	ural_write(sc, RAL_MAC_CSR5, tmp);
1943 
1944 	tmp = bssid[2] | bssid[3] << 8;
1945 	ural_write(sc, RAL_MAC_CSR6, tmp);
1946 
1947 	tmp = bssid[4] | bssid[5] << 8;
1948 	ural_write(sc, RAL_MAC_CSR7, tmp);
1949 
1950 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1951 }
1952 
1953 Static void
1954 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1955 {
1956 	uint16_t tmp;
1957 
1958 	tmp = addr[0] | addr[1] << 8;
1959 	ural_write(sc, RAL_MAC_CSR2, tmp);
1960 
1961 	tmp = addr[2] | addr[3] << 8;
1962 	ural_write(sc, RAL_MAC_CSR3, tmp);
1963 
1964 	tmp = addr[4] | addr[5] << 8;
1965 	ural_write(sc, RAL_MAC_CSR4, tmp);
1966 
1967 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1968 }
1969 
1970 Static void
1971 ural_update_promisc(struct ural_softc *sc)
1972 {
1973 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1974 	uint32_t tmp;
1975 
1976 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1977 
1978 	tmp &= ~RAL_DROP_NOT_TO_ME;
1979 	if (!(ifp->if_flags & IFF_PROMISC))
1980 		tmp |= RAL_DROP_NOT_TO_ME;
1981 
1982 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1983 
1984 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1985 	    "entering" : "leaving"));
1986 }
1987 
1988 Static const char *
1989 ural_get_rf(int rev)
1990 {
1991 	switch (rev) {
1992 	case RAL_RF_2522:	return "RT2522";
1993 	case RAL_RF_2523:	return "RT2523";
1994 	case RAL_RF_2524:	return "RT2524";
1995 	case RAL_RF_2525:	return "RT2525";
1996 	case RAL_RF_2525E:	return "RT2525e";
1997 	case RAL_RF_2526:	return "RT2526";
1998 	case RAL_RF_5222:	return "RT5222";
1999 	default:		return "unknown";
2000 	}
2001 }
2002 
2003 Static void
2004 ural_read_eeprom(struct ural_softc *sc)
2005 {
2006 	struct ieee80211com *ic = &sc->sc_ic;
2007 	uint16_t val;
2008 
2009 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2010 	val = le16toh(val);
2011 	sc->rf_rev =   (val >> 11) & 0x7;
2012 	sc->hw_radio = (val >> 10) & 0x1;
2013 	sc->led_mode = (val >> 6)  & 0x7;
2014 	sc->rx_ant =   (val >> 4)  & 0x3;
2015 	sc->tx_ant =   (val >> 2)  & 0x3;
2016 	sc->nb_ant =   val & 0x3;
2017 
2018 	/* read MAC address */
2019 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2020 
2021 	/* read default values for BBP registers */
2022 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2023 
2024 	/* read Tx power for all b/g channels */
2025 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2026 }
2027 
2028 Static int
2029 ural_bbp_init(struct ural_softc *sc)
2030 {
2031 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2032 	int i, ntries;
2033 
2034 	/* wait for BBP to be ready */
2035 	for (ntries = 0; ntries < 100; ntries++) {
2036 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2037 			break;
2038 		DELAY(1000);
2039 	}
2040 	if (ntries == 100) {
2041 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2042 		return EIO;
2043 	}
2044 
2045 	/* initialize BBP registers to default values */
2046 	for (i = 0; i < N(ural_def_bbp); i++)
2047 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2048 
2049 #if 0
2050 	/* initialize BBP registers to values stored in EEPROM */
2051 	for (i = 0; i < 16; i++) {
2052 		if (sc->bbp_prom[i].reg == 0xff)
2053 			continue;
2054 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2055 	}
2056 #endif
2057 
2058 	return 0;
2059 #undef N
2060 }
2061 
2062 Static void
2063 ural_set_txantenna(struct ural_softc *sc, int antenna)
2064 {
2065 	uint16_t tmp;
2066 	uint8_t tx;
2067 
2068 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2069 	if (antenna == 1)
2070 		tx |= RAL_BBP_ANTA;
2071 	else if (antenna == 2)
2072 		tx |= RAL_BBP_ANTB;
2073 	else
2074 		tx |= RAL_BBP_DIVERSITY;
2075 
2076 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2077 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2078 	    sc->rf_rev == RAL_RF_5222)
2079 		tx |= RAL_BBP_FLIPIQ;
2080 
2081 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2082 
2083 	/* update values in PHY_CSR5 and PHY_CSR6 */
2084 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2085 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2086 
2087 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2088 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2089 }
2090 
2091 Static void
2092 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2093 {
2094 	uint8_t rx;
2095 
2096 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2097 	if (antenna == 1)
2098 		rx |= RAL_BBP_ANTA;
2099 	else if (antenna == 2)
2100 		rx |= RAL_BBP_ANTB;
2101 	else
2102 		rx |= RAL_BBP_DIVERSITY;
2103 
2104 	/* need to force no I/Q flip for RF 2525e and 2526 */
2105 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2106 		rx &= ~RAL_BBP_FLIPIQ;
2107 
2108 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2109 }
2110 
2111 Static int
2112 ural_init(struct ifnet *ifp)
2113 {
2114 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2115 	struct ural_softc *sc = ifp->if_softc;
2116 	struct ieee80211com *ic = &sc->sc_ic;
2117 	struct ieee80211_key *wk;
2118 	struct ural_rx_data *data;
2119 	uint16_t tmp;
2120 	usbd_status error;
2121 	int i, ntries;
2122 
2123 	ural_set_testmode(sc);
2124 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2125 
2126 	ural_stop(ifp, 0);
2127 
2128 	/* initialize MAC registers to default values */
2129 	for (i = 0; i < N(ural_def_mac); i++)
2130 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2131 
2132 	/* wait for BBP and RF to wake up (this can take a long time!) */
2133 	for (ntries = 0; ntries < 100; ntries++) {
2134 		tmp = ural_read(sc, RAL_MAC_CSR17);
2135 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2136 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2137 			break;
2138 		DELAY(1000);
2139 	}
2140 	if (ntries == 100) {
2141 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2142 		    device_xname(sc->sc_dev));
2143 		error = EIO;
2144 		goto fail;
2145 	}
2146 
2147 	/* we're ready! */
2148 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2149 
2150 	/* set basic rate set (will be updated later) */
2151 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2152 
2153 	error = ural_bbp_init(sc);
2154 	if (error != 0)
2155 		goto fail;
2156 
2157 	/* set default BSS channel */
2158 	ural_set_chan(sc, ic->ic_curchan);
2159 
2160 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2161 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2162 
2163 	ural_set_txantenna(sc, sc->tx_ant);
2164 	ural_set_rxantenna(sc, sc->rx_ant);
2165 
2166 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2167 	ural_set_macaddr(sc, ic->ic_myaddr);
2168 
2169 	/*
2170 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2171 	 */
2172 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2173 		wk = &ic->ic_crypto.cs_nw_keys[i];
2174 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2175 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2176 	}
2177 
2178 	/*
2179 	 * Allocate xfer for AMRR statistics requests.
2180 	 */
2181 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2182 	if (sc->amrr_xfer == NULL) {
2183 		printf("%s: could not allocate AMRR xfer\n",
2184 		    device_xname(sc->sc_dev));
2185 		goto fail;
2186 	}
2187 
2188 	/*
2189 	 * Open Tx and Rx USB bulk pipes.
2190 	 */
2191 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2192 	    &sc->sc_tx_pipeh);
2193 	if (error != 0) {
2194 		printf("%s: could not open Tx pipe: %s\n",
2195 		    device_xname(sc->sc_dev), usbd_errstr(error));
2196 		goto fail;
2197 	}
2198 
2199 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2200 	    &sc->sc_rx_pipeh);
2201 	if (error != 0) {
2202 		printf("%s: could not open Rx pipe: %s\n",
2203 		    device_xname(sc->sc_dev), usbd_errstr(error));
2204 		goto fail;
2205 	}
2206 
2207 	/*
2208 	 * Allocate Tx and Rx xfer queues.
2209 	 */
2210 	error = ural_alloc_tx_list(sc);
2211 	if (error != 0) {
2212 		printf("%s: could not allocate Tx list\n",
2213 		    device_xname(sc->sc_dev));
2214 		goto fail;
2215 	}
2216 
2217 	error = ural_alloc_rx_list(sc);
2218 	if (error != 0) {
2219 		printf("%s: could not allocate Rx list\n",
2220 		    device_xname(sc->sc_dev));
2221 		goto fail;
2222 	}
2223 
2224 	/*
2225 	 * Start up the receive pipe.
2226 	 */
2227 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2228 		data = &sc->rx_data[i];
2229 
2230 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2231 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2232 		usbd_transfer(data->xfer);
2233 	}
2234 
2235 	/* kick Rx */
2236 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2237 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2238 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2239 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2240 			tmp |= RAL_DROP_TODS;
2241 		if (!(ifp->if_flags & IFF_PROMISC))
2242 			tmp |= RAL_DROP_NOT_TO_ME;
2243 	}
2244 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2245 
2246 	ifp->if_flags &= ~IFF_OACTIVE;
2247 	ifp->if_flags |= IFF_RUNNING;
2248 
2249 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2250 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2251 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2252 	} else
2253 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2254 
2255 	return 0;
2256 
2257 fail:	ural_stop(ifp, 1);
2258 	return error;
2259 #undef N
2260 }
2261 
2262 Static void
2263 ural_stop(struct ifnet *ifp, int disable)
2264 {
2265 	struct ural_softc *sc = ifp->if_softc;
2266 	struct ieee80211com *ic = &sc->sc_ic;
2267 
2268 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2269 
2270 	sc->sc_tx_timer = 0;
2271 	ifp->if_timer = 0;
2272 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2273 
2274 	/* disable Rx */
2275 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2276 
2277 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2278 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2279 	ural_write(sc, RAL_MAC_CSR1, 0);
2280 
2281 	if (sc->amrr_xfer != NULL) {
2282 		usbd_free_xfer(sc->amrr_xfer);
2283 		sc->amrr_xfer = NULL;
2284 	}
2285 
2286 	if (sc->sc_rx_pipeh != NULL) {
2287 		usbd_abort_pipe(sc->sc_rx_pipeh);
2288 		usbd_close_pipe(sc->sc_rx_pipeh);
2289 		sc->sc_rx_pipeh = NULL;
2290 	}
2291 
2292 	if (sc->sc_tx_pipeh != NULL) {
2293 		usbd_abort_pipe(sc->sc_tx_pipeh);
2294 		usbd_close_pipe(sc->sc_tx_pipeh);
2295 		sc->sc_tx_pipeh = NULL;
2296 	}
2297 
2298 	ural_free_rx_list(sc);
2299 	ural_free_tx_list(sc);
2300 }
2301 
2302 int
2303 ural_activate(device_t self, enum devact act)
2304 {
2305 	struct ural_softc *sc = device_private(self);
2306 
2307 	switch (act) {
2308 	case DVACT_DEACTIVATE:
2309 		if_deactivate(&sc->sc_if);
2310 		return 0;
2311 	default:
2312 		return EOPNOTSUPP;
2313 	}
2314 }
2315 
2316 Static void
2317 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2318 {
2319 	int i;
2320 
2321 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2322 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2323 
2324 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2325 
2326 	/* set rate to some reasonable initial value */
2327 	for (i = ni->ni_rates.rs_nrates - 1;
2328 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2329 	     i--);
2330 	ni->ni_txrate = i;
2331 
2332 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2333 }
2334 
2335 Static void
2336 ural_amrr_timeout(void *arg)
2337 {
2338 	struct ural_softc *sc = (struct ural_softc *)arg;
2339 	usb_device_request_t req;
2340 	int s;
2341 
2342 	s = splusb();
2343 
2344 	/*
2345 	 * Asynchronously read statistic registers (cleared by read).
2346 	 */
2347 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2348 	req.bRequest = RAL_READ_MULTI_MAC;
2349 	USETW(req.wValue, 0);
2350 	USETW(req.wIndex, RAL_STA_CSR0);
2351 	USETW(req.wLength, sizeof sc->sta);
2352 
2353 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2354 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2355 	    ural_amrr_update);
2356 	(void)usbd_transfer(sc->amrr_xfer);
2357 
2358 	splx(s);
2359 }
2360 
2361 Static void
2362 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2363     usbd_status status)
2364 {
2365 	struct ural_softc *sc = (struct ural_softc *)priv;
2366 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2367 
2368 	if (status != USBD_NORMAL_COMPLETION) {
2369 		printf("%s: could not retrieve Tx statistics - "
2370 		    "cancelling automatic rate control\n",
2371 		    device_xname(sc->sc_dev));
2372 		return;
2373 	}
2374 
2375 	/* count TX retry-fail as Tx errors */
2376 	ifp->if_oerrors += sc->sta[9];
2377 
2378 	sc->amn.amn_retrycnt =
2379 	    sc->sta[7] +	/* TX one-retry ok count */
2380 	    sc->sta[8] +	/* TX more-retry ok count */
2381 	    sc->sta[9];		/* TX retry-fail count */
2382 
2383 	sc->amn.amn_txcnt =
2384 	    sc->amn.amn_retrycnt +
2385 	    sc->sta[6];		/* TX no-retry ok count */
2386 
2387 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2388 
2389 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2390 }
2391