xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: if_ural.c,v 1.65 2020/03/15 23:04:51 thorpej Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.65 2020/03/15 23:04:51 thorpej Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72 
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
85 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
86 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
87 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
91 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
92 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
93 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
95 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
96 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
97 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
98 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
99 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
100 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
101 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
102 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
103 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
104 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
105 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
106 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
107 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
108 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
109 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111 
112 Static int		ural_alloc_tx_list(struct ural_softc *);
113 Static void		ural_free_tx_list(struct ural_softc *);
114 Static int		ural_alloc_rx_list(struct ural_softc *);
115 Static void		ural_free_rx_list(struct ural_softc *);
116 Static int		ural_media_change(struct ifnet *);
117 Static void		ural_next_scan(void *);
118 Static void		ural_task(void *);
119 Static int		ural_newstate(struct ieee80211com *,
120 			    enum ieee80211_state, int);
121 Static int		ural_rxrate(struct ural_rx_desc *);
122 Static void		ural_txeof(struct usbd_xfer *, void *,
123 			    usbd_status);
124 Static void		ural_rxeof(struct usbd_xfer *, void *,
125 			    usbd_status);
126 Static int		ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t		ural_txtime(int, int, uint32_t);
128 Static uint8_t		ural_plcp_signal(int);
129 Static void		ural_setup_tx_desc(struct ural_softc *,
130 			    struct ural_tx_desc *, uint32_t, int, int);
131 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 			    struct ieee80211_node *);
133 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 			    struct ieee80211_node *);
135 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
136 			    struct ieee80211_node *);
137 Static void		ural_start(struct ifnet *);
138 Static void		ural_watchdog(struct ifnet *);
139 Static int		ural_reset(struct ifnet *);
140 Static int		ural_ioctl(struct ifnet *, u_long, void *);
141 Static void		ural_set_testmode(struct ural_softc *);
142 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 			    int);
144 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
145 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
146 			    int);
147 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void		ural_set_chan(struct ural_softc *,
154 			    struct ieee80211_channel *);
155 Static void		ural_disable_rf_tune(struct ural_softc *);
156 Static void		ural_enable_tsf_sync(struct ural_softc *);
157 Static void		ural_update_slot(struct ifnet *);
158 Static void		ural_set_txpreamble(struct ural_softc *);
159 Static void		ural_set_basicrates(struct ural_softc *);
160 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void		ural_update_promisc(struct ural_softc *);
163 Static const char	*ural_get_rf(int);
164 Static void		ural_read_eeprom(struct ural_softc *);
165 Static int		ural_bbp_init(struct ural_softc *);
166 Static void		ural_set_txantenna(struct ural_softc *, int);
167 Static void		ural_set_rxantenna(struct ural_softc *, int);
168 Static int		ural_init(struct ifnet *);
169 Static void		ural_stop(struct ifnet *, int);
170 Static void		ural_amrr_start(struct ural_softc *,
171 			    struct ieee80211_node *);
172 Static void		ural_amrr_timeout(void *);
173 Static void		ural_amrr_update(struct usbd_xfer *, void *,
174 			    usbd_status status);
175 
176 /*
177  * Default values for MAC registers; values taken from the reference driver.
178  */
179 static const struct {
180 	uint16_t	reg;
181 	uint16_t	val;
182 } ural_def_mac[] = {
183 	{ RAL_TXRX_CSR5,  0x8c8d },
184 	{ RAL_TXRX_CSR6,  0x8b8a },
185 	{ RAL_TXRX_CSR7,  0x8687 },
186 	{ RAL_TXRX_CSR8,  0x0085 },
187 	{ RAL_MAC_CSR13,  0x1111 },
188 	{ RAL_MAC_CSR14,  0x1e11 },
189 	{ RAL_TXRX_CSR21, 0xe78f },
190 	{ RAL_MAC_CSR9,   0xff1d },
191 	{ RAL_MAC_CSR11,  0x0002 },
192 	{ RAL_MAC_CSR22,  0x0053 },
193 	{ RAL_MAC_CSR15,  0x0000 },
194 	{ RAL_MAC_CSR8,   0x0780 },
195 	{ RAL_TXRX_CSR19, 0x0000 },
196 	{ RAL_TXRX_CSR18, 0x005a },
197 	{ RAL_PHY_CSR2,   0x0000 },
198 	{ RAL_TXRX_CSR0,  0x1ec0 },
199 	{ RAL_PHY_CSR4,   0x000f }
200 };
201 
202 /*
203  * Default values for BBP registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint8_t	reg;
207 	uint8_t	val;
208 } ural_def_bbp[] = {
209 	{  3, 0x02 },
210 	{  4, 0x19 },
211 	{ 14, 0x1c },
212 	{ 15, 0x30 },
213 	{ 16, 0xac },
214 	{ 17, 0x48 },
215 	{ 18, 0x18 },
216 	{ 19, 0xff },
217 	{ 20, 0x1e },
218 	{ 21, 0x08 },
219 	{ 22, 0x08 },
220 	{ 23, 0x08 },
221 	{ 24, 0x80 },
222 	{ 25, 0x50 },
223 	{ 26, 0x08 },
224 	{ 27, 0x23 },
225 	{ 30, 0x10 },
226 	{ 31, 0x2b },
227 	{ 32, 0xb9 },
228 	{ 34, 0x12 },
229 	{ 35, 0x50 },
230 	{ 39, 0xc4 },
231 	{ 40, 0x02 },
232 	{ 41, 0x60 },
233 	{ 53, 0x10 },
234 	{ 54, 0x18 },
235 	{ 56, 0x08 },
236 	{ 57, 0x10 },
237 	{ 58, 0x08 },
238 	{ 61, 0x60 },
239 	{ 62, 0x10 },
240 	{ 75, 0xff }
241 };
242 
243 /*
244  * Default values for RF register R2 indexed by channel numbers.
245  */
246 static const uint32_t ural_rf2522_r2[] = {
247 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250 
251 static const uint32_t ural_rf2523_r2[] = {
252 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255 
256 static const uint32_t ural_rf2524_r2[] = {
257 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260 
261 static const uint32_t ural_rf2525_r2[] = {
262 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265 
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270 
271 static const uint32_t ural_rf2525e_r2[] = {
272 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275 
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280 
281 static const uint32_t ural_rf2526_r2[] = {
282 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285 
286 /*
287  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288  * values taken from the reference driver.
289  */
290 static const struct {
291 	uint8_t		chan;
292 	uint32_t	r1;
293 	uint32_t	r2;
294 	uint32_t	r4;
295 } ural_rf5222[] = {
296 	{   1, 0x08808, 0x0044d, 0x00282 },
297 	{   2, 0x08808, 0x0044e, 0x00282 },
298 	{   3, 0x08808, 0x0044f, 0x00282 },
299 	{   4, 0x08808, 0x00460, 0x00282 },
300 	{   5, 0x08808, 0x00461, 0x00282 },
301 	{   6, 0x08808, 0x00462, 0x00282 },
302 	{   7, 0x08808, 0x00463, 0x00282 },
303 	{   8, 0x08808, 0x00464, 0x00282 },
304 	{   9, 0x08808, 0x00465, 0x00282 },
305 	{  10, 0x08808, 0x00466, 0x00282 },
306 	{  11, 0x08808, 0x00467, 0x00282 },
307 	{  12, 0x08808, 0x00468, 0x00282 },
308 	{  13, 0x08808, 0x00469, 0x00282 },
309 	{  14, 0x08808, 0x0046b, 0x00286 },
310 
311 	{  36, 0x08804, 0x06225, 0x00287 },
312 	{  40, 0x08804, 0x06226, 0x00287 },
313 	{  44, 0x08804, 0x06227, 0x00287 },
314 	{  48, 0x08804, 0x06228, 0x00287 },
315 	{  52, 0x08804, 0x06229, 0x00287 },
316 	{  56, 0x08804, 0x0622a, 0x00287 },
317 	{  60, 0x08804, 0x0622b, 0x00287 },
318 	{  64, 0x08804, 0x0622c, 0x00287 },
319 
320 	{ 100, 0x08804, 0x02200, 0x00283 },
321 	{ 104, 0x08804, 0x02201, 0x00283 },
322 	{ 108, 0x08804, 0x02202, 0x00283 },
323 	{ 112, 0x08804, 0x02203, 0x00283 },
324 	{ 116, 0x08804, 0x02204, 0x00283 },
325 	{ 120, 0x08804, 0x02205, 0x00283 },
326 	{ 124, 0x08804, 0x02206, 0x00283 },
327 	{ 128, 0x08804, 0x02207, 0x00283 },
328 	{ 132, 0x08804, 0x02208, 0x00283 },
329 	{ 136, 0x08804, 0x02209, 0x00283 },
330 	{ 140, 0x08804, 0x0220a, 0x00283 },
331 
332 	{ 149, 0x08808, 0x02429, 0x00281 },
333 	{ 153, 0x08808, 0x0242b, 0x00281 },
334 	{ 157, 0x08808, 0x0242d, 0x00281 },
335 	{ 161, 0x08808, 0x0242f, 0x00281 }
336 };
337 
338 static int	ural_match(device_t, cfdata_t, void *);
339 static void	ural_attach(device_t, device_t, void *);
340 static int	ural_detach(device_t, int);
341 static int	ural_activate(device_t, enum devact);
342 
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344     ural_detach, ural_activate);
345 
346 static int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 	struct usb_attach_arg *uaa = aux;
350 
351 	return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354 
355 static void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 	struct ural_softc *sc = device_private(self);
359 	struct usb_attach_arg *uaa = aux;
360 	struct ieee80211com *ic = &sc->sc_ic;
361 	struct ifnet *ifp = &sc->sc_if;
362 	usb_interface_descriptor_t *id;
363 	usb_endpoint_descriptor_t *ed;
364 	usbd_status error;
365 	char *devinfop;
366 	int i;
367 
368 	sc->sc_dev = self;
369 	sc->sc_udev = uaa->uaa_device;
370 	sc->sc_init_state = URAL_INIT_NONE;
371 
372 	aprint_naive("\n");
373 	aprint_normal("\n");
374 
375 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
376 	aprint_normal_dev(self, "%s\n", devinfop);
377 	usbd_devinfo_free(devinfop);
378 
379 	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
380 	if (error != 0) {
381 		aprint_error_dev(self, "failed to set configuration"
382 		    ", err=%s\n", usbd_errstr(error));
383 		return;
384 	}
385 
386 	/* get the first interface handle */
387 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
388 	    &sc->sc_iface);
389 	if (error != 0) {
390 		aprint_error_dev(self, "could not get interface handle\n");
391 		return;
392 	}
393 
394 	/*
395 	 * Find endpoints.
396 	 */
397 	id = usbd_get_interface_descriptor(sc->sc_iface);
398 
399 	sc->sc_rx_no = sc->sc_tx_no = -1;
400 	for (i = 0; i < id->bNumEndpoints; i++) {
401 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
402 		if (ed == NULL) {
403 			aprint_error_dev(self,
404 			    "no endpoint descriptor for %d\n", i);
405 			return;
406 		}
407 
408 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
409 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
410 			sc->sc_rx_no = ed->bEndpointAddress;
411 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
412 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413 			sc->sc_tx_no = ed->bEndpointAddress;
414 	}
415 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
416 		aprint_error_dev(self, "missing endpoint\n");
417 		return;
418 	}
419 
420 	usb_init_task(&sc->sc_task, ural_task, sc, 0);
421 	callout_init(&sc->sc_scan_ch, 0);
422 	sc->amrr.amrr_min_success_threshold = 1;
423 	sc->amrr.amrr_max_success_threshold = 15;
424 	callout_init(&sc->sc_amrr_ch, 0);
425 
426 	/* retrieve RT2570 rev. no */
427 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
428 
429 	/* retrieve MAC address and various other things from EEPROM */
430 	ural_read_eeprom(sc);
431 
432 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
433 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
434 
435 	ifp->if_softc = sc;
436 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
437 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
438 	ifp->if_init = ural_init;
439 	ifp->if_ioctl = ural_ioctl;
440 	ifp->if_start = ural_start;
441 	ifp->if_watchdog = ural_watchdog;
442 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
443 	IFQ_SET_READY(&ifp->if_snd);
444 
445 	ic->ic_ifp = ifp;
446 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
447 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
448 	ic->ic_state = IEEE80211_S_INIT;
449 
450 	/* set device capabilities */
451 	ic->ic_caps =
452 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
453 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
454 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
455 	    IEEE80211_C_TXPMGT |	/* tx power management */
456 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
457 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
458 	    IEEE80211_C_WPA;		/* 802.11i */
459 
460 	if (sc->rf_rev == RAL_RF_5222) {
461 		/* set supported .11a rates */
462 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
463 
464 		/* set supported .11a channels */
465 		for (i = 36; i <= 64; i += 4) {
466 			ic->ic_channels[i].ic_freq =
467 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
468 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
469 		}
470 		for (i = 100; i <= 140; i += 4) {
471 			ic->ic_channels[i].ic_freq =
472 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 		}
475 		for (i = 149; i <= 161; i += 4) {
476 			ic->ic_channels[i].ic_freq =
477 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 		}
480 	}
481 
482 	/* set supported .11b and .11g rates */
483 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
484 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
485 
486 	/* set supported .11b and .11g channels (1 through 14) */
487 	for (i = 1; i <= 14; i++) {
488 		ic->ic_channels[i].ic_freq =
489 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
490 		ic->ic_channels[i].ic_flags =
491 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
492 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
493 	}
494 
495 	if_attach(ifp);
496 	ieee80211_ifattach(ic);
497 	ic->ic_reset = ural_reset;
498 
499 	/* override state transition machine */
500 	sc->sc_newstate = ic->ic_newstate;
501 	ic->ic_newstate = ural_newstate;
502 
503 	/* XXX media locking needs revisiting */
504 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
505 	ieee80211_media_init_with_lock(ic,
506 	    ural_media_change, ieee80211_media_status, &sc->sc_media_mtx);
507 
508 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
509 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
510 
511 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
512 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
513 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
514 
515 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
516 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
517 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
518 
519 	ieee80211_announce(ic);
520 
521 	sc->sc_init_state = URAL_INIT_INITED;
522 
523 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
524 
525 	if (!pmf_device_register(self, NULL, NULL))
526 		aprint_error_dev(self, "couldn't establish power handler\n");
527 
528 	return;
529 }
530 
531 static int
532 ural_detach(device_t self, int flags)
533 {
534 	struct ural_softc *sc = device_private(self);
535 	struct ieee80211com *ic = &sc->sc_ic;
536 	struct ifnet *ifp = &sc->sc_if;
537 	int s;
538 
539 	if (sc->sc_init_state < URAL_INIT_INITED)
540 		return 0;
541 
542 	pmf_device_deregister(self);
543 
544 	s = splusb();
545 
546 	ural_stop(ifp, 1);
547 	callout_halt(&sc->sc_scan_ch, NULL);
548 	callout_halt(&sc->sc_amrr_ch, NULL);
549 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
550 
551 	bpf_detach(ifp);
552 	ieee80211_ifdetach(ic);
553 	if_detach(ifp);
554 
555 	splx(s);
556 
557 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
558 
559 	return 0;
560 }
561 
562 Static int
563 ural_alloc_tx_list(struct ural_softc *sc)
564 {
565 	struct ural_tx_data *data;
566 	int i, error;
567 
568 	sc->tx_queued = 0;
569 
570 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
571 		data = &sc->tx_data[i];
572 
573 		data->sc = sc;
574 		error = usbd_create_xfer(sc->sc_tx_pipeh,
575 		    RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
576 		    &data->xfer);
577 		if (error) {
578 			printf("%s: could not allocate tx xfer\n",
579 			    device_xname(sc->sc_dev));
580 			goto fail;
581 		}
582 
583 		data->buf = usbd_get_buffer(data->xfer);
584 	}
585 
586 	return 0;
587 
588 fail:	ural_free_tx_list(sc);
589 	return error;
590 }
591 
592 Static void
593 ural_free_tx_list(struct ural_softc *sc)
594 {
595 	struct ural_tx_data *data;
596 	int i;
597 
598 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
599 		data = &sc->tx_data[i];
600 
601 		if (data->xfer != NULL) {
602 			usbd_destroy_xfer(data->xfer);
603 			data->xfer = NULL;
604 		}
605 
606 		if (data->ni != NULL) {
607 			ieee80211_free_node(data->ni);
608 			data->ni = NULL;
609 		}
610 	}
611 }
612 
613 Static int
614 ural_alloc_rx_list(struct ural_softc *sc)
615 {
616 	struct ural_rx_data *data;
617 	int i, error;
618 
619 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
620 		data = &sc->rx_data[i];
621 
622 		data->sc = sc;
623 
624 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
625 		    0, 0, &data->xfer);
626 		if (error) {
627 			printf("%s: could not allocate rx xfer\n",
628 			    device_xname(sc->sc_dev));
629 			goto fail;
630 		}
631 
632 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
633 		if (data->m == NULL) {
634 			printf("%s: could not allocate rx mbuf\n",
635 			    device_xname(sc->sc_dev));
636 			error = ENOMEM;
637 			goto fail;
638 		}
639 
640 		MCLGET(data->m, M_DONTWAIT);
641 		if (!(data->m->m_flags & M_EXT)) {
642 			printf("%s: could not allocate rx mbuf cluster\n",
643 			    device_xname(sc->sc_dev));
644 			error = ENOMEM;
645 			goto fail;
646 		}
647 
648 		data->buf = mtod(data->m, uint8_t *);
649 	}
650 
651 	return 0;
652 
653 fail:	ural_free_rx_list(sc);
654 	return error;
655 }
656 
657 Static void
658 ural_free_rx_list(struct ural_softc *sc)
659 {
660 	struct ural_rx_data *data;
661 	int i;
662 
663 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
664 		data = &sc->rx_data[i];
665 
666 		if (data->xfer != NULL) {
667 			usbd_destroy_xfer(data->xfer);
668 			data->xfer = NULL;
669 		}
670 
671 		if (data->m != NULL) {
672 			m_freem(data->m);
673 			data->m = NULL;
674 		}
675 	}
676 }
677 
678 Static int
679 ural_media_change(struct ifnet *ifp)
680 {
681 	int error;
682 
683 	error = ieee80211_media_change(ifp);
684 	if (error != ENETRESET)
685 		return error;
686 
687 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
688 		ural_init(ifp);
689 
690 	return 0;
691 }
692 
693 /*
694  * This function is called periodically (every 200ms) during scanning to
695  * switch from one channel to another.
696  */
697 Static void
698 ural_next_scan(void *arg)
699 {
700 	struct ural_softc *sc = arg;
701 	struct ieee80211com *ic = &sc->sc_ic;
702 
703 	if (ic->ic_state == IEEE80211_S_SCAN)
704 		ieee80211_next_scan(ic);
705 }
706 
707 Static void
708 ural_task(void *arg)
709 {
710 	struct ural_softc *sc = arg;
711 	struct ieee80211com *ic = &sc->sc_ic;
712 	enum ieee80211_state ostate;
713 	struct ieee80211_node *ni;
714 	struct mbuf *m;
715 
716 	ostate = ic->ic_state;
717 
718 	switch (sc->sc_state) {
719 	case IEEE80211_S_INIT:
720 		if (ostate == IEEE80211_S_RUN) {
721 			/* abort TSF synchronization */
722 			ural_write(sc, RAL_TXRX_CSR19, 0);
723 
724 			/* force tx led to stop blinking */
725 			ural_write(sc, RAL_MAC_CSR20, 0);
726 		}
727 		break;
728 
729 	case IEEE80211_S_SCAN:
730 		ural_set_chan(sc, ic->ic_curchan);
731 		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
732 		break;
733 
734 	case IEEE80211_S_AUTH:
735 		ural_set_chan(sc, ic->ic_curchan);
736 		break;
737 
738 	case IEEE80211_S_ASSOC:
739 		ural_set_chan(sc, ic->ic_curchan);
740 		break;
741 
742 	case IEEE80211_S_RUN:
743 		ural_set_chan(sc, ic->ic_curchan);
744 
745 		ni = ic->ic_bss;
746 
747 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
748 			ural_update_slot(ic->ic_ifp);
749 			ural_set_txpreamble(sc);
750 			ural_set_basicrates(sc);
751 			ural_set_bssid(sc, ni->ni_bssid);
752 		}
753 
754 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
755 		    ic->ic_opmode == IEEE80211_M_IBSS) {
756 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
757 			if (m == NULL) {
758 				printf("%s: could not allocate beacon\n",
759 				    device_xname(sc->sc_dev));
760 				return;
761 			}
762 
763 			if (ural_tx_bcn(sc, m, ni) != 0) {
764 				m_freem(m);
765 				printf("%s: could not send beacon\n",
766 				    device_xname(sc->sc_dev));
767 				return;
768 			}
769 
770 			/* beacon is no longer needed */
771 			m_freem(m);
772 		}
773 
774 		/* make tx led blink on tx (controlled by ASIC) */
775 		ural_write(sc, RAL_MAC_CSR20, 1);
776 
777 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
778 			ural_enable_tsf_sync(sc);
779 
780 		/* enable automatic rate adaptation in STA mode */
781 		if (ic->ic_opmode == IEEE80211_M_STA &&
782 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
783 			ural_amrr_start(sc, ni);
784 
785 		break;
786 	}
787 
788 	sc->sc_newstate(ic, sc->sc_state, -1);
789 }
790 
791 Static int
792 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
793     int arg)
794 {
795 	struct ural_softc *sc = ic->ic_ifp->if_softc;
796 
797 	/*
798 	 * XXXSMP: This does not wait for the task, if it is in flight,
799 	 * to complete.  If this code works at all, it must rely on the
800 	 * kernel lock to serialize with the USB task thread.
801 	 */
802 	usb_rem_task(sc->sc_udev, &sc->sc_task);
803 	callout_stop(&sc->sc_scan_ch);
804 	callout_stop(&sc->sc_amrr_ch);
805 
806 	/* do it in a process context */
807 	sc->sc_state = nstate;
808 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
809 
810 	return 0;
811 }
812 
813 /* quickly determine if a given rate is CCK or OFDM */
814 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
815 
816 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
817 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
818 
819 #define RAL_SIFS		10	/* us */
820 
821 #define RAL_RXTX_TURNAROUND	5	/* us */
822 
823 /*
824  * This function is only used by the Rx radiotap code.
825  */
826 Static int
827 ural_rxrate(struct ural_rx_desc *desc)
828 {
829 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
830 		/* reverse function of ural_plcp_signal */
831 		switch (desc->rate) {
832 		case 0xb:	return 12;
833 		case 0xf:	return 18;
834 		case 0xa:	return 24;
835 		case 0xe:	return 36;
836 		case 0x9:	return 48;
837 		case 0xd:	return 72;
838 		case 0x8:	return 96;
839 		case 0xc:	return 108;
840 		}
841 	} else {
842 		if (desc->rate == 10)
843 			return 2;
844 		if (desc->rate == 20)
845 			return 4;
846 		if (desc->rate == 55)
847 			return 11;
848 		if (desc->rate == 110)
849 			return 22;
850 	}
851 	return 2;	/* should not get there */
852 }
853 
854 Static void
855 ural_txeof(struct usbd_xfer *xfer, void * priv,
856     usbd_status status)
857 {
858 	struct ural_tx_data *data = priv;
859 	struct ural_softc *sc = data->sc;
860 	struct ifnet *ifp = &sc->sc_if;
861 	int s;
862 
863 	if (status != USBD_NORMAL_COMPLETION) {
864 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
865 			return;
866 
867 		printf("%s: could not transmit buffer: %s\n",
868 		    device_xname(sc->sc_dev), usbd_errstr(status));
869 
870 		if (status == USBD_STALLED)
871 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
872 
873 		if_statinc(ifp, if_oerrors);
874 		return;
875 	}
876 
877 	s = splnet();
878 
879 	m_freem(data->m);
880 	data->m = NULL;
881 	ieee80211_free_node(data->ni);
882 	data->ni = NULL;
883 
884 	sc->tx_queued--;
885 	if_statinc(ifp, if_opackets);
886 
887 	DPRINTFN(10, ("tx done\n"));
888 
889 	sc->sc_tx_timer = 0;
890 	ifp->if_flags &= ~IFF_OACTIVE;
891 	ural_start(ifp);
892 
893 	splx(s);
894 }
895 
896 Static void
897 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
898 {
899 	struct ural_rx_data *data = priv;
900 	struct ural_softc *sc = data->sc;
901 	struct ieee80211com *ic = &sc->sc_ic;
902 	struct ifnet *ifp = &sc->sc_if;
903 	struct ural_rx_desc *desc;
904 	struct ieee80211_frame *wh;
905 	struct ieee80211_node *ni;
906 	struct mbuf *mnew, *m;
907 	int s, len;
908 
909 	if (status != USBD_NORMAL_COMPLETION) {
910 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
911 			return;
912 
913 		if (status == USBD_STALLED)
914 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
915 		goto skip;
916 	}
917 
918 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
919 
920 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
921 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
922 		    len));
923 		if_statinc(ifp, if_ierrors);
924 		goto skip;
925 	}
926 
927 	/* rx descriptor is located at the end */
928 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
929 
930 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
931 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
932 		/*
933 		 * This should not happen since we did not request to receive
934 		 * those frames when we filled RAL_TXRX_CSR2.
935 		 */
936 		DPRINTFN(5, ("PHY or CRC error\n"));
937 		if_statinc(ifp, if_ierrors);
938 		goto skip;
939 	}
940 
941 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
942 	if (mnew == NULL) {
943 		if_statinc(ifp, if_ierrors);
944 		goto skip;
945 	}
946 
947 	MCLGET(mnew, M_DONTWAIT);
948 	if (!(mnew->m_flags & M_EXT)) {
949 		if_statinc(ifp, if_ierrors);
950 		m_freem(mnew);
951 		goto skip;
952 	}
953 
954 	m = data->m;
955 	data->m = mnew;
956 	data->buf = mtod(data->m, uint8_t *);
957 
958 	/* finalize mbuf */
959 	m_set_rcvif(m, ifp);
960 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
961 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
962 
963 	s = splnet();
964 
965 	if (sc->sc_drvbpf != NULL) {
966 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
967 
968 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
969 		tap->wr_rate = ural_rxrate(desc);
970 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
971 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
972 		tap->wr_antenna = sc->rx_ant;
973 		tap->wr_antsignal = desc->rssi;
974 
975 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
976 	}
977 
978 	wh = mtod(m, struct ieee80211_frame *);
979 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
980 
981 	/* send the frame to the 802.11 layer */
982 	ieee80211_input(ic, m, ni, desc->rssi, 0);
983 
984 	/* node is no longer needed */
985 	ieee80211_free_node(ni);
986 
987 	splx(s);
988 
989 	DPRINTFN(15, ("rx done\n"));
990 
991 skip:	/* setup a new transfer */
992 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
993 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
994 	usbd_transfer(xfer);
995 }
996 
997 /*
998  * Return the expected ack rate for a frame transmitted at rate `rate'.
999  * XXX: this should depend on the destination node basic rate set.
1000  */
1001 Static int
1002 ural_ack_rate(struct ieee80211com *ic, int rate)
1003 {
1004 	switch (rate) {
1005 	/* CCK rates */
1006 	case 2:
1007 		return 2;
1008 	case 4:
1009 	case 11:
1010 	case 22:
1011 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1012 
1013 	/* OFDM rates */
1014 	case 12:
1015 	case 18:
1016 		return 12;
1017 	case 24:
1018 	case 36:
1019 		return 24;
1020 	case 48:
1021 	case 72:
1022 	case 96:
1023 	case 108:
1024 		return 48;
1025 	}
1026 
1027 	/* default to 1Mbps */
1028 	return 2;
1029 }
1030 
1031 /*
1032  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1033  * The function automatically determines the operating mode depending on the
1034  * given rate. `flags' indicates whether short preamble is in use or not.
1035  */
1036 Static uint16_t
1037 ural_txtime(int len, int rate, uint32_t flags)
1038 {
1039 	uint16_t txtime;
1040 
1041 	if (RAL_RATE_IS_OFDM(rate)) {
1042 		/* IEEE Std 802.11g-2003, pp. 37 */
1043 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1044 		txtime = 16 + 4 + 4 * txtime + 6;
1045 	} else {
1046 		/* IEEE Std 802.11b-1999, pp. 28 */
1047 		txtime = (16 * len + rate - 1) / rate;
1048 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1049 			txtime +=  72 + 24;
1050 		else
1051 			txtime += 144 + 48;
1052 	}
1053 	return txtime;
1054 }
1055 
1056 Static uint8_t
1057 ural_plcp_signal(int rate)
1058 {
1059 	switch (rate) {
1060 	/* CCK rates (returned values are device-dependent) */
1061 	case 2:		return 0x0;
1062 	case 4:		return 0x1;
1063 	case 11:	return 0x2;
1064 	case 22:	return 0x3;
1065 
1066 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1067 	case 12:	return 0xb;
1068 	case 18:	return 0xf;
1069 	case 24:	return 0xa;
1070 	case 36:	return 0xe;
1071 	case 48:	return 0x9;
1072 	case 72:	return 0xd;
1073 	case 96:	return 0x8;
1074 	case 108:	return 0xc;
1075 
1076 	/* unsupported rates (should not get there) */
1077 	default:	return 0xff;
1078 	}
1079 }
1080 
1081 Static void
1082 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1083     uint32_t flags, int len, int rate)
1084 {
1085 	struct ieee80211com *ic = &sc->sc_ic;
1086 	uint16_t plcp_length;
1087 	int remainder;
1088 
1089 	desc->flags = htole32(flags);
1090 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1091 	desc->flags |= htole32(len << 16);
1092 
1093 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1094 	desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1095 
1096 	/* setup PLCP fields */
1097 	desc->plcp_signal  = ural_plcp_signal(rate);
1098 	desc->plcp_service = 4;
1099 
1100 	len += IEEE80211_CRC_LEN;
1101 	if (RAL_RATE_IS_OFDM(rate)) {
1102 		desc->flags |= htole32(RAL_TX_OFDM);
1103 
1104 		plcp_length = len & 0xfff;
1105 		desc->plcp_length_hi = plcp_length >> 6;
1106 		desc->plcp_length_lo = plcp_length & 0x3f;
1107 	} else {
1108 		plcp_length = (16 * len + rate - 1) / rate;
1109 		if (rate == 22) {
1110 			remainder = (16 * len) % 22;
1111 			if (remainder != 0 && remainder < 7)
1112 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1113 		}
1114 		desc->plcp_length_hi = plcp_length >> 8;
1115 		desc->plcp_length_lo = plcp_length & 0xff;
1116 
1117 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1118 			desc->plcp_signal |= 0x08;
1119 	}
1120 
1121 	desc->iv = 0;
1122 	desc->eiv = 0;
1123 }
1124 
1125 #define RAL_TX_TIMEOUT	5000
1126 
1127 Static int
1128 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1129 {
1130 	struct ural_tx_desc *desc;
1131 	struct usbd_xfer *xfer;
1132 	uint8_t cmd = 0;
1133 	usbd_status error;
1134 	uint8_t *buf;
1135 	int xferlen, rate;
1136 
1137 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1138 
1139 	/* xfer length needs to be a multiple of two! */
1140 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1141 
1142 	error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1143 	    USBD_FORCE_SHORT_XFER, 0, &xfer);
1144 	if (error)
1145 		return error;
1146 
1147 	buf = usbd_get_buffer(xfer);
1148 
1149 	usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1150 	    RAL_TX_TIMEOUT, NULL);
1151 
1152 	error = usbd_sync_transfer(xfer);
1153 	if (error != 0) {
1154 		usbd_destroy_xfer(xfer);
1155 		return error;
1156 	}
1157 
1158 	desc = (struct ural_tx_desc *)buf;
1159 
1160 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1161 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1162 	    m0->m_pkthdr.len, rate);
1163 
1164 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1165 	    m0->m_pkthdr.len, rate, xferlen));
1166 
1167 	usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1168 	    RAL_TX_TIMEOUT, NULL);
1169 
1170 	error = usbd_sync_transfer(xfer);
1171 	usbd_destroy_xfer(xfer);
1172 
1173 	return error;
1174 }
1175 
1176 Static int
1177 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1178 {
1179 	struct ieee80211com *ic = &sc->sc_ic;
1180 	struct ural_tx_desc *desc;
1181 	struct ural_tx_data *data;
1182 	struct ieee80211_frame *wh;
1183 	struct ieee80211_key *k;
1184 	uint32_t flags = 0;
1185 	uint16_t dur;
1186 	usbd_status error;
1187 	int xferlen, rate;
1188 
1189 	data = &sc->tx_data[0];
1190 	desc = (struct ural_tx_desc *)data->buf;
1191 
1192 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1193 
1194 	wh = mtod(m0, struct ieee80211_frame *);
1195 
1196 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1197 		k = ieee80211_crypto_encap(ic, ni, m0);
1198 		if (k == NULL) {
1199 			m_freem(m0);
1200 			return ENOBUFS;
1201 		}
1202 	}
1203 
1204 	data->m = m0;
1205 	data->ni = ni;
1206 
1207 	wh = mtod(m0, struct ieee80211_frame *);
1208 
1209 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1210 		flags |= RAL_TX_ACK;
1211 
1212 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1213 		*(uint16_t *)wh->i_dur = htole16(dur);
1214 
1215 		/* tell hardware to add timestamp for probe responses */
1216 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1217 		    IEEE80211_FC0_TYPE_MGT &&
1218 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1219 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1220 			flags |= RAL_TX_TIMESTAMP;
1221 	}
1222 
1223 	if (sc->sc_drvbpf != NULL) {
1224 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1225 
1226 		tap->wt_flags = 0;
1227 		tap->wt_rate = rate;
1228 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1229 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1230 		tap->wt_antenna = sc->tx_ant;
1231 
1232 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1233 	}
1234 
1235 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1236 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1237 
1238 	/* align end on a 2-bytes boundary */
1239 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1240 
1241 	/*
1242 	 * No space left in the last URB to store the extra 2 bytes, force
1243 	 * sending of another URB.
1244 	 */
1245 	if ((xferlen % 64) == 0)
1246 		xferlen += 2;
1247 
1248 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1249 	    m0->m_pkthdr.len, rate, xferlen));
1250 
1251 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1252 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1253 
1254 	error = usbd_transfer(data->xfer);
1255 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1256 		m_freem(m0);
1257 		return error;
1258 	}
1259 
1260 	sc->tx_queued++;
1261 
1262 	return 0;
1263 }
1264 
1265 Static int
1266 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1267 {
1268 	struct ieee80211com *ic = &sc->sc_ic;
1269 	struct ural_tx_desc *desc;
1270 	struct ural_tx_data *data;
1271 	struct ieee80211_frame *wh;
1272 	struct ieee80211_key *k;
1273 	uint32_t flags = 0;
1274 	uint16_t dur;
1275 	usbd_status error;
1276 	int xferlen, rate;
1277 
1278 	wh = mtod(m0, struct ieee80211_frame *);
1279 
1280 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1281 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1282 	else
1283 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1284 
1285 	rate &= IEEE80211_RATE_VAL;
1286 
1287 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1288 		k = ieee80211_crypto_encap(ic, ni, m0);
1289 		if (k == NULL) {
1290 			m_freem(m0);
1291 			return ENOBUFS;
1292 		}
1293 
1294 		/* packet header may have moved, reset our local pointer */
1295 		wh = mtod(m0, struct ieee80211_frame *);
1296 	}
1297 
1298 	data = &sc->tx_data[0];
1299 	desc = (struct ural_tx_desc *)data->buf;
1300 
1301 	data->m = m0;
1302 	data->ni = ni;
1303 
1304 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1305 		flags |= RAL_TX_ACK;
1306 		flags |= RAL_TX_RETRY(7);
1307 
1308 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1309 		    ic->ic_flags) + RAL_SIFS;
1310 		*(uint16_t *)wh->i_dur = htole16(dur);
1311 	}
1312 
1313 	if (sc->sc_drvbpf != NULL) {
1314 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1315 
1316 		tap->wt_flags = 0;
1317 		tap->wt_rate = rate;
1318 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1319 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1320 		tap->wt_antenna = sc->tx_ant;
1321 
1322 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1323 	}
1324 
1325 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1326 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1327 
1328 	/* align end on a 2-bytes boundary */
1329 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1330 
1331 	/*
1332 	 * No space left in the last URB to store the extra 2 bytes, force
1333 	 * sending of another URB.
1334 	 */
1335 	if ((xferlen % 64) == 0)
1336 		xferlen += 2;
1337 
1338 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1339 	    m0->m_pkthdr.len, rate, xferlen));
1340 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1341 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1342 
1343 	error = usbd_transfer(data->xfer);
1344 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1345 		return error;
1346 
1347 	sc->tx_queued++;
1348 
1349 	return 0;
1350 }
1351 
1352 Static void
1353 ural_start(struct ifnet *ifp)
1354 {
1355 	struct ural_softc *sc = ifp->if_softc;
1356 	struct ieee80211com *ic = &sc->sc_ic;
1357 	struct mbuf *m0;
1358 	struct ether_header *eh;
1359 	struct ieee80211_node *ni;
1360 
1361 	for (;;) {
1362 		IF_POLL(&ic->ic_mgtq, m0);
1363 		if (m0 != NULL) {
1364 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1365 				ifp->if_flags |= IFF_OACTIVE;
1366 				break;
1367 			}
1368 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1369 
1370 			ni = M_GETCTX(m0, struct ieee80211_node *);
1371 			M_CLEARCTX(m0);
1372 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1373 			if (ural_tx_mgt(sc, m0, ni) != 0)
1374 				break;
1375 
1376 		} else {
1377 			if (ic->ic_state != IEEE80211_S_RUN)
1378 				break;
1379 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1380 			if (m0 == NULL)
1381 				break;
1382 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1383 				IF_PREPEND(&ifp->if_snd, m0);
1384 				ifp->if_flags |= IFF_OACTIVE;
1385 				break;
1386 			}
1387 
1388 			if (m0->m_len < sizeof(struct ether_header) &&
1389 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1390 				continue;
1391 
1392 			eh = mtod(m0, struct ether_header *);
1393 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1394 			if (ni == NULL) {
1395 				m_freem(m0);
1396 				continue;
1397 			}
1398 			bpf_mtap(ifp, m0, BPF_D_OUT);
1399 			m0 = ieee80211_encap(ic, m0, ni);
1400 			if (m0 == NULL) {
1401 				ieee80211_free_node(ni);
1402 				continue;
1403 			}
1404 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1405 			if (ural_tx_data(sc, m0, ni) != 0) {
1406 				ieee80211_free_node(ni);
1407 				if_statinc(ifp, if_oerrors);
1408 				break;
1409 			}
1410 		}
1411 
1412 		sc->sc_tx_timer = 5;
1413 		ifp->if_timer = 1;
1414 	}
1415 }
1416 
1417 Static void
1418 ural_watchdog(struct ifnet *ifp)
1419 {
1420 	struct ural_softc *sc = ifp->if_softc;
1421 	struct ieee80211com *ic = &sc->sc_ic;
1422 
1423 	ifp->if_timer = 0;
1424 
1425 	if (sc->sc_tx_timer > 0) {
1426 		if (--sc->sc_tx_timer == 0) {
1427 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1428 			/*ural_init(sc); XXX needs a process context! */
1429 			if_statinc(ifp, if_oerrors);
1430 			return;
1431 		}
1432 		ifp->if_timer = 1;
1433 	}
1434 
1435 	ieee80211_watchdog(ic);
1436 }
1437 
1438 /*
1439  * This function allows for fast channel switching in monitor mode (used by
1440  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1441  * generate a new beacon frame.
1442  */
1443 Static int
1444 ural_reset(struct ifnet *ifp)
1445 {
1446 	struct ural_softc *sc = ifp->if_softc;
1447 	struct ieee80211com *ic = &sc->sc_ic;
1448 
1449 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1450 		return ENETRESET;
1451 
1452 	ural_set_chan(sc, ic->ic_curchan);
1453 
1454 	return 0;
1455 }
1456 
1457 Static int
1458 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1459 {
1460 #define IS_RUNNING(ifp) \
1461 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1462 
1463 	struct ural_softc *sc = ifp->if_softc;
1464 	struct ieee80211com *ic = &sc->sc_ic;
1465 	int s, error = 0;
1466 
1467 	s = splnet();
1468 
1469 	switch (cmd) {
1470 	case SIOCSIFFLAGS:
1471 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1472 			break;
1473 		/* XXX re-use ether_ioctl() */
1474 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1475 		case IFF_UP|IFF_RUNNING:
1476 			ural_update_promisc(sc);
1477 			break;
1478 		case IFF_UP:
1479 			ural_init(ifp);
1480 			break;
1481 		case IFF_RUNNING:
1482 			ural_stop(ifp, 1);
1483 			break;
1484 		case 0:
1485 			break;
1486 		}
1487 		break;
1488 
1489 	case SIOCADDMULTI:
1490 	case SIOCDELMULTI:
1491 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1492 			error = 0;
1493 		}
1494 		break;
1495 
1496 	default:
1497 		error = ieee80211_ioctl(ic, cmd, data);
1498 	}
1499 
1500 	if (error == ENETRESET) {
1501 		if (IS_RUNNING(ifp) &&
1502 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1503 			ural_init(ifp);
1504 		error = 0;
1505 	}
1506 
1507 	splx(s);
1508 
1509 	return error;
1510 #undef IS_RUNNING
1511 }
1512 
1513 Static void
1514 ural_set_testmode(struct ural_softc *sc)
1515 {
1516 	usb_device_request_t req;
1517 	usbd_status error;
1518 
1519 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1520 	req.bRequest = RAL_VENDOR_REQUEST;
1521 	USETW(req.wValue, 4);
1522 	USETW(req.wIndex, 1);
1523 	USETW(req.wLength, 0);
1524 
1525 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1526 	if (error != 0) {
1527 		printf("%s: could not set test mode: %s\n",
1528 		    device_xname(sc->sc_dev), usbd_errstr(error));
1529 	}
1530 }
1531 
1532 Static void
1533 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1534 {
1535 	usb_device_request_t req;
1536 	usbd_status error;
1537 
1538 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1539 	req.bRequest = RAL_READ_EEPROM;
1540 	USETW(req.wValue, 0);
1541 	USETW(req.wIndex, addr);
1542 	USETW(req.wLength, len);
1543 
1544 	error = usbd_do_request(sc->sc_udev, &req, buf);
1545 	if (error != 0) {
1546 		printf("%s: could not read EEPROM: %s\n",
1547 		    device_xname(sc->sc_dev), usbd_errstr(error));
1548 	}
1549 }
1550 
1551 Static uint16_t
1552 ural_read(struct ural_softc *sc, uint16_t reg)
1553 {
1554 	usb_device_request_t req;
1555 	usbd_status error;
1556 	uint16_t val;
1557 
1558 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1559 	req.bRequest = RAL_READ_MAC;
1560 	USETW(req.wValue, 0);
1561 	USETW(req.wIndex, reg);
1562 	USETW(req.wLength, sizeof(uint16_t));
1563 
1564 	error = usbd_do_request(sc->sc_udev, &req, &val);
1565 	if (error != 0) {
1566 		printf("%s: could not read MAC register: %s\n",
1567 		    device_xname(sc->sc_dev), usbd_errstr(error));
1568 		return 0;
1569 	}
1570 
1571 	return le16toh(val);
1572 }
1573 
1574 Static void
1575 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1576 {
1577 	usb_device_request_t req;
1578 	usbd_status error;
1579 
1580 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1581 	req.bRequest = RAL_READ_MULTI_MAC;
1582 	USETW(req.wValue, 0);
1583 	USETW(req.wIndex, reg);
1584 	USETW(req.wLength, len);
1585 
1586 	error = usbd_do_request(sc->sc_udev, &req, buf);
1587 	if (error != 0) {
1588 		printf("%s: could not read MAC register: %s\n",
1589 		    device_xname(sc->sc_dev), usbd_errstr(error));
1590 	}
1591 }
1592 
1593 Static void
1594 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1595 {
1596 	usb_device_request_t req;
1597 	usbd_status error;
1598 
1599 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1600 	req.bRequest = RAL_WRITE_MAC;
1601 	USETW(req.wValue, val);
1602 	USETW(req.wIndex, reg);
1603 	USETW(req.wLength, 0);
1604 
1605 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1606 	if (error != 0) {
1607 		printf("%s: could not write MAC register: %s\n",
1608 		    device_xname(sc->sc_dev), usbd_errstr(error));
1609 	}
1610 }
1611 
1612 Static void
1613 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1614 {
1615 	usb_device_request_t req;
1616 	usbd_status error;
1617 
1618 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1619 	req.bRequest = RAL_WRITE_MULTI_MAC;
1620 	USETW(req.wValue, 0);
1621 	USETW(req.wIndex, reg);
1622 	USETW(req.wLength, len);
1623 
1624 	error = usbd_do_request(sc->sc_udev, &req, buf);
1625 	if (error != 0) {
1626 		printf("%s: could not write MAC register: %s\n",
1627 		    device_xname(sc->sc_dev), usbd_errstr(error));
1628 	}
1629 }
1630 
1631 Static void
1632 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1633 {
1634 	uint16_t tmp;
1635 	int ntries;
1636 
1637 	for (ntries = 0; ntries < 5; ntries++) {
1638 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1639 			break;
1640 	}
1641 	if (ntries == 5) {
1642 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1643 		return;
1644 	}
1645 
1646 	tmp = reg << 8 | val;
1647 	ural_write(sc, RAL_PHY_CSR7, tmp);
1648 }
1649 
1650 Static uint8_t
1651 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1652 {
1653 	uint16_t val;
1654 	int ntries;
1655 
1656 	val = RAL_BBP_WRITE | reg << 8;
1657 	ural_write(sc, RAL_PHY_CSR7, val);
1658 
1659 	for (ntries = 0; ntries < 5; ntries++) {
1660 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1661 			break;
1662 	}
1663 	if (ntries == 5) {
1664 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1665 		return 0;
1666 	}
1667 
1668 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1669 }
1670 
1671 Static void
1672 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1673 {
1674 	uint32_t tmp;
1675 	int ntries;
1676 
1677 	for (ntries = 0; ntries < 5; ntries++) {
1678 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1679 			break;
1680 	}
1681 	if (ntries == 5) {
1682 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1683 		return;
1684 	}
1685 
1686 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1687 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1688 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1689 
1690 	/* remember last written value in sc */
1691 	sc->rf_regs[reg] = val;
1692 
1693 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1694 }
1695 
1696 Static void
1697 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1698 {
1699 	struct ieee80211com *ic = &sc->sc_ic;
1700 	uint8_t power, tmp;
1701 	u_int i, chan;
1702 
1703 	chan = ieee80211_chan2ieee(ic, c);
1704 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1705 		return;
1706 
1707 	if (IEEE80211_IS_CHAN_2GHZ(c))
1708 		power = uimin(sc->txpow[chan - 1], 31);
1709 	else
1710 		power = 31;
1711 
1712 	/* adjust txpower using ifconfig settings */
1713 	power -= (100 - ic->ic_txpowlimit) / 8;
1714 
1715 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1716 
1717 	switch (sc->rf_rev) {
1718 	case RAL_RF_2522:
1719 		ural_rf_write(sc, RAL_RF1, 0x00814);
1720 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1721 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1722 		break;
1723 
1724 	case RAL_RF_2523:
1725 		ural_rf_write(sc, RAL_RF1, 0x08804);
1726 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1727 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1728 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1729 		break;
1730 
1731 	case RAL_RF_2524:
1732 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1733 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1734 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1735 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1736 		break;
1737 
1738 	case RAL_RF_2525:
1739 		ural_rf_write(sc, RAL_RF1, 0x08808);
1740 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1741 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1742 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1743 
1744 		ural_rf_write(sc, RAL_RF1, 0x08808);
1745 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1746 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1747 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1748 		break;
1749 
1750 	case RAL_RF_2525E:
1751 		ural_rf_write(sc, RAL_RF1, 0x08808);
1752 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1753 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1754 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1755 		break;
1756 
1757 	case RAL_RF_2526:
1758 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1759 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1760 		ural_rf_write(sc, RAL_RF1, 0x08804);
1761 
1762 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1763 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1764 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1765 		break;
1766 
1767 	/* dual-band RF */
1768 	case RAL_RF_5222:
1769 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1770 
1771 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1772 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1773 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1774 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1775 		break;
1776 	}
1777 
1778 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1779 	    ic->ic_state != IEEE80211_S_SCAN) {
1780 		/* set Japan filter bit for channel 14 */
1781 		tmp = ural_bbp_read(sc, 70);
1782 
1783 		tmp &= ~RAL_JAPAN_FILTER;
1784 		if (chan == 14)
1785 			tmp |= RAL_JAPAN_FILTER;
1786 
1787 		ural_bbp_write(sc, 70, tmp);
1788 
1789 		/* clear CRC errors */
1790 		ural_read(sc, RAL_STA_CSR0);
1791 
1792 		DELAY(10000);
1793 		ural_disable_rf_tune(sc);
1794 	}
1795 }
1796 
1797 /*
1798  * Disable RF auto-tuning.
1799  */
1800 Static void
1801 ural_disable_rf_tune(struct ural_softc *sc)
1802 {
1803 	uint32_t tmp;
1804 
1805 	if (sc->rf_rev != RAL_RF_2523) {
1806 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1807 		ural_rf_write(sc, RAL_RF1, tmp);
1808 	}
1809 
1810 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1811 	ural_rf_write(sc, RAL_RF3, tmp);
1812 
1813 	DPRINTFN(2, ("disabling RF autotune\n"));
1814 }
1815 
1816 /*
1817  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1818  * synchronization.
1819  */
1820 Static void
1821 ural_enable_tsf_sync(struct ural_softc *sc)
1822 {
1823 	struct ieee80211com *ic = &sc->sc_ic;
1824 	uint16_t logcwmin, preload, tmp;
1825 
1826 	/* first, disable TSF synchronization */
1827 	ural_write(sc, RAL_TXRX_CSR19, 0);
1828 
1829 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1830 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1831 
1832 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1833 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1834 	tmp = logcwmin << 12 | preload;
1835 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1836 
1837 	/* finally, enable TSF synchronization */
1838 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1839 	if (ic->ic_opmode == IEEE80211_M_STA)
1840 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1841 	else
1842 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1843 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1844 
1845 	DPRINTF(("enabling TSF synchronization\n"));
1846 }
1847 
1848 Static void
1849 ural_update_slot(struct ifnet *ifp)
1850 {
1851 	struct ural_softc *sc = ifp->if_softc;
1852 	struct ieee80211com *ic = &sc->sc_ic;
1853 	uint16_t slottime, sifs, eifs;
1854 
1855 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1856 
1857 	/*
1858 	 * These settings may sound a bit inconsistent but this is what the
1859 	 * reference driver does.
1860 	 */
1861 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1862 		sifs = 16 - RAL_RXTX_TURNAROUND;
1863 		eifs = 364;
1864 	} else {
1865 		sifs = 10 - RAL_RXTX_TURNAROUND;
1866 		eifs = 64;
1867 	}
1868 
1869 	ural_write(sc, RAL_MAC_CSR10, slottime);
1870 	ural_write(sc, RAL_MAC_CSR11, sifs);
1871 	ural_write(sc, RAL_MAC_CSR12, eifs);
1872 }
1873 
1874 Static void
1875 ural_set_txpreamble(struct ural_softc *sc)
1876 {
1877 	uint16_t tmp;
1878 
1879 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1880 
1881 	tmp &= ~RAL_SHORT_PREAMBLE;
1882 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1883 		tmp |= RAL_SHORT_PREAMBLE;
1884 
1885 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1886 }
1887 
1888 Static void
1889 ural_set_basicrates(struct ural_softc *sc)
1890 {
1891 	struct ieee80211com *ic = &sc->sc_ic;
1892 
1893 	/* update basic rate set */
1894 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1895 		/* 11b basic rates: 1, 2Mbps */
1896 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1897 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1898 		/* 11a basic rates: 6, 12, 24Mbps */
1899 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1900 	} else {
1901 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1902 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1903 	}
1904 }
1905 
1906 Static void
1907 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1908 {
1909 	uint16_t tmp;
1910 
1911 	tmp = bssid[0] | bssid[1] << 8;
1912 	ural_write(sc, RAL_MAC_CSR5, tmp);
1913 
1914 	tmp = bssid[2] | bssid[3] << 8;
1915 	ural_write(sc, RAL_MAC_CSR6, tmp);
1916 
1917 	tmp = bssid[4] | bssid[5] << 8;
1918 	ural_write(sc, RAL_MAC_CSR7, tmp);
1919 
1920 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1921 }
1922 
1923 Static void
1924 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1925 {
1926 	uint16_t tmp;
1927 
1928 	tmp = addr[0] | addr[1] << 8;
1929 	ural_write(sc, RAL_MAC_CSR2, tmp);
1930 
1931 	tmp = addr[2] | addr[3] << 8;
1932 	ural_write(sc, RAL_MAC_CSR3, tmp);
1933 
1934 	tmp = addr[4] | addr[5] << 8;
1935 	ural_write(sc, RAL_MAC_CSR4, tmp);
1936 
1937 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1938 }
1939 
1940 Static void
1941 ural_update_promisc(struct ural_softc *sc)
1942 {
1943 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1944 	uint32_t tmp;
1945 
1946 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1947 
1948 	tmp &= ~RAL_DROP_NOT_TO_ME;
1949 	if (!(ifp->if_flags & IFF_PROMISC))
1950 		tmp |= RAL_DROP_NOT_TO_ME;
1951 
1952 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1953 
1954 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1955 	    "entering" : "leaving"));
1956 }
1957 
1958 Static const char *
1959 ural_get_rf(int rev)
1960 {
1961 	switch (rev) {
1962 	case RAL_RF_2522:	return "RT2522";
1963 	case RAL_RF_2523:	return "RT2523";
1964 	case RAL_RF_2524:	return "RT2524";
1965 	case RAL_RF_2525:	return "RT2525";
1966 	case RAL_RF_2525E:	return "RT2525e";
1967 	case RAL_RF_2526:	return "RT2526";
1968 	case RAL_RF_5222:	return "RT5222";
1969 	default:		return "unknown";
1970 	}
1971 }
1972 
1973 Static void
1974 ural_read_eeprom(struct ural_softc *sc)
1975 {
1976 	struct ieee80211com *ic = &sc->sc_ic;
1977 	uint16_t val;
1978 
1979 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1980 	val = le16toh(val);
1981 	sc->rf_rev =   (val >> 11) & 0x7;
1982 	sc->hw_radio = (val >> 10) & 0x1;
1983 	sc->led_mode = (val >> 6)  & 0x7;
1984 	sc->rx_ant =   (val >> 4)  & 0x3;
1985 	sc->tx_ant =   (val >> 2)  & 0x3;
1986 	sc->nb_ant =   val & 0x3;
1987 
1988 	/* read MAC address */
1989 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1990 
1991 	/* read default values for BBP registers */
1992 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1993 
1994 	/* read Tx power for all b/g channels */
1995 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1996 }
1997 
1998 Static int
1999 ural_bbp_init(struct ural_softc *sc)
2000 {
2001 	int i, ntries;
2002 
2003 	/* wait for BBP to be ready */
2004 	for (ntries = 0; ntries < 100; ntries++) {
2005 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2006 			break;
2007 		DELAY(1000);
2008 	}
2009 	if (ntries == 100) {
2010 		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2011 		return EIO;
2012 	}
2013 
2014 	/* initialize BBP registers to default values */
2015 	for (i = 0; i < __arraycount(ural_def_bbp); i++)
2016 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2017 
2018 #if 0
2019 	/* initialize BBP registers to values stored in EEPROM */
2020 	for (i = 0; i < 16; i++) {
2021 		if (sc->bbp_prom[i].reg == 0xff)
2022 			continue;
2023 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2024 	}
2025 #endif
2026 
2027 	return 0;
2028 }
2029 
2030 Static void
2031 ural_set_txantenna(struct ural_softc *sc, int antenna)
2032 {
2033 	uint16_t tmp;
2034 	uint8_t tx;
2035 
2036 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2037 	if (antenna == 1)
2038 		tx |= RAL_BBP_ANTA;
2039 	else if (antenna == 2)
2040 		tx |= RAL_BBP_ANTB;
2041 	else
2042 		tx |= RAL_BBP_DIVERSITY;
2043 
2044 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2045 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2046 	    sc->rf_rev == RAL_RF_5222)
2047 		tx |= RAL_BBP_FLIPIQ;
2048 
2049 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2050 
2051 	/* update values in PHY_CSR5 and PHY_CSR6 */
2052 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2053 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2054 
2055 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2056 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2057 }
2058 
2059 Static void
2060 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2061 {
2062 	uint8_t rx;
2063 
2064 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2065 	if (antenna == 1)
2066 		rx |= RAL_BBP_ANTA;
2067 	else if (antenna == 2)
2068 		rx |= RAL_BBP_ANTB;
2069 	else
2070 		rx |= RAL_BBP_DIVERSITY;
2071 
2072 	/* need to force no I/Q flip for RF 2525e and 2526 */
2073 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2074 		rx &= ~RAL_BBP_FLIPIQ;
2075 
2076 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2077 }
2078 
2079 Static int
2080 ural_init(struct ifnet *ifp)
2081 {
2082 	struct ural_softc *sc = ifp->if_softc;
2083 	struct ieee80211com *ic = &sc->sc_ic;
2084 	struct ieee80211_key *wk;
2085 	uint16_t tmp;
2086 	usbd_status error;
2087 	int i, ntries;
2088 
2089 	ural_set_testmode(sc);
2090 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2091 
2092 	ural_stop(ifp, 0);
2093 
2094 	/* initialize MAC registers to default values */
2095 	for (i = 0; i < __arraycount(ural_def_mac); i++)
2096 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2097 
2098 	/* wait for BBP and RF to wake up (this can take a long time!) */
2099 	for (ntries = 0; ntries < 100; ntries++) {
2100 		tmp = ural_read(sc, RAL_MAC_CSR17);
2101 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2102 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2103 			break;
2104 		DELAY(1000);
2105 	}
2106 	if (ntries == 100) {
2107 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2108 		    device_xname(sc->sc_dev));
2109 		error = EIO;
2110 		goto fail;
2111 	}
2112 
2113 	/* we're ready! */
2114 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2115 
2116 	/* set basic rate set (will be updated later) */
2117 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2118 
2119 	error = ural_bbp_init(sc);
2120 	if (error != 0)
2121 		goto fail;
2122 
2123 	/* set default BSS channel */
2124 	ural_set_chan(sc, ic->ic_curchan);
2125 
2126 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2127 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2128 
2129 	ural_set_txantenna(sc, sc->tx_ant);
2130 	ural_set_rxantenna(sc, sc->rx_ant);
2131 
2132 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2133 	ural_set_macaddr(sc, ic->ic_myaddr);
2134 
2135 	/*
2136 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2137 	 */
2138 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2139 		wk = &ic->ic_crypto.cs_nw_keys[i];
2140 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2141 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2142 	}
2143 
2144 	/*
2145 	 * Allocate xfer for AMRR statistics requests.
2146 	 */
2147 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2148 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2149 	if (error) {
2150 		printf("%s: could not allocate AMRR xfer\n",
2151 		    device_xname(sc->sc_dev));
2152 		goto fail;
2153 	}
2154 
2155 	/*
2156 	 * Open Tx and Rx USB bulk pipes.
2157 	 */
2158 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2159 	    &sc->sc_tx_pipeh);
2160 	if (error != 0) {
2161 		printf("%s: could not open Tx pipe: %s\n",
2162 		    device_xname(sc->sc_dev), usbd_errstr(error));
2163 		goto fail;
2164 	}
2165 
2166 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2167 	    &sc->sc_rx_pipeh);
2168 	if (error != 0) {
2169 		printf("%s: could not open Rx pipe: %s\n",
2170 		    device_xname(sc->sc_dev), usbd_errstr(error));
2171 		goto fail;
2172 	}
2173 
2174 	/*
2175 	 * Allocate Tx and Rx xfer queues.
2176 	 */
2177 	error = ural_alloc_tx_list(sc);
2178 	if (error != 0) {
2179 		printf("%s: could not allocate Tx list\n",
2180 		    device_xname(sc->sc_dev));
2181 		goto fail;
2182 	}
2183 
2184 	error = ural_alloc_rx_list(sc);
2185 	if (error != 0) {
2186 		printf("%s: could not allocate Rx list\n",
2187 		    device_xname(sc->sc_dev));
2188 		goto fail;
2189 	}
2190 
2191 	/*
2192 	 * Start up the receive pipe.
2193 	 */
2194 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2195 		struct ural_rx_data *data = &sc->rx_data[i];
2196 
2197 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2198 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2199 		usbd_transfer(data->xfer);
2200 	}
2201 
2202 	/* kick Rx */
2203 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2204 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2205 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2206 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2207 			tmp |= RAL_DROP_TODS;
2208 		if (!(ifp->if_flags & IFF_PROMISC))
2209 			tmp |= RAL_DROP_NOT_TO_ME;
2210 	}
2211 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2212 
2213 	ifp->if_flags &= ~IFF_OACTIVE;
2214 	ifp->if_flags |= IFF_RUNNING;
2215 
2216 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2218 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2219 	} else
2220 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2221 
2222 	return 0;
2223 
2224 fail:	ural_stop(ifp, 1);
2225 	return error;
2226 }
2227 
2228 Static void
2229 ural_stop(struct ifnet *ifp, int disable)
2230 {
2231 	struct ural_softc *sc = ifp->if_softc;
2232 	struct ieee80211com *ic = &sc->sc_ic;
2233 
2234 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2235 
2236 	sc->sc_tx_timer = 0;
2237 	ifp->if_timer = 0;
2238 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2239 
2240 	/* disable Rx */
2241 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2242 
2243 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2244 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2245 	ural_write(sc, RAL_MAC_CSR1, 0);
2246 
2247 	if (sc->amrr_xfer != NULL) {
2248 		usbd_destroy_xfer(sc->amrr_xfer);
2249 		sc->amrr_xfer = NULL;
2250 	}
2251 
2252 	if (sc->sc_rx_pipeh != NULL) {
2253 		usbd_abort_pipe(sc->sc_rx_pipeh);
2254 	}
2255 
2256 	if (sc->sc_tx_pipeh != NULL) {
2257 		usbd_abort_pipe(sc->sc_tx_pipeh);
2258 	}
2259 
2260 	ural_free_rx_list(sc);
2261 	ural_free_tx_list(sc);
2262 
2263 	if (sc->sc_rx_pipeh != NULL) {
2264 		usbd_close_pipe(sc->sc_rx_pipeh);
2265 		sc->sc_rx_pipeh = NULL;
2266 	}
2267 
2268 	if (sc->sc_tx_pipeh != NULL) {
2269 		usbd_close_pipe(sc->sc_tx_pipeh);
2270 		sc->sc_tx_pipeh = NULL;
2271 	}
2272 }
2273 
2274 static int
2275 ural_activate(device_t self, enum devact act)
2276 {
2277 	struct ural_softc *sc = device_private(self);
2278 
2279 	switch (act) {
2280 	case DVACT_DEACTIVATE:
2281 		if_deactivate(&sc->sc_if);
2282 		return 0;
2283 	default:
2284 		return EOPNOTSUPP;
2285 	}
2286 }
2287 
2288 Static void
2289 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2290 {
2291 	int i;
2292 
2293 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2294 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2295 
2296 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2297 
2298 	/* set rate to some reasonable initial value */
2299 	for (i = ni->ni_rates.rs_nrates - 1;
2300 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2301 	     i--);
2302 	ni->ni_txrate = i;
2303 
2304 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2305 }
2306 
2307 Static void
2308 ural_amrr_timeout(void *arg)
2309 {
2310 	struct ural_softc *sc = (struct ural_softc *)arg;
2311 	usb_device_request_t req;
2312 	int s;
2313 
2314 	s = splusb();
2315 
2316 	/*
2317 	 * Asynchronously read statistic registers (cleared by read).
2318 	 */
2319 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2320 	req.bRequest = RAL_READ_MULTI_MAC;
2321 	USETW(req.wValue, 0);
2322 	USETW(req.wIndex, RAL_STA_CSR0);
2323 	USETW(req.wLength, sizeof(sc->sta));
2324 
2325 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2326 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2327 	    ural_amrr_update);
2328 	(void)usbd_transfer(sc->amrr_xfer);
2329 
2330 	splx(s);
2331 }
2332 
2333 Static void
2334 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2335     usbd_status status)
2336 {
2337 	struct ural_softc *sc = (struct ural_softc *)priv;
2338 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2339 
2340 	if (status != USBD_NORMAL_COMPLETION) {
2341 		printf("%s: could not retrieve Tx statistics - "
2342 		    "cancelling automatic rate control\n",
2343 		    device_xname(sc->sc_dev));
2344 		return;
2345 	}
2346 
2347 	/* count TX retry-fail as Tx errors */
2348 	if_statadd(ifp, if_oerrors, sc->sta[9]);
2349 
2350 	sc->amn.amn_retrycnt =
2351 	    sc->sta[7] +	/* TX one-retry ok count */
2352 	    sc->sta[8] +	/* TX more-retry ok count */
2353 	    sc->sta[9];		/* TX retry-fail count */
2354 
2355 	sc->amn.amn_txcnt =
2356 	    sc->amn.amn_retrycnt +
2357 	    sc->sta[6];		/* TX no-retry ok count */
2358 
2359 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2360 
2361 	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2362 }
2363