xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: if_ural.c,v 1.60 2019/09/14 12:42:36 maxv Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.60 2019/09/14 12:42:36 maxv Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72 
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
85 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
86 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
87 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
91 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
92 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
93 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
95 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
98 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
99 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
101 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
102 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
103 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
105 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
106 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
107 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
108 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
109 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111 
112 Static int		ural_alloc_tx_list(struct ural_softc *);
113 Static void		ural_free_tx_list(struct ural_softc *);
114 Static int		ural_alloc_rx_list(struct ural_softc *);
115 Static void		ural_free_rx_list(struct ural_softc *);
116 Static int		ural_media_change(struct ifnet *);
117 Static void		ural_next_scan(void *);
118 Static void		ural_task(void *);
119 Static int		ural_newstate(struct ieee80211com *,
120 			    enum ieee80211_state, int);
121 Static int		ural_rxrate(struct ural_rx_desc *);
122 Static void		ural_txeof(struct usbd_xfer *, void *,
123 			    usbd_status);
124 Static void		ural_rxeof(struct usbd_xfer *, void *,
125 			    usbd_status);
126 Static int		ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t		ural_txtime(int, int, uint32_t);
128 Static uint8_t		ural_plcp_signal(int);
129 Static void		ural_setup_tx_desc(struct ural_softc *,
130 			    struct ural_tx_desc *, uint32_t, int, int);
131 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 			    struct ieee80211_node *);
133 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 			    struct ieee80211_node *);
135 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
136 			    struct ieee80211_node *);
137 Static void		ural_start(struct ifnet *);
138 Static void		ural_watchdog(struct ifnet *);
139 Static int		ural_reset(struct ifnet *);
140 Static int		ural_ioctl(struct ifnet *, u_long, void *);
141 Static void		ural_set_testmode(struct ural_softc *);
142 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
145 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void		ural_set_chan(struct ural_softc *,
154 			    struct ieee80211_channel *);
155 Static void		ural_disable_rf_tune(struct ural_softc *);
156 Static void		ural_enable_tsf_sync(struct ural_softc *);
157 Static void		ural_update_slot(struct ifnet *);
158 Static void		ural_set_txpreamble(struct ural_softc *);
159 Static void		ural_set_basicrates(struct ural_softc *);
160 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void		ural_update_promisc(struct ural_softc *);
163 Static const char	*ural_get_rf(int);
164 Static void		ural_read_eeprom(struct ural_softc *);
165 Static int		ural_bbp_init(struct ural_softc *);
166 Static void		ural_set_txantenna(struct ural_softc *, int);
167 Static void		ural_set_rxantenna(struct ural_softc *, int);
168 Static int		ural_init(struct ifnet *);
169 Static void		ural_stop(struct ifnet *, int);
170 Static void		ural_amrr_start(struct ural_softc *,
171 			    struct ieee80211_node *);
172 Static void		ural_amrr_timeout(void *);
173 Static void		ural_amrr_update(struct usbd_xfer *, void *,
174 			    usbd_status status);
175 
176 /*
177  * Default values for MAC registers; values taken from the reference driver.
178  */
179 static const struct {
180 	uint16_t	reg;
181 	uint16_t	val;
182 } ural_def_mac[] = {
183 	{ RAL_TXRX_CSR5,  0x8c8d },
184 	{ RAL_TXRX_CSR6,  0x8b8a },
185 	{ RAL_TXRX_CSR7,  0x8687 },
186 	{ RAL_TXRX_CSR8,  0x0085 },
187 	{ RAL_MAC_CSR13,  0x1111 },
188 	{ RAL_MAC_CSR14,  0x1e11 },
189 	{ RAL_TXRX_CSR21, 0xe78f },
190 	{ RAL_MAC_CSR9,   0xff1d },
191 	{ RAL_MAC_CSR11,  0x0002 },
192 	{ RAL_MAC_CSR22,  0x0053 },
193 	{ RAL_MAC_CSR15,  0x0000 },
194 	{ RAL_MAC_CSR8,   0x0780 },
195 	{ RAL_TXRX_CSR19, 0x0000 },
196 	{ RAL_TXRX_CSR18, 0x005a },
197 	{ RAL_PHY_CSR2,   0x0000 },
198 	{ RAL_TXRX_CSR0,  0x1ec0 },
199 	{ RAL_PHY_CSR4,   0x000f }
200 };
201 
202 /*
203  * Default values for BBP registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint8_t	reg;
207 	uint8_t	val;
208 } ural_def_bbp[] = {
209 	{  3, 0x02 },
210 	{  4, 0x19 },
211 	{ 14, 0x1c },
212 	{ 15, 0x30 },
213 	{ 16, 0xac },
214 	{ 17, 0x48 },
215 	{ 18, 0x18 },
216 	{ 19, 0xff },
217 	{ 20, 0x1e },
218 	{ 21, 0x08 },
219 	{ 22, 0x08 },
220 	{ 23, 0x08 },
221 	{ 24, 0x80 },
222 	{ 25, 0x50 },
223 	{ 26, 0x08 },
224 	{ 27, 0x23 },
225 	{ 30, 0x10 },
226 	{ 31, 0x2b },
227 	{ 32, 0xb9 },
228 	{ 34, 0x12 },
229 	{ 35, 0x50 },
230 	{ 39, 0xc4 },
231 	{ 40, 0x02 },
232 	{ 41, 0x60 },
233 	{ 53, 0x10 },
234 	{ 54, 0x18 },
235 	{ 56, 0x08 },
236 	{ 57, 0x10 },
237 	{ 58, 0x08 },
238 	{ 61, 0x60 },
239 	{ 62, 0x10 },
240 	{ 75, 0xff }
241 };
242 
243 /*
244  * Default values for RF register R2 indexed by channel numbers.
245  */
246 static const uint32_t ural_rf2522_r2[] = {
247 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250 
251 static const uint32_t ural_rf2523_r2[] = {
252 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255 
256 static const uint32_t ural_rf2524_r2[] = {
257 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260 
261 static const uint32_t ural_rf2525_r2[] = {
262 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265 
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270 
271 static const uint32_t ural_rf2525e_r2[] = {
272 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275 
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280 
281 static const uint32_t ural_rf2526_r2[] = {
282 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285 
286 /*
287  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288  * values taken from the reference driver.
289  */
290 static const struct {
291 	uint8_t		chan;
292 	uint32_t	r1;
293 	uint32_t	r2;
294 	uint32_t	r4;
295 } ural_rf5222[] = {
296 	{   1, 0x08808, 0x0044d, 0x00282 },
297 	{   2, 0x08808, 0x0044e, 0x00282 },
298 	{   3, 0x08808, 0x0044f, 0x00282 },
299 	{   4, 0x08808, 0x00460, 0x00282 },
300 	{   5, 0x08808, 0x00461, 0x00282 },
301 	{   6, 0x08808, 0x00462, 0x00282 },
302 	{   7, 0x08808, 0x00463, 0x00282 },
303 	{   8, 0x08808, 0x00464, 0x00282 },
304 	{   9, 0x08808, 0x00465, 0x00282 },
305 	{  10, 0x08808, 0x00466, 0x00282 },
306 	{  11, 0x08808, 0x00467, 0x00282 },
307 	{  12, 0x08808, 0x00468, 0x00282 },
308 	{  13, 0x08808, 0x00469, 0x00282 },
309 	{  14, 0x08808, 0x0046b, 0x00286 },
310 
311 	{  36, 0x08804, 0x06225, 0x00287 },
312 	{  40, 0x08804, 0x06226, 0x00287 },
313 	{  44, 0x08804, 0x06227, 0x00287 },
314 	{  48, 0x08804, 0x06228, 0x00287 },
315 	{  52, 0x08804, 0x06229, 0x00287 },
316 	{  56, 0x08804, 0x0622a, 0x00287 },
317 	{  60, 0x08804, 0x0622b, 0x00287 },
318 	{  64, 0x08804, 0x0622c, 0x00287 },
319 
320 	{ 100, 0x08804, 0x02200, 0x00283 },
321 	{ 104, 0x08804, 0x02201, 0x00283 },
322 	{ 108, 0x08804, 0x02202, 0x00283 },
323 	{ 112, 0x08804, 0x02203, 0x00283 },
324 	{ 116, 0x08804, 0x02204, 0x00283 },
325 	{ 120, 0x08804, 0x02205, 0x00283 },
326 	{ 124, 0x08804, 0x02206, 0x00283 },
327 	{ 128, 0x08804, 0x02207, 0x00283 },
328 	{ 132, 0x08804, 0x02208, 0x00283 },
329 	{ 136, 0x08804, 0x02209, 0x00283 },
330 	{ 140, 0x08804, 0x0220a, 0x00283 },
331 
332 	{ 149, 0x08808, 0x02429, 0x00281 },
333 	{ 153, 0x08808, 0x0242b, 0x00281 },
334 	{ 157, 0x08808, 0x0242d, 0x00281 },
335 	{ 161, 0x08808, 0x0242f, 0x00281 }
336 };
337 
338 int	ural_match(device_t, cfdata_t, void *);
339 void	ural_attach(device_t, device_t, void *);
340 int	ural_detach(device_t, int);
341 int	ural_activate(device_t, enum devact);
342 
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344     ural_detach, ural_activate);
345 
346 int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 	struct usb_attach_arg *uaa = aux;
350 
351 	return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354 
355 void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 	struct ural_softc *sc = device_private(self);
359 	struct usb_attach_arg *uaa = aux;
360 	struct ieee80211com *ic = &sc->sc_ic;
361 	struct ifnet *ifp = &sc->sc_if;
362 	usb_interface_descriptor_t *id;
363 	usb_endpoint_descriptor_t *ed;
364 	usbd_status error;
365 	char *devinfop;
366 	int i;
367 
368 	sc->sc_dev = self;
369 	sc->sc_udev = uaa->uaa_device;
370 	sc->sc_init_state = URAL_INIT_NONE;
371 
372 	aprint_naive("\n");
373 	aprint_normal("\n");
374 
375 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
376 	aprint_normal_dev(self, "%s\n", devinfop);
377 	usbd_devinfo_free(devinfop);
378 
379 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
380 	if (error != 0) {
381 		aprint_error_dev(self, "failed to set configuration"
382 		    ", err=%s\n", usbd_errstr(error));
383 		return;
384 	}
385 
386 	/* get the first interface handle */
387 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
388 	    &sc->sc_iface);
389 	if (error != 0) {
390 		aprint_error_dev(self, "could not get interface handle\n");
391 		return;
392 	}
393 
394 	/*
395 	 * Find endpoints.
396 	 */
397 	id = usbd_get_interface_descriptor(sc->sc_iface);
398 
399 	sc->sc_rx_no = sc->sc_tx_no = -1;
400 	for (i = 0; i < id->bNumEndpoints; i++) {
401 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
402 		if (ed == NULL) {
403 			aprint_error_dev(self,
404 			    "no endpoint descriptor for %d\n", i);
405 			return;
406 		}
407 
408 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
409 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
410 			sc->sc_rx_no = ed->bEndpointAddress;
411 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
412 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413 			sc->sc_tx_no = ed->bEndpointAddress;
414 	}
415 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
416 		aprint_error_dev(self, "missing endpoint\n");
417 		return;
418 	}
419 
420 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
421 	callout_init(&sc->sc_scan_ch, 0);
422 	sc->amrr.amrr_min_success_threshold = 1;
423 	sc->amrr.amrr_max_success_threshold = 15;
424 	callout_init(&sc->sc_amrr_ch, 0);
425 
426 	/* retrieve RT2570 rev. no */
427 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
428 
429 	/* retrieve MAC address and various other things from EEPROM */
430 	ural_read_eeprom(sc);
431 
432 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
433 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
434 
435 	ifp->if_softc = sc;
436 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
437 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
438 	ifp->if_init = ural_init;
439 	ifp->if_ioctl = ural_ioctl;
440 	ifp->if_start = ural_start;
441 	ifp->if_watchdog = ural_watchdog;
442 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
443 	IFQ_SET_READY(&ifp->if_snd);
444 
445 	ic->ic_ifp = ifp;
446 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
447 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
448 	ic->ic_state = IEEE80211_S_INIT;
449 
450 	/* set device capabilities */
451 	ic->ic_caps =
452 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
453 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
454 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
455 	    IEEE80211_C_TXPMGT |	/* tx power management */
456 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
457 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
458 	    IEEE80211_C_WPA;		/* 802.11i */
459 
460 	if (sc->rf_rev == RAL_RF_5222) {
461 		/* set supported .11a rates */
462 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
463 
464 		/* set supported .11a channels */
465 		for (i = 36; i <= 64; i += 4) {
466 			ic->ic_channels[i].ic_freq =
467 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
468 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
469 		}
470 		for (i = 100; i <= 140; i += 4) {
471 			ic->ic_channels[i].ic_freq =
472 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 		}
475 		for (i = 149; i <= 161; i += 4) {
476 			ic->ic_channels[i].ic_freq =
477 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 		}
480 	}
481 
482 	/* set supported .11b and .11g rates */
483 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
484 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
485 
486 	/* set supported .11b and .11g channels (1 through 14) */
487 	for (i = 1; i <= 14; i++) {
488 		ic->ic_channels[i].ic_freq =
489 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
490 		ic->ic_channels[i].ic_flags =
491 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
492 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
493 	}
494 
495 	if_attach(ifp);
496 	ieee80211_ifattach(ic);
497 	ic->ic_reset = ural_reset;
498 
499 	/* override state transition machine */
500 	sc->sc_newstate = ic->ic_newstate;
501 	ic->ic_newstate = ural_newstate;
502 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
503 
504 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
505 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
506 
507 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
508 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
509 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
510 
511 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
512 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
513 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
514 
515 	ieee80211_announce(ic);
516 
517 	sc->sc_init_state = URAL_INIT_INITED;
518 
519 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
520 
521 	if (!pmf_device_register(self, NULL, NULL))
522 		aprint_error_dev(self, "couldn't establish power handler\n");
523 
524 	return;
525 }
526 
527 int
528 ural_detach(device_t self, int flags)
529 {
530 	struct ural_softc *sc = device_private(self);
531 	struct ieee80211com *ic = &sc->sc_ic;
532 	struct ifnet *ifp = &sc->sc_if;
533 	int s;
534 
535 	if (sc->sc_init_state < URAL_INIT_INITED)
536 		return 0;
537 
538 	pmf_device_deregister(self);
539 
540 	s = splusb();
541 
542 	ural_stop(ifp, 1);
543 	callout_halt(&sc->sc_scan_ch, NULL);
544 	callout_halt(&sc->sc_amrr_ch, NULL);
545 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
546 
547 	bpf_detach(ifp);
548 	ieee80211_ifdetach(ic);
549 	if_detach(ifp);
550 
551 	splx(s);
552 
553 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
554 
555 	return 0;
556 }
557 
558 Static int
559 ural_alloc_tx_list(struct ural_softc *sc)
560 {
561 	struct ural_tx_data *data;
562 	int i, error;
563 
564 	sc->tx_queued = 0;
565 
566 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
567 		data = &sc->tx_data[i];
568 
569 		data->sc = sc;
570 		error = usbd_create_xfer(sc->sc_tx_pipeh,
571 		    RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
572 		    &data->xfer);
573 		if (error) {
574 			printf("%s: could not allocate tx xfer\n",
575 			    device_xname(sc->sc_dev));
576 			goto fail;
577 		}
578 
579 		data->buf = usbd_get_buffer(data->xfer);
580 	}
581 
582 	return 0;
583 
584 fail:	ural_free_tx_list(sc);
585 	return error;
586 }
587 
588 Static void
589 ural_free_tx_list(struct ural_softc *sc)
590 {
591 	struct ural_tx_data *data;
592 	int i;
593 
594 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
595 		data = &sc->tx_data[i];
596 
597 		if (data->xfer != NULL) {
598 			usbd_destroy_xfer(data->xfer);
599 			data->xfer = NULL;
600 		}
601 
602 		if (data->ni != NULL) {
603 			ieee80211_free_node(data->ni);
604 			data->ni = NULL;
605 		}
606 	}
607 }
608 
609 Static int
610 ural_alloc_rx_list(struct ural_softc *sc)
611 {
612 	struct ural_rx_data *data;
613 	int i, error;
614 
615 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
616 		data = &sc->rx_data[i];
617 
618 		data->sc = sc;
619 
620 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
621 		    0, 0, &data->xfer);
622 		if (error) {
623 			printf("%s: could not allocate rx xfer\n",
624 			    device_xname(sc->sc_dev));
625 			goto fail;
626 		}
627 
628 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
629 		if (data->m == NULL) {
630 			printf("%s: could not allocate rx mbuf\n",
631 			    device_xname(sc->sc_dev));
632 			error = ENOMEM;
633 			goto fail;
634 		}
635 
636 		MCLGET(data->m, M_DONTWAIT);
637 		if (!(data->m->m_flags & M_EXT)) {
638 			printf("%s: could not allocate rx mbuf cluster\n",
639 			    device_xname(sc->sc_dev));
640 			error = ENOMEM;
641 			goto fail;
642 		}
643 
644 		data->buf = mtod(data->m, uint8_t *);
645 	}
646 
647 	return 0;
648 
649 fail:	ural_free_rx_list(sc);
650 	return error;
651 }
652 
653 Static void
654 ural_free_rx_list(struct ural_softc *sc)
655 {
656 	struct ural_rx_data *data;
657 	int i;
658 
659 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
660 		data = &sc->rx_data[i];
661 
662 		if (data->xfer != NULL) {
663 			usbd_destroy_xfer(data->xfer);
664 			data->xfer = NULL;
665 		}
666 
667 		if (data->m != NULL) {
668 			m_freem(data->m);
669 			data->m = NULL;
670 		}
671 	}
672 }
673 
674 Static int
675 ural_media_change(struct ifnet *ifp)
676 {
677 	int error;
678 
679 	error = ieee80211_media_change(ifp);
680 	if (error != ENETRESET)
681 		return error;
682 
683 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
684 		ural_init(ifp);
685 
686 	return 0;
687 }
688 
689 /*
690  * This function is called periodically (every 200ms) during scanning to
691  * switch from one channel to another.
692  */
693 Static void
694 ural_next_scan(void *arg)
695 {
696 	struct ural_softc *sc = arg;
697 	struct ieee80211com *ic = &sc->sc_ic;
698 
699 	if (ic->ic_state == IEEE80211_S_SCAN)
700 		ieee80211_next_scan(ic);
701 }
702 
703 Static void
704 ural_task(void *arg)
705 {
706 	struct ural_softc *sc = arg;
707 	struct ieee80211com *ic = &sc->sc_ic;
708 	enum ieee80211_state ostate;
709 	struct ieee80211_node *ni;
710 	struct mbuf *m;
711 
712 	ostate = ic->ic_state;
713 
714 	switch (sc->sc_state) {
715 	case IEEE80211_S_INIT:
716 		if (ostate == IEEE80211_S_RUN) {
717 			/* abort TSF synchronization */
718 			ural_write(sc, RAL_TXRX_CSR19, 0);
719 
720 			/* force tx led to stop blinking */
721 			ural_write(sc, RAL_MAC_CSR20, 0);
722 		}
723 		break;
724 
725 	case IEEE80211_S_SCAN:
726 		ural_set_chan(sc, ic->ic_curchan);
727 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
728 		break;
729 
730 	case IEEE80211_S_AUTH:
731 		ural_set_chan(sc, ic->ic_curchan);
732 		break;
733 
734 	case IEEE80211_S_ASSOC:
735 		ural_set_chan(sc, ic->ic_curchan);
736 		break;
737 
738 	case IEEE80211_S_RUN:
739 		ural_set_chan(sc, ic->ic_curchan);
740 
741 		ni = ic->ic_bss;
742 
743 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
744 			ural_update_slot(ic->ic_ifp);
745 			ural_set_txpreamble(sc);
746 			ural_set_basicrates(sc);
747 			ural_set_bssid(sc, ni->ni_bssid);
748 		}
749 
750 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
751 		    ic->ic_opmode == IEEE80211_M_IBSS) {
752 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
753 			if (m == NULL) {
754 				printf("%s: could not allocate beacon\n",
755 				    device_xname(sc->sc_dev));
756 				return;
757 			}
758 
759 			if (ural_tx_bcn(sc, m, ni) != 0) {
760 				m_freem(m);
761 				printf("%s: could not send beacon\n",
762 				    device_xname(sc->sc_dev));
763 				return;
764 			}
765 
766 			/* beacon is no longer needed */
767 			m_freem(m);
768 		}
769 
770 		/* make tx led blink on tx (controlled by ASIC) */
771 		ural_write(sc, RAL_MAC_CSR20, 1);
772 
773 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
774 			ural_enable_tsf_sync(sc);
775 
776 		/* enable automatic rate adaptation in STA mode */
777 		if (ic->ic_opmode == IEEE80211_M_STA &&
778 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
779 			ural_amrr_start(sc, ni);
780 
781 		break;
782 	}
783 
784 	sc->sc_newstate(ic, sc->sc_state, -1);
785 }
786 
787 Static int
788 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
789     int arg)
790 {
791 	struct ural_softc *sc = ic->ic_ifp->if_softc;
792 
793 	/*
794 	 * XXXSMP: This does not wait for the task, if it is in flight,
795 	 * to complete.  If this code works at all, it must rely on the
796 	 * kernel lock to serialize with the USB task thread.
797 	 */
798 	usb_rem_task(sc->sc_udev, &sc->sc_task);
799 	callout_stop(&sc->sc_scan_ch);
800 	callout_stop(&sc->sc_amrr_ch);
801 
802 	/* do it in a process context */
803 	sc->sc_state = nstate;
804 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
805 
806 	return 0;
807 }
808 
809 /* quickly determine if a given rate is CCK or OFDM */
810 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
811 
812 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
813 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
814 
815 #define RAL_SIFS		10	/* us */
816 
817 #define RAL_RXTX_TURNAROUND	5	/* us */
818 
819 /*
820  * This function is only used by the Rx radiotap code.
821  */
822 Static int
823 ural_rxrate(struct ural_rx_desc *desc)
824 {
825 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
826 		/* reverse function of ural_plcp_signal */
827 		switch (desc->rate) {
828 		case 0xb:	return 12;
829 		case 0xf:	return 18;
830 		case 0xa:	return 24;
831 		case 0xe:	return 36;
832 		case 0x9:	return 48;
833 		case 0xd:	return 72;
834 		case 0x8:	return 96;
835 		case 0xc:	return 108;
836 		}
837 	} else {
838 		if (desc->rate == 10)
839 			return 2;
840 		if (desc->rate == 20)
841 			return 4;
842 		if (desc->rate == 55)
843 			return 11;
844 		if (desc->rate == 110)
845 			return 22;
846 	}
847 	return 2;	/* should not get there */
848 }
849 
850 Static void
851 ural_txeof(struct usbd_xfer *xfer, void * priv,
852     usbd_status status)
853 {
854 	struct ural_tx_data *data = priv;
855 	struct ural_softc *sc = data->sc;
856 	struct ifnet *ifp = &sc->sc_if;
857 	int s;
858 
859 	if (status != USBD_NORMAL_COMPLETION) {
860 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
861 			return;
862 
863 		printf("%s: could not transmit buffer: %s\n",
864 		    device_xname(sc->sc_dev), usbd_errstr(status));
865 
866 		if (status == USBD_STALLED)
867 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
868 
869 		ifp->if_oerrors++;
870 		return;
871 	}
872 
873 	s = splnet();
874 
875 	m_freem(data->m);
876 	data->m = NULL;
877 	ieee80211_free_node(data->ni);
878 	data->ni = NULL;
879 
880 	sc->tx_queued--;
881 	ifp->if_opackets++;
882 
883 	DPRINTFN(10, ("tx done\n"));
884 
885 	sc->sc_tx_timer = 0;
886 	ifp->if_flags &= ~IFF_OACTIVE;
887 	ural_start(ifp);
888 
889 	splx(s);
890 }
891 
892 Static void
893 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
894 {
895 	struct ural_rx_data *data = priv;
896 	struct ural_softc *sc = data->sc;
897 	struct ieee80211com *ic = &sc->sc_ic;
898 	struct ifnet *ifp = &sc->sc_if;
899 	struct ural_rx_desc *desc;
900 	struct ieee80211_frame *wh;
901 	struct ieee80211_node *ni;
902 	struct mbuf *mnew, *m;
903 	int s, len;
904 
905 	if (status != USBD_NORMAL_COMPLETION) {
906 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
907 			return;
908 
909 		if (status == USBD_STALLED)
910 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
911 		goto skip;
912 	}
913 
914 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
915 
916 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
917 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
918 		    len));
919 		ifp->if_ierrors++;
920 		goto skip;
921 	}
922 
923 	/* rx descriptor is located at the end */
924 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
925 
926 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
927 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
928 		/*
929 		 * This should not happen since we did not request to receive
930 		 * those frames when we filled RAL_TXRX_CSR2.
931 		 */
932 		DPRINTFN(5, ("PHY or CRC error\n"));
933 		ifp->if_ierrors++;
934 		goto skip;
935 	}
936 
937 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
938 	if (mnew == NULL) {
939 		ifp->if_ierrors++;
940 		goto skip;
941 	}
942 
943 	MCLGET(mnew, M_DONTWAIT);
944 	if (!(mnew->m_flags & M_EXT)) {
945 		ifp->if_ierrors++;
946 		m_freem(mnew);
947 		goto skip;
948 	}
949 
950 	m = data->m;
951 	data->m = mnew;
952 	data->buf = mtod(data->m, uint8_t *);
953 
954 	/* finalize mbuf */
955 	m_set_rcvif(m, ifp);
956 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
957 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
958 
959 	s = splnet();
960 
961 	if (sc->sc_drvbpf != NULL) {
962 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
963 
964 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
965 		tap->wr_rate = ural_rxrate(desc);
966 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
967 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
968 		tap->wr_antenna = sc->rx_ant;
969 		tap->wr_antsignal = desc->rssi;
970 
971 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
972 	}
973 
974 	wh = mtod(m, struct ieee80211_frame *);
975 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
976 
977 	/* send the frame to the 802.11 layer */
978 	ieee80211_input(ic, m, ni, desc->rssi, 0);
979 
980 	/* node is no longer needed */
981 	ieee80211_free_node(ni);
982 
983 	splx(s);
984 
985 	DPRINTFN(15, ("rx done\n"));
986 
987 skip:	/* setup a new transfer */
988 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
989 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
990 	usbd_transfer(xfer);
991 }
992 
993 /*
994  * Return the expected ack rate for a frame transmitted at rate `rate'.
995  * XXX: this should depend on the destination node basic rate set.
996  */
997 Static int
998 ural_ack_rate(struct ieee80211com *ic, int rate)
999 {
1000 	switch (rate) {
1001 	/* CCK rates */
1002 	case 2:
1003 		return 2;
1004 	case 4:
1005 	case 11:
1006 	case 22:
1007 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1008 
1009 	/* OFDM rates */
1010 	case 12:
1011 	case 18:
1012 		return 12;
1013 	case 24:
1014 	case 36:
1015 		return 24;
1016 	case 48:
1017 	case 72:
1018 	case 96:
1019 	case 108:
1020 		return 48;
1021 	}
1022 
1023 	/* default to 1Mbps */
1024 	return 2;
1025 }
1026 
1027 /*
1028  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1029  * The function automatically determines the operating mode depending on the
1030  * given rate. `flags' indicates whether short preamble is in use or not.
1031  */
1032 Static uint16_t
1033 ural_txtime(int len, int rate, uint32_t flags)
1034 {
1035 	uint16_t txtime;
1036 
1037 	if (RAL_RATE_IS_OFDM(rate)) {
1038 		/* IEEE Std 802.11g-2003, pp. 37 */
1039 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1040 		txtime = 16 + 4 + 4 * txtime + 6;
1041 	} else {
1042 		/* IEEE Std 802.11b-1999, pp. 28 */
1043 		txtime = (16 * len + rate - 1) / rate;
1044 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1045 			txtime +=  72 + 24;
1046 		else
1047 			txtime += 144 + 48;
1048 	}
1049 	return txtime;
1050 }
1051 
1052 Static uint8_t
1053 ural_plcp_signal(int rate)
1054 {
1055 	switch (rate) {
1056 	/* CCK rates (returned values are device-dependent) */
1057 	case 2:		return 0x0;
1058 	case 4:		return 0x1;
1059 	case 11:	return 0x2;
1060 	case 22:	return 0x3;
1061 
1062 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1063 	case 12:	return 0xb;
1064 	case 18:	return 0xf;
1065 	case 24:	return 0xa;
1066 	case 36:	return 0xe;
1067 	case 48:	return 0x9;
1068 	case 72:	return 0xd;
1069 	case 96:	return 0x8;
1070 	case 108:	return 0xc;
1071 
1072 	/* unsupported rates (should not get there) */
1073 	default:	return 0xff;
1074 	}
1075 }
1076 
1077 Static void
1078 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1079     uint32_t flags, int len, int rate)
1080 {
1081 	struct ieee80211com *ic = &sc->sc_ic;
1082 	uint16_t plcp_length;
1083 	int remainder;
1084 
1085 	desc->flags = htole32(flags);
1086 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1087 	desc->flags |= htole32(len << 16);
1088 
1089 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1090 	desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1091 
1092 	/* setup PLCP fields */
1093 	desc->plcp_signal  = ural_plcp_signal(rate);
1094 	desc->plcp_service = 4;
1095 
1096 	len += IEEE80211_CRC_LEN;
1097 	if (RAL_RATE_IS_OFDM(rate)) {
1098 		desc->flags |= htole32(RAL_TX_OFDM);
1099 
1100 		plcp_length = len & 0xfff;
1101 		desc->plcp_length_hi = plcp_length >> 6;
1102 		desc->plcp_length_lo = plcp_length & 0x3f;
1103 	} else {
1104 		plcp_length = (16 * len + rate - 1) / rate;
1105 		if (rate == 22) {
1106 			remainder = (16 * len) % 22;
1107 			if (remainder != 0 && remainder < 7)
1108 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1109 		}
1110 		desc->plcp_length_hi = plcp_length >> 8;
1111 		desc->plcp_length_lo = plcp_length & 0xff;
1112 
1113 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1114 			desc->plcp_signal |= 0x08;
1115 	}
1116 
1117 	desc->iv = 0;
1118 	desc->eiv = 0;
1119 }
1120 
1121 #define RAL_TX_TIMEOUT	5000
1122 
1123 Static int
1124 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1125 {
1126 	struct ural_tx_desc *desc;
1127 	struct usbd_xfer *xfer;
1128 	uint8_t cmd = 0;
1129 	usbd_status error;
1130 	uint8_t *buf;
1131 	int xferlen, rate;
1132 
1133 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1134 
1135 	/* xfer length needs to be a multiple of two! */
1136 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1137 
1138 	error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1139 	    USBD_FORCE_SHORT_XFER, 0, &xfer);
1140 	if (error)
1141 		return error;
1142 
1143 	buf = usbd_get_buffer(xfer);
1144 
1145 	usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1146 	    RAL_TX_TIMEOUT, NULL);
1147 
1148 	error = usbd_sync_transfer(xfer);
1149 	if (error != 0) {
1150 		usbd_destroy_xfer(xfer);
1151 		return error;
1152 	}
1153 
1154 	desc = (struct ural_tx_desc *)buf;
1155 
1156 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1157 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1158 	    m0->m_pkthdr.len, rate);
1159 
1160 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1161 	    m0->m_pkthdr.len, rate, xferlen));
1162 
1163 	usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1164 	    RAL_TX_TIMEOUT, NULL);
1165 
1166 	error = usbd_sync_transfer(xfer);
1167 	usbd_destroy_xfer(xfer);
1168 
1169 	return error;
1170 }
1171 
1172 Static int
1173 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1174 {
1175 	struct ieee80211com *ic = &sc->sc_ic;
1176 	struct ural_tx_desc *desc;
1177 	struct ural_tx_data *data;
1178 	struct ieee80211_frame *wh;
1179 	struct ieee80211_key *k;
1180 	uint32_t flags = 0;
1181 	uint16_t dur;
1182 	usbd_status error;
1183 	int xferlen, rate;
1184 
1185 	data = &sc->tx_data[0];
1186 	desc = (struct ural_tx_desc *)data->buf;
1187 
1188 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1189 
1190 	wh = mtod(m0, struct ieee80211_frame *);
1191 
1192 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1193 		k = ieee80211_crypto_encap(ic, ni, m0);
1194 		if (k == NULL) {
1195 			m_freem(m0);
1196 			return ENOBUFS;
1197 		}
1198 	}
1199 
1200 	data->m = m0;
1201 	data->ni = ni;
1202 
1203 	wh = mtod(m0, struct ieee80211_frame *);
1204 
1205 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1206 		flags |= RAL_TX_ACK;
1207 
1208 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1209 		*(uint16_t *)wh->i_dur = htole16(dur);
1210 
1211 		/* tell hardware to add timestamp for probe responses */
1212 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1213 		    IEEE80211_FC0_TYPE_MGT &&
1214 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1215 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1216 			flags |= RAL_TX_TIMESTAMP;
1217 	}
1218 
1219 	if (sc->sc_drvbpf != NULL) {
1220 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1221 
1222 		tap->wt_flags = 0;
1223 		tap->wt_rate = rate;
1224 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1225 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1226 		tap->wt_antenna = sc->tx_ant;
1227 
1228 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1229 	}
1230 
1231 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1232 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1233 
1234 	/* align end on a 2-bytes boundary */
1235 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1236 
1237 	/*
1238 	 * No space left in the last URB to store the extra 2 bytes, force
1239 	 * sending of another URB.
1240 	 */
1241 	if ((xferlen % 64) == 0)
1242 		xferlen += 2;
1243 
1244 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1245 	    m0->m_pkthdr.len, rate, xferlen));
1246 
1247 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1248 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1249 
1250 	error = usbd_transfer(data->xfer);
1251 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1252 		m_freem(m0);
1253 		return error;
1254 	}
1255 
1256 	sc->tx_queued++;
1257 
1258 	return 0;
1259 }
1260 
1261 Static int
1262 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1263 {
1264 	struct ieee80211com *ic = &sc->sc_ic;
1265 	struct ural_tx_desc *desc;
1266 	struct ural_tx_data *data;
1267 	struct ieee80211_frame *wh;
1268 	struct ieee80211_key *k;
1269 	uint32_t flags = 0;
1270 	uint16_t dur;
1271 	usbd_status error;
1272 	int xferlen, rate;
1273 
1274 	wh = mtod(m0, struct ieee80211_frame *);
1275 
1276 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1277 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1278 	else
1279 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1280 
1281 	rate &= IEEE80211_RATE_VAL;
1282 
1283 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1284 		k = ieee80211_crypto_encap(ic, ni, m0);
1285 		if (k == NULL) {
1286 			m_freem(m0);
1287 			return ENOBUFS;
1288 		}
1289 
1290 		/* packet header may have moved, reset our local pointer */
1291 		wh = mtod(m0, struct ieee80211_frame *);
1292 	}
1293 
1294 	data = &sc->tx_data[0];
1295 	desc = (struct ural_tx_desc *)data->buf;
1296 
1297 	data->m = m0;
1298 	data->ni = ni;
1299 
1300 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1301 		flags |= RAL_TX_ACK;
1302 		flags |= RAL_TX_RETRY(7);
1303 
1304 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1305 		    ic->ic_flags) + RAL_SIFS;
1306 		*(uint16_t *)wh->i_dur = htole16(dur);
1307 	}
1308 
1309 	if (sc->sc_drvbpf != NULL) {
1310 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1311 
1312 		tap->wt_flags = 0;
1313 		tap->wt_rate = rate;
1314 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1315 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1316 		tap->wt_antenna = sc->tx_ant;
1317 
1318 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1319 	}
1320 
1321 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1322 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1323 
1324 	/* align end on a 2-bytes boundary */
1325 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1326 
1327 	/*
1328 	 * No space left in the last URB to store the extra 2 bytes, force
1329 	 * sending of another URB.
1330 	 */
1331 	if ((xferlen % 64) == 0)
1332 		xferlen += 2;
1333 
1334 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1335 	    m0->m_pkthdr.len, rate, xferlen));
1336 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1337 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1338 
1339 	error = usbd_transfer(data->xfer);
1340 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1341 		return error;
1342 
1343 	sc->tx_queued++;
1344 
1345 	return 0;
1346 }
1347 
1348 Static void
1349 ural_start(struct ifnet *ifp)
1350 {
1351 	struct ural_softc *sc = ifp->if_softc;
1352 	struct ieee80211com *ic = &sc->sc_ic;
1353 	struct mbuf *m0;
1354 	struct ether_header *eh;
1355 	struct ieee80211_node *ni;
1356 
1357 	for (;;) {
1358 		IF_POLL(&ic->ic_mgtq, m0);
1359 		if (m0 != NULL) {
1360 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1361 				ifp->if_flags |= IFF_OACTIVE;
1362 				break;
1363 			}
1364 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1365 
1366 			ni = M_GETCTX(m0, struct ieee80211_node *);
1367 			M_CLEARCTX(m0);
1368 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1369 			if (ural_tx_mgt(sc, m0, ni) != 0)
1370 				break;
1371 
1372 		} else {
1373 			if (ic->ic_state != IEEE80211_S_RUN)
1374 				break;
1375 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1376 			if (m0 == NULL)
1377 				break;
1378 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1379 				IF_PREPEND(&ifp->if_snd, m0);
1380 				ifp->if_flags |= IFF_OACTIVE;
1381 				break;
1382 			}
1383 
1384 			if (m0->m_len < sizeof(struct ether_header) &&
1385 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1386 				continue;
1387 
1388 			eh = mtod(m0, struct ether_header *);
1389 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1390 			if (ni == NULL) {
1391 				m_freem(m0);
1392 				continue;
1393 			}
1394 			bpf_mtap(ifp, m0, BPF_D_OUT);
1395 			m0 = ieee80211_encap(ic, m0, ni);
1396 			if (m0 == NULL) {
1397 				ieee80211_free_node(ni);
1398 				continue;
1399 			}
1400 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1401 			if (ural_tx_data(sc, m0, ni) != 0) {
1402 				ieee80211_free_node(ni);
1403 				ifp->if_oerrors++;
1404 				break;
1405 			}
1406 		}
1407 
1408 		sc->sc_tx_timer = 5;
1409 		ifp->if_timer = 1;
1410 	}
1411 }
1412 
1413 Static void
1414 ural_watchdog(struct ifnet *ifp)
1415 {
1416 	struct ural_softc *sc = ifp->if_softc;
1417 	struct ieee80211com *ic = &sc->sc_ic;
1418 
1419 	ifp->if_timer = 0;
1420 
1421 	if (sc->sc_tx_timer > 0) {
1422 		if (--sc->sc_tx_timer == 0) {
1423 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1424 			/*ural_init(sc); XXX needs a process context! */
1425 			ifp->if_oerrors++;
1426 			return;
1427 		}
1428 		ifp->if_timer = 1;
1429 	}
1430 
1431 	ieee80211_watchdog(ic);
1432 }
1433 
1434 /*
1435  * This function allows for fast channel switching in monitor mode (used by
1436  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1437  * generate a new beacon frame.
1438  */
1439 Static int
1440 ural_reset(struct ifnet *ifp)
1441 {
1442 	struct ural_softc *sc = ifp->if_softc;
1443 	struct ieee80211com *ic = &sc->sc_ic;
1444 
1445 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1446 		return ENETRESET;
1447 
1448 	ural_set_chan(sc, ic->ic_curchan);
1449 
1450 	return 0;
1451 }
1452 
1453 Static int
1454 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1455 {
1456 #define IS_RUNNING(ifp) \
1457 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1458 
1459 	struct ural_softc *sc = ifp->if_softc;
1460 	struct ieee80211com *ic = &sc->sc_ic;
1461 	int s, error = 0;
1462 
1463 	s = splnet();
1464 
1465 	switch (cmd) {
1466 	case SIOCSIFFLAGS:
1467 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1468 			break;
1469 		/* XXX re-use ether_ioctl() */
1470 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1471 		case IFF_UP|IFF_RUNNING:
1472 			ural_update_promisc(sc);
1473 			break;
1474 		case IFF_UP:
1475 			ural_init(ifp);
1476 			break;
1477 		case IFF_RUNNING:
1478 			ural_stop(ifp, 1);
1479 			break;
1480 		case 0:
1481 			break;
1482 		}
1483 		break;
1484 
1485 	case SIOCADDMULTI:
1486 	case SIOCDELMULTI:
1487 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1488 			error = 0;
1489 		}
1490 		break;
1491 
1492 	default:
1493 		error = ieee80211_ioctl(ic, cmd, data);
1494 	}
1495 
1496 	if (error == ENETRESET) {
1497 		if (IS_RUNNING(ifp) &&
1498 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1499 			ural_init(ifp);
1500 		error = 0;
1501 	}
1502 
1503 	splx(s);
1504 
1505 	return error;
1506 #undef IS_RUNNING
1507 }
1508 
1509 Static void
1510 ural_set_testmode(struct ural_softc *sc)
1511 {
1512 	usb_device_request_t req;
1513 	usbd_status error;
1514 
1515 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1516 	req.bRequest = RAL_VENDOR_REQUEST;
1517 	USETW(req.wValue, 4);
1518 	USETW(req.wIndex, 1);
1519 	USETW(req.wLength, 0);
1520 
1521 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1522 	if (error != 0) {
1523 		printf("%s: could not set test mode: %s\n",
1524 		    device_xname(sc->sc_dev), usbd_errstr(error));
1525 	}
1526 }
1527 
1528 Static void
1529 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1530 {
1531 	usb_device_request_t req;
1532 	usbd_status error;
1533 
1534 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1535 	req.bRequest = RAL_READ_EEPROM;
1536 	USETW(req.wValue, 0);
1537 	USETW(req.wIndex, addr);
1538 	USETW(req.wLength, len);
1539 
1540 	error = usbd_do_request(sc->sc_udev, &req, buf);
1541 	if (error != 0) {
1542 		printf("%s: could not read EEPROM: %s\n",
1543 		    device_xname(sc->sc_dev), usbd_errstr(error));
1544 	}
1545 }
1546 
1547 Static uint16_t
1548 ural_read(struct ural_softc *sc, uint16_t reg)
1549 {
1550 	usb_device_request_t req;
1551 	usbd_status error;
1552 	uint16_t val;
1553 
1554 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1555 	req.bRequest = RAL_READ_MAC;
1556 	USETW(req.wValue, 0);
1557 	USETW(req.wIndex, reg);
1558 	USETW(req.wLength, sizeof(uint16_t));
1559 
1560 	error = usbd_do_request(sc->sc_udev, &req, &val);
1561 	if (error != 0) {
1562 		printf("%s: could not read MAC register: %s\n",
1563 		    device_xname(sc->sc_dev), usbd_errstr(error));
1564 		return 0;
1565 	}
1566 
1567 	return le16toh(val);
1568 }
1569 
1570 Static void
1571 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1572 {
1573 	usb_device_request_t req;
1574 	usbd_status error;
1575 
1576 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1577 	req.bRequest = RAL_READ_MULTI_MAC;
1578 	USETW(req.wValue, 0);
1579 	USETW(req.wIndex, reg);
1580 	USETW(req.wLength, len);
1581 
1582 	error = usbd_do_request(sc->sc_udev, &req, buf);
1583 	if (error != 0) {
1584 		printf("%s: could not read MAC register: %s\n",
1585 		    device_xname(sc->sc_dev), usbd_errstr(error));
1586 	}
1587 }
1588 
1589 Static void
1590 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1591 {
1592 	usb_device_request_t req;
1593 	usbd_status error;
1594 
1595 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1596 	req.bRequest = RAL_WRITE_MAC;
1597 	USETW(req.wValue, val);
1598 	USETW(req.wIndex, reg);
1599 	USETW(req.wLength, 0);
1600 
1601 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1602 	if (error != 0) {
1603 		printf("%s: could not write MAC register: %s\n",
1604 		    device_xname(sc->sc_dev), usbd_errstr(error));
1605 	}
1606 }
1607 
1608 Static void
1609 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1610 {
1611 	usb_device_request_t req;
1612 	usbd_status error;
1613 
1614 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1615 	req.bRequest = RAL_WRITE_MULTI_MAC;
1616 	USETW(req.wValue, 0);
1617 	USETW(req.wIndex, reg);
1618 	USETW(req.wLength, len);
1619 
1620 	error = usbd_do_request(sc->sc_udev, &req, buf);
1621 	if (error != 0) {
1622 		printf("%s: could not write MAC register: %s\n",
1623 		    device_xname(sc->sc_dev), usbd_errstr(error));
1624 	}
1625 }
1626 
1627 Static void
1628 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1629 {
1630 	uint16_t tmp;
1631 	int ntries;
1632 
1633 	for (ntries = 0; ntries < 5; ntries++) {
1634 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1635 			break;
1636 	}
1637 	if (ntries == 5) {
1638 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1639 		return;
1640 	}
1641 
1642 	tmp = reg << 8 | val;
1643 	ural_write(sc, RAL_PHY_CSR7, tmp);
1644 }
1645 
1646 Static uint8_t
1647 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1648 {
1649 	uint16_t val;
1650 	int ntries;
1651 
1652 	val = RAL_BBP_WRITE | reg << 8;
1653 	ural_write(sc, RAL_PHY_CSR7, val);
1654 
1655 	for (ntries = 0; ntries < 5; ntries++) {
1656 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1657 			break;
1658 	}
1659 	if (ntries == 5) {
1660 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1661 		return 0;
1662 	}
1663 
1664 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1665 }
1666 
1667 Static void
1668 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1669 {
1670 	uint32_t tmp;
1671 	int ntries;
1672 
1673 	for (ntries = 0; ntries < 5; ntries++) {
1674 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1675 			break;
1676 	}
1677 	if (ntries == 5) {
1678 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1679 		return;
1680 	}
1681 
1682 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1683 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1684 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1685 
1686 	/* remember last written value in sc */
1687 	sc->rf_regs[reg] = val;
1688 
1689 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1690 }
1691 
1692 Static void
1693 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1694 {
1695 	struct ieee80211com *ic = &sc->sc_ic;
1696 	uint8_t power, tmp;
1697 	u_int i, chan;
1698 
1699 	chan = ieee80211_chan2ieee(ic, c);
1700 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1701 		return;
1702 
1703 	if (IEEE80211_IS_CHAN_2GHZ(c))
1704 		power = uimin(sc->txpow[chan - 1], 31);
1705 	else
1706 		power = 31;
1707 
1708 	/* adjust txpower using ifconfig settings */
1709 	power -= (100 - ic->ic_txpowlimit) / 8;
1710 
1711 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1712 
1713 	switch (sc->rf_rev) {
1714 	case RAL_RF_2522:
1715 		ural_rf_write(sc, RAL_RF1, 0x00814);
1716 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1717 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1718 		break;
1719 
1720 	case RAL_RF_2523:
1721 		ural_rf_write(sc, RAL_RF1, 0x08804);
1722 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1723 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1724 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1725 		break;
1726 
1727 	case RAL_RF_2524:
1728 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1729 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1730 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1731 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1732 		break;
1733 
1734 	case RAL_RF_2525:
1735 		ural_rf_write(sc, RAL_RF1, 0x08808);
1736 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1737 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1738 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1739 
1740 		ural_rf_write(sc, RAL_RF1, 0x08808);
1741 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1742 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1743 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1744 		break;
1745 
1746 	case RAL_RF_2525E:
1747 		ural_rf_write(sc, RAL_RF1, 0x08808);
1748 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1749 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1750 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1751 		break;
1752 
1753 	case RAL_RF_2526:
1754 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1755 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1756 		ural_rf_write(sc, RAL_RF1, 0x08804);
1757 
1758 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1759 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1760 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1761 		break;
1762 
1763 	/* dual-band RF */
1764 	case RAL_RF_5222:
1765 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1766 
1767 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1768 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1769 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1770 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1771 		break;
1772 	}
1773 
1774 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1775 	    ic->ic_state != IEEE80211_S_SCAN) {
1776 		/* set Japan filter bit for channel 14 */
1777 		tmp = ural_bbp_read(sc, 70);
1778 
1779 		tmp &= ~RAL_JAPAN_FILTER;
1780 		if (chan == 14)
1781 			tmp |= RAL_JAPAN_FILTER;
1782 
1783 		ural_bbp_write(sc, 70, tmp);
1784 
1785 		/* clear CRC errors */
1786 		ural_read(sc, RAL_STA_CSR0);
1787 
1788 		DELAY(10000);
1789 		ural_disable_rf_tune(sc);
1790 	}
1791 }
1792 
1793 /*
1794  * Disable RF auto-tuning.
1795  */
1796 Static void
1797 ural_disable_rf_tune(struct ural_softc *sc)
1798 {
1799 	uint32_t tmp;
1800 
1801 	if (sc->rf_rev != RAL_RF_2523) {
1802 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1803 		ural_rf_write(sc, RAL_RF1, tmp);
1804 	}
1805 
1806 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1807 	ural_rf_write(sc, RAL_RF3, tmp);
1808 
1809 	DPRINTFN(2, ("disabling RF autotune\n"));
1810 }
1811 
1812 /*
1813  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1814  * synchronization.
1815  */
1816 Static void
1817 ural_enable_tsf_sync(struct ural_softc *sc)
1818 {
1819 	struct ieee80211com *ic = &sc->sc_ic;
1820 	uint16_t logcwmin, preload, tmp;
1821 
1822 	/* first, disable TSF synchronization */
1823 	ural_write(sc, RAL_TXRX_CSR19, 0);
1824 
1825 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1826 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1827 
1828 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1829 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1830 	tmp = logcwmin << 12 | preload;
1831 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1832 
1833 	/* finally, enable TSF synchronization */
1834 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1835 	if (ic->ic_opmode == IEEE80211_M_STA)
1836 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1837 	else
1838 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1839 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1840 
1841 	DPRINTF(("enabling TSF synchronization\n"));
1842 }
1843 
1844 Static void
1845 ural_update_slot(struct ifnet *ifp)
1846 {
1847 	struct ural_softc *sc = ifp->if_softc;
1848 	struct ieee80211com *ic = &sc->sc_ic;
1849 	uint16_t slottime, sifs, eifs;
1850 
1851 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1852 
1853 	/*
1854 	 * These settings may sound a bit inconsistent but this is what the
1855 	 * reference driver does.
1856 	 */
1857 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1858 		sifs = 16 - RAL_RXTX_TURNAROUND;
1859 		eifs = 364;
1860 	} else {
1861 		sifs = 10 - RAL_RXTX_TURNAROUND;
1862 		eifs = 64;
1863 	}
1864 
1865 	ural_write(sc, RAL_MAC_CSR10, slottime);
1866 	ural_write(sc, RAL_MAC_CSR11, sifs);
1867 	ural_write(sc, RAL_MAC_CSR12, eifs);
1868 }
1869 
1870 Static void
1871 ural_set_txpreamble(struct ural_softc *sc)
1872 {
1873 	uint16_t tmp;
1874 
1875 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1876 
1877 	tmp &= ~RAL_SHORT_PREAMBLE;
1878 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1879 		tmp |= RAL_SHORT_PREAMBLE;
1880 
1881 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1882 }
1883 
1884 Static void
1885 ural_set_basicrates(struct ural_softc *sc)
1886 {
1887 	struct ieee80211com *ic = &sc->sc_ic;
1888 
1889 	/* update basic rate set */
1890 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1891 		/* 11b basic rates: 1, 2Mbps */
1892 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1893 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1894 		/* 11a basic rates: 6, 12, 24Mbps */
1895 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1896 	} else {
1897 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1898 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1899 	}
1900 }
1901 
1902 Static void
1903 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1904 {
1905 	uint16_t tmp;
1906 
1907 	tmp = bssid[0] | bssid[1] << 8;
1908 	ural_write(sc, RAL_MAC_CSR5, tmp);
1909 
1910 	tmp = bssid[2] | bssid[3] << 8;
1911 	ural_write(sc, RAL_MAC_CSR6, tmp);
1912 
1913 	tmp = bssid[4] | bssid[5] << 8;
1914 	ural_write(sc, RAL_MAC_CSR7, tmp);
1915 
1916 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1917 }
1918 
1919 Static void
1920 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1921 {
1922 	uint16_t tmp;
1923 
1924 	tmp = addr[0] | addr[1] << 8;
1925 	ural_write(sc, RAL_MAC_CSR2, tmp);
1926 
1927 	tmp = addr[2] | addr[3] << 8;
1928 	ural_write(sc, RAL_MAC_CSR3, tmp);
1929 
1930 	tmp = addr[4] | addr[5] << 8;
1931 	ural_write(sc, RAL_MAC_CSR4, tmp);
1932 
1933 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1934 }
1935 
1936 Static void
1937 ural_update_promisc(struct ural_softc *sc)
1938 {
1939 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1940 	uint32_t tmp;
1941 
1942 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1943 
1944 	tmp &= ~RAL_DROP_NOT_TO_ME;
1945 	if (!(ifp->if_flags & IFF_PROMISC))
1946 		tmp |= RAL_DROP_NOT_TO_ME;
1947 
1948 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1949 
1950 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1951 	    "entering" : "leaving"));
1952 }
1953 
1954 Static const char *
1955 ural_get_rf(int rev)
1956 {
1957 	switch (rev) {
1958 	case RAL_RF_2522:	return "RT2522";
1959 	case RAL_RF_2523:	return "RT2523";
1960 	case RAL_RF_2524:	return "RT2524";
1961 	case RAL_RF_2525:	return "RT2525";
1962 	case RAL_RF_2525E:	return "RT2525e";
1963 	case RAL_RF_2526:	return "RT2526";
1964 	case RAL_RF_5222:	return "RT5222";
1965 	default:		return "unknown";
1966 	}
1967 }
1968 
1969 Static void
1970 ural_read_eeprom(struct ural_softc *sc)
1971 {
1972 	struct ieee80211com *ic = &sc->sc_ic;
1973 	uint16_t val;
1974 
1975 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1976 	val = le16toh(val);
1977 	sc->rf_rev =   (val >> 11) & 0x7;
1978 	sc->hw_radio = (val >> 10) & 0x1;
1979 	sc->led_mode = (val >> 6)  & 0x7;
1980 	sc->rx_ant =   (val >> 4)  & 0x3;
1981 	sc->tx_ant =   (val >> 2)  & 0x3;
1982 	sc->nb_ant =   val & 0x3;
1983 
1984 	/* read MAC address */
1985 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1986 
1987 	/* read default values for BBP registers */
1988 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1989 
1990 	/* read Tx power for all b/g channels */
1991 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1992 }
1993 
1994 Static int
1995 ural_bbp_init(struct ural_softc *sc)
1996 {
1997 	int i, ntries;
1998 
1999 	/* wait for BBP to be ready */
2000 	for (ntries = 0; ntries < 100; ntries++) {
2001 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2002 			break;
2003 		DELAY(1000);
2004 	}
2005 	if (ntries == 100) {
2006 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2007 		return EIO;
2008 	}
2009 
2010 	/* initialize BBP registers to default values */
2011 	for (i = 0; i < __arraycount(ural_def_bbp); i++)
2012 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2013 
2014 #if 0
2015 	/* initialize BBP registers to values stored in EEPROM */
2016 	for (i = 0; i < 16; i++) {
2017 		if (sc->bbp_prom[i].reg == 0xff)
2018 			continue;
2019 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2020 	}
2021 #endif
2022 
2023 	return 0;
2024 }
2025 
2026 Static void
2027 ural_set_txantenna(struct ural_softc *sc, int antenna)
2028 {
2029 	uint16_t tmp;
2030 	uint8_t tx;
2031 
2032 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2033 	if (antenna == 1)
2034 		tx |= RAL_BBP_ANTA;
2035 	else if (antenna == 2)
2036 		tx |= RAL_BBP_ANTB;
2037 	else
2038 		tx |= RAL_BBP_DIVERSITY;
2039 
2040 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2041 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2042 	    sc->rf_rev == RAL_RF_5222)
2043 		tx |= RAL_BBP_FLIPIQ;
2044 
2045 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2046 
2047 	/* update values in PHY_CSR5 and PHY_CSR6 */
2048 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2049 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2050 
2051 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2052 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2053 }
2054 
2055 Static void
2056 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2057 {
2058 	uint8_t rx;
2059 
2060 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2061 	if (antenna == 1)
2062 		rx |= RAL_BBP_ANTA;
2063 	else if (antenna == 2)
2064 		rx |= RAL_BBP_ANTB;
2065 	else
2066 		rx |= RAL_BBP_DIVERSITY;
2067 
2068 	/* need to force no I/Q flip for RF 2525e and 2526 */
2069 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2070 		rx &= ~RAL_BBP_FLIPIQ;
2071 
2072 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2073 }
2074 
2075 Static int
2076 ural_init(struct ifnet *ifp)
2077 {
2078 	struct ural_softc *sc = ifp->if_softc;
2079 	struct ieee80211com *ic = &sc->sc_ic;
2080 	struct ieee80211_key *wk;
2081 	uint16_t tmp;
2082 	usbd_status error;
2083 	int i, ntries;
2084 
2085 	ural_set_testmode(sc);
2086 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2087 
2088 	ural_stop(ifp, 0);
2089 
2090 	/* initialize MAC registers to default values */
2091 	for (i = 0; i < __arraycount(ural_def_mac); i++)
2092 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2093 
2094 	/* wait for BBP and RF to wake up (this can take a long time!) */
2095 	for (ntries = 0; ntries < 100; ntries++) {
2096 		tmp = ural_read(sc, RAL_MAC_CSR17);
2097 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2098 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2099 			break;
2100 		DELAY(1000);
2101 	}
2102 	if (ntries == 100) {
2103 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2104 		    device_xname(sc->sc_dev));
2105 		error = EIO;
2106 		goto fail;
2107 	}
2108 
2109 	/* we're ready! */
2110 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2111 
2112 	/* set basic rate set (will be updated later) */
2113 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2114 
2115 	error = ural_bbp_init(sc);
2116 	if (error != 0)
2117 		goto fail;
2118 
2119 	/* set default BSS channel */
2120 	ural_set_chan(sc, ic->ic_curchan);
2121 
2122 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2123 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2124 
2125 	ural_set_txantenna(sc, sc->tx_ant);
2126 	ural_set_rxantenna(sc, sc->rx_ant);
2127 
2128 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2129 	ural_set_macaddr(sc, ic->ic_myaddr);
2130 
2131 	/*
2132 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2133 	 */
2134 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2135 		wk = &ic->ic_crypto.cs_nw_keys[i];
2136 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2137 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2138 	}
2139 
2140 	/*
2141 	 * Allocate xfer for AMRR statistics requests.
2142 	 */
2143 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2144 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2145 	if (error) {
2146 		printf("%s: could not allocate AMRR xfer\n",
2147 		    device_xname(sc->sc_dev));
2148 		goto fail;
2149 	}
2150 
2151 	/*
2152 	 * Open Tx and Rx USB bulk pipes.
2153 	 */
2154 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2155 	    &sc->sc_tx_pipeh);
2156 	if (error != 0) {
2157 		printf("%s: could not open Tx pipe: %s\n",
2158 		    device_xname(sc->sc_dev), usbd_errstr(error));
2159 		goto fail;
2160 	}
2161 
2162 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2163 	    &sc->sc_rx_pipeh);
2164 	if (error != 0) {
2165 		printf("%s: could not open Rx pipe: %s\n",
2166 		    device_xname(sc->sc_dev), usbd_errstr(error));
2167 		goto fail;
2168 	}
2169 
2170 	/*
2171 	 * Allocate Tx and Rx xfer queues.
2172 	 */
2173 	error = ural_alloc_tx_list(sc);
2174 	if (error != 0) {
2175 		printf("%s: could not allocate Tx list\n",
2176 		    device_xname(sc->sc_dev));
2177 		goto fail;
2178 	}
2179 
2180 	error = ural_alloc_rx_list(sc);
2181 	if (error != 0) {
2182 		printf("%s: could not allocate Rx list\n",
2183 		    device_xname(sc->sc_dev));
2184 		goto fail;
2185 	}
2186 
2187 	/*
2188 	 * Start up the receive pipe.
2189 	 */
2190 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2191 		struct ural_rx_data *data = &sc->rx_data[i];
2192 
2193 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2194 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2195 		usbd_transfer(data->xfer);
2196 	}
2197 
2198 	/* kick Rx */
2199 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2200 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2201 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2202 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2203 			tmp |= RAL_DROP_TODS;
2204 		if (!(ifp->if_flags & IFF_PROMISC))
2205 			tmp |= RAL_DROP_NOT_TO_ME;
2206 	}
2207 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2208 
2209 	ifp->if_flags &= ~IFF_OACTIVE;
2210 	ifp->if_flags |= IFF_RUNNING;
2211 
2212 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2213 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2214 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2215 	} else
2216 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2217 
2218 	return 0;
2219 
2220 fail:	ural_stop(ifp, 1);
2221 	return error;
2222 }
2223 
2224 Static void
2225 ural_stop(struct ifnet *ifp, int disable)
2226 {
2227 	struct ural_softc *sc = ifp->if_softc;
2228 	struct ieee80211com *ic = &sc->sc_ic;
2229 
2230 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2231 
2232 	sc->sc_tx_timer = 0;
2233 	ifp->if_timer = 0;
2234 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2235 
2236 	/* disable Rx */
2237 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2238 
2239 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2240 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2241 	ural_write(sc, RAL_MAC_CSR1, 0);
2242 
2243 	if (sc->amrr_xfer != NULL) {
2244 		usbd_destroy_xfer(sc->amrr_xfer);
2245 		sc->amrr_xfer = NULL;
2246 	}
2247 
2248 	if (sc->sc_rx_pipeh != NULL) {
2249 		usbd_abort_pipe(sc->sc_rx_pipeh);
2250 	}
2251 
2252 	if (sc->sc_tx_pipeh != NULL) {
2253 		usbd_abort_pipe(sc->sc_tx_pipeh);
2254 	}
2255 
2256 	ural_free_rx_list(sc);
2257 	ural_free_tx_list(sc);
2258 
2259 	if (sc->sc_rx_pipeh != NULL) {
2260 		usbd_close_pipe(sc->sc_rx_pipeh);
2261 		sc->sc_rx_pipeh = NULL;
2262 	}
2263 
2264 	if (sc->sc_tx_pipeh != NULL) {
2265 		usbd_close_pipe(sc->sc_tx_pipeh);
2266 		sc->sc_tx_pipeh = NULL;
2267 	}
2268 }
2269 
2270 int
2271 ural_activate(device_t self, enum devact act)
2272 {
2273 	struct ural_softc *sc = device_private(self);
2274 
2275 	switch (act) {
2276 	case DVACT_DEACTIVATE:
2277 		if_deactivate(&sc->sc_if);
2278 		return 0;
2279 	default:
2280 		return EOPNOTSUPP;
2281 	}
2282 }
2283 
2284 Static void
2285 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2286 {
2287 	int i;
2288 
2289 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2290 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2291 
2292 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2293 
2294 	/* set rate to some reasonable initial value */
2295 	for (i = ni->ni_rates.rs_nrates - 1;
2296 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2297 	     i--);
2298 	ni->ni_txrate = i;
2299 
2300 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2301 }
2302 
2303 Static void
2304 ural_amrr_timeout(void *arg)
2305 {
2306 	struct ural_softc *sc = (struct ural_softc *)arg;
2307 	usb_device_request_t req;
2308 	int s;
2309 
2310 	s = splusb();
2311 
2312 	/*
2313 	 * Asynchronously read statistic registers (cleared by read).
2314 	 */
2315 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2316 	req.bRequest = RAL_READ_MULTI_MAC;
2317 	USETW(req.wValue, 0);
2318 	USETW(req.wIndex, RAL_STA_CSR0);
2319 	USETW(req.wLength, sizeof(sc->sta));
2320 
2321 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2322 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2323 	    ural_amrr_update);
2324 	(void)usbd_transfer(sc->amrr_xfer);
2325 
2326 	splx(s);
2327 }
2328 
2329 Static void
2330 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2331     usbd_status status)
2332 {
2333 	struct ural_softc *sc = (struct ural_softc *)priv;
2334 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2335 
2336 	if (status != USBD_NORMAL_COMPLETION) {
2337 		printf("%s: could not retrieve Tx statistics - "
2338 		    "cancelling automatic rate control\n",
2339 		    device_xname(sc->sc_dev));
2340 		return;
2341 	}
2342 
2343 	/* count TX retry-fail as Tx errors */
2344 	ifp->if_oerrors += sc->sta[9];
2345 
2346 	sc->amn.amn_retrycnt =
2347 	    sc->sta[7] +	/* TX one-retry ok count */
2348 	    sc->sta[8] +	/* TX more-retry ok count */
2349 	    sc->sta[9];		/* TX retry-fail count */
2350 
2351 	sc->amn.amn_txcnt =
2352 	    sc->amn.amn_retrycnt +
2353 	    sc->sta[6];		/* TX no-retry ok count */
2354 
2355 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2356 
2357 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2358 }
2359