xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 8a5e2a50be13e77dd4df5daf258ddceeeeb47ce6)
1 /*	$NetBSD: if_ural.c,v 1.5 2005/07/12 12:51:03 drochner Exp $ */
2 /*	$OpenBSD: if_ral.c,v 1.38 2005/07/07 08:33:22 jsg Exp $  */
3 /*	$FreeBSD: src/sys/dev/usb/if_ural.c,v 1.9 2005/07/08 19:19:06 damien Exp $	*/
4 
5 /*-
6  * Copyright (c) 2005
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2500USB chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.5 2005/07/12 12:51:03 drochner Exp $");
29 
30 #include "bpfilter.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <machine/bus.h>
44 #include <machine/endian.h>
45 #include <machine/intr.h>
46 
47 #if NBPFILTER > 0
48 #include <net/bpf.h>
49 #endif
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73 
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77 
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
92 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
95 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
96 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
97 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
98 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
100 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
101 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
102 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
103 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
105 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
106 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
107 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
108 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
109 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
110 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
111 };
112 
113 Static int		ural_alloc_tx_list(struct ural_softc *);
114 Static void		ural_free_tx_list(struct ural_softc *);
115 Static int		ural_alloc_rx_list(struct ural_softc *);
116 Static void		ural_free_rx_list(struct ural_softc *);
117 Static int		ural_key_alloc(struct ieee80211com *,
118 			    const struct ieee80211_key *);
119 Static int		ural_media_change(struct ifnet *);
120 Static void		ural_next_scan(void *);
121 Static void		ural_task(void *);
122 Static int		ural_newstate(struct ieee80211com *,
123 			    enum ieee80211_state, int);
124 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
125 			    usbd_status);
126 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
127 			    usbd_status);
128 Static int		ural_ack_rate(int);
129 Static uint16_t		ural_txtime(int, int, uint32_t);
130 Static uint8_t		ural_plcp_signal(int);
131 Static void		ural_setup_tx_desc(struct ural_softc *,
132 			    struct ural_tx_desc *, uint32_t, int, int);
133 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
134 			    struct ieee80211_node *);
135 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
136 			    struct ieee80211_node *);
137 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
138 			    struct ieee80211_node *);
139 Static void		ural_start(struct ifnet *);
140 Static void		ural_watchdog(struct ifnet *);
141 Static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
142 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
145 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void		ural_set_chan(struct ural_softc *,
154 			    struct ieee80211_channel *);
155 Static void		ural_disable_rf_tune(struct ural_softc *);
156 Static void		ural_enable_tsf_sync(struct ural_softc *);
157 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
158 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
159 Static void		ural_update_promisc(struct ural_softc *);
160 Static const char	*ural_get_rf(int);
161 Static void		ural_read_eeprom(struct ural_softc *);
162 Static int		ural_bbp_init(struct ural_softc *);
163 Static void		ural_set_txantenna(struct ural_softc *, int);
164 Static void		ural_set_rxantenna(struct ural_softc *, int);
165 Static int		ural_init(struct ifnet *);
166 Static void		ural_stop(struct ifnet *, int);
167 
168 /*
169  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
170  */
171 static const struct ieee80211_rateset ural_rateset_11a =
172 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
173 
174 static const struct ieee80211_rateset ural_rateset_11b =
175 	{ 4, { 2, 4, 11, 22 } };
176 
177 static const struct ieee80211_rateset ural_rateset_11g =
178 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
179 
180 /*
181  * Default values for MAC registers; values taken from the reference driver.
182  */
183 static const struct {
184 	uint16_t	reg;
185 	uint16_t	val;
186 } ural_def_mac[] = {
187 	{ RAL_TXRX_CSR5,  0x8c8d },
188 	{ RAL_TXRX_CSR6,  0x8b8a },
189 	{ RAL_TXRX_CSR7,  0x8687 },
190 	{ RAL_TXRX_CSR8,  0x0085 },
191 	{ RAL_MAC_CSR13,  0x1111 },
192 	{ RAL_MAC_CSR14,  0x1e11 },
193 	{ RAL_TXRX_CSR21, 0xe78f },
194 	{ RAL_MAC_CSR9,   0xff1d },
195 	{ RAL_MAC_CSR11,  0x0002 },
196 	{ RAL_MAC_CSR22,  0x0053 },
197 	{ RAL_MAC_CSR15,  0x0000 },
198 	{ RAL_MAC_CSR8,   0x0780 },
199 	{ RAL_TXRX_CSR19, 0x0000 },
200 	{ RAL_TXRX_CSR18, 0x005a },
201 	{ RAL_PHY_CSR2,   0x0000 },
202 	{ RAL_TXRX_CSR0,  0x1ec0 },
203 	{ RAL_PHY_CSR4,   0x000f }
204 };
205 
206 /*
207  * Default values for BBP registers; values taken from the reference driver.
208  */
209 static const struct {
210 	uint8_t	reg;
211 	uint8_t	val;
212 } ural_def_bbp[] = {
213 	{  3, 0x02 },
214 	{  4, 0x19 },
215 	{ 14, 0x1c },
216 	{ 15, 0x30 },
217 	{ 16, 0xac },
218 	{ 17, 0x48 },
219 	{ 18, 0x18 },
220 	{ 19, 0xff },
221 	{ 20, 0x1e },
222 	{ 21, 0x08 },
223 	{ 22, 0x08 },
224 	{ 23, 0x08 },
225 	{ 24, 0x80 },
226 	{ 25, 0x50 },
227 	{ 26, 0x08 },
228 	{ 27, 0x23 },
229 	{ 30, 0x10 },
230 	{ 31, 0x2b },
231 	{ 32, 0xb9 },
232 	{ 34, 0x12 },
233 	{ 35, 0x50 },
234 	{ 39, 0xc4 },
235 	{ 40, 0x02 },
236 	{ 41, 0x60 },
237 	{ 53, 0x10 },
238 	{ 54, 0x18 },
239 	{ 56, 0x08 },
240 	{ 57, 0x10 },
241 	{ 58, 0x08 },
242 	{ 61, 0x60 },
243 	{ 62, 0x10 },
244 	{ 75, 0xff }
245 };
246 
247 /*
248  * Default values for RF register R2 indexed by channel numbers.
249  */
250 static const uint32_t ural_rf2522_r2[] = {
251 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
252 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
253 };
254 
255 static const uint32_t ural_rf2523_r2[] = {
256 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
257 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
258 };
259 
260 static const uint32_t ural_rf2524_r2[] = {
261 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
262 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
263 };
264 
265 static const uint32_t ural_rf2525_r2[] = {
266 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
267 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
268 };
269 
270 static const uint32_t ural_rf2525_hi_r2[] = {
271 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
272 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
273 };
274 
275 static const uint32_t ural_rf2525e_r2[] = {
276 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
277 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
278 };
279 
280 static const uint32_t ural_rf2526_hi_r2[] = {
281 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
282 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
283 };
284 
285 static const uint32_t ural_rf2526_r2[] = {
286 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
287 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
288 };
289 
290 /*
291  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
292  * values taken from the reference driver.
293  */
294 static const struct {
295 	uint8_t		chan;
296 	uint32_t	r1;
297 	uint32_t	r2;
298 	uint32_t	r4;
299 } ural_rf5222[] = {
300 	/* channels in the 2.4GHz band */
301 	{   1, 0x08808, 0x0044d, 0x00282 },
302 	{   2, 0x08808, 0x0044e, 0x00282 },
303 	{   3, 0x08808, 0x0044f, 0x00282 },
304 	{   4, 0x08808, 0x00460, 0x00282 },
305 	{   5, 0x08808, 0x00461, 0x00282 },
306 	{   6, 0x08808, 0x00462, 0x00282 },
307 	{   7, 0x08808, 0x00463, 0x00282 },
308 	{   8, 0x08808, 0x00464, 0x00282 },
309 	{   9, 0x08808, 0x00465, 0x00282 },
310 	{  10, 0x08808, 0x00466, 0x00282 },
311 	{  11, 0x08808, 0x00467, 0x00282 },
312 	{  12, 0x08808, 0x00468, 0x00282 },
313 	{  13, 0x08808, 0x00469, 0x00282 },
314 	{  14, 0x08808, 0x0046b, 0x00286 },
315 
316 	/* channels in the 5.2GHz band */
317 	{  36, 0x08804, 0x06225, 0x00287 },
318 	{  40, 0x08804, 0x06226, 0x00287 },
319 	{  44, 0x08804, 0x06227, 0x00287 },
320 	{  48, 0x08804, 0x06228, 0x00287 },
321 	{  52, 0x08804, 0x06229, 0x00287 },
322 	{  56, 0x08804, 0x0622a, 0x00287 },
323 	{  60, 0x08804, 0x0622b, 0x00287 },
324 	{  64, 0x08804, 0x0622c, 0x00287 },
325 
326 	{ 100, 0x08804, 0x02200, 0x00283 },
327 	{ 104, 0x08804, 0x02201, 0x00283 },
328 	{ 108, 0x08804, 0x02202, 0x00283 },
329 	{ 112, 0x08804, 0x02203, 0x00283 },
330 	{ 116, 0x08804, 0x02204, 0x00283 },
331 	{ 120, 0x08804, 0x02205, 0x00283 },
332 	{ 124, 0x08804, 0x02206, 0x00283 },
333 	{ 128, 0x08804, 0x02207, 0x00283 },
334 	{ 132, 0x08804, 0x02208, 0x00283 },
335 	{ 136, 0x08804, 0x02209, 0x00283 },
336 	{ 140, 0x08804, 0x0220a, 0x00283 },
337 
338 	{ 149, 0x08808, 0x02429, 0x00281 },
339 	{ 153, 0x08808, 0x0242b, 0x00281 },
340 	{ 157, 0x08808, 0x0242d, 0x00281 },
341 	{ 161, 0x08808, 0x0242f, 0x00281 }
342 };
343 
344 USB_DECLARE_DRIVER(ural);
345 
346 USB_MATCH(ural)
347 {
348 	USB_MATCH_START(ural, uaa);
349 
350 	if (uaa->iface != NULL)
351 		return UMATCH_NONE;
352 
353 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
354 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
355 }
356 
357 USB_ATTACH(ural)
358 {
359 	USB_ATTACH_START(ural, sc, uaa);
360 	struct ieee80211com *ic = &sc->sc_ic;
361 	struct ifnet *ifp = &sc->sc_if;
362 	usb_interface_descriptor_t *id;
363 	usb_endpoint_descriptor_t *ed;
364 	usbd_status error;
365 	char *devinfop;
366 	int i;
367 
368 	sc->sc_udev = uaa->device;
369 
370 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
371 	USB_ATTACH_SETUP;
372 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
373 	usbd_devinfo_free(devinfop);
374 
375 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
376 		printf("%s: could not set configuration no\n",
377 		    USBDEVNAME(sc->sc_dev));
378 		USB_ATTACH_ERROR_RETURN;
379 	}
380 
381 	/* get the first interface handle */
382 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
383 	    &sc->sc_iface);
384 	if (error != 0) {
385 		printf("%s: could not get interface handle\n",
386 		    USBDEVNAME(sc->sc_dev));
387 		USB_ATTACH_ERROR_RETURN;
388 	}
389 
390 	/*
391 	 * Find endpoints.
392 	 */
393 	id = usbd_get_interface_descriptor(sc->sc_iface);
394 
395 	sc->sc_rx_no = sc->sc_tx_no = -1;
396 	for (i = 0; i < id->bNumEndpoints; i++) {
397 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
398 		if (ed == NULL) {
399 			printf("%s: no endpoint descriptor for iface %d\n",
400 			    USBDEVNAME(sc->sc_dev), i);
401 			USB_ATTACH_ERROR_RETURN;
402 		}
403 
404 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
405 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
406 			sc->sc_rx_no = ed->bEndpointAddress;
407 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
408 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
409 			sc->sc_tx_no = ed->bEndpointAddress;
410 	}
411 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
412 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
413 		USB_ATTACH_ERROR_RETURN;
414 	}
415 
416 	usb_init_task(&sc->sc_task, ural_task, sc);
417 	callout_init(&sc->scan_ch);
418 
419 	/* retrieve RT2570 rev. no */
420 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
421 
422 	/* retrieve MAC address and various other things from EEPROM */
423 	ural_read_eeprom(sc);
424 
425 	printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s, address %s\n",
426 	    USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev),
427 	    ether_sprintf(ic->ic_myaddr));
428 
429 	ic->ic_ifp = ifp;
430 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
431 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
432 	ic->ic_state = IEEE80211_S_INIT;
433 
434 	/* set device capabilities */
435 	ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
436 	    IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT |
437 	    IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA;
438 
439 	if (sc->rf_rev == RAL_RF_5222) {
440 		/* set supported .11a rates */
441 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
442 
443 		/* set supported .11a channels */
444 		for (i = 36; i <= 64; i += 4) {
445 			ic->ic_channels[i].ic_freq =
446 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
447 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
448 		}
449 		for (i = 100; i <= 140; i += 4) {
450 			ic->ic_channels[i].ic_freq =
451 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
452 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
453 		}
454 		for (i = 149; i <= 161; i += 4) {
455 			ic->ic_channels[i].ic_freq =
456 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
457 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
458 		}
459 	}
460 
461 	/* set supported .11b and .11g rates */
462 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
463 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
464 
465 	/* set supported .11b and .11g channels (1 through 14) */
466 	for (i = 1; i <= 14; i++) {
467 		ic->ic_channels[i].ic_freq =
468 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
469 		ic->ic_channels[i].ic_flags =
470 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
471 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
472 	}
473 
474 	ifp->if_softc = sc;
475 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
476 	ifp->if_init = ural_init;
477 	ifp->if_stop = ural_stop;
478 	ifp->if_ioctl = ural_ioctl;
479 	ifp->if_start = ural_start;
480 	ifp->if_watchdog = ural_watchdog;
481 	IFQ_SET_READY(&ifp->if_snd);
482 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
483 
484 	if_attach(ifp);
485 	ieee80211_ifattach(ic);
486 
487 	/* override state transition machine */
488 	sc->sc_newstate = ic->ic_newstate;
489 	ic->ic_newstate = ural_newstate;
490 	ic->ic_crypto.cs_key_alloc = ural_key_alloc;
491 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
492 
493 #if NBPFILTER > 0
494 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
495 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
496 
497 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
498 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
499 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
500 
501 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
502 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
503 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
504 #endif
505 
506 	ieee80211_announce(ic);
507 
508 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
509 	    USBDEV(sc->sc_dev));
510 
511 	USB_ATTACH_SUCCESS_RETURN;
512 }
513 
514 USB_DETACH(ural)
515 {
516 	USB_DETACH_START(ural, sc);
517 	struct ieee80211com *ic = &sc->sc_ic;
518 	struct ifnet *ifp = &sc->sc_if;
519 	int s;
520 
521 	s = splusb();
522 
523 	usb_rem_task(sc->sc_udev, &sc->sc_task);
524 	callout_stop(&sc->scan_ch);
525 
526 	if (sc->sc_rx_pipeh != NULL) {
527 		usbd_abort_pipe(sc->sc_rx_pipeh);
528 		usbd_close_pipe(sc->sc_rx_pipeh);
529 	}
530 
531 	if (sc->sc_tx_pipeh != NULL) {
532 		usbd_abort_pipe(sc->sc_tx_pipeh);
533 		usbd_close_pipe(sc->sc_tx_pipeh);
534 	}
535 
536 	ural_free_rx_list(sc);
537 	ural_free_tx_list(sc);
538 
539 #if NBPFILTER > 0
540 	bpfdetach(ifp);
541 #endif
542 	ieee80211_ifdetach(ic);
543 	if_detach(ifp);
544 
545 	splx(s);
546 
547 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
548 	    USBDEV(sc->sc_dev));
549 
550 	return 0;
551 }
552 
553 Static int
554 ural_alloc_tx_list(struct ural_softc *sc)
555 {
556 	struct ural_tx_data *data;
557 	int i, error;
558 
559 	sc->tx_queued = 0;
560 
561 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
562 		data = &sc->tx_data[i];
563 
564 		data->sc = sc;
565 
566 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
567 		if (data->xfer == NULL) {
568 			printf("%s: could not allocate tx xfer\n",
569 			    USBDEVNAME(sc->sc_dev));
570 			error = ENOMEM;
571 			goto fail;
572 		}
573 
574 		data->buf = usbd_alloc_buffer(data->xfer,
575 		    RAL_TX_DESC_SIZE + MCLBYTES);
576 		if (data->buf == NULL) {
577 			printf("%s: could not allocate tx buffer\n",
578 			    USBDEVNAME(sc->sc_dev));
579 			error = ENOMEM;
580 			goto fail;
581 		}
582 	}
583 
584 	return 0;
585 
586 fail:	ural_free_tx_list(sc);
587 	return error;
588 }
589 
590 Static void
591 ural_free_tx_list(struct ural_softc *sc)
592 {
593 	struct ural_tx_data *data;
594 	int i;
595 
596 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
597 		data = &sc->tx_data[i];
598 
599 		if (data->xfer != NULL) {
600 			usbd_free_xfer(data->xfer);
601 			data->xfer = NULL;
602 		}
603 
604 		if (data->ni != NULL) {
605 			ieee80211_free_node(data->ni);
606 			data->ni = NULL;
607 		}
608 	}
609 }
610 
611 Static int
612 ural_alloc_rx_list(struct ural_softc *sc)
613 {
614 	struct ural_rx_data *data;
615 	int i, error;
616 
617 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
618 		data = &sc->rx_data[i];
619 
620 		data->sc = sc;
621 
622 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
623 		if (data->xfer == NULL) {
624 			printf("%s: could not allocate rx xfer\n",
625 			    USBDEVNAME(sc->sc_dev));
626 			error = ENOMEM;
627 			goto fail;
628 		}
629 
630 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
631 			printf("%s: could not allocate rx buffer\n",
632 			    USBDEVNAME(sc->sc_dev));
633 			error = ENOMEM;
634 			goto fail;
635 		}
636 
637 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
638 		if (data->m == NULL) {
639 			printf("%s: could not allocate rx mbuf\n",
640 			    USBDEVNAME(sc->sc_dev));
641 			error = ENOMEM;
642 			goto fail;
643 		}
644 
645 		MCLGET(data->m, M_DONTWAIT);
646 		if (!(data->m->m_flags & M_EXT)) {
647 			printf("%s: could not allocate rx mbuf cluster\n",
648 			    USBDEVNAME(sc->sc_dev));
649 			error = ENOMEM;
650 			goto fail;
651 		}
652 
653 		data->buf = mtod(data->m, uint8_t *);
654 	}
655 
656 	return 0;
657 
658 fail:	ural_free_tx_list(sc);
659 	return error;
660 }
661 
662 Static void
663 ural_free_rx_list(struct ural_softc *sc)
664 {
665 	struct ural_rx_data *data;
666 	int i;
667 
668 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
669 		data = &sc->rx_data[i];
670 
671 		if (data->xfer != NULL) {
672 			usbd_free_xfer(data->xfer);
673 			data->xfer = NULL;
674 		}
675 
676 		if (data->m != NULL) {
677 			m_freem(data->m);
678 			data->m = NULL;
679 		}
680 	}
681 }
682 
683 Static int
684 ural_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
685 {
686 	if (k >= ic->ic_nw_keys && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
687 		return k - ic->ic_nw_keys;
688 
689 	return IEEE80211_KEYIX_NONE;
690 }
691 
692 Static int
693 ural_media_change(struct ifnet *ifp)
694 {
695 	int error;
696 
697 	error = ieee80211_media_change(ifp);
698 	if (error != ENETRESET)
699 		return error;
700 
701 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
702 		ural_init(ifp);
703 
704 	return 0;
705 }
706 
707 /*
708  * This function is called periodically (every 200ms) during scanning to
709  * switch from one channel to another.
710  */
711 Static void
712 ural_next_scan(void *arg)
713 {
714 	struct ural_softc *sc = arg;
715 	struct ieee80211com *ic = &sc->sc_ic;
716 
717 	if (ic->ic_state == IEEE80211_S_SCAN)
718 		ieee80211_next_scan(ic);
719 }
720 
721 Static void
722 ural_task(void *arg)
723 {
724 	struct ural_softc *sc = arg;
725 	struct ieee80211com *ic = &sc->sc_ic;
726 	enum ieee80211_state ostate;
727 	struct mbuf *m;
728 
729 	ostate = ic->ic_state;
730 
731 	switch (sc->sc_state) {
732 	case IEEE80211_S_INIT:
733 		if (ostate == IEEE80211_S_RUN) {
734 			/* abort TSF synchronization */
735 			ural_write(sc, RAL_TXRX_CSR19, 0);
736 
737 			/* force tx led to stop blinking */
738 			ural_write(sc, RAL_MAC_CSR20, 0);
739 		}
740 		break;
741 
742 	case IEEE80211_S_SCAN:
743 		ural_set_chan(sc, ic->ic_bss->ni_chan);
744 		callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
745 		break;
746 
747 	case IEEE80211_S_AUTH:
748 		ural_set_chan(sc, ic->ic_bss->ni_chan);
749 		break;
750 
751 	case IEEE80211_S_ASSOC:
752 		ural_set_chan(sc, ic->ic_bss->ni_chan);
753 		break;
754 
755 	case IEEE80211_S_RUN:
756 		ural_set_chan(sc, ic->ic_bss->ni_chan);
757 
758 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
759 			ural_set_bssid(sc, ic->ic_bss->ni_bssid);
760 
761 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
762 		    ic->ic_opmode == IEEE80211_M_IBSS) {
763 			m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
764 			if (m == NULL) {
765 				printf("%s: could not allocate beacon\n",
766 				    USBDEVNAME(sc->sc_dev));
767 				return;
768 			}
769 
770 			if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) {
771 				m_freem(m);
772 				printf("%s: could not transmit beacon\n",
773 				    USBDEVNAME(sc->sc_dev));
774 				return;
775 			}
776 
777 			/* beacon is no longer needed */
778 			m_freem(m);
779 		}
780 
781 		/* make tx led blink on tx (controlled by ASIC) */
782 		ural_write(sc, RAL_MAC_CSR20, 1);
783 
784 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
785 			ural_enable_tsf_sync(sc);
786 		break;
787 	}
788 
789 	sc->sc_newstate(ic, sc->sc_state, -1);
790 }
791 
792 Static int
793 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
794 {
795 	struct ural_softc *sc = ic->ic_ifp->if_softc;
796 
797 	usb_rem_task(sc->sc_udev, &sc->sc_task);
798 	callout_stop(&sc->scan_ch);
799 
800 	/* do it in a process context */
801 	sc->sc_state = nstate;
802 	usb_add_task(sc->sc_udev, &sc->sc_task);
803 
804 	return 0;
805 }
806 
807 /* quickly determine if a given rate is CCK or OFDM */
808 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
809 
810 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
811 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
812 #define RAL_SIFS	10
813 
814 Static void
815 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
816 {
817 	struct ural_tx_data *data = priv;
818 	struct ural_softc *sc = data->sc;
819 	struct ifnet *ifp = &sc->sc_if;
820 	int s;
821 
822 	if (status != USBD_NORMAL_COMPLETION) {
823 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
824 			return;
825 
826 		printf("%s: could not transmit buffer: %s\n",
827 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
828 
829 		if (status == USBD_STALLED)
830 			usbd_clear_endpoint_stall(sc->sc_tx_pipeh);
831 
832 		ifp->if_oerrors++;
833 		return;
834 	}
835 
836 	s = splnet();
837 
838 	m_freem(data->m);
839 	data->m = NULL;
840 	ieee80211_free_node(data->ni);
841 	data->ni = NULL;
842 
843 	sc->tx_queued--;
844 	ifp->if_opackets++;
845 
846 	DPRINTFN(10, ("tx done\n"));
847 
848 	sc->sc_tx_timer = 0;
849 	ifp->if_flags &= ~IFF_OACTIVE;
850 	ural_start(ifp);
851 
852 	splx(s);
853 }
854 
855 Static void
856 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
857 {
858 	struct ural_rx_data *data = priv;
859 	struct ural_softc *sc = data->sc;
860 	struct ieee80211com *ic = &sc->sc_ic;
861 	struct ifnet *ifp = &sc->sc_if;
862 	struct ural_rx_desc *desc;
863 	struct ieee80211_frame_min *wh;
864 	struct ieee80211_node *ni;
865 	struct mbuf *m;
866 	int s, len;
867 
868 	if (status != USBD_NORMAL_COMPLETION) {
869 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
870 			return;
871 
872 		if (status == USBD_STALLED)
873 			usbd_clear_endpoint_stall(sc->sc_rx_pipeh);
874 		goto skip;
875 	}
876 
877 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
878 
879 	if (len < RAL_RX_DESC_SIZE) {
880 		printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len);
881 		ifp->if_ierrors++;
882 		goto skip;
883 	}
884 
885 	/* rx descriptor is located at the end */
886 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
887 
888 	if (le32toh(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
889 		/*
890 		 * This should not happen since we did not request to receive
891 		 * those frames when we filled RAL_TXRX_CSR2.
892 		 */
893 		DPRINTFN(5, ("PHY or CRC error\n"));
894 		ifp->if_ierrors++;
895 		goto skip;
896 	}
897 
898 	/* finalize mbuf */
899 	m = data->m;
900 	m->m_pkthdr.rcvif = ifp;
901 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
902 	m->m_flags |= M_HASFCS; /* hardware appends FCS */
903 
904 	s = splnet();
905 
906 #if NBPFILTER > 0
907 	if (sc->sc_drvbpf != NULL) {
908 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
909 
910 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
911 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
912 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
913 		tap->wr_antenna = sc->rx_ant;
914 		tap->wr_antsignal = desc->rssi;
915 
916 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
917 	}
918 #endif
919 
920 	wh = mtod(m, struct ieee80211_frame_min *);
921 	ni = ieee80211_find_rxnode(ic, wh);
922 
923 	/* send the frame to the 802.11 layer */
924 	ieee80211_input(ic, m, ni, desc->rssi, 0);
925 
926 	/* node is no longer needed */
927 	ieee80211_free_node(ni);
928 
929 	splx(s);
930 
931 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
932 	if (data->m == NULL) {
933 		printf("%s: could not allocate rx mbuf\n",
934 		    USBDEVNAME(sc->sc_dev));
935 		return;
936 	}
937 
938 	MCLGET(data->m, M_DONTWAIT);
939 	if (!(data->m->m_flags & M_EXT)) {
940 		printf("%s: could not allocate rx mbuf cluster\n",
941 		    USBDEVNAME(sc->sc_dev));
942 		m_freem(data->m);
943 		data->m = NULL;
944 		return;
945 	}
946 
947 	data->buf = mtod(data->m, uint8_t *);
948 
949 	DPRINTFN(15, ("rx done\n"));
950 
951 skip:	/* setup a new transfer */
952 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
953 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
954 	usbd_transfer(xfer);
955 }
956 
957 /*
958  * Return the expected ack rate for a frame transmitted at rate `rate'.
959  * XXX: this should depend on the destination node basic rate set.
960  */
961 Static int
962 ural_ack_rate(int rate)
963 {
964 	switch (rate) {
965 	/* CCK rates */
966 	case 2:
967 		return 2;
968 	case 4:
969 	case 11:
970 	case 22:
971 		return 4;
972 
973 	/* OFDM rates */
974 	case 12:
975 	case 18:
976 		return 12;
977 	case 24:
978 	case 36:
979 		return 24;
980 	case 48:
981 	case 72:
982 	case 96:
983 	case 108:
984 		return 48;
985 	}
986 
987 	/* default to 1Mbps */
988 	return 2;
989 }
990 
991 /*
992  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
993  * The function automatically determines the operating mode depending on the
994  * given rate. `flags' indicates whether short preamble is in use or not.
995  */
996 Static uint16_t
997 ural_txtime(int len, int rate, uint32_t flags)
998 {
999 	uint16_t txtime;
1000 	int ceil, dbps;
1001 
1002 	if (RAL_RATE_IS_OFDM(rate)) {
1003 		/*
1004 		 * OFDM TXTIME calculation.
1005 		 * From IEEE Std 802.11a-1999, pp. 37.
1006 		 */
1007 		dbps = rate * 2; /* data bits per OFDM symbol */
1008 
1009 		ceil = (16 + 8 * len + 6) / dbps;
1010 		if ((16 + 8 * len + 6) % dbps != 0)
1011 			ceil++;
1012 
1013 		txtime = 16 + 4 + 4 * ceil + 6;
1014 	} else {
1015 		/*
1016 		 * High Rate TXTIME calculation.
1017 		 * From IEEE Std 802.11b-1999, pp. 28.
1018 		 */
1019 		ceil = (8 * len * 2) / rate;
1020 		if ((8 * len * 2) % rate != 0)
1021 			ceil++;
1022 
1023 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1024 			txtime =  72 + 24 + ceil;
1025 		else
1026 			txtime = 144 + 48 + ceil;
1027 	}
1028 
1029 	return txtime;
1030 }
1031 
1032 Static uint8_t
1033 ural_plcp_signal(int rate)
1034 {
1035 	switch (rate) {
1036 	/* CCK rates (returned values are device-dependent) */
1037 	case 2:		return 0x0;
1038 	case 4:		return 0x1;
1039 	case 11:	return 0x2;
1040 	case 22:	return 0x3;
1041 
1042 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1043 	case 12:	return 0xb;
1044 	case 18:	return 0xf;
1045 	case 24:	return 0xa;
1046 	case 36:	return 0xe;
1047 	case 48:	return 0x9;
1048 	case 72:	return 0xd;
1049 	case 96:	return 0x8;
1050 	case 108:	return 0xc;
1051 
1052 	/* unsupported rates (should not get there) */
1053 	default:	return 0xff;
1054 	}
1055 }
1056 
1057 Static void
1058 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1059     uint32_t flags, int len, int rate)
1060 {
1061 	struct ieee80211com *ic = &sc->sc_ic;
1062 	uint16_t plcp_length;
1063 	int remainder;
1064 
1065 	desc->flags = htole32(flags);
1066 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1067 	desc->flags |= htole32(len << 16);
1068 
1069 	if (RAL_RATE_IS_OFDM(rate))
1070 		desc->flags |= htole32(RAL_TX_OFDM);
1071 
1072 	desc->wme = htole16(RAL_LOGCWMAX(5) | RAL_LOGCWMIN(3) | RAL_AIFSN(2));
1073 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1074 
1075 	/*
1076 	 * Fill PLCP fields.
1077 	 */
1078 	desc->plcp_service = 4;
1079 
1080 	len += 4; /* account for FCS */
1081 	if (RAL_RATE_IS_OFDM(rate)) {
1082 		/*
1083 		 * PLCP length field (LENGTH).
1084 		 * From IEEE Std 802.11a-1999, pp. 14.
1085 		 */
1086 		plcp_length = len & 0xfff;
1087 		desc->plcp_length = htole16((plcp_length >> 6) << 8 |
1088 		    (plcp_length & 0x3f));
1089 	} else {
1090 		/*
1091 		 * Long PLCP LENGTH field.
1092 		 * From IEEE Std 802.11b-1999, pp. 16.
1093 		 */
1094 		plcp_length = (8 * len * 2) / rate;
1095 		remainder = (8 * len * 2) % rate;
1096 		if (remainder != 0) {
1097 			if (rate == 22 && (rate - remainder) / 16 != 0)
1098 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1099 			plcp_length++;
1100 		}
1101 		desc->plcp_length = htole16(plcp_length);
1102 	}
1103 
1104 	desc->plcp_signal = ural_plcp_signal(rate);
1105 	if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1106 		desc->plcp_signal |= 0x08;
1107 
1108 	desc->iv = 0;
1109 	desc->eiv = 0;
1110 }
1111 
1112 #define RAL_TX_TIMEOUT	5000
1113 
1114 Static int
1115 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1116 {
1117 	struct ural_tx_desc *desc;
1118 	usbd_xfer_handle xfer;
1119 	usbd_status error;
1120 	uint8_t cmd = 0;
1121 	uint8_t *buf;
1122 	int xferlen, rate;
1123 
1124 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
1125 
1126 	xfer = usbd_alloc_xfer(sc->sc_udev);
1127 	if (xfer == NULL)
1128 		return ENOMEM;
1129 
1130 	/* xfer length needs to be a multiple of two! */
1131 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1132 
1133 	buf = usbd_alloc_buffer(xfer, xferlen);
1134 	if (buf == NULL) {
1135 		usbd_free_xfer(xfer);
1136 		return ENOMEM;
1137 	}
1138 
1139 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1140 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1141 
1142 	error = usbd_sync_transfer(xfer);
1143 	if (error != 0) {
1144 		usbd_free_xfer(xfer);
1145 		return error;
1146 	}
1147 
1148 	desc = (struct ural_tx_desc *)buf;
1149 
1150 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1151 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1152 	    m0->m_pkthdr.len, rate);
1153 
1154 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1155 	    m0->m_pkthdr.len, rate, xferlen));
1156 
1157 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1158 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1159 
1160 	error = usbd_sync_transfer(xfer);
1161 	usbd_free_xfer(xfer);
1162 
1163 	return error;
1164 }
1165 
1166 Static int
1167 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1168 {
1169 	struct ieee80211com *ic = &sc->sc_ic;
1170 	struct ural_tx_desc *desc;
1171 	struct ural_tx_data *data;
1172 	struct ieee80211_frame *wh;
1173 	uint32_t flags = 0;
1174 	uint16_t dur;
1175 	usbd_status error;
1176 	int xferlen, rate;
1177 
1178 	data = &sc->tx_data[0];
1179 	desc = (struct ural_tx_desc *)data->buf;
1180 
1181 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
1182 
1183 #if NBPFILTER > 0
1184 	if (sc->sc_drvbpf != NULL) {
1185 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1186 
1187 		tap->wt_flags = 0;
1188 		tap->wt_rate = rate;
1189 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1190 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1191 		tap->wt_antenna = sc->tx_ant;
1192 
1193 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1194 	}
1195 #endif
1196 
1197 	data->m = m0;
1198 	data->ni = ni;
1199 
1200 	wh = mtod(m0, struct ieee80211_frame *);
1201 
1202 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1203 		flags |= RAL_TX_ACK;
1204 
1205 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1206 		*(uint16_t *)wh->i_dur = htole16(dur);
1207 
1208 		/* tell hardware to add timestamp for probe responses */
1209 		if ((wh->i_fc[0] &
1210 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1211 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1212 			flags |= RAL_TX_TIMESTAMP;
1213 	}
1214 
1215 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1216 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1217 
1218 	/* xfer length needs to be a multiple of two! */
1219 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1220 
1221 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1222 	    m0->m_pkthdr.len, rate, xferlen));
1223 
1224 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1225 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1226 
1227 	error = usbd_transfer(data->xfer);
1228 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1229 		m_freem(m0);
1230 		return error;
1231 	}
1232 
1233 	sc->tx_queued++;
1234 
1235 	return 0;
1236 }
1237 
1238 Static int
1239 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1240 {
1241 	struct ieee80211com *ic = &sc->sc_ic;
1242 	struct ieee80211_rateset *rs;
1243 	struct ural_tx_desc *desc;
1244 	struct ural_tx_data *data;
1245 	struct ieee80211_frame *wh;
1246 	struct ieee80211_key *k;
1247 	uint32_t flags = 0;
1248 	uint16_t dur;
1249 	usbd_status error;
1250 	int xferlen, rate;
1251 
1252 	wh = mtod(m0, struct ieee80211_frame *);
1253 
1254 	/* XXX this should be reworked! */
1255 	if (ic->ic_fixed_rate != -1) {
1256 		if (ic->ic_curmode != IEEE80211_MODE_AUTO)
1257 			rs = &ic->ic_sup_rates[ic->ic_curmode];
1258 		else
1259 			rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
1260 
1261 		rate = rs->rs_rates[ic->ic_fixed_rate];
1262 	} else {
1263 		rs = &ni->ni_rates;
1264 		rate = rs->rs_rates[ni->ni_txrate];
1265 	}
1266 	rate &= IEEE80211_RATE_VAL;
1267 
1268 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1269 		k = ieee80211_crypto_encap(ic, ni, m0);
1270 		if (k == NULL) {
1271 			m_freem(m0);
1272 			return ENOBUFS;
1273 		}
1274 
1275 		/* packet header may have moved, reset our local pointer */
1276 		wh = mtod(m0, struct ieee80211_frame *);
1277 	}
1278 
1279 #if NBPFILTER > 0
1280 	if (sc->sc_drvbpf != NULL) {
1281 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1282 
1283 		tap->wt_flags = 0;
1284 		tap->wt_rate = rate;
1285 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1286 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1287 		tap->wt_antenna = sc->tx_ant;
1288 
1289 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1290 	}
1291 #endif
1292 
1293 	data = &sc->tx_data[0];
1294 	desc = (struct ural_tx_desc *)data->buf;
1295 
1296 	data->m = m0;
1297 	data->ni = ni;
1298 
1299 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1300 		flags |= RAL_TX_ACK;
1301 		flags |= RAL_TX_RETRY(7);
1302 
1303 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(rate),
1304 		    ic->ic_flags) + RAL_SIFS;
1305 		*(uint16_t *)wh->i_dur = htole16(dur);
1306 	}
1307 
1308 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1309 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1310 
1311 	/* xfer length needs to be a multiple of two! */
1312 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1313 
1314 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1315 	    m0->m_pkthdr.len, rate, xferlen));
1316 
1317 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1318 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1319 
1320 	error = usbd_transfer(data->xfer);
1321 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1322 		m_freem(m0);
1323 		return error;
1324 	}
1325 
1326 	sc->tx_queued++;
1327 
1328 	return 0;
1329 }
1330 
1331 Static void
1332 ural_start(struct ifnet *ifp)
1333 {
1334 	struct ural_softc *sc = ifp->if_softc;
1335 	struct ieee80211com *ic = &sc->sc_ic;
1336 	struct ether_header *eh;
1337 	struct ieee80211_node *ni;
1338 	struct mbuf *m0;
1339 
1340 	for (;;) {
1341 		IF_POLL(&ic->ic_mgtq, m0);
1342 		if (m0 != NULL) {
1343 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1344 				ifp->if_flags |= IFF_OACTIVE;
1345 				break;
1346 			}
1347 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1348 
1349 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1350 			m0->m_pkthdr.rcvif = NULL;
1351 #if NBPFILTER > 0
1352 			if (ic->ic_rawbpf != NULL)
1353 				bpf_mtap(ic->ic_rawbpf, m0);
1354 #endif
1355 			if (ural_tx_mgt(sc, m0, ni) != 0)
1356 				break;
1357 
1358 		} else {
1359 			if (ic->ic_state != IEEE80211_S_RUN)
1360 				break;
1361 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1362 			if (m0 == NULL)
1363 				break;
1364 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1365 				IF_PREPEND(&ifp->if_snd, m0);
1366 				ifp->if_flags |= IFF_OACTIVE;
1367 				break;
1368 			}
1369 
1370 			if (m0->m_len < sizeof (struct ether_header) &&
1371 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1372 				continue;
1373 
1374 			eh = mtod(m0, struct ether_header *);
1375 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1376 			if (ni == NULL) {
1377 				m_freem(m0);
1378 				continue;
1379 			}
1380 #if NBPFILTER > 0
1381 			if (ifp->if_bpf != NULL)
1382 				bpf_mtap(ifp->if_bpf, m0);
1383 #endif
1384 			m0 = ieee80211_encap(ic, m0, ni);
1385 			if (m0 == NULL) {
1386 				ieee80211_free_node(ni);
1387 				continue;
1388 			}
1389 #if NBPFILTER > 0
1390 			if (ic->ic_rawbpf != NULL)
1391 				bpf_mtap(ic->ic_rawbpf, m0);
1392 #endif
1393 			if (ural_tx_data(sc, m0, ni) != 0) {
1394 				ieee80211_free_node(ni);
1395 				ifp->if_oerrors++;
1396 				break;
1397 			}
1398 		}
1399 
1400 		sc->sc_tx_timer = 5;
1401 		ifp->if_timer = 1;
1402 	}
1403 }
1404 
1405 Static void
1406 ural_watchdog(struct ifnet *ifp)
1407 {
1408 	struct ural_softc *sc = ifp->if_softc;
1409 	struct ieee80211com *ic = &sc->sc_ic;
1410 
1411 	ifp->if_timer = 0;
1412 
1413 	if (sc->sc_tx_timer > 0) {
1414 		if (--sc->sc_tx_timer == 0) {
1415 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1416 			/*ural_init(ifp); XXX needs a process context! */
1417 			ifp->if_oerrors++;
1418 			return;
1419 		}
1420 		ifp->if_timer = 1;
1421 	}
1422 
1423 	ieee80211_watchdog(ic);
1424 }
1425 
1426 Static int
1427 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1428 {
1429 	struct ural_softc *sc = ifp->if_softc;
1430 	struct ieee80211com *ic = &sc->sc_ic;
1431 	struct ifreq *ifr;
1432 	int s, error = 0;
1433 
1434 	s = splnet();
1435 
1436 	switch (cmd) {
1437 	case SIOCSIFFLAGS:
1438 		if (ifp->if_flags & IFF_UP) {
1439 			if (ifp->if_flags & IFF_RUNNING)
1440 				ural_update_promisc(sc);
1441 			else
1442 				ural_init(ifp);
1443 		} else {
1444 			if (ifp->if_flags & IFF_RUNNING)
1445 				ural_stop(ifp, 1);
1446 		}
1447 		break;
1448 
1449 	case SIOCADDMULTI:
1450 	case SIOCDELMULTI:
1451 		ifr = (struct ifreq *)data;
1452 		error = (cmd == SIOCADDMULTI) ?
1453 		    ether_addmulti(ifr, &sc->sc_ec) :
1454 		    ether_delmulti(ifr, &sc->sc_ec);
1455 
1456 		if (error == ENETRESET)
1457 			error = 0;
1458 		break;
1459 
1460 	case SIOCS80211CHANNEL:
1461 		/*
1462 		 * This allows for fast channel switching in monitor mode
1463 		 * (used by kismet). In IBSS mode, we must explicitly reset
1464 		 * the interface to generate a new beacon frame.
1465 		 */
1466 		error = ieee80211_ioctl(ic, cmd, data);
1467 		if (error == ENETRESET &&
1468 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1469 			ural_set_chan(sc, ic->ic_ibss_chan);
1470 			error = 0;
1471 		}
1472 		break;
1473 
1474 	default:
1475 		error = ieee80211_ioctl(ic, cmd, data);
1476 	}
1477 
1478 	if (error == ENETRESET) {
1479 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1480 		    (IFF_UP | IFF_RUNNING))
1481 			ural_init(ifp);
1482 		error = 0;
1483 	}
1484 
1485 	splx(s);
1486 
1487 	return error;
1488 }
1489 
1490 Static void
1491 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1492 {
1493 	usb_device_request_t req;
1494 	usbd_status error;
1495 
1496 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1497 	req.bRequest = RAL_READ_EEPROM;
1498 	USETW(req.wValue, 0);
1499 	USETW(req.wIndex, addr);
1500 	USETW(req.wLength, len);
1501 
1502 	error = usbd_do_request(sc->sc_udev, &req, buf);
1503 	if (error != 0) {
1504 		printf("%s: could not read EEPROM: %s\n",
1505 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1506 	}
1507 }
1508 
1509 Static uint16_t
1510 ural_read(struct ural_softc *sc, uint16_t reg)
1511 {
1512 	usb_device_request_t req;
1513 	usbd_status error;
1514 	uint16_t val;
1515 
1516 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1517 	req.bRequest = RAL_READ_MAC;
1518 	USETW(req.wValue, 0);
1519 	USETW(req.wIndex, reg);
1520 	USETW(req.wLength, sizeof (uint16_t));
1521 
1522 	error = usbd_do_request(sc->sc_udev, &req, &val);
1523 	if (error != 0) {
1524 		printf("%s: could not read MAC register: %s\n",
1525 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1526 		return 0;
1527 	}
1528 
1529 	return le16toh(val);
1530 }
1531 
1532 Static void
1533 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1534 {
1535 	usb_device_request_t req;
1536 	usbd_status error;
1537 
1538 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1539 	req.bRequest = RAL_READ_MULTI_MAC;
1540 	USETW(req.wValue, 0);
1541 	USETW(req.wIndex, reg);
1542 	USETW(req.wLength, len);
1543 
1544 	error = usbd_do_request(sc->sc_udev, &req, buf);
1545 	if (error != 0) {
1546 		printf("%s: could not read MAC register: %s\n",
1547 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1548 		return;
1549 	}
1550 }
1551 
1552 Static void
1553 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1554 {
1555 	usb_device_request_t req;
1556 	usbd_status error;
1557 
1558 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1559 	req.bRequest = RAL_WRITE_MAC;
1560 	USETW(req.wValue, val);
1561 	USETW(req.wIndex, reg);
1562 	USETW(req.wLength, 0);
1563 
1564 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1565 	if (error != 0) {
1566 		printf("%s: could not write MAC register: %s\n",
1567 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1568 	}
1569 }
1570 
1571 Static void
1572 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1573 {
1574 	usb_device_request_t req;
1575 	usbd_status error;
1576 
1577 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1578 	req.bRequest = RAL_WRITE_MULTI_MAC;
1579 	USETW(req.wValue, 0);
1580 	USETW(req.wIndex, reg);
1581 	USETW(req.wLength, len);
1582 
1583 	error = usbd_do_request(sc->sc_udev, &req, buf);
1584 	if (error != 0) {
1585 		printf("%s: could not write MAC register: %s\n",
1586 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1587 	}
1588 }
1589 
1590 Static void
1591 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1592 {
1593 	uint16_t tmp;
1594 	int ntries;
1595 
1596 	for (ntries = 0; ntries < 5; ntries++) {
1597 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1598 			break;
1599 	}
1600 	if (ntries == 5) {
1601 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1602 		return;
1603 	}
1604 
1605 	tmp = reg << 8 | val;
1606 	ural_write(sc, RAL_PHY_CSR7, tmp);
1607 }
1608 
1609 Static uint8_t
1610 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1611 {
1612 	uint16_t val;
1613 	int ntries;
1614 
1615 	val = RAL_BBP_WRITE | reg << 8;
1616 	ural_write(sc, RAL_PHY_CSR7, val);
1617 
1618 	for (ntries = 0; ntries < 5; ntries++) {
1619 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1620 			break;
1621 	}
1622 	if (ntries == 5) {
1623 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1624 		return 0;
1625 	}
1626 
1627 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1628 }
1629 
1630 Static void
1631 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1632 {
1633 	uint32_t tmp;
1634 	int ntries;
1635 
1636 	for (ntries = 0; ntries < 5; ntries++) {
1637 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1638 			break;
1639 	}
1640 	if (ntries == 5) {
1641 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1642 		return;
1643 	}
1644 
1645 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1646 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1647 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1648 
1649 	/* remember last written value in sc */
1650 	sc->rf_regs[reg] = val;
1651 
1652 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1653 }
1654 
1655 Static void
1656 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1657 {
1658 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1659 	struct ieee80211com *ic = &sc->sc_ic;
1660 	uint8_t power, tmp;
1661 	u_int i, chan;
1662 
1663 	chan = ieee80211_chan2ieee(ic, c);
1664 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1665 		return;
1666 
1667 	if (IEEE80211_IS_CHAN_2GHZ(c))
1668 		power = min(sc->txpow[chan - 1], 31);
1669 	else
1670 		power = 31;
1671 
1672 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1673 
1674 	switch (sc->rf_rev) {
1675 	case RAL_RF_2522:
1676 		ural_rf_write(sc, RAL_RF1, 0x00814);
1677 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1678 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1679 		break;
1680 
1681 	case RAL_RF_2523:
1682 		ural_rf_write(sc, RAL_RF1, 0x08804);
1683 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1684 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1685 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1686 		break;
1687 
1688 	case RAL_RF_2524:
1689 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1690 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1691 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1692 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1693 		break;
1694 
1695 	case RAL_RF_2525:
1696 		ural_rf_write(sc, RAL_RF1, 0x08808);
1697 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1698 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1699 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1700 
1701 		ural_rf_write(sc, RAL_RF1, 0x08808);
1702 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1703 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1704 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1705 		break;
1706 
1707 	case RAL_RF_2525E:
1708 		ural_rf_write(sc, RAL_RF1, 0x08808);
1709 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1710 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1711 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1712 		break;
1713 
1714 	case RAL_RF_2526:
1715 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1716 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1717 		ural_rf_write(sc, RAL_RF1, 0x08804);
1718 
1719 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1720 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1721 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1722 		break;
1723 
1724 	/* dual-band RF */
1725 	case RAL_RF_5222:
1726 		for (i = 0; i < N(ural_rf5222); i++)
1727 			if (ural_rf5222[i].chan == chan)
1728 				break;
1729 
1730 		if (i < N(ural_rf5222)) {
1731 			ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1732 			ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1733 			ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1734 			ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1735 		}
1736 		break;
1737 	}
1738 
1739 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1740 	    ic->ic_state != IEEE80211_S_SCAN) {
1741 		/* set Japan filter bit for channel 14 */
1742 		tmp = ural_bbp_read(sc, 70);
1743 
1744 		tmp &= ~RAL_JAPAN_FILTER;
1745 		if (chan == 14)
1746 			tmp |= RAL_JAPAN_FILTER;
1747 
1748 		ural_bbp_write(sc, 70, tmp);
1749 
1750 		/* clear CRC errors */
1751 		ural_read(sc, RAL_STA_CSR0);
1752 
1753 		DELAY(1000); /* RF needs a 1ms delay here */
1754 		ural_disable_rf_tune(sc);
1755 	}
1756 #undef N
1757 }
1758 
1759 /*
1760  * Disable RF auto-tuning.
1761  */
1762 Static void
1763 ural_disable_rf_tune(struct ural_softc *sc)
1764 {
1765 	uint32_t tmp;
1766 
1767 	if (sc->rf_rev != RAL_RF_2523) {
1768 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1769 		ural_rf_write(sc, RAL_RF1, tmp);
1770 	}
1771 
1772 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1773 	ural_rf_write(sc, RAL_RF3, tmp);
1774 
1775 	DPRINTFN(2, ("disabling RF autotune\n"));
1776 }
1777 
1778 /*
1779  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1780  * synchronization.
1781  */
1782 Static void
1783 ural_enable_tsf_sync(struct ural_softc *sc)
1784 {
1785 	struct ieee80211com *ic = &sc->sc_ic;
1786 	uint16_t logcwmin, preload, tmp;
1787 
1788 	/* first, disable TSF synchronization */
1789 	ural_write(sc, RAL_TXRX_CSR19, 0);
1790 
1791 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1792 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1793 
1794 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1795 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1796 	tmp = logcwmin << 12 | preload;
1797 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1798 
1799 	/* finally, enable TSF synchronization */
1800 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1801 	if (ic->ic_opmode == IEEE80211_M_STA)
1802 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1803 	else
1804 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1805 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1806 
1807 	DPRINTF(("enabling TSF synchronization\n"));
1808 }
1809 
1810 Static void
1811 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1812 {
1813 	uint16_t tmp;
1814 
1815 	tmp = bssid[0] | bssid[1] << 8;
1816 	ural_write(sc, RAL_MAC_CSR5, tmp);
1817 
1818 	tmp = bssid[2] | bssid[3] << 8;
1819 	ural_write(sc, RAL_MAC_CSR6, tmp);
1820 
1821 	tmp = bssid[4] | bssid[5] << 8;
1822 	ural_write(sc, RAL_MAC_CSR7, tmp);
1823 
1824 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1825 }
1826 
1827 Static void
1828 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1829 {
1830 	uint16_t tmp;
1831 
1832 	tmp = addr[0] | addr[1] << 8;
1833 	ural_write(sc, RAL_MAC_CSR2, tmp);
1834 
1835 	tmp = addr[2] | addr[3] << 8;
1836 	ural_write(sc, RAL_MAC_CSR3, tmp);
1837 
1838 	tmp = addr[4] | addr[5] << 8;
1839 	ural_write(sc, RAL_MAC_CSR4, tmp);
1840 
1841 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1842 }
1843 
1844 Static void
1845 ural_update_promisc(struct ural_softc *sc)
1846 {
1847 	struct ifnet *ifp = &sc->sc_if;
1848 	uint16_t tmp;
1849 
1850 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1851 
1852 	tmp &= ~RAL_DROP_NOT_TO_ME;
1853 	if (!(ifp->if_flags & IFF_PROMISC))
1854 		tmp |= RAL_DROP_NOT_TO_ME;
1855 
1856 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1857 
1858 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1859 	    "entering" : "leaving"));
1860 }
1861 
1862 Static const char *
1863 ural_get_rf(int rev)
1864 {
1865 	switch (rev) {
1866 	case RAL_RF_2522:	return "RT2522";
1867 	case RAL_RF_2523:	return "RT2523";
1868 	case RAL_RF_2524:	return "RT2524";
1869 	case RAL_RF_2525:	return "RT2525";
1870 	case RAL_RF_2525E:	return "RT2525e";
1871 	case RAL_RF_2526:	return "RT2526";
1872 	case RAL_RF_5222:	return "RT5222";
1873 	default:		return "unknown";
1874 	}
1875 }
1876 
1877 Static void
1878 ural_read_eeprom(struct ural_softc *sc)
1879 {
1880 	struct ieee80211com *ic = &sc->sc_ic;
1881 	uint16_t val;
1882 
1883 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1884 	val = le16toh(val);
1885 	sc->rf_rev =   (val >> 11) & 0x7;
1886 	sc->hw_radio = (val >> 10) & 0x1;
1887 	sc->led_mode = (val >> 6)  & 0x7;
1888 	sc->rx_ant =   (val >> 4)  & 0x3;
1889 	sc->tx_ant =   (val >> 2)  & 0x3;
1890 	sc->nb_ant =   val & 0x3;
1891 
1892 	/* read MAC address */
1893 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1894 
1895 	/* read default values for BBP registers */
1896 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1897 
1898 	/* read Tx power for all b/g channels */
1899 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1900 }
1901 
1902 Static int
1903 ural_bbp_init(struct ural_softc *sc)
1904 {
1905 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1906 	int i, ntries;
1907 
1908 	/* wait for BBP to be ready */
1909 	for (ntries = 0; ntries < 100; ntries++) {
1910 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1911 			break;
1912 		DELAY(1000);
1913 	}
1914 	if (ntries == 100) {
1915 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
1916 		return EIO;
1917 	}
1918 
1919 	/* initialize BBP registers to default values */
1920 	for (i = 0; i < N(ural_def_bbp); i++)
1921 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1922 
1923 #if 0
1924 	/* initialize BBP registers to values stored in EEPROM */
1925 	for (i = 0; i < 16; i++) {
1926 		if (sc->bbp_prom[i].reg == 0xff)
1927 			continue;
1928 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1929 	}
1930 #endif
1931 
1932 	return 0;
1933 #undef N
1934 }
1935 
1936 Static void
1937 ural_set_txantenna(struct ural_softc *sc, int antenna)
1938 {
1939 	uint16_t tmp;
1940 	uint8_t tx;
1941 
1942 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1943 	if (antenna == 1)
1944 		tx |= RAL_BBP_ANTA;
1945 	else if (antenna == 2)
1946 		tx |= RAL_BBP_ANTB;
1947 	else
1948 		tx |= RAL_BBP_DIVERSITY;
1949 
1950 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1951 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1952 	    sc->rf_rev == RAL_RF_5222)
1953 		tx |= RAL_BBP_FLIPIQ;
1954 
1955 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1956 
1957 	/* update flags in PHY_CSR5 and PHY_CSR6 too */
1958 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1959 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1960 
1961 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1962 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1963 }
1964 
1965 Static void
1966 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1967 {
1968 	uint8_t rx;
1969 
1970 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1971 	if (antenna == 1)
1972 		rx |= RAL_BBP_ANTA;
1973 	else if (antenna == 2)
1974 		rx |= RAL_BBP_ANTB;
1975 	else
1976 		rx |= RAL_BBP_DIVERSITY;
1977 
1978 	/* need to force no I/Q flip for RF 2525e and 2526 */
1979 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
1980 		rx &= ~RAL_BBP_FLIPIQ;
1981 
1982 	ural_bbp_write(sc, RAL_BBP_RX, rx);
1983 }
1984 
1985 Static int
1986 ural_init(struct ifnet *ifp)
1987 {
1988 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1989 	struct ural_softc *sc = ifp->if_softc;
1990 	struct ieee80211com *ic = &sc->sc_ic;
1991 	struct ieee80211_key *wk;
1992 	struct ural_rx_data *data;
1993 	uint16_t sta[11], tmp;
1994 	usbd_status error;
1995 	int i, ntries;
1996 
1997 	ural_stop(ifp, 0);
1998 
1999 	/* initialize MAC registers to default values */
2000 	for (i = 0; i < N(ural_def_mac); i++)
2001 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2002 
2003 	/* wait for BBP and RF to wake up (this can take a long time!) */
2004 	for (ntries = 0; ntries < 100; ntries++) {
2005 		tmp = ural_read(sc, RAL_MAC_CSR17);
2006 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2007 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2008 			break;
2009 		DELAY(1000);
2010 	}
2011 	if (ntries == 100) {
2012 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2013 		    USBDEVNAME(sc->sc_dev));
2014 		error = EIO;
2015 		goto fail;
2016 	}
2017 
2018 	/* we're ready! */
2019 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2020 
2021 	/* set supported basic rates (1, 2, 6, 12, 24) */
2022 	ural_write(sc, RAL_TXRX_CSR11, 0x153);
2023 
2024 	error = ural_bbp_init(sc);
2025 	if (error != 0)
2026 		goto fail;
2027 
2028 	/* set default BSS channel */
2029 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2030 	ural_set_chan(sc, ic->ic_bss->ni_chan);
2031 
2032 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2033 	ural_read_multi(sc, RAL_STA_CSR0, sta, sizeof sta);
2034 
2035 	ural_set_txantenna(sc, 1);
2036 	ural_set_rxantenna(sc, 1);
2037 
2038 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2039 	ural_set_macaddr(sc, ic->ic_myaddr);
2040 
2041 	/*
2042 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2043 	 */
2044 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2045 		wk = &ic->ic_nw_keys[i];
2046 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2047 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2048 	}
2049 
2050 	/*
2051 	 * Open Tx and Rx USB bulk pipes.
2052 	 */
2053 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2054 	    &sc->sc_tx_pipeh);
2055 	if (error != 0) {
2056 		printf("%s: could not open Tx pipe: %s\n",
2057 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2058 		goto fail;
2059 	}
2060 
2061 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2062 	    &sc->sc_rx_pipeh);
2063 	if (error != 0) {
2064 		printf("%s: could not open Rx pipe: %s\n",
2065 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2066 		goto fail;
2067 	}
2068 
2069 	/*
2070 	 * Allocate Tx and Rx xfer queues.
2071 	 */
2072 	error = ural_alloc_tx_list(sc);
2073 	if (error != 0) {
2074 		printf("%s: could not allocate Tx list\n",
2075 		    USBDEVNAME(sc->sc_dev));
2076 		goto fail;
2077 	}
2078 
2079 	error = ural_alloc_rx_list(sc);
2080 	if (error != 0) {
2081 		printf("%s: could not allocate Rx list\n",
2082 		    USBDEVNAME(sc->sc_dev));
2083 		goto fail;
2084 	}
2085 
2086 	/*
2087 	 * Start up the receive pipe.
2088 	 */
2089 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2090 		data = &sc->rx_data[i];
2091 
2092 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2093 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2094 		usbd_transfer(data->xfer);
2095 	}
2096 
2097 	/* kick Rx */
2098 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2099 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2100 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2101 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2102 			tmp |= RAL_DROP_TODS;
2103 		if (!(ifp->if_flags & IFF_PROMISC))
2104 			tmp |= RAL_DROP_NOT_TO_ME;
2105 	}
2106 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2107 
2108 	ifp->if_flags &= ~IFF_OACTIVE;
2109 	ifp->if_flags |= IFF_RUNNING;
2110 
2111 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2112 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2113 	else
2114 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2115 
2116 	return 0;
2117 
2118 fail:	ural_stop(ifp, 1);
2119 	return error;
2120 #undef N
2121 }
2122 
2123 Static void
2124 ural_stop(struct ifnet *ifp, int disable)
2125 {
2126 	struct ural_softc *sc = ifp->if_softc;
2127 	struct ieee80211com *ic = &sc->sc_ic;
2128 
2129 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2130 
2131 	sc->sc_tx_timer = 0;
2132 	ifp->if_timer = 0;
2133 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2134 
2135 	/* disable Rx */
2136 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2137 
2138 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2139 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2140 	ural_write(sc, RAL_MAC_CSR1, 0);
2141 
2142 	if (sc->sc_rx_pipeh != NULL) {
2143 		usbd_abort_pipe(sc->sc_rx_pipeh);
2144 		usbd_close_pipe(sc->sc_rx_pipeh);
2145 		sc->sc_rx_pipeh = NULL;
2146 	}
2147 
2148 	if (sc->sc_tx_pipeh != NULL) {
2149 		usbd_abort_pipe(sc->sc_tx_pipeh);
2150 		usbd_close_pipe(sc->sc_tx_pipeh);
2151 		sc->sc_tx_pipeh = NULL;
2152 	}
2153 
2154 	ural_free_rx_list(sc);
2155 	ural_free_tx_list(sc);
2156 }
2157 
2158 int
2159 ural_activate(device_ptr_t self, enum devact act)
2160 {
2161 	struct ural_softc *sc = (struct ural_softc *)self;
2162 
2163 	switch (act) {
2164 	case DVACT_ACTIVATE:
2165 		return EOPNOTSUPP;
2166 		break;
2167 
2168 	case DVACT_DEACTIVATE:
2169 		if_deactivate(&sc->sc_if);
2170 		break;
2171 	}
2172 
2173 	return 0;
2174 }
2175