xref: /netbsd-src/sys/dev/usb/if_ural.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_ural.c,v 1.33 2009/12/06 20:20:12 dyoung Exp $ */
2 /*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2500USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.33 2009/12/06 20:20:12 dyoung Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73 
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77 
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x)	do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
92 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
96 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
97 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
98 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
100 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
101 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
102 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
103 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
104 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
105 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
106 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
107 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
108 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
109 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
110 	{ USB_VENDOR_RALINK_2,		USB_PRODUCT_RALINK_2_RT2570 },
111 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
112 	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
113 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
114 	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
115 	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
116 };
117 
118 Static int		ural_alloc_tx_list(struct ural_softc *);
119 Static void		ural_free_tx_list(struct ural_softc *);
120 Static int		ural_alloc_rx_list(struct ural_softc *);
121 Static void		ural_free_rx_list(struct ural_softc *);
122 Static int		ural_media_change(struct ifnet *);
123 Static void		ural_next_scan(void *);
124 Static void		ural_task(void *);
125 Static int		ural_newstate(struct ieee80211com *,
126 			    enum ieee80211_state, int);
127 Static int		ural_rxrate(struct ural_rx_desc *);
128 Static void		ural_txeof(usbd_xfer_handle, usbd_private_handle,
129 			    usbd_status);
130 Static void		ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131 			    usbd_status);
132 Static int		ural_ack_rate(struct ieee80211com *, int);
133 Static uint16_t		ural_txtime(int, int, uint32_t);
134 Static uint8_t		ural_plcp_signal(int);
135 Static void		ural_setup_tx_desc(struct ural_softc *,
136 			    struct ural_tx_desc *, uint32_t, int, int);
137 Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
138 			    struct ieee80211_node *);
139 Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
140 			    struct ieee80211_node *);
141 Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
142 			    struct ieee80211_node *);
143 Static void		ural_start(struct ifnet *);
144 Static void		ural_watchdog(struct ifnet *);
145 Static int		ural_reset(struct ifnet *);
146 Static int		ural_ioctl(struct ifnet *, u_long, void *);
147 Static void		ural_set_testmode(struct ural_softc *);
148 Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149 			    int);
150 Static uint16_t		ural_read(struct ural_softc *, uint16_t);
151 Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
152 			    int);
153 Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
154 Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
155 			    int);
156 Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
158 Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 Static void		ural_set_chan(struct ural_softc *,
160 			    struct ieee80211_channel *);
161 Static void		ural_disable_rf_tune(struct ural_softc *);
162 Static void		ural_enable_tsf_sync(struct ural_softc *);
163 Static void		ural_update_slot(struct ifnet *);
164 Static void		ural_set_txpreamble(struct ural_softc *);
165 Static void		ural_set_basicrates(struct ural_softc *);
166 Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
167 Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
168 Static void		ural_update_promisc(struct ural_softc *);
169 Static const char	*ural_get_rf(int);
170 Static void		ural_read_eeprom(struct ural_softc *);
171 Static int		ural_bbp_init(struct ural_softc *);
172 Static void		ural_set_txantenna(struct ural_softc *, int);
173 Static void		ural_set_rxantenna(struct ural_softc *, int);
174 Static int		ural_init(struct ifnet *);
175 Static void		ural_stop(struct ifnet *, int);
176 Static void		ural_amrr_start(struct ural_softc *,
177 			    struct ieee80211_node *);
178 Static void		ural_amrr_timeout(void *);
179 Static void		ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
180 			    usbd_status status);
181 
182 /*
183  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184  */
185 static const struct ieee80211_rateset ural_rateset_11a =
186 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187 
188 static const struct ieee80211_rateset ural_rateset_11b =
189 	{ 4, { 2, 4, 11, 22 } };
190 
191 static const struct ieee80211_rateset ural_rateset_11g =
192 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193 
194 /*
195  * Default values for MAC registers; values taken from the reference driver.
196  */
197 static const struct {
198 	uint16_t	reg;
199 	uint16_t	val;
200 } ural_def_mac[] = {
201 	{ RAL_TXRX_CSR5,  0x8c8d },
202 	{ RAL_TXRX_CSR6,  0x8b8a },
203 	{ RAL_TXRX_CSR7,  0x8687 },
204 	{ RAL_TXRX_CSR8,  0x0085 },
205 	{ RAL_MAC_CSR13,  0x1111 },
206 	{ RAL_MAC_CSR14,  0x1e11 },
207 	{ RAL_TXRX_CSR21, 0xe78f },
208 	{ RAL_MAC_CSR9,   0xff1d },
209 	{ RAL_MAC_CSR11,  0x0002 },
210 	{ RAL_MAC_CSR22,  0x0053 },
211 	{ RAL_MAC_CSR15,  0x0000 },
212 	{ RAL_MAC_CSR8,   0x0780 },
213 	{ RAL_TXRX_CSR19, 0x0000 },
214 	{ RAL_TXRX_CSR18, 0x005a },
215 	{ RAL_PHY_CSR2,   0x0000 },
216 	{ RAL_TXRX_CSR0,  0x1ec0 },
217 	{ RAL_PHY_CSR4,   0x000f }
218 };
219 
220 /*
221  * Default values for BBP registers; values taken from the reference driver.
222  */
223 static const struct {
224 	uint8_t	reg;
225 	uint8_t	val;
226 } ural_def_bbp[] = {
227 	{  3, 0x02 },
228 	{  4, 0x19 },
229 	{ 14, 0x1c },
230 	{ 15, 0x30 },
231 	{ 16, 0xac },
232 	{ 17, 0x48 },
233 	{ 18, 0x18 },
234 	{ 19, 0xff },
235 	{ 20, 0x1e },
236 	{ 21, 0x08 },
237 	{ 22, 0x08 },
238 	{ 23, 0x08 },
239 	{ 24, 0x80 },
240 	{ 25, 0x50 },
241 	{ 26, 0x08 },
242 	{ 27, 0x23 },
243 	{ 30, 0x10 },
244 	{ 31, 0x2b },
245 	{ 32, 0xb9 },
246 	{ 34, 0x12 },
247 	{ 35, 0x50 },
248 	{ 39, 0xc4 },
249 	{ 40, 0x02 },
250 	{ 41, 0x60 },
251 	{ 53, 0x10 },
252 	{ 54, 0x18 },
253 	{ 56, 0x08 },
254 	{ 57, 0x10 },
255 	{ 58, 0x08 },
256 	{ 61, 0x60 },
257 	{ 62, 0x10 },
258 	{ 75, 0xff }
259 };
260 
261 /*
262  * Default values for RF register R2 indexed by channel numbers.
263  */
264 static const uint32_t ural_rf2522_r2[] = {
265 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
266 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
267 };
268 
269 static const uint32_t ural_rf2523_r2[] = {
270 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
271 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
272 };
273 
274 static const uint32_t ural_rf2524_r2[] = {
275 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278 
279 static const uint32_t ural_rf2525_r2[] = {
280 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
281 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
282 };
283 
284 static const uint32_t ural_rf2525_hi_r2[] = {
285 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
286 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
287 };
288 
289 static const uint32_t ural_rf2525e_r2[] = {
290 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
291 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
292 };
293 
294 static const uint32_t ural_rf2526_hi_r2[] = {
295 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
296 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
297 };
298 
299 static const uint32_t ural_rf2526_r2[] = {
300 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
301 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
302 };
303 
304 /*
305  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
306  * values taken from the reference driver.
307  */
308 static const struct {
309 	uint8_t		chan;
310 	uint32_t	r1;
311 	uint32_t	r2;
312 	uint32_t	r4;
313 } ural_rf5222[] = {
314 	{   1, 0x08808, 0x0044d, 0x00282 },
315 	{   2, 0x08808, 0x0044e, 0x00282 },
316 	{   3, 0x08808, 0x0044f, 0x00282 },
317 	{   4, 0x08808, 0x00460, 0x00282 },
318 	{   5, 0x08808, 0x00461, 0x00282 },
319 	{   6, 0x08808, 0x00462, 0x00282 },
320 	{   7, 0x08808, 0x00463, 0x00282 },
321 	{   8, 0x08808, 0x00464, 0x00282 },
322 	{   9, 0x08808, 0x00465, 0x00282 },
323 	{  10, 0x08808, 0x00466, 0x00282 },
324 	{  11, 0x08808, 0x00467, 0x00282 },
325 	{  12, 0x08808, 0x00468, 0x00282 },
326 	{  13, 0x08808, 0x00469, 0x00282 },
327 	{  14, 0x08808, 0x0046b, 0x00286 },
328 
329 	{  36, 0x08804, 0x06225, 0x00287 },
330 	{  40, 0x08804, 0x06226, 0x00287 },
331 	{  44, 0x08804, 0x06227, 0x00287 },
332 	{  48, 0x08804, 0x06228, 0x00287 },
333 	{  52, 0x08804, 0x06229, 0x00287 },
334 	{  56, 0x08804, 0x0622a, 0x00287 },
335 	{  60, 0x08804, 0x0622b, 0x00287 },
336 	{  64, 0x08804, 0x0622c, 0x00287 },
337 
338 	{ 100, 0x08804, 0x02200, 0x00283 },
339 	{ 104, 0x08804, 0x02201, 0x00283 },
340 	{ 108, 0x08804, 0x02202, 0x00283 },
341 	{ 112, 0x08804, 0x02203, 0x00283 },
342 	{ 116, 0x08804, 0x02204, 0x00283 },
343 	{ 120, 0x08804, 0x02205, 0x00283 },
344 	{ 124, 0x08804, 0x02206, 0x00283 },
345 	{ 128, 0x08804, 0x02207, 0x00283 },
346 	{ 132, 0x08804, 0x02208, 0x00283 },
347 	{ 136, 0x08804, 0x02209, 0x00283 },
348 	{ 140, 0x08804, 0x0220a, 0x00283 },
349 
350 	{ 149, 0x08808, 0x02429, 0x00281 },
351 	{ 153, 0x08808, 0x0242b, 0x00281 },
352 	{ 157, 0x08808, 0x0242d, 0x00281 },
353 	{ 161, 0x08808, 0x0242f, 0x00281 }
354 };
355 
356 USB_DECLARE_DRIVER(ural);
357 
358 USB_MATCH(ural)
359 {
360 	USB_MATCH_START(ural, uaa);
361 
362 	return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365 
366 USB_ATTACH(ural)
367 {
368 	USB_ATTACH_START(ural, sc, uaa);
369 	struct ieee80211com *ic = &sc->sc_ic;
370 	struct ifnet *ifp = &sc->sc_if;
371 	usb_interface_descriptor_t *id;
372 	usb_endpoint_descriptor_t *ed;
373 	usbd_status error;
374 	char *devinfop;
375 	int i;
376 
377 	sc->sc_dev = self;
378 	sc->sc_udev = uaa->device;
379 
380 	aprint_naive("\n");
381 	aprint_normal("\n");
382 
383 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
384 	aprint_normal_dev(self, "%s\n", devinfop);
385 	usbd_devinfo_free(devinfop);
386 
387 	if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
388 		aprint_error_dev(self, "could not set configuration no\n");
389 		USB_ATTACH_ERROR_RETURN;
390 	}
391 
392 	/* get the first interface handle */
393 	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
394 	    &sc->sc_iface);
395 	if (error != 0) {
396 		aprint_error_dev(self, "could not get interface handle\n");
397 		USB_ATTACH_ERROR_RETURN;
398 	}
399 
400 	/*
401 	 * Find endpoints.
402 	 */
403 	id = usbd_get_interface_descriptor(sc->sc_iface);
404 
405 	sc->sc_rx_no = sc->sc_tx_no = -1;
406 	for (i = 0; i < id->bNumEndpoints; i++) {
407 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
408 		if (ed == NULL) {
409 			aprint_error_dev(self,
410 			    "no endpoint descriptor for %d\n", i);
411 			USB_ATTACH_ERROR_RETURN;
412 		}
413 
414 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
415 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 			sc->sc_rx_no = ed->bEndpointAddress;
417 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
418 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 			sc->sc_tx_no = ed->bEndpointAddress;
420 	}
421 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
422 		aprint_error_dev(self, "missing endpoint\n");
423 		USB_ATTACH_ERROR_RETURN;
424 	}
425 
426 	usb_init_task(&sc->sc_task, ural_task, sc);
427 	usb_callout_init(sc->sc_scan_ch);
428 	sc->amrr.amrr_min_success_threshold = 1;
429 	sc->amrr.amrr_max_success_threshold = 15;
430 	usb_callout_init(sc->sc_amrr_ch);
431 
432 	/* retrieve RT2570 rev. no */
433 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
434 
435 	/* retrieve MAC address and various other things from EEPROM */
436 	ural_read_eeprom(sc);
437 
438 	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
439 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
440 
441 	ifp->if_softc = sc;
442 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 	ifp->if_init = ural_init;
445 	ifp->if_ioctl = ural_ioctl;
446 	ifp->if_start = ural_start;
447 	ifp->if_watchdog = ural_watchdog;
448 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 	IFQ_SET_READY(&ifp->if_snd);
450 
451 	ic->ic_ifp = ifp;
452 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
453 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
454 	ic->ic_state = IEEE80211_S_INIT;
455 
456 	/* set device capabilities */
457 	ic->ic_caps =
458 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
459 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
460 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
461 	    IEEE80211_C_TXPMGT |	/* tx power management */
462 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
463 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
464 	    IEEE80211_C_WPA;		/* 802.11i */
465 
466 	if (sc->rf_rev == RAL_RF_5222) {
467 		/* set supported .11a rates */
468 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
469 
470 		/* set supported .11a channels */
471 		for (i = 36; i <= 64; i += 4) {
472 			ic->ic_channels[i].ic_freq =
473 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
474 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
475 		}
476 		for (i = 100; i <= 140; i += 4) {
477 			ic->ic_channels[i].ic_freq =
478 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 		}
481 		for (i = 149; i <= 161; i += 4) {
482 			ic->ic_channels[i].ic_freq =
483 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 		}
486 	}
487 
488 	/* set supported .11b and .11g rates */
489 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
490 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
491 
492 	/* set supported .11b and .11g channels (1 through 14) */
493 	for (i = 1; i <= 14; i++) {
494 		ic->ic_channels[i].ic_freq =
495 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
496 		ic->ic_channels[i].ic_flags =
497 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
498 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
499 	}
500 
501 	if_attach(ifp);
502 	ieee80211_ifattach(ic);
503 	ic->ic_reset = ural_reset;
504 
505 	/* override state transition machine */
506 	sc->sc_newstate = ic->ic_newstate;
507 	ic->ic_newstate = ural_newstate;
508 	ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
509 
510 #if NBPFILTER > 0
511 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
512 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
513 
514 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
515 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
516 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
517 
518 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
519 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
520 	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
521 #endif
522 
523 	ieee80211_announce(ic);
524 
525 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
526 	    USBDEV(sc->sc_dev));
527 
528 	USB_ATTACH_SUCCESS_RETURN;
529 }
530 
531 USB_DETACH(ural)
532 {
533 	USB_DETACH_START(ural, sc);
534 	struct ieee80211com *ic = &sc->sc_ic;
535 	struct ifnet *ifp = &sc->sc_if;
536 	int s;
537 
538 	s = splusb();
539 
540 	ural_stop(ifp, 1);
541 	usb_rem_task(sc->sc_udev, &sc->sc_task);
542 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
543 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
544 
545 	if (sc->amrr_xfer != NULL) {
546 		usbd_free_xfer(sc->amrr_xfer);
547 		sc->amrr_xfer = NULL;
548 	}
549 
550 	if (sc->sc_rx_pipeh != NULL) {
551 		usbd_abort_pipe(sc->sc_rx_pipeh);
552 		usbd_close_pipe(sc->sc_rx_pipeh);
553 	}
554 
555 	if (sc->sc_tx_pipeh != NULL) {
556 		usbd_abort_pipe(sc->sc_tx_pipeh);
557 		usbd_close_pipe(sc->sc_tx_pipeh);
558 	}
559 
560 #if NBPFILTER > 0
561 	bpfdetach(ifp);
562 #endif
563 	ieee80211_ifdetach(ic);
564 	if_detach(ifp);
565 
566 	splx(s);
567 
568 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
569 	    USBDEV(sc->sc_dev));
570 
571 	return 0;
572 }
573 
574 Static int
575 ural_alloc_tx_list(struct ural_softc *sc)
576 {
577 	struct ural_tx_data *data;
578 	int i, error;
579 
580 	sc->tx_queued = 0;
581 
582 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
583 		data = &sc->tx_data[i];
584 
585 		data->sc = sc;
586 
587 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
588 		if (data->xfer == NULL) {
589 			printf("%s: could not allocate tx xfer\n",
590 			    USBDEVNAME(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		data->buf = usbd_alloc_buffer(data->xfer,
596 		    RAL_TX_DESC_SIZE + MCLBYTES);
597 		if (data->buf == NULL) {
598 			printf("%s: could not allocate tx buffer\n",
599 			    USBDEVNAME(sc->sc_dev));
600 			error = ENOMEM;
601 			goto fail;
602 		}
603 	}
604 
605 	return 0;
606 
607 fail:	ural_free_tx_list(sc);
608 	return error;
609 }
610 
611 Static void
612 ural_free_tx_list(struct ural_softc *sc)
613 {
614 	struct ural_tx_data *data;
615 	int i;
616 
617 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
618 		data = &sc->tx_data[i];
619 
620 		if (data->xfer != NULL) {
621 			usbd_free_xfer(data->xfer);
622 			data->xfer = NULL;
623 		}
624 
625 		if (data->ni != NULL) {
626 			ieee80211_free_node(data->ni);
627 			data->ni = NULL;
628 		}
629 	}
630 }
631 
632 Static int
633 ural_alloc_rx_list(struct ural_softc *sc)
634 {
635 	struct ural_rx_data *data;
636 	int i, error;
637 
638 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
639 		data = &sc->rx_data[i];
640 
641 		data->sc = sc;
642 
643 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
644 		if (data->xfer == NULL) {
645 			printf("%s: could not allocate rx xfer\n",
646 			    USBDEVNAME(sc->sc_dev));
647 			error = ENOMEM;
648 			goto fail;
649 		}
650 
651 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
652 			printf("%s: could not allocate rx buffer\n",
653 			    USBDEVNAME(sc->sc_dev));
654 			error = ENOMEM;
655 			goto fail;
656 		}
657 
658 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
659 		if (data->m == NULL) {
660 			printf("%s: could not allocate rx mbuf\n",
661 			    USBDEVNAME(sc->sc_dev));
662 			error = ENOMEM;
663 			goto fail;
664 		}
665 
666 		MCLGET(data->m, M_DONTWAIT);
667 		if (!(data->m->m_flags & M_EXT)) {
668 			printf("%s: could not allocate rx mbuf cluster\n",
669 			    USBDEVNAME(sc->sc_dev));
670 			error = ENOMEM;
671 			goto fail;
672 		}
673 
674 		data->buf = mtod(data->m, uint8_t *);
675 	}
676 
677 	return 0;
678 
679 fail:	ural_free_tx_list(sc);
680 	return error;
681 }
682 
683 Static void
684 ural_free_rx_list(struct ural_softc *sc)
685 {
686 	struct ural_rx_data *data;
687 	int i;
688 
689 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
690 		data = &sc->rx_data[i];
691 
692 		if (data->xfer != NULL) {
693 			usbd_free_xfer(data->xfer);
694 			data->xfer = NULL;
695 		}
696 
697 		if (data->m != NULL) {
698 			m_freem(data->m);
699 			data->m = NULL;
700 		}
701 	}
702 }
703 
704 Static int
705 ural_media_change(struct ifnet *ifp)
706 {
707 	int error;
708 
709 	error = ieee80211_media_change(ifp);
710 	if (error != ENETRESET)
711 		return error;
712 
713 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
714 		ural_init(ifp);
715 
716 	return 0;
717 }
718 
719 /*
720  * This function is called periodically (every 200ms) during scanning to
721  * switch from one channel to another.
722  */
723 Static void
724 ural_next_scan(void *arg)
725 {
726 	struct ural_softc *sc = arg;
727 	struct ieee80211com *ic = &sc->sc_ic;
728 
729 	if (ic->ic_state == IEEE80211_S_SCAN)
730 		ieee80211_next_scan(ic);
731 }
732 
733 Static void
734 ural_task(void *arg)
735 {
736 	struct ural_softc *sc = arg;
737 	struct ieee80211com *ic = &sc->sc_ic;
738 	enum ieee80211_state ostate;
739 	struct ieee80211_node *ni;
740 	struct mbuf *m;
741 
742 	ostate = ic->ic_state;
743 
744 	switch (sc->sc_state) {
745 	case IEEE80211_S_INIT:
746 		if (ostate == IEEE80211_S_RUN) {
747 			/* abort TSF synchronization */
748 			ural_write(sc, RAL_TXRX_CSR19, 0);
749 
750 			/* force tx led to stop blinking */
751 			ural_write(sc, RAL_MAC_CSR20, 0);
752 		}
753 		break;
754 
755 	case IEEE80211_S_SCAN:
756 		ural_set_chan(sc, ic->ic_curchan);
757 		usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
758 		break;
759 
760 	case IEEE80211_S_AUTH:
761 		ural_set_chan(sc, ic->ic_curchan);
762 		break;
763 
764 	case IEEE80211_S_ASSOC:
765 		ural_set_chan(sc, ic->ic_curchan);
766 		break;
767 
768 	case IEEE80211_S_RUN:
769 		ural_set_chan(sc, ic->ic_curchan);
770 
771 		ni = ic->ic_bss;
772 
773 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
774 			ural_update_slot(ic->ic_ifp);
775 			ural_set_txpreamble(sc);
776 			ural_set_basicrates(sc);
777 			ural_set_bssid(sc, ni->ni_bssid);
778 		}
779 
780 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
781 		    ic->ic_opmode == IEEE80211_M_IBSS) {
782 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
783 			if (m == NULL) {
784 				printf("%s: could not allocate beacon\n",
785 				    USBDEVNAME(sc->sc_dev));
786 				return;
787 			}
788 
789 			if (ural_tx_bcn(sc, m, ni) != 0) {
790 				m_freem(m);
791 				printf("%s: could not send beacon\n",
792 				    USBDEVNAME(sc->sc_dev));
793 				return;
794 			}
795 
796 			/* beacon is no longer needed */
797 			m_freem(m);
798 		}
799 
800 		/* make tx led blink on tx (controlled by ASIC) */
801 		ural_write(sc, RAL_MAC_CSR20, 1);
802 
803 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
804 			ural_enable_tsf_sync(sc);
805 
806 		/* enable automatic rate adaptation in STA mode */
807 		if (ic->ic_opmode == IEEE80211_M_STA &&
808 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
809 			ural_amrr_start(sc, ni);
810 
811 		break;
812 	}
813 
814 	sc->sc_newstate(ic, sc->sc_state, -1);
815 }
816 
817 Static int
818 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
819     int arg)
820 {
821 	struct ural_softc *sc = ic->ic_ifp->if_softc;
822 
823 	usb_rem_task(sc->sc_udev, &sc->sc_task);
824 	usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
825 	usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
826 
827 	/* do it in a process context */
828 	sc->sc_state = nstate;
829 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
830 
831 	return 0;
832 }
833 
834 /* quickly determine if a given rate is CCK or OFDM */
835 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
836 
837 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
838 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
839 
840 #define RAL_SIFS		10	/* us */
841 
842 #define RAL_RXTX_TURNAROUND	5	/* us */
843 
844 /*
845  * This function is only used by the Rx radiotap code.
846  */
847 Static int
848 ural_rxrate(struct ural_rx_desc *desc)
849 {
850 	if (le32toh(desc->flags) & RAL_RX_OFDM) {
851 		/* reverse function of ural_plcp_signal */
852 		switch (desc->rate) {
853 		case 0xb:	return 12;
854 		case 0xf:	return 18;
855 		case 0xa:	return 24;
856 		case 0xe:	return 36;
857 		case 0x9:	return 48;
858 		case 0xd:	return 72;
859 		case 0x8:	return 96;
860 		case 0xc:	return 108;
861 		}
862 	} else {
863 		if (desc->rate == 10)
864 			return 2;
865 		if (desc->rate == 20)
866 			return 4;
867 		if (desc->rate == 55)
868 			return 11;
869 		if (desc->rate == 110)
870 			return 22;
871 	}
872 	return 2;	/* should not get there */
873 }
874 
875 Static void
876 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
877     usbd_status status)
878 {
879 	struct ural_tx_data *data = priv;
880 	struct ural_softc *sc = data->sc;
881 	struct ifnet *ifp = &sc->sc_if;
882 	int s;
883 
884 	if (status != USBD_NORMAL_COMPLETION) {
885 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
886 			return;
887 
888 		printf("%s: could not transmit buffer: %s\n",
889 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
890 
891 		if (status == USBD_STALLED)
892 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
893 
894 		ifp->if_oerrors++;
895 		return;
896 	}
897 
898 	s = splnet();
899 
900 	m_freem(data->m);
901 	data->m = NULL;
902 	ieee80211_free_node(data->ni);
903 	data->ni = NULL;
904 
905 	sc->tx_queued--;
906 	ifp->if_opackets++;
907 
908 	DPRINTFN(10, ("tx done\n"));
909 
910 	sc->sc_tx_timer = 0;
911 	ifp->if_flags &= ~IFF_OACTIVE;
912 	ural_start(ifp);
913 
914 	splx(s);
915 }
916 
917 Static void
918 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
919 {
920 	struct ural_rx_data *data = priv;
921 	struct ural_softc *sc = data->sc;
922 	struct ieee80211com *ic = &sc->sc_ic;
923 	struct ifnet *ifp = &sc->sc_if;
924 	struct ural_rx_desc *desc;
925 	struct ieee80211_frame *wh;
926 	struct ieee80211_node *ni;
927 	struct mbuf *mnew, *m;
928 	int s, len;
929 
930 	if (status != USBD_NORMAL_COMPLETION) {
931 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
932 			return;
933 
934 		if (status == USBD_STALLED)
935 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
936 		goto skip;
937 	}
938 
939 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
940 
941 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
942 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
943 		    len));
944 		ifp->if_ierrors++;
945 		goto skip;
946 	}
947 
948 	/* rx descriptor is located at the end */
949 	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
950 
951 	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
952 	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
953 		/*
954 		 * This should not happen since we did not request to receive
955 		 * those frames when we filled RAL_TXRX_CSR2.
956 		 */
957 		DPRINTFN(5, ("PHY or CRC error\n"));
958 		ifp->if_ierrors++;
959 		goto skip;
960 	}
961 
962 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
963 	if (mnew == NULL) {
964 		ifp->if_ierrors++;
965 		goto skip;
966 	}
967 
968 	MCLGET(mnew, M_DONTWAIT);
969 	if (!(mnew->m_flags & M_EXT)) {
970 		ifp->if_ierrors++;
971 		m_freem(mnew);
972 		goto skip;
973 	}
974 
975 	m = data->m;
976 	data->m = mnew;
977 	data->buf = mtod(data->m, uint8_t *);
978 
979 	/* finalize mbuf */
980 	m->m_pkthdr.rcvif = ifp;
981 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
982 	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
983 
984 	s = splnet();
985 
986 #if NBPFILTER > 0
987 	if (sc->sc_drvbpf != NULL) {
988 		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
989 
990 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
991 		tap->wr_rate = ural_rxrate(desc);
992 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
993 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
994 		tap->wr_antenna = sc->rx_ant;
995 		tap->wr_antsignal = desc->rssi;
996 
997 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
998 	}
999 #endif
1000 
1001 	wh = mtod(m, struct ieee80211_frame *);
1002 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1003 
1004 	/* send the frame to the 802.11 layer */
1005 	ieee80211_input(ic, m, ni, desc->rssi, 0);
1006 
1007 	/* node is no longer needed */
1008 	ieee80211_free_node(ni);
1009 
1010 	splx(s);
1011 
1012 	DPRINTFN(15, ("rx done\n"));
1013 
1014 skip:	/* setup a new transfer */
1015 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1016 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1017 	usbd_transfer(xfer);
1018 }
1019 
1020 /*
1021  * Return the expected ack rate for a frame transmitted at rate `rate'.
1022  * XXX: this should depend on the destination node basic rate set.
1023  */
1024 Static int
1025 ural_ack_rate(struct ieee80211com *ic, int rate)
1026 {
1027 	switch (rate) {
1028 	/* CCK rates */
1029 	case 2:
1030 		return 2;
1031 	case 4:
1032 	case 11:
1033 	case 22:
1034 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1035 
1036 	/* OFDM rates */
1037 	case 12:
1038 	case 18:
1039 		return 12;
1040 	case 24:
1041 	case 36:
1042 		return 24;
1043 	case 48:
1044 	case 72:
1045 	case 96:
1046 	case 108:
1047 		return 48;
1048 	}
1049 
1050 	/* default to 1Mbps */
1051 	return 2;
1052 }
1053 
1054 /*
1055  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1056  * The function automatically determines the operating mode depending on the
1057  * given rate. `flags' indicates whether short preamble is in use or not.
1058  */
1059 Static uint16_t
1060 ural_txtime(int len, int rate, uint32_t flags)
1061 {
1062 	uint16_t txtime;
1063 
1064 	if (RAL_RATE_IS_OFDM(rate)) {
1065 		/* IEEE Std 802.11g-2003, pp. 37 */
1066 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1067 		txtime = 16 + 4 + 4 * txtime + 6;
1068 	} else {
1069 		/* IEEE Std 802.11b-1999, pp. 28 */
1070 		txtime = (16 * len + rate - 1) / rate;
1071 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1072 			txtime +=  72 + 24;
1073 		else
1074 			txtime += 144 + 48;
1075 	}
1076 	return txtime;
1077 }
1078 
1079 Static uint8_t
1080 ural_plcp_signal(int rate)
1081 {
1082 	switch (rate) {
1083 	/* CCK rates (returned values are device-dependent) */
1084 	case 2:		return 0x0;
1085 	case 4:		return 0x1;
1086 	case 11:	return 0x2;
1087 	case 22:	return 0x3;
1088 
1089 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1090 	case 12:	return 0xb;
1091 	case 18:	return 0xf;
1092 	case 24:	return 0xa;
1093 	case 36:	return 0xe;
1094 	case 48:	return 0x9;
1095 	case 72:	return 0xd;
1096 	case 96:	return 0x8;
1097 	case 108:	return 0xc;
1098 
1099 	/* unsupported rates (should not get there) */
1100 	default:	return 0xff;
1101 	}
1102 }
1103 
1104 Static void
1105 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1106     uint32_t flags, int len, int rate)
1107 {
1108 	struct ieee80211com *ic = &sc->sc_ic;
1109 	uint16_t plcp_length;
1110 	int remainder;
1111 
1112 	desc->flags = htole32(flags);
1113 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1114 	desc->flags |= htole32(len << 16);
1115 
1116 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1117 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1118 
1119 	/* setup PLCP fields */
1120 	desc->plcp_signal  = ural_plcp_signal(rate);
1121 	desc->plcp_service = 4;
1122 
1123 	len += IEEE80211_CRC_LEN;
1124 	if (RAL_RATE_IS_OFDM(rate)) {
1125 		desc->flags |= htole32(RAL_TX_OFDM);
1126 
1127 		plcp_length = len & 0xfff;
1128 		desc->plcp_length_hi = plcp_length >> 6;
1129 		desc->plcp_length_lo = plcp_length & 0x3f;
1130 	} else {
1131 		plcp_length = (16 * len + rate - 1) / rate;
1132 		if (rate == 22) {
1133 			remainder = (16 * len) % 22;
1134 			if (remainder != 0 && remainder < 7)
1135 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1136 		}
1137 		desc->plcp_length_hi = plcp_length >> 8;
1138 		desc->plcp_length_lo = plcp_length & 0xff;
1139 
1140 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1141 			desc->plcp_signal |= 0x08;
1142 	}
1143 
1144 	desc->iv = 0;
1145 	desc->eiv = 0;
1146 }
1147 
1148 #define RAL_TX_TIMEOUT	5000
1149 
1150 Static int
1151 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1152 {
1153 	struct ural_tx_desc *desc;
1154 	usbd_xfer_handle xfer;
1155 	uint8_t cmd = 0;
1156 	usbd_status error;
1157 	uint8_t *buf;
1158 	int xferlen, rate;
1159 
1160 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1161 
1162 	xfer = usbd_alloc_xfer(sc->sc_udev);
1163 	if (xfer == NULL)
1164 		return ENOMEM;
1165 
1166 	/* xfer length needs to be a multiple of two! */
1167 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1168 
1169 	buf = usbd_alloc_buffer(xfer, xferlen);
1170 	if (buf == NULL) {
1171 		usbd_free_xfer(xfer);
1172 		return ENOMEM;
1173 	}
1174 
1175 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1176 	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1177 
1178 	error = usbd_sync_transfer(xfer);
1179 	if (error != 0) {
1180 		usbd_free_xfer(xfer);
1181 		return error;
1182 	}
1183 
1184 	desc = (struct ural_tx_desc *)buf;
1185 
1186 	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1187 	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1188 	    m0->m_pkthdr.len, rate);
1189 
1190 	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1191 	    m0->m_pkthdr.len, rate, xferlen));
1192 
1193 	usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1194 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1195 
1196 	error = usbd_sync_transfer(xfer);
1197 	usbd_free_xfer(xfer);
1198 
1199 	return error;
1200 }
1201 
1202 Static int
1203 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1204 {
1205 	struct ieee80211com *ic = &sc->sc_ic;
1206 	struct ural_tx_desc *desc;
1207 	struct ural_tx_data *data;
1208 	struct ieee80211_frame *wh;
1209 	struct ieee80211_key *k;
1210 	uint32_t flags = 0;
1211 	uint16_t dur;
1212 	usbd_status error;
1213 	int xferlen, rate;
1214 
1215 	data = &sc->tx_data[0];
1216 	desc = (struct ural_tx_desc *)data->buf;
1217 
1218 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1219 
1220 	wh = mtod(m0, struct ieee80211_frame *);
1221 
1222 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1223 		k = ieee80211_crypto_encap(ic, ni, m0);
1224 		if (k == NULL) {
1225 			m_freem(m0);
1226 			return ENOBUFS;
1227 		}
1228 	}
1229 
1230 	data->m = m0;
1231 	data->ni = ni;
1232 
1233 	wh = mtod(m0, struct ieee80211_frame *);
1234 
1235 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1236 		flags |= RAL_TX_ACK;
1237 
1238 		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1239 		*(uint16_t *)wh->i_dur = htole16(dur);
1240 
1241 		/* tell hardware to add timestamp for probe responses */
1242 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1243 		    IEEE80211_FC0_TYPE_MGT &&
1244 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1245 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1246 			flags |= RAL_TX_TIMESTAMP;
1247 	}
1248 
1249 #if NBPFILTER > 0
1250 	if (sc->sc_drvbpf != NULL) {
1251 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1252 
1253 		tap->wt_flags = 0;
1254 		tap->wt_rate = rate;
1255 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1256 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1257 		tap->wt_antenna = sc->tx_ant;
1258 
1259 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1260 	}
1261 #endif
1262 
1263 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1264 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1265 
1266 	/* align end on a 2-bytes boundary */
1267 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1268 
1269 	/*
1270 	 * No space left in the last URB to store the extra 2 bytes, force
1271 	 * sending of another URB.
1272 	 */
1273 	if ((xferlen % 64) == 0)
1274 		xferlen += 2;
1275 
1276 	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1277 	    m0->m_pkthdr.len, rate, xferlen));
1278 
1279 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1280 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1281 	    ural_txeof);
1282 
1283 	error = usbd_transfer(data->xfer);
1284 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1285 		m_freem(m0);
1286 		return error;
1287 	}
1288 
1289 	sc->tx_queued++;
1290 
1291 	return 0;
1292 }
1293 
1294 Static int
1295 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1296 {
1297 	struct ieee80211com *ic = &sc->sc_ic;
1298 	struct ural_tx_desc *desc;
1299 	struct ural_tx_data *data;
1300 	struct ieee80211_frame *wh;
1301 	struct ieee80211_key *k;
1302 	uint32_t flags = 0;
1303 	uint16_t dur;
1304 	usbd_status error;
1305 	int xferlen, rate;
1306 
1307 	wh = mtod(m0, struct ieee80211_frame *);
1308 
1309 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1310 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1311 	else
1312 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1313 
1314 	rate &= IEEE80211_RATE_VAL;
1315 
1316 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1317 		k = ieee80211_crypto_encap(ic, ni, m0);
1318 		if (k == NULL) {
1319 			m_freem(m0);
1320 			return ENOBUFS;
1321 		}
1322 
1323 		/* packet header may have moved, reset our local pointer */
1324 		wh = mtod(m0, struct ieee80211_frame *);
1325 	}
1326 
1327 	data = &sc->tx_data[0];
1328 	desc = (struct ural_tx_desc *)data->buf;
1329 
1330 	data->m = m0;
1331 	data->ni = ni;
1332 
1333 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1334 		flags |= RAL_TX_ACK;
1335 		flags |= RAL_TX_RETRY(7);
1336 
1337 		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1338 		    ic->ic_flags) + RAL_SIFS;
1339 		*(uint16_t *)wh->i_dur = htole16(dur);
1340 	}
1341 
1342 #if NBPFILTER > 0
1343 	if (sc->sc_drvbpf != NULL) {
1344 		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1345 
1346 		tap->wt_flags = 0;
1347 		tap->wt_rate = rate;
1348 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1349 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1350 		tap->wt_antenna = sc->tx_ant;
1351 
1352 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1353 	}
1354 #endif
1355 
1356 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1357 	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1358 
1359 	/* align end on a 2-bytes boundary */
1360 	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1361 
1362 	/*
1363 	 * No space left in the last URB to store the extra 2 bytes, force
1364 	 * sending of another URB.
1365 	 */
1366 	if ((xferlen % 64) == 0)
1367 		xferlen += 2;
1368 
1369 	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1370 	    m0->m_pkthdr.len, rate, xferlen));
1371 
1372 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1373 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1374 	    ural_txeof);
1375 
1376 	error = usbd_transfer(data->xfer);
1377 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1378 		return error;
1379 
1380 	sc->tx_queued++;
1381 
1382 	return 0;
1383 }
1384 
1385 Static void
1386 ural_start(struct ifnet *ifp)
1387 {
1388 	struct ural_softc *sc = ifp->if_softc;
1389 	struct ieee80211com *ic = &sc->sc_ic;
1390 	struct mbuf *m0;
1391 	struct ether_header *eh;
1392 	struct ieee80211_node *ni;
1393 
1394 	for (;;) {
1395 		IF_POLL(&ic->ic_mgtq, m0);
1396 		if (m0 != NULL) {
1397 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1398 				ifp->if_flags |= IFF_OACTIVE;
1399 				break;
1400 			}
1401 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1402 
1403 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1404 			m0->m_pkthdr.rcvif = NULL;
1405 #if NBPFILTER > 0
1406 			if (ic->ic_rawbpf != NULL)
1407 				bpf_mtap(ic->ic_rawbpf, m0);
1408 #endif
1409 			if (ural_tx_mgt(sc, m0, ni) != 0)
1410 				break;
1411 
1412 		} else {
1413 			if (ic->ic_state != IEEE80211_S_RUN)
1414 				break;
1415 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1416 			if (m0 == NULL)
1417 				break;
1418 			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1419 				IF_PREPEND(&ifp->if_snd, m0);
1420 				ifp->if_flags |= IFF_OACTIVE;
1421 				break;
1422 			}
1423 
1424 			if (m0->m_len < sizeof (struct ether_header) &&
1425 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1426 				continue;
1427 
1428 			eh = mtod(m0, struct ether_header *);
1429 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1430 			if (ni == NULL) {
1431 				m_freem(m0);
1432 				continue;
1433 			}
1434 #if NBPFILTER > 0
1435 			if (ifp->if_bpf != NULL)
1436 				bpf_mtap(ifp->if_bpf, m0);
1437 #endif
1438 			m0 = ieee80211_encap(ic, m0, ni);
1439 			if (m0 == NULL) {
1440 				ieee80211_free_node(ni);
1441 				continue;
1442 			}
1443 #if NBPFILTER > 0
1444 			if (ic->ic_rawbpf != NULL)
1445 				bpf_mtap(ic->ic_rawbpf, m0);
1446 #endif
1447 			if (ural_tx_data(sc, m0, ni) != 0) {
1448 				ieee80211_free_node(ni);
1449 				ifp->if_oerrors++;
1450 				break;
1451 			}
1452 		}
1453 
1454 		sc->sc_tx_timer = 5;
1455 		ifp->if_timer = 1;
1456 	}
1457 }
1458 
1459 Static void
1460 ural_watchdog(struct ifnet *ifp)
1461 {
1462 	struct ural_softc *sc = ifp->if_softc;
1463 	struct ieee80211com *ic = &sc->sc_ic;
1464 
1465 	ifp->if_timer = 0;
1466 
1467 	if (sc->sc_tx_timer > 0) {
1468 		if (--sc->sc_tx_timer == 0) {
1469 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1470 			/*ural_init(sc); XXX needs a process context! */
1471 			ifp->if_oerrors++;
1472 			return;
1473 		}
1474 		ifp->if_timer = 1;
1475 	}
1476 
1477 	ieee80211_watchdog(ic);
1478 }
1479 
1480 /*
1481  * This function allows for fast channel switching in monitor mode (used by
1482  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1483  * generate a new beacon frame.
1484  */
1485 Static int
1486 ural_reset(struct ifnet *ifp)
1487 {
1488 	struct ural_softc *sc = ifp->if_softc;
1489 	struct ieee80211com *ic = &sc->sc_ic;
1490 
1491 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1492 		return ENETRESET;
1493 
1494 	ural_set_chan(sc, ic->ic_curchan);
1495 
1496 	return 0;
1497 }
1498 
1499 Static int
1500 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1501 {
1502 	struct ural_softc *sc = ifp->if_softc;
1503 	struct ieee80211com *ic = &sc->sc_ic;
1504 	int s, error = 0;
1505 
1506 	s = splnet();
1507 
1508 	switch (cmd) {
1509 	case SIOCSIFFLAGS:
1510 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1511 			break;
1512 		/* XXX re-use ether_ioctl() */
1513 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1514 		case IFF_UP|IFF_RUNNING:
1515 			ural_update_promisc(sc);
1516 			break;
1517 		case IFF_UP:
1518 			ural_init(ifp);
1519 			break;
1520 		case IFF_RUNNING:
1521 			ural_stop(ifp, 1);
1522 			break;
1523 		case 0:
1524 			break;
1525 		}
1526 		break;
1527 
1528 	default:
1529 		error = ieee80211_ioctl(ic, cmd, data);
1530 	}
1531 
1532 	if (error == ENETRESET) {
1533 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1534 		    (IFF_UP | IFF_RUNNING))
1535 			ural_init(ifp);
1536 		error = 0;
1537 	}
1538 
1539 	splx(s);
1540 
1541 	return error;
1542 }
1543 
1544 Static void
1545 ural_set_testmode(struct ural_softc *sc)
1546 {
1547 	usb_device_request_t req;
1548 	usbd_status error;
1549 
1550 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1551 	req.bRequest = RAL_VENDOR_REQUEST;
1552 	USETW(req.wValue, 4);
1553 	USETW(req.wIndex, 1);
1554 	USETW(req.wLength, 0);
1555 
1556 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1557 	if (error != 0) {
1558 		printf("%s: could not set test mode: %s\n",
1559 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1560 	}
1561 }
1562 
1563 Static void
1564 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1565 {
1566 	usb_device_request_t req;
1567 	usbd_status error;
1568 
1569 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1570 	req.bRequest = RAL_READ_EEPROM;
1571 	USETW(req.wValue, 0);
1572 	USETW(req.wIndex, addr);
1573 	USETW(req.wLength, len);
1574 
1575 	error = usbd_do_request(sc->sc_udev, &req, buf);
1576 	if (error != 0) {
1577 		printf("%s: could not read EEPROM: %s\n",
1578 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1579 	}
1580 }
1581 
1582 Static uint16_t
1583 ural_read(struct ural_softc *sc, uint16_t reg)
1584 {
1585 	usb_device_request_t req;
1586 	usbd_status error;
1587 	uint16_t val;
1588 
1589 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1590 	req.bRequest = RAL_READ_MAC;
1591 	USETW(req.wValue, 0);
1592 	USETW(req.wIndex, reg);
1593 	USETW(req.wLength, sizeof (uint16_t));
1594 
1595 	error = usbd_do_request(sc->sc_udev, &req, &val);
1596 	if (error != 0) {
1597 		printf("%s: could not read MAC register: %s\n",
1598 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1599 		return 0;
1600 	}
1601 
1602 	return le16toh(val);
1603 }
1604 
1605 Static void
1606 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1607 {
1608 	usb_device_request_t req;
1609 	usbd_status error;
1610 
1611 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1612 	req.bRequest = RAL_READ_MULTI_MAC;
1613 	USETW(req.wValue, 0);
1614 	USETW(req.wIndex, reg);
1615 	USETW(req.wLength, len);
1616 
1617 	error = usbd_do_request(sc->sc_udev, &req, buf);
1618 	if (error != 0) {
1619 		printf("%s: could not read MAC register: %s\n",
1620 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1621 	}
1622 }
1623 
1624 Static void
1625 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1626 {
1627 	usb_device_request_t req;
1628 	usbd_status error;
1629 
1630 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1631 	req.bRequest = RAL_WRITE_MAC;
1632 	USETW(req.wValue, val);
1633 	USETW(req.wIndex, reg);
1634 	USETW(req.wLength, 0);
1635 
1636 	error = usbd_do_request(sc->sc_udev, &req, NULL);
1637 	if (error != 0) {
1638 		printf("%s: could not write MAC register: %s\n",
1639 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1640 	}
1641 }
1642 
1643 Static void
1644 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1645 {
1646 	usb_device_request_t req;
1647 	usbd_status error;
1648 
1649 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1650 	req.bRequest = RAL_WRITE_MULTI_MAC;
1651 	USETW(req.wValue, 0);
1652 	USETW(req.wIndex, reg);
1653 	USETW(req.wLength, len);
1654 
1655 	error = usbd_do_request(sc->sc_udev, &req, buf);
1656 	if (error != 0) {
1657 		printf("%s: could not write MAC register: %s\n",
1658 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1659 	}
1660 }
1661 
1662 Static void
1663 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1664 {
1665 	uint16_t tmp;
1666 	int ntries;
1667 
1668 	for (ntries = 0; ntries < 5; ntries++) {
1669 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1670 			break;
1671 	}
1672 	if (ntries == 5) {
1673 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1674 		return;
1675 	}
1676 
1677 	tmp = reg << 8 | val;
1678 	ural_write(sc, RAL_PHY_CSR7, tmp);
1679 }
1680 
1681 Static uint8_t
1682 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1683 {
1684 	uint16_t val;
1685 	int ntries;
1686 
1687 	val = RAL_BBP_WRITE | reg << 8;
1688 	ural_write(sc, RAL_PHY_CSR7, val);
1689 
1690 	for (ntries = 0; ntries < 5; ntries++) {
1691 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1692 			break;
1693 	}
1694 	if (ntries == 5) {
1695 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1696 		return 0;
1697 	}
1698 
1699 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1700 }
1701 
1702 Static void
1703 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1704 {
1705 	uint32_t tmp;
1706 	int ntries;
1707 
1708 	for (ntries = 0; ntries < 5; ntries++) {
1709 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1710 			break;
1711 	}
1712 	if (ntries == 5) {
1713 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1714 		return;
1715 	}
1716 
1717 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1718 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1719 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1720 
1721 	/* remember last written value in sc */
1722 	sc->rf_regs[reg] = val;
1723 
1724 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1725 }
1726 
1727 Static void
1728 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1729 {
1730 	struct ieee80211com *ic = &sc->sc_ic;
1731 	uint8_t power, tmp;
1732 	u_int i, chan;
1733 
1734 	chan = ieee80211_chan2ieee(ic, c);
1735 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1736 		return;
1737 
1738 	if (IEEE80211_IS_CHAN_2GHZ(c))
1739 		power = min(sc->txpow[chan - 1], 31);
1740 	else
1741 		power = 31;
1742 
1743 	/* adjust txpower using ifconfig settings */
1744 	power -= (100 - ic->ic_txpowlimit) / 8;
1745 
1746 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1747 
1748 	switch (sc->rf_rev) {
1749 	case RAL_RF_2522:
1750 		ural_rf_write(sc, RAL_RF1, 0x00814);
1751 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1752 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1753 		break;
1754 
1755 	case RAL_RF_2523:
1756 		ural_rf_write(sc, RAL_RF1, 0x08804);
1757 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1758 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1759 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1760 		break;
1761 
1762 	case RAL_RF_2524:
1763 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1764 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1765 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1766 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1767 		break;
1768 
1769 	case RAL_RF_2525:
1770 		ural_rf_write(sc, RAL_RF1, 0x08808);
1771 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1772 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1773 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1774 
1775 		ural_rf_write(sc, RAL_RF1, 0x08808);
1776 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1777 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1778 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1779 		break;
1780 
1781 	case RAL_RF_2525E:
1782 		ural_rf_write(sc, RAL_RF1, 0x08808);
1783 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1784 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1785 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1786 		break;
1787 
1788 	case RAL_RF_2526:
1789 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1790 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1791 		ural_rf_write(sc, RAL_RF1, 0x08804);
1792 
1793 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1794 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1795 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1796 		break;
1797 
1798 	/* dual-band RF */
1799 	case RAL_RF_5222:
1800 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1801 
1802 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1803 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1804 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1805 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1806 		break;
1807 	}
1808 
1809 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1810 	    ic->ic_state != IEEE80211_S_SCAN) {
1811 		/* set Japan filter bit for channel 14 */
1812 		tmp = ural_bbp_read(sc, 70);
1813 
1814 		tmp &= ~RAL_JAPAN_FILTER;
1815 		if (chan == 14)
1816 			tmp |= RAL_JAPAN_FILTER;
1817 
1818 		ural_bbp_write(sc, 70, tmp);
1819 
1820 		/* clear CRC errors */
1821 		ural_read(sc, RAL_STA_CSR0);
1822 
1823 		DELAY(10000);
1824 		ural_disable_rf_tune(sc);
1825 	}
1826 }
1827 
1828 /*
1829  * Disable RF auto-tuning.
1830  */
1831 Static void
1832 ural_disable_rf_tune(struct ural_softc *sc)
1833 {
1834 	uint32_t tmp;
1835 
1836 	if (sc->rf_rev != RAL_RF_2523) {
1837 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1838 		ural_rf_write(sc, RAL_RF1, tmp);
1839 	}
1840 
1841 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1842 	ural_rf_write(sc, RAL_RF3, tmp);
1843 
1844 	DPRINTFN(2, ("disabling RF autotune\n"));
1845 }
1846 
1847 /*
1848  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1849  * synchronization.
1850  */
1851 Static void
1852 ural_enable_tsf_sync(struct ural_softc *sc)
1853 {
1854 	struct ieee80211com *ic = &sc->sc_ic;
1855 	uint16_t logcwmin, preload, tmp;
1856 
1857 	/* first, disable TSF synchronization */
1858 	ural_write(sc, RAL_TXRX_CSR19, 0);
1859 
1860 	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1861 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1862 
1863 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1864 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1865 	tmp = logcwmin << 12 | preload;
1866 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1867 
1868 	/* finally, enable TSF synchronization */
1869 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1870 	if (ic->ic_opmode == IEEE80211_M_STA)
1871 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1872 	else
1873 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1874 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1875 
1876 	DPRINTF(("enabling TSF synchronization\n"));
1877 }
1878 
1879 Static void
1880 ural_update_slot(struct ifnet *ifp)
1881 {
1882 	struct ural_softc *sc = ifp->if_softc;
1883 	struct ieee80211com *ic = &sc->sc_ic;
1884 	uint16_t slottime, sifs, eifs;
1885 
1886 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1887 
1888 	/*
1889 	 * These settings may sound a bit inconsistent but this is what the
1890 	 * reference driver does.
1891 	 */
1892 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1893 		sifs = 16 - RAL_RXTX_TURNAROUND;
1894 		eifs = 364;
1895 	} else {
1896 		sifs = 10 - RAL_RXTX_TURNAROUND;
1897 		eifs = 64;
1898 	}
1899 
1900 	ural_write(sc, RAL_MAC_CSR10, slottime);
1901 	ural_write(sc, RAL_MAC_CSR11, sifs);
1902 	ural_write(sc, RAL_MAC_CSR12, eifs);
1903 }
1904 
1905 Static void
1906 ural_set_txpreamble(struct ural_softc *sc)
1907 {
1908 	uint16_t tmp;
1909 
1910 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1911 
1912 	tmp &= ~RAL_SHORT_PREAMBLE;
1913 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1914 		tmp |= RAL_SHORT_PREAMBLE;
1915 
1916 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1917 }
1918 
1919 Static void
1920 ural_set_basicrates(struct ural_softc *sc)
1921 {
1922 	struct ieee80211com *ic = &sc->sc_ic;
1923 
1924 	/* update basic rate set */
1925 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1926 		/* 11b basic rates: 1, 2Mbps */
1927 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1928 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1929 		/* 11a basic rates: 6, 12, 24Mbps */
1930 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1931 	} else {
1932 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1933 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1934 	}
1935 }
1936 
1937 Static void
1938 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1939 {
1940 	uint16_t tmp;
1941 
1942 	tmp = bssid[0] | bssid[1] << 8;
1943 	ural_write(sc, RAL_MAC_CSR5, tmp);
1944 
1945 	tmp = bssid[2] | bssid[3] << 8;
1946 	ural_write(sc, RAL_MAC_CSR6, tmp);
1947 
1948 	tmp = bssid[4] | bssid[5] << 8;
1949 	ural_write(sc, RAL_MAC_CSR7, tmp);
1950 
1951 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1952 }
1953 
1954 Static void
1955 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1956 {
1957 	uint16_t tmp;
1958 
1959 	tmp = addr[0] | addr[1] << 8;
1960 	ural_write(sc, RAL_MAC_CSR2, tmp);
1961 
1962 	tmp = addr[2] | addr[3] << 8;
1963 	ural_write(sc, RAL_MAC_CSR3, tmp);
1964 
1965 	tmp = addr[4] | addr[5] << 8;
1966 	ural_write(sc, RAL_MAC_CSR4, tmp);
1967 
1968 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1969 }
1970 
1971 Static void
1972 ural_update_promisc(struct ural_softc *sc)
1973 {
1974 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1975 	uint32_t tmp;
1976 
1977 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1978 
1979 	tmp &= ~RAL_DROP_NOT_TO_ME;
1980 	if (!(ifp->if_flags & IFF_PROMISC))
1981 		tmp |= RAL_DROP_NOT_TO_ME;
1982 
1983 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1984 
1985 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1986 	    "entering" : "leaving"));
1987 }
1988 
1989 Static const char *
1990 ural_get_rf(int rev)
1991 {
1992 	switch (rev) {
1993 	case RAL_RF_2522:	return "RT2522";
1994 	case RAL_RF_2523:	return "RT2523";
1995 	case RAL_RF_2524:	return "RT2524";
1996 	case RAL_RF_2525:	return "RT2525";
1997 	case RAL_RF_2525E:	return "RT2525e";
1998 	case RAL_RF_2526:	return "RT2526";
1999 	case RAL_RF_5222:	return "RT5222";
2000 	default:		return "unknown";
2001 	}
2002 }
2003 
2004 Static void
2005 ural_read_eeprom(struct ural_softc *sc)
2006 {
2007 	struct ieee80211com *ic = &sc->sc_ic;
2008 	uint16_t val;
2009 
2010 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2011 	val = le16toh(val);
2012 	sc->rf_rev =   (val >> 11) & 0x7;
2013 	sc->hw_radio = (val >> 10) & 0x1;
2014 	sc->led_mode = (val >> 6)  & 0x7;
2015 	sc->rx_ant =   (val >> 4)  & 0x3;
2016 	sc->tx_ant =   (val >> 2)  & 0x3;
2017 	sc->nb_ant =   val & 0x3;
2018 
2019 	/* read MAC address */
2020 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2021 
2022 	/* read default values for BBP registers */
2023 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2024 
2025 	/* read Tx power for all b/g channels */
2026 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2027 }
2028 
2029 Static int
2030 ural_bbp_init(struct ural_softc *sc)
2031 {
2032 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2033 	int i, ntries;
2034 
2035 	/* wait for BBP to be ready */
2036 	for (ntries = 0; ntries < 100; ntries++) {
2037 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2038 			break;
2039 		DELAY(1000);
2040 	}
2041 	if (ntries == 100) {
2042 		printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2043 		return EIO;
2044 	}
2045 
2046 	/* initialize BBP registers to default values */
2047 	for (i = 0; i < N(ural_def_bbp); i++)
2048 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2049 
2050 #if 0
2051 	/* initialize BBP registers to values stored in EEPROM */
2052 	for (i = 0; i < 16; i++) {
2053 		if (sc->bbp_prom[i].reg == 0xff)
2054 			continue;
2055 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2056 	}
2057 #endif
2058 
2059 	return 0;
2060 #undef N
2061 }
2062 
2063 Static void
2064 ural_set_txantenna(struct ural_softc *sc, int antenna)
2065 {
2066 	uint16_t tmp;
2067 	uint8_t tx;
2068 
2069 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2070 	if (antenna == 1)
2071 		tx |= RAL_BBP_ANTA;
2072 	else if (antenna == 2)
2073 		tx |= RAL_BBP_ANTB;
2074 	else
2075 		tx |= RAL_BBP_DIVERSITY;
2076 
2077 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2078 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2079 	    sc->rf_rev == RAL_RF_5222)
2080 		tx |= RAL_BBP_FLIPIQ;
2081 
2082 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2083 
2084 	/* update values in PHY_CSR5 and PHY_CSR6 */
2085 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2086 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2087 
2088 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2089 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2090 }
2091 
2092 Static void
2093 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2094 {
2095 	uint8_t rx;
2096 
2097 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2098 	if (antenna == 1)
2099 		rx |= RAL_BBP_ANTA;
2100 	else if (antenna == 2)
2101 		rx |= RAL_BBP_ANTB;
2102 	else
2103 		rx |= RAL_BBP_DIVERSITY;
2104 
2105 	/* need to force no I/Q flip for RF 2525e and 2526 */
2106 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2107 		rx &= ~RAL_BBP_FLIPIQ;
2108 
2109 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2110 }
2111 
2112 Static int
2113 ural_init(struct ifnet *ifp)
2114 {
2115 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2116 	struct ural_softc *sc = ifp->if_softc;
2117 	struct ieee80211com *ic = &sc->sc_ic;
2118 	struct ieee80211_key *wk;
2119 	struct ural_rx_data *data;
2120 	uint16_t tmp;
2121 	usbd_status error;
2122 	int i, ntries;
2123 
2124 	ural_set_testmode(sc);
2125 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2126 
2127 	ural_stop(ifp, 0);
2128 
2129 	/* initialize MAC registers to default values */
2130 	for (i = 0; i < N(ural_def_mac); i++)
2131 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2132 
2133 	/* wait for BBP and RF to wake up (this can take a long time!) */
2134 	for (ntries = 0; ntries < 100; ntries++) {
2135 		tmp = ural_read(sc, RAL_MAC_CSR17);
2136 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2137 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2138 			break;
2139 		DELAY(1000);
2140 	}
2141 	if (ntries == 100) {
2142 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2143 		    USBDEVNAME(sc->sc_dev));
2144 		error = EIO;
2145 		goto fail;
2146 	}
2147 
2148 	/* we're ready! */
2149 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2150 
2151 	/* set basic rate set (will be updated later) */
2152 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2153 
2154 	error = ural_bbp_init(sc);
2155 	if (error != 0)
2156 		goto fail;
2157 
2158 	/* set default BSS channel */
2159 	ural_set_chan(sc, ic->ic_curchan);
2160 
2161 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2162 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2163 
2164 	ural_set_txantenna(sc, sc->tx_ant);
2165 	ural_set_rxantenna(sc, sc->rx_ant);
2166 
2167 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2168 	ural_set_macaddr(sc, ic->ic_myaddr);
2169 
2170 	/*
2171 	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2172 	 */
2173 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2174 		wk = &ic->ic_crypto.cs_nw_keys[i];
2175 		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2176 		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2177 	}
2178 
2179 	/*
2180 	 * Allocate xfer for AMRR statistics requests.
2181 	 */
2182 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2183 	if (sc->amrr_xfer == NULL) {
2184 		printf("%s: could not allocate AMRR xfer\n",
2185 		    USBDEVNAME(sc->sc_dev));
2186 		goto fail;
2187 	}
2188 
2189 	/*
2190 	 * Open Tx and Rx USB bulk pipes.
2191 	 */
2192 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2193 	    &sc->sc_tx_pipeh);
2194 	if (error != 0) {
2195 		printf("%s: could not open Tx pipe: %s\n",
2196 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2197 		goto fail;
2198 	}
2199 
2200 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2201 	    &sc->sc_rx_pipeh);
2202 	if (error != 0) {
2203 		printf("%s: could not open Rx pipe: %s\n",
2204 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2205 		goto fail;
2206 	}
2207 
2208 	/*
2209 	 * Allocate Tx and Rx xfer queues.
2210 	 */
2211 	error = ural_alloc_tx_list(sc);
2212 	if (error != 0) {
2213 		printf("%s: could not allocate Tx list\n",
2214 		    USBDEVNAME(sc->sc_dev));
2215 		goto fail;
2216 	}
2217 
2218 	error = ural_alloc_rx_list(sc);
2219 	if (error != 0) {
2220 		printf("%s: could not allocate Rx list\n",
2221 		    USBDEVNAME(sc->sc_dev));
2222 		goto fail;
2223 	}
2224 
2225 	/*
2226 	 * Start up the receive pipe.
2227 	 */
2228 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2229 		data = &sc->rx_data[i];
2230 
2231 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2232 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2233 		usbd_transfer(data->xfer);
2234 	}
2235 
2236 	/* kick Rx */
2237 	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2238 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2239 		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2240 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2241 			tmp |= RAL_DROP_TODS;
2242 		if (!(ifp->if_flags & IFF_PROMISC))
2243 			tmp |= RAL_DROP_NOT_TO_ME;
2244 	}
2245 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2246 
2247 	ifp->if_flags &= ~IFF_OACTIVE;
2248 	ifp->if_flags |= IFF_RUNNING;
2249 
2250 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2251 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2252 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2253 	} else
2254 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2255 
2256 	return 0;
2257 
2258 fail:	ural_stop(ifp, 1);
2259 	return error;
2260 #undef N
2261 }
2262 
2263 Static void
2264 ural_stop(struct ifnet *ifp, int disable)
2265 {
2266 	struct ural_softc *sc = ifp->if_softc;
2267 	struct ieee80211com *ic = &sc->sc_ic;
2268 
2269 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2270 
2271 	sc->sc_tx_timer = 0;
2272 	ifp->if_timer = 0;
2273 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2274 
2275 	/* disable Rx */
2276 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2277 
2278 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2279 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2280 	ural_write(sc, RAL_MAC_CSR1, 0);
2281 
2282 	if (sc->amrr_xfer != NULL) {
2283 		usbd_free_xfer(sc->amrr_xfer);
2284 		sc->amrr_xfer = NULL;
2285 	}
2286 
2287 	if (sc->sc_rx_pipeh != NULL) {
2288 		usbd_abort_pipe(sc->sc_rx_pipeh);
2289 		usbd_close_pipe(sc->sc_rx_pipeh);
2290 		sc->sc_rx_pipeh = NULL;
2291 	}
2292 
2293 	if (sc->sc_tx_pipeh != NULL) {
2294 		usbd_abort_pipe(sc->sc_tx_pipeh);
2295 		usbd_close_pipe(sc->sc_tx_pipeh);
2296 		sc->sc_tx_pipeh = NULL;
2297 	}
2298 
2299 	ural_free_rx_list(sc);
2300 	ural_free_tx_list(sc);
2301 }
2302 
2303 int
2304 ural_activate(device_ptr_t self, enum devact act)
2305 {
2306 	struct ural_softc *sc = device_private(self);
2307 
2308 	switch (act) {
2309 	case DVACT_DEACTIVATE:
2310 		if_deactivate(&sc->sc_if);
2311 		return 0;
2312 	default:
2313 		return EOPNOTSUPP;
2314 	}
2315 }
2316 
2317 Static void
2318 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2319 {
2320 	int i;
2321 
2322 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2323 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2324 
2325 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2326 
2327 	/* set rate to some reasonable initial value */
2328 	for (i = ni->ni_rates.rs_nrates - 1;
2329 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2330 	     i--);
2331 	ni->ni_txrate = i;
2332 
2333 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2334 }
2335 
2336 Static void
2337 ural_amrr_timeout(void *arg)
2338 {
2339 	struct ural_softc *sc = (struct ural_softc *)arg;
2340 	usb_device_request_t req;
2341 	int s;
2342 
2343 	s = splusb();
2344 
2345 	/*
2346 	 * Asynchronously read statistic registers (cleared by read).
2347 	 */
2348 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2349 	req.bRequest = RAL_READ_MULTI_MAC;
2350 	USETW(req.wValue, 0);
2351 	USETW(req.wIndex, RAL_STA_CSR0);
2352 	USETW(req.wLength, sizeof sc->sta);
2353 
2354 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2355 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2356 	    ural_amrr_update);
2357 	(void)usbd_transfer(sc->amrr_xfer);
2358 
2359 	splx(s);
2360 }
2361 
2362 Static void
2363 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2364     usbd_status status)
2365 {
2366 	struct ural_softc *sc = (struct ural_softc *)priv;
2367 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2368 
2369 	if (status != USBD_NORMAL_COMPLETION) {
2370 		printf("%s: could not retrieve Tx statistics - "
2371 		    "cancelling automatic rate control\n",
2372 		    USBDEVNAME(sc->sc_dev));
2373 		return;
2374 	}
2375 
2376 	/* count TX retry-fail as Tx errors */
2377 	ifp->if_oerrors += sc->sta[9];
2378 
2379 	sc->amn.amn_retrycnt =
2380 	    sc->sta[7] +	/* TX one-retry ok count */
2381 	    sc->sta[8] +	/* TX more-retry ok count */
2382 	    sc->sta[9];		/* TX retry-fail count */
2383 
2384 	sc->amn.amn_txcnt =
2385 	    sc->amn.amn_retrycnt +
2386 	    sc->sta[6];		/* TX no-retry ok count */
2387 
2388 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2389 
2390 	usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2391 }
2392