xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: if_ural.c,v 1.52 2017/07/28 13:23:01 skrll Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.52 2017/07/28 13:23:01 skrll Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72 
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
85 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
86 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
87 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
91 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
92 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
93 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
95 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
98 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
99 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
101 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
102 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
103 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
105 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
106 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
107 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
108 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
109 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111 
112 Static int		ural_alloc_tx_list(struct ural_softc *);
113 Static void		ural_free_tx_list(struct ural_softc *);
114 Static int		ural_alloc_rx_list(struct ural_softc *);
115 Static void		ural_free_rx_list(struct ural_softc *);
116 Static int		ural_media_change(struct ifnet *);
117 Static void		ural_next_scan(void *);
118 Static void		ural_task(void *);
119 Static int		ural_newstate(struct ieee80211com *,
120 			    enum ieee80211_state, int);
121 Static int		ural_rxrate(struct ural_rx_desc *);
122 Static void		ural_txeof(struct usbd_xfer *, void *,
123 			    usbd_status);
124 Static void		ural_rxeof(struct usbd_xfer *, void *,
125 			    usbd_status);
126 Static int		ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t		ural_txtime(int, int, uint32_t);
128 Static uint8_t		ural_plcp_signal(int);
129 Static void		ural_setup_tx_desc(struct ural_softc *,
130 			    struct ural_tx_desc *, uint32_t, int, int);
131 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 			    struct ieee80211_node *);
133 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 			    struct ieee80211_node *);
135 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
136 			    struct ieee80211_node *);
137 Static void		ural_start(struct ifnet *);
138 Static void		ural_watchdog(struct ifnet *);
139 Static int		ural_reset(struct ifnet *);
140 Static int		ural_ioctl(struct ifnet *, u_long, void *);
141 Static void		ural_set_testmode(struct ural_softc *);
142 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
145 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void		ural_set_chan(struct ural_softc *,
154 			    struct ieee80211_channel *);
155 Static void		ural_disable_rf_tune(struct ural_softc *);
156 Static void		ural_enable_tsf_sync(struct ural_softc *);
157 Static void		ural_update_slot(struct ifnet *);
158 Static void		ural_set_txpreamble(struct ural_softc *);
159 Static void		ural_set_basicrates(struct ural_softc *);
160 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void		ural_update_promisc(struct ural_softc *);
163 Static const char	*ural_get_rf(int);
164 Static void		ural_read_eeprom(struct ural_softc *);
165 Static int		ural_bbp_init(struct ural_softc *);
166 Static void		ural_set_txantenna(struct ural_softc *, int);
167 Static void		ural_set_rxantenna(struct ural_softc *, int);
168 Static int		ural_init(struct ifnet *);
169 Static void		ural_stop(struct ifnet *, int);
170 Static void		ural_amrr_start(struct ural_softc *,
171 			    struct ieee80211_node *);
172 Static void		ural_amrr_timeout(void *);
173 Static void		ural_amrr_update(struct usbd_xfer *, void *,
174 			    usbd_status status);
175 
176 /*
177  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
178  */
179 static const struct ieee80211_rateset ural_rateset_11a =
180 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
181 
182 static const struct ieee80211_rateset ural_rateset_11b =
183 	{ 4, { 2, 4, 11, 22 } };
184 
185 static const struct ieee80211_rateset ural_rateset_11g =
186 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
187 
188 /*
189  * Default values for MAC registers; values taken from the reference driver.
190  */
191 static const struct {
192 	uint16_t	reg;
193 	uint16_t	val;
194 } ural_def_mac[] = {
195 	{ RAL_TXRX_CSR5,  0x8c8d },
196 	{ RAL_TXRX_CSR6,  0x8b8a },
197 	{ RAL_TXRX_CSR7,  0x8687 },
198 	{ RAL_TXRX_CSR8,  0x0085 },
199 	{ RAL_MAC_CSR13,  0x1111 },
200 	{ RAL_MAC_CSR14,  0x1e11 },
201 	{ RAL_TXRX_CSR21, 0xe78f },
202 	{ RAL_MAC_CSR9,   0xff1d },
203 	{ RAL_MAC_CSR11,  0x0002 },
204 	{ RAL_MAC_CSR22,  0x0053 },
205 	{ RAL_MAC_CSR15,  0x0000 },
206 	{ RAL_MAC_CSR8,   0x0780 },
207 	{ RAL_TXRX_CSR19, 0x0000 },
208 	{ RAL_TXRX_CSR18, 0x005a },
209 	{ RAL_PHY_CSR2,   0x0000 },
210 	{ RAL_TXRX_CSR0,  0x1ec0 },
211 	{ RAL_PHY_CSR4,   0x000f }
212 };
213 
214 /*
215  * Default values for BBP registers; values taken from the reference driver.
216  */
217 static const struct {
218 	uint8_t	reg;
219 	uint8_t	val;
220 } ural_def_bbp[] = {
221 	{  3, 0x02 },
222 	{  4, 0x19 },
223 	{ 14, 0x1c },
224 	{ 15, 0x30 },
225 	{ 16, 0xac },
226 	{ 17, 0x48 },
227 	{ 18, 0x18 },
228 	{ 19, 0xff },
229 	{ 20, 0x1e },
230 	{ 21, 0x08 },
231 	{ 22, 0x08 },
232 	{ 23, 0x08 },
233 	{ 24, 0x80 },
234 	{ 25, 0x50 },
235 	{ 26, 0x08 },
236 	{ 27, 0x23 },
237 	{ 30, 0x10 },
238 	{ 31, 0x2b },
239 	{ 32, 0xb9 },
240 	{ 34, 0x12 },
241 	{ 35, 0x50 },
242 	{ 39, 0xc4 },
243 	{ 40, 0x02 },
244 	{ 41, 0x60 },
245 	{ 53, 0x10 },
246 	{ 54, 0x18 },
247 	{ 56, 0x08 },
248 	{ 57, 0x10 },
249 	{ 58, 0x08 },
250 	{ 61, 0x60 },
251 	{ 62, 0x10 },
252 	{ 75, 0xff }
253 };
254 
255 /*
256  * Default values for RF register R2 indexed by channel numbers.
257  */
258 static const uint32_t ural_rf2522_r2[] = {
259 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
260 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
261 };
262 
263 static const uint32_t ural_rf2523_r2[] = {
264 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
265 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
266 };
267 
268 static const uint32_t ural_rf2524_r2[] = {
269 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
270 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
271 };
272 
273 static const uint32_t ural_rf2525_r2[] = {
274 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
275 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
276 };
277 
278 static const uint32_t ural_rf2525_hi_r2[] = {
279 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
280 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
281 };
282 
283 static const uint32_t ural_rf2525e_r2[] = {
284 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
285 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
286 };
287 
288 static const uint32_t ural_rf2526_hi_r2[] = {
289 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
290 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
291 };
292 
293 static const uint32_t ural_rf2526_r2[] = {
294 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
295 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
296 };
297 
298 /*
299  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
300  * values taken from the reference driver.
301  */
302 static const struct {
303 	uint8_t		chan;
304 	uint32_t	r1;
305 	uint32_t	r2;
306 	uint32_t	r4;
307 } ural_rf5222[] = {
308 	{   1, 0x08808, 0x0044d, 0x00282 },
309 	{   2, 0x08808, 0x0044e, 0x00282 },
310 	{   3, 0x08808, 0x0044f, 0x00282 },
311 	{   4, 0x08808, 0x00460, 0x00282 },
312 	{   5, 0x08808, 0x00461, 0x00282 },
313 	{   6, 0x08808, 0x00462, 0x00282 },
314 	{   7, 0x08808, 0x00463, 0x00282 },
315 	{   8, 0x08808, 0x00464, 0x00282 },
316 	{   9, 0x08808, 0x00465, 0x00282 },
317 	{  10, 0x08808, 0x00466, 0x00282 },
318 	{  11, 0x08808, 0x00467, 0x00282 },
319 	{  12, 0x08808, 0x00468, 0x00282 },
320 	{  13, 0x08808, 0x00469, 0x00282 },
321 	{  14, 0x08808, 0x0046b, 0x00286 },
322 
323 	{  36, 0x08804, 0x06225, 0x00287 },
324 	{  40, 0x08804, 0x06226, 0x00287 },
325 	{  44, 0x08804, 0x06227, 0x00287 },
326 	{  48, 0x08804, 0x06228, 0x00287 },
327 	{  52, 0x08804, 0x06229, 0x00287 },
328 	{  56, 0x08804, 0x0622a, 0x00287 },
329 	{  60, 0x08804, 0x0622b, 0x00287 },
330 	{  64, 0x08804, 0x0622c, 0x00287 },
331 
332 	{ 100, 0x08804, 0x02200, 0x00283 },
333 	{ 104, 0x08804, 0x02201, 0x00283 },
334 	{ 108, 0x08804, 0x02202, 0x00283 },
335 	{ 112, 0x08804, 0x02203, 0x00283 },
336 	{ 116, 0x08804, 0x02204, 0x00283 },
337 	{ 120, 0x08804, 0x02205, 0x00283 },
338 	{ 124, 0x08804, 0x02206, 0x00283 },
339 	{ 128, 0x08804, 0x02207, 0x00283 },
340 	{ 132, 0x08804, 0x02208, 0x00283 },
341 	{ 136, 0x08804, 0x02209, 0x00283 },
342 	{ 140, 0x08804, 0x0220a, 0x00283 },
343 
344 	{ 149, 0x08808, 0x02429, 0x00281 },
345 	{ 153, 0x08808, 0x0242b, 0x00281 },
346 	{ 157, 0x08808, 0x0242d, 0x00281 },
347 	{ 161, 0x08808, 0x0242f, 0x00281 }
348 };
349 
350 int	ural_match(device_t, cfdata_t, void *);
351 void	ural_attach(device_t, device_t, void *);
352 int	ural_detach(device_t, int);
353 int	ural_activate(device_t, enum devact);
354 extern struct cfdriver ural_cd;
355 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
356     ural_detach, ural_activate);
357 
358 int
359 ural_match(device_t parent, cfdata_t match, void *aux)
360 {
361 	struct usb_attach_arg *uaa = aux;
362 
363 	return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
364 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
365 }
366 
367 void
368 ural_attach(device_t parent, device_t self, void *aux)
369 {
370 	struct ural_softc *sc = device_private(self);
371 	struct usb_attach_arg *uaa = aux;
372 	struct ieee80211com *ic = &sc->sc_ic;
373 	struct ifnet *ifp = &sc->sc_if;
374 	usb_interface_descriptor_t *id;
375 	usb_endpoint_descriptor_t *ed;
376 	usbd_status error;
377 	char *devinfop;
378 	int i;
379 
380 	sc->sc_dev = self;
381 	sc->sc_udev = uaa->uaa_device;
382 
383 	aprint_naive("\n");
384 	aprint_normal("\n");
385 
386 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
387 	aprint_normal_dev(self, "%s\n", devinfop);
388 	usbd_devinfo_free(devinfop);
389 
390 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
391 	if (error != 0) {
392 		aprint_error_dev(self, "failed to set configuration"
393 		    ", err=%s\n", usbd_errstr(error));
394 		return;
395 	}
396 
397 	/* get the first interface handle */
398 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
399 	    &sc->sc_iface);
400 	if (error != 0) {
401 		aprint_error_dev(self, "could not get interface handle\n");
402 		return;
403 	}
404 
405 	/*
406 	 * Find endpoints.
407 	 */
408 	id = usbd_get_interface_descriptor(sc->sc_iface);
409 
410 	sc->sc_rx_no = sc->sc_tx_no = -1;
411 	for (i = 0; i < id->bNumEndpoints; i++) {
412 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
413 		if (ed == NULL) {
414 			aprint_error_dev(self,
415 			    "no endpoint descriptor for %d\n", i);
416 			return;
417 		}
418 
419 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
420 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
421 			sc->sc_rx_no = ed->bEndpointAddress;
422 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
423 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424 			sc->sc_tx_no = ed->bEndpointAddress;
425 	}
426 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
427 		aprint_error_dev(self, "missing endpoint\n");
428 		return;
429 	}
430 
431 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
432 	callout_init(&sc->sc_scan_ch, 0);
433 	sc->amrr.amrr_min_success_threshold = 1;
434 	sc->amrr.amrr_max_success_threshold = 15;
435 	callout_init(&sc->sc_amrr_ch, 0);
436 
437 	/* retrieve RT2570 rev. no */
438 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
439 
440 	/* retrieve MAC address and various other things from EEPROM */
441 	ural_read_eeprom(sc);
442 
443 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
444 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
445 
446 	ifp->if_softc = sc;
447 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
448 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 	ifp->if_init = ural_init;
450 	ifp->if_ioctl = ural_ioctl;
451 	ifp->if_start = ural_start;
452 	ifp->if_watchdog = ural_watchdog;
453 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
454 	IFQ_SET_READY(&ifp->if_snd);
455 
456 	ic->ic_ifp = ifp;
457 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
458 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
459 	ic->ic_state = IEEE80211_S_INIT;
460 
461 	/* set device capabilities */
462 	ic->ic_caps =
463 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
464 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
465 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
466 	    IEEE80211_C_TXPMGT |	/* tx power management */
467 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
468 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
469 	    IEEE80211_C_WPA;		/* 802.11i */
470 
471 	if (sc->rf_rev == RAL_RF_5222) {
472 		/* set supported .11a rates */
473 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
474 
475 		/* set supported .11a channels */
476 		for (i = 36; i <= 64; i += 4) {
477 			ic->ic_channels[i].ic_freq =
478 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 		}
481 		for (i = 100; i <= 140; i += 4) {
482 			ic->ic_channels[i].ic_freq =
483 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 		}
486 		for (i = 149; i <= 161; i += 4) {
487 			ic->ic_channels[i].ic_freq =
488 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
489 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
490 		}
491 	}
492 
493 	/* set supported .11b and .11g rates */
494 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
495 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
496 
497 	/* set supported .11b and .11g channels (1 through 14) */
498 	for (i = 1; i <= 14; i++) {
499 		ic->ic_channels[i].ic_freq =
500 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
501 		ic->ic_channels[i].ic_flags =
502 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
503 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
504 	}
505 
506 	if_attach(ifp);
507 	ieee80211_ifattach(ic);
508 	ic->ic_reset = ural_reset;
509 
510 	/* override state transition machine */
511 	sc->sc_newstate = ic->ic_newstate;
512 	ic->ic_newstate = ural_newstate;
513 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
514 
515 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
516 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
517 
518 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
519 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
520 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
521 
522 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
523 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
524 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
525 
526 	ieee80211_announce(ic);
527 
528 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
529 
530 	if (!pmf_device_register(self, NULL, NULL))
531 		aprint_error_dev(self, "couldn't establish power handler\n");
532 
533 	return;
534 }
535 
536 int
537 ural_detach(device_t self, int flags)
538 {
539 	struct ural_softc *sc = device_private(self);
540 	struct ieee80211com *ic = &sc->sc_ic;
541 	struct ifnet *ifp = &sc->sc_if;
542 	int s;
543 
544 	pmf_device_deregister(self);
545 
546 	s = splusb();
547 
548 	ural_stop(ifp, 1);
549 	usb_rem_task(sc->sc_udev, &sc->sc_task);
550 	callout_stop(&sc->sc_scan_ch);
551 	callout_stop(&sc->sc_amrr_ch);
552 
553 	bpf_detach(ifp);
554 	ieee80211_ifdetach(ic);
555 	if_detach(ifp);
556 
557 	splx(s);
558 
559 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
560 
561 	return 0;
562 }
563 
564 Static int
565 ural_alloc_tx_list(struct ural_softc *sc)
566 {
567 	struct ural_tx_data *data;
568 	int i, error;
569 
570 	sc->tx_queued = 0;
571 
572 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
573 		data = &sc->tx_data[i];
574 
575 		data->sc = sc;
576 		error = usbd_create_xfer(sc->sc_tx_pipeh,
577 		    RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
578 		    &data->xfer);
579 		if (error) {
580 			printf("%s: could not allocate tx xfer\n",
581 			    device_xname(sc->sc_dev));
582 			goto fail;
583 		}
584 
585 		data->buf = usbd_get_buffer(data->xfer);
586 	}
587 
588 	return 0;
589 
590 fail:	ural_free_tx_list(sc);
591 	return error;
592 }
593 
594 Static void
595 ural_free_tx_list(struct ural_softc *sc)
596 {
597 	struct ural_tx_data *data;
598 	int i;
599 
600 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
601 		data = &sc->tx_data[i];
602 
603 		if (data->xfer != NULL) {
604 			usbd_destroy_xfer(data->xfer);
605 			data->xfer = NULL;
606 		}
607 
608 		if (data->ni != NULL) {
609 			ieee80211_free_node(data->ni);
610 			data->ni = NULL;
611 		}
612 	}
613 }
614 
615 Static int
616 ural_alloc_rx_list(struct ural_softc *sc)
617 {
618 	struct ural_rx_data *data;
619 	int i, error;
620 
621 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
622 		data = &sc->rx_data[i];
623 
624 		data->sc = sc;
625 
626 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
627 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
628 		if (error) {
629 			printf("%s: could not allocate rx xfer\n",
630 			    device_xname(sc->sc_dev));
631 			goto fail;
632 		}
633 
634 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635 		if (data->m == NULL) {
636 			printf("%s: could not allocate rx mbuf\n",
637 			    device_xname(sc->sc_dev));
638 			error = ENOMEM;
639 			goto fail;
640 		}
641 
642 		MCLGET(data->m, M_DONTWAIT);
643 		if (!(data->m->m_flags & M_EXT)) {
644 			printf("%s: could not allocate rx mbuf cluster\n",
645 			    device_xname(sc->sc_dev));
646 			error = ENOMEM;
647 			goto fail;
648 		}
649 
650 		data->buf = mtod(data->m, uint8_t *);
651 	}
652 
653 	return 0;
654 
655 fail:	ural_free_rx_list(sc);
656 	return error;
657 }
658 
659 Static void
660 ural_free_rx_list(struct ural_softc *sc)
661 {
662 	struct ural_rx_data *data;
663 	int i;
664 
665 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
666 		data = &sc->rx_data[i];
667 
668 		if (data->xfer != NULL) {
669 			usbd_destroy_xfer(data->xfer);
670 			data->xfer = NULL;
671 		}
672 
673 		if (data->m != NULL) {
674 			m_freem(data->m);
675 			data->m = NULL;
676 		}
677 	}
678 }
679 
680 Static int
681 ural_media_change(struct ifnet *ifp)
682 {
683 	int error;
684 
685 	error = ieee80211_media_change(ifp);
686 	if (error != ENETRESET)
687 		return error;
688 
689 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 		ural_init(ifp);
691 
692 	return 0;
693 }
694 
695 /*
696  * This function is called periodically (every 200ms) during scanning to
697  * switch from one channel to another.
698  */
699 Static void
700 ural_next_scan(void *arg)
701 {
702 	struct ural_softc *sc = arg;
703 	struct ieee80211com *ic = &sc->sc_ic;
704 
705 	if (ic->ic_state == IEEE80211_S_SCAN)
706 		ieee80211_next_scan(ic);
707 }
708 
709 Static void
710 ural_task(void *arg)
711 {
712 	struct ural_softc *sc = arg;
713 	struct ieee80211com *ic = &sc->sc_ic;
714 	enum ieee80211_state ostate;
715 	struct ieee80211_node *ni;
716 	struct mbuf *m;
717 
718 	ostate = ic->ic_state;
719 
720 	switch (sc->sc_state) {
721 	case IEEE80211_S_INIT:
722 		if (ostate == IEEE80211_S_RUN) {
723 			/* abort TSF synchronization */
724 			ural_write(sc, RAL_TXRX_CSR19, 0);
725 
726 			/* force tx led to stop blinking */
727 			ural_write(sc, RAL_MAC_CSR20, 0);
728 		}
729 		break;
730 
731 	case IEEE80211_S_SCAN:
732 		ural_set_chan(sc, ic->ic_curchan);
733 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
734 		break;
735 
736 	case IEEE80211_S_AUTH:
737 		ural_set_chan(sc, ic->ic_curchan);
738 		break;
739 
740 	case IEEE80211_S_ASSOC:
741 		ural_set_chan(sc, ic->ic_curchan);
742 		break;
743 
744 	case IEEE80211_S_RUN:
745 		ural_set_chan(sc, ic->ic_curchan);
746 
747 		ni = ic->ic_bss;
748 
749 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
750 			ural_update_slot(ic->ic_ifp);
751 			ural_set_txpreamble(sc);
752 			ural_set_basicrates(sc);
753 			ural_set_bssid(sc, ni->ni_bssid);
754 		}
755 
756 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
757 		    ic->ic_opmode == IEEE80211_M_IBSS) {
758 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
759 			if (m == NULL) {
760 				printf("%s: could not allocate beacon\n",
761 				    device_xname(sc->sc_dev));
762 				return;
763 			}
764 
765 			if (ural_tx_bcn(sc, m, ni) != 0) {
766 				m_freem(m);
767 				printf("%s: could not send beacon\n",
768 				    device_xname(sc->sc_dev));
769 				return;
770 			}
771 
772 			/* beacon is no longer needed */
773 			m_freem(m);
774 		}
775 
776 		/* make tx led blink on tx (controlled by ASIC) */
777 		ural_write(sc, RAL_MAC_CSR20, 1);
778 
779 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
780 			ural_enable_tsf_sync(sc);
781 
782 		/* enable automatic rate adaptation in STA mode */
783 		if (ic->ic_opmode == IEEE80211_M_STA &&
784 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
785 			ural_amrr_start(sc, ni);
786 
787 		break;
788 	}
789 
790 	sc->sc_newstate(ic, sc->sc_state, -1);
791 }
792 
793 Static int
794 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
795     int arg)
796 {
797 	struct ural_softc *sc = ic->ic_ifp->if_softc;
798 
799 	usb_rem_task(sc->sc_udev, &sc->sc_task);
800 	callout_stop(&sc->sc_scan_ch);
801 	callout_stop(&sc->sc_amrr_ch);
802 
803 	/* do it in a process context */
804 	sc->sc_state = nstate;
805 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
806 
807 	return 0;
808 }
809 
810 /* quickly determine if a given rate is CCK or OFDM */
811 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
812 
813 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
814 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
815 
816 #define RAL_SIFS		10	/* us */
817 
818 #define RAL_RXTX_TURNAROUND	5	/* us */
819 
820 /*
821  * This function is only used by the Rx radiotap code.
822  */
823 Static int
824 ural_rxrate(struct ural_rx_desc *desc)
825 {
826 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
827 		/* reverse function of ural_plcp_signal */
828 		switch (desc->rate) {
829 		case 0xb:	return 12;
830 		case 0xf:	return 18;
831 		case 0xa:	return 24;
832 		case 0xe:	return 36;
833 		case 0x9:	return 48;
834 		case 0xd:	return 72;
835 		case 0x8:	return 96;
836 		case 0xc:	return 108;
837 		}
838 	} else {
839 		if (desc->rate == 10)
840 			return 2;
841 		if (desc->rate == 20)
842 			return 4;
843 		if (desc->rate == 55)
844 			return 11;
845 		if (desc->rate == 110)
846 			return 22;
847 	}
848 	return 2;	/* should not get there */
849 }
850 
851 Static void
852 ural_txeof(struct usbd_xfer *xfer, void * priv,
853     usbd_status status)
854 {
855 	struct ural_tx_data *data = priv;
856 	struct ural_softc *sc = data->sc;
857 	struct ifnet *ifp = &sc->sc_if;
858 	int s;
859 
860 	if (status != USBD_NORMAL_COMPLETION) {
861 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
862 			return;
863 
864 		printf("%s: could not transmit buffer: %s\n",
865 		    device_xname(sc->sc_dev), usbd_errstr(status));
866 
867 		if (status == USBD_STALLED)
868 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
869 
870 		ifp->if_oerrors++;
871 		return;
872 	}
873 
874 	s = splnet();
875 
876 	m_freem(data->m);
877 	data->m = NULL;
878 	ieee80211_free_node(data->ni);
879 	data->ni = NULL;
880 
881 	sc->tx_queued--;
882 	ifp->if_opackets++;
883 
884 	DPRINTFN(10, ("tx done\n"));
885 
886 	sc->sc_tx_timer = 0;
887 	ifp->if_flags &= ~IFF_OACTIVE;
888 	ural_start(ifp);
889 
890 	splx(s);
891 }
892 
893 Static void
894 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
895 {
896 	struct ural_rx_data *data = priv;
897 	struct ural_softc *sc = data->sc;
898 	struct ieee80211com *ic = &sc->sc_ic;
899 	struct ifnet *ifp = &sc->sc_if;
900 	struct ural_rx_desc *desc;
901 	struct ieee80211_frame *wh;
902 	struct ieee80211_node *ni;
903 	struct mbuf *mnew, *m;
904 	int s, len;
905 
906 	if (status != USBD_NORMAL_COMPLETION) {
907 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
908 			return;
909 
910 		if (status == USBD_STALLED)
911 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
912 		goto skip;
913 	}
914 
915 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
916 
917 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
918 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
919 		    len));
920 		ifp->if_ierrors++;
921 		goto skip;
922 	}
923 
924 	/* rx descriptor is located at the end */
925 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
926 
927 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
928 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
929 		/*
930 		 * This should not happen since we did not request to receive
931 		 * those frames when we filled RAL_TXRX_CSR2.
932 		 */
933 		DPRINTFN(5, ("PHY or CRC error\n"));
934 		ifp->if_ierrors++;
935 		goto skip;
936 	}
937 
938 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
939 	if (mnew == NULL) {
940 		ifp->if_ierrors++;
941 		goto skip;
942 	}
943 
944 	MCLGET(mnew, M_DONTWAIT);
945 	if (!(mnew->m_flags & M_EXT)) {
946 		ifp->if_ierrors++;
947 		m_freem(mnew);
948 		goto skip;
949 	}
950 
951 	m = data->m;
952 	data->m = mnew;
953 	data->buf = mtod(data->m, uint8_t *);
954 
955 	/* finalize mbuf */
956 	m_set_rcvif(m, ifp);
957 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
958 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
959 
960 	s = splnet();
961 
962 	if (sc->sc_drvbpf != NULL) {
963 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
964 
965 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
966 		tap->wr_rate = ural_rxrate(desc);
967 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
968 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
969 		tap->wr_antenna = sc->rx_ant;
970 		tap->wr_antsignal = desc->rssi;
971 
972 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
973 	}
974 
975 	wh = mtod(m, struct ieee80211_frame *);
976 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
977 
978 	/* send the frame to the 802.11 layer */
979 	ieee80211_input(ic, m, ni, desc->rssi, 0);
980 
981 	/* node is no longer needed */
982 	ieee80211_free_node(ni);
983 
984 	splx(s);
985 
986 	DPRINTFN(15, ("rx done\n"));
987 
988 skip:	/* setup a new transfer */
989 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
990 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
991 	usbd_transfer(xfer);
992 }
993 
994 /*
995  * Return the expected ack rate for a frame transmitted at rate `rate'.
996  * XXX: this should depend on the destination node basic rate set.
997  */
998 Static int
999 ural_ack_rate(struct ieee80211com *ic, int rate)
1000 {
1001 	switch (rate) {
1002 	/* CCK rates */
1003 	case 2:
1004 		return 2;
1005 	case 4:
1006 	case 11:
1007 	case 22:
1008 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1009 
1010 	/* OFDM rates */
1011 	case 12:
1012 	case 18:
1013 		return 12;
1014 	case 24:
1015 	case 36:
1016 		return 24;
1017 	case 48:
1018 	case 72:
1019 	case 96:
1020 	case 108:
1021 		return 48;
1022 	}
1023 
1024 	/* default to 1Mbps */
1025 	return 2;
1026 }
1027 
1028 /*
1029  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1030  * The function automatically determines the operating mode depending on the
1031  * given rate. `flags' indicates whether short preamble is in use or not.
1032  */
1033 Static uint16_t
1034 ural_txtime(int len, int rate, uint32_t flags)
1035 {
1036 	uint16_t txtime;
1037 
1038 	if (RAL_RATE_IS_OFDM(rate)) {
1039 		/* IEEE Std 802.11g-2003, pp. 37 */
1040 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1041 		txtime = 16 + 4 + 4 * txtime + 6;
1042 	} else {
1043 		/* IEEE Std 802.11b-1999, pp. 28 */
1044 		txtime = (16 * len + rate - 1) / rate;
1045 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1046 			txtime +=  72 + 24;
1047 		else
1048 			txtime += 144 + 48;
1049 	}
1050 	return txtime;
1051 }
1052 
1053 Static uint8_t
1054 ural_plcp_signal(int rate)
1055 {
1056 	switch (rate) {
1057 	/* CCK rates (returned values are device-dependent) */
1058 	case 2:		return 0x0;
1059 	case 4:		return 0x1;
1060 	case 11:	return 0x2;
1061 	case 22:	return 0x3;
1062 
1063 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1064 	case 12:	return 0xb;
1065 	case 18:	return 0xf;
1066 	case 24:	return 0xa;
1067 	case 36:	return 0xe;
1068 	case 48:	return 0x9;
1069 	case 72:	return 0xd;
1070 	case 96:	return 0x8;
1071 	case 108:	return 0xc;
1072 
1073 	/* unsupported rates (should not get there) */
1074 	default:	return 0xff;
1075 	}
1076 }
1077 
1078 Static void
1079 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1080     uint32_t flags, int len, int rate)
1081 {
1082 	struct ieee80211com *ic = &sc->sc_ic;
1083 	uint16_t plcp_length;
1084 	int remainder;
1085 
1086 	desc->flags = htole32(flags);
1087 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1088 	desc->flags |= htole32(len << 16);
1089 
1090 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1091 	desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1092 
1093 	/* setup PLCP fields */
1094 	desc->plcp_signal  = ural_plcp_signal(rate);
1095 	desc->plcp_service = 4;
1096 
1097 	len += IEEE80211_CRC_LEN;
1098 	if (RAL_RATE_IS_OFDM(rate)) {
1099 		desc->flags |= htole32(RAL_TX_OFDM);
1100 
1101 		plcp_length = len & 0xfff;
1102 		desc->plcp_length_hi = plcp_length >> 6;
1103 		desc->plcp_length_lo = plcp_length & 0x3f;
1104 	} else {
1105 		plcp_length = (16 * len + rate - 1) / rate;
1106 		if (rate == 22) {
1107 			remainder = (16 * len) % 22;
1108 			if (remainder != 0 && remainder < 7)
1109 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1110 		}
1111 		desc->plcp_length_hi = plcp_length >> 8;
1112 		desc->plcp_length_lo = plcp_length & 0xff;
1113 
1114 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1115 			desc->plcp_signal |= 0x08;
1116 	}
1117 
1118 	desc->iv = 0;
1119 	desc->eiv = 0;
1120 }
1121 
1122 #define RAL_TX_TIMEOUT	5000
1123 
1124 Static int
1125 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1126 {
1127 	struct ural_tx_desc *desc;
1128 	struct usbd_xfer *xfer;
1129 	uint8_t cmd = 0;
1130 	usbd_status error;
1131 	uint8_t *buf;
1132 	int xferlen, rate;
1133 
1134 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1135 
1136 	/* xfer length needs to be a multiple of two! */
1137 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1138 
1139 	error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1140 	    USBD_FORCE_SHORT_XFER, 0, &xfer);
1141 	if (error)
1142 		return error;
1143 
1144 	buf = usbd_get_buffer(xfer);
1145 
1146 	usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1147 	    RAL_TX_TIMEOUT, NULL);
1148 
1149 	error = usbd_sync_transfer(xfer);
1150 	if (error != 0) {
1151 		usbd_destroy_xfer(xfer);
1152 		return error;
1153 	}
1154 
1155 	desc = (struct ural_tx_desc *)buf;
1156 
1157 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1158 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1159 	    m0->m_pkthdr.len, rate);
1160 
1161 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1162 	    m0->m_pkthdr.len, rate, xferlen));
1163 
1164 	usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1165 	    RAL_TX_TIMEOUT, NULL);
1166 
1167 	error = usbd_sync_transfer(xfer);
1168 	usbd_destroy_xfer(xfer);
1169 
1170 	return error;
1171 }
1172 
1173 Static int
1174 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1175 {
1176 	struct ieee80211com *ic = &sc->sc_ic;
1177 	struct ural_tx_desc *desc;
1178 	struct ural_tx_data *data;
1179 	struct ieee80211_frame *wh;
1180 	struct ieee80211_key *k;
1181 	uint32_t flags = 0;
1182 	uint16_t dur;
1183 	usbd_status error;
1184 	int xferlen, rate;
1185 
1186 	data = &sc->tx_data[0];
1187 	desc = (struct ural_tx_desc *)data->buf;
1188 
1189 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1190 
1191 	wh = mtod(m0, struct ieee80211_frame *);
1192 
1193 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1194 		k = ieee80211_crypto_encap(ic, ni, m0);
1195 		if (k == NULL) {
1196 			m_freem(m0);
1197 			return ENOBUFS;
1198 		}
1199 	}
1200 
1201 	data->m = m0;
1202 	data->ni = ni;
1203 
1204 	wh = mtod(m0, struct ieee80211_frame *);
1205 
1206 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1207 		flags |= RAL_TX_ACK;
1208 
1209 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1210 		*(uint16_t *)wh->i_dur = htole16(dur);
1211 
1212 		/* tell hardware to add timestamp for probe responses */
1213 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1214 		    IEEE80211_FC0_TYPE_MGT &&
1215 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1216 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1217 			flags |= RAL_TX_TIMESTAMP;
1218 	}
1219 
1220 	if (sc->sc_drvbpf != NULL) {
1221 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1222 
1223 		tap->wt_flags = 0;
1224 		tap->wt_rate = rate;
1225 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1226 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1227 		tap->wt_antenna = sc->tx_ant;
1228 
1229 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1230 	}
1231 
1232 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1233 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1234 
1235 	/* align end on a 2-bytes boundary */
1236 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1237 
1238 	/*
1239 	 * No space left in the last URB to store the extra 2 bytes, force
1240 	 * sending of another URB.
1241 	 */
1242 	if ((xferlen % 64) == 0)
1243 		xferlen += 2;
1244 
1245 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1246 	    m0->m_pkthdr.len, rate, xferlen));
1247 
1248 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1249 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1250 
1251 	error = usbd_transfer(data->xfer);
1252 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1253 		m_freem(m0);
1254 		return error;
1255 	}
1256 
1257 	sc->tx_queued++;
1258 
1259 	return 0;
1260 }
1261 
1262 Static int
1263 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1264 {
1265 	struct ieee80211com *ic = &sc->sc_ic;
1266 	struct ural_tx_desc *desc;
1267 	struct ural_tx_data *data;
1268 	struct ieee80211_frame *wh;
1269 	struct ieee80211_key *k;
1270 	uint32_t flags = 0;
1271 	uint16_t dur;
1272 	usbd_status error;
1273 	int xferlen, rate;
1274 
1275 	wh = mtod(m0, struct ieee80211_frame *);
1276 
1277 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1278 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1279 	else
1280 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1281 
1282 	rate &= IEEE80211_RATE_VAL;
1283 
1284 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1285 		k = ieee80211_crypto_encap(ic, ni, m0);
1286 		if (k == NULL) {
1287 			m_freem(m0);
1288 			return ENOBUFS;
1289 		}
1290 
1291 		/* packet header may have moved, reset our local pointer */
1292 		wh = mtod(m0, struct ieee80211_frame *);
1293 	}
1294 
1295 	data = &sc->tx_data[0];
1296 	desc = (struct ural_tx_desc *)data->buf;
1297 
1298 	data->m = m0;
1299 	data->ni = ni;
1300 
1301 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1302 		flags |= RAL_TX_ACK;
1303 		flags |= RAL_TX_RETRY(7);
1304 
1305 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1306 		    ic->ic_flags) + RAL_SIFS;
1307 		*(uint16_t *)wh->i_dur = htole16(dur);
1308 	}
1309 
1310 	if (sc->sc_drvbpf != NULL) {
1311 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1312 
1313 		tap->wt_flags = 0;
1314 		tap->wt_rate = rate;
1315 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1316 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1317 		tap->wt_antenna = sc->tx_ant;
1318 
1319 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1320 	}
1321 
1322 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1323 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1324 
1325 	/* align end on a 2-bytes boundary */
1326 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1327 
1328 	/*
1329 	 * No space left in the last URB to store the extra 2 bytes, force
1330 	 * sending of another URB.
1331 	 */
1332 	if ((xferlen % 64) == 0)
1333 		xferlen += 2;
1334 
1335 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1336 	    m0->m_pkthdr.len, rate, xferlen));
1337 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1338 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1339 
1340 	error = usbd_transfer(data->xfer);
1341 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1342 		return error;
1343 
1344 	sc->tx_queued++;
1345 
1346 	return 0;
1347 }
1348 
1349 Static void
1350 ural_start(struct ifnet *ifp)
1351 {
1352 	struct ural_softc *sc = ifp->if_softc;
1353 	struct ieee80211com *ic = &sc->sc_ic;
1354 	struct mbuf *m0;
1355 	struct ether_header *eh;
1356 	struct ieee80211_node *ni;
1357 
1358 	for (;;) {
1359 		IF_POLL(&ic->ic_mgtq, m0);
1360 		if (m0 != NULL) {
1361 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1362 				ifp->if_flags |= IFF_OACTIVE;
1363 				break;
1364 			}
1365 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1366 
1367 			ni = M_GETCTX(m0, struct ieee80211_node *);
1368 			M_CLEARCTX(m0);
1369 			bpf_mtap3(ic->ic_rawbpf, m0);
1370 			if (ural_tx_mgt(sc, m0, ni) != 0)
1371 				break;
1372 
1373 		} else {
1374 			if (ic->ic_state != IEEE80211_S_RUN)
1375 				break;
1376 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1377 			if (m0 == NULL)
1378 				break;
1379 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1380 				IF_PREPEND(&ifp->if_snd, m0);
1381 				ifp->if_flags |= IFF_OACTIVE;
1382 				break;
1383 			}
1384 
1385 			if (m0->m_len < sizeof(struct ether_header) &&
1386 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1387 				continue;
1388 
1389 			eh = mtod(m0, struct ether_header *);
1390 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1391 			if (ni == NULL) {
1392 				m_freem(m0);
1393 				continue;
1394 			}
1395 			bpf_mtap(ifp, m0);
1396 			m0 = ieee80211_encap(ic, m0, ni);
1397 			if (m0 == NULL) {
1398 				ieee80211_free_node(ni);
1399 				continue;
1400 			}
1401 			bpf_mtap3(ic->ic_rawbpf, m0);
1402 			if (ural_tx_data(sc, m0, ni) != 0) {
1403 				ieee80211_free_node(ni);
1404 				ifp->if_oerrors++;
1405 				break;
1406 			}
1407 		}
1408 
1409 		sc->sc_tx_timer = 5;
1410 		ifp->if_timer = 1;
1411 	}
1412 }
1413 
1414 Static void
1415 ural_watchdog(struct ifnet *ifp)
1416 {
1417 	struct ural_softc *sc = ifp->if_softc;
1418 	struct ieee80211com *ic = &sc->sc_ic;
1419 
1420 	ifp->if_timer = 0;
1421 
1422 	if (sc->sc_tx_timer > 0) {
1423 		if (--sc->sc_tx_timer == 0) {
1424 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1425 			/*ural_init(sc); XXX needs a process context! */
1426 			ifp->if_oerrors++;
1427 			return;
1428 		}
1429 		ifp->if_timer = 1;
1430 	}
1431 
1432 	ieee80211_watchdog(ic);
1433 }
1434 
1435 /*
1436  * This function allows for fast channel switching in monitor mode (used by
1437  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1438  * generate a new beacon frame.
1439  */
1440 Static int
1441 ural_reset(struct ifnet *ifp)
1442 {
1443 	struct ural_softc *sc = ifp->if_softc;
1444 	struct ieee80211com *ic = &sc->sc_ic;
1445 
1446 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1447 		return ENETRESET;
1448 
1449 	ural_set_chan(sc, ic->ic_curchan);
1450 
1451 	return 0;
1452 }
1453 
1454 Static int
1455 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1456 {
1457 #define IS_RUNNING(ifp) \
1458 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1459 
1460 	struct ural_softc *sc = ifp->if_softc;
1461 	struct ieee80211com *ic = &sc->sc_ic;
1462 	int s, error = 0;
1463 
1464 	s = splnet();
1465 
1466 	switch (cmd) {
1467 	case SIOCSIFFLAGS:
1468 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1469 			break;
1470 		/* XXX re-use ether_ioctl() */
1471 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1472 		case IFF_UP|IFF_RUNNING:
1473 			ural_update_promisc(sc);
1474 			break;
1475 		case IFF_UP:
1476 			ural_init(ifp);
1477 			break;
1478 		case IFF_RUNNING:
1479 			ural_stop(ifp, 1);
1480 			break;
1481 		case 0:
1482 			break;
1483 		}
1484 		break;
1485 
1486 	case SIOCADDMULTI:
1487 	case SIOCDELMULTI:
1488 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1489 			error = 0;
1490 		}
1491 		break;
1492 
1493 	default:
1494 		error = ieee80211_ioctl(ic, cmd, data);
1495 	}
1496 
1497 	if (error == ENETRESET) {
1498 		if (IS_RUNNING(ifp) &&
1499 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1500 			ural_init(ifp);
1501 		error = 0;
1502 	}
1503 
1504 	splx(s);
1505 
1506 	return error;
1507 #undef IS_RUNNING
1508 }
1509 
1510 Static void
1511 ural_set_testmode(struct ural_softc *sc)
1512 {
1513 	usb_device_request_t req;
1514 	usbd_status error;
1515 
1516 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1517 	req.bRequest = RAL_VENDOR_REQUEST;
1518 	USETW(req.wValue, 4);
1519 	USETW(req.wIndex, 1);
1520 	USETW(req.wLength, 0);
1521 
1522 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1523 	if (error != 0) {
1524 		printf("%s: could not set test mode: %s\n",
1525 		    device_xname(sc->sc_dev), usbd_errstr(error));
1526 	}
1527 }
1528 
1529 Static void
1530 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1531 {
1532 	usb_device_request_t req;
1533 	usbd_status error;
1534 
1535 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1536 	req.bRequest = RAL_READ_EEPROM;
1537 	USETW(req.wValue, 0);
1538 	USETW(req.wIndex, addr);
1539 	USETW(req.wLength, len);
1540 
1541 	error = usbd_do_request(sc->sc_udev, &req, buf);
1542 	if (error != 0) {
1543 		printf("%s: could not read EEPROM: %s\n",
1544 		    device_xname(sc->sc_dev), usbd_errstr(error));
1545 	}
1546 }
1547 
1548 Static uint16_t
1549 ural_read(struct ural_softc *sc, uint16_t reg)
1550 {
1551 	usb_device_request_t req;
1552 	usbd_status error;
1553 	uint16_t val;
1554 
1555 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1556 	req.bRequest = RAL_READ_MAC;
1557 	USETW(req.wValue, 0);
1558 	USETW(req.wIndex, reg);
1559 	USETW(req.wLength, sizeof(uint16_t));
1560 
1561 	error = usbd_do_request(sc->sc_udev, &req, &val);
1562 	if (error != 0) {
1563 		printf("%s: could not read MAC register: %s\n",
1564 		    device_xname(sc->sc_dev), usbd_errstr(error));
1565 		return 0;
1566 	}
1567 
1568 	return le16toh(val);
1569 }
1570 
1571 Static void
1572 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1573 {
1574 	usb_device_request_t req;
1575 	usbd_status error;
1576 
1577 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1578 	req.bRequest = RAL_READ_MULTI_MAC;
1579 	USETW(req.wValue, 0);
1580 	USETW(req.wIndex, reg);
1581 	USETW(req.wLength, len);
1582 
1583 	error = usbd_do_request(sc->sc_udev, &req, buf);
1584 	if (error != 0) {
1585 		printf("%s: could not read MAC register: %s\n",
1586 		    device_xname(sc->sc_dev), usbd_errstr(error));
1587 	}
1588 }
1589 
1590 Static void
1591 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1592 {
1593 	usb_device_request_t req;
1594 	usbd_status error;
1595 
1596 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1597 	req.bRequest = RAL_WRITE_MAC;
1598 	USETW(req.wValue, val);
1599 	USETW(req.wIndex, reg);
1600 	USETW(req.wLength, 0);
1601 
1602 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1603 	if (error != 0) {
1604 		printf("%s: could not write MAC register: %s\n",
1605 		    device_xname(sc->sc_dev), usbd_errstr(error));
1606 	}
1607 }
1608 
1609 Static void
1610 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1611 {
1612 	usb_device_request_t req;
1613 	usbd_status error;
1614 
1615 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1616 	req.bRequest = RAL_WRITE_MULTI_MAC;
1617 	USETW(req.wValue, 0);
1618 	USETW(req.wIndex, reg);
1619 	USETW(req.wLength, len);
1620 
1621 	error = usbd_do_request(sc->sc_udev, &req, buf);
1622 	if (error != 0) {
1623 		printf("%s: could not write MAC register: %s\n",
1624 		    device_xname(sc->sc_dev), usbd_errstr(error));
1625 	}
1626 }
1627 
1628 Static void
1629 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1630 {
1631 	uint16_t tmp;
1632 	int ntries;
1633 
1634 	for (ntries = 0; ntries < 5; ntries++) {
1635 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1636 			break;
1637 	}
1638 	if (ntries == 5) {
1639 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1640 		return;
1641 	}
1642 
1643 	tmp = reg << 8 | val;
1644 	ural_write(sc, RAL_PHY_CSR7, tmp);
1645 }
1646 
1647 Static uint8_t
1648 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1649 {
1650 	uint16_t val;
1651 	int ntries;
1652 
1653 	val = RAL_BBP_WRITE | reg << 8;
1654 	ural_write(sc, RAL_PHY_CSR7, val);
1655 
1656 	for (ntries = 0; ntries < 5; ntries++) {
1657 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1658 			break;
1659 	}
1660 	if (ntries == 5) {
1661 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1662 		return 0;
1663 	}
1664 
1665 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1666 }
1667 
1668 Static void
1669 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1670 {
1671 	uint32_t tmp;
1672 	int ntries;
1673 
1674 	for (ntries = 0; ntries < 5; ntries++) {
1675 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1676 			break;
1677 	}
1678 	if (ntries == 5) {
1679 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1680 		return;
1681 	}
1682 
1683 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1684 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1685 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1686 
1687 	/* remember last written value in sc */
1688 	sc->rf_regs[reg] = val;
1689 
1690 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1691 }
1692 
1693 Static void
1694 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1695 {
1696 	struct ieee80211com *ic = &sc->sc_ic;
1697 	uint8_t power, tmp;
1698 	u_int i, chan;
1699 
1700 	chan = ieee80211_chan2ieee(ic, c);
1701 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1702 		return;
1703 
1704 	if (IEEE80211_IS_CHAN_2GHZ(c))
1705 		power = min(sc->txpow[chan - 1], 31);
1706 	else
1707 		power = 31;
1708 
1709 	/* adjust txpower using ifconfig settings */
1710 	power -= (100 - ic->ic_txpowlimit) / 8;
1711 
1712 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1713 
1714 	switch (sc->rf_rev) {
1715 	case RAL_RF_2522:
1716 		ural_rf_write(sc, RAL_RF1, 0x00814);
1717 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1718 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1719 		break;
1720 
1721 	case RAL_RF_2523:
1722 		ural_rf_write(sc, RAL_RF1, 0x08804);
1723 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1724 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1725 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1726 		break;
1727 
1728 	case RAL_RF_2524:
1729 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1730 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1731 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1732 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1733 		break;
1734 
1735 	case RAL_RF_2525:
1736 		ural_rf_write(sc, RAL_RF1, 0x08808);
1737 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1738 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1739 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1740 
1741 		ural_rf_write(sc, RAL_RF1, 0x08808);
1742 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1743 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1744 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1745 		break;
1746 
1747 	case RAL_RF_2525E:
1748 		ural_rf_write(sc, RAL_RF1, 0x08808);
1749 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1750 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1751 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1752 		break;
1753 
1754 	case RAL_RF_2526:
1755 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1756 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1757 		ural_rf_write(sc, RAL_RF1, 0x08804);
1758 
1759 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1760 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1761 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1762 		break;
1763 
1764 	/* dual-band RF */
1765 	case RAL_RF_5222:
1766 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1767 
1768 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1769 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1770 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1771 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1772 		break;
1773 	}
1774 
1775 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1776 	    ic->ic_state != IEEE80211_S_SCAN) {
1777 		/* set Japan filter bit for channel 14 */
1778 		tmp = ural_bbp_read(sc, 70);
1779 
1780 		tmp &= ~RAL_JAPAN_FILTER;
1781 		if (chan == 14)
1782 			tmp |= RAL_JAPAN_FILTER;
1783 
1784 		ural_bbp_write(sc, 70, tmp);
1785 
1786 		/* clear CRC errors */
1787 		ural_read(sc, RAL_STA_CSR0);
1788 
1789 		DELAY(10000);
1790 		ural_disable_rf_tune(sc);
1791 	}
1792 }
1793 
1794 /*
1795  * Disable RF auto-tuning.
1796  */
1797 Static void
1798 ural_disable_rf_tune(struct ural_softc *sc)
1799 {
1800 	uint32_t tmp;
1801 
1802 	if (sc->rf_rev != RAL_RF_2523) {
1803 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1804 		ural_rf_write(sc, RAL_RF1, tmp);
1805 	}
1806 
1807 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1808 	ural_rf_write(sc, RAL_RF3, tmp);
1809 
1810 	DPRINTFN(2, ("disabling RF autotune\n"));
1811 }
1812 
1813 /*
1814  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1815  * synchronization.
1816  */
1817 Static void
1818 ural_enable_tsf_sync(struct ural_softc *sc)
1819 {
1820 	struct ieee80211com *ic = &sc->sc_ic;
1821 	uint16_t logcwmin, preload, tmp;
1822 
1823 	/* first, disable TSF synchronization */
1824 	ural_write(sc, RAL_TXRX_CSR19, 0);
1825 
1826 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1827 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1828 
1829 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1830 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1831 	tmp = logcwmin << 12 | preload;
1832 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1833 
1834 	/* finally, enable TSF synchronization */
1835 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1836 	if (ic->ic_opmode == IEEE80211_M_STA)
1837 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1838 	else
1839 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1840 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1841 
1842 	DPRINTF(("enabling TSF synchronization\n"));
1843 }
1844 
1845 Static void
1846 ural_update_slot(struct ifnet *ifp)
1847 {
1848 	struct ural_softc *sc = ifp->if_softc;
1849 	struct ieee80211com *ic = &sc->sc_ic;
1850 	uint16_t slottime, sifs, eifs;
1851 
1852 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1853 
1854 	/*
1855 	 * These settings may sound a bit inconsistent but this is what the
1856 	 * reference driver does.
1857 	 */
1858 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1859 		sifs = 16 - RAL_RXTX_TURNAROUND;
1860 		eifs = 364;
1861 	} else {
1862 		sifs = 10 - RAL_RXTX_TURNAROUND;
1863 		eifs = 64;
1864 	}
1865 
1866 	ural_write(sc, RAL_MAC_CSR10, slottime);
1867 	ural_write(sc, RAL_MAC_CSR11, sifs);
1868 	ural_write(sc, RAL_MAC_CSR12, eifs);
1869 }
1870 
1871 Static void
1872 ural_set_txpreamble(struct ural_softc *sc)
1873 {
1874 	uint16_t tmp;
1875 
1876 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1877 
1878 	tmp &= ~RAL_SHORT_PREAMBLE;
1879 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1880 		tmp |= RAL_SHORT_PREAMBLE;
1881 
1882 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1883 }
1884 
1885 Static void
1886 ural_set_basicrates(struct ural_softc *sc)
1887 {
1888 	struct ieee80211com *ic = &sc->sc_ic;
1889 
1890 	/* update basic rate set */
1891 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1892 		/* 11b basic rates: 1, 2Mbps */
1893 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1894 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1895 		/* 11a basic rates: 6, 12, 24Mbps */
1896 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1897 	} else {
1898 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1899 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1900 	}
1901 }
1902 
1903 Static void
1904 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1905 {
1906 	uint16_t tmp;
1907 
1908 	tmp = bssid[0] | bssid[1] << 8;
1909 	ural_write(sc, RAL_MAC_CSR5, tmp);
1910 
1911 	tmp = bssid[2] | bssid[3] << 8;
1912 	ural_write(sc, RAL_MAC_CSR6, tmp);
1913 
1914 	tmp = bssid[4] | bssid[5] << 8;
1915 	ural_write(sc, RAL_MAC_CSR7, tmp);
1916 
1917 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1918 }
1919 
1920 Static void
1921 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1922 {
1923 	uint16_t tmp;
1924 
1925 	tmp = addr[0] | addr[1] << 8;
1926 	ural_write(sc, RAL_MAC_CSR2, tmp);
1927 
1928 	tmp = addr[2] | addr[3] << 8;
1929 	ural_write(sc, RAL_MAC_CSR3, tmp);
1930 
1931 	tmp = addr[4] | addr[5] << 8;
1932 	ural_write(sc, RAL_MAC_CSR4, tmp);
1933 
1934 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1935 }
1936 
1937 Static void
1938 ural_update_promisc(struct ural_softc *sc)
1939 {
1940 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1941 	uint32_t tmp;
1942 
1943 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1944 
1945 	tmp &= ~RAL_DROP_NOT_TO_ME;
1946 	if (!(ifp->if_flags & IFF_PROMISC))
1947 		tmp |= RAL_DROP_NOT_TO_ME;
1948 
1949 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1950 
1951 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1952 	    "entering" : "leaving"));
1953 }
1954 
1955 Static const char *
1956 ural_get_rf(int rev)
1957 {
1958 	switch (rev) {
1959 	case RAL_RF_2522:	return "RT2522";
1960 	case RAL_RF_2523:	return "RT2523";
1961 	case RAL_RF_2524:	return "RT2524";
1962 	case RAL_RF_2525:	return "RT2525";
1963 	case RAL_RF_2525E:	return "RT2525e";
1964 	case RAL_RF_2526:	return "RT2526";
1965 	case RAL_RF_5222:	return "RT5222";
1966 	default:		return "unknown";
1967 	}
1968 }
1969 
1970 Static void
1971 ural_read_eeprom(struct ural_softc *sc)
1972 {
1973 	struct ieee80211com *ic = &sc->sc_ic;
1974 	uint16_t val;
1975 
1976 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1977 	val = le16toh(val);
1978 	sc->rf_rev =   (val >> 11) & 0x7;
1979 	sc->hw_radio = (val >> 10) & 0x1;
1980 	sc->led_mode = (val >> 6)  & 0x7;
1981 	sc->rx_ant =   (val >> 4)  & 0x3;
1982 	sc->tx_ant =   (val >> 2)  & 0x3;
1983 	sc->nb_ant =   val & 0x3;
1984 
1985 	/* read MAC address */
1986 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1987 
1988 	/* read default values for BBP registers */
1989 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1990 
1991 	/* read Tx power for all b/g channels */
1992 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1993 }
1994 
1995 Static int
1996 ural_bbp_init(struct ural_softc *sc)
1997 {
1998 	int i, ntries;
1999 
2000 	/* wait for BBP to be ready */
2001 	for (ntries = 0; ntries < 100; ntries++) {
2002 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2003 			break;
2004 		DELAY(1000);
2005 	}
2006 	if (ntries == 100) {
2007 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2008 		return EIO;
2009 	}
2010 
2011 	/* initialize BBP registers to default values */
2012 	for (i = 0; i < __arraycount(ural_def_bbp); i++)
2013 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2014 
2015 #if 0
2016 	/* initialize BBP registers to values stored in EEPROM */
2017 	for (i = 0; i < 16; i++) {
2018 		if (sc->bbp_prom[i].reg == 0xff)
2019 			continue;
2020 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2021 	}
2022 #endif
2023 
2024 	return 0;
2025 }
2026 
2027 Static void
2028 ural_set_txantenna(struct ural_softc *sc, int antenna)
2029 {
2030 	uint16_t tmp;
2031 	uint8_t tx;
2032 
2033 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2034 	if (antenna == 1)
2035 		tx |= RAL_BBP_ANTA;
2036 	else if (antenna == 2)
2037 		tx |= RAL_BBP_ANTB;
2038 	else
2039 		tx |= RAL_BBP_DIVERSITY;
2040 
2041 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2042 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2043 	    sc->rf_rev == RAL_RF_5222)
2044 		tx |= RAL_BBP_FLIPIQ;
2045 
2046 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2047 
2048 	/* update values in PHY_CSR5 and PHY_CSR6 */
2049 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2050 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2051 
2052 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2053 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2054 }
2055 
2056 Static void
2057 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2058 {
2059 	uint8_t rx;
2060 
2061 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2062 	if (antenna == 1)
2063 		rx |= RAL_BBP_ANTA;
2064 	else if (antenna == 2)
2065 		rx |= RAL_BBP_ANTB;
2066 	else
2067 		rx |= RAL_BBP_DIVERSITY;
2068 
2069 	/* need to force no I/Q flip for RF 2525e and 2526 */
2070 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2071 		rx &= ~RAL_BBP_FLIPIQ;
2072 
2073 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2074 }
2075 
2076 Static int
2077 ural_init(struct ifnet *ifp)
2078 {
2079 	struct ural_softc *sc = ifp->if_softc;
2080 	struct ieee80211com *ic = &sc->sc_ic;
2081 	struct ieee80211_key *wk;
2082 	uint16_t tmp;
2083 	usbd_status error;
2084 	int i, ntries;
2085 
2086 	ural_set_testmode(sc);
2087 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2088 
2089 	ural_stop(ifp, 0);
2090 
2091 	/* initialize MAC registers to default values */
2092 	for (i = 0; i < __arraycount(ural_def_mac); i++)
2093 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2094 
2095 	/* wait for BBP and RF to wake up (this can take a long time!) */
2096 	for (ntries = 0; ntries < 100; ntries++) {
2097 		tmp = ural_read(sc, RAL_MAC_CSR17);
2098 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2099 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2100 			break;
2101 		DELAY(1000);
2102 	}
2103 	if (ntries == 100) {
2104 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2105 		    device_xname(sc->sc_dev));
2106 		error = EIO;
2107 		goto fail;
2108 	}
2109 
2110 	/* we're ready! */
2111 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2112 
2113 	/* set basic rate set (will be updated later) */
2114 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2115 
2116 	error = ural_bbp_init(sc);
2117 	if (error != 0)
2118 		goto fail;
2119 
2120 	/* set default BSS channel */
2121 	ural_set_chan(sc, ic->ic_curchan);
2122 
2123 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2124 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2125 
2126 	ural_set_txantenna(sc, sc->tx_ant);
2127 	ural_set_rxantenna(sc, sc->rx_ant);
2128 
2129 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2130 	ural_set_macaddr(sc, ic->ic_myaddr);
2131 
2132 	/*
2133 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2134 	 */
2135 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2136 		wk = &ic->ic_crypto.cs_nw_keys[i];
2137 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2138 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2139 	}
2140 
2141 	/*
2142 	 * Allocate xfer for AMRR statistics requests.
2143 	 */
2144 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2145 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2146 	if (error) {
2147 		printf("%s: could not allocate AMRR xfer\n",
2148 		    device_xname(sc->sc_dev));
2149 		goto fail;
2150 	}
2151 
2152 	/*
2153 	 * Open Tx and Rx USB bulk pipes.
2154 	 */
2155 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2156 	    &sc->sc_tx_pipeh);
2157 	if (error != 0) {
2158 		printf("%s: could not open Tx pipe: %s\n",
2159 		    device_xname(sc->sc_dev), usbd_errstr(error));
2160 		goto fail;
2161 	}
2162 
2163 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2164 	    &sc->sc_rx_pipeh);
2165 	if (error != 0) {
2166 		printf("%s: could not open Rx pipe: %s\n",
2167 		    device_xname(sc->sc_dev), usbd_errstr(error));
2168 		goto fail;
2169 	}
2170 
2171 	/*
2172 	 * Allocate Tx and Rx xfer queues.
2173 	 */
2174 	error = ural_alloc_tx_list(sc);
2175 	if (error != 0) {
2176 		printf("%s: could not allocate Tx list\n",
2177 		    device_xname(sc->sc_dev));
2178 		goto fail;
2179 	}
2180 
2181 	error = ural_alloc_rx_list(sc);
2182 	if (error != 0) {
2183 		printf("%s: could not allocate Rx list\n",
2184 		    device_xname(sc->sc_dev));
2185 		goto fail;
2186 	}
2187 
2188 	/*
2189 	 * Start up the receive pipe.
2190 	 */
2191 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2192 		struct ural_rx_data *data = &sc->rx_data[i];
2193 
2194 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2195 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2196 		usbd_transfer(data->xfer);
2197 	}
2198 
2199 	/* kick Rx */
2200 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2201 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2202 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2203 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2204 			tmp |= RAL_DROP_TODS;
2205 		if (!(ifp->if_flags & IFF_PROMISC))
2206 			tmp |= RAL_DROP_NOT_TO_ME;
2207 	}
2208 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2209 
2210 	ifp->if_flags &= ~IFF_OACTIVE;
2211 	ifp->if_flags |= IFF_RUNNING;
2212 
2213 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2214 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2215 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2216 	} else
2217 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2218 
2219 	return 0;
2220 
2221 fail:	ural_stop(ifp, 1);
2222 	return error;
2223 }
2224 
2225 Static void
2226 ural_stop(struct ifnet *ifp, int disable)
2227 {
2228 	struct ural_softc *sc = ifp->if_softc;
2229 	struct ieee80211com *ic = &sc->sc_ic;
2230 
2231 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2232 
2233 	sc->sc_tx_timer = 0;
2234 	ifp->if_timer = 0;
2235 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2236 
2237 	/* disable Rx */
2238 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2239 
2240 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2241 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2242 	ural_write(sc, RAL_MAC_CSR1, 0);
2243 
2244 	if (sc->amrr_xfer != NULL) {
2245 		usbd_destroy_xfer(sc->amrr_xfer);
2246 		sc->amrr_xfer = NULL;
2247 	}
2248 
2249 	if (sc->sc_rx_pipeh != NULL) {
2250 		usbd_abort_pipe(sc->sc_rx_pipeh);
2251 	}
2252 
2253 	if (sc->sc_tx_pipeh != NULL) {
2254 		usbd_abort_pipe(sc->sc_tx_pipeh);
2255 	}
2256 
2257 	ural_free_rx_list(sc);
2258 	ural_free_tx_list(sc);
2259 
2260 	if (sc->sc_rx_pipeh != NULL) {
2261 		usbd_close_pipe(sc->sc_rx_pipeh);
2262 		sc->sc_rx_pipeh = NULL;
2263 	}
2264 
2265 	if (sc->sc_tx_pipeh != NULL) {
2266 		usbd_close_pipe(sc->sc_tx_pipeh);
2267 		sc->sc_tx_pipeh = NULL;
2268 	}
2269 }
2270 
2271 int
2272 ural_activate(device_t self, enum devact act)
2273 {
2274 	struct ural_softc *sc = device_private(self);
2275 
2276 	switch (act) {
2277 	case DVACT_DEACTIVATE:
2278 		if_deactivate(&sc->sc_if);
2279 		return 0;
2280 	default:
2281 		return EOPNOTSUPP;
2282 	}
2283 }
2284 
2285 Static void
2286 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2287 {
2288 	int i;
2289 
2290 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2291 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2292 
2293 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2294 
2295 	/* set rate to some reasonable initial value */
2296 	for (i = ni->ni_rates.rs_nrates - 1;
2297 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2298 	     i--);
2299 	ni->ni_txrate = i;
2300 
2301 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2302 }
2303 
2304 Static void
2305 ural_amrr_timeout(void *arg)
2306 {
2307 	struct ural_softc *sc = (struct ural_softc *)arg;
2308 	usb_device_request_t req;
2309 	int s;
2310 
2311 	s = splusb();
2312 
2313 	/*
2314 	 * Asynchronously read statistic registers (cleared by read).
2315 	 */
2316 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2317 	req.bRequest = RAL_READ_MULTI_MAC;
2318 	USETW(req.wValue, 0);
2319 	USETW(req.wIndex, RAL_STA_CSR0);
2320 	USETW(req.wLength, sizeof(sc->sta));
2321 
2322 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2323 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2324 	    ural_amrr_update);
2325 	(void)usbd_transfer(sc->amrr_xfer);
2326 
2327 	splx(s);
2328 }
2329 
2330 Static void
2331 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2332     usbd_status status)
2333 {
2334 	struct ural_softc *sc = (struct ural_softc *)priv;
2335 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2336 
2337 	if (status != USBD_NORMAL_COMPLETION) {
2338 		printf("%s: could not retrieve Tx statistics - "
2339 		    "cancelling automatic rate control\n",
2340 		    device_xname(sc->sc_dev));
2341 		return;
2342 	}
2343 
2344 	/* count TX retry-fail as Tx errors */
2345 	ifp->if_oerrors += sc->sta[9];
2346 
2347 	sc->amn.amn_retrycnt =
2348 	    sc->sta[7] +	/* TX one-retry ok count */
2349 	    sc->sta[8] +	/* TX more-retry ok count */
2350 	    sc->sta[9];		/* TX retry-fail count */
2351 
2352 	sc->amn.amn_txcnt =
2353 	    sc->amn.amn_retrycnt +
2354 	    sc->sta[6];		/* TX no-retry ok count */
2355 
2356 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2357 
2358 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2359 }
2360