1 /* $NetBSD: if_ural.c,v 1.33 2009/12/06 20:20:12 dyoung Exp $ */ 2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */ 3 4 /*- 5 * Copyright (c) 2005, 2006 6 * Damien Bergamini <damien.bergamini@free.fr> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2500USB chipset driver 23 * http://www.ralinktech.com/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.33 2009/12/06 20:20:12 dyoung Exp $"); 28 29 #include "bpfilter.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/conf.h> 40 #include <sys/device.h> 41 42 #include <sys/bus.h> 43 #include <machine/endian.h> 44 #include <sys/intr.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include <dev/usb/usbdi_util.h> 69 #include <dev/usb/usbdevs.h> 70 71 #include <dev/usb/if_uralreg.h> 72 #include <dev/usb/if_uralvar.h> 73 74 #ifdef USB_DEBUG 75 #define URAL_DEBUG 76 #endif 77 78 #ifdef URAL_DEBUG 79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0) 80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0) 81 int ural_debug = 0; 82 #else 83 #define DPRINTF(x) 84 #define DPRINTFN(n, x) 85 #endif 86 87 /* various supported device vendors/products */ 88 static const struct usb_devno ural_devs[] = { 89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G }, 90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 }, 91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, 93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, 94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, 95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU }, 96 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 }, 97 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, 98 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, 99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, 100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, 101 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, 102 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, 103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 }, 104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 }, 105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 }, 106 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W }, 107 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, 108 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, 109 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, 110 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 }, 111 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 112 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, 113 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G }, 114 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, 115 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 }, 116 }; 117 118 Static int ural_alloc_tx_list(struct ural_softc *); 119 Static void ural_free_tx_list(struct ural_softc *); 120 Static int ural_alloc_rx_list(struct ural_softc *); 121 Static void ural_free_rx_list(struct ural_softc *); 122 Static int ural_media_change(struct ifnet *); 123 Static void ural_next_scan(void *); 124 Static void ural_task(void *); 125 Static int ural_newstate(struct ieee80211com *, 126 enum ieee80211_state, int); 127 Static int ural_rxrate(struct ural_rx_desc *); 128 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle, 129 usbd_status); 130 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle, 131 usbd_status); 132 Static int ural_ack_rate(struct ieee80211com *, int); 133 Static uint16_t ural_txtime(int, int, uint32_t); 134 Static uint8_t ural_plcp_signal(int); 135 Static void ural_setup_tx_desc(struct ural_softc *, 136 struct ural_tx_desc *, uint32_t, int, int); 137 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 138 struct ieee80211_node *); 139 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 140 struct ieee80211_node *); 141 Static int ural_tx_data(struct ural_softc *, struct mbuf *, 142 struct ieee80211_node *); 143 Static void ural_start(struct ifnet *); 144 Static void ural_watchdog(struct ifnet *); 145 Static int ural_reset(struct ifnet *); 146 Static int ural_ioctl(struct ifnet *, u_long, void *); 147 Static void ural_set_testmode(struct ural_softc *); 148 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 149 int); 150 Static uint16_t ural_read(struct ural_softc *, uint16_t); 151 Static void ural_read_multi(struct ural_softc *, uint16_t, void *, 152 int); 153 Static void ural_write(struct ural_softc *, uint16_t, uint16_t); 154 Static void ural_write_multi(struct ural_softc *, uint16_t, void *, 155 int); 156 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 157 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 158 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 159 Static void ural_set_chan(struct ural_softc *, 160 struct ieee80211_channel *); 161 Static void ural_disable_rf_tune(struct ural_softc *); 162 Static void ural_enable_tsf_sync(struct ural_softc *); 163 Static void ural_update_slot(struct ifnet *); 164 Static void ural_set_txpreamble(struct ural_softc *); 165 Static void ural_set_basicrates(struct ural_softc *); 166 Static void ural_set_bssid(struct ural_softc *, uint8_t *); 167 Static void ural_set_macaddr(struct ural_softc *, uint8_t *); 168 Static void ural_update_promisc(struct ural_softc *); 169 Static const char *ural_get_rf(int); 170 Static void ural_read_eeprom(struct ural_softc *); 171 Static int ural_bbp_init(struct ural_softc *); 172 Static void ural_set_txantenna(struct ural_softc *, int); 173 Static void ural_set_rxantenna(struct ural_softc *, int); 174 Static int ural_init(struct ifnet *); 175 Static void ural_stop(struct ifnet *, int); 176 Static void ural_amrr_start(struct ural_softc *, 177 struct ieee80211_node *); 178 Static void ural_amrr_timeout(void *); 179 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle, 180 usbd_status status); 181 182 /* 183 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 184 */ 185 static const struct ieee80211_rateset ural_rateset_11a = 186 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 187 188 static const struct ieee80211_rateset ural_rateset_11b = 189 { 4, { 2, 4, 11, 22 } }; 190 191 static const struct ieee80211_rateset ural_rateset_11g = 192 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 193 194 /* 195 * Default values for MAC registers; values taken from the reference driver. 196 */ 197 static const struct { 198 uint16_t reg; 199 uint16_t val; 200 } ural_def_mac[] = { 201 { RAL_TXRX_CSR5, 0x8c8d }, 202 { RAL_TXRX_CSR6, 0x8b8a }, 203 { RAL_TXRX_CSR7, 0x8687 }, 204 { RAL_TXRX_CSR8, 0x0085 }, 205 { RAL_MAC_CSR13, 0x1111 }, 206 { RAL_MAC_CSR14, 0x1e11 }, 207 { RAL_TXRX_CSR21, 0xe78f }, 208 { RAL_MAC_CSR9, 0xff1d }, 209 { RAL_MAC_CSR11, 0x0002 }, 210 { RAL_MAC_CSR22, 0x0053 }, 211 { RAL_MAC_CSR15, 0x0000 }, 212 { RAL_MAC_CSR8, 0x0780 }, 213 { RAL_TXRX_CSR19, 0x0000 }, 214 { RAL_TXRX_CSR18, 0x005a }, 215 { RAL_PHY_CSR2, 0x0000 }, 216 { RAL_TXRX_CSR0, 0x1ec0 }, 217 { RAL_PHY_CSR4, 0x000f } 218 }; 219 220 /* 221 * Default values for BBP registers; values taken from the reference driver. 222 */ 223 static const struct { 224 uint8_t reg; 225 uint8_t val; 226 } ural_def_bbp[] = { 227 { 3, 0x02 }, 228 { 4, 0x19 }, 229 { 14, 0x1c }, 230 { 15, 0x30 }, 231 { 16, 0xac }, 232 { 17, 0x48 }, 233 { 18, 0x18 }, 234 { 19, 0xff }, 235 { 20, 0x1e }, 236 { 21, 0x08 }, 237 { 22, 0x08 }, 238 { 23, 0x08 }, 239 { 24, 0x80 }, 240 { 25, 0x50 }, 241 { 26, 0x08 }, 242 { 27, 0x23 }, 243 { 30, 0x10 }, 244 { 31, 0x2b }, 245 { 32, 0xb9 }, 246 { 34, 0x12 }, 247 { 35, 0x50 }, 248 { 39, 0xc4 }, 249 { 40, 0x02 }, 250 { 41, 0x60 }, 251 { 53, 0x10 }, 252 { 54, 0x18 }, 253 { 56, 0x08 }, 254 { 57, 0x10 }, 255 { 58, 0x08 }, 256 { 61, 0x60 }, 257 { 62, 0x10 }, 258 { 75, 0xff } 259 }; 260 261 /* 262 * Default values for RF register R2 indexed by channel numbers. 263 */ 264 static const uint32_t ural_rf2522_r2[] = { 265 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 266 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 267 }; 268 269 static const uint32_t ural_rf2523_r2[] = { 270 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 271 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 272 }; 273 274 static const uint32_t ural_rf2524_r2[] = { 275 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 276 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 277 }; 278 279 static const uint32_t ural_rf2525_r2[] = { 280 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 281 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 282 }; 283 284 static const uint32_t ural_rf2525_hi_r2[] = { 285 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 286 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 287 }; 288 289 static const uint32_t ural_rf2525e_r2[] = { 290 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 291 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 292 }; 293 294 static const uint32_t ural_rf2526_hi_r2[] = { 295 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 296 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 297 }; 298 299 static const uint32_t ural_rf2526_r2[] = { 300 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 301 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 302 }; 303 304 /* 305 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 306 * values taken from the reference driver. 307 */ 308 static const struct { 309 uint8_t chan; 310 uint32_t r1; 311 uint32_t r2; 312 uint32_t r4; 313 } ural_rf5222[] = { 314 { 1, 0x08808, 0x0044d, 0x00282 }, 315 { 2, 0x08808, 0x0044e, 0x00282 }, 316 { 3, 0x08808, 0x0044f, 0x00282 }, 317 { 4, 0x08808, 0x00460, 0x00282 }, 318 { 5, 0x08808, 0x00461, 0x00282 }, 319 { 6, 0x08808, 0x00462, 0x00282 }, 320 { 7, 0x08808, 0x00463, 0x00282 }, 321 { 8, 0x08808, 0x00464, 0x00282 }, 322 { 9, 0x08808, 0x00465, 0x00282 }, 323 { 10, 0x08808, 0x00466, 0x00282 }, 324 { 11, 0x08808, 0x00467, 0x00282 }, 325 { 12, 0x08808, 0x00468, 0x00282 }, 326 { 13, 0x08808, 0x00469, 0x00282 }, 327 { 14, 0x08808, 0x0046b, 0x00286 }, 328 329 { 36, 0x08804, 0x06225, 0x00287 }, 330 { 40, 0x08804, 0x06226, 0x00287 }, 331 { 44, 0x08804, 0x06227, 0x00287 }, 332 { 48, 0x08804, 0x06228, 0x00287 }, 333 { 52, 0x08804, 0x06229, 0x00287 }, 334 { 56, 0x08804, 0x0622a, 0x00287 }, 335 { 60, 0x08804, 0x0622b, 0x00287 }, 336 { 64, 0x08804, 0x0622c, 0x00287 }, 337 338 { 100, 0x08804, 0x02200, 0x00283 }, 339 { 104, 0x08804, 0x02201, 0x00283 }, 340 { 108, 0x08804, 0x02202, 0x00283 }, 341 { 112, 0x08804, 0x02203, 0x00283 }, 342 { 116, 0x08804, 0x02204, 0x00283 }, 343 { 120, 0x08804, 0x02205, 0x00283 }, 344 { 124, 0x08804, 0x02206, 0x00283 }, 345 { 128, 0x08804, 0x02207, 0x00283 }, 346 { 132, 0x08804, 0x02208, 0x00283 }, 347 { 136, 0x08804, 0x02209, 0x00283 }, 348 { 140, 0x08804, 0x0220a, 0x00283 }, 349 350 { 149, 0x08808, 0x02429, 0x00281 }, 351 { 153, 0x08808, 0x0242b, 0x00281 }, 352 { 157, 0x08808, 0x0242d, 0x00281 }, 353 { 161, 0x08808, 0x0242f, 0x00281 } 354 }; 355 356 USB_DECLARE_DRIVER(ural); 357 358 USB_MATCH(ural) 359 { 360 USB_MATCH_START(ural, uaa); 361 362 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ? 363 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 364 } 365 366 USB_ATTACH(ural) 367 { 368 USB_ATTACH_START(ural, sc, uaa); 369 struct ieee80211com *ic = &sc->sc_ic; 370 struct ifnet *ifp = &sc->sc_if; 371 usb_interface_descriptor_t *id; 372 usb_endpoint_descriptor_t *ed; 373 usbd_status error; 374 char *devinfop; 375 int i; 376 377 sc->sc_dev = self; 378 sc->sc_udev = uaa->device; 379 380 aprint_naive("\n"); 381 aprint_normal("\n"); 382 383 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 384 aprint_normal_dev(self, "%s\n", devinfop); 385 usbd_devinfo_free(devinfop); 386 387 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) { 388 aprint_error_dev(self, "could not set configuration no\n"); 389 USB_ATTACH_ERROR_RETURN; 390 } 391 392 /* get the first interface handle */ 393 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, 394 &sc->sc_iface); 395 if (error != 0) { 396 aprint_error_dev(self, "could not get interface handle\n"); 397 USB_ATTACH_ERROR_RETURN; 398 } 399 400 /* 401 * Find endpoints. 402 */ 403 id = usbd_get_interface_descriptor(sc->sc_iface); 404 405 sc->sc_rx_no = sc->sc_tx_no = -1; 406 for (i = 0; i < id->bNumEndpoints; i++) { 407 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 408 if (ed == NULL) { 409 aprint_error_dev(self, 410 "no endpoint descriptor for %d\n", i); 411 USB_ATTACH_ERROR_RETURN; 412 } 413 414 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 416 sc->sc_rx_no = ed->bEndpointAddress; 417 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 418 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 419 sc->sc_tx_no = ed->bEndpointAddress; 420 } 421 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 422 aprint_error_dev(self, "missing endpoint\n"); 423 USB_ATTACH_ERROR_RETURN; 424 } 425 426 usb_init_task(&sc->sc_task, ural_task, sc); 427 usb_callout_init(sc->sc_scan_ch); 428 sc->amrr.amrr_min_success_threshold = 1; 429 sc->amrr.amrr_max_success_threshold = 15; 430 usb_callout_init(sc->sc_amrr_ch); 431 432 /* retrieve RT2570 rev. no */ 433 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 434 435 /* retrieve MAC address and various other things from EEPROM */ 436 ural_read_eeprom(sc); 437 438 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 439 sc->asic_rev, ural_get_rf(sc->rf_rev)); 440 441 ifp->if_softc = sc; 442 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 444 ifp->if_init = ural_init; 445 ifp->if_ioctl = ural_ioctl; 446 ifp->if_start = ural_start; 447 ifp->if_watchdog = ural_watchdog; 448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 449 IFQ_SET_READY(&ifp->if_snd); 450 451 ic->ic_ifp = ifp; 452 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 453 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 454 ic->ic_state = IEEE80211_S_INIT; 455 456 /* set device capabilities */ 457 ic->ic_caps = 458 IEEE80211_C_IBSS | /* IBSS mode supported */ 459 IEEE80211_C_MONITOR | /* monitor mode supported */ 460 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 461 IEEE80211_C_TXPMGT | /* tx power management */ 462 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 463 IEEE80211_C_SHSLOT | /* short slot time supported */ 464 IEEE80211_C_WPA; /* 802.11i */ 465 466 if (sc->rf_rev == RAL_RF_5222) { 467 /* set supported .11a rates */ 468 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a; 469 470 /* set supported .11a channels */ 471 for (i = 36; i <= 64; i += 4) { 472 ic->ic_channels[i].ic_freq = 473 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 474 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 475 } 476 for (i = 100; i <= 140; i += 4) { 477 ic->ic_channels[i].ic_freq = 478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 479 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 480 } 481 for (i = 149; i <= 161; i += 4) { 482 ic->ic_channels[i].ic_freq = 483 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 484 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 485 } 486 } 487 488 /* set supported .11b and .11g rates */ 489 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b; 490 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g; 491 492 /* set supported .11b and .11g channels (1 through 14) */ 493 for (i = 1; i <= 14; i++) { 494 ic->ic_channels[i].ic_freq = 495 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 496 ic->ic_channels[i].ic_flags = 497 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 498 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 499 } 500 501 if_attach(ifp); 502 ieee80211_ifattach(ic); 503 ic->ic_reset = ural_reset; 504 505 /* override state transition machine */ 506 sc->sc_newstate = ic->ic_newstate; 507 ic->ic_newstate = ural_newstate; 508 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status); 509 510 #if NBPFILTER > 0 511 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 512 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 513 514 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 515 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 516 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); 517 518 sc->sc_txtap_len = sizeof sc->sc_txtapu; 519 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 520 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); 521 #endif 522 523 ieee80211_announce(ic); 524 525 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 526 USBDEV(sc->sc_dev)); 527 528 USB_ATTACH_SUCCESS_RETURN; 529 } 530 531 USB_DETACH(ural) 532 { 533 USB_DETACH_START(ural, sc); 534 struct ieee80211com *ic = &sc->sc_ic; 535 struct ifnet *ifp = &sc->sc_if; 536 int s; 537 538 s = splusb(); 539 540 ural_stop(ifp, 1); 541 usb_rem_task(sc->sc_udev, &sc->sc_task); 542 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc); 543 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc); 544 545 if (sc->amrr_xfer != NULL) { 546 usbd_free_xfer(sc->amrr_xfer); 547 sc->amrr_xfer = NULL; 548 } 549 550 if (sc->sc_rx_pipeh != NULL) { 551 usbd_abort_pipe(sc->sc_rx_pipeh); 552 usbd_close_pipe(sc->sc_rx_pipeh); 553 } 554 555 if (sc->sc_tx_pipeh != NULL) { 556 usbd_abort_pipe(sc->sc_tx_pipeh); 557 usbd_close_pipe(sc->sc_tx_pipeh); 558 } 559 560 #if NBPFILTER > 0 561 bpfdetach(ifp); 562 #endif 563 ieee80211_ifdetach(ic); 564 if_detach(ifp); 565 566 splx(s); 567 568 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 569 USBDEV(sc->sc_dev)); 570 571 return 0; 572 } 573 574 Static int 575 ural_alloc_tx_list(struct ural_softc *sc) 576 { 577 struct ural_tx_data *data; 578 int i, error; 579 580 sc->tx_queued = 0; 581 582 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 583 data = &sc->tx_data[i]; 584 585 data->sc = sc; 586 587 data->xfer = usbd_alloc_xfer(sc->sc_udev); 588 if (data->xfer == NULL) { 589 printf("%s: could not allocate tx xfer\n", 590 USBDEVNAME(sc->sc_dev)); 591 error = ENOMEM; 592 goto fail; 593 } 594 595 data->buf = usbd_alloc_buffer(data->xfer, 596 RAL_TX_DESC_SIZE + MCLBYTES); 597 if (data->buf == NULL) { 598 printf("%s: could not allocate tx buffer\n", 599 USBDEVNAME(sc->sc_dev)); 600 error = ENOMEM; 601 goto fail; 602 } 603 } 604 605 return 0; 606 607 fail: ural_free_tx_list(sc); 608 return error; 609 } 610 611 Static void 612 ural_free_tx_list(struct ural_softc *sc) 613 { 614 struct ural_tx_data *data; 615 int i; 616 617 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 618 data = &sc->tx_data[i]; 619 620 if (data->xfer != NULL) { 621 usbd_free_xfer(data->xfer); 622 data->xfer = NULL; 623 } 624 625 if (data->ni != NULL) { 626 ieee80211_free_node(data->ni); 627 data->ni = NULL; 628 } 629 } 630 } 631 632 Static int 633 ural_alloc_rx_list(struct ural_softc *sc) 634 { 635 struct ural_rx_data *data; 636 int i, error; 637 638 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 639 data = &sc->rx_data[i]; 640 641 data->sc = sc; 642 643 data->xfer = usbd_alloc_xfer(sc->sc_udev); 644 if (data->xfer == NULL) { 645 printf("%s: could not allocate rx xfer\n", 646 USBDEVNAME(sc->sc_dev)); 647 error = ENOMEM; 648 goto fail; 649 } 650 651 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 652 printf("%s: could not allocate rx buffer\n", 653 USBDEVNAME(sc->sc_dev)); 654 error = ENOMEM; 655 goto fail; 656 } 657 658 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 659 if (data->m == NULL) { 660 printf("%s: could not allocate rx mbuf\n", 661 USBDEVNAME(sc->sc_dev)); 662 error = ENOMEM; 663 goto fail; 664 } 665 666 MCLGET(data->m, M_DONTWAIT); 667 if (!(data->m->m_flags & M_EXT)) { 668 printf("%s: could not allocate rx mbuf cluster\n", 669 USBDEVNAME(sc->sc_dev)); 670 error = ENOMEM; 671 goto fail; 672 } 673 674 data->buf = mtod(data->m, uint8_t *); 675 } 676 677 return 0; 678 679 fail: ural_free_tx_list(sc); 680 return error; 681 } 682 683 Static void 684 ural_free_rx_list(struct ural_softc *sc) 685 { 686 struct ural_rx_data *data; 687 int i; 688 689 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 690 data = &sc->rx_data[i]; 691 692 if (data->xfer != NULL) { 693 usbd_free_xfer(data->xfer); 694 data->xfer = NULL; 695 } 696 697 if (data->m != NULL) { 698 m_freem(data->m); 699 data->m = NULL; 700 } 701 } 702 } 703 704 Static int 705 ural_media_change(struct ifnet *ifp) 706 { 707 int error; 708 709 error = ieee80211_media_change(ifp); 710 if (error != ENETRESET) 711 return error; 712 713 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 714 ural_init(ifp); 715 716 return 0; 717 } 718 719 /* 720 * This function is called periodically (every 200ms) during scanning to 721 * switch from one channel to another. 722 */ 723 Static void 724 ural_next_scan(void *arg) 725 { 726 struct ural_softc *sc = arg; 727 struct ieee80211com *ic = &sc->sc_ic; 728 729 if (ic->ic_state == IEEE80211_S_SCAN) 730 ieee80211_next_scan(ic); 731 } 732 733 Static void 734 ural_task(void *arg) 735 { 736 struct ural_softc *sc = arg; 737 struct ieee80211com *ic = &sc->sc_ic; 738 enum ieee80211_state ostate; 739 struct ieee80211_node *ni; 740 struct mbuf *m; 741 742 ostate = ic->ic_state; 743 744 switch (sc->sc_state) { 745 case IEEE80211_S_INIT: 746 if (ostate == IEEE80211_S_RUN) { 747 /* abort TSF synchronization */ 748 ural_write(sc, RAL_TXRX_CSR19, 0); 749 750 /* force tx led to stop blinking */ 751 ural_write(sc, RAL_MAC_CSR20, 0); 752 } 753 break; 754 755 case IEEE80211_S_SCAN: 756 ural_set_chan(sc, ic->ic_curchan); 757 usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc); 758 break; 759 760 case IEEE80211_S_AUTH: 761 ural_set_chan(sc, ic->ic_curchan); 762 break; 763 764 case IEEE80211_S_ASSOC: 765 ural_set_chan(sc, ic->ic_curchan); 766 break; 767 768 case IEEE80211_S_RUN: 769 ural_set_chan(sc, ic->ic_curchan); 770 771 ni = ic->ic_bss; 772 773 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 774 ural_update_slot(ic->ic_ifp); 775 ural_set_txpreamble(sc); 776 ural_set_basicrates(sc); 777 ural_set_bssid(sc, ni->ni_bssid); 778 } 779 780 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 781 ic->ic_opmode == IEEE80211_M_IBSS) { 782 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 783 if (m == NULL) { 784 printf("%s: could not allocate beacon\n", 785 USBDEVNAME(sc->sc_dev)); 786 return; 787 } 788 789 if (ural_tx_bcn(sc, m, ni) != 0) { 790 m_freem(m); 791 printf("%s: could not send beacon\n", 792 USBDEVNAME(sc->sc_dev)); 793 return; 794 } 795 796 /* beacon is no longer needed */ 797 m_freem(m); 798 } 799 800 /* make tx led blink on tx (controlled by ASIC) */ 801 ural_write(sc, RAL_MAC_CSR20, 1); 802 803 if (ic->ic_opmode != IEEE80211_M_MONITOR) 804 ural_enable_tsf_sync(sc); 805 806 /* enable automatic rate adaptation in STA mode */ 807 if (ic->ic_opmode == IEEE80211_M_STA && 808 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 809 ural_amrr_start(sc, ni); 810 811 break; 812 } 813 814 sc->sc_newstate(ic, sc->sc_state, -1); 815 } 816 817 Static int 818 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, 819 int arg) 820 { 821 struct ural_softc *sc = ic->ic_ifp->if_softc; 822 823 usb_rem_task(sc->sc_udev, &sc->sc_task); 824 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc); 825 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc); 826 827 /* do it in a process context */ 828 sc->sc_state = nstate; 829 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 830 831 return 0; 832 } 833 834 /* quickly determine if a given rate is CCK or OFDM */ 835 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 836 837 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 838 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 839 840 #define RAL_SIFS 10 /* us */ 841 842 #define RAL_RXTX_TURNAROUND 5 /* us */ 843 844 /* 845 * This function is only used by the Rx radiotap code. 846 */ 847 Static int 848 ural_rxrate(struct ural_rx_desc *desc) 849 { 850 if (le32toh(desc->flags) & RAL_RX_OFDM) { 851 /* reverse function of ural_plcp_signal */ 852 switch (desc->rate) { 853 case 0xb: return 12; 854 case 0xf: return 18; 855 case 0xa: return 24; 856 case 0xe: return 36; 857 case 0x9: return 48; 858 case 0xd: return 72; 859 case 0x8: return 96; 860 case 0xc: return 108; 861 } 862 } else { 863 if (desc->rate == 10) 864 return 2; 865 if (desc->rate == 20) 866 return 4; 867 if (desc->rate == 55) 868 return 11; 869 if (desc->rate == 110) 870 return 22; 871 } 872 return 2; /* should not get there */ 873 } 874 875 Static void 876 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, 877 usbd_status status) 878 { 879 struct ural_tx_data *data = priv; 880 struct ural_softc *sc = data->sc; 881 struct ifnet *ifp = &sc->sc_if; 882 int s; 883 884 if (status != USBD_NORMAL_COMPLETION) { 885 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 886 return; 887 888 printf("%s: could not transmit buffer: %s\n", 889 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 890 891 if (status == USBD_STALLED) 892 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 893 894 ifp->if_oerrors++; 895 return; 896 } 897 898 s = splnet(); 899 900 m_freem(data->m); 901 data->m = NULL; 902 ieee80211_free_node(data->ni); 903 data->ni = NULL; 904 905 sc->tx_queued--; 906 ifp->if_opackets++; 907 908 DPRINTFN(10, ("tx done\n")); 909 910 sc->sc_tx_timer = 0; 911 ifp->if_flags &= ~IFF_OACTIVE; 912 ural_start(ifp); 913 914 splx(s); 915 } 916 917 Static void 918 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 919 { 920 struct ural_rx_data *data = priv; 921 struct ural_softc *sc = data->sc; 922 struct ieee80211com *ic = &sc->sc_ic; 923 struct ifnet *ifp = &sc->sc_if; 924 struct ural_rx_desc *desc; 925 struct ieee80211_frame *wh; 926 struct ieee80211_node *ni; 927 struct mbuf *mnew, *m; 928 int s, len; 929 930 if (status != USBD_NORMAL_COMPLETION) { 931 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 932 return; 933 934 if (status == USBD_STALLED) 935 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 936 goto skip; 937 } 938 939 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 940 941 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 942 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), 943 len)); 944 ifp->if_ierrors++; 945 goto skip; 946 } 947 948 /* rx descriptor is located at the end */ 949 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); 950 951 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) || 952 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) { 953 /* 954 * This should not happen since we did not request to receive 955 * those frames when we filled RAL_TXRX_CSR2. 956 */ 957 DPRINTFN(5, ("PHY or CRC error\n")); 958 ifp->if_ierrors++; 959 goto skip; 960 } 961 962 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 963 if (mnew == NULL) { 964 ifp->if_ierrors++; 965 goto skip; 966 } 967 968 MCLGET(mnew, M_DONTWAIT); 969 if (!(mnew->m_flags & M_EXT)) { 970 ifp->if_ierrors++; 971 m_freem(mnew); 972 goto skip; 973 } 974 975 m = data->m; 976 data->m = mnew; 977 data->buf = mtod(data->m, uint8_t *); 978 979 /* finalize mbuf */ 980 m->m_pkthdr.rcvif = ifp; 981 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 982 m->m_flags |= M_HASFCS; /* h/w leaves FCS */ 983 984 s = splnet(); 985 986 #if NBPFILTER > 0 987 if (sc->sc_drvbpf != NULL) { 988 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 989 990 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 991 tap->wr_rate = ural_rxrate(desc); 992 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 993 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 994 tap->wr_antenna = sc->rx_ant; 995 tap->wr_antsignal = desc->rssi; 996 997 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 998 } 999 #endif 1000 1001 wh = mtod(m, struct ieee80211_frame *); 1002 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1003 1004 /* send the frame to the 802.11 layer */ 1005 ieee80211_input(ic, m, ni, desc->rssi, 0); 1006 1007 /* node is no longer needed */ 1008 ieee80211_free_node(ni); 1009 1010 splx(s); 1011 1012 DPRINTFN(15, ("rx done\n")); 1013 1014 skip: /* setup a new transfer */ 1015 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 1016 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 1017 usbd_transfer(xfer); 1018 } 1019 1020 /* 1021 * Return the expected ack rate for a frame transmitted at rate `rate'. 1022 * XXX: this should depend on the destination node basic rate set. 1023 */ 1024 Static int 1025 ural_ack_rate(struct ieee80211com *ic, int rate) 1026 { 1027 switch (rate) { 1028 /* CCK rates */ 1029 case 2: 1030 return 2; 1031 case 4: 1032 case 11: 1033 case 22: 1034 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1035 1036 /* OFDM rates */ 1037 case 12: 1038 case 18: 1039 return 12; 1040 case 24: 1041 case 36: 1042 return 24; 1043 case 48: 1044 case 72: 1045 case 96: 1046 case 108: 1047 return 48; 1048 } 1049 1050 /* default to 1Mbps */ 1051 return 2; 1052 } 1053 1054 /* 1055 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1056 * The function automatically determines the operating mode depending on the 1057 * given rate. `flags' indicates whether short preamble is in use or not. 1058 */ 1059 Static uint16_t 1060 ural_txtime(int len, int rate, uint32_t flags) 1061 { 1062 uint16_t txtime; 1063 1064 if (RAL_RATE_IS_OFDM(rate)) { 1065 /* IEEE Std 802.11g-2003, pp. 37 */ 1066 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1067 txtime = 16 + 4 + 4 * txtime + 6; 1068 } else { 1069 /* IEEE Std 802.11b-1999, pp. 28 */ 1070 txtime = (16 * len + rate - 1) / rate; 1071 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1072 txtime += 72 + 24; 1073 else 1074 txtime += 144 + 48; 1075 } 1076 return txtime; 1077 } 1078 1079 Static uint8_t 1080 ural_plcp_signal(int rate) 1081 { 1082 switch (rate) { 1083 /* CCK rates (returned values are device-dependent) */ 1084 case 2: return 0x0; 1085 case 4: return 0x1; 1086 case 11: return 0x2; 1087 case 22: return 0x3; 1088 1089 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1090 case 12: return 0xb; 1091 case 18: return 0xf; 1092 case 24: return 0xa; 1093 case 36: return 0xe; 1094 case 48: return 0x9; 1095 case 72: return 0xd; 1096 case 96: return 0x8; 1097 case 108: return 0xc; 1098 1099 /* unsupported rates (should not get there) */ 1100 default: return 0xff; 1101 } 1102 } 1103 1104 Static void 1105 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1106 uint32_t flags, int len, int rate) 1107 { 1108 struct ieee80211com *ic = &sc->sc_ic; 1109 uint16_t plcp_length; 1110 int remainder; 1111 1112 desc->flags = htole32(flags); 1113 desc->flags |= htole32(RAL_TX_NEWSEQ); 1114 desc->flags |= htole32(len << 16); 1115 1116 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1117 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1118 1119 /* setup PLCP fields */ 1120 desc->plcp_signal = ural_plcp_signal(rate); 1121 desc->plcp_service = 4; 1122 1123 len += IEEE80211_CRC_LEN; 1124 if (RAL_RATE_IS_OFDM(rate)) { 1125 desc->flags |= htole32(RAL_TX_OFDM); 1126 1127 plcp_length = len & 0xfff; 1128 desc->plcp_length_hi = plcp_length >> 6; 1129 desc->plcp_length_lo = plcp_length & 0x3f; 1130 } else { 1131 plcp_length = (16 * len + rate - 1) / rate; 1132 if (rate == 22) { 1133 remainder = (16 * len) % 22; 1134 if (remainder != 0 && remainder < 7) 1135 desc->plcp_service |= RAL_PLCP_LENGEXT; 1136 } 1137 desc->plcp_length_hi = plcp_length >> 8; 1138 desc->plcp_length_lo = plcp_length & 0xff; 1139 1140 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1141 desc->plcp_signal |= 0x08; 1142 } 1143 1144 desc->iv = 0; 1145 desc->eiv = 0; 1146 } 1147 1148 #define RAL_TX_TIMEOUT 5000 1149 1150 Static int 1151 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1152 { 1153 struct ural_tx_desc *desc; 1154 usbd_xfer_handle xfer; 1155 uint8_t cmd = 0; 1156 usbd_status error; 1157 uint8_t *buf; 1158 int xferlen, rate; 1159 1160 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1161 1162 xfer = usbd_alloc_xfer(sc->sc_udev); 1163 if (xfer == NULL) 1164 return ENOMEM; 1165 1166 /* xfer length needs to be a multiple of two! */ 1167 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1168 1169 buf = usbd_alloc_buffer(xfer, xferlen); 1170 if (buf == NULL) { 1171 usbd_free_xfer(xfer); 1172 return ENOMEM; 1173 } 1174 1175 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, 1176 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL); 1177 1178 error = usbd_sync_transfer(xfer); 1179 if (error != 0) { 1180 usbd_free_xfer(xfer); 1181 return error; 1182 } 1183 1184 desc = (struct ural_tx_desc *)buf; 1185 1186 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); 1187 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, 1188 m0->m_pkthdr.len, rate); 1189 1190 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", 1191 m0->m_pkthdr.len, rate, xferlen)); 1192 1193 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, 1194 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL); 1195 1196 error = usbd_sync_transfer(xfer); 1197 usbd_free_xfer(xfer); 1198 1199 return error; 1200 } 1201 1202 Static int 1203 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1204 { 1205 struct ieee80211com *ic = &sc->sc_ic; 1206 struct ural_tx_desc *desc; 1207 struct ural_tx_data *data; 1208 struct ieee80211_frame *wh; 1209 struct ieee80211_key *k; 1210 uint32_t flags = 0; 1211 uint16_t dur; 1212 usbd_status error; 1213 int xferlen, rate; 1214 1215 data = &sc->tx_data[0]; 1216 desc = (struct ural_tx_desc *)data->buf; 1217 1218 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1219 1220 wh = mtod(m0, struct ieee80211_frame *); 1221 1222 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1223 k = ieee80211_crypto_encap(ic, ni, m0); 1224 if (k == NULL) { 1225 m_freem(m0); 1226 return ENOBUFS; 1227 } 1228 } 1229 1230 data->m = m0; 1231 data->ni = ni; 1232 1233 wh = mtod(m0, struct ieee80211_frame *); 1234 1235 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1236 flags |= RAL_TX_ACK; 1237 1238 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; 1239 *(uint16_t *)wh->i_dur = htole16(dur); 1240 1241 /* tell hardware to add timestamp for probe responses */ 1242 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1243 IEEE80211_FC0_TYPE_MGT && 1244 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1245 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1246 flags |= RAL_TX_TIMESTAMP; 1247 } 1248 1249 #if NBPFILTER > 0 1250 if (sc->sc_drvbpf != NULL) { 1251 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1252 1253 tap->wt_flags = 0; 1254 tap->wt_rate = rate; 1255 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1256 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1257 tap->wt_antenna = sc->tx_ant; 1258 1259 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1260 } 1261 #endif 1262 1263 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1264 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1265 1266 /* align end on a 2-bytes boundary */ 1267 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1268 1269 /* 1270 * No space left in the last URB to store the extra 2 bytes, force 1271 * sending of another URB. 1272 */ 1273 if ((xferlen % 64) == 0) 1274 xferlen += 2; 1275 1276 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n", 1277 m0->m_pkthdr.len, rate, xferlen)); 1278 1279 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1280 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, 1281 ural_txeof); 1282 1283 error = usbd_transfer(data->xfer); 1284 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1285 m_freem(m0); 1286 return error; 1287 } 1288 1289 sc->tx_queued++; 1290 1291 return 0; 1292 } 1293 1294 Static int 1295 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1296 { 1297 struct ieee80211com *ic = &sc->sc_ic; 1298 struct ural_tx_desc *desc; 1299 struct ural_tx_data *data; 1300 struct ieee80211_frame *wh; 1301 struct ieee80211_key *k; 1302 uint32_t flags = 0; 1303 uint16_t dur; 1304 usbd_status error; 1305 int xferlen, rate; 1306 1307 wh = mtod(m0, struct ieee80211_frame *); 1308 1309 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1310 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1311 else 1312 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1313 1314 rate &= IEEE80211_RATE_VAL; 1315 1316 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1317 k = ieee80211_crypto_encap(ic, ni, m0); 1318 if (k == NULL) { 1319 m_freem(m0); 1320 return ENOBUFS; 1321 } 1322 1323 /* packet header may have moved, reset our local pointer */ 1324 wh = mtod(m0, struct ieee80211_frame *); 1325 } 1326 1327 data = &sc->tx_data[0]; 1328 desc = (struct ural_tx_desc *)data->buf; 1329 1330 data->m = m0; 1331 data->ni = ni; 1332 1333 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1334 flags |= RAL_TX_ACK; 1335 flags |= RAL_TX_RETRY(7); 1336 1337 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), 1338 ic->ic_flags) + RAL_SIFS; 1339 *(uint16_t *)wh->i_dur = htole16(dur); 1340 } 1341 1342 #if NBPFILTER > 0 1343 if (sc->sc_drvbpf != NULL) { 1344 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 1345 1346 tap->wt_flags = 0; 1347 tap->wt_rate = rate; 1348 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1349 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1350 tap->wt_antenna = sc->tx_ant; 1351 1352 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1353 } 1354 #endif 1355 1356 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); 1357 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); 1358 1359 /* align end on a 2-bytes boundary */ 1360 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; 1361 1362 /* 1363 * No space left in the last URB to store the extra 2 bytes, force 1364 * sending of another URB. 1365 */ 1366 if ((xferlen % 64) == 0) 1367 xferlen += 2; 1368 1369 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n", 1370 m0->m_pkthdr.len, rate, xferlen)); 1371 1372 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1373 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, 1374 ural_txeof); 1375 1376 error = usbd_transfer(data->xfer); 1377 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1378 return error; 1379 1380 sc->tx_queued++; 1381 1382 return 0; 1383 } 1384 1385 Static void 1386 ural_start(struct ifnet *ifp) 1387 { 1388 struct ural_softc *sc = ifp->if_softc; 1389 struct ieee80211com *ic = &sc->sc_ic; 1390 struct mbuf *m0; 1391 struct ether_header *eh; 1392 struct ieee80211_node *ni; 1393 1394 for (;;) { 1395 IF_POLL(&ic->ic_mgtq, m0); 1396 if (m0 != NULL) { 1397 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1398 ifp->if_flags |= IFF_OACTIVE; 1399 break; 1400 } 1401 IF_DEQUEUE(&ic->ic_mgtq, m0); 1402 1403 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1404 m0->m_pkthdr.rcvif = NULL; 1405 #if NBPFILTER > 0 1406 if (ic->ic_rawbpf != NULL) 1407 bpf_mtap(ic->ic_rawbpf, m0); 1408 #endif 1409 if (ural_tx_mgt(sc, m0, ni) != 0) 1410 break; 1411 1412 } else { 1413 if (ic->ic_state != IEEE80211_S_RUN) 1414 break; 1415 IFQ_DEQUEUE(&ifp->if_snd, m0); 1416 if (m0 == NULL) 1417 break; 1418 if (sc->tx_queued >= RAL_TX_LIST_COUNT) { 1419 IF_PREPEND(&ifp->if_snd, m0); 1420 ifp->if_flags |= IFF_OACTIVE; 1421 break; 1422 } 1423 1424 if (m0->m_len < sizeof (struct ether_header) && 1425 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1426 continue; 1427 1428 eh = mtod(m0, struct ether_header *); 1429 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1430 if (ni == NULL) { 1431 m_freem(m0); 1432 continue; 1433 } 1434 #if NBPFILTER > 0 1435 if (ifp->if_bpf != NULL) 1436 bpf_mtap(ifp->if_bpf, m0); 1437 #endif 1438 m0 = ieee80211_encap(ic, m0, ni); 1439 if (m0 == NULL) { 1440 ieee80211_free_node(ni); 1441 continue; 1442 } 1443 #if NBPFILTER > 0 1444 if (ic->ic_rawbpf != NULL) 1445 bpf_mtap(ic->ic_rawbpf, m0); 1446 #endif 1447 if (ural_tx_data(sc, m0, ni) != 0) { 1448 ieee80211_free_node(ni); 1449 ifp->if_oerrors++; 1450 break; 1451 } 1452 } 1453 1454 sc->sc_tx_timer = 5; 1455 ifp->if_timer = 1; 1456 } 1457 } 1458 1459 Static void 1460 ural_watchdog(struct ifnet *ifp) 1461 { 1462 struct ural_softc *sc = ifp->if_softc; 1463 struct ieee80211com *ic = &sc->sc_ic; 1464 1465 ifp->if_timer = 0; 1466 1467 if (sc->sc_tx_timer > 0) { 1468 if (--sc->sc_tx_timer == 0) { 1469 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 1470 /*ural_init(sc); XXX needs a process context! */ 1471 ifp->if_oerrors++; 1472 return; 1473 } 1474 ifp->if_timer = 1; 1475 } 1476 1477 ieee80211_watchdog(ic); 1478 } 1479 1480 /* 1481 * This function allows for fast channel switching in monitor mode (used by 1482 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 1483 * generate a new beacon frame. 1484 */ 1485 Static int 1486 ural_reset(struct ifnet *ifp) 1487 { 1488 struct ural_softc *sc = ifp->if_softc; 1489 struct ieee80211com *ic = &sc->sc_ic; 1490 1491 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1492 return ENETRESET; 1493 1494 ural_set_chan(sc, ic->ic_curchan); 1495 1496 return 0; 1497 } 1498 1499 Static int 1500 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1501 { 1502 struct ural_softc *sc = ifp->if_softc; 1503 struct ieee80211com *ic = &sc->sc_ic; 1504 int s, error = 0; 1505 1506 s = splnet(); 1507 1508 switch (cmd) { 1509 case SIOCSIFFLAGS: 1510 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1511 break; 1512 /* XXX re-use ether_ioctl() */ 1513 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1514 case IFF_UP|IFF_RUNNING: 1515 ural_update_promisc(sc); 1516 break; 1517 case IFF_UP: 1518 ural_init(ifp); 1519 break; 1520 case IFF_RUNNING: 1521 ural_stop(ifp, 1); 1522 break; 1523 case 0: 1524 break; 1525 } 1526 break; 1527 1528 default: 1529 error = ieee80211_ioctl(ic, cmd, data); 1530 } 1531 1532 if (error == ENETRESET) { 1533 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1534 (IFF_UP | IFF_RUNNING)) 1535 ural_init(ifp); 1536 error = 0; 1537 } 1538 1539 splx(s); 1540 1541 return error; 1542 } 1543 1544 Static void 1545 ural_set_testmode(struct ural_softc *sc) 1546 { 1547 usb_device_request_t req; 1548 usbd_status error; 1549 1550 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1551 req.bRequest = RAL_VENDOR_REQUEST; 1552 USETW(req.wValue, 4); 1553 USETW(req.wIndex, 1); 1554 USETW(req.wLength, 0); 1555 1556 error = usbd_do_request(sc->sc_udev, &req, NULL); 1557 if (error != 0) { 1558 printf("%s: could not set test mode: %s\n", 1559 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1560 } 1561 } 1562 1563 Static void 1564 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1565 { 1566 usb_device_request_t req; 1567 usbd_status error; 1568 1569 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1570 req.bRequest = RAL_READ_EEPROM; 1571 USETW(req.wValue, 0); 1572 USETW(req.wIndex, addr); 1573 USETW(req.wLength, len); 1574 1575 error = usbd_do_request(sc->sc_udev, &req, buf); 1576 if (error != 0) { 1577 printf("%s: could not read EEPROM: %s\n", 1578 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1579 } 1580 } 1581 1582 Static uint16_t 1583 ural_read(struct ural_softc *sc, uint16_t reg) 1584 { 1585 usb_device_request_t req; 1586 usbd_status error; 1587 uint16_t val; 1588 1589 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1590 req.bRequest = RAL_READ_MAC; 1591 USETW(req.wValue, 0); 1592 USETW(req.wIndex, reg); 1593 USETW(req.wLength, sizeof (uint16_t)); 1594 1595 error = usbd_do_request(sc->sc_udev, &req, &val); 1596 if (error != 0) { 1597 printf("%s: could not read MAC register: %s\n", 1598 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1599 return 0; 1600 } 1601 1602 return le16toh(val); 1603 } 1604 1605 Static void 1606 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1607 { 1608 usb_device_request_t req; 1609 usbd_status error; 1610 1611 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1612 req.bRequest = RAL_READ_MULTI_MAC; 1613 USETW(req.wValue, 0); 1614 USETW(req.wIndex, reg); 1615 USETW(req.wLength, len); 1616 1617 error = usbd_do_request(sc->sc_udev, &req, buf); 1618 if (error != 0) { 1619 printf("%s: could not read MAC register: %s\n", 1620 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1621 } 1622 } 1623 1624 Static void 1625 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1626 { 1627 usb_device_request_t req; 1628 usbd_status error; 1629 1630 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1631 req.bRequest = RAL_WRITE_MAC; 1632 USETW(req.wValue, val); 1633 USETW(req.wIndex, reg); 1634 USETW(req.wLength, 0); 1635 1636 error = usbd_do_request(sc->sc_udev, &req, NULL); 1637 if (error != 0) { 1638 printf("%s: could not write MAC register: %s\n", 1639 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1640 } 1641 } 1642 1643 Static void 1644 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1645 { 1646 usb_device_request_t req; 1647 usbd_status error; 1648 1649 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1650 req.bRequest = RAL_WRITE_MULTI_MAC; 1651 USETW(req.wValue, 0); 1652 USETW(req.wIndex, reg); 1653 USETW(req.wLength, len); 1654 1655 error = usbd_do_request(sc->sc_udev, &req, buf); 1656 if (error != 0) { 1657 printf("%s: could not write MAC register: %s\n", 1658 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1659 } 1660 } 1661 1662 Static void 1663 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1664 { 1665 uint16_t tmp; 1666 int ntries; 1667 1668 for (ntries = 0; ntries < 5; ntries++) { 1669 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1670 break; 1671 } 1672 if (ntries == 5) { 1673 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); 1674 return; 1675 } 1676 1677 tmp = reg << 8 | val; 1678 ural_write(sc, RAL_PHY_CSR7, tmp); 1679 } 1680 1681 Static uint8_t 1682 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1683 { 1684 uint16_t val; 1685 int ntries; 1686 1687 val = RAL_BBP_WRITE | reg << 8; 1688 ural_write(sc, RAL_PHY_CSR7, val); 1689 1690 for (ntries = 0; ntries < 5; ntries++) { 1691 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1692 break; 1693 } 1694 if (ntries == 5) { 1695 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1696 return 0; 1697 } 1698 1699 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1700 } 1701 1702 Static void 1703 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1704 { 1705 uint32_t tmp; 1706 int ntries; 1707 1708 for (ntries = 0; ntries < 5; ntries++) { 1709 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1710 break; 1711 } 1712 if (ntries == 5) { 1713 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); 1714 return; 1715 } 1716 1717 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1718 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1719 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1720 1721 /* remember last written value in sc */ 1722 sc->rf_regs[reg] = val; 1723 1724 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 1725 } 1726 1727 Static void 1728 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1729 { 1730 struct ieee80211com *ic = &sc->sc_ic; 1731 uint8_t power, tmp; 1732 u_int i, chan; 1733 1734 chan = ieee80211_chan2ieee(ic, c); 1735 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1736 return; 1737 1738 if (IEEE80211_IS_CHAN_2GHZ(c)) 1739 power = min(sc->txpow[chan - 1], 31); 1740 else 1741 power = 31; 1742 1743 /* adjust txpower using ifconfig settings */ 1744 power -= (100 - ic->ic_txpowlimit) / 8; 1745 1746 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 1747 1748 switch (sc->rf_rev) { 1749 case RAL_RF_2522: 1750 ural_rf_write(sc, RAL_RF1, 0x00814); 1751 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1752 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1753 break; 1754 1755 case RAL_RF_2523: 1756 ural_rf_write(sc, RAL_RF1, 0x08804); 1757 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1758 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1759 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1760 break; 1761 1762 case RAL_RF_2524: 1763 ural_rf_write(sc, RAL_RF1, 0x0c808); 1764 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1765 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1766 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1767 break; 1768 1769 case RAL_RF_2525: 1770 ural_rf_write(sc, RAL_RF1, 0x08808); 1771 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1772 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1773 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1774 1775 ural_rf_write(sc, RAL_RF1, 0x08808); 1776 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1777 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1778 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1779 break; 1780 1781 case RAL_RF_2525E: 1782 ural_rf_write(sc, RAL_RF1, 0x08808); 1783 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1784 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1785 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1786 break; 1787 1788 case RAL_RF_2526: 1789 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1790 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1791 ural_rf_write(sc, RAL_RF1, 0x08804); 1792 1793 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1794 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1795 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1796 break; 1797 1798 /* dual-band RF */ 1799 case RAL_RF_5222: 1800 for (i = 0; ural_rf5222[i].chan != chan; i++); 1801 1802 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1803 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1804 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1805 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1806 break; 1807 } 1808 1809 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1810 ic->ic_state != IEEE80211_S_SCAN) { 1811 /* set Japan filter bit for channel 14 */ 1812 tmp = ural_bbp_read(sc, 70); 1813 1814 tmp &= ~RAL_JAPAN_FILTER; 1815 if (chan == 14) 1816 tmp |= RAL_JAPAN_FILTER; 1817 1818 ural_bbp_write(sc, 70, tmp); 1819 1820 /* clear CRC errors */ 1821 ural_read(sc, RAL_STA_CSR0); 1822 1823 DELAY(10000); 1824 ural_disable_rf_tune(sc); 1825 } 1826 } 1827 1828 /* 1829 * Disable RF auto-tuning. 1830 */ 1831 Static void 1832 ural_disable_rf_tune(struct ural_softc *sc) 1833 { 1834 uint32_t tmp; 1835 1836 if (sc->rf_rev != RAL_RF_2523) { 1837 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1838 ural_rf_write(sc, RAL_RF1, tmp); 1839 } 1840 1841 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1842 ural_rf_write(sc, RAL_RF3, tmp); 1843 1844 DPRINTFN(2, ("disabling RF autotune\n")); 1845 } 1846 1847 /* 1848 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1849 * synchronization. 1850 */ 1851 Static void 1852 ural_enable_tsf_sync(struct ural_softc *sc) 1853 { 1854 struct ieee80211com *ic = &sc->sc_ic; 1855 uint16_t logcwmin, preload, tmp; 1856 1857 /* first, disable TSF synchronization */ 1858 ural_write(sc, RAL_TXRX_CSR19, 0); 1859 1860 tmp = (16 * ic->ic_bss->ni_intval) << 4; 1861 ural_write(sc, RAL_TXRX_CSR18, tmp); 1862 1863 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1864 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1865 tmp = logcwmin << 12 | preload; 1866 ural_write(sc, RAL_TXRX_CSR20, tmp); 1867 1868 /* finally, enable TSF synchronization */ 1869 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1870 if (ic->ic_opmode == IEEE80211_M_STA) 1871 tmp |= RAL_ENABLE_TSF_SYNC(1); 1872 else 1873 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1874 ural_write(sc, RAL_TXRX_CSR19, tmp); 1875 1876 DPRINTF(("enabling TSF synchronization\n")); 1877 } 1878 1879 Static void 1880 ural_update_slot(struct ifnet *ifp) 1881 { 1882 struct ural_softc *sc = ifp->if_softc; 1883 struct ieee80211com *ic = &sc->sc_ic; 1884 uint16_t slottime, sifs, eifs; 1885 1886 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1887 1888 /* 1889 * These settings may sound a bit inconsistent but this is what the 1890 * reference driver does. 1891 */ 1892 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1893 sifs = 16 - RAL_RXTX_TURNAROUND; 1894 eifs = 364; 1895 } else { 1896 sifs = 10 - RAL_RXTX_TURNAROUND; 1897 eifs = 64; 1898 } 1899 1900 ural_write(sc, RAL_MAC_CSR10, slottime); 1901 ural_write(sc, RAL_MAC_CSR11, sifs); 1902 ural_write(sc, RAL_MAC_CSR12, eifs); 1903 } 1904 1905 Static void 1906 ural_set_txpreamble(struct ural_softc *sc) 1907 { 1908 uint16_t tmp; 1909 1910 tmp = ural_read(sc, RAL_TXRX_CSR10); 1911 1912 tmp &= ~RAL_SHORT_PREAMBLE; 1913 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1914 tmp |= RAL_SHORT_PREAMBLE; 1915 1916 ural_write(sc, RAL_TXRX_CSR10, tmp); 1917 } 1918 1919 Static void 1920 ural_set_basicrates(struct ural_softc *sc) 1921 { 1922 struct ieee80211com *ic = &sc->sc_ic; 1923 1924 /* update basic rate set */ 1925 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1926 /* 11b basic rates: 1, 2Mbps */ 1927 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1928 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { 1929 /* 11a basic rates: 6, 12, 24Mbps */ 1930 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1931 } else { 1932 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1933 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1934 } 1935 } 1936 1937 Static void 1938 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid) 1939 { 1940 uint16_t tmp; 1941 1942 tmp = bssid[0] | bssid[1] << 8; 1943 ural_write(sc, RAL_MAC_CSR5, tmp); 1944 1945 tmp = bssid[2] | bssid[3] << 8; 1946 ural_write(sc, RAL_MAC_CSR6, tmp); 1947 1948 tmp = bssid[4] | bssid[5] << 8; 1949 ural_write(sc, RAL_MAC_CSR7, tmp); 1950 1951 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); 1952 } 1953 1954 Static void 1955 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1956 { 1957 uint16_t tmp; 1958 1959 tmp = addr[0] | addr[1] << 8; 1960 ural_write(sc, RAL_MAC_CSR2, tmp); 1961 1962 tmp = addr[2] | addr[3] << 8; 1963 ural_write(sc, RAL_MAC_CSR3, tmp); 1964 1965 tmp = addr[4] | addr[5] << 8; 1966 ural_write(sc, RAL_MAC_CSR4, tmp); 1967 1968 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); 1969 } 1970 1971 Static void 1972 ural_update_promisc(struct ural_softc *sc) 1973 { 1974 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1975 uint32_t tmp; 1976 1977 tmp = ural_read(sc, RAL_TXRX_CSR2); 1978 1979 tmp &= ~RAL_DROP_NOT_TO_ME; 1980 if (!(ifp->if_flags & IFF_PROMISC)) 1981 tmp |= RAL_DROP_NOT_TO_ME; 1982 1983 ural_write(sc, RAL_TXRX_CSR2, tmp); 1984 1985 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1986 "entering" : "leaving")); 1987 } 1988 1989 Static const char * 1990 ural_get_rf(int rev) 1991 { 1992 switch (rev) { 1993 case RAL_RF_2522: return "RT2522"; 1994 case RAL_RF_2523: return "RT2523"; 1995 case RAL_RF_2524: return "RT2524"; 1996 case RAL_RF_2525: return "RT2525"; 1997 case RAL_RF_2525E: return "RT2525e"; 1998 case RAL_RF_2526: return "RT2526"; 1999 case RAL_RF_5222: return "RT5222"; 2000 default: return "unknown"; 2001 } 2002 } 2003 2004 Static void 2005 ural_read_eeprom(struct ural_softc *sc) 2006 { 2007 struct ieee80211com *ic = &sc->sc_ic; 2008 uint16_t val; 2009 2010 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 2011 val = le16toh(val); 2012 sc->rf_rev = (val >> 11) & 0x7; 2013 sc->hw_radio = (val >> 10) & 0x1; 2014 sc->led_mode = (val >> 6) & 0x7; 2015 sc->rx_ant = (val >> 4) & 0x3; 2016 sc->tx_ant = (val >> 2) & 0x3; 2017 sc->nb_ant = val & 0x3; 2018 2019 /* read MAC address */ 2020 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); 2021 2022 /* read default values for BBP registers */ 2023 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2024 2025 /* read Tx power for all b/g channels */ 2026 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 2027 } 2028 2029 Static int 2030 ural_bbp_init(struct ural_softc *sc) 2031 { 2032 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2033 int i, ntries; 2034 2035 /* wait for BBP to be ready */ 2036 for (ntries = 0; ntries < 100; ntries++) { 2037 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 2038 break; 2039 DELAY(1000); 2040 } 2041 if (ntries == 100) { 2042 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev)); 2043 return EIO; 2044 } 2045 2046 /* initialize BBP registers to default values */ 2047 for (i = 0; i < N(ural_def_bbp); i++) 2048 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 2049 2050 #if 0 2051 /* initialize BBP registers to values stored in EEPROM */ 2052 for (i = 0; i < 16; i++) { 2053 if (sc->bbp_prom[i].reg == 0xff) 2054 continue; 2055 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2056 } 2057 #endif 2058 2059 return 0; 2060 #undef N 2061 } 2062 2063 Static void 2064 ural_set_txantenna(struct ural_softc *sc, int antenna) 2065 { 2066 uint16_t tmp; 2067 uint8_t tx; 2068 2069 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 2070 if (antenna == 1) 2071 tx |= RAL_BBP_ANTA; 2072 else if (antenna == 2) 2073 tx |= RAL_BBP_ANTB; 2074 else 2075 tx |= RAL_BBP_DIVERSITY; 2076 2077 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2078 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2079 sc->rf_rev == RAL_RF_5222) 2080 tx |= RAL_BBP_FLIPIQ; 2081 2082 ural_bbp_write(sc, RAL_BBP_TX, tx); 2083 2084 /* update values in PHY_CSR5 and PHY_CSR6 */ 2085 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2086 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2087 2088 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2089 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2090 } 2091 2092 Static void 2093 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2094 { 2095 uint8_t rx; 2096 2097 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2098 if (antenna == 1) 2099 rx |= RAL_BBP_ANTA; 2100 else if (antenna == 2) 2101 rx |= RAL_BBP_ANTB; 2102 else 2103 rx |= RAL_BBP_DIVERSITY; 2104 2105 /* need to force no I/Q flip for RF 2525e and 2526 */ 2106 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2107 rx &= ~RAL_BBP_FLIPIQ; 2108 2109 ural_bbp_write(sc, RAL_BBP_RX, rx); 2110 } 2111 2112 Static int 2113 ural_init(struct ifnet *ifp) 2114 { 2115 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2116 struct ural_softc *sc = ifp->if_softc; 2117 struct ieee80211com *ic = &sc->sc_ic; 2118 struct ieee80211_key *wk; 2119 struct ural_rx_data *data; 2120 uint16_t tmp; 2121 usbd_status error; 2122 int i, ntries; 2123 2124 ural_set_testmode(sc); 2125 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2126 2127 ural_stop(ifp, 0); 2128 2129 /* initialize MAC registers to default values */ 2130 for (i = 0; i < N(ural_def_mac); i++) 2131 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2132 2133 /* wait for BBP and RF to wake up (this can take a long time!) */ 2134 for (ntries = 0; ntries < 100; ntries++) { 2135 tmp = ural_read(sc, RAL_MAC_CSR17); 2136 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2137 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2138 break; 2139 DELAY(1000); 2140 } 2141 if (ntries == 100) { 2142 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2143 USBDEVNAME(sc->sc_dev)); 2144 error = EIO; 2145 goto fail; 2146 } 2147 2148 /* we're ready! */ 2149 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2150 2151 /* set basic rate set (will be updated later) */ 2152 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2153 2154 error = ural_bbp_init(sc); 2155 if (error != 0) 2156 goto fail; 2157 2158 /* set default BSS channel */ 2159 ural_set_chan(sc, ic->ic_curchan); 2160 2161 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2162 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2163 2164 ural_set_txantenna(sc, sc->tx_ant); 2165 ural_set_rxantenna(sc, sc->rx_ant); 2166 2167 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2168 ural_set_macaddr(sc, ic->ic_myaddr); 2169 2170 /* 2171 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). 2172 */ 2173 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2174 wk = &ic->ic_crypto.cs_nw_keys[i]; 2175 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE + 2176 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE); 2177 } 2178 2179 /* 2180 * Allocate xfer for AMRR statistics requests. 2181 */ 2182 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2183 if (sc->amrr_xfer == NULL) { 2184 printf("%s: could not allocate AMRR xfer\n", 2185 USBDEVNAME(sc->sc_dev)); 2186 goto fail; 2187 } 2188 2189 /* 2190 * Open Tx and Rx USB bulk pipes. 2191 */ 2192 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2193 &sc->sc_tx_pipeh); 2194 if (error != 0) { 2195 printf("%s: could not open Tx pipe: %s\n", 2196 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2197 goto fail; 2198 } 2199 2200 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2201 &sc->sc_rx_pipeh); 2202 if (error != 0) { 2203 printf("%s: could not open Rx pipe: %s\n", 2204 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2205 goto fail; 2206 } 2207 2208 /* 2209 * Allocate Tx and Rx xfer queues. 2210 */ 2211 error = ural_alloc_tx_list(sc); 2212 if (error != 0) { 2213 printf("%s: could not allocate Tx list\n", 2214 USBDEVNAME(sc->sc_dev)); 2215 goto fail; 2216 } 2217 2218 error = ural_alloc_rx_list(sc); 2219 if (error != 0) { 2220 printf("%s: could not allocate Rx list\n", 2221 USBDEVNAME(sc->sc_dev)); 2222 goto fail; 2223 } 2224 2225 /* 2226 * Start up the receive pipe. 2227 */ 2228 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 2229 data = &sc->rx_data[i]; 2230 2231 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2232 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); 2233 usbd_transfer(data->xfer); 2234 } 2235 2236 /* kick Rx */ 2237 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; 2238 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2239 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; 2240 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2241 tmp |= RAL_DROP_TODS; 2242 if (!(ifp->if_flags & IFF_PROMISC)) 2243 tmp |= RAL_DROP_NOT_TO_ME; 2244 } 2245 ural_write(sc, RAL_TXRX_CSR2, tmp); 2246 2247 ifp->if_flags &= ~IFF_OACTIVE; 2248 ifp->if_flags |= IFF_RUNNING; 2249 2250 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2251 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2252 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2253 } else 2254 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2255 2256 return 0; 2257 2258 fail: ural_stop(ifp, 1); 2259 return error; 2260 #undef N 2261 } 2262 2263 Static void 2264 ural_stop(struct ifnet *ifp, int disable) 2265 { 2266 struct ural_softc *sc = ifp->if_softc; 2267 struct ieee80211com *ic = &sc->sc_ic; 2268 2269 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2270 2271 sc->sc_tx_timer = 0; 2272 ifp->if_timer = 0; 2273 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2274 2275 /* disable Rx */ 2276 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2277 2278 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2279 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2280 ural_write(sc, RAL_MAC_CSR1, 0); 2281 2282 if (sc->amrr_xfer != NULL) { 2283 usbd_free_xfer(sc->amrr_xfer); 2284 sc->amrr_xfer = NULL; 2285 } 2286 2287 if (sc->sc_rx_pipeh != NULL) { 2288 usbd_abort_pipe(sc->sc_rx_pipeh); 2289 usbd_close_pipe(sc->sc_rx_pipeh); 2290 sc->sc_rx_pipeh = NULL; 2291 } 2292 2293 if (sc->sc_tx_pipeh != NULL) { 2294 usbd_abort_pipe(sc->sc_tx_pipeh); 2295 usbd_close_pipe(sc->sc_tx_pipeh); 2296 sc->sc_tx_pipeh = NULL; 2297 } 2298 2299 ural_free_rx_list(sc); 2300 ural_free_tx_list(sc); 2301 } 2302 2303 int 2304 ural_activate(device_ptr_t self, enum devact act) 2305 { 2306 struct ural_softc *sc = device_private(self); 2307 2308 switch (act) { 2309 case DVACT_DEACTIVATE: 2310 if_deactivate(&sc->sc_if); 2311 return 0; 2312 default: 2313 return EOPNOTSUPP; 2314 } 2315 } 2316 2317 Static void 2318 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) 2319 { 2320 int i; 2321 2322 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2323 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2324 2325 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2326 2327 /* set rate to some reasonable initial value */ 2328 for (i = ni->ni_rates.rs_nrates - 1; 2329 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2330 i--); 2331 ni->ni_txrate = i; 2332 2333 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2334 } 2335 2336 Static void 2337 ural_amrr_timeout(void *arg) 2338 { 2339 struct ural_softc *sc = (struct ural_softc *)arg; 2340 usb_device_request_t req; 2341 int s; 2342 2343 s = splusb(); 2344 2345 /* 2346 * Asynchronously read statistic registers (cleared by read). 2347 */ 2348 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2349 req.bRequest = RAL_READ_MULTI_MAC; 2350 USETW(req.wValue, 0); 2351 USETW(req.wIndex, RAL_STA_CSR0); 2352 USETW(req.wLength, sizeof sc->sta); 2353 2354 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2355 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2356 ural_amrr_update); 2357 (void)usbd_transfer(sc->amrr_xfer); 2358 2359 splx(s); 2360 } 2361 2362 Static void 2363 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2364 usbd_status status) 2365 { 2366 struct ural_softc *sc = (struct ural_softc *)priv; 2367 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2368 2369 if (status != USBD_NORMAL_COMPLETION) { 2370 printf("%s: could not retrieve Tx statistics - " 2371 "cancelling automatic rate control\n", 2372 USBDEVNAME(sc->sc_dev)); 2373 return; 2374 } 2375 2376 /* count TX retry-fail as Tx errors */ 2377 ifp->if_oerrors += sc->sta[9]; 2378 2379 sc->amn.amn_retrycnt = 2380 sc->sta[7] + /* TX one-retry ok count */ 2381 sc->sta[8] + /* TX more-retry ok count */ 2382 sc->sta[9]; /* TX retry-fail count */ 2383 2384 sc->amn.amn_txcnt = 2385 sc->amn.amn_retrycnt + 2386 sc->sta[6]; /* TX no-retry ok count */ 2387 2388 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2389 2390 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc); 2391 } 2392