xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_ural.c,v 1.26 2007/10/21 17:03:37 degroote Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.26 2007/10/21 17:03:37 degroote Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73 
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77 
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
92 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
96 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
97 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
98 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
100 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
101 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
102 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
103 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
104 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
105 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
106 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
107 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
108 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
109 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
110 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
111 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
112 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
113 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
114 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
115 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
116 };
117 
118 Static int		ural_alloc_tx_list(struct ural_softc *);
119 Static void		ural_free_tx_list(struct ural_softc *);
120 Static int		ural_alloc_rx_list(struct ural_softc *);
121 Static void		ural_free_rx_list(struct ural_softc *);
122 Static int		ural_media_change(struct ifnet *);
123 Static void		ural_next_scan(void *);
124 Static void		ural_task(void *);
125 Static int		ural_newstate(struct ieee80211com *,
126 			    enum ieee80211_state, int);
127 Static int		ural_rxrate(struct ural_rx_desc *);
128 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
129 			    usbd_status);
130 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131 			    usbd_status);
132 Static int		ural_ack_rate(struct ieee80211com *, int);
133 Static uint16_t		ural_txtime(int, int, uint32_t);
134 Static uint8_t		ural_plcp_signal(int);
135 Static void		ural_setup_tx_desc(struct ural_softc *,
136 			    struct ural_tx_desc *, uint32_t, int, int);
137 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
138 			    struct ieee80211_node *);
139 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
140 			    struct ieee80211_node *);
141 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
142 			    struct ieee80211_node *);
143 Static void		ural_start(struct ifnet *);
144 Static void		ural_watchdog(struct ifnet *);
145 Static int		ural_reset(struct ifnet *);
146 Static int		ural_ioctl(struct ifnet *, u_long, void *);
147 Static void		ural_set_testmode(struct ural_softc *);
148 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
151 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
152 			    int);
153 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
154 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
155 			    int);
156 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
158 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 Static void		ural_set_chan(struct ural_softc *,
160 			    struct ieee80211_channel *);
161 Static void		ural_disable_rf_tune(struct ural_softc *);
162 Static void		ural_enable_tsf_sync(struct ural_softc *);
163 Static void		ural_update_slot(struct ifnet *);
164 Static void		ural_set_txpreamble(struct ural_softc *);
165 Static void		ural_set_basicrates(struct ural_softc *);
166 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
167 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
168 Static void		ural_update_promisc(struct ural_softc *);
169 Static const char	*ural_get_rf(int);
170 Static void		ural_read_eeprom(struct ural_softc *);
171 Static int		ural_bbp_init(struct ural_softc *);
172 Static void		ural_set_txantenna(struct ural_softc *, int);
173 Static void		ural_set_rxantenna(struct ural_softc *, int);
174 Static int		ural_init(struct ifnet *);
175 Static void		ural_stop(struct ifnet *, int);
176 Static void		ural_amrr_start(struct ural_softc *,
177 			    struct ieee80211_node *);
178 Static void		ural_amrr_timeout(void *);
179 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
180 			    usbd_status status);
181 
182 /*
183  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184  */
185 static const struct ieee80211_rateset ural_rateset_11a =
186 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187 
188 static const struct ieee80211_rateset ural_rateset_11b =
189 	{ 4, { 2, 4, 11, 22 } };
190 
191 static const struct ieee80211_rateset ural_rateset_11g =
192 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193 
194 /*
195  * Default values for MAC registers; values taken from the reference driver.
196  */
197 static const struct {
198 	uint16_t	reg;
199 	uint16_t	val;
200 } ural_def_mac[] = {
201 	{ RAL_TXRX_CSR5,  0x8c8d },
202 	{ RAL_TXRX_CSR6,  0x8b8a },
203 	{ RAL_TXRX_CSR7,  0x8687 },
204 	{ RAL_TXRX_CSR8,  0x0085 },
205 	{ RAL_MAC_CSR13,  0x1111 },
206 	{ RAL_MAC_CSR14,  0x1e11 },
207 	{ RAL_TXRX_CSR21, 0xe78f },
208 	{ RAL_MAC_CSR9,   0xff1d },
209 	{ RAL_MAC_CSR11,  0x0002 },
210 	{ RAL_MAC_CSR22,  0x0053 },
211 	{ RAL_MAC_CSR15,  0x0000 },
212 	{ RAL_MAC_CSR8,   0x0780 },
213 	{ RAL_TXRX_CSR19, 0x0000 },
214 	{ RAL_TXRX_CSR18, 0x005a },
215 	{ RAL_PHY_CSR2,   0x0000 },
216 	{ RAL_TXRX_CSR0,  0x1ec0 },
217 	{ RAL_PHY_CSR4,   0x000f }
218 };
219 
220 /*
221  * Default values for BBP registers; values taken from the reference driver.
222  */
223 static const struct {
224 	uint8_t	reg;
225 	uint8_t	val;
226 } ural_def_bbp[] = {
227 	{  3, 0x02 },
228 	{  4, 0x19 },
229 	{ 14, 0x1c },
230 	{ 15, 0x30 },
231 	{ 16, 0xac },
232 	{ 17, 0x48 },
233 	{ 18, 0x18 },
234 	{ 19, 0xff },
235 	{ 20, 0x1e },
236 	{ 21, 0x08 },
237 	{ 22, 0x08 },
238 	{ 23, 0x08 },
239 	{ 24, 0x80 },
240 	{ 25, 0x50 },
241 	{ 26, 0x08 },
242 	{ 27, 0x23 },
243 	{ 30, 0x10 },
244 	{ 31, 0x2b },
245 	{ 32, 0xb9 },
246 	{ 34, 0x12 },
247 	{ 35, 0x50 },
248 	{ 39, 0xc4 },
249 	{ 40, 0x02 },
250 	{ 41, 0x60 },
251 	{ 53, 0x10 },
252 	{ 54, 0x18 },
253 	{ 56, 0x08 },
254 	{ 57, 0x10 },
255 	{ 58, 0x08 },
256 	{ 61, 0x60 },
257 	{ 62, 0x10 },
258 	{ 75, 0xff }
259 };
260 
261 /*
262  * Default values for RF register R2 indexed by channel numbers.
263  */
264 static const uint32_t ural_rf2522_r2[] = {
265 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
266 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
267 };
268 
269 static const uint32_t ural_rf2523_r2[] = {
270 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
271 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
272 };
273 
274 static const uint32_t ural_rf2524_r2[] = {
275 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278 
279 static const uint32_t ural_rf2525_r2[] = {
280 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
281 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
282 };
283 
284 static const uint32_t ural_rf2525_hi_r2[] = {
285 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
286 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
287 };
288 
289 static const uint32_t ural_rf2525e_r2[] = {
290 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
291 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
292 };
293 
294 static const uint32_t ural_rf2526_hi_r2[] = {
295 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
296 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
297 };
298 
299 static const uint32_t ural_rf2526_r2[] = {
300 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
301 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
302 };
303 
304 /*
305  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
306  * values taken from the reference driver.
307  */
308 static const struct {
309 	uint8_t		chan;
310 	uint32_t	r1;
311 	uint32_t	r2;
312 	uint32_t	r4;
313 } ural_rf5222[] = {
314 	{   1, 0x08808, 0x0044d, 0x00282 },
315 	{   2, 0x08808, 0x0044e, 0x00282 },
316 	{   3, 0x08808, 0x0044f, 0x00282 },
317 	{   4, 0x08808, 0x00460, 0x00282 },
318 	{   5, 0x08808, 0x00461, 0x00282 },
319 	{   6, 0x08808, 0x00462, 0x00282 },
320 	{   7, 0x08808, 0x00463, 0x00282 },
321 	{   8, 0x08808, 0x00464, 0x00282 },
322 	{   9, 0x08808, 0x00465, 0x00282 },
323 	{  10, 0x08808, 0x00466, 0x00282 },
324 	{  11, 0x08808, 0x00467, 0x00282 },
325 	{  12, 0x08808, 0x00468, 0x00282 },
326 	{  13, 0x08808, 0x00469, 0x00282 },
327 	{  14, 0x08808, 0x0046b, 0x00286 },
328 
329 	{  36, 0x08804, 0x06225, 0x00287 },
330 	{  40, 0x08804, 0x06226, 0x00287 },
331 	{  44, 0x08804, 0x06227, 0x00287 },
332 	{  48, 0x08804, 0x06228, 0x00287 },
333 	{  52, 0x08804, 0x06229, 0x00287 },
334 	{  56, 0x08804, 0x0622a, 0x00287 },
335 	{  60, 0x08804, 0x0622b, 0x00287 },
336 	{  64, 0x08804, 0x0622c, 0x00287 },
337 
338 	{ 100, 0x08804, 0x02200, 0x00283 },
339 	{ 104, 0x08804, 0x02201, 0x00283 },
340 	{ 108, 0x08804, 0x02202, 0x00283 },
341 	{ 112, 0x08804, 0x02203, 0x00283 },
342 	{ 116, 0x08804, 0x02204, 0x00283 },
343 	{ 120, 0x08804, 0x02205, 0x00283 },
344 	{ 124, 0x08804, 0x02206, 0x00283 },
345 	{ 128, 0x08804, 0x02207, 0x00283 },
346 	{ 132, 0x08804, 0x02208, 0x00283 },
347 	{ 136, 0x08804, 0x02209, 0x00283 },
348 	{ 140, 0x08804, 0x0220a, 0x00283 },
349 
350 	{ 149, 0x08808, 0x02429, 0x00281 },
351 	{ 153, 0x08808, 0x0242b, 0x00281 },
352 	{ 157, 0x08808, 0x0242d, 0x00281 },
353 	{ 161, 0x08808, 0x0242f, 0x00281 }
354 };
355 
356 USB_DECLARE_DRIVER(ural);
357 
358 USB_MATCH(ural)
359 {
360 	USB_MATCH_START(ural, uaa);
361 
362 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365 
366 USB_ATTACH(ural)
367 {
368 	USB_ATTACH_START(ural, sc, uaa);
369 	struct ieee80211com *ic = &sc->sc_ic;
370 	struct ifnet *ifp = &sc->sc_if;
371 	usb_interface_descriptor_t *id;
372 	usb_endpoint_descriptor_t *ed;
373 	usbd_status error;
374 	char *devinfop;
375 	int i;
376 
377 	sc->sc_udev = uaa->device;
378 
379 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
380 	USB_ATTACH_SETUP;
381 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
382 	usbd_devinfo_free(devinfop);
383 
384 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 		printf("%s: could not set configuration no\n",
386 		    USBDEVNAME(sc->sc_dev));
387 		USB_ATTACH_ERROR_RETURN;
388 	}
389 
390 	/* get the first interface handle */
391 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 	    &sc->sc_iface);
393 	if (error != 0) {
394 		printf("%s: could not get interface handle\n",
395 		    USBDEVNAME(sc->sc_dev));
396 		USB_ATTACH_ERROR_RETURN;
397 	}
398 
399 	/*
400 	 * Find endpoints.
401 	 */
402 	id = usbd_get_interface_descriptor(sc->sc_iface);
403 
404 	sc->sc_rx_no = sc->sc_tx_no = -1;
405 	for (i = 0; i < id->bNumEndpoints; i++) {
406 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
407 		if (ed == NULL) {
408 			printf("%s: no endpoint descriptor for %d\n",
409 			    USBDEVNAME(sc->sc_dev), i);
410 			USB_ATTACH_ERROR_RETURN;
411 		}
412 
413 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
414 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
415 			sc->sc_rx_no = ed->bEndpointAddress;
416 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
417 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
418 			sc->sc_tx_no = ed->bEndpointAddress;
419 	}
420 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
421 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
422 		USB_ATTACH_ERROR_RETURN;
423 	}
424 
425 	usb_init_task(&sc->sc_task, ural_task, sc);
426 	usb_callout_init(sc->sc_scan_ch);
427 	sc->amrr.amrr_min_success_threshold = 1;
428 	sc->amrr.amrr_min_success_threshold = 15;
429 	usb_callout_init(sc->sc_amrr_ch);
430 
431 	/* retrieve RT2570 rev. no */
432 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
433 
434 	/* retrieve MAC address and various other things from EEPROM */
435 	ural_read_eeprom(sc);
436 
437 	printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
438 	    USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
439 
440 	ifp->if_softc = sc;
441 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
442 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443 	ifp->if_init = ural_init;
444 	ifp->if_ioctl = ural_ioctl;
445 	ifp->if_start = ural_start;
446 	ifp->if_watchdog = ural_watchdog;
447 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
448 	IFQ_SET_READY(&ifp->if_snd);
449 
450 	ic->ic_ifp = ifp;
451 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
452 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
453 	ic->ic_state = IEEE80211_S_INIT;
454 
455 	/* set device capabilities */
456 	ic->ic_caps =
457 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
458 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
459 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
460 	    IEEE80211_C_TXPMGT |	/* tx power management */
461 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
462 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
463 	    IEEE80211_C_WPA;		/* 802.11i */
464 
465 	if (sc->rf_rev == RAL_RF_5222) {
466 		/* set supported .11a rates */
467 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
468 
469 		/* set supported .11a channels */
470 		for (i = 36; i <= 64; i += 4) {
471 			ic->ic_channels[i].ic_freq =
472 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 		}
475 		for (i = 100; i <= 140; i += 4) {
476 			ic->ic_channels[i].ic_freq =
477 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 		}
480 		for (i = 149; i <= 161; i += 4) {
481 			ic->ic_channels[i].ic_freq =
482 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
483 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
484 		}
485 	}
486 
487 	/* set supported .11b and .11g rates */
488 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
489 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
490 
491 	/* set supported .11b and .11g channels (1 through 14) */
492 	for (i = 1; i <= 14; i++) {
493 		ic->ic_channels[i].ic_freq =
494 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
495 		ic->ic_channels[i].ic_flags =
496 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
497 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
498 	}
499 
500 	if_attach(ifp);
501 	ieee80211_ifattach(ic);
502 	ic->ic_reset = ural_reset;
503 
504 	/* override state transition machine */
505 	sc->sc_newstate = ic->ic_newstate;
506 	ic->ic_newstate = ural_newstate;
507 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
508 
509 #if NBPFILTER > 0
510 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
511 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512 
513 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
514 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516 
517 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
518 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520 #endif
521 
522 	ieee80211_announce(ic);
523 
524 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
525 	    USBDEV(sc->sc_dev));
526 
527 	USB_ATTACH_SUCCESS_RETURN;
528 }
529 
530 USB_DETACH(ural)
531 {
532 	USB_DETACH_START(ural, sc);
533 	struct ieee80211com *ic = &sc->sc_ic;
534 	struct ifnet *ifp = &sc->sc_if;
535 	int s;
536 
537 	s = splusb();
538 
539 	ural_stop(ifp, 1);
540 	usb_rem_task(sc->sc_udev, &sc->sc_task);
541 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
542 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
543 
544 	if (sc->amrr_xfer != NULL) {
545 		usbd_free_xfer(sc->amrr_xfer);
546 		sc->amrr_xfer = NULL;
547 	}
548 
549 	if (sc->sc_rx_pipeh != NULL) {
550 		usbd_abort_pipe(sc->sc_rx_pipeh);
551 		usbd_close_pipe(sc->sc_rx_pipeh);
552 	}
553 
554 	if (sc->sc_tx_pipeh != NULL) {
555 		usbd_abort_pipe(sc->sc_tx_pipeh);
556 		usbd_close_pipe(sc->sc_tx_pipeh);
557 	}
558 
559 #if NBPFILTER > 0
560 	bpfdetach(ifp);
561 #endif
562 	ieee80211_ifdetach(ic);
563 	if_detach(ifp);
564 
565 	splx(s);
566 
567 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
568 	    USBDEV(sc->sc_dev));
569 
570 	return 0;
571 }
572 
573 Static int
574 ural_alloc_tx_list(struct ural_softc *sc)
575 {
576 	struct ural_tx_data *data;
577 	int i, error;
578 
579 	sc->tx_queued = 0;
580 
581 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
582 		data = &sc->tx_data[i];
583 
584 		data->sc = sc;
585 
586 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
587 		if (data->xfer == NULL) {
588 			printf("%s: could not allocate tx xfer\n",
589 			    USBDEVNAME(sc->sc_dev));
590 			error = ENOMEM;
591 			goto fail;
592 		}
593 
594 		data->buf = usbd_alloc_buffer(data->xfer,
595 		    RAL_TX_DESC_SIZE + MCLBYTES);
596 		if (data->buf == NULL) {
597 			printf("%s: could not allocate tx buffer\n",
598 			    USBDEVNAME(sc->sc_dev));
599 			error = ENOMEM;
600 			goto fail;
601 		}
602 	}
603 
604 	return 0;
605 
606 fail:	ural_free_tx_list(sc);
607 	return error;
608 }
609 
610 Static void
611 ural_free_tx_list(struct ural_softc *sc)
612 {
613 	struct ural_tx_data *data;
614 	int i;
615 
616 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
617 		data = &sc->tx_data[i];
618 
619 		if (data->xfer != NULL) {
620 			usbd_free_xfer(data->xfer);
621 			data->xfer = NULL;
622 		}
623 
624 		if (data->ni != NULL) {
625 			ieee80211_free_node(data->ni);
626 			data->ni = NULL;
627 		}
628 	}
629 }
630 
631 Static int
632 ural_alloc_rx_list(struct ural_softc *sc)
633 {
634 	struct ural_rx_data *data;
635 	int i, error;
636 
637 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
638 		data = &sc->rx_data[i];
639 
640 		data->sc = sc;
641 
642 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
643 		if (data->xfer == NULL) {
644 			printf("%s: could not allocate rx xfer\n",
645 			    USBDEVNAME(sc->sc_dev));
646 			error = ENOMEM;
647 			goto fail;
648 		}
649 
650 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
651 			printf("%s: could not allocate rx buffer\n",
652 			    USBDEVNAME(sc->sc_dev));
653 			error = ENOMEM;
654 			goto fail;
655 		}
656 
657 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
658 		if (data->m == NULL) {
659 			printf("%s: could not allocate rx mbuf\n",
660 			    USBDEVNAME(sc->sc_dev));
661 			error = ENOMEM;
662 			goto fail;
663 		}
664 
665 		MCLGET(data->m, M_DONTWAIT);
666 		if (!(data->m->m_flags & M_EXT)) {
667 			printf("%s: could not allocate rx mbuf cluster\n",
668 			    USBDEVNAME(sc->sc_dev));
669 			error = ENOMEM;
670 			goto fail;
671 		}
672 
673 		data->buf = mtod(data->m, uint8_t *);
674 	}
675 
676 	return 0;
677 
678 fail:	ural_free_tx_list(sc);
679 	return error;
680 }
681 
682 Static void
683 ural_free_rx_list(struct ural_softc *sc)
684 {
685 	struct ural_rx_data *data;
686 	int i;
687 
688 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
689 		data = &sc->rx_data[i];
690 
691 		if (data->xfer != NULL) {
692 			usbd_free_xfer(data->xfer);
693 			data->xfer = NULL;
694 		}
695 
696 		if (data->m != NULL) {
697 			m_freem(data->m);
698 			data->m = NULL;
699 		}
700 	}
701 }
702 
703 Static int
704 ural_media_change(struct ifnet *ifp)
705 {
706 	int error;
707 
708 	error = ieee80211_media_change(ifp);
709 	if (error != ENETRESET)
710 		return error;
711 
712 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
713 		ural_init(ifp);
714 
715 	return 0;
716 }
717 
718 /*
719  * This function is called periodically (every 200ms) during scanning to
720  * switch from one channel to another.
721  */
722 Static void
723 ural_next_scan(void *arg)
724 {
725 	struct ural_softc *sc = arg;
726 	struct ieee80211com *ic = &sc->sc_ic;
727 
728 	if (ic->ic_state == IEEE80211_S_SCAN)
729 		ieee80211_next_scan(ic);
730 }
731 
732 Static void
733 ural_task(void *arg)
734 {
735 	struct ural_softc *sc = arg;
736 	struct ieee80211com *ic = &sc->sc_ic;
737 	enum ieee80211_state ostate;
738 	struct ieee80211_node *ni;
739 	struct mbuf *m;
740 
741 	ostate = ic->ic_state;
742 
743 	switch (sc->sc_state) {
744 	case IEEE80211_S_INIT:
745 		if (ostate == IEEE80211_S_RUN) {
746 			/* abort TSF synchronization */
747 			ural_write(sc, RAL_TXRX_CSR19, 0);
748 
749 			/* force tx led to stop blinking */
750 			ural_write(sc, RAL_MAC_CSR20, 0);
751 		}
752 		break;
753 
754 	case IEEE80211_S_SCAN:
755 		ural_set_chan(sc, ic->ic_curchan);
756 		usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
757 		break;
758 
759 	case IEEE80211_S_AUTH:
760 		ural_set_chan(sc, ic->ic_curchan);
761 		break;
762 
763 	case IEEE80211_S_ASSOC:
764 		ural_set_chan(sc, ic->ic_curchan);
765 		break;
766 
767 	case IEEE80211_S_RUN:
768 		ural_set_chan(sc, ic->ic_curchan);
769 
770 		ni = ic->ic_bss;
771 
772 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
773 			ural_update_slot(ic->ic_ifp);
774 			ural_set_txpreamble(sc);
775 			ural_set_basicrates(sc);
776 			ural_set_bssid(sc, ni->ni_bssid);
777 		}
778 
779 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
780 		    ic->ic_opmode == IEEE80211_M_IBSS) {
781 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
782 			if (m == NULL) {
783 				printf("%s: could not allocate beacon\n",
784 				    USBDEVNAME(sc->sc_dev));
785 				return;
786 			}
787 
788 			if (ural_tx_bcn(sc, m, ni) != 0) {
789 				m_freem(m);
790 				printf("%s: could not send beacon\n",
791 				    USBDEVNAME(sc->sc_dev));
792 				return;
793 			}
794 
795 			/* beacon is no longer needed */
796 			m_freem(m);
797 		}
798 
799 		/* make tx led blink on tx (controlled by ASIC) */
800 		ural_write(sc, RAL_MAC_CSR20, 1);
801 
802 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
803 			ural_enable_tsf_sync(sc);
804 
805 		/* enable automatic rate adaptation in STA mode */
806 		if (ic->ic_opmode == IEEE80211_M_STA &&
807 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
808 			ural_amrr_start(sc, ni);
809 
810 		break;
811 	}
812 
813 	sc->sc_newstate(ic, sc->sc_state, -1);
814 }
815 
816 Static int
817 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
818     int arg)
819 {
820 	struct ural_softc *sc = ic->ic_ifp->if_softc;
821 
822 	usb_rem_task(sc->sc_udev, &sc->sc_task);
823 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
824 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
825 
826 	/* do it in a process context */
827 	sc->sc_state = nstate;
828 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
829 
830 	return 0;
831 }
832 
833 /* quickly determine if a given rate is CCK or OFDM */
834 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
835 
836 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
837 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
838 
839 #define RAL_SIFS		10	/* us */
840 
841 #define RAL_RXTX_TURNAROUND	5	/* us */
842 
843 /*
844  * This function is only used by the Rx radiotap code.
845  */
846 Static int
847 ural_rxrate(struct ural_rx_desc *desc)
848 {
849 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
850 		/* reverse function of ural_plcp_signal */
851 		switch (desc->rate) {
852 		case 0xb:	return 12;
853 		case 0xf:	return 18;
854 		case 0xa:	return 24;
855 		case 0xe:	return 36;
856 		case 0x9:	return 48;
857 		case 0xd:	return 72;
858 		case 0x8:	return 96;
859 		case 0xc:	return 108;
860 		}
861 	} else {
862 		if (desc->rate == 10)
863 			return 2;
864 		if (desc->rate == 20)
865 			return 4;
866 		if (desc->rate == 55)
867 			return 11;
868 		if (desc->rate == 110)
869 			return 22;
870 	}
871 	return 2;	/* should not get there */
872 }
873 
874 Static void
875 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
876     usbd_status status)
877 {
878 	struct ural_tx_data *data = priv;
879 	struct ural_softc *sc = data->sc;
880 	struct ifnet *ifp = &sc->sc_if;
881 	int s;
882 
883 	if (status != USBD_NORMAL_COMPLETION) {
884 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
885 			return;
886 
887 		printf("%s: could not transmit buffer: %s\n",
888 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
889 
890 		if (status == USBD_STALLED)
891 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
892 
893 		ifp->if_oerrors++;
894 		return;
895 	}
896 
897 	s = splnet();
898 
899 	m_freem(data->m);
900 	data->m = NULL;
901 	ieee80211_free_node(data->ni);
902 	data->ni = NULL;
903 
904 	sc->tx_queued--;
905 	ifp->if_opackets++;
906 
907 	DPRINTFN(10, ("tx done\n"));
908 
909 	sc->sc_tx_timer = 0;
910 	ifp->if_flags &= ~IFF_OACTIVE;
911 	ural_start(ifp);
912 
913 	splx(s);
914 }
915 
916 Static void
917 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
918 {
919 	struct ural_rx_data *data = priv;
920 	struct ural_softc *sc = data->sc;
921 	struct ieee80211com *ic = &sc->sc_ic;
922 	struct ifnet *ifp = &sc->sc_if;
923 	struct ural_rx_desc *desc;
924 	struct ieee80211_frame *wh;
925 	struct ieee80211_node *ni;
926 	struct mbuf *mnew, *m;
927 	int s, len;
928 
929 	if (status != USBD_NORMAL_COMPLETION) {
930 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
931 			return;
932 
933 		if (status == USBD_STALLED)
934 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
935 		goto skip;
936 	}
937 
938 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
939 
940 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
941 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
942 		    len));
943 		ifp->if_ierrors++;
944 		goto skip;
945 	}
946 
947 	/* rx descriptor is located at the end */
948 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
949 
950 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
951 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
952 		/*
953 		 * This should not happen since we did not request to receive
954 		 * those frames when we filled RAL_TXRX_CSR2.
955 		 */
956 		DPRINTFN(5, ("PHY or CRC error\n"));
957 		ifp->if_ierrors++;
958 		goto skip;
959 	}
960 
961 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
962 	if (mnew == NULL) {
963 		ifp->if_ierrors++;
964 		goto skip;
965 	}
966 
967 	MCLGET(mnew, M_DONTWAIT);
968 	if (!(mnew->m_flags & M_EXT)) {
969 		ifp->if_ierrors++;
970 		m_freem(mnew);
971 		goto skip;
972 	}
973 
974 	m = data->m;
975 	data->m = mnew;
976 	data->buf = mtod(data->m, uint8_t *);
977 
978 	/* finalize mbuf */
979 	m->m_pkthdr.rcvif = ifp;
980 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
981 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
982 
983 	s = splnet();
984 
985 #if NBPFILTER > 0
986 	if (sc->sc_drvbpf != NULL) {
987 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
988 
989 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
990 		tap->wr_rate = ural_rxrate(desc);
991 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
992 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
993 		tap->wr_antenna = sc->rx_ant;
994 		tap->wr_antsignal = desc->rssi;
995 
996 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
997 	}
998 #endif
999 
1000 	wh = mtod(m, struct ieee80211_frame *);
1001 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1002 
1003 	/* send the frame to the 802.11 layer */
1004 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1005 
1006 	/* node is no longer needed */
1007 	ieee80211_free_node(ni);
1008 
1009 	splx(s);
1010 
1011 	DPRINTFN(15, ("rx done\n"));
1012 
1013 skip:	/* setup a new transfer */
1014 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1015 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1016 	usbd_transfer(xfer);
1017 }
1018 
1019 /*
1020  * Return the expected ack rate for a frame transmitted at rate `rate'.
1021  * XXX: this should depend on the destination node basic rate set.
1022  */
1023 Static int
1024 ural_ack_rate(struct ieee80211com *ic, int rate)
1025 {
1026 	switch (rate) {
1027 	/* CCK rates */
1028 	case 2:
1029 		return 2;
1030 	case 4:
1031 	case 11:
1032 	case 22:
1033 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1034 
1035 	/* OFDM rates */
1036 	case 12:
1037 	case 18:
1038 		return 12;
1039 	case 24:
1040 	case 36:
1041 		return 24;
1042 	case 48:
1043 	case 72:
1044 	case 96:
1045 	case 108:
1046 		return 48;
1047 	}
1048 
1049 	/* default to 1Mbps */
1050 	return 2;
1051 }
1052 
1053 /*
1054  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1055  * The function automatically determines the operating mode depending on the
1056  * given rate. `flags' indicates whether short preamble is in use or not.
1057  */
1058 Static uint16_t
1059 ural_txtime(int len, int rate, uint32_t flags)
1060 {
1061 	uint16_t txtime;
1062 
1063 	if (RAL_RATE_IS_OFDM(rate)) {
1064 		/* IEEE Std 802.11g-2003, pp. 37 */
1065 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1066 		txtime = 16 + 4 + 4 * txtime + 6;
1067 	} else {
1068 		/* IEEE Std 802.11b-1999, pp. 28 */
1069 		txtime = (16 * len + rate - 1) / rate;
1070 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1071 			txtime +=  72 + 24;
1072 		else
1073 			txtime += 144 + 48;
1074 	}
1075 	return txtime;
1076 }
1077 
1078 Static uint8_t
1079 ural_plcp_signal(int rate)
1080 {
1081 	switch (rate) {
1082 	/* CCK rates (returned values are device-dependent) */
1083 	case 2:		return 0x0;
1084 	case 4:		return 0x1;
1085 	case 11:	return 0x2;
1086 	case 22:	return 0x3;
1087 
1088 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1089 	case 12:	return 0xb;
1090 	case 18:	return 0xf;
1091 	case 24:	return 0xa;
1092 	case 36:	return 0xe;
1093 	case 48:	return 0x9;
1094 	case 72:	return 0xd;
1095 	case 96:	return 0x8;
1096 	case 108:	return 0xc;
1097 
1098 	/* unsupported rates (should not get there) */
1099 	default:	return 0xff;
1100 	}
1101 }
1102 
1103 Static void
1104 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1105     uint32_t flags, int len, int rate)
1106 {
1107 	struct ieee80211com *ic = &sc->sc_ic;
1108 	uint16_t plcp_length;
1109 	int remainder;
1110 
1111 	desc->flags = htole32(flags);
1112 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1113 	desc->flags |= htole32(len << 16);
1114 
1115 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1116 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1117 
1118 	/* setup PLCP fields */
1119 	desc->plcp_signal  = ural_plcp_signal(rate);
1120 	desc->plcp_service = 4;
1121 
1122 	len += IEEE80211_CRC_LEN;
1123 	if (RAL_RATE_IS_OFDM(rate)) {
1124 		desc->flags |= htole32(RAL_TX_OFDM);
1125 
1126 		plcp_length = len & 0xfff;
1127 		desc->plcp_length_hi = plcp_length >> 6;
1128 		desc->plcp_length_lo = plcp_length & 0x3f;
1129 	} else {
1130 		plcp_length = (16 * len + rate - 1) / rate;
1131 		if (rate == 22) {
1132 			remainder = (16 * len) % 22;
1133 			if (remainder != 0 && remainder < 7)
1134 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1135 		}
1136 		desc->plcp_length_hi = plcp_length >> 8;
1137 		desc->plcp_length_lo = plcp_length & 0xff;
1138 
1139 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1140 			desc->plcp_signal |= 0x08;
1141 	}
1142 
1143 	desc->iv = 0;
1144 	desc->eiv = 0;
1145 }
1146 
1147 #define RAL_TX_TIMEOUT	5000
1148 
1149 Static int
1150 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1151 {
1152 	struct ural_tx_desc *desc;
1153 	usbd_xfer_handle xfer;
1154 	uint8_t cmd = 0;
1155 	usbd_status error;
1156 	uint8_t *buf;
1157 	int xferlen, rate;
1158 
1159 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1160 
1161 	xfer = usbd_alloc_xfer(sc->sc_udev);
1162 	if (xfer == NULL)
1163 		return ENOMEM;
1164 
1165 	/* xfer length needs to be a multiple of two! */
1166 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1167 
1168 	buf = usbd_alloc_buffer(xfer, xferlen);
1169 	if (buf == NULL) {
1170 		usbd_free_xfer(xfer);
1171 		return ENOMEM;
1172 	}
1173 
1174 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1175 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1176 
1177 	error = usbd_sync_transfer(xfer);
1178 	if (error != 0) {
1179 		usbd_free_xfer(xfer);
1180 		return error;
1181 	}
1182 
1183 	desc = (struct ural_tx_desc *)buf;
1184 
1185 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1186 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1187 	    m0->m_pkthdr.len, rate);
1188 
1189 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1190 	    m0->m_pkthdr.len, rate, xferlen));
1191 
1192 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1193 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1194 
1195 	error = usbd_sync_transfer(xfer);
1196 	usbd_free_xfer(xfer);
1197 
1198 	return error;
1199 }
1200 
1201 Static int
1202 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1203 {
1204 	struct ieee80211com *ic = &sc->sc_ic;
1205 	struct ural_tx_desc *desc;
1206 	struct ural_tx_data *data;
1207 	struct ieee80211_frame *wh;
1208 	struct ieee80211_key *k;
1209 	uint32_t flags = 0;
1210 	uint16_t dur;
1211 	usbd_status error;
1212 	int xferlen, rate;
1213 
1214 	data = &sc->tx_data[0];
1215 	desc = (struct ural_tx_desc *)data->buf;
1216 
1217 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1218 
1219 	wh = mtod(m0, struct ieee80211_frame *);
1220 
1221 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1222 		k = ieee80211_crypto_encap(ic, ni, m0);
1223 		if (k == NULL) {
1224 			m_freem(m0);
1225 			return ENOBUFS;
1226 		}
1227 	}
1228 
1229 	data->m = m0;
1230 	data->ni = ni;
1231 
1232 	wh = mtod(m0, struct ieee80211_frame *);
1233 
1234 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1235 		flags |= RAL_TX_ACK;
1236 
1237 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1238 		*(uint16_t *)wh->i_dur = htole16(dur);
1239 
1240 		/* tell hardware to add timestamp for probe responses */
1241 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1242 		    IEEE80211_FC0_TYPE_MGT &&
1243 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1244 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1245 			flags |= RAL_TX_TIMESTAMP;
1246 	}
1247 
1248 #if NBPFILTER > 0
1249 	if (sc->sc_drvbpf != NULL) {
1250 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1251 
1252 		tap->wt_flags = 0;
1253 		tap->wt_rate = rate;
1254 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1255 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1256 		tap->wt_antenna = sc->tx_ant;
1257 
1258 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1259 	}
1260 #endif
1261 
1262 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1263 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1264 
1265 	/* align end on a 2-bytes boundary */
1266 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1267 
1268 	/*
1269 	 * No space left in the last URB to store the extra 2 bytes, force
1270 	 * sending of another URB.
1271 	 */
1272 	if ((xferlen % 64) == 0)
1273 		xferlen += 2;
1274 
1275 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1276 	    m0->m_pkthdr.len, rate, xferlen));
1277 
1278 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1279 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1280 	    ural_txeof);
1281 
1282 	error = usbd_transfer(data->xfer);
1283 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1284 		m_freem(m0);
1285 		return error;
1286 	}
1287 
1288 	sc->tx_queued++;
1289 
1290 	return 0;
1291 }
1292 
1293 Static int
1294 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1295 {
1296 	struct ieee80211com *ic = &sc->sc_ic;
1297 	struct ural_tx_desc *desc;
1298 	struct ural_tx_data *data;
1299 	struct ieee80211_frame *wh;
1300 	struct ieee80211_key *k;
1301 	uint32_t flags = 0;
1302 	uint16_t dur;
1303 	usbd_status error;
1304 	int xferlen, rate;
1305 
1306 	wh = mtod(m0, struct ieee80211_frame *);
1307 
1308 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1309 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1310 	else
1311 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1312 
1313 	rate &= IEEE80211_RATE_VAL;
1314 
1315 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1316 		k = ieee80211_crypto_encap(ic, ni, m0);
1317 		if (k == NULL) {
1318 			m_freem(m0);
1319 			return ENOBUFS;
1320 		}
1321 
1322 		/* packet header may have moved, reset our local pointer */
1323 		wh = mtod(m0, struct ieee80211_frame *);
1324 	}
1325 
1326 	data = &sc->tx_data[0];
1327 	desc = (struct ural_tx_desc *)data->buf;
1328 
1329 	data->m = m0;
1330 	data->ni = ni;
1331 
1332 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1333 		flags |= RAL_TX_ACK;
1334 		flags |= RAL_TX_RETRY(7);
1335 
1336 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1337 		    ic->ic_flags) + RAL_SIFS;
1338 		*(uint16_t *)wh->i_dur = htole16(dur);
1339 	}
1340 
1341 #if NBPFILTER > 0
1342 	if (sc->sc_drvbpf != NULL) {
1343 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1344 
1345 		tap->wt_flags = 0;
1346 		tap->wt_rate = rate;
1347 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1348 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1349 		tap->wt_antenna = sc->tx_ant;
1350 
1351 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1352 	}
1353 #endif
1354 
1355 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1356 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1357 
1358 	/* align end on a 2-bytes boundary */
1359 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1360 
1361 	/*
1362 	 * No space left in the last URB to store the extra 2 bytes, force
1363 	 * sending of another URB.
1364 	 */
1365 	if ((xferlen % 64) == 0)
1366 		xferlen += 2;
1367 
1368 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1369 	    m0->m_pkthdr.len, rate, xferlen));
1370 
1371 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1372 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1373 	    ural_txeof);
1374 
1375 	error = usbd_transfer(data->xfer);
1376 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1377 		return error;
1378 
1379 	sc->tx_queued++;
1380 
1381 	return 0;
1382 }
1383 
1384 Static void
1385 ural_start(struct ifnet *ifp)
1386 {
1387 	struct ural_softc *sc = ifp->if_softc;
1388 	struct ieee80211com *ic = &sc->sc_ic;
1389 	struct mbuf *m0;
1390 	struct ether_header *eh;
1391 	struct ieee80211_node *ni;
1392 
1393 	for (;;) {
1394 		IF_POLL(&ic->ic_mgtq, m0);
1395 		if (m0 != NULL) {
1396 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1397 				ifp->if_flags |= IFF_OACTIVE;
1398 				break;
1399 			}
1400 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1401 
1402 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1403 			m0->m_pkthdr.rcvif = NULL;
1404 #if NBPFILTER > 0
1405 			if (ic->ic_rawbpf != NULL)
1406 				bpf_mtap(ic->ic_rawbpf, m0);
1407 #endif
1408 			if (ural_tx_mgt(sc, m0, ni) != 0)
1409 				break;
1410 
1411 		} else {
1412 			if (ic->ic_state != IEEE80211_S_RUN)
1413 				break;
1414 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1415 			if (m0 == NULL)
1416 				break;
1417 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1418 				IF_PREPEND(&ifp->if_snd, m0);
1419 				ifp->if_flags |= IFF_OACTIVE;
1420 				break;
1421 			}
1422 
1423 			if (m0->m_len < sizeof (struct ether_header) &&
1424 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1425 				continue;
1426 
1427 			eh = mtod(m0, struct ether_header *);
1428 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1429 			if (ni == NULL) {
1430 				m_freem(m0);
1431 				continue;
1432 			}
1433 #if NBPFILTER > 0
1434 			if (ifp->if_bpf != NULL)
1435 				bpf_mtap(ifp->if_bpf, m0);
1436 #endif
1437 			m0 = ieee80211_encap(ic, m0, ni);
1438 			if (m0 == NULL) {
1439 				ieee80211_free_node(ni);
1440 				continue;
1441 			}
1442 #if NBPFILTER > 0
1443 			if (ic->ic_rawbpf != NULL)
1444 				bpf_mtap(ic->ic_rawbpf, m0);
1445 #endif
1446 			if (ural_tx_data(sc, m0, ni) != 0) {
1447 				ieee80211_free_node(ni);
1448 				ifp->if_oerrors++;
1449 				break;
1450 			}
1451 		}
1452 
1453 		sc->sc_tx_timer = 5;
1454 		ifp->if_timer = 1;
1455 	}
1456 }
1457 
1458 Static void
1459 ural_watchdog(struct ifnet *ifp)
1460 {
1461 	struct ural_softc *sc = ifp->if_softc;
1462 	struct ieee80211com *ic = &sc->sc_ic;
1463 
1464 	ifp->if_timer = 0;
1465 
1466 	if (sc->sc_tx_timer > 0) {
1467 		if (--sc->sc_tx_timer == 0) {
1468 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1469 			/*ural_init(sc); XXX needs a process context! */
1470 			ifp->if_oerrors++;
1471 			return;
1472 		}
1473 		ifp->if_timer = 1;
1474 	}
1475 
1476 	ieee80211_watchdog(ic);
1477 }
1478 
1479 /*
1480  * This function allows for fast channel switching in monitor mode (used by
1481  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1482  * generate a new beacon frame.
1483  */
1484 Static int
1485 ural_reset(struct ifnet *ifp)
1486 {
1487 	struct ural_softc *sc = ifp->if_softc;
1488 	struct ieee80211com *ic = &sc->sc_ic;
1489 
1490 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1491 		return ENETRESET;
1492 
1493 	ural_set_chan(sc, ic->ic_curchan);
1494 
1495 	return 0;
1496 }
1497 
1498 Static int
1499 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1500 {
1501 	struct ural_softc *sc = ifp->if_softc;
1502 	struct ieee80211com *ic = &sc->sc_ic;
1503 	int s, error = 0;
1504 
1505 	s = splnet();
1506 
1507 	switch (cmd) {
1508 	case SIOCSIFFLAGS:
1509 		if (ifp->if_flags & IFF_UP) {
1510 			if (ifp->if_flags & IFF_RUNNING)
1511 				ural_update_promisc(sc);
1512 			else
1513 				ural_init(ifp);
1514 		} else {
1515 			if (ifp->if_flags & IFF_RUNNING)
1516 				ural_stop(ifp, 1);
1517 		}
1518 		break;
1519 
1520 	default:
1521 		error = ieee80211_ioctl(ic, cmd, data);
1522 	}
1523 
1524 	if (error == ENETRESET) {
1525 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1526 		    (IFF_UP | IFF_RUNNING))
1527 			ural_init(ifp);
1528 		error = 0;
1529 	}
1530 
1531 	splx(s);
1532 
1533 	return error;
1534 }
1535 
1536 Static void
1537 ural_set_testmode(struct ural_softc *sc)
1538 {
1539 	usb_device_request_t req;
1540 	usbd_status error;
1541 
1542 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1543 	req.bRequest = RAL_VENDOR_REQUEST;
1544 	USETW(req.wValue, 4);
1545 	USETW(req.wIndex, 1);
1546 	USETW(req.wLength, 0);
1547 
1548 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1549 	if (error != 0) {
1550 		printf("%s: could not set test mode: %s\n",
1551 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1552 	}
1553 }
1554 
1555 Static void
1556 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1557 {
1558 	usb_device_request_t req;
1559 	usbd_status error;
1560 
1561 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1562 	req.bRequest = RAL_READ_EEPROM;
1563 	USETW(req.wValue, 0);
1564 	USETW(req.wIndex, addr);
1565 	USETW(req.wLength, len);
1566 
1567 	error = usbd_do_request(sc->sc_udev, &req, buf);
1568 	if (error != 0) {
1569 		printf("%s: could not read EEPROM: %s\n",
1570 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1571 	}
1572 }
1573 
1574 Static uint16_t
1575 ural_read(struct ural_softc *sc, uint16_t reg)
1576 {
1577 	usb_device_request_t req;
1578 	usbd_status error;
1579 	uint16_t val;
1580 
1581 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1582 	req.bRequest = RAL_READ_MAC;
1583 	USETW(req.wValue, 0);
1584 	USETW(req.wIndex, reg);
1585 	USETW(req.wLength, sizeof (uint16_t));
1586 
1587 	error = usbd_do_request(sc->sc_udev, &req, &val);
1588 	if (error != 0) {
1589 		printf("%s: could not read MAC register: %s\n",
1590 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1591 		return 0;
1592 	}
1593 
1594 	return le16toh(val);
1595 }
1596 
1597 Static void
1598 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1599 {
1600 	usb_device_request_t req;
1601 	usbd_status error;
1602 
1603 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1604 	req.bRequest = RAL_READ_MULTI_MAC;
1605 	USETW(req.wValue, 0);
1606 	USETW(req.wIndex, reg);
1607 	USETW(req.wLength, len);
1608 
1609 	error = usbd_do_request(sc->sc_udev, &req, buf);
1610 	if (error != 0) {
1611 		printf("%s: could not read MAC register: %s\n",
1612 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1613 	}
1614 }
1615 
1616 Static void
1617 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1618 {
1619 	usb_device_request_t req;
1620 	usbd_status error;
1621 
1622 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1623 	req.bRequest = RAL_WRITE_MAC;
1624 	USETW(req.wValue, val);
1625 	USETW(req.wIndex, reg);
1626 	USETW(req.wLength, 0);
1627 
1628 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1629 	if (error != 0) {
1630 		printf("%s: could not write MAC register: %s\n",
1631 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1632 	}
1633 }
1634 
1635 Static void
1636 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1637 {
1638 	usb_device_request_t req;
1639 	usbd_status error;
1640 
1641 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1642 	req.bRequest = RAL_WRITE_MULTI_MAC;
1643 	USETW(req.wValue, 0);
1644 	USETW(req.wIndex, reg);
1645 	USETW(req.wLength, len);
1646 
1647 	error = usbd_do_request(sc->sc_udev, &req, buf);
1648 	if (error != 0) {
1649 		printf("%s: could not write MAC register: %s\n",
1650 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1651 	}
1652 }
1653 
1654 Static void
1655 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1656 {
1657 	uint16_t tmp;
1658 	int ntries;
1659 
1660 	for (ntries = 0; ntries < 5; ntries++) {
1661 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1662 			break;
1663 	}
1664 	if (ntries == 5) {
1665 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1666 		return;
1667 	}
1668 
1669 	tmp = reg << 8 | val;
1670 	ural_write(sc, RAL_PHY_CSR7, tmp);
1671 }
1672 
1673 Static uint8_t
1674 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1675 {
1676 	uint16_t val;
1677 	int ntries;
1678 
1679 	val = RAL_BBP_WRITE | reg << 8;
1680 	ural_write(sc, RAL_PHY_CSR7, val);
1681 
1682 	for (ntries = 0; ntries < 5; ntries++) {
1683 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1684 			break;
1685 	}
1686 	if (ntries == 5) {
1687 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1688 		return 0;
1689 	}
1690 
1691 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1692 }
1693 
1694 Static void
1695 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1696 {
1697 	uint32_t tmp;
1698 	int ntries;
1699 
1700 	for (ntries = 0; ntries < 5; ntries++) {
1701 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1702 			break;
1703 	}
1704 	if (ntries == 5) {
1705 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1706 		return;
1707 	}
1708 
1709 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1710 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1711 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1712 
1713 	/* remember last written value in sc */
1714 	sc->rf_regs[reg] = val;
1715 
1716 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1717 }
1718 
1719 Static void
1720 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1721 {
1722 	struct ieee80211com *ic = &sc->sc_ic;
1723 	uint8_t power, tmp;
1724 	u_int i, chan;
1725 
1726 	chan = ieee80211_chan2ieee(ic, c);
1727 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1728 		return;
1729 
1730 	if (IEEE80211_IS_CHAN_2GHZ(c))
1731 		power = min(sc->txpow[chan - 1], 31);
1732 	else
1733 		power = 31;
1734 
1735 	/* adjust txpower using ifconfig settings */
1736 	power -= (100 - ic->ic_txpowlimit) / 8;
1737 
1738 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1739 
1740 	switch (sc->rf_rev) {
1741 	case RAL_RF_2522:
1742 		ural_rf_write(sc, RAL_RF1, 0x00814);
1743 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1744 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1745 		break;
1746 
1747 	case RAL_RF_2523:
1748 		ural_rf_write(sc, RAL_RF1, 0x08804);
1749 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1750 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1751 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1752 		break;
1753 
1754 	case RAL_RF_2524:
1755 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1756 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1757 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1758 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1759 		break;
1760 
1761 	case RAL_RF_2525:
1762 		ural_rf_write(sc, RAL_RF1, 0x08808);
1763 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1764 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1765 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1766 
1767 		ural_rf_write(sc, RAL_RF1, 0x08808);
1768 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1769 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1770 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1771 		break;
1772 
1773 	case RAL_RF_2525E:
1774 		ural_rf_write(sc, RAL_RF1, 0x08808);
1775 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1776 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1777 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1778 		break;
1779 
1780 	case RAL_RF_2526:
1781 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1782 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1783 		ural_rf_write(sc, RAL_RF1, 0x08804);
1784 
1785 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1786 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1787 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1788 		break;
1789 
1790 	/* dual-band RF */
1791 	case RAL_RF_5222:
1792 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1793 
1794 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1795 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1796 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1797 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1798 		break;
1799 	}
1800 
1801 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1802 	    ic->ic_state != IEEE80211_S_SCAN) {
1803 		/* set Japan filter bit for channel 14 */
1804 		tmp = ural_bbp_read(sc, 70);
1805 
1806 		tmp &= ~RAL_JAPAN_FILTER;
1807 		if (chan == 14)
1808 			tmp |= RAL_JAPAN_FILTER;
1809 
1810 		ural_bbp_write(sc, 70, tmp);
1811 
1812 		/* clear CRC errors */
1813 		ural_read(sc, RAL_STA_CSR0);
1814 
1815 		DELAY(10000);
1816 		ural_disable_rf_tune(sc);
1817 	}
1818 }
1819 
1820 /*
1821  * Disable RF auto-tuning.
1822  */
1823 Static void
1824 ural_disable_rf_tune(struct ural_softc *sc)
1825 {
1826 	uint32_t tmp;
1827 
1828 	if (sc->rf_rev != RAL_RF_2523) {
1829 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1830 		ural_rf_write(sc, RAL_RF1, tmp);
1831 	}
1832 
1833 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1834 	ural_rf_write(sc, RAL_RF3, tmp);
1835 
1836 	DPRINTFN(2, ("disabling RF autotune\n"));
1837 }
1838 
1839 /*
1840  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1841  * synchronization.
1842  */
1843 Static void
1844 ural_enable_tsf_sync(struct ural_softc *sc)
1845 {
1846 	struct ieee80211com *ic = &sc->sc_ic;
1847 	uint16_t logcwmin, preload, tmp;
1848 
1849 	/* first, disable TSF synchronization */
1850 	ural_write(sc, RAL_TXRX_CSR19, 0);
1851 
1852 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1853 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1854 
1855 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1856 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1857 	tmp = logcwmin << 12 | preload;
1858 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1859 
1860 	/* finally, enable TSF synchronization */
1861 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1862 	if (ic->ic_opmode == IEEE80211_M_STA)
1863 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1864 	else
1865 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1866 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1867 
1868 	DPRINTF(("enabling TSF synchronization\n"));
1869 }
1870 
1871 Static void
1872 ural_update_slot(struct ifnet *ifp)
1873 {
1874 	struct ural_softc *sc = ifp->if_softc;
1875 	struct ieee80211com *ic = &sc->sc_ic;
1876 	uint16_t slottime, sifs, eifs;
1877 
1878 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1879 
1880 	/*
1881 	 * These settings may sound a bit inconsistent but this is what the
1882 	 * reference driver does.
1883 	 */
1884 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1885 		sifs = 16 - RAL_RXTX_TURNAROUND;
1886 		eifs = 364;
1887 	} else {
1888 		sifs = 10 - RAL_RXTX_TURNAROUND;
1889 		eifs = 64;
1890 	}
1891 
1892 	ural_write(sc, RAL_MAC_CSR10, slottime);
1893 	ural_write(sc, RAL_MAC_CSR11, sifs);
1894 	ural_write(sc, RAL_MAC_CSR12, eifs);
1895 }
1896 
1897 Static void
1898 ural_set_txpreamble(struct ural_softc *sc)
1899 {
1900 	uint16_t tmp;
1901 
1902 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1903 
1904 	tmp &= ~RAL_SHORT_PREAMBLE;
1905 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1906 		tmp |= RAL_SHORT_PREAMBLE;
1907 
1908 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1909 }
1910 
1911 Static void
1912 ural_set_basicrates(struct ural_softc *sc)
1913 {
1914 	struct ieee80211com *ic = &sc->sc_ic;
1915 
1916 	/* update basic rate set */
1917 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1918 		/* 11b basic rates: 1, 2Mbps */
1919 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1920 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1921 		/* 11a basic rates: 6, 12, 24Mbps */
1922 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1923 	} else {
1924 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1925 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1926 	}
1927 }
1928 
1929 Static void
1930 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1931 {
1932 	uint16_t tmp;
1933 
1934 	tmp = bssid[0] | bssid[1] << 8;
1935 	ural_write(sc, RAL_MAC_CSR5, tmp);
1936 
1937 	tmp = bssid[2] | bssid[3] << 8;
1938 	ural_write(sc, RAL_MAC_CSR6, tmp);
1939 
1940 	tmp = bssid[4] | bssid[5] << 8;
1941 	ural_write(sc, RAL_MAC_CSR7, tmp);
1942 
1943 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1944 }
1945 
1946 Static void
1947 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1948 {
1949 	uint16_t tmp;
1950 
1951 	tmp = addr[0] | addr[1] << 8;
1952 	ural_write(sc, RAL_MAC_CSR2, tmp);
1953 
1954 	tmp = addr[2] | addr[3] << 8;
1955 	ural_write(sc, RAL_MAC_CSR3, tmp);
1956 
1957 	tmp = addr[4] | addr[5] << 8;
1958 	ural_write(sc, RAL_MAC_CSR4, tmp);
1959 
1960 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1961 }
1962 
1963 Static void
1964 ural_update_promisc(struct ural_softc *sc)
1965 {
1966 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1967 	uint32_t tmp;
1968 
1969 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1970 
1971 	tmp &= ~RAL_DROP_NOT_TO_ME;
1972 	if (!(ifp->if_flags & IFF_PROMISC))
1973 		tmp |= RAL_DROP_NOT_TO_ME;
1974 
1975 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1976 
1977 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1978 	    "entering" : "leaving"));
1979 }
1980 
1981 Static const char *
1982 ural_get_rf(int rev)
1983 {
1984 	switch (rev) {
1985 	case RAL_RF_2522:	return "RT2522";
1986 	case RAL_RF_2523:	return "RT2523";
1987 	case RAL_RF_2524:	return "RT2524";
1988 	case RAL_RF_2525:	return "RT2525";
1989 	case RAL_RF_2525E:	return "RT2525e";
1990 	case RAL_RF_2526:	return "RT2526";
1991 	case RAL_RF_5222:	return "RT5222";
1992 	default:		return "unknown";
1993 	}
1994 }
1995 
1996 Static void
1997 ural_read_eeprom(struct ural_softc *sc)
1998 {
1999 	struct ieee80211com *ic = &sc->sc_ic;
2000 	uint16_t val;
2001 
2002 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2003 	val = le16toh(val);
2004 	sc->rf_rev =   (val >> 11) & 0x7;
2005 	sc->hw_radio = (val >> 10) & 0x1;
2006 	sc->led_mode = (val >> 6)  & 0x7;
2007 	sc->rx_ant =   (val >> 4)  & 0x3;
2008 	sc->tx_ant =   (val >> 2)  & 0x3;
2009 	sc->nb_ant =   val & 0x3;
2010 
2011 	/* read MAC address */
2012 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2013 
2014 	/* read default values for BBP registers */
2015 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2016 
2017 	/* read Tx power for all b/g channels */
2018 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2019 }
2020 
2021 Static int
2022 ural_bbp_init(struct ural_softc *sc)
2023 {
2024 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2025 	int i, ntries;
2026 
2027 	/* wait for BBP to be ready */
2028 	for (ntries = 0; ntries < 100; ntries++) {
2029 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2030 			break;
2031 		DELAY(1000);
2032 	}
2033 	if (ntries == 100) {
2034 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2035 		return EIO;
2036 	}
2037 
2038 	/* initialize BBP registers to default values */
2039 	for (i = 0; i < N(ural_def_bbp); i++)
2040 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2041 
2042 #if 0
2043 	/* initialize BBP registers to values stored in EEPROM */
2044 	for (i = 0; i < 16; i++) {
2045 		if (sc->bbp_prom[i].reg == 0xff)
2046 			continue;
2047 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2048 	}
2049 #endif
2050 
2051 	return 0;
2052 #undef N
2053 }
2054 
2055 Static void
2056 ural_set_txantenna(struct ural_softc *sc, int antenna)
2057 {
2058 	uint16_t tmp;
2059 	uint8_t tx;
2060 
2061 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2062 	if (antenna == 1)
2063 		tx |= RAL_BBP_ANTA;
2064 	else if (antenna == 2)
2065 		tx |= RAL_BBP_ANTB;
2066 	else
2067 		tx |= RAL_BBP_DIVERSITY;
2068 
2069 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2070 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2071 	    sc->rf_rev == RAL_RF_5222)
2072 		tx |= RAL_BBP_FLIPIQ;
2073 
2074 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2075 
2076 	/* update values in PHY_CSR5 and PHY_CSR6 */
2077 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2078 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2079 
2080 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2081 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2082 }
2083 
2084 Static void
2085 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2086 {
2087 	uint8_t rx;
2088 
2089 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2090 	if (antenna == 1)
2091 		rx |= RAL_BBP_ANTA;
2092 	else if (antenna == 2)
2093 		rx |= RAL_BBP_ANTB;
2094 	else
2095 		rx |= RAL_BBP_DIVERSITY;
2096 
2097 	/* need to force no I/Q flip for RF 2525e and 2526 */
2098 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2099 		rx &= ~RAL_BBP_FLIPIQ;
2100 
2101 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2102 }
2103 
2104 Static int
2105 ural_init(struct ifnet *ifp)
2106 {
2107 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2108 	struct ural_softc *sc = ifp->if_softc;
2109 	struct ieee80211com *ic = &sc->sc_ic;
2110 	struct ieee80211_key *wk;
2111 	struct ural_rx_data *data;
2112 	uint16_t tmp;
2113 	usbd_status error;
2114 	int i, ntries;
2115 
2116 	ural_set_testmode(sc);
2117 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2118 
2119 	ural_stop(ifp, 0);
2120 
2121 	/* initialize MAC registers to default values */
2122 	for (i = 0; i < N(ural_def_mac); i++)
2123 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2124 
2125 	/* wait for BBP and RF to wake up (this can take a long time!) */
2126 	for (ntries = 0; ntries < 100; ntries++) {
2127 		tmp = ural_read(sc, RAL_MAC_CSR17);
2128 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2129 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2130 			break;
2131 		DELAY(1000);
2132 	}
2133 	if (ntries == 100) {
2134 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2135 		    USBDEVNAME(sc->sc_dev));
2136 		error = EIO;
2137 		goto fail;
2138 	}
2139 
2140 	/* we're ready! */
2141 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2142 
2143 	/* set basic rate set (will be updated later) */
2144 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2145 
2146 	error = ural_bbp_init(sc);
2147 	if (error != 0)
2148 		goto fail;
2149 
2150 	/* set default BSS channel */
2151 	ural_set_chan(sc, ic->ic_curchan);
2152 
2153 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2154 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2155 
2156 	ural_set_txantenna(sc, sc->tx_ant);
2157 	ural_set_rxantenna(sc, sc->rx_ant);
2158 
2159 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2160 	ural_set_macaddr(sc, ic->ic_myaddr);
2161 
2162 	/*
2163 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2164 	 */
2165 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2166 		wk = &ic->ic_crypto.cs_nw_keys[i];
2167 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2168 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2169 	}
2170 
2171 	/*
2172 	 * Allocate xfer for AMRR statistics requests.
2173 	 */
2174 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2175 	if (sc->amrr_xfer == NULL) {
2176 		printf("%s: could not allocate AMRR xfer\n",
2177 		    USBDEVNAME(sc->sc_dev));
2178 		goto fail;
2179 	}
2180 
2181 	/*
2182 	 * Open Tx and Rx USB bulk pipes.
2183 	 */
2184 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2185 	    &sc->sc_tx_pipeh);
2186 	if (error != 0) {
2187 		printf("%s: could not open Tx pipe: %s\n",
2188 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2189 		goto fail;
2190 	}
2191 
2192 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2193 	    &sc->sc_rx_pipeh);
2194 	if (error != 0) {
2195 		printf("%s: could not open Rx pipe: %s\n",
2196 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2197 		goto fail;
2198 	}
2199 
2200 	/*
2201 	 * Allocate Tx and Rx xfer queues.
2202 	 */
2203 	error = ural_alloc_tx_list(sc);
2204 	if (error != 0) {
2205 		printf("%s: could not allocate Tx list\n",
2206 		    USBDEVNAME(sc->sc_dev));
2207 		goto fail;
2208 	}
2209 
2210 	error = ural_alloc_rx_list(sc);
2211 	if (error != 0) {
2212 		printf("%s: could not allocate Rx list\n",
2213 		    USBDEVNAME(sc->sc_dev));
2214 		goto fail;
2215 	}
2216 
2217 	/*
2218 	 * Start up the receive pipe.
2219 	 */
2220 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2221 		data = &sc->rx_data[i];
2222 
2223 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2224 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2225 		usbd_transfer(data->xfer);
2226 	}
2227 
2228 	/* kick Rx */
2229 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2230 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2231 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2232 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2233 			tmp |= RAL_DROP_TODS;
2234 		if (!(ifp->if_flags & IFF_PROMISC))
2235 			tmp |= RAL_DROP_NOT_TO_ME;
2236 	}
2237 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2238 
2239 	ifp->if_flags &= ~IFF_OACTIVE;
2240 	ifp->if_flags |= IFF_RUNNING;
2241 
2242 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2243 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2244 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2245 	} else
2246 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2247 
2248 	return 0;
2249 
2250 fail:	ural_stop(ifp, 1);
2251 	return error;
2252 #undef N
2253 }
2254 
2255 Static void
2256 ural_stop(struct ifnet *ifp, int disable)
2257 {
2258 	struct ural_softc *sc = ifp->if_softc;
2259 	struct ieee80211com *ic = &sc->sc_ic;
2260 
2261 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2262 
2263 	sc->sc_tx_timer = 0;
2264 	ifp->if_timer = 0;
2265 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2266 
2267 	/* disable Rx */
2268 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2269 
2270 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2271 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2272 	ural_write(sc, RAL_MAC_CSR1, 0);
2273 
2274 	if (sc->amrr_xfer != NULL) {
2275 		usbd_free_xfer(sc->amrr_xfer);
2276 		sc->amrr_xfer = NULL;
2277 	}
2278 
2279 	if (sc->sc_rx_pipeh != NULL) {
2280 		usbd_abort_pipe(sc->sc_rx_pipeh);
2281 		usbd_close_pipe(sc->sc_rx_pipeh);
2282 		sc->sc_rx_pipeh = NULL;
2283 	}
2284 
2285 	if (sc->sc_tx_pipeh != NULL) {
2286 		usbd_abort_pipe(sc->sc_tx_pipeh);
2287 		usbd_close_pipe(sc->sc_tx_pipeh);
2288 		sc->sc_tx_pipeh = NULL;
2289 	}
2290 
2291 	ural_free_rx_list(sc);
2292 	ural_free_tx_list(sc);
2293 }
2294 
2295 int
2296 ural_activate(device_ptr_t self, enum devact act)
2297 {
2298 	struct ural_softc *sc = (struct ural_softc *)self;
2299 
2300 	switch (act) {
2301 	case DVACT_ACTIVATE:
2302 		return EOPNOTSUPP;
2303 		break;
2304 
2305 	case DVACT_DEACTIVATE:
2306 		if_deactivate(&sc->sc_if);
2307 		break;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 Static void
2314 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2315 {
2316 	int i;
2317 
2318 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2319 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2320 
2321 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2322 
2323 	/* set rate to some reasonable initial value */
2324 	for (i = ni->ni_rates.rs_nrates - 1;
2325 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2326 	     i--);
2327 	ni->ni_txrate = i;
2328 
2329 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2330 }
2331 
2332 Static void
2333 ural_amrr_timeout(void *arg)
2334 {
2335 	struct ural_softc *sc = (struct ural_softc *)arg;
2336 	usb_device_request_t req;
2337 	int s;
2338 
2339 	s = splusb();
2340 
2341 	/*
2342 	 * Asynchronously read statistic registers (cleared by read).
2343 	 */
2344 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2345 	req.bRequest = RAL_READ_MULTI_MAC;
2346 	USETW(req.wValue, 0);
2347 	USETW(req.wIndex, RAL_STA_CSR0);
2348 	USETW(req.wLength, sizeof sc->sta);
2349 
2350 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2351 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2352 	    ural_amrr_update);
2353 	(void)usbd_transfer(sc->amrr_xfer);
2354 
2355 	splx(s);
2356 }
2357 
2358 Static void
2359 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2360     usbd_status status)
2361 {
2362 	struct ural_softc *sc = (struct ural_softc *)priv;
2363 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2364 
2365 	if (status != USBD_NORMAL_COMPLETION) {
2366 		printf("%s: could not retrieve Tx statistics - "
2367 		    "cancelling automatic rate control\n",
2368 		    USBDEVNAME(sc->sc_dev));
2369 		return;
2370 	}
2371 
2372 	/* count TX retry-fail as Tx errors */
2373 	ifp->if_oerrors += sc->sta[9];
2374 
2375 	sc->amn.amn_retrycnt =
2376 	    sc->sta[7] +	/* TX one-retry ok count */
2377 	    sc->sta[8] +	/* TX more-retry ok count */
2378 	    sc->sta[9];		/* TX retry-fail count */
2379 
2380 	sc->amn.amn_txcnt =
2381 	    sc->amn.amn_retrycnt +
2382 	    sc->sta[6];		/* TX no-retry ok count */
2383 
2384 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2385 
2386 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2387 }
2388