xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 74809f044aa1c34df701bf79c7bfb9794896fdf8)
1 /*	$NetBSD: if_ural.c,v 1.30 2008/05/24 16:40:58 cube Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.30 2008/05/24 16:40:58 cube Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73 
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77 
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
92 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
96 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
97 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
98 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
100 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
101 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
102 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
103 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
104 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
105 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
106 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
107 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
108 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
109 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
110 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
111 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
112 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
113 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
114 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
115 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
116 };
117 
118 Static int		ural_alloc_tx_list(struct ural_softc *);
119 Static void		ural_free_tx_list(struct ural_softc *);
120 Static int		ural_alloc_rx_list(struct ural_softc *);
121 Static void		ural_free_rx_list(struct ural_softc *);
122 Static int		ural_media_change(struct ifnet *);
123 Static void		ural_next_scan(void *);
124 Static void		ural_task(void *);
125 Static int		ural_newstate(struct ieee80211com *,
126 			    enum ieee80211_state, int);
127 Static int		ural_rxrate(struct ural_rx_desc *);
128 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
129 			    usbd_status);
130 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131 			    usbd_status);
132 Static int		ural_ack_rate(struct ieee80211com *, int);
133 Static uint16_t		ural_txtime(int, int, uint32_t);
134 Static uint8_t		ural_plcp_signal(int);
135 Static void		ural_setup_tx_desc(struct ural_softc *,
136 			    struct ural_tx_desc *, uint32_t, int, int);
137 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
138 			    struct ieee80211_node *);
139 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
140 			    struct ieee80211_node *);
141 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
142 			    struct ieee80211_node *);
143 Static void		ural_start(struct ifnet *);
144 Static void		ural_watchdog(struct ifnet *);
145 Static int		ural_reset(struct ifnet *);
146 Static int		ural_ioctl(struct ifnet *, u_long, void *);
147 Static void		ural_set_testmode(struct ural_softc *);
148 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
151 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
152 			    int);
153 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
154 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
155 			    int);
156 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
158 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 Static void		ural_set_chan(struct ural_softc *,
160 			    struct ieee80211_channel *);
161 Static void		ural_disable_rf_tune(struct ural_softc *);
162 Static void		ural_enable_tsf_sync(struct ural_softc *);
163 Static void		ural_update_slot(struct ifnet *);
164 Static void		ural_set_txpreamble(struct ural_softc *);
165 Static void		ural_set_basicrates(struct ural_softc *);
166 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
167 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
168 Static void		ural_update_promisc(struct ural_softc *);
169 Static const char	*ural_get_rf(int);
170 Static void		ural_read_eeprom(struct ural_softc *);
171 Static int		ural_bbp_init(struct ural_softc *);
172 Static void		ural_set_txantenna(struct ural_softc *, int);
173 Static void		ural_set_rxantenna(struct ural_softc *, int);
174 Static int		ural_init(struct ifnet *);
175 Static void		ural_stop(struct ifnet *, int);
176 Static void		ural_amrr_start(struct ural_softc *,
177 			    struct ieee80211_node *);
178 Static void		ural_amrr_timeout(void *);
179 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
180 			    usbd_status status);
181 
182 /*
183  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184  */
185 static const struct ieee80211_rateset ural_rateset_11a =
186 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187 
188 static const struct ieee80211_rateset ural_rateset_11b =
189 	{ 4, { 2, 4, 11, 22 } };
190 
191 static const struct ieee80211_rateset ural_rateset_11g =
192 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193 
194 /*
195  * Default values for MAC registers; values taken from the reference driver.
196  */
197 static const struct {
198 	uint16_t	reg;
199 	uint16_t	val;
200 } ural_def_mac[] = {
201 	{ RAL_TXRX_CSR5,  0x8c8d },
202 	{ RAL_TXRX_CSR6,  0x8b8a },
203 	{ RAL_TXRX_CSR7,  0x8687 },
204 	{ RAL_TXRX_CSR8,  0x0085 },
205 	{ RAL_MAC_CSR13,  0x1111 },
206 	{ RAL_MAC_CSR14,  0x1e11 },
207 	{ RAL_TXRX_CSR21, 0xe78f },
208 	{ RAL_MAC_CSR9,   0xff1d },
209 	{ RAL_MAC_CSR11,  0x0002 },
210 	{ RAL_MAC_CSR22,  0x0053 },
211 	{ RAL_MAC_CSR15,  0x0000 },
212 	{ RAL_MAC_CSR8,   0x0780 },
213 	{ RAL_TXRX_CSR19, 0x0000 },
214 	{ RAL_TXRX_CSR18, 0x005a },
215 	{ RAL_PHY_CSR2,   0x0000 },
216 	{ RAL_TXRX_CSR0,  0x1ec0 },
217 	{ RAL_PHY_CSR4,   0x000f }
218 };
219 
220 /*
221  * Default values for BBP registers; values taken from the reference driver.
222  */
223 static const struct {
224 	uint8_t	reg;
225 	uint8_t	val;
226 } ural_def_bbp[] = {
227 	{  3, 0x02 },
228 	{  4, 0x19 },
229 	{ 14, 0x1c },
230 	{ 15, 0x30 },
231 	{ 16, 0xac },
232 	{ 17, 0x48 },
233 	{ 18, 0x18 },
234 	{ 19, 0xff },
235 	{ 20, 0x1e },
236 	{ 21, 0x08 },
237 	{ 22, 0x08 },
238 	{ 23, 0x08 },
239 	{ 24, 0x80 },
240 	{ 25, 0x50 },
241 	{ 26, 0x08 },
242 	{ 27, 0x23 },
243 	{ 30, 0x10 },
244 	{ 31, 0x2b },
245 	{ 32, 0xb9 },
246 	{ 34, 0x12 },
247 	{ 35, 0x50 },
248 	{ 39, 0xc4 },
249 	{ 40, 0x02 },
250 	{ 41, 0x60 },
251 	{ 53, 0x10 },
252 	{ 54, 0x18 },
253 	{ 56, 0x08 },
254 	{ 57, 0x10 },
255 	{ 58, 0x08 },
256 	{ 61, 0x60 },
257 	{ 62, 0x10 },
258 	{ 75, 0xff }
259 };
260 
261 /*
262  * Default values for RF register R2 indexed by channel numbers.
263  */
264 static const uint32_t ural_rf2522_r2[] = {
265 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
266 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
267 };
268 
269 static const uint32_t ural_rf2523_r2[] = {
270 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
271 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
272 };
273 
274 static const uint32_t ural_rf2524_r2[] = {
275 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278 
279 static const uint32_t ural_rf2525_r2[] = {
280 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
281 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
282 };
283 
284 static const uint32_t ural_rf2525_hi_r2[] = {
285 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
286 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
287 };
288 
289 static const uint32_t ural_rf2525e_r2[] = {
290 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
291 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
292 };
293 
294 static const uint32_t ural_rf2526_hi_r2[] = {
295 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
296 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
297 };
298 
299 static const uint32_t ural_rf2526_r2[] = {
300 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
301 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
302 };
303 
304 /*
305  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
306  * values taken from the reference driver.
307  */
308 static const struct {
309 	uint8_t		chan;
310 	uint32_t	r1;
311 	uint32_t	r2;
312 	uint32_t	r4;
313 } ural_rf5222[] = {
314 	{   1, 0x08808, 0x0044d, 0x00282 },
315 	{   2, 0x08808, 0x0044e, 0x00282 },
316 	{   3, 0x08808, 0x0044f, 0x00282 },
317 	{   4, 0x08808, 0x00460, 0x00282 },
318 	{   5, 0x08808, 0x00461, 0x00282 },
319 	{   6, 0x08808, 0x00462, 0x00282 },
320 	{   7, 0x08808, 0x00463, 0x00282 },
321 	{   8, 0x08808, 0x00464, 0x00282 },
322 	{   9, 0x08808, 0x00465, 0x00282 },
323 	{  10, 0x08808, 0x00466, 0x00282 },
324 	{  11, 0x08808, 0x00467, 0x00282 },
325 	{  12, 0x08808, 0x00468, 0x00282 },
326 	{  13, 0x08808, 0x00469, 0x00282 },
327 	{  14, 0x08808, 0x0046b, 0x00286 },
328 
329 	{  36, 0x08804, 0x06225, 0x00287 },
330 	{  40, 0x08804, 0x06226, 0x00287 },
331 	{  44, 0x08804, 0x06227, 0x00287 },
332 	{  48, 0x08804, 0x06228, 0x00287 },
333 	{  52, 0x08804, 0x06229, 0x00287 },
334 	{  56, 0x08804, 0x0622a, 0x00287 },
335 	{  60, 0x08804, 0x0622b, 0x00287 },
336 	{  64, 0x08804, 0x0622c, 0x00287 },
337 
338 	{ 100, 0x08804, 0x02200, 0x00283 },
339 	{ 104, 0x08804, 0x02201, 0x00283 },
340 	{ 108, 0x08804, 0x02202, 0x00283 },
341 	{ 112, 0x08804, 0x02203, 0x00283 },
342 	{ 116, 0x08804, 0x02204, 0x00283 },
343 	{ 120, 0x08804, 0x02205, 0x00283 },
344 	{ 124, 0x08804, 0x02206, 0x00283 },
345 	{ 128, 0x08804, 0x02207, 0x00283 },
346 	{ 132, 0x08804, 0x02208, 0x00283 },
347 	{ 136, 0x08804, 0x02209, 0x00283 },
348 	{ 140, 0x08804, 0x0220a, 0x00283 },
349 
350 	{ 149, 0x08808, 0x02429, 0x00281 },
351 	{ 153, 0x08808, 0x0242b, 0x00281 },
352 	{ 157, 0x08808, 0x0242d, 0x00281 },
353 	{ 161, 0x08808, 0x0242f, 0x00281 }
354 };
355 
356 USB_DECLARE_DRIVER(ural);
357 
358 USB_MATCH(ural)
359 {
360 	USB_MATCH_START(ural, uaa);
361 
362 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365 
366 USB_ATTACH(ural)
367 {
368 	USB_ATTACH_START(ural, sc, uaa);
369 	struct ieee80211com *ic = &sc->sc_ic;
370 	struct ifnet *ifp = &sc->sc_if;
371 	usb_interface_descriptor_t *id;
372 	usb_endpoint_descriptor_t *ed;
373 	usbd_status error;
374 	char *devinfop;
375 	int i;
376 
377 	sc->sc_dev = self;
378 	sc->sc_udev = uaa->device;
379 
380 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
381 	USB_ATTACH_SETUP;
382 	aprint_normal_dev(self, "%s\n", devinfop);
383 	usbd_devinfo_free(devinfop);
384 
385 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
386 		aprint_error_dev(self, "could not set configuration no\n");
387 		USB_ATTACH_ERROR_RETURN;
388 	}
389 
390 	/* get the first interface handle */
391 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 	    &sc->sc_iface);
393 	if (error != 0) {
394 		aprint_error_dev(self, "could not get interface handle\n");
395 		USB_ATTACH_ERROR_RETURN;
396 	}
397 
398 	/*
399 	 * Find endpoints.
400 	 */
401 	id = usbd_get_interface_descriptor(sc->sc_iface);
402 
403 	sc->sc_rx_no = sc->sc_tx_no = -1;
404 	for (i = 0; i < id->bNumEndpoints; i++) {
405 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
406 		if (ed == NULL) {
407 			aprint_error_dev(self,
408 			    "no endpoint descriptor for %d\n", i);
409 			USB_ATTACH_ERROR_RETURN;
410 		}
411 
412 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
413 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
414 			sc->sc_rx_no = ed->bEndpointAddress;
415 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
416 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 			sc->sc_tx_no = ed->bEndpointAddress;
418 	}
419 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
420 		aprint_error_dev(self, "missing endpoint\n");
421 		USB_ATTACH_ERROR_RETURN;
422 	}
423 
424 	usb_init_task(&sc->sc_task, ural_task, sc);
425 	usb_callout_init(sc->sc_scan_ch);
426 	sc->amrr.amrr_min_success_threshold = 1;
427 	sc->amrr.amrr_max_success_threshold = 15;
428 	usb_callout_init(sc->sc_amrr_ch);
429 
430 	/* retrieve RT2570 rev. no */
431 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
432 
433 	/* retrieve MAC address and various other things from EEPROM */
434 	ural_read_eeprom(sc);
435 
436 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
437 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
438 
439 	ifp->if_softc = sc;
440 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
441 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442 	ifp->if_init = ural_init;
443 	ifp->if_ioctl = ural_ioctl;
444 	ifp->if_start = ural_start;
445 	ifp->if_watchdog = ural_watchdog;
446 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
447 	IFQ_SET_READY(&ifp->if_snd);
448 
449 	ic->ic_ifp = ifp;
450 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
451 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
452 	ic->ic_state = IEEE80211_S_INIT;
453 
454 	/* set device capabilities */
455 	ic->ic_caps =
456 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
457 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
458 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
459 	    IEEE80211_C_TXPMGT |	/* tx power management */
460 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
461 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
462 	    IEEE80211_C_WPA;		/* 802.11i */
463 
464 	if (sc->rf_rev == RAL_RF_5222) {
465 		/* set supported .11a rates */
466 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
467 
468 		/* set supported .11a channels */
469 		for (i = 36; i <= 64; i += 4) {
470 			ic->ic_channels[i].ic_freq =
471 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 		}
474 		for (i = 100; i <= 140; i += 4) {
475 			ic->ic_channels[i].ic_freq =
476 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 		}
479 		for (i = 149; i <= 161; i += 4) {
480 			ic->ic_channels[i].ic_freq =
481 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
482 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
483 		}
484 	}
485 
486 	/* set supported .11b and .11g rates */
487 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
488 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
489 
490 	/* set supported .11b and .11g channels (1 through 14) */
491 	for (i = 1; i <= 14; i++) {
492 		ic->ic_channels[i].ic_freq =
493 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
494 		ic->ic_channels[i].ic_flags =
495 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
496 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
497 	}
498 
499 	if_attach(ifp);
500 	ieee80211_ifattach(ic);
501 	ic->ic_reset = ural_reset;
502 
503 	/* override state transition machine */
504 	sc->sc_newstate = ic->ic_newstate;
505 	ic->ic_newstate = ural_newstate;
506 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
507 
508 #if NBPFILTER > 0
509 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
510 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
511 
512 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
513 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
514 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
515 
516 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
517 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
518 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
519 #endif
520 
521 	ieee80211_announce(ic);
522 
523 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 	    USBDEV(sc->sc_dev));
525 
526 	USB_ATTACH_SUCCESS_RETURN;
527 }
528 
529 USB_DETACH(ural)
530 {
531 	USB_DETACH_START(ural, sc);
532 	struct ieee80211com *ic = &sc->sc_ic;
533 	struct ifnet *ifp = &sc->sc_if;
534 	int s;
535 
536 	s = splusb();
537 
538 	ural_stop(ifp, 1);
539 	usb_rem_task(sc->sc_udev, &sc->sc_task);
540 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
541 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
542 
543 	if (sc->amrr_xfer != NULL) {
544 		usbd_free_xfer(sc->amrr_xfer);
545 		sc->amrr_xfer = NULL;
546 	}
547 
548 	if (sc->sc_rx_pipeh != NULL) {
549 		usbd_abort_pipe(sc->sc_rx_pipeh);
550 		usbd_close_pipe(sc->sc_rx_pipeh);
551 	}
552 
553 	if (sc->sc_tx_pipeh != NULL) {
554 		usbd_abort_pipe(sc->sc_tx_pipeh);
555 		usbd_close_pipe(sc->sc_tx_pipeh);
556 	}
557 
558 #if NBPFILTER > 0
559 	bpfdetach(ifp);
560 #endif
561 	ieee80211_ifdetach(ic);
562 	if_detach(ifp);
563 
564 	splx(s);
565 
566 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
567 	    USBDEV(sc->sc_dev));
568 
569 	return 0;
570 }
571 
572 Static int
573 ural_alloc_tx_list(struct ural_softc *sc)
574 {
575 	struct ural_tx_data *data;
576 	int i, error;
577 
578 	sc->tx_queued = 0;
579 
580 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
581 		data = &sc->tx_data[i];
582 
583 		data->sc = sc;
584 
585 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
586 		if (data->xfer == NULL) {
587 			printf("%s: could not allocate tx xfer\n",
588 			    USBDEVNAME(sc->sc_dev));
589 			error = ENOMEM;
590 			goto fail;
591 		}
592 
593 		data->buf = usbd_alloc_buffer(data->xfer,
594 		    RAL_TX_DESC_SIZE + MCLBYTES);
595 		if (data->buf == NULL) {
596 			printf("%s: could not allocate tx buffer\n",
597 			    USBDEVNAME(sc->sc_dev));
598 			error = ENOMEM;
599 			goto fail;
600 		}
601 	}
602 
603 	return 0;
604 
605 fail:	ural_free_tx_list(sc);
606 	return error;
607 }
608 
609 Static void
610 ural_free_tx_list(struct ural_softc *sc)
611 {
612 	struct ural_tx_data *data;
613 	int i;
614 
615 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
616 		data = &sc->tx_data[i];
617 
618 		if (data->xfer != NULL) {
619 			usbd_free_xfer(data->xfer);
620 			data->xfer = NULL;
621 		}
622 
623 		if (data->ni != NULL) {
624 			ieee80211_free_node(data->ni);
625 			data->ni = NULL;
626 		}
627 	}
628 }
629 
630 Static int
631 ural_alloc_rx_list(struct ural_softc *sc)
632 {
633 	struct ural_rx_data *data;
634 	int i, error;
635 
636 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
637 		data = &sc->rx_data[i];
638 
639 		data->sc = sc;
640 
641 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
642 		if (data->xfer == NULL) {
643 			printf("%s: could not allocate rx xfer\n",
644 			    USBDEVNAME(sc->sc_dev));
645 			error = ENOMEM;
646 			goto fail;
647 		}
648 
649 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
650 			printf("%s: could not allocate rx buffer\n",
651 			    USBDEVNAME(sc->sc_dev));
652 			error = ENOMEM;
653 			goto fail;
654 		}
655 
656 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
657 		if (data->m == NULL) {
658 			printf("%s: could not allocate rx mbuf\n",
659 			    USBDEVNAME(sc->sc_dev));
660 			error = ENOMEM;
661 			goto fail;
662 		}
663 
664 		MCLGET(data->m, M_DONTWAIT);
665 		if (!(data->m->m_flags & M_EXT)) {
666 			printf("%s: could not allocate rx mbuf cluster\n",
667 			    USBDEVNAME(sc->sc_dev));
668 			error = ENOMEM;
669 			goto fail;
670 		}
671 
672 		data->buf = mtod(data->m, uint8_t *);
673 	}
674 
675 	return 0;
676 
677 fail:	ural_free_tx_list(sc);
678 	return error;
679 }
680 
681 Static void
682 ural_free_rx_list(struct ural_softc *sc)
683 {
684 	struct ural_rx_data *data;
685 	int i;
686 
687 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
688 		data = &sc->rx_data[i];
689 
690 		if (data->xfer != NULL) {
691 			usbd_free_xfer(data->xfer);
692 			data->xfer = NULL;
693 		}
694 
695 		if (data->m != NULL) {
696 			m_freem(data->m);
697 			data->m = NULL;
698 		}
699 	}
700 }
701 
702 Static int
703 ural_media_change(struct ifnet *ifp)
704 {
705 	int error;
706 
707 	error = ieee80211_media_change(ifp);
708 	if (error != ENETRESET)
709 		return error;
710 
711 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 		ural_init(ifp);
713 
714 	return 0;
715 }
716 
717 /*
718  * This function is called periodically (every 200ms) during scanning to
719  * switch from one channel to another.
720  */
721 Static void
722 ural_next_scan(void *arg)
723 {
724 	struct ural_softc *sc = arg;
725 	struct ieee80211com *ic = &sc->sc_ic;
726 
727 	if (ic->ic_state == IEEE80211_S_SCAN)
728 		ieee80211_next_scan(ic);
729 }
730 
731 Static void
732 ural_task(void *arg)
733 {
734 	struct ural_softc *sc = arg;
735 	struct ieee80211com *ic = &sc->sc_ic;
736 	enum ieee80211_state ostate;
737 	struct ieee80211_node *ni;
738 	struct mbuf *m;
739 
740 	ostate = ic->ic_state;
741 
742 	switch (sc->sc_state) {
743 	case IEEE80211_S_INIT:
744 		if (ostate == IEEE80211_S_RUN) {
745 			/* abort TSF synchronization */
746 			ural_write(sc, RAL_TXRX_CSR19, 0);
747 
748 			/* force tx led to stop blinking */
749 			ural_write(sc, RAL_MAC_CSR20, 0);
750 		}
751 		break;
752 
753 	case IEEE80211_S_SCAN:
754 		ural_set_chan(sc, ic->ic_curchan);
755 		usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
756 		break;
757 
758 	case IEEE80211_S_AUTH:
759 		ural_set_chan(sc, ic->ic_curchan);
760 		break;
761 
762 	case IEEE80211_S_ASSOC:
763 		ural_set_chan(sc, ic->ic_curchan);
764 		break;
765 
766 	case IEEE80211_S_RUN:
767 		ural_set_chan(sc, ic->ic_curchan);
768 
769 		ni = ic->ic_bss;
770 
771 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
772 			ural_update_slot(ic->ic_ifp);
773 			ural_set_txpreamble(sc);
774 			ural_set_basicrates(sc);
775 			ural_set_bssid(sc, ni->ni_bssid);
776 		}
777 
778 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
779 		    ic->ic_opmode == IEEE80211_M_IBSS) {
780 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
781 			if (m == NULL) {
782 				printf("%s: could not allocate beacon\n",
783 				    USBDEVNAME(sc->sc_dev));
784 				return;
785 			}
786 
787 			if (ural_tx_bcn(sc, m, ni) != 0) {
788 				m_freem(m);
789 				printf("%s: could not send beacon\n",
790 				    USBDEVNAME(sc->sc_dev));
791 				return;
792 			}
793 
794 			/* beacon is no longer needed */
795 			m_freem(m);
796 		}
797 
798 		/* make tx led blink on tx (controlled by ASIC) */
799 		ural_write(sc, RAL_MAC_CSR20, 1);
800 
801 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
802 			ural_enable_tsf_sync(sc);
803 
804 		/* enable automatic rate adaptation in STA mode */
805 		if (ic->ic_opmode == IEEE80211_M_STA &&
806 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
807 			ural_amrr_start(sc, ni);
808 
809 		break;
810 	}
811 
812 	sc->sc_newstate(ic, sc->sc_state, -1);
813 }
814 
815 Static int
816 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
817     int arg)
818 {
819 	struct ural_softc *sc = ic->ic_ifp->if_softc;
820 
821 	usb_rem_task(sc->sc_udev, &sc->sc_task);
822 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
823 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
824 
825 	/* do it in a process context */
826 	sc->sc_state = nstate;
827 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
828 
829 	return 0;
830 }
831 
832 /* quickly determine if a given rate is CCK or OFDM */
833 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
834 
835 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
836 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
837 
838 #define RAL_SIFS		10	/* us */
839 
840 #define RAL_RXTX_TURNAROUND	5	/* us */
841 
842 /*
843  * This function is only used by the Rx radiotap code.
844  */
845 Static int
846 ural_rxrate(struct ural_rx_desc *desc)
847 {
848 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
849 		/* reverse function of ural_plcp_signal */
850 		switch (desc->rate) {
851 		case 0xb:	return 12;
852 		case 0xf:	return 18;
853 		case 0xa:	return 24;
854 		case 0xe:	return 36;
855 		case 0x9:	return 48;
856 		case 0xd:	return 72;
857 		case 0x8:	return 96;
858 		case 0xc:	return 108;
859 		}
860 	} else {
861 		if (desc->rate == 10)
862 			return 2;
863 		if (desc->rate == 20)
864 			return 4;
865 		if (desc->rate == 55)
866 			return 11;
867 		if (desc->rate == 110)
868 			return 22;
869 	}
870 	return 2;	/* should not get there */
871 }
872 
873 Static void
874 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
875     usbd_status status)
876 {
877 	struct ural_tx_data *data = priv;
878 	struct ural_softc *sc = data->sc;
879 	struct ifnet *ifp = &sc->sc_if;
880 	int s;
881 
882 	if (status != USBD_NORMAL_COMPLETION) {
883 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
884 			return;
885 
886 		printf("%s: could not transmit buffer: %s\n",
887 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
888 
889 		if (status == USBD_STALLED)
890 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
891 
892 		ifp->if_oerrors++;
893 		return;
894 	}
895 
896 	s = splnet();
897 
898 	m_freem(data->m);
899 	data->m = NULL;
900 	ieee80211_free_node(data->ni);
901 	data->ni = NULL;
902 
903 	sc->tx_queued--;
904 	ifp->if_opackets++;
905 
906 	DPRINTFN(10, ("tx done\n"));
907 
908 	sc->sc_tx_timer = 0;
909 	ifp->if_flags &= ~IFF_OACTIVE;
910 	ural_start(ifp);
911 
912 	splx(s);
913 }
914 
915 Static void
916 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
917 {
918 	struct ural_rx_data *data = priv;
919 	struct ural_softc *sc = data->sc;
920 	struct ieee80211com *ic = &sc->sc_ic;
921 	struct ifnet *ifp = &sc->sc_if;
922 	struct ural_rx_desc *desc;
923 	struct ieee80211_frame *wh;
924 	struct ieee80211_node *ni;
925 	struct mbuf *mnew, *m;
926 	int s, len;
927 
928 	if (status != USBD_NORMAL_COMPLETION) {
929 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
930 			return;
931 
932 		if (status == USBD_STALLED)
933 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
934 		goto skip;
935 	}
936 
937 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
938 
939 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
940 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
941 		    len));
942 		ifp->if_ierrors++;
943 		goto skip;
944 	}
945 
946 	/* rx descriptor is located at the end */
947 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
948 
949 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
950 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
951 		/*
952 		 * This should not happen since we did not request to receive
953 		 * those frames when we filled RAL_TXRX_CSR2.
954 		 */
955 		DPRINTFN(5, ("PHY or CRC error\n"));
956 		ifp->if_ierrors++;
957 		goto skip;
958 	}
959 
960 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
961 	if (mnew == NULL) {
962 		ifp->if_ierrors++;
963 		goto skip;
964 	}
965 
966 	MCLGET(mnew, M_DONTWAIT);
967 	if (!(mnew->m_flags & M_EXT)) {
968 		ifp->if_ierrors++;
969 		m_freem(mnew);
970 		goto skip;
971 	}
972 
973 	m = data->m;
974 	data->m = mnew;
975 	data->buf = mtod(data->m, uint8_t *);
976 
977 	/* finalize mbuf */
978 	m->m_pkthdr.rcvif = ifp;
979 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
980 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
981 
982 	s = splnet();
983 
984 #if NBPFILTER > 0
985 	if (sc->sc_drvbpf != NULL) {
986 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
987 
988 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
989 		tap->wr_rate = ural_rxrate(desc);
990 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
991 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
992 		tap->wr_antenna = sc->rx_ant;
993 		tap->wr_antsignal = desc->rssi;
994 
995 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
996 	}
997 #endif
998 
999 	wh = mtod(m, struct ieee80211_frame *);
1000 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1001 
1002 	/* send the frame to the 802.11 layer */
1003 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1004 
1005 	/* node is no longer needed */
1006 	ieee80211_free_node(ni);
1007 
1008 	splx(s);
1009 
1010 	DPRINTFN(15, ("rx done\n"));
1011 
1012 skip:	/* setup a new transfer */
1013 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1014 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1015 	usbd_transfer(xfer);
1016 }
1017 
1018 /*
1019  * Return the expected ack rate for a frame transmitted at rate `rate'.
1020  * XXX: this should depend on the destination node basic rate set.
1021  */
1022 Static int
1023 ural_ack_rate(struct ieee80211com *ic, int rate)
1024 {
1025 	switch (rate) {
1026 	/* CCK rates */
1027 	case 2:
1028 		return 2;
1029 	case 4:
1030 	case 11:
1031 	case 22:
1032 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1033 
1034 	/* OFDM rates */
1035 	case 12:
1036 	case 18:
1037 		return 12;
1038 	case 24:
1039 	case 36:
1040 		return 24;
1041 	case 48:
1042 	case 72:
1043 	case 96:
1044 	case 108:
1045 		return 48;
1046 	}
1047 
1048 	/* default to 1Mbps */
1049 	return 2;
1050 }
1051 
1052 /*
1053  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1054  * The function automatically determines the operating mode depending on the
1055  * given rate. `flags' indicates whether short preamble is in use or not.
1056  */
1057 Static uint16_t
1058 ural_txtime(int len, int rate, uint32_t flags)
1059 {
1060 	uint16_t txtime;
1061 
1062 	if (RAL_RATE_IS_OFDM(rate)) {
1063 		/* IEEE Std 802.11g-2003, pp. 37 */
1064 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1065 		txtime = 16 + 4 + 4 * txtime + 6;
1066 	} else {
1067 		/* IEEE Std 802.11b-1999, pp. 28 */
1068 		txtime = (16 * len + rate - 1) / rate;
1069 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1070 			txtime +=  72 + 24;
1071 		else
1072 			txtime += 144 + 48;
1073 	}
1074 	return txtime;
1075 }
1076 
1077 Static uint8_t
1078 ural_plcp_signal(int rate)
1079 {
1080 	switch (rate) {
1081 	/* CCK rates (returned values are device-dependent) */
1082 	case 2:		return 0x0;
1083 	case 4:		return 0x1;
1084 	case 11:	return 0x2;
1085 	case 22:	return 0x3;
1086 
1087 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1088 	case 12:	return 0xb;
1089 	case 18:	return 0xf;
1090 	case 24:	return 0xa;
1091 	case 36:	return 0xe;
1092 	case 48:	return 0x9;
1093 	case 72:	return 0xd;
1094 	case 96:	return 0x8;
1095 	case 108:	return 0xc;
1096 
1097 	/* unsupported rates (should not get there) */
1098 	default:	return 0xff;
1099 	}
1100 }
1101 
1102 Static void
1103 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1104     uint32_t flags, int len, int rate)
1105 {
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	uint16_t plcp_length;
1108 	int remainder;
1109 
1110 	desc->flags = htole32(flags);
1111 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1112 	desc->flags |= htole32(len << 16);
1113 
1114 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1115 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1116 
1117 	/* setup PLCP fields */
1118 	desc->plcp_signal  = ural_plcp_signal(rate);
1119 	desc->plcp_service = 4;
1120 
1121 	len += IEEE80211_CRC_LEN;
1122 	if (RAL_RATE_IS_OFDM(rate)) {
1123 		desc->flags |= htole32(RAL_TX_OFDM);
1124 
1125 		plcp_length = len & 0xfff;
1126 		desc->plcp_length_hi = plcp_length >> 6;
1127 		desc->plcp_length_lo = plcp_length & 0x3f;
1128 	} else {
1129 		plcp_length = (16 * len + rate - 1) / rate;
1130 		if (rate == 22) {
1131 			remainder = (16 * len) % 22;
1132 			if (remainder != 0 && remainder < 7)
1133 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1134 		}
1135 		desc->plcp_length_hi = plcp_length >> 8;
1136 		desc->plcp_length_lo = plcp_length & 0xff;
1137 
1138 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1139 			desc->plcp_signal |= 0x08;
1140 	}
1141 
1142 	desc->iv = 0;
1143 	desc->eiv = 0;
1144 }
1145 
1146 #define RAL_TX_TIMEOUT	5000
1147 
1148 Static int
1149 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1150 {
1151 	struct ural_tx_desc *desc;
1152 	usbd_xfer_handle xfer;
1153 	uint8_t cmd = 0;
1154 	usbd_status error;
1155 	uint8_t *buf;
1156 	int xferlen, rate;
1157 
1158 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1159 
1160 	xfer = usbd_alloc_xfer(sc->sc_udev);
1161 	if (xfer == NULL)
1162 		return ENOMEM;
1163 
1164 	/* xfer length needs to be a multiple of two! */
1165 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1166 
1167 	buf = usbd_alloc_buffer(xfer, xferlen);
1168 	if (buf == NULL) {
1169 		usbd_free_xfer(xfer);
1170 		return ENOMEM;
1171 	}
1172 
1173 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1174 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1175 
1176 	error = usbd_sync_transfer(xfer);
1177 	if (error != 0) {
1178 		usbd_free_xfer(xfer);
1179 		return error;
1180 	}
1181 
1182 	desc = (struct ural_tx_desc *)buf;
1183 
1184 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1185 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1186 	    m0->m_pkthdr.len, rate);
1187 
1188 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1189 	    m0->m_pkthdr.len, rate, xferlen));
1190 
1191 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1192 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1193 
1194 	error = usbd_sync_transfer(xfer);
1195 	usbd_free_xfer(xfer);
1196 
1197 	return error;
1198 }
1199 
1200 Static int
1201 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1202 {
1203 	struct ieee80211com *ic = &sc->sc_ic;
1204 	struct ural_tx_desc *desc;
1205 	struct ural_tx_data *data;
1206 	struct ieee80211_frame *wh;
1207 	struct ieee80211_key *k;
1208 	uint32_t flags = 0;
1209 	uint16_t dur;
1210 	usbd_status error;
1211 	int xferlen, rate;
1212 
1213 	data = &sc->tx_data[0];
1214 	desc = (struct ural_tx_desc *)data->buf;
1215 
1216 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1217 
1218 	wh = mtod(m0, struct ieee80211_frame *);
1219 
1220 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1221 		k = ieee80211_crypto_encap(ic, ni, m0);
1222 		if (k == NULL) {
1223 			m_freem(m0);
1224 			return ENOBUFS;
1225 		}
1226 	}
1227 
1228 	data->m = m0;
1229 	data->ni = ni;
1230 
1231 	wh = mtod(m0, struct ieee80211_frame *);
1232 
1233 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1234 		flags |= RAL_TX_ACK;
1235 
1236 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1237 		*(uint16_t *)wh->i_dur = htole16(dur);
1238 
1239 		/* tell hardware to add timestamp for probe responses */
1240 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1241 		    IEEE80211_FC0_TYPE_MGT &&
1242 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1243 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1244 			flags |= RAL_TX_TIMESTAMP;
1245 	}
1246 
1247 #if NBPFILTER > 0
1248 	if (sc->sc_drvbpf != NULL) {
1249 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1250 
1251 		tap->wt_flags = 0;
1252 		tap->wt_rate = rate;
1253 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1254 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1255 		tap->wt_antenna = sc->tx_ant;
1256 
1257 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1258 	}
1259 #endif
1260 
1261 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1262 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1263 
1264 	/* align end on a 2-bytes boundary */
1265 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1266 
1267 	/*
1268 	 * No space left in the last URB to store the extra 2 bytes, force
1269 	 * sending of another URB.
1270 	 */
1271 	if ((xferlen % 64) == 0)
1272 		xferlen += 2;
1273 
1274 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1275 	    m0->m_pkthdr.len, rate, xferlen));
1276 
1277 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1278 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1279 	    ural_txeof);
1280 
1281 	error = usbd_transfer(data->xfer);
1282 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1283 		m_freem(m0);
1284 		return error;
1285 	}
1286 
1287 	sc->tx_queued++;
1288 
1289 	return 0;
1290 }
1291 
1292 Static int
1293 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1294 {
1295 	struct ieee80211com *ic = &sc->sc_ic;
1296 	struct ural_tx_desc *desc;
1297 	struct ural_tx_data *data;
1298 	struct ieee80211_frame *wh;
1299 	struct ieee80211_key *k;
1300 	uint32_t flags = 0;
1301 	uint16_t dur;
1302 	usbd_status error;
1303 	int xferlen, rate;
1304 
1305 	wh = mtod(m0, struct ieee80211_frame *);
1306 
1307 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1308 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1309 	else
1310 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1311 
1312 	rate &= IEEE80211_RATE_VAL;
1313 
1314 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1315 		k = ieee80211_crypto_encap(ic, ni, m0);
1316 		if (k == NULL) {
1317 			m_freem(m0);
1318 			return ENOBUFS;
1319 		}
1320 
1321 		/* packet header may have moved, reset our local pointer */
1322 		wh = mtod(m0, struct ieee80211_frame *);
1323 	}
1324 
1325 	data = &sc->tx_data[0];
1326 	desc = (struct ural_tx_desc *)data->buf;
1327 
1328 	data->m = m0;
1329 	data->ni = ni;
1330 
1331 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1332 		flags |= RAL_TX_ACK;
1333 		flags |= RAL_TX_RETRY(7);
1334 
1335 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1336 		    ic->ic_flags) + RAL_SIFS;
1337 		*(uint16_t *)wh->i_dur = htole16(dur);
1338 	}
1339 
1340 #if NBPFILTER > 0
1341 	if (sc->sc_drvbpf != NULL) {
1342 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1343 
1344 		tap->wt_flags = 0;
1345 		tap->wt_rate = rate;
1346 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1347 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1348 		tap->wt_antenna = sc->tx_ant;
1349 
1350 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1351 	}
1352 #endif
1353 
1354 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1355 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1356 
1357 	/* align end on a 2-bytes boundary */
1358 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1359 
1360 	/*
1361 	 * No space left in the last URB to store the extra 2 bytes, force
1362 	 * sending of another URB.
1363 	 */
1364 	if ((xferlen % 64) == 0)
1365 		xferlen += 2;
1366 
1367 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1368 	    m0->m_pkthdr.len, rate, xferlen));
1369 
1370 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1371 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1372 	    ural_txeof);
1373 
1374 	error = usbd_transfer(data->xfer);
1375 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1376 		return error;
1377 
1378 	sc->tx_queued++;
1379 
1380 	return 0;
1381 }
1382 
1383 Static void
1384 ural_start(struct ifnet *ifp)
1385 {
1386 	struct ural_softc *sc = ifp->if_softc;
1387 	struct ieee80211com *ic = &sc->sc_ic;
1388 	struct mbuf *m0;
1389 	struct ether_header *eh;
1390 	struct ieee80211_node *ni;
1391 
1392 	for (;;) {
1393 		IF_POLL(&ic->ic_mgtq, m0);
1394 		if (m0 != NULL) {
1395 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1396 				ifp->if_flags |= IFF_OACTIVE;
1397 				break;
1398 			}
1399 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1400 
1401 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1402 			m0->m_pkthdr.rcvif = NULL;
1403 #if NBPFILTER > 0
1404 			if (ic->ic_rawbpf != NULL)
1405 				bpf_mtap(ic->ic_rawbpf, m0);
1406 #endif
1407 			if (ural_tx_mgt(sc, m0, ni) != 0)
1408 				break;
1409 
1410 		} else {
1411 			if (ic->ic_state != IEEE80211_S_RUN)
1412 				break;
1413 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1414 			if (m0 == NULL)
1415 				break;
1416 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1417 				IF_PREPEND(&ifp->if_snd, m0);
1418 				ifp->if_flags |= IFF_OACTIVE;
1419 				break;
1420 			}
1421 
1422 			if (m0->m_len < sizeof (struct ether_header) &&
1423 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1424 				continue;
1425 
1426 			eh = mtod(m0, struct ether_header *);
1427 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1428 			if (ni == NULL) {
1429 				m_freem(m0);
1430 				continue;
1431 			}
1432 #if NBPFILTER > 0
1433 			if (ifp->if_bpf != NULL)
1434 				bpf_mtap(ifp->if_bpf, m0);
1435 #endif
1436 			m0 = ieee80211_encap(ic, m0, ni);
1437 			if (m0 == NULL) {
1438 				ieee80211_free_node(ni);
1439 				continue;
1440 			}
1441 #if NBPFILTER > 0
1442 			if (ic->ic_rawbpf != NULL)
1443 				bpf_mtap(ic->ic_rawbpf, m0);
1444 #endif
1445 			if (ural_tx_data(sc, m0, ni) != 0) {
1446 				ieee80211_free_node(ni);
1447 				ifp->if_oerrors++;
1448 				break;
1449 			}
1450 		}
1451 
1452 		sc->sc_tx_timer = 5;
1453 		ifp->if_timer = 1;
1454 	}
1455 }
1456 
1457 Static void
1458 ural_watchdog(struct ifnet *ifp)
1459 {
1460 	struct ural_softc *sc = ifp->if_softc;
1461 	struct ieee80211com *ic = &sc->sc_ic;
1462 
1463 	ifp->if_timer = 0;
1464 
1465 	if (sc->sc_tx_timer > 0) {
1466 		if (--sc->sc_tx_timer == 0) {
1467 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1468 			/*ural_init(sc); XXX needs a process context! */
1469 			ifp->if_oerrors++;
1470 			return;
1471 		}
1472 		ifp->if_timer = 1;
1473 	}
1474 
1475 	ieee80211_watchdog(ic);
1476 }
1477 
1478 /*
1479  * This function allows for fast channel switching in monitor mode (used by
1480  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1481  * generate a new beacon frame.
1482  */
1483 Static int
1484 ural_reset(struct ifnet *ifp)
1485 {
1486 	struct ural_softc *sc = ifp->if_softc;
1487 	struct ieee80211com *ic = &sc->sc_ic;
1488 
1489 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1490 		return ENETRESET;
1491 
1492 	ural_set_chan(sc, ic->ic_curchan);
1493 
1494 	return 0;
1495 }
1496 
1497 Static int
1498 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1499 {
1500 	struct ural_softc *sc = ifp->if_softc;
1501 	struct ieee80211com *ic = &sc->sc_ic;
1502 	int s, error = 0;
1503 
1504 	s = splnet();
1505 
1506 	switch (cmd) {
1507 	case SIOCSIFFLAGS:
1508 		if (ifp->if_flags & IFF_UP) {
1509 			if (ifp->if_flags & IFF_RUNNING)
1510 				ural_update_promisc(sc);
1511 			else
1512 				ural_init(ifp);
1513 		} else {
1514 			if (ifp->if_flags & IFF_RUNNING)
1515 				ural_stop(ifp, 1);
1516 		}
1517 		break;
1518 
1519 	default:
1520 		error = ieee80211_ioctl(ic, cmd, data);
1521 	}
1522 
1523 	if (error == ENETRESET) {
1524 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1525 		    (IFF_UP | IFF_RUNNING))
1526 			ural_init(ifp);
1527 		error = 0;
1528 	}
1529 
1530 	splx(s);
1531 
1532 	return error;
1533 }
1534 
1535 Static void
1536 ural_set_testmode(struct ural_softc *sc)
1537 {
1538 	usb_device_request_t req;
1539 	usbd_status error;
1540 
1541 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1542 	req.bRequest = RAL_VENDOR_REQUEST;
1543 	USETW(req.wValue, 4);
1544 	USETW(req.wIndex, 1);
1545 	USETW(req.wLength, 0);
1546 
1547 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1548 	if (error != 0) {
1549 		printf("%s: could not set test mode: %s\n",
1550 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1551 	}
1552 }
1553 
1554 Static void
1555 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1556 {
1557 	usb_device_request_t req;
1558 	usbd_status error;
1559 
1560 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1561 	req.bRequest = RAL_READ_EEPROM;
1562 	USETW(req.wValue, 0);
1563 	USETW(req.wIndex, addr);
1564 	USETW(req.wLength, len);
1565 
1566 	error = usbd_do_request(sc->sc_udev, &req, buf);
1567 	if (error != 0) {
1568 		printf("%s: could not read EEPROM: %s\n",
1569 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1570 	}
1571 }
1572 
1573 Static uint16_t
1574 ural_read(struct ural_softc *sc, uint16_t reg)
1575 {
1576 	usb_device_request_t req;
1577 	usbd_status error;
1578 	uint16_t val;
1579 
1580 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1581 	req.bRequest = RAL_READ_MAC;
1582 	USETW(req.wValue, 0);
1583 	USETW(req.wIndex, reg);
1584 	USETW(req.wLength, sizeof (uint16_t));
1585 
1586 	error = usbd_do_request(sc->sc_udev, &req, &val);
1587 	if (error != 0) {
1588 		printf("%s: could not read MAC register: %s\n",
1589 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1590 		return 0;
1591 	}
1592 
1593 	return le16toh(val);
1594 }
1595 
1596 Static void
1597 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1598 {
1599 	usb_device_request_t req;
1600 	usbd_status error;
1601 
1602 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1603 	req.bRequest = RAL_READ_MULTI_MAC;
1604 	USETW(req.wValue, 0);
1605 	USETW(req.wIndex, reg);
1606 	USETW(req.wLength, len);
1607 
1608 	error = usbd_do_request(sc->sc_udev, &req, buf);
1609 	if (error != 0) {
1610 		printf("%s: could not read MAC register: %s\n",
1611 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1612 	}
1613 }
1614 
1615 Static void
1616 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1617 {
1618 	usb_device_request_t req;
1619 	usbd_status error;
1620 
1621 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1622 	req.bRequest = RAL_WRITE_MAC;
1623 	USETW(req.wValue, val);
1624 	USETW(req.wIndex, reg);
1625 	USETW(req.wLength, 0);
1626 
1627 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1628 	if (error != 0) {
1629 		printf("%s: could not write MAC register: %s\n",
1630 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1631 	}
1632 }
1633 
1634 Static void
1635 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1636 {
1637 	usb_device_request_t req;
1638 	usbd_status error;
1639 
1640 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1641 	req.bRequest = RAL_WRITE_MULTI_MAC;
1642 	USETW(req.wValue, 0);
1643 	USETW(req.wIndex, reg);
1644 	USETW(req.wLength, len);
1645 
1646 	error = usbd_do_request(sc->sc_udev, &req, buf);
1647 	if (error != 0) {
1648 		printf("%s: could not write MAC register: %s\n",
1649 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1650 	}
1651 }
1652 
1653 Static void
1654 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1655 {
1656 	uint16_t tmp;
1657 	int ntries;
1658 
1659 	for (ntries = 0; ntries < 5; ntries++) {
1660 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1661 			break;
1662 	}
1663 	if (ntries == 5) {
1664 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1665 		return;
1666 	}
1667 
1668 	tmp = reg << 8 | val;
1669 	ural_write(sc, RAL_PHY_CSR7, tmp);
1670 }
1671 
1672 Static uint8_t
1673 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1674 {
1675 	uint16_t val;
1676 	int ntries;
1677 
1678 	val = RAL_BBP_WRITE | reg << 8;
1679 	ural_write(sc, RAL_PHY_CSR7, val);
1680 
1681 	for (ntries = 0; ntries < 5; ntries++) {
1682 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1683 			break;
1684 	}
1685 	if (ntries == 5) {
1686 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1687 		return 0;
1688 	}
1689 
1690 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1691 }
1692 
1693 Static void
1694 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1695 {
1696 	uint32_t tmp;
1697 	int ntries;
1698 
1699 	for (ntries = 0; ntries < 5; ntries++) {
1700 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1701 			break;
1702 	}
1703 	if (ntries == 5) {
1704 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1705 		return;
1706 	}
1707 
1708 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1709 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1710 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1711 
1712 	/* remember last written value in sc */
1713 	sc->rf_regs[reg] = val;
1714 
1715 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1716 }
1717 
1718 Static void
1719 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1720 {
1721 	struct ieee80211com *ic = &sc->sc_ic;
1722 	uint8_t power, tmp;
1723 	u_int i, chan;
1724 
1725 	chan = ieee80211_chan2ieee(ic, c);
1726 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1727 		return;
1728 
1729 	if (IEEE80211_IS_CHAN_2GHZ(c))
1730 		power = min(sc->txpow[chan - 1], 31);
1731 	else
1732 		power = 31;
1733 
1734 	/* adjust txpower using ifconfig settings */
1735 	power -= (100 - ic->ic_txpowlimit) / 8;
1736 
1737 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1738 
1739 	switch (sc->rf_rev) {
1740 	case RAL_RF_2522:
1741 		ural_rf_write(sc, RAL_RF1, 0x00814);
1742 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1743 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1744 		break;
1745 
1746 	case RAL_RF_2523:
1747 		ural_rf_write(sc, RAL_RF1, 0x08804);
1748 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1749 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1750 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1751 		break;
1752 
1753 	case RAL_RF_2524:
1754 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1755 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1756 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1757 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1758 		break;
1759 
1760 	case RAL_RF_2525:
1761 		ural_rf_write(sc, RAL_RF1, 0x08808);
1762 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1763 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1764 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1765 
1766 		ural_rf_write(sc, RAL_RF1, 0x08808);
1767 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1768 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1769 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1770 		break;
1771 
1772 	case RAL_RF_2525E:
1773 		ural_rf_write(sc, RAL_RF1, 0x08808);
1774 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1775 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1776 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1777 		break;
1778 
1779 	case RAL_RF_2526:
1780 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1781 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1782 		ural_rf_write(sc, RAL_RF1, 0x08804);
1783 
1784 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1785 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1786 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1787 		break;
1788 
1789 	/* dual-band RF */
1790 	case RAL_RF_5222:
1791 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1792 
1793 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1794 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1795 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1796 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1797 		break;
1798 	}
1799 
1800 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1801 	    ic->ic_state != IEEE80211_S_SCAN) {
1802 		/* set Japan filter bit for channel 14 */
1803 		tmp = ural_bbp_read(sc, 70);
1804 
1805 		tmp &= ~RAL_JAPAN_FILTER;
1806 		if (chan == 14)
1807 			tmp |= RAL_JAPAN_FILTER;
1808 
1809 		ural_bbp_write(sc, 70, tmp);
1810 
1811 		/* clear CRC errors */
1812 		ural_read(sc, RAL_STA_CSR0);
1813 
1814 		DELAY(10000);
1815 		ural_disable_rf_tune(sc);
1816 	}
1817 }
1818 
1819 /*
1820  * Disable RF auto-tuning.
1821  */
1822 Static void
1823 ural_disable_rf_tune(struct ural_softc *sc)
1824 {
1825 	uint32_t tmp;
1826 
1827 	if (sc->rf_rev != RAL_RF_2523) {
1828 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1829 		ural_rf_write(sc, RAL_RF1, tmp);
1830 	}
1831 
1832 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1833 	ural_rf_write(sc, RAL_RF3, tmp);
1834 
1835 	DPRINTFN(2, ("disabling RF autotune\n"));
1836 }
1837 
1838 /*
1839  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1840  * synchronization.
1841  */
1842 Static void
1843 ural_enable_tsf_sync(struct ural_softc *sc)
1844 {
1845 	struct ieee80211com *ic = &sc->sc_ic;
1846 	uint16_t logcwmin, preload, tmp;
1847 
1848 	/* first, disable TSF synchronization */
1849 	ural_write(sc, RAL_TXRX_CSR19, 0);
1850 
1851 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1852 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1853 
1854 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1855 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1856 	tmp = logcwmin << 12 | preload;
1857 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1858 
1859 	/* finally, enable TSF synchronization */
1860 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1861 	if (ic->ic_opmode == IEEE80211_M_STA)
1862 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1863 	else
1864 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1865 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1866 
1867 	DPRINTF(("enabling TSF synchronization\n"));
1868 }
1869 
1870 Static void
1871 ural_update_slot(struct ifnet *ifp)
1872 {
1873 	struct ural_softc *sc = ifp->if_softc;
1874 	struct ieee80211com *ic = &sc->sc_ic;
1875 	uint16_t slottime, sifs, eifs;
1876 
1877 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1878 
1879 	/*
1880 	 * These settings may sound a bit inconsistent but this is what the
1881 	 * reference driver does.
1882 	 */
1883 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1884 		sifs = 16 - RAL_RXTX_TURNAROUND;
1885 		eifs = 364;
1886 	} else {
1887 		sifs = 10 - RAL_RXTX_TURNAROUND;
1888 		eifs = 64;
1889 	}
1890 
1891 	ural_write(sc, RAL_MAC_CSR10, slottime);
1892 	ural_write(sc, RAL_MAC_CSR11, sifs);
1893 	ural_write(sc, RAL_MAC_CSR12, eifs);
1894 }
1895 
1896 Static void
1897 ural_set_txpreamble(struct ural_softc *sc)
1898 {
1899 	uint16_t tmp;
1900 
1901 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1902 
1903 	tmp &= ~RAL_SHORT_PREAMBLE;
1904 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1905 		tmp |= RAL_SHORT_PREAMBLE;
1906 
1907 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1908 }
1909 
1910 Static void
1911 ural_set_basicrates(struct ural_softc *sc)
1912 {
1913 	struct ieee80211com *ic = &sc->sc_ic;
1914 
1915 	/* update basic rate set */
1916 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1917 		/* 11b basic rates: 1, 2Mbps */
1918 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1919 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1920 		/* 11a basic rates: 6, 12, 24Mbps */
1921 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1922 	} else {
1923 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1924 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1925 	}
1926 }
1927 
1928 Static void
1929 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1930 {
1931 	uint16_t tmp;
1932 
1933 	tmp = bssid[0] | bssid[1] << 8;
1934 	ural_write(sc, RAL_MAC_CSR5, tmp);
1935 
1936 	tmp = bssid[2] | bssid[3] << 8;
1937 	ural_write(sc, RAL_MAC_CSR6, tmp);
1938 
1939 	tmp = bssid[4] | bssid[5] << 8;
1940 	ural_write(sc, RAL_MAC_CSR7, tmp);
1941 
1942 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1943 }
1944 
1945 Static void
1946 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1947 {
1948 	uint16_t tmp;
1949 
1950 	tmp = addr[0] | addr[1] << 8;
1951 	ural_write(sc, RAL_MAC_CSR2, tmp);
1952 
1953 	tmp = addr[2] | addr[3] << 8;
1954 	ural_write(sc, RAL_MAC_CSR3, tmp);
1955 
1956 	tmp = addr[4] | addr[5] << 8;
1957 	ural_write(sc, RAL_MAC_CSR4, tmp);
1958 
1959 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1960 }
1961 
1962 Static void
1963 ural_update_promisc(struct ural_softc *sc)
1964 {
1965 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1966 	uint32_t tmp;
1967 
1968 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1969 
1970 	tmp &= ~RAL_DROP_NOT_TO_ME;
1971 	if (!(ifp->if_flags & IFF_PROMISC))
1972 		tmp |= RAL_DROP_NOT_TO_ME;
1973 
1974 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1975 
1976 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1977 	    "entering" : "leaving"));
1978 }
1979 
1980 Static const char *
1981 ural_get_rf(int rev)
1982 {
1983 	switch (rev) {
1984 	case RAL_RF_2522:	return "RT2522";
1985 	case RAL_RF_2523:	return "RT2523";
1986 	case RAL_RF_2524:	return "RT2524";
1987 	case RAL_RF_2525:	return "RT2525";
1988 	case RAL_RF_2525E:	return "RT2525e";
1989 	case RAL_RF_2526:	return "RT2526";
1990 	case RAL_RF_5222:	return "RT5222";
1991 	default:		return "unknown";
1992 	}
1993 }
1994 
1995 Static void
1996 ural_read_eeprom(struct ural_softc *sc)
1997 {
1998 	struct ieee80211com *ic = &sc->sc_ic;
1999 	uint16_t val;
2000 
2001 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2002 	val = le16toh(val);
2003 	sc->rf_rev =   (val >> 11) & 0x7;
2004 	sc->hw_radio = (val >> 10) & 0x1;
2005 	sc->led_mode = (val >> 6)  & 0x7;
2006 	sc->rx_ant =   (val >> 4)  & 0x3;
2007 	sc->tx_ant =   (val >> 2)  & 0x3;
2008 	sc->nb_ant =   val & 0x3;
2009 
2010 	/* read MAC address */
2011 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2012 
2013 	/* read default values for BBP registers */
2014 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2015 
2016 	/* read Tx power for all b/g channels */
2017 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2018 }
2019 
2020 Static int
2021 ural_bbp_init(struct ural_softc *sc)
2022 {
2023 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2024 	int i, ntries;
2025 
2026 	/* wait for BBP to be ready */
2027 	for (ntries = 0; ntries < 100; ntries++) {
2028 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2029 			break;
2030 		DELAY(1000);
2031 	}
2032 	if (ntries == 100) {
2033 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2034 		return EIO;
2035 	}
2036 
2037 	/* initialize BBP registers to default values */
2038 	for (i = 0; i < N(ural_def_bbp); i++)
2039 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2040 
2041 #if 0
2042 	/* initialize BBP registers to values stored in EEPROM */
2043 	for (i = 0; i < 16; i++) {
2044 		if (sc->bbp_prom[i].reg == 0xff)
2045 			continue;
2046 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2047 	}
2048 #endif
2049 
2050 	return 0;
2051 #undef N
2052 }
2053 
2054 Static void
2055 ural_set_txantenna(struct ural_softc *sc, int antenna)
2056 {
2057 	uint16_t tmp;
2058 	uint8_t tx;
2059 
2060 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2061 	if (antenna == 1)
2062 		tx |= RAL_BBP_ANTA;
2063 	else if (antenna == 2)
2064 		tx |= RAL_BBP_ANTB;
2065 	else
2066 		tx |= RAL_BBP_DIVERSITY;
2067 
2068 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2069 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2070 	    sc->rf_rev == RAL_RF_5222)
2071 		tx |= RAL_BBP_FLIPIQ;
2072 
2073 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2074 
2075 	/* update values in PHY_CSR5 and PHY_CSR6 */
2076 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2077 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2078 
2079 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2080 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2081 }
2082 
2083 Static void
2084 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2085 {
2086 	uint8_t rx;
2087 
2088 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2089 	if (antenna == 1)
2090 		rx |= RAL_BBP_ANTA;
2091 	else if (antenna == 2)
2092 		rx |= RAL_BBP_ANTB;
2093 	else
2094 		rx |= RAL_BBP_DIVERSITY;
2095 
2096 	/* need to force no I/Q flip for RF 2525e and 2526 */
2097 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2098 		rx &= ~RAL_BBP_FLIPIQ;
2099 
2100 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2101 }
2102 
2103 Static int
2104 ural_init(struct ifnet *ifp)
2105 {
2106 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2107 	struct ural_softc *sc = ifp->if_softc;
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	struct ieee80211_key *wk;
2110 	struct ural_rx_data *data;
2111 	uint16_t tmp;
2112 	usbd_status error;
2113 	int i, ntries;
2114 
2115 	ural_set_testmode(sc);
2116 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2117 
2118 	ural_stop(ifp, 0);
2119 
2120 	/* initialize MAC registers to default values */
2121 	for (i = 0; i < N(ural_def_mac); i++)
2122 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2123 
2124 	/* wait for BBP and RF to wake up (this can take a long time!) */
2125 	for (ntries = 0; ntries < 100; ntries++) {
2126 		tmp = ural_read(sc, RAL_MAC_CSR17);
2127 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2128 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2129 			break;
2130 		DELAY(1000);
2131 	}
2132 	if (ntries == 100) {
2133 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2134 		    USBDEVNAME(sc->sc_dev));
2135 		error = EIO;
2136 		goto fail;
2137 	}
2138 
2139 	/* we're ready! */
2140 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2141 
2142 	/* set basic rate set (will be updated later) */
2143 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2144 
2145 	error = ural_bbp_init(sc);
2146 	if (error != 0)
2147 		goto fail;
2148 
2149 	/* set default BSS channel */
2150 	ural_set_chan(sc, ic->ic_curchan);
2151 
2152 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2153 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2154 
2155 	ural_set_txantenna(sc, sc->tx_ant);
2156 	ural_set_rxantenna(sc, sc->rx_ant);
2157 
2158 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2159 	ural_set_macaddr(sc, ic->ic_myaddr);
2160 
2161 	/*
2162 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2163 	 */
2164 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2165 		wk = &ic->ic_crypto.cs_nw_keys[i];
2166 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2167 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2168 	}
2169 
2170 	/*
2171 	 * Allocate xfer for AMRR statistics requests.
2172 	 */
2173 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2174 	if (sc->amrr_xfer == NULL) {
2175 		printf("%s: could not allocate AMRR xfer\n",
2176 		    USBDEVNAME(sc->sc_dev));
2177 		goto fail;
2178 	}
2179 
2180 	/*
2181 	 * Open Tx and Rx USB bulk pipes.
2182 	 */
2183 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2184 	    &sc->sc_tx_pipeh);
2185 	if (error != 0) {
2186 		printf("%s: could not open Tx pipe: %s\n",
2187 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2188 		goto fail;
2189 	}
2190 
2191 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2192 	    &sc->sc_rx_pipeh);
2193 	if (error != 0) {
2194 		printf("%s: could not open Rx pipe: %s\n",
2195 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2196 		goto fail;
2197 	}
2198 
2199 	/*
2200 	 * Allocate Tx and Rx xfer queues.
2201 	 */
2202 	error = ural_alloc_tx_list(sc);
2203 	if (error != 0) {
2204 		printf("%s: could not allocate Tx list\n",
2205 		    USBDEVNAME(sc->sc_dev));
2206 		goto fail;
2207 	}
2208 
2209 	error = ural_alloc_rx_list(sc);
2210 	if (error != 0) {
2211 		printf("%s: could not allocate Rx list\n",
2212 		    USBDEVNAME(sc->sc_dev));
2213 		goto fail;
2214 	}
2215 
2216 	/*
2217 	 * Start up the receive pipe.
2218 	 */
2219 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2220 		data = &sc->rx_data[i];
2221 
2222 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2223 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2224 		usbd_transfer(data->xfer);
2225 	}
2226 
2227 	/* kick Rx */
2228 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2229 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2230 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2231 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2232 			tmp |= RAL_DROP_TODS;
2233 		if (!(ifp->if_flags & IFF_PROMISC))
2234 			tmp |= RAL_DROP_NOT_TO_ME;
2235 	}
2236 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2237 
2238 	ifp->if_flags &= ~IFF_OACTIVE;
2239 	ifp->if_flags |= IFF_RUNNING;
2240 
2241 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2242 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2243 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2244 	} else
2245 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2246 
2247 	return 0;
2248 
2249 fail:	ural_stop(ifp, 1);
2250 	return error;
2251 #undef N
2252 }
2253 
2254 Static void
2255 ural_stop(struct ifnet *ifp, int disable)
2256 {
2257 	struct ural_softc *sc = ifp->if_softc;
2258 	struct ieee80211com *ic = &sc->sc_ic;
2259 
2260 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2261 
2262 	sc->sc_tx_timer = 0;
2263 	ifp->if_timer = 0;
2264 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2265 
2266 	/* disable Rx */
2267 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2268 
2269 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2270 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2271 	ural_write(sc, RAL_MAC_CSR1, 0);
2272 
2273 	if (sc->amrr_xfer != NULL) {
2274 		usbd_free_xfer(sc->amrr_xfer);
2275 		sc->amrr_xfer = NULL;
2276 	}
2277 
2278 	if (sc->sc_rx_pipeh != NULL) {
2279 		usbd_abort_pipe(sc->sc_rx_pipeh);
2280 		usbd_close_pipe(sc->sc_rx_pipeh);
2281 		sc->sc_rx_pipeh = NULL;
2282 	}
2283 
2284 	if (sc->sc_tx_pipeh != NULL) {
2285 		usbd_abort_pipe(sc->sc_tx_pipeh);
2286 		usbd_close_pipe(sc->sc_tx_pipeh);
2287 		sc->sc_tx_pipeh = NULL;
2288 	}
2289 
2290 	ural_free_rx_list(sc);
2291 	ural_free_tx_list(sc);
2292 }
2293 
2294 int
2295 ural_activate(device_ptr_t self, enum devact act)
2296 {
2297 	struct ural_softc *sc = device_private(self);
2298 
2299 	switch (act) {
2300 	case DVACT_ACTIVATE:
2301 		return EOPNOTSUPP;
2302 		break;
2303 
2304 	case DVACT_DEACTIVATE:
2305 		if_deactivate(&sc->sc_if);
2306 		break;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 Static void
2313 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2314 {
2315 	int i;
2316 
2317 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2318 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2319 
2320 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2321 
2322 	/* set rate to some reasonable initial value */
2323 	for (i = ni->ni_rates.rs_nrates - 1;
2324 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2325 	     i--);
2326 	ni->ni_txrate = i;
2327 
2328 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2329 }
2330 
2331 Static void
2332 ural_amrr_timeout(void *arg)
2333 {
2334 	struct ural_softc *sc = (struct ural_softc *)arg;
2335 	usb_device_request_t req;
2336 	int s;
2337 
2338 	s = splusb();
2339 
2340 	/*
2341 	 * Asynchronously read statistic registers (cleared by read).
2342 	 */
2343 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2344 	req.bRequest = RAL_READ_MULTI_MAC;
2345 	USETW(req.wValue, 0);
2346 	USETW(req.wIndex, RAL_STA_CSR0);
2347 	USETW(req.wLength, sizeof sc->sta);
2348 
2349 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2350 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2351 	    ural_amrr_update);
2352 	(void)usbd_transfer(sc->amrr_xfer);
2353 
2354 	splx(s);
2355 }
2356 
2357 Static void
2358 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2359     usbd_status status)
2360 {
2361 	struct ural_softc *sc = (struct ural_softc *)priv;
2362 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2363 
2364 	if (status != USBD_NORMAL_COMPLETION) {
2365 		printf("%s: could not retrieve Tx statistics - "
2366 		    "cancelling automatic rate control\n",
2367 		    USBDEVNAME(sc->sc_dev));
2368 		return;
2369 	}
2370 
2371 	/* count TX retry-fail as Tx errors */
2372 	ifp->if_oerrors += sc->sta[9];
2373 
2374 	sc->amn.amn_retrycnt =
2375 	    sc->sta[7] +	/* TX one-retry ok count */
2376 	    sc->sta[8] +	/* TX more-retry ok count */
2377 	    sc->sta[9];		/* TX retry-fail count */
2378 
2379 	sc->amn.amn_txcnt =
2380 	    sc->amn.amn_retrycnt +
2381 	    sc->sta[6];		/* TX no-retry ok count */
2382 
2383 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2384 
2385 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2386 }
2387