1 /* $NetBSD: if_ural.c,v 1.34 2010/01/19 22:07:44 pooka Exp $ */ 2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */ 3 4 /*- 5 * Copyright (c) 2005, 2006 6 * Damien Bergamini <damien.bergamini@free.fr> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2500USB chipset driver 23 * http://www.ralinktech.com/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.34 2010/01/19 22:07:44 pooka Exp $"); 28 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 41 #include <sys/bus.h> 42 #include <machine/endian.h> 43 #include <sys/intr.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_netbsd.h> 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <dev/usb/usb.h> 64 #include <dev/usb/usbdi.h> 65 #include <dev/usb/usbdi_util.h> 66 #include <dev/usb/usbdevs.h> 67 68 #include <dev/usb/if_uralreg.h> 69 #include <dev/usb/if_uralvar.h> 70 71 #ifdef USB_DEBUG 72 #define URAL_DEBUG 73 #endif 74 75 #ifdef URAL_DEBUG 76 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0) 77 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0) 78 int ural_debug = 0; 79 #else 80 #define DPRINTF(x) 81 #define DPRINTFN(n, x) 82 #endif 83 84 /* various supported device vendors/products */ 85 static const struct usb_devno ural_devs[] = { 86 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G }, 87 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 }, 88 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, 90 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, 91 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, 92 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU }, 93 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 }, 94 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, 95 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, 96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, 97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, 98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, 99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, 100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 }, 101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 }, 102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 }, 103 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W }, 104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, 105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, 106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, 107 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 }, 108 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 109 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, 110 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G }, 111 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, 112 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 }, 113 }; 114 115 Static int ural_alloc_tx_list(struct ural_softc *); 116 Static void ural_free_tx_list(struct ural_softc *); 117 Static int ural_alloc_rx_list(struct ural_softc *); 118 Static void ural_free_rx_list(struct ural_softc *); 119 Static int ural_media_change(struct ifnet *); 120 Static void ural_next_scan(void *); 121 Static void ural_task(void *); 122 Static int ural_newstate(struct ieee80211com *, 123 enum ieee80211_state, int); 124 Static int ural_rxrate(struct ural_rx_desc *); 125 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle, 126 usbd_status); 127 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle, 128 usbd_status); 129 Static int ural_ack_rate(struct ieee80211com *, int); 130 Static uint16_t ural_txtime(int, int, uint32_t); 131 Static uint8_t ural_plcp_signal(int); 132 Static void ural_setup_tx_desc(struct ural_softc *, 133 struct ural_tx_desc *, uint32_t, int, int); 134 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 135 struct ieee80211_node *); 136 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 137 struct ieee80211_node *); 138 Static int ural_tx_data(struct ural_softc *, struct mbuf *, 139 struct ieee80211_node *); 140 Static void ural_start(struct ifnet *); 141 Static void ural_watchdog(struct ifnet *); 142 Static int ural_reset(struct ifnet *); 143 Static int ural_ioctl(struct ifnet *, u_long, void *); 144 Static void ural_set_testmode(struct ural_softc *); 145 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 146 int); 147 Static uint16_t ural_read(struct ural_softc *, uint16_t); 148 Static void ural_read_multi(struct ural_softc *, uint16_t, void *, 149 int); 150 Static void ural_write(struct ural_softc *, uint16_t, uint16_t); 151 Static void ural_write_multi(struct ural_softc *, uint16_t, void *, 152 int); 153 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 154 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 155 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 156 Static void ural_set_chan(struct ural_softc *, 157 struct ieee80211_channel *); 158 Static void ural_disable_rf_tune(struct ural_softc *); 159 Static void ural_enable_tsf_sync(struct ural_softc *); 160 Static void ural_update_slot(struct ifnet *); 161 Static void ural_set_txpreamble(struct ural_softc *); 162 Static void ural_set_basicrates(struct ural_softc *); 163 Static void ural_set_bssid(struct ural_softc *, uint8_t *); 164 Static void ural_set_macaddr(struct ural_softc *, uint8_t *); 165 Static void ural_update_promisc(struct ural_softc *); 166 Static const char *ural_get_rf(int); 167 Static void ural_read_eeprom(struct ural_softc *); 168 Static int ural_bbp_init(struct ural_softc *); 169 Static void ural_set_txantenna(struct ural_softc *, int); 170 Static void ural_set_rxantenna(struct ural_softc *, int); 171 Static int ural_init(struct ifnet *); 172 Static void ural_stop(struct ifnet *, int); 173 Static void ural_amrr_start(struct ural_softc *, 174 struct ieee80211_node *); 175 Static void ural_amrr_timeout(void *); 176 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle, 177 usbd_status status); 178 179 /* 180 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 181 */ 182 static const struct ieee80211_rateset ural_rateset_11a = 183 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 184 185 static const struct ieee80211_rateset ural_rateset_11b = 186 { 4, { 2, 4, 11, 22 } }; 187 188 static const struct ieee80211_rateset ural_rateset_11g = 189 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 190 191 /* 192 * Default values for MAC registers; values taken from the reference driver. 193 */ 194 static const struct { 195 uint16_t reg; 196 uint16_t val; 197 } ural_def_mac[] = { 198 { RAL_TXRX_CSR5, 0x8c8d }, 199 { RAL_TXRX_CSR6, 0x8b8a }, 200 { RAL_TXRX_CSR7, 0x8687 }, 201 { RAL_TXRX_CSR8, 0x0085 }, 202 { RAL_MAC_CSR13, 0x1111 }, 203 { RAL_MAC_CSR14, 0x1e11 }, 204 { RAL_TXRX_CSR21, 0xe78f }, 205 { RAL_MAC_CSR9, 0xff1d }, 206 { RAL_MAC_CSR11, 0x0002 }, 207 { RAL_MAC_CSR22, 0x0053 }, 208 { RAL_MAC_CSR15, 0x0000 }, 209 { RAL_MAC_CSR8, 0x0780 }, 210 { RAL_TXRX_CSR19, 0x0000 }, 211 { RAL_TXRX_CSR18, 0x005a }, 212 { RAL_PHY_CSR2, 0x0000 }, 213 { RAL_TXRX_CSR0, 0x1ec0 }, 214 { RAL_PHY_CSR4, 0x000f } 215 }; 216 217 /* 218 * Default values for BBP registers; values taken from the reference driver. 219 */ 220 static const struct { 221 uint8_t reg; 222 uint8_t val; 223 } ural_def_bbp[] = { 224 { 3, 0x02 }, 225 { 4, 0x19 }, 226 { 14, 0x1c }, 227 { 15, 0x30 }, 228 { 16, 0xac }, 229 { 17, 0x48 }, 230 { 18, 0x18 }, 231 { 19, 0xff }, 232 { 20, 0x1e }, 233 { 21, 0x08 }, 234 { 22, 0x08 }, 235 { 23, 0x08 }, 236 { 24, 0x80 }, 237 { 25, 0x50 }, 238 { 26, 0x08 }, 239 { 27, 0x23 }, 240 { 30, 0x10 }, 241 { 31, 0x2b }, 242 { 32, 0xb9 }, 243 { 34, 0x12 }, 244 { 35, 0x50 }, 245 { 39, 0xc4 }, 246 { 40, 0x02 }, 247 { 41, 0x60 }, 248 { 53, 0x10 }, 249 { 54, 0x18 }, 250 { 56, 0x08 }, 251 { 57, 0x10 }, 252 { 58, 0x08 }, 253 { 61, 0x60 }, 254 { 62, 0x10 }, 255 { 75, 0xff } 256 }; 257 258 /* 259 * Default values for RF register R2 indexed by channel numbers. 260 */ 261 static const uint32_t ural_rf2522_r2[] = { 262 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 263 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 264 }; 265 266 static const uint32_t ural_rf2523_r2[] = { 267 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 268 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 269 }; 270 271 static const uint32_t ural_rf2524_r2[] = { 272 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 273 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 274 }; 275 276 static const uint32_t ural_rf2525_r2[] = { 277 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 278 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 279 }; 280 281 static const uint32_t ural_rf2525_hi_r2[] = { 282 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 283 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 284 }; 285 286 static const uint32_t ural_rf2525e_r2[] = { 287 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 288 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 289 }; 290 291 static const uint32_t ural_rf2526_hi_r2[] = { 292 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 293 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 294 }; 295 296 static const uint32_t ural_rf2526_r2[] = { 297 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 298 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 299 }; 300 301 /* 302 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 303 * values taken from the reference driver. 304 */ 305 static const struct { 306 uint8_t chan; 307 uint32_t r1; 308 uint32_t r2; 309 uint32_t r4; 310 } ural_rf5222[] = { 311 { 1, 0x08808, 0x0044d, 0x00282 }, 312 { 2, 0x08808, 0x0044e, 0x00282 }, 313 { 3, 0x08808, 0x0044f, 0x00282 }, 314 { 4, 0x08808, 0x00460, 0x00282 }, 315 { 5, 0x08808, 0x00461, 0x00282 }, 316 { 6, 0x08808, 0x00462, 0x00282 }, 317 { 7, 0x08808, 0x00463, 0x00282 }, 318 { 8, 0x08808, 0x00464, 0x00282 }, 319 { 9, 0x08808, 0x00465, 0x00282 }, 320 { 10, 0x08808, 0x00466, 0x00282 }, 321 { 11, 0x08808, 0x00467, 0x00282 }, 322 { 12, 0x08808, 0x00468, 0x00282 }, 323 { 13, 0x08808, 0x00469, 0x00282 }, 324 { 14, 0x08808, 0x0046b, 0x00286 }, 325 326 { 36, 0x08804, 0x06225, 0x00287 }, 327 { 40, 0x08804, 0x06226, 0x00287 }, 328 { 44, 0x08804, 0x06227, 0x00287 }, 329 { 48, 0x08804, 0x06228, 0x00287 }, 330 { 52, 0x08804, 0x06229, 0x00287 }, 331 { 56, 0x08804, 0x0622a, 0x00287 }, 332 { 60, 0x08804, 0x0622b, 0x00287 }, 333 { 64, 0x08804, 0x0622c, 0x00287 }, 334 335 { 100, 0x08804, 0x02200, 0x00283 }, 336 { 104, 0x08804, 0x02201, 0x00283 }, 337 { 108, 0x08804, 0x02202, 0x00283 }, 338 { 112, 0x08804, 0x02203, 0x00283 }, 339 { 116, 0x08804, 0x02204, 0x00283 }, 340 { 120, 0x08804, 0x02205, 0x00283 }, 341 { 124, 0x08804, 0x02206, 0x00283 }, 342 { 128, 0x08804, 0x02207, 0x00283 }, 343 { 132, 0x08804, 0x02208, 0x00283 }, 344 { 136, 0x08804, 0x02209, 0x00283 }, 345 { 140, 0x08804, 0x0220a, 0x00283 }, 346 347 { 149, 0x08808, 0x02429, 0x00281 }, 348 { 153, 0x08808, 0x0242b, 0x00281 }, 349 { 157, 0x08808, 0x0242d, 0x00281 }, 350 { 161, 0x08808, 0x0242f, 0x00281 } 351 }; 352 353 USB_DECLARE_DRIVER(ural); 354 355 USB_MATCH(ural) 356 { 357 USB_MATCH_START(ural, uaa); 358 359 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ? 360 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 361 } 362 363 USB_ATTACH(ural) 364 { 365 USB_ATTACH_START(ural, sc, uaa); 366 struct ieee80211com *ic = &sc->sc_ic; 367 struct ifnet *ifp = &sc->sc_if; 368 usb_interface_descriptor_t *id; 369 usb_endpoint_descriptor_t *ed; 370 usbd_status error; 371 char *devinfop; 372 int i; 373 374 sc->sc_dev = self; 375 sc->sc_udev = uaa->device; 376 377 aprint_naive("\n"); 378 aprint_normal("\n"); 379 380 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 381 aprint_normal_dev(self, "%s\n", devinfop); 382 usbd_devinfo_free(devinfop); 383 384 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) { 385 aprint_error_dev(self, "could not set configuration no\n"); 386 USB_ATTACH_ERROR_RETURN; 387 } 388 389 /* get the first interface handle */ 390 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, 391 &sc->sc_iface); 392 if (error != 0) { 393 aprint_error_dev(self, "could not get interface handle\n"); 394 USB_ATTACH_ERROR_RETURN; 395 } 396 397 /* 398 * Find endpoints. 399 */ 400 id = usbd_get_interface_descriptor(sc->sc_iface); 401 402 sc->sc_rx_no = sc->sc_tx_no = -1; 403 for (i = 0; i < id->bNumEndpoints; i++) { 404 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 405 if (ed == NULL) { 406 aprint_error_dev(self, 407 "no endpoint descriptor for %d\n", i); 408 USB_ATTACH_ERROR_RETURN; 409 } 410 411 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 412 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 413 sc->sc_rx_no = ed->bEndpointAddress; 414 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 416 sc->sc_tx_no = ed->bEndpointAddress; 417 } 418 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 419 aprint_error_dev(self, "missing endpoint\n"); 420 USB_ATTACH_ERROR_RETURN; 421 } 422 423 usb_init_task(&sc->sc_task, ural_task, sc); 424 usb_callout_init(sc->sc_scan_ch); 425 sc->amrr.amrr_min_success_threshold = 1; 426 sc->amrr.amrr_max_success_threshold = 15; 427 usb_callout_init(sc->sc_amrr_ch); 428 429 /* retrieve RT2570 rev. no */ 430 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 431 432 /* retrieve MAC address and various other things from EEPROM */ 433 ural_read_eeprom(sc); 434 435 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 436 sc->asic_rev, ural_get_rf(sc->rf_rev)); 437 438 ifp->if_softc = sc; 439 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 440 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 441 ifp->if_init = ural_init; 442 ifp->if_ioctl = ural_ioctl; 443 ifp->if_start = ural_start; 444 ifp->if_watchdog = ural_watchdog; 445 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 446 IFQ_SET_READY(&ifp->if_snd); 447 448 ic->ic_ifp = ifp; 449 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 450 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 451 ic->ic_state = IEEE80211_S_INIT; 452 453 /* set device capabilities */ 454 ic->ic_caps = 455 IEEE80211_C_IBSS | /* IBSS mode supported */ 456 IEEE80211_C_MONITOR | /* monitor mode supported */ 457 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 458 IEEE80211_C_TXPMGT | /* tx power management */ 459 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 460 IEEE80211_C_SHSLOT | /* short slot time supported */ 461 IEEE80211_C_WPA; /* 802.11i */ 462 463 if (sc->rf_rev == RAL_RF_5222) { 464 /* set supported .11a rates */ 465 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a; 466 467 /* set supported .11a channels */ 468 for (i = 36; i <= 64; i += 4) { 469 ic->ic_channels[i].ic_freq = 470 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 471 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 472 } 473 for (i = 100; i <= 140; i += 4) { 474 ic->ic_channels[i].ic_freq = 475 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 476 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 477 } 478 for (i = 149; i <= 161; i += 4) { 479 ic->ic_channels[i].ic_freq = 480 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 481 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 482 } 483 } 484 485 /* set supported .11b and .11g rates */ 486 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b; 487 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g; 488 489 /* set supported .11b and .11g channels (1 through 14) */ 490 for (i = 1; i <= 14; i++) { 491 ic->ic_channels[i].ic_freq = 492 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 493 ic->ic_channels[i].ic_flags = 494 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 495 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 496 } 497 498 if_attach(ifp); 499 ieee80211_ifattach(ic); 500 ic->ic_reset = ural_reset; 501 502 /* override state transition machine */ 503 sc->sc_newstate = ic->ic_newstate; 504 ic->ic_newstate = ural_newstate; 505 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status); 506 507 bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO, 508 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 509 510 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 511 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 512 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); 513 514 sc->sc_txtap_len = sizeof sc->sc_txtapu; 515 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 516 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); 517 518 ieee80211_announce(ic); 519 520 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 521 USBDEV(sc->sc_dev)); 522 523 USB_ATTACH_SUCCESS_RETURN; 524 } 525 526 USB_DETACH(ural) 527 { 528 USB_DETACH_START(ural, sc); 529 struct ieee80211com *ic = &sc->sc_ic; 530 struct ifnet *ifp = &sc->sc_if; 531 int s; 532 533 s = splusb(); 534 535 ural_stop(ifp, 1); 536 usb_rem_task(sc->sc_udev, &sc->sc_task); 537 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc); 538 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc); 539 540 if (sc->amrr_xfer != NULL) { 541 usbd_free_xfer(sc->amrr_xfer); 542 sc->amrr_xfer = NULL; 543 } 544 545 if (sc->sc_rx_pipeh != NULL) { 546 usbd_abort_pipe(sc->sc_rx_pipeh); 547 usbd_close_pipe(sc->sc_rx_pipeh); 548 } 549 550 if (sc->sc_tx_pipeh != NULL) { 551 usbd_abort_pipe(sc->sc_tx_pipeh); 552 usbd_close_pipe(sc->sc_tx_pipeh); 553 } 554 555 bpf_ops->bpf_detach(ifp); 556 ieee80211_ifdetach(ic); 557 if_detach(ifp); 558 559 splx(s); 560 561 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 562 USBDEV(sc->sc_dev)); 563 564 return 0; 565 } 566 567 Static int 568 ural_alloc_tx_list(struct ural_softc *sc) 569 { 570 struct ural_tx_data *data; 571 int i, error; 572 573 sc->tx_queued = 0; 574 575 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 576 data = &sc->tx_data[i]; 577 578 data->sc = sc; 579 580 data->xfer = usbd_alloc_xfer(sc->sc_udev); 581 if (data->xfer == NULL) { 582 printf("%s: could not allocate tx xfer\n", 583 USBDEVNAME(sc->sc_dev)); 584 error = ENOMEM; 585 goto fail; 586 } 587 588 data->buf = usbd_alloc_buffer(data->xfer, 589 RAL_TX_DESC_SIZE + MCLBYTES); 590 if (data->buf == NULL) { 591 printf("%s: could not allocate tx buffer\n", 592 USBDEVNAME(sc->sc_dev)); 593 error = ENOMEM; 594 goto fail; 595 } 596 } 597 598 return 0; 599 600 fail: ural_free_tx_list(sc); 601 return error; 602 } 603 604 Static void 605 ural_free_tx_list(struct ural_softc *sc) 606 { 607 struct ural_tx_data *data; 608 int i; 609 610 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 611 data = &sc->tx_data[i]; 612 613 if (data->xfer != NULL) { 614 usbd_free_xfer(data->xfer); 615 data->xfer = NULL; 616 } 617 618 if (data->ni != NULL) { 619 ieee80211_free_node(data->ni); 620 data->ni = NULL; 621 } 622 } 623 } 624 625 Static int 626 ural_alloc_rx_list(struct ural_softc *sc) 627 { 628 struct ural_rx_data *data; 629 int i, error; 630 631 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 632 data = &sc->rx_data[i]; 633 634 data->sc = sc; 635 636 data->xfer = usbd_alloc_xfer(sc->sc_udev); 637 if (data->xfer == NULL) { 638 printf("%s: could not allocate rx xfer\n", 639 USBDEVNAME(sc->sc_dev)); 640 error = ENOMEM; 641 goto fail; 642 } 643 644 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 645 printf("%s: could not allocate rx buffer\n", 646 USBDEVNAME(sc->sc_dev)); 647 error = ENOMEM; 648 goto fail; 649 } 650 651 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 652 if (data->m == NULL) { 653 printf("%s: could not allocate rx mbuf\n", 654 USBDEVNAME(sc->sc_dev)); 655 error = ENOMEM; 656 goto fail; 657 } 658 659 MCLGET(data->m, M_DONTWAIT); 660 if (!(data->m->m_flags & M_EXT)) { 661 printf("%s: could not allocate rx mbuf cluster\n", 662 USBDEVNAME(sc->sc_dev)); 663 error = ENOMEM; 664 goto fail; 665 } 666 667 data->buf = mtod(data->m, uint8_t *); 668 } 669 670 return 0; 671 672 fail: ural_free_tx_list(sc); 673 return error; 674 } 675 676 Static void 677 ural_free_rx_list(struct ural_softc *sc) 678 { 679 struct ural_rx_data *data; 680 int i; 681 682 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 683 data = &sc->rx_data[i]; 684 685 if (data->xfer != NULL) { 686 usbd_free_xfer(data->xfer); 687 data->xfer = NULL; 688 } 689 690 if (data->m != NULL) { 691 m_freem(data->m); 692 data->m = NULL; 693 } 694 } 695 } 696 697 Static int 698 ural_media_change(struct ifnet *ifp) 699 { 700 int error; 701 702 error = ieee80211_media_change(ifp); 703 if (error != ENETRESET) 704 return error; 705 706 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 707 ural_init(ifp); 708 709 return 0; 710 } 711 712 /* 713 * This function is called periodically (every 200ms) during scanning to 714 * switch from one channel to another. 715 */ 716 Static void 717 ural_next_scan(void *arg) 718 { 719 struct ural_softc *sc = arg; 720 struct ieee80211com *ic = &sc->sc_ic; 721 722 if (ic->ic_state == IEEE80211_S_SCAN) 723 ieee80211_next_scan(ic); 724 } 725 726 Static void 727 ural_task(void *arg) 728 { 729 struct ural_softc *sc = arg; 730 struct ieee80211com *ic = &sc->sc_ic; 731 enum ieee80211_state ostate; 732 struct ieee80211_node *ni; 733 struct mbuf *m; 734 735 ostate = ic->ic_state; 736 737 switch (sc->sc_state) { 738 case IEEE80211_S_INIT: 739 if (ostate == IEEE80211_S_RUN) { 740 /* abort TSF synchronization */ 741 ural_write(sc, RAL_TXRX_CSR19, 0); 742 743 /* force tx led to stop blinking */ 744 ural_write(sc, RAL_MAC_CSR20, 0); 745 } 746 break; 747 748 case IEEE80211_S_SCAN: 749 ural_set_chan(sc, ic->ic_curchan); 750 usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc); 751 break; 752 753 case IEEE80211_S_AUTH: 754 ural_set_chan(sc, ic->ic_curchan); 755 break; 756 757 case IEEE80211_S_ASSOC: 758 ural_set_chan(sc, ic->ic_curchan); 759 break; 760 761 case IEEE80211_S_RUN: 762 ural_set_chan(sc, ic->ic_curchan); 763 764 ni = ic->ic_bss; 765 766 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 767 ural_update_slot(ic->ic_ifp); 768 ural_set_txpreamble(sc); 769 ural_set_basicrates(sc); 770 ural_set_bssid(sc, ni->ni_bssid); 771 } 772 773 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 774 ic->ic_opmode == IEEE80211_M_IBSS) { 775 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 776 if (m == NULL) { 777 printf("%s: could not allocate beacon\n", 778 USBDEVNAME(sc->sc_dev)); 779 return; 780 } 781 782 if (ural_tx_bcn(sc, m, ni) != 0) { 783 m_freem(m); 784 printf("%s: could not send beacon\n", 785 USBDEVNAME(sc->sc_dev)); 786 return; 787 } 788 789 /* beacon is no longer needed */ 790 m_freem(m); 791 } 792 793 /* make tx led blink on tx (controlled by ASIC) */ 794 ural_write(sc, RAL_MAC_CSR20, 1); 795 796 if (ic->ic_opmode != IEEE80211_M_MONITOR) 797 ural_enable_tsf_sync(sc); 798 799 /* enable automatic rate adaptation in STA mode */ 800 if (ic->ic_opmode == IEEE80211_M_STA && 801 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 802 ural_amrr_start(sc, ni); 803 804 break; 805 } 806 807 sc->sc_newstate(ic, sc->sc_state, -1); 808 } 809 810 Static int 811 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, 812 int arg) 813 { 814 struct ural_softc *sc = ic->ic_ifp->if_softc; 815 816 usb_rem_task(sc->sc_udev, &sc->sc_task); 817 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc); 818 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc); 819 820 /* do it in a process context */ 821 sc->sc_state = nstate; 822 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 823 824 return 0; 825 } 826 827 /* quickly determine if a given rate is CCK or OFDM */ 828 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 829 830 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 831 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 832 833 #define RAL_SIFS 10 /* us */ 834 835 #define RAL_RXTX_TURNAROUND 5 /* us */ 836 837 /* 838 * This function is only used by the Rx radiotap code. 839 */ 840 Static int 841 ural_rxrate(struct ural_rx_desc *desc) 842 { 843 if (le32toh(desc->flags) & RAL_RX_OFDM) { 844 /* reverse function of ural_plcp_signal */ 845 switch (desc->rate) { 846 case 0xb: return 12; 847 case 0xf: return 18; 848 case 0xa: return 24; 849 case 0xe: return 36; 850 case 0x9: return 48; 851 case 0xd: return 72; 852 case 0x8: return 96; 853 case 0xc: return 108; 854 } 855 } else { 856 if (desc->rate == 10) 857 return 2; 858 if (desc->rate == 20) 859 return 4; 860 if (desc->rate == 55) 861 return 11; 862 if (desc->rate == 110) 863 return 22; 864 } 865 return 2; /* should not get there */ 866 } 867 868 Static void 869 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, 870 usbd_status status) 871 { 872 struct ural_tx_data *data = priv; 873 struct ural_softc *sc = data->sc; 874 struct ifnet *ifp = &sc->sc_if; 875 int s; 876 877 if (status != USBD_NORMAL_COMPLETION) { 878 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 879 return; 880 881 printf("%s: could not transmit buffer: %s\n", 882 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 883 884 if (status == USBD_STALLED) 885 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 886 887 ifp->if_oerrors++; 888 return; 889 } 890 891 s = splnet(); 892 893 m_freem(data->m); 894 data->m = NULL; 895 ieee80211_free_node(data->ni); 896 data->ni = NULL; 897 898 sc->tx_queued--; 899 ifp->if_opackets++; 900 901 DPRINTFN(10, ("tx done\n")); 902 903 sc->sc_tx_timer = 0; 904 ifp->if_flags &= ~IFF_OACTIVE; 905 ural_start(ifp); 906 907 splx(s); 908 } 909 910 Static void 911 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 912 { 913 struct ural_rx_data *data = priv; 914 struct ural_softc *sc = data->sc; 915 struct ieee80211com *ic = &sc->sc_ic; 916 struct ifnet *ifp = &sc->sc_if; 917 struct ural_rx_desc *desc; 918 struct ieee80211_frame *wh; 919 struct ieee80211_node *ni; 920 struct mbuf *mnew, *m; 921 int s, len; 922 923 if (status != USBD_NORMAL_COMPLETION) { 924 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 925 return; 926 927 if (status == USBD_STALLED) 928 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 929 goto skip; 930 } 931 932 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 933 934 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 935 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), 936 len)); 937 ifp->if_ierrors++; 938 goto skip; 939 } 940 941 /* rx descriptor is located at the end */ 942 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); 943 944 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) || 945 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) { 946 /* 947 * This should not happen since we did not request to receive 948 * those frames when we filled RAL_TXRX_CSR2. 949 */ 950 DPRINTFN(5, ("PHY or CRC error\n")); 951 ifp->if_ierrors++; 952 goto skip; 953 } 954 955 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 956 if (mnew == NULL) { 957 ifp->if_ierrors++; 958 goto skip; 959 } 960 961 MCLGET(mnew, M_DONTWAIT); 962 if (!(mnew->m_flags & M_EXT)) { 963 ifp->if_ierrors++; 964 m_freem(mnew); 965 goto skip; 966 } 967 968 m = data->m; 969 data->m = mnew; 970 data->buf = mtod(data->m, uint8_t *); 971 972 /* finalize mbuf */ 973 m->m_pkthdr.rcvif = ifp; 974 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 975 m->m_flags |= M_HASFCS; /* h/w leaves FCS */ 976 977 s = splnet(); 978 979 if (sc->sc_drvbpf != NULL) { 980 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 981 982 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 983 tap->wr_rate = ural_rxrate(desc); 984 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 985 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 986 tap->wr_antenna = sc->rx_ant; 987 tap->wr_antsignal = desc->rssi; 988 989 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 990 } 991 992 wh = mtod(m, struct ieee80211_frame *); 993 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 994 995 /* send the frame to the 802.11 layer */ 996 ieee80211_input(ic, m, ni, desc->rssi, 0); 997 998 /* node is no longer needed */ 999 ieee80211_free_node(ni); 1000 1001 splx(s); 1002 1003 DPRINTFN(15, ("rx done\n")); 1004 1005 skip: /* setup a new transfer */ 1006 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 1007 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 1008 usbd_transfer(xfer); 1009 } 1010 1011 /* 1012 * Return the expected ack rate for a frame transmitted at rate `rate'. 1013 * XXX: this should depend on the destination node basic rate set. 1014 */ 1015 Static int 1016 ural_ack_rate(struct ieee80211com *ic, int rate) 1017 { 1018 switch (rate) { 1019 /* CCK rates */ 1020 case 2: 1021 return 2; 1022 case 4: 1023 case 11: 1024 case 22: 1025 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1026 1027 /* OFDM rates */ 1028 case 12: 1029 case 18: 1030 return 12; 1031 case 24: 1032 case 36: 1033 return 24; 1034 case 48: 1035 case 72: 1036 case 96: 1037 case 108: 1038 return 48; 1039 } 1040 1041 /* default to 1Mbps */ 1042 return 2; 1043 } 1044 1045 /* 1046 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1047 * The function automatically determines the operating mode depending on the 1048 * given rate. `flags' indicates whether short preamble is in use or not. 1049 */ 1050 Static uint16_t 1051 ural_txtime(int len, int rate, uint32_t flags) 1052 { 1053 uint16_t txtime; 1054 1055 if (RAL_RATE_IS_OFDM(rate)) { 1056 /* IEEE Std 802.11g-2003, pp. 37 */ 1057 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1058 txtime = 16 + 4 + 4 * txtime + 6; 1059 } else { 1060 /* IEEE Std 802.11b-1999, pp. 28 */ 1061 txtime = (16 * len + rate - 1) / rate; 1062 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1063 txtime += 72 + 24; 1064 else 1065 txtime += 144 + 48; 1066 } 1067 return txtime; 1068 } 1069 1070 Static uint8_t 1071 ural_plcp_signal(int rate) 1072 { 1073 switch (rate) { 1074 /* CCK rates (returned values are device-dependent) */ 1075 case 2: return 0x0; 1076 case 4: return 0x1; 1077 case 11: return 0x2; 1078 case 22: return 0x3; 1079 1080 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1081 case 12: return 0xb; 1082 case 18: return 0xf; 1083 case 24: return 0xa; 1084 case 36: return 0xe; 1085 case 48: return 0x9; 1086 case 72: return 0xd; 1087 case 96: return 0x8; 1088 case 108: return 0xc; 1089 1090 /* unsupported rates (should not get there) */ 1091 default: return 0xff; 1092 } 1093 } 1094 1095 Static void 1096 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1097 uint32_t flags, int len, int rate) 1098 { 1099 struct ieee80211com *ic = &sc->sc_ic; 1100 uint16_t plcp_length; 1101 int remainder; 1102 1103 desc->flags = htole32(flags); 1104 desc->flags |= htole32(RAL_TX_NEWSEQ); 1105 desc->flags |= htole32(len << 16); 1106 1107 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1108 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1109 1110 /* setup PLCP fields */ 1111 desc->plcp_signal = ural_plcp_signal(rate); 1112 desc->plcp_service = 4; 1113 1114 len += IEEE80211_CRC_LEN; 1115 if (RAL_RATE_IS_OFDM(rate)) { 1116 desc->flags |= htole32(RAL_TX_OFDM); 1117 1118 plcp_length = len & 0xfff; 1119 desc->plcp_length_hi = plcp_length >> 6; 1120 desc->plcp_length_lo = plcp_length & 0x3f; 1121 } else { 1122 plcp_length = (16 * len + rate - 1) / rate; 1123 if (rate == 22) { 1124 remainder = (16 * len) % 22; 1125 if (remainder != 0 && remainder < 7) 1126 desc->plcp_service |= RAL_PLCP_LENGEXT; 1127 } 1128 desc->plcp_length_hi = plcp_length >> 8; 1129 desc->plcp_length_lo = plcp_length & 0xff; 1130 1131 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1132 desc->plcp_signal |= 0x08; 1133 } 1134 1135 desc->iv = 0; 1136 desc->eiv = 0; 1137 } 1138 1139 #define RAL_TX_TIMEOUT 5000 1140 1141 Static int 1142 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1143 { 1144 struct ural_tx_desc *desc; 1145 usbd_xfer_handle xfer; 1146 uint8_t cmd = 0; 1147 usbd_status error; 1148 uint8_t *buf; 1149 int xferlen, rate; 1150 1151 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1152 1153 xfer = usbd_alloc_xfer(sc->sc_udev); 1154 if (xfer == NULL) 1155 return ENOMEM; 1156 1157 /* xfer length needs to be a multiple of two! */ 1158 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1159 1160 buf = usbd_alloc_buffer(xfer, xferlen); 1161 if (buf == NULL) { 1162 usbd_free_xfer(xfer); 1163 return ENOMEM; 1164 } 1165 1166 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, 1167 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL); 1168 1169 error = usbd_sync_transfer(xfer); 1170 if (error != 0) { 1171 usbd_free_xfer(xfer); 1172 return error; 1173 } 1174 1175 desc = (struct ural_tx_desc *)buf; 1176 1177 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); 1178 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, 1179 m0->m_pkthdr.len, rate); 1180 1181 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", 1182 m0->m_pkthdr.len, rate, xferlen)); 1183 1184 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, 1185 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL); 1186 1187 error = usbd_sync_transfer(xfer); 1188 usbd_free_xfer(xfer); 1189 1190 return error; 1191 } 1192 1193 Static int 1194 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1195 { 1196 struct ieee80211com *ic = &sc->sc_ic; 1197 struct ural_tx_desc *desc; 1198 struct ural_tx_data *data; 1199 struct ieee80211_frame *wh; 1200 struct ieee80211_key *k; 1201 uint32_t flags = 0; 1202 uint16_t dur; 1203 usbd_status error; 1204 int xferlen, rate; 1205 1206 data = &sc->tx_data[0]; 1207 desc = (struct ural_tx_desc *)data->buf; 1208 1209 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1210 1211 wh = mtod(m0, struct ieee80211_frame *); 1212 1213 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1214 k = ieee80211_crypto_encap(ic, ni, m0); 1215 if (k == NULL) { 1216 m_freem(m0); 1217 return ENOBUFS; 1218 } 1219 } 1220 1221 data->m = m0; 1222 data->ni = ni; 1223 1224 wh = mtod(m0, struct ieee80211_frame *); 1225 1226 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1227 flags |= RAL_TX_ACK; 1228 1229 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; 1230 *(uint16_t *)wh->i_dur = htole16(dur); 1231 1232 /* tell hardware to add timestamp for probe responses */ 1233 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1234 IEEE80211_FC0_TYPE_MGT && 1235 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1236 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1237 flags |= RAL_TX_TIMESTAMP; 1238 } 1239 1240 if (sc->sc_drvbpf != NULL) { 1241 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1242 1243 tap->wt_flags = 0; 1244 tap->wt_rate = rate; 1245 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1246 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1247 tap->wt_antenna = sc->tx_ant; 1248 1249 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1250 } 1251 1252 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1253 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1254 1255 /* align end on a 2-bytes boundary */ 1256 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1257 1258 /* 1259 * No space left in the last URB to store the extra 2 bytes, force 1260 * sending of another URB. 1261 */ 1262 if ((xferlen % 64) == 0) 1263 xferlen += 2; 1264 1265 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n", 1266 m0->m_pkthdr.len, rate, xferlen)); 1267 1268 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1269 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, 1270 ural_txeof); 1271 1272 error = usbd_transfer(data->xfer); 1273 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1274 m_freem(m0); 1275 return error; 1276 } 1277 1278 sc->tx_queued++; 1279 1280 return 0; 1281 } 1282 1283 Static int 1284 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1285 { 1286 struct ieee80211com *ic = &sc->sc_ic; 1287 struct ural_tx_desc *desc; 1288 struct ural_tx_data *data; 1289 struct ieee80211_frame *wh; 1290 struct ieee80211_key *k; 1291 uint32_t flags = 0; 1292 uint16_t dur; 1293 usbd_status error; 1294 int xferlen, rate; 1295 1296 wh = mtod(m0, struct ieee80211_frame *); 1297 1298 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1299 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1300 else 1301 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1302 1303 rate &= IEEE80211_RATE_VAL; 1304 1305 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1306 k = ieee80211_crypto_encap(ic, ni, m0); 1307 if (k == NULL) { 1308 m_freem(m0); 1309 return ENOBUFS; 1310 } 1311 1312 /* packet header may have moved, reset our local pointer */ 1313 wh = mtod(m0, struct ieee80211_frame *); 1314 } 1315 1316 data = &sc->tx_data[0]; 1317 desc = (struct ural_tx_desc *)data->buf; 1318 1319 data->m = m0; 1320 data->ni = ni; 1321 1322 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1323 flags |= RAL_TX_ACK; 1324 flags |= RAL_TX_RETRY(7); 1325 1326 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), 1327 ic->ic_flags) + RAL_SIFS; 1328 *(uint16_t *)wh->i_dur = htole16(dur); 1329 } 1330 1331 if (sc->sc_drvbpf != NULL) { 1332 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1333 1334 tap->wt_flags = 0; 1335 tap->wt_rate = rate; 1336 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1337 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1338 tap->wt_antenna = sc->tx_ant; 1339 1340 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1341 } 1342 1343 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1344 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1345 1346 /* align end on a 2-bytes boundary */ 1347 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1348 1349 /* 1350 * No space left in the last URB to store the extra 2 bytes, force 1351 * sending of another URB. 1352 */ 1353 if ((xferlen % 64) == 0) 1354 xferlen += 2; 1355 1356 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n", 1357 m0->m_pkthdr.len, rate, xferlen)); 1358 1359 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1360 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, 1361 ural_txeof); 1362 1363 error = usbd_transfer(data->xfer); 1364 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1365 return error; 1366 1367 sc->tx_queued++; 1368 1369 return 0; 1370 } 1371 1372 Static void 1373 ural_start(struct ifnet *ifp) 1374 { 1375 struct ural_softc *sc = ifp->if_softc; 1376 struct ieee80211com *ic = &sc->sc_ic; 1377 struct mbuf *m0; 1378 struct ether_header *eh; 1379 struct ieee80211_node *ni; 1380 1381 for (;;) { 1382 IF_POLL(&ic->ic_mgtq, m0); 1383 if (m0 != NULL) { 1384 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1385 ifp->if_flags |= IFF_OACTIVE; 1386 break; 1387 } 1388 IF_DEQUEUE(&ic->ic_mgtq, m0); 1389 1390 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1391 m0->m_pkthdr.rcvif = NULL; 1392 if (ic->ic_rawbpf != NULL) 1393 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0); 1394 if (ural_tx_mgt(sc, m0, ni) != 0) 1395 break; 1396 1397 } else { 1398 if (ic->ic_state != IEEE80211_S_RUN) 1399 break; 1400 IFQ_DEQUEUE(&ifp->if_snd, m0); 1401 if (m0 == NULL) 1402 break; 1403 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1404 IF_PREPEND(&ifp->if_snd, m0); 1405 ifp->if_flags |= IFF_OACTIVE; 1406 break; 1407 } 1408 1409 if (m0->m_len < sizeof (struct ether_header) && 1410 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1411 continue; 1412 1413 eh = mtod(m0, struct ether_header *); 1414 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1415 if (ni == NULL) { 1416 m_freem(m0); 1417 continue; 1418 } 1419 if (ifp->if_bpf != NULL) 1420 bpf_ops->bpf_mtap(ifp->if_bpf, m0); 1421 m0 = ieee80211_encap(ic, m0, ni); 1422 if (m0 == NULL) { 1423 ieee80211_free_node(ni); 1424 continue; 1425 } 1426 if (ic->ic_rawbpf != NULL) 1427 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0); 1428 if (ural_tx_data(sc, m0, ni) != 0) { 1429 ieee80211_free_node(ni); 1430 ifp->if_oerrors++; 1431 break; 1432 } 1433 } 1434 1435 sc->sc_tx_timer = 5; 1436 ifp->if_timer = 1; 1437 } 1438 } 1439 1440 Static void 1441 ural_watchdog(struct ifnet *ifp) 1442 { 1443 struct ural_softc *sc = ifp->if_softc; 1444 struct ieee80211com *ic = &sc->sc_ic; 1445 1446 ifp->if_timer = 0; 1447 1448 if (sc->sc_tx_timer > 0) { 1449 if (--sc->sc_tx_timer == 0) { 1450 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 1451 /*ural_init(sc); XXX needs a process context! */ 1452 ifp->if_oerrors++; 1453 return; 1454 } 1455 ifp->if_timer = 1; 1456 } 1457 1458 ieee80211_watchdog(ic); 1459 } 1460 1461 /* 1462 * This function allows for fast channel switching in monitor mode (used by 1463 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 1464 * generate a new beacon frame. 1465 */ 1466 Static int 1467 ural_reset(struct ifnet *ifp) 1468 { 1469 struct ural_softc *sc = ifp->if_softc; 1470 struct ieee80211com *ic = &sc->sc_ic; 1471 1472 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1473 return ENETRESET; 1474 1475 ural_set_chan(sc, ic->ic_curchan); 1476 1477 return 0; 1478 } 1479 1480 Static int 1481 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1482 { 1483 struct ural_softc *sc = ifp->if_softc; 1484 struct ieee80211com *ic = &sc->sc_ic; 1485 int s, error = 0; 1486 1487 s = splnet(); 1488 1489 switch (cmd) { 1490 case SIOCSIFFLAGS: 1491 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1492 break; 1493 /* XXX re-use ether_ioctl() */ 1494 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1495 case IFF_UP|IFF_RUNNING: 1496 ural_update_promisc(sc); 1497 break; 1498 case IFF_UP: 1499 ural_init(ifp); 1500 break; 1501 case IFF_RUNNING: 1502 ural_stop(ifp, 1); 1503 break; 1504 case 0: 1505 break; 1506 } 1507 break; 1508 1509 default: 1510 error = ieee80211_ioctl(ic, cmd, data); 1511 } 1512 1513 if (error == ENETRESET) { 1514 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1515 (IFF_UP | IFF_RUNNING)) 1516 ural_init(ifp); 1517 error = 0; 1518 } 1519 1520 splx(s); 1521 1522 return error; 1523 } 1524 1525 Static void 1526 ural_set_testmode(struct ural_softc *sc) 1527 { 1528 usb_device_request_t req; 1529 usbd_status error; 1530 1531 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1532 req.bRequest = RAL_VENDOR_REQUEST; 1533 USETW(req.wValue, 4); 1534 USETW(req.wIndex, 1); 1535 USETW(req.wLength, 0); 1536 1537 error = usbd_do_request(sc->sc_udev, &req, NULL); 1538 if (error != 0) { 1539 printf("%s: could not set test mode: %s\n", 1540 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1541 } 1542 } 1543 1544 Static void 1545 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1546 { 1547 usb_device_request_t req; 1548 usbd_status error; 1549 1550 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1551 req.bRequest = RAL_READ_EEPROM; 1552 USETW(req.wValue, 0); 1553 USETW(req.wIndex, addr); 1554 USETW(req.wLength, len); 1555 1556 error = usbd_do_request(sc->sc_udev, &req, buf); 1557 if (error != 0) { 1558 printf("%s: could not read EEPROM: %s\n", 1559 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1560 } 1561 } 1562 1563 Static uint16_t 1564 ural_read(struct ural_softc *sc, uint16_t reg) 1565 { 1566 usb_device_request_t req; 1567 usbd_status error; 1568 uint16_t val; 1569 1570 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1571 req.bRequest = RAL_READ_MAC; 1572 USETW(req.wValue, 0); 1573 USETW(req.wIndex, reg); 1574 USETW(req.wLength, sizeof (uint16_t)); 1575 1576 error = usbd_do_request(sc->sc_udev, &req, &val); 1577 if (error != 0) { 1578 printf("%s: could not read MAC register: %s\n", 1579 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1580 return 0; 1581 } 1582 1583 return le16toh(val); 1584 } 1585 1586 Static void 1587 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1588 { 1589 usb_device_request_t req; 1590 usbd_status error; 1591 1592 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1593 req.bRequest = RAL_READ_MULTI_MAC; 1594 USETW(req.wValue, 0); 1595 USETW(req.wIndex, reg); 1596 USETW(req.wLength, len); 1597 1598 error = usbd_do_request(sc->sc_udev, &req, buf); 1599 if (error != 0) { 1600 printf("%s: could not read MAC register: %s\n", 1601 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1602 } 1603 } 1604 1605 Static void 1606 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1607 { 1608 usb_device_request_t req; 1609 usbd_status error; 1610 1611 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1612 req.bRequest = RAL_WRITE_MAC; 1613 USETW(req.wValue, val); 1614 USETW(req.wIndex, reg); 1615 USETW(req.wLength, 0); 1616 1617 error = usbd_do_request(sc->sc_udev, &req, NULL); 1618 if (error != 0) { 1619 printf("%s: could not write MAC register: %s\n", 1620 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1621 } 1622 } 1623 1624 Static void 1625 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1626 { 1627 usb_device_request_t req; 1628 usbd_status error; 1629 1630 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1631 req.bRequest = RAL_WRITE_MULTI_MAC; 1632 USETW(req.wValue, 0); 1633 USETW(req.wIndex, reg); 1634 USETW(req.wLength, len); 1635 1636 error = usbd_do_request(sc->sc_udev, &req, buf); 1637 if (error != 0) { 1638 printf("%s: could not write MAC register: %s\n", 1639 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1640 } 1641 } 1642 1643 Static void 1644 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1645 { 1646 uint16_t tmp; 1647 int ntries; 1648 1649 for (ntries = 0; ntries < 5; ntries++) { 1650 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1651 break; 1652 } 1653 if (ntries == 5) { 1654 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); 1655 return; 1656 } 1657 1658 tmp = reg << 8 | val; 1659 ural_write(sc, RAL_PHY_CSR7, tmp); 1660 } 1661 1662 Static uint8_t 1663 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1664 { 1665 uint16_t val; 1666 int ntries; 1667 1668 val = RAL_BBP_WRITE | reg << 8; 1669 ural_write(sc, RAL_PHY_CSR7, val); 1670 1671 for (ntries = 0; ntries < 5; ntries++) { 1672 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1673 break; 1674 } 1675 if (ntries == 5) { 1676 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1677 return 0; 1678 } 1679 1680 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1681 } 1682 1683 Static void 1684 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1685 { 1686 uint32_t tmp; 1687 int ntries; 1688 1689 for (ntries = 0; ntries < 5; ntries++) { 1690 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1691 break; 1692 } 1693 if (ntries == 5) { 1694 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); 1695 return; 1696 } 1697 1698 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1699 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1700 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1701 1702 /* remember last written value in sc */ 1703 sc->rf_regs[reg] = val; 1704 1705 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 1706 } 1707 1708 Static void 1709 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1710 { 1711 struct ieee80211com *ic = &sc->sc_ic; 1712 uint8_t power, tmp; 1713 u_int i, chan; 1714 1715 chan = ieee80211_chan2ieee(ic, c); 1716 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1717 return; 1718 1719 if (IEEE80211_IS_CHAN_2GHZ(c)) 1720 power = min(sc->txpow[chan - 1], 31); 1721 else 1722 power = 31; 1723 1724 /* adjust txpower using ifconfig settings */ 1725 power -= (100 - ic->ic_txpowlimit) / 8; 1726 1727 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 1728 1729 switch (sc->rf_rev) { 1730 case RAL_RF_2522: 1731 ural_rf_write(sc, RAL_RF1, 0x00814); 1732 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1733 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1734 break; 1735 1736 case RAL_RF_2523: 1737 ural_rf_write(sc, RAL_RF1, 0x08804); 1738 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1739 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1740 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1741 break; 1742 1743 case RAL_RF_2524: 1744 ural_rf_write(sc, RAL_RF1, 0x0c808); 1745 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1747 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1748 break; 1749 1750 case RAL_RF_2525: 1751 ural_rf_write(sc, RAL_RF1, 0x08808); 1752 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1753 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1754 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1755 1756 ural_rf_write(sc, RAL_RF1, 0x08808); 1757 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1758 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1759 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1760 break; 1761 1762 case RAL_RF_2525E: 1763 ural_rf_write(sc, RAL_RF1, 0x08808); 1764 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1765 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1766 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1767 break; 1768 1769 case RAL_RF_2526: 1770 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1771 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1772 ural_rf_write(sc, RAL_RF1, 0x08804); 1773 1774 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1775 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1776 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1777 break; 1778 1779 /* dual-band RF */ 1780 case RAL_RF_5222: 1781 for (i = 0; ural_rf5222[i].chan != chan; i++); 1782 1783 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1784 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1785 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1786 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1787 break; 1788 } 1789 1790 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1791 ic->ic_state != IEEE80211_S_SCAN) { 1792 /* set Japan filter bit for channel 14 */ 1793 tmp = ural_bbp_read(sc, 70); 1794 1795 tmp &= ~RAL_JAPAN_FILTER; 1796 if (chan == 14) 1797 tmp |= RAL_JAPAN_FILTER; 1798 1799 ural_bbp_write(sc, 70, tmp); 1800 1801 /* clear CRC errors */ 1802 ural_read(sc, RAL_STA_CSR0); 1803 1804 DELAY(10000); 1805 ural_disable_rf_tune(sc); 1806 } 1807 } 1808 1809 /* 1810 * Disable RF auto-tuning. 1811 */ 1812 Static void 1813 ural_disable_rf_tune(struct ural_softc *sc) 1814 { 1815 uint32_t tmp; 1816 1817 if (sc->rf_rev != RAL_RF_2523) { 1818 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1819 ural_rf_write(sc, RAL_RF1, tmp); 1820 } 1821 1822 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1823 ural_rf_write(sc, RAL_RF3, tmp); 1824 1825 DPRINTFN(2, ("disabling RF autotune\n")); 1826 } 1827 1828 /* 1829 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1830 * synchronization. 1831 */ 1832 Static void 1833 ural_enable_tsf_sync(struct ural_softc *sc) 1834 { 1835 struct ieee80211com *ic = &sc->sc_ic; 1836 uint16_t logcwmin, preload, tmp; 1837 1838 /* first, disable TSF synchronization */ 1839 ural_write(sc, RAL_TXRX_CSR19, 0); 1840 1841 tmp = (16 * ic->ic_bss->ni_intval) << 4; 1842 ural_write(sc, RAL_TXRX_CSR18, tmp); 1843 1844 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1845 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1846 tmp = logcwmin << 12 | preload; 1847 ural_write(sc, RAL_TXRX_CSR20, tmp); 1848 1849 /* finally, enable TSF synchronization */ 1850 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1851 if (ic->ic_opmode == IEEE80211_M_STA) 1852 tmp |= RAL_ENABLE_TSF_SYNC(1); 1853 else 1854 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1855 ural_write(sc, RAL_TXRX_CSR19, tmp); 1856 1857 DPRINTF(("enabling TSF synchronization\n")); 1858 } 1859 1860 Static void 1861 ural_update_slot(struct ifnet *ifp) 1862 { 1863 struct ural_softc *sc = ifp->if_softc; 1864 struct ieee80211com *ic = &sc->sc_ic; 1865 uint16_t slottime, sifs, eifs; 1866 1867 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1868 1869 /* 1870 * These settings may sound a bit inconsistent but this is what the 1871 * reference driver does. 1872 */ 1873 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1874 sifs = 16 - RAL_RXTX_TURNAROUND; 1875 eifs = 364; 1876 } else { 1877 sifs = 10 - RAL_RXTX_TURNAROUND; 1878 eifs = 64; 1879 } 1880 1881 ural_write(sc, RAL_MAC_CSR10, slottime); 1882 ural_write(sc, RAL_MAC_CSR11, sifs); 1883 ural_write(sc, RAL_MAC_CSR12, eifs); 1884 } 1885 1886 Static void 1887 ural_set_txpreamble(struct ural_softc *sc) 1888 { 1889 uint16_t tmp; 1890 1891 tmp = ural_read(sc, RAL_TXRX_CSR10); 1892 1893 tmp &= ~RAL_SHORT_PREAMBLE; 1894 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1895 tmp |= RAL_SHORT_PREAMBLE; 1896 1897 ural_write(sc, RAL_TXRX_CSR10, tmp); 1898 } 1899 1900 Static void 1901 ural_set_basicrates(struct ural_softc *sc) 1902 { 1903 struct ieee80211com *ic = &sc->sc_ic; 1904 1905 /* update basic rate set */ 1906 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1907 /* 11b basic rates: 1, 2Mbps */ 1908 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1909 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { 1910 /* 11a basic rates: 6, 12, 24Mbps */ 1911 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1912 } else { 1913 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1914 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1915 } 1916 } 1917 1918 Static void 1919 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid) 1920 { 1921 uint16_t tmp; 1922 1923 tmp = bssid[0] | bssid[1] << 8; 1924 ural_write(sc, RAL_MAC_CSR5, tmp); 1925 1926 tmp = bssid[2] | bssid[3] << 8; 1927 ural_write(sc, RAL_MAC_CSR6, tmp); 1928 1929 tmp = bssid[4] | bssid[5] << 8; 1930 ural_write(sc, RAL_MAC_CSR7, tmp); 1931 1932 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); 1933 } 1934 1935 Static void 1936 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1937 { 1938 uint16_t tmp; 1939 1940 tmp = addr[0] | addr[1] << 8; 1941 ural_write(sc, RAL_MAC_CSR2, tmp); 1942 1943 tmp = addr[2] | addr[3] << 8; 1944 ural_write(sc, RAL_MAC_CSR3, tmp); 1945 1946 tmp = addr[4] | addr[5] << 8; 1947 ural_write(sc, RAL_MAC_CSR4, tmp); 1948 1949 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); 1950 } 1951 1952 Static void 1953 ural_update_promisc(struct ural_softc *sc) 1954 { 1955 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1956 uint32_t tmp; 1957 1958 tmp = ural_read(sc, RAL_TXRX_CSR2); 1959 1960 tmp &= ~RAL_DROP_NOT_TO_ME; 1961 if (!(ifp->if_flags & IFF_PROMISC)) 1962 tmp |= RAL_DROP_NOT_TO_ME; 1963 1964 ural_write(sc, RAL_TXRX_CSR2, tmp); 1965 1966 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1967 "entering" : "leaving")); 1968 } 1969 1970 Static const char * 1971 ural_get_rf(int rev) 1972 { 1973 switch (rev) { 1974 case RAL_RF_2522: return "RT2522"; 1975 case RAL_RF_2523: return "RT2523"; 1976 case RAL_RF_2524: return "RT2524"; 1977 case RAL_RF_2525: return "RT2525"; 1978 case RAL_RF_2525E: return "RT2525e"; 1979 case RAL_RF_2526: return "RT2526"; 1980 case RAL_RF_5222: return "RT5222"; 1981 default: return "unknown"; 1982 } 1983 } 1984 1985 Static void 1986 ural_read_eeprom(struct ural_softc *sc) 1987 { 1988 struct ieee80211com *ic = &sc->sc_ic; 1989 uint16_t val; 1990 1991 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1992 val = le16toh(val); 1993 sc->rf_rev = (val >> 11) & 0x7; 1994 sc->hw_radio = (val >> 10) & 0x1; 1995 sc->led_mode = (val >> 6) & 0x7; 1996 sc->rx_ant = (val >> 4) & 0x3; 1997 sc->tx_ant = (val >> 2) & 0x3; 1998 sc->nb_ant = val & 0x3; 1999 2000 /* read MAC address */ 2001 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); 2002 2003 /* read default values for BBP registers */ 2004 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2005 2006 /* read Tx power for all b/g channels */ 2007 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 2008 } 2009 2010 Static int 2011 ural_bbp_init(struct ural_softc *sc) 2012 { 2013 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2014 int i, ntries; 2015 2016 /* wait for BBP to be ready */ 2017 for (ntries = 0; ntries < 100; ntries++) { 2018 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 2019 break; 2020 DELAY(1000); 2021 } 2022 if (ntries == 100) { 2023 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev)); 2024 return EIO; 2025 } 2026 2027 /* initialize BBP registers to default values */ 2028 for (i = 0; i < N(ural_def_bbp); i++) 2029 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 2030 2031 #if 0 2032 /* initialize BBP registers to values stored in EEPROM */ 2033 for (i = 0; i < 16; i++) { 2034 if (sc->bbp_prom[i].reg == 0xff) 2035 continue; 2036 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2037 } 2038 #endif 2039 2040 return 0; 2041 #undef N 2042 } 2043 2044 Static void 2045 ural_set_txantenna(struct ural_softc *sc, int antenna) 2046 { 2047 uint16_t tmp; 2048 uint8_t tx; 2049 2050 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 2051 if (antenna == 1) 2052 tx |= RAL_BBP_ANTA; 2053 else if (antenna == 2) 2054 tx |= RAL_BBP_ANTB; 2055 else 2056 tx |= RAL_BBP_DIVERSITY; 2057 2058 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2059 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2060 sc->rf_rev == RAL_RF_5222) 2061 tx |= RAL_BBP_FLIPIQ; 2062 2063 ural_bbp_write(sc, RAL_BBP_TX, tx); 2064 2065 /* update values in PHY_CSR5 and PHY_CSR6 */ 2066 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2067 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2068 2069 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2070 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2071 } 2072 2073 Static void 2074 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2075 { 2076 uint8_t rx; 2077 2078 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2079 if (antenna == 1) 2080 rx |= RAL_BBP_ANTA; 2081 else if (antenna == 2) 2082 rx |= RAL_BBP_ANTB; 2083 else 2084 rx |= RAL_BBP_DIVERSITY; 2085 2086 /* need to force no I/Q flip for RF 2525e and 2526 */ 2087 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2088 rx &= ~RAL_BBP_FLIPIQ; 2089 2090 ural_bbp_write(sc, RAL_BBP_RX, rx); 2091 } 2092 2093 Static int 2094 ural_init(struct ifnet *ifp) 2095 { 2096 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2097 struct ural_softc *sc = ifp->if_softc; 2098 struct ieee80211com *ic = &sc->sc_ic; 2099 struct ieee80211_key *wk; 2100 struct ural_rx_data *data; 2101 uint16_t tmp; 2102 usbd_status error; 2103 int i, ntries; 2104 2105 ural_set_testmode(sc); 2106 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2107 2108 ural_stop(ifp, 0); 2109 2110 /* initialize MAC registers to default values */ 2111 for (i = 0; i < N(ural_def_mac); i++) 2112 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2113 2114 /* wait for BBP and RF to wake up (this can take a long time!) */ 2115 for (ntries = 0; ntries < 100; ntries++) { 2116 tmp = ural_read(sc, RAL_MAC_CSR17); 2117 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2118 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2119 break; 2120 DELAY(1000); 2121 } 2122 if (ntries == 100) { 2123 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2124 USBDEVNAME(sc->sc_dev)); 2125 error = EIO; 2126 goto fail; 2127 } 2128 2129 /* we're ready! */ 2130 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2131 2132 /* set basic rate set (will be updated later) */ 2133 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2134 2135 error = ural_bbp_init(sc); 2136 if (error != 0) 2137 goto fail; 2138 2139 /* set default BSS channel */ 2140 ural_set_chan(sc, ic->ic_curchan); 2141 2142 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2143 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2144 2145 ural_set_txantenna(sc, sc->tx_ant); 2146 ural_set_rxantenna(sc, sc->rx_ant); 2147 2148 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2149 ural_set_macaddr(sc, ic->ic_myaddr); 2150 2151 /* 2152 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). 2153 */ 2154 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2155 wk = &ic->ic_crypto.cs_nw_keys[i]; 2156 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE + 2157 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE); 2158 } 2159 2160 /* 2161 * Allocate xfer for AMRR statistics requests. 2162 */ 2163 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2164 if (sc->amrr_xfer == NULL) { 2165 printf("%s: could not allocate AMRR xfer\n", 2166 USBDEVNAME(sc->sc_dev)); 2167 goto fail; 2168 } 2169 2170 /* 2171 * Open Tx and Rx USB bulk pipes. 2172 */ 2173 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2174 &sc->sc_tx_pipeh); 2175 if (error != 0) { 2176 printf("%s: could not open Tx pipe: %s\n", 2177 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2178 goto fail; 2179 } 2180 2181 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2182 &sc->sc_rx_pipeh); 2183 if (error != 0) { 2184 printf("%s: could not open Rx pipe: %s\n", 2185 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2186 goto fail; 2187 } 2188 2189 /* 2190 * Allocate Tx and Rx xfer queues. 2191 */ 2192 error = ural_alloc_tx_list(sc); 2193 if (error != 0) { 2194 printf("%s: could not allocate Tx list\n", 2195 USBDEVNAME(sc->sc_dev)); 2196 goto fail; 2197 } 2198 2199 error = ural_alloc_rx_list(sc); 2200 if (error != 0) { 2201 printf("%s: could not allocate Rx list\n", 2202 USBDEVNAME(sc->sc_dev)); 2203 goto fail; 2204 } 2205 2206 /* 2207 * Start up the receive pipe. 2208 */ 2209 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 2210 data = &sc->rx_data[i]; 2211 2212 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2213 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 2214 usbd_transfer(data->xfer); 2215 } 2216 2217 /* kick Rx */ 2218 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; 2219 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2220 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; 2221 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2222 tmp |= RAL_DROP_TODS; 2223 if (!(ifp->if_flags & IFF_PROMISC)) 2224 tmp |= RAL_DROP_NOT_TO_ME; 2225 } 2226 ural_write(sc, RAL_TXRX_CSR2, tmp); 2227 2228 ifp->if_flags &= ~IFF_OACTIVE; 2229 ifp->if_flags |= IFF_RUNNING; 2230 2231 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2232 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2233 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2234 } else 2235 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2236 2237 return 0; 2238 2239 fail: ural_stop(ifp, 1); 2240 return error; 2241 #undef N 2242 } 2243 2244 Static void 2245 ural_stop(struct ifnet *ifp, int disable) 2246 { 2247 struct ural_softc *sc = ifp->if_softc; 2248 struct ieee80211com *ic = &sc->sc_ic; 2249 2250 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2251 2252 sc->sc_tx_timer = 0; 2253 ifp->if_timer = 0; 2254 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2255 2256 /* disable Rx */ 2257 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2258 2259 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2260 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2261 ural_write(sc, RAL_MAC_CSR1, 0); 2262 2263 if (sc->amrr_xfer != NULL) { 2264 usbd_free_xfer(sc->amrr_xfer); 2265 sc->amrr_xfer = NULL; 2266 } 2267 2268 if (sc->sc_rx_pipeh != NULL) { 2269 usbd_abort_pipe(sc->sc_rx_pipeh); 2270 usbd_close_pipe(sc->sc_rx_pipeh); 2271 sc->sc_rx_pipeh = NULL; 2272 } 2273 2274 if (sc->sc_tx_pipeh != NULL) { 2275 usbd_abort_pipe(sc->sc_tx_pipeh); 2276 usbd_close_pipe(sc->sc_tx_pipeh); 2277 sc->sc_tx_pipeh = NULL; 2278 } 2279 2280 ural_free_rx_list(sc); 2281 ural_free_tx_list(sc); 2282 } 2283 2284 int 2285 ural_activate(device_ptr_t self, enum devact act) 2286 { 2287 struct ural_softc *sc = device_private(self); 2288 2289 switch (act) { 2290 case DVACT_DEACTIVATE: 2291 if_deactivate(&sc->sc_if); 2292 return 0; 2293 default: 2294 return EOPNOTSUPP; 2295 } 2296 } 2297 2298 Static void 2299 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) 2300 { 2301 int i; 2302 2303 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2304 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2305 2306 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2307 2308 /* set rate to some reasonable initial value */ 2309 for (i = ni->ni_rates.rs_nrates - 1; 2310 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2311 i--); 2312 ni->ni_txrate = i; 2313 2314 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2315 } 2316 2317 Static void 2318 ural_amrr_timeout(void *arg) 2319 { 2320 struct ural_softc *sc = (struct ural_softc *)arg; 2321 usb_device_request_t req; 2322 int s; 2323 2324 s = splusb(); 2325 2326 /* 2327 * Asynchronously read statistic registers (cleared by read). 2328 */ 2329 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2330 req.bRequest = RAL_READ_MULTI_MAC; 2331 USETW(req.wValue, 0); 2332 USETW(req.wIndex, RAL_STA_CSR0); 2333 USETW(req.wLength, sizeof sc->sta); 2334 2335 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2336 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2337 ural_amrr_update); 2338 (void)usbd_transfer(sc->amrr_xfer); 2339 2340 splx(s); 2341 } 2342 2343 Static void 2344 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2345 usbd_status status) 2346 { 2347 struct ural_softc *sc = (struct ural_softc *)priv; 2348 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2349 2350 if (status != USBD_NORMAL_COMPLETION) { 2351 printf("%s: could not retrieve Tx statistics - " 2352 "cancelling automatic rate control\n", 2353 USBDEVNAME(sc->sc_dev)); 2354 return; 2355 } 2356 2357 /* count TX retry-fail as Tx errors */ 2358 ifp->if_oerrors += sc->sta[9]; 2359 2360 sc->amn.amn_retrycnt = 2361 sc->sta[7] + /* TX one-retry ok count */ 2362 sc->sta[8] + /* TX more-retry ok count */ 2363 sc->sta[9]; /* TX retry-fail count */ 2364 2365 sc->amn.amn_txcnt = 2366 sc->amn.amn_retrycnt + 2367 sc->sta[6]; /* TX no-retry ok count */ 2368 2369 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2370 2371 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2372 } 2373