xref: /netbsd-src/sys/dev/usb/if_upgt.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_upgt.c,v 1.20 2018/06/26 06:48:02 msaitoh Exp $	*/
2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.20 2018/06/26 06:48:02 msaitoh Exp $");
22 
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26 
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52 
53 #include <dev/firmload.h>
54 
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60 
61 #include <dev/usb/if_upgtvar.h>
62 
63 /*
64  * Driver for the USB PrismGT devices.
65  *
66  * For now just USB 2.0 devices with the GW3887 chipset are supported.
67  * The driver has been written based on the firmware version 2.13.1.0_LM87.
68  *
69  * TODO's:
70  * - Fix MONITOR mode (MAC filter).
71  * - Add HOSTAP mode.
72  * - Add IBSS mode.
73  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74  *
75  * Parts of this driver has been influenced by reading the p54u driver
76  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
77  * Sebastien Bourdeauducq <lekernel@prism54.org>.
78  */
79 
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86 
87 /*
88  * Prototypes.
89  */
90 static int	upgt_match(device_t, cfdata_t, void *);
91 static void	upgt_attach(device_t, device_t, void *);
92 static int	upgt_detach(device_t, int);
93 static int	upgt_activate(device_t, devact_t);
94 
95 static void	upgt_attach_hook(device_t);
96 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int	upgt_device_init(struct upgt_softc *);
98 static int	upgt_mem_init(struct upgt_softc *);
99 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
100 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int	upgt_fw_alloc(struct upgt_softc *);
102 static void	upgt_fw_free(struct upgt_softc *);
103 static int	upgt_fw_verify(struct upgt_softc *);
104 static int	upgt_fw_load(struct upgt_softc *);
105 static int	upgt_fw_copy(char *, char *, int);
106 static int	upgt_eeprom_read(struct upgt_softc *);
107 static int	upgt_eeprom_parse(struct upgt_softc *);
108 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112 
113 static int	upgt_ioctl(struct ifnet *, u_long, void *);
114 static int	upgt_init(struct ifnet *);
115 static void	upgt_stop(struct upgt_softc *);
116 static int	upgt_media_change(struct ifnet *);
117 static void	upgt_newassoc(struct ieee80211_node *, int);
118 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 		    int);
120 static void	upgt_newstate_task(void *);
121 static void	upgt_next_scan(void *);
122 static void	upgt_start(struct ifnet *);
123 static void	upgt_watchdog(struct ifnet *);
124 static void	upgt_tx_task(void *);
125 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void	upgt_setup_rates(struct upgt_softc *);
129 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
130 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int	upgt_set_channel(struct upgt_softc *, unsigned);
132 static void	upgt_set_led(struct upgt_softc *, int);
133 static void	upgt_set_led_blink(void *);
134 static int	upgt_get_stats(struct upgt_softc *);
135 
136 static int	upgt_alloc_tx(struct upgt_softc *);
137 static int	upgt_alloc_rx(struct upgt_softc *);
138 static int	upgt_alloc_cmd(struct upgt_softc *);
139 static void	upgt_free_tx(struct upgt_softc *);
140 static void	upgt_free_rx(struct upgt_softc *);
141 static void	upgt_free_cmd(struct upgt_softc *);
142 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 		    struct usbd_pipe *, uint32_t *, int);
144 
145 #if 0
146 static void	upgt_hexdump(void *, int);
147 #endif
148 static uint32_t	upgt_crc32_le(const void *, size_t);
149 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
150 
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
153 
154 static const struct usb_devno upgt_devs_1[] = {
155 	/* version 1 devices */
156 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
157 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
158 };
159 
160 static const struct usb_devno upgt_devs_2[] = {
161 	/* version 2 devices */
162 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
163 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
164 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
165 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
170 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
171 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
172 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
173 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
176 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
177 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
178 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
180 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
181 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
182 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
185 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
186 };
187 
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190     size_t *sizep)
191 {
192 	firmware_handle_t fh;
193 	int error;
194 
195 	if ((error = firmware_open(dname, iname, &fh)) != 0)
196 		return error;
197 	*sizep = firmware_get_size(fh);
198 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 		firmware_close(fh);
200 		return ENOMEM;
201 	}
202 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 		firmware_free(*ucodep, *sizep);
204 	firmware_close(fh);
205 
206 	return error;
207 }
208 
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 	struct usb_attach_arg *uaa = aux;
213 
214 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 		return UMATCH_VENDOR_PRODUCT;
216 
217 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 		return UMATCH_VENDOR_PRODUCT;
219 
220 	return UMATCH_NONE;
221 }
222 
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 	struct upgt_softc *sc = device_private(self);
227 	struct usb_attach_arg *uaa = aux;
228 	usb_interface_descriptor_t *id;
229 	usb_endpoint_descriptor_t *ed;
230 	usbd_status error;
231 	char *devinfop;
232 	int i;
233 
234 	aprint_naive("\n");
235 	aprint_normal("\n");
236 
237 	/*
238 	 * Attach USB device.
239 	 */
240 	sc->sc_dev = self;
241 	sc->sc_udev = uaa->uaa_device;
242 
243 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 	usbd_devinfo_free(devinfop);
246 
247 	/* check device type */
248 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 		return;
250 
251 	/* set configuration number */
252 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 	if (error != 0) {
254 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 		    ", err=%s\n", usbd_errstr(error));
256 		return;
257 	}
258 
259 	/* get the first interface handle */
260 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 	    &sc->sc_iface);
262 	if (error != 0) {
263 		aprint_error_dev(sc->sc_dev,
264 		    "could not get interface handle\n");
265 		return;
266 	}
267 
268 	/* find endpoints */
269 	id = usbd_get_interface_descriptor(sc->sc_iface);
270 	sc->sc_rx_no = sc->sc_tx_no = -1;
271 	for (i = 0; i < id->bNumEndpoints; i++) {
272 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 		if (ed == NULL) {
274 			aprint_error_dev(sc->sc_dev,
275 			    "no endpoint descriptor for iface %d\n", i);
276 			return;
277 		}
278 
279 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 			sc->sc_tx_no = ed->bEndpointAddress;
282 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 			sc->sc_rx_no = ed->bEndpointAddress;
285 
286 		/*
287 		 * 0x01 TX pipe
288 		 * 0x81 RX pipe
289 		 *
290 		 * Deprecated scheme (not used with fw version >2.5.6.x):
291 		 * 0x02 TX MGMT pipe
292 		 * 0x82 TX MGMT pipe
293 		 */
294 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 			break;
296 	}
297 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 		return;
300 	}
301 
302 	/* setup tasks and timeouts */
303 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 	callout_init(&sc->scan_to, 0);
306 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 	callout_init(&sc->led_to, 0);
308 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309 
310 	/*
311 	 * Open TX and RX USB bulk pipes.
312 	 */
313 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 	    &sc->sc_tx_pipeh);
315 	if (error != 0) {
316 		aprint_error_dev(sc->sc_dev,
317 		    "could not open TX pipe: %s\n", usbd_errstr(error));
318 		goto fail;
319 	}
320 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 	    &sc->sc_rx_pipeh);
322 	if (error != 0) {
323 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 		    usbd_errstr(error));
325 		goto fail;
326 	}
327 
328 	/*
329 	 * Allocate TX, RX, and CMD xfers.
330 	 */
331 	if (upgt_alloc_tx(sc) != 0)
332 		goto fail;
333 	if (upgt_alloc_rx(sc) != 0)
334 		goto fail;
335 	if (upgt_alloc_cmd(sc) != 0)
336 		goto fail;
337 
338 	/*
339 	 * We need the firmware loaded from file system to complete the attach.
340 	 */
341 	config_mountroot(self, upgt_attach_hook);
342 
343 	return;
344 fail:
345 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347 
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 	struct upgt_softc *sc = device_private(arg);
352 	struct ieee80211com *ic = &sc->sc_ic;
353 	struct ifnet *ifp = &sc->sc_if;
354 	usbd_status error;
355 	int i;
356 
357 	/*
358 	 * Load firmware file into memory.
359 	 */
360 	if (upgt_fw_alloc(sc) != 0)
361 		goto fail;
362 
363 	/*
364 	 * Initialize the device.
365 	 */
366 	if (upgt_device_init(sc) != 0)
367 		goto fail;
368 
369 	/*
370 	 * Verify the firmware.
371 	 */
372 	if (upgt_fw_verify(sc) != 0)
373 		goto fail;
374 
375 	/*
376 	 * Calculate device memory space.
377 	 */
378 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 		aprint_error_dev(sc->sc_dev,
380 		    "could not find memory space addresses on FW\n");
381 		goto fail;
382 	}
383 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385 
386 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392 
393 	upgt_mem_init(sc);
394 
395 	/*
396 	 * Load the firmware.
397 	 */
398 	if (upgt_fw_load(sc) != 0)
399 		goto fail;
400 
401 	/*
402 	 * Startup the RX pipe.
403 	 */
404 	struct upgt_data *data_rx = &sc->rx_data;
405 
406 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 	error = usbd_transfer(data_rx->xfer);
409 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 		aprint_error_dev(sc->sc_dev,
411 		    "could not queue RX transfer\n");
412 		goto fail;
413 	}
414 	usbd_delay_ms(sc->sc_udev, 100);
415 
416 	/*
417 	 * Read the whole EEPROM content and parse it.
418 	 */
419 	if (upgt_eeprom_read(sc) != 0)
420 		goto fail;
421 	if (upgt_eeprom_parse(sc) != 0)
422 		goto fail;
423 
424 	/*
425 	 * Setup the 802.11 device.
426 	 */
427 	ic->ic_ifp = ifp;
428 	ic->ic_phytype = IEEE80211_T_OFDM;
429 	ic->ic_opmode = IEEE80211_M_STA;
430 	ic->ic_state = IEEE80211_S_INIT;
431 	ic->ic_caps =
432 	    IEEE80211_C_MONITOR |
433 	    IEEE80211_C_SHPREAMBLE |
434 	    IEEE80211_C_SHSLOT;
435 
436 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438 
439 	for (i = 1; i <= 14; i++) {
440 		ic->ic_channels[i].ic_freq =
441 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 		ic->ic_channels[i].ic_flags =
443 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 	}
446 
447 	ifp->if_softc = sc;
448 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 	ifp->if_init = upgt_init;
450 	ifp->if_ioctl = upgt_ioctl;
451 	ifp->if_start = upgt_start;
452 	ifp->if_watchdog = upgt_watchdog;
453 	IFQ_SET_READY(&ifp->if_snd);
454 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455 
456 	if_attach(ifp);
457 	ieee80211_ifattach(ic);
458 	ic->ic_newassoc = upgt_newassoc;
459 
460 	sc->sc_newstate = ic->ic_newstate;
461 	ic->ic_newstate = upgt_newstate;
462 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
463 
464 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 	    &sc->sc_drvbpf);
467 
468 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
469 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
471 
472 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
473 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
475 
476 	aprint_normal_dev(sc->sc_dev, "address %s\n",
477 	    ether_sprintf(ic->ic_myaddr));
478 
479 	ieee80211_announce(ic);
480 
481 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
482 
483 	/* device attached */
484 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
485 
486 	return;
487 fail:
488 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
489 }
490 
491 static int
492 upgt_detach(device_t self, int flags)
493 {
494 	struct upgt_softc *sc = device_private(self);
495 	struct ifnet *ifp = &sc->sc_if;
496 	struct ieee80211com *ic = &sc->sc_ic;
497 	int s;
498 
499 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
500 
501 	s = splnet();
502 
503 	if (ifp->if_flags & IFF_RUNNING)
504 		upgt_stop(sc);
505 
506 	/* remove tasks and timeouts */
507 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
508 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
509 	callout_destroy(&sc->scan_to);
510 	callout_destroy(&sc->led_to);
511 
512 	/* abort and close TX / RX pipes */
513 	if (sc->sc_tx_pipeh != NULL) {
514 		usbd_abort_pipe(sc->sc_tx_pipeh);
515 	}
516 	if (sc->sc_rx_pipeh != NULL) {
517 		usbd_abort_pipe(sc->sc_rx_pipeh);
518 	}
519 
520 	/* free xfers */
521 	upgt_free_tx(sc);
522 	upgt_free_rx(sc);
523 	upgt_free_cmd(sc);
524 
525 	/* Close TX / RX pipes */
526 	if (sc->sc_tx_pipeh != NULL) {
527 		usbd_close_pipe(sc->sc_tx_pipeh);
528 	}
529 	if (sc->sc_rx_pipeh != NULL) {
530 		usbd_close_pipe(sc->sc_rx_pipeh);
531 	}
532 
533 	/* free firmware */
534 	upgt_fw_free(sc);
535 
536 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
537 		/* detach interface */
538 		bpf_detach(ifp);
539 		ieee80211_ifdetach(ic);
540 		if_detach(ifp);
541 	}
542 
543 	splx(s);
544 
545 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
546 
547 	return 0;
548 }
549 
550 static int
551 upgt_activate(device_t self, devact_t act)
552 {
553 	struct upgt_softc *sc = device_private(self);
554 
555 	switch (act) {
556 	case DVACT_DEACTIVATE:
557 		if_deactivate(&sc->sc_if);
558 		return 0;
559 	default:
560 		return EOPNOTSUPP;
561 	}
562 }
563 
564 static int
565 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
566 {
567 
568 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
569 		sc->sc_device_type = 1;
570 		/* XXX */
571 		aprint_error_dev(sc->sc_dev,
572 		    "version 1 devices not supported yet\n");
573 		return 1;
574 	} else
575 		sc->sc_device_type = 2;
576 
577 	return 0;
578 }
579 
580 static int
581 upgt_device_init(struct upgt_softc *sc)
582 {
583 	struct upgt_data *data_cmd = &sc->cmd_data;
584 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
585 	int len;
586 
587 	len = sizeof(init_cmd);
588 	memcpy(data_cmd->buf, init_cmd, len);
589 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
590 		aprint_error_dev(sc->sc_dev,
591 		    "could not send device init string\n");
592 		return EIO;
593 	}
594 	usbd_delay_ms(sc->sc_udev, 100);
595 
596 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
597 
598 	return 0;
599 }
600 
601 static int
602 upgt_mem_init(struct upgt_softc *sc)
603 {
604 	int i;
605 
606 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
607 		sc->sc_memory.page[i].used = 0;
608 
609 		if (i == 0) {
610 			/*
611 			 * The first memory page is always reserved for
612 			 * command data.
613 			 */
614 			sc->sc_memory.page[i].addr =
615 			    sc->sc_memaddr_frame_start + MCLBYTES;
616 		} else {
617 			sc->sc_memory.page[i].addr =
618 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
619 		}
620 
621 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
622 		    sc->sc_memaddr_frame_end)
623 			break;
624 
625 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
626 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
627 	}
628 
629 	sc->sc_memory.pages = i;
630 
631 	DPRINTF(2, "%s: memory pages=%d\n",
632 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
633 
634 	return 0;
635 }
636 
637 static uint32_t
638 upgt_mem_alloc(struct upgt_softc *sc)
639 {
640 	int i;
641 
642 	for (i = 0; i < sc->sc_memory.pages; i++) {
643 		if (sc->sc_memory.page[i].used == 0) {
644 			sc->sc_memory.page[i].used = 1;
645 			return sc->sc_memory.page[i].addr;
646 		}
647 	}
648 
649 	return 0;
650 }
651 
652 static void
653 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
654 {
655 	int i;
656 
657 	for (i = 0; i < sc->sc_memory.pages; i++) {
658 		if (sc->sc_memory.page[i].addr == addr) {
659 			sc->sc_memory.page[i].used = 0;
660 			return;
661 		}
662 	}
663 
664 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
665 	    addr);
666 }
667 
668 
669 static int
670 upgt_fw_alloc(struct upgt_softc *sc)
671 {
672 	const char *name = "upgt-gw3887";
673 	int error;
674 
675 	if (sc->sc_fw == NULL) {
676 		error = firmware_load("upgt", name, &sc->sc_fw,
677 		    &sc->sc_fw_size);
678 		if (error != 0) {
679 			if (error == ENOENT) {
680 				/*
681 				 * The firmware file for upgt(4) is not in
682 				 * the default distribution due to its lisence
683 				 * so explicitly notify it if the firmware file
684 				 * is not found.
685 				 */
686 				aprint_error_dev(sc->sc_dev,
687 				    "firmware file %s is not installed\n",
688 				    name);
689 				aprint_error_dev(sc->sc_dev,
690 				    "(it is not included in the default"
691 				    " distribution)\n");
692 				aprint_error_dev(sc->sc_dev,
693 				    "see upgt(4) man page for details about "
694 				    "firmware installation\n");
695 			} else {
696 				aprint_error_dev(sc->sc_dev,
697 				    "could not read firmware %s\n", name);
698 			}
699 			return EIO;
700 		}
701 	}
702 
703 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
704 	    name);
705 
706 	return 0;
707 }
708 
709 static void
710 upgt_fw_free(struct upgt_softc *sc)
711 {
712 
713 	if (sc->sc_fw != NULL) {
714 		firmware_free(sc->sc_fw, sc->sc_fw_size);
715 		sc->sc_fw = NULL;
716 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
717 	}
718 }
719 
720 static int
721 upgt_fw_verify(struct upgt_softc *sc)
722 {
723 	struct upgt_fw_bra_option *bra_option;
724 	uint32_t bra_option_type, bra_option_len;
725 	uint32_t *uc;
726 	int offset, bra_end = 0;
727 
728 	/*
729 	 * Seek to beginning of Boot Record Area (BRA).
730 	 */
731 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
732 		uc = (uint32_t *)(sc->sc_fw + offset);
733 		if (*uc == 0)
734 			break;
735 	}
736 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
737 		uc = (uint32_t *)(sc->sc_fw + offset);
738 		if (*uc != 0)
739 			break;
740 	}
741 	if (offset == sc->sc_fw_size) {
742 		aprint_error_dev(sc->sc_dev,
743 		    "firmware Boot Record Area not found\n");
744 		return EIO;
745 	}
746 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
747 	    device_xname(sc->sc_dev), offset);
748 
749 	/*
750 	 * Parse Boot Record Area (BRA) options.
751 	 */
752 	while (offset < sc->sc_fw_size && bra_end == 0) {
753 		/* get current BRA option */
754 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
755 		bra_option_type = le32toh(bra_option->type);
756 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
757 
758 		switch (bra_option_type) {
759 		case UPGT_BRA_TYPE_FW:
760 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
761 			    device_xname(sc->sc_dev), bra_option_len);
762 
763 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
764 				aprint_error_dev(sc->sc_dev,
765 				    "wrong UPGT_BRA_TYPE_FW len\n");
766 				return EIO;
767 			}
768 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
769 			    bra_option_len) == 0) {
770 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
771 				break;
772 			}
773 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
774 			    bra_option_len) == 0) {
775 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
776 				break;
777 			}
778 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
779 			    bra_option_len) == 0) {
780 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
781 				break;
782 			}
783 			aprint_error_dev(sc->sc_dev,
784 			    "unsupported firmware type\n");
785 			return EIO;
786 		case UPGT_BRA_TYPE_VERSION:
787 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
788 			    device_xname(sc->sc_dev), bra_option_len);
789 			break;
790 		case UPGT_BRA_TYPE_DEPIF:
791 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
792 			    device_xname(sc->sc_dev), bra_option_len);
793 			break;
794 		case UPGT_BRA_TYPE_EXPIF:
795 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
796 			    device_xname(sc->sc_dev), bra_option_len);
797 			break;
798 		case UPGT_BRA_TYPE_DESCR:
799 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
800 			    device_xname(sc->sc_dev), bra_option_len);
801 
802 			struct upgt_fw_bra_descr *descr =
803 				(struct upgt_fw_bra_descr *)bra_option->data;
804 
805 			sc->sc_memaddr_frame_start =
806 			    le32toh(descr->memaddr_space_start);
807 			sc->sc_memaddr_frame_end =
808 			    le32toh(descr->memaddr_space_end);
809 
810 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
811 			    device_xname(sc->sc_dev),
812 			    sc->sc_memaddr_frame_start);
813 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
814 			    device_xname(sc->sc_dev),
815 			    sc->sc_memaddr_frame_end);
816 			break;
817 		case UPGT_BRA_TYPE_END:
818 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
819 			    device_xname(sc->sc_dev), bra_option_len);
820 			bra_end = 1;
821 			break;
822 		default:
823 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
824 			    device_xname(sc->sc_dev), bra_option_len);
825 			return EIO;
826 		}
827 
828 		/* jump to next BRA option */
829 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
830 	}
831 
832 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
833 
834 	return 0;
835 }
836 
837 static int
838 upgt_fw_load(struct upgt_softc *sc)
839 {
840 	struct upgt_data *data_cmd = &sc->cmd_data;
841 	struct upgt_data *data_rx = &sc->rx_data;
842 	struct upgt_fw_x2_header *x2;
843 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
844 	int offset, bsize, n, i, len;
845 	uint32_t crc;
846 
847 	/* send firmware start load command */
848 	len = sizeof(start_fwload_cmd);
849 	memcpy(data_cmd->buf, start_fwload_cmd, len);
850 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
851 		aprint_error_dev(sc->sc_dev,
852 		    "could not send start_firmware_load command\n");
853 		return EIO;
854 	}
855 
856 	/* send X2 header */
857 	len = sizeof(struct upgt_fw_x2_header);
858 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
859 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
860 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
861 	x2->len = htole32(sc->sc_fw_size);
862 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
863 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
864 	    sizeof(uint32_t));
865 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
866 		aprint_error_dev(sc->sc_dev,
867 		    "could not send firmware X2 header\n");
868 		return EIO;
869 	}
870 
871 	/* download firmware */
872 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
873 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
874 			bsize = UPGT_FW_BLOCK_SIZE;
875 		else
876 			bsize = sc->sc_fw_size - offset;
877 
878 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
879 
880 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
881 		    device_xname(sc->sc_dev), offset, n, bsize);
882 
883 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
884 		    != 0) {
885 			aprint_error_dev(sc->sc_dev,
886 			    "error while downloading firmware block\n");
887 			return EIO;
888 		}
889 
890 		bsize = n;
891 	}
892 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
893 
894 	/* load firmware */
895 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
896 	*((uint32_t *)(data_cmd->buf)    ) = crc;
897 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
898 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
899 	len = 6;
900 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
901 		aprint_error_dev(sc->sc_dev,
902 		    "could not send load_firmware command\n");
903 		return EIO;
904 	}
905 
906 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
907 		len = UPGT_FW_BLOCK_SIZE;
908 		memset(data_rx->buf, 0, 2);
909 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
910 		    USBD_SHORT_XFER_OK) != 0) {
911 			aprint_error_dev(sc->sc_dev,
912 			    "could not read firmware response\n");
913 			return EIO;
914 		}
915 
916 		if (memcmp(data_rx->buf, "OK", 2) == 0)
917 			break;	/* firmware load was successful */
918 	}
919 	if (i == UPGT_FIRMWARE_TIMEOUT) {
920 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
921 		return EIO;
922 	}
923 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
924 
925 	return 0;
926 }
927 
928 /*
929  * While copying the version 2 firmware, we need to replace two characters:
930  *
931  * 0x7e -> 0x7d 0x5e
932  * 0x7d -> 0x7d 0x5d
933  */
934 static int
935 upgt_fw_copy(char *src, char *dst, int size)
936 {
937 	int i, j;
938 
939 	for (i = 0, j = 0; i < size && j < size; i++) {
940 		switch (src[i]) {
941 		case 0x7e:
942 			dst[j] = 0x7d;
943 			j++;
944 			dst[j] = 0x5e;
945 			j++;
946 			break;
947 		case 0x7d:
948 			dst[j] = 0x7d;
949 			j++;
950 			dst[j] = 0x5d;
951 			j++;
952 			break;
953 		default:
954 			dst[j] = src[i];
955 			j++;
956 			break;
957 		}
958 	}
959 
960 	return i;
961 }
962 
963 static int
964 upgt_eeprom_read(struct upgt_softc *sc)
965 {
966 	struct upgt_data *data_cmd = &sc->cmd_data;
967 	struct upgt_lmac_mem *mem;
968 	struct upgt_lmac_eeprom	*eeprom;
969 	int offset, block, len;
970 
971 	offset = 0;
972 	block = UPGT_EEPROM_BLOCK_SIZE;
973 	while (offset < UPGT_EEPROM_SIZE) {
974 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
975 		    device_xname(sc->sc_dev), offset, block);
976 
977 		/*
978 		 * Transmit the URB containing the CMD data.
979 		 */
980 		len = sizeof(*mem) + sizeof(*eeprom) + block;
981 
982 		memset(data_cmd->buf, 0, len);
983 
984 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
985 		mem->addr = htole32(sc->sc_memaddr_frame_start +
986 		    UPGT_MEMSIZE_FRAME_HEAD);
987 
988 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
989 		eeprom->header1.flags = 0;
990 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
991 		eeprom->header1.len = htole16((
992 		    sizeof(struct upgt_lmac_eeprom) -
993 		    sizeof(struct upgt_lmac_header)) + block);
994 
995 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
996 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
997 		eeprom->header2.flags = 0;
998 
999 		eeprom->offset = htole16(offset);
1000 		eeprom->len = htole16(block);
1001 
1002 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1003 		    len - sizeof(*mem));
1004 
1005 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1006 		    USBD_FORCE_SHORT_XFER) != 0) {
1007 			aprint_error_dev(sc->sc_dev,
1008 			    "could not transmit EEPROM data URB\n");
1009 			return EIO;
1010 		}
1011 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1012 			aprint_error_dev(sc->sc_dev,
1013 			    "timeout while waiting for EEPROM data\n");
1014 			return EIO;
1015 		}
1016 
1017 		offset += block;
1018 		if (UPGT_EEPROM_SIZE - offset < block)
1019 			block = UPGT_EEPROM_SIZE - offset;
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 static int
1026 upgt_eeprom_parse(struct upgt_softc *sc)
1027 {
1028 	struct ieee80211com *ic = &sc->sc_ic;
1029 	struct upgt_eeprom_header *eeprom_header;
1030 	struct upgt_eeprom_option *eeprom_option;
1031 	uint16_t option_len;
1032 	uint16_t option_type;
1033 	uint16_t preamble_len;
1034 	int option_end = 0;
1035 
1036 	/* calculate eeprom options start offset */
1037 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1038 	preamble_len = le16toh(eeprom_header->preamble_len);
1039 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1040 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1041 
1042 	while (!option_end) {
1043 		/* the eeprom option length is stored in words */
1044 		option_len =
1045 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1046 		option_type =
1047 		    le16toh(eeprom_option->type);
1048 
1049 		switch (option_type) {
1050 		case UPGT_EEPROM_TYPE_NAME:
1051 			DPRINTF(1, "%s: EEPROM name len=%d\n",
1052 			    device_xname(sc->sc_dev), option_len);
1053 			break;
1054 		case UPGT_EEPROM_TYPE_SERIAL:
1055 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1056 			    device_xname(sc->sc_dev), option_len);
1057 			break;
1058 		case UPGT_EEPROM_TYPE_MAC:
1059 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1060 			    device_xname(sc->sc_dev), option_len);
1061 
1062 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1063 			break;
1064 		case UPGT_EEPROM_TYPE_HWRX:
1065 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1066 			    device_xname(sc->sc_dev), option_len);
1067 
1068 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1069 			break;
1070 		case UPGT_EEPROM_TYPE_CHIP:
1071 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1072 			    device_xname(sc->sc_dev), option_len);
1073 			break;
1074 		case UPGT_EEPROM_TYPE_FREQ3:
1075 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1076 			    device_xname(sc->sc_dev), option_len);
1077 
1078 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1079 			    option_len);
1080 			break;
1081 		case UPGT_EEPROM_TYPE_FREQ4:
1082 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1083 			    device_xname(sc->sc_dev), option_len);
1084 
1085 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1086 			    option_len);
1087 			break;
1088 		case UPGT_EEPROM_TYPE_FREQ5:
1089 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1090 			    device_xname(sc->sc_dev), option_len);
1091 			break;
1092 		case UPGT_EEPROM_TYPE_FREQ6:
1093 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1094 			    device_xname(sc->sc_dev), option_len);
1095 
1096 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1097 			    option_len);
1098 			break;
1099 		case UPGT_EEPROM_TYPE_END:
1100 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1101 			    device_xname(sc->sc_dev), option_len);
1102 			option_end = 1;
1103 			break;
1104 		case UPGT_EEPROM_TYPE_OFF:
1105 			DPRINTF(1, "%s: EEPROM off without end option\n",
1106 			    device_xname(sc->sc_dev));
1107 			return EIO;
1108 		default:
1109 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1110 			    device_xname(sc->sc_dev), option_type, option_len);
1111 			break;
1112 		}
1113 
1114 		/* jump to next EEPROM option */
1115 		eeprom_option = (struct upgt_eeprom_option *)
1116 		    (eeprom_option->data + option_len);
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 static void
1123 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1124 {
1125 	struct upgt_eeprom_option_hwrx *option_hwrx;
1126 
1127 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1128 
1129 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1130 
1131 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1132 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1133 }
1134 
1135 static void
1136 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1137 {
1138 	struct upgt_eeprom_freq3_header *freq3_header;
1139 	struct upgt_lmac_freq3 *freq3;
1140 	int i, elements, flags;
1141 	unsigned channel;
1142 
1143 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1144 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1145 
1146 	flags = freq3_header->flags;
1147 	elements = freq3_header->elements;
1148 
1149 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1150 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1151 	__USE(flags);
1152 
1153 	for (i = 0; i < elements; i++) {
1154 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1155 
1156 		sc->sc_eeprom_freq3[channel] = freq3[i];
1157 
1158 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1159 		    device_xname(sc->sc_dev),
1160 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1161 	}
1162 }
1163 
1164 static void
1165 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1166 {
1167 	struct upgt_eeprom_freq4_header *freq4_header;
1168 	struct upgt_eeprom_freq4_1 *freq4_1;
1169 	struct upgt_eeprom_freq4_2 *freq4_2;
1170 	int i, j, elements, settings, flags;
1171 	unsigned channel;
1172 
1173 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1174 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1175 
1176 	flags = freq4_header->flags;
1177 	elements = freq4_header->elements;
1178 	settings = freq4_header->settings;
1179 
1180 	/* we need this value later */
1181 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1182 
1183 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1184 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1185 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1186 	__USE(flags);
1187 
1188 	for (i = 0; i < elements; i++) {
1189 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1190 
1191 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1192 
1193 		for (j = 0; j < settings; j++) {
1194 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1195 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1196 		}
1197 
1198 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1199 		    device_xname(sc->sc_dev),
1200 		    le16toh(freq4_1[i].freq), channel);
1201 	}
1202 }
1203 
1204 static void
1205 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1206 {
1207 	struct upgt_lmac_freq6 *freq6;
1208 	int i, elements;
1209 	unsigned channel;
1210 
1211 	freq6 = (struct upgt_lmac_freq6 *)data;
1212 
1213 	elements = len / sizeof(struct upgt_lmac_freq6);
1214 
1215 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1216 
1217 	for (i = 0; i < elements; i++) {
1218 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1219 
1220 		sc->sc_eeprom_freq6[channel] = freq6[i];
1221 
1222 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1223 		    device_xname(sc->sc_dev),
1224 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1225 	}
1226 }
1227 
1228 static int
1229 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1230 {
1231 	struct upgt_softc *sc = ifp->if_softc;
1232 	struct ieee80211com *ic = &sc->sc_ic;
1233 	int s, error = 0;
1234 
1235 	s = splnet();
1236 
1237 	switch (cmd) {
1238 	case SIOCSIFFLAGS:
1239 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1240 			break;
1241 		if (ifp->if_flags & IFF_UP) {
1242 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1243 				upgt_init(ifp);
1244 		} else {
1245 			if (ifp->if_flags & IFF_RUNNING)
1246 				upgt_stop(sc);
1247 		}
1248 		break;
1249 	case SIOCADDMULTI:
1250 	case SIOCDELMULTI:
1251 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1252 			/* setup multicast filter, etc */
1253 			error = 0;
1254 		}
1255 		break;
1256 	default:
1257 		error = ieee80211_ioctl(ic, cmd, data);
1258 		break;
1259 	}
1260 
1261 	if (error == ENETRESET) {
1262 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1263 		    (IFF_UP | IFF_RUNNING))
1264 			upgt_init(ifp);
1265 		error = 0;
1266 	}
1267 
1268 	splx(s);
1269 
1270 	return error;
1271 }
1272 
1273 static int
1274 upgt_init(struct ifnet *ifp)
1275 {
1276 	struct upgt_softc *sc = ifp->if_softc;
1277 	struct ieee80211com *ic = &sc->sc_ic;
1278 
1279 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1280 
1281 	if (ifp->if_flags & IFF_RUNNING)
1282 		upgt_stop(sc);
1283 
1284 	ifp->if_flags |= IFF_RUNNING;
1285 	ifp->if_flags &= ~IFF_OACTIVE;
1286 
1287 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1288 
1289 	/* setup device rates */
1290 	upgt_setup_rates(sc);
1291 
1292 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1294 	else
1295 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1296 
1297 	return 0;
1298 }
1299 
1300 static void
1301 upgt_stop(struct upgt_softc *sc)
1302 {
1303 	struct ieee80211com *ic = &sc->sc_ic;
1304 	struct ifnet *ifp = &sc->sc_if;
1305 
1306 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1307 
1308 	/* device down */
1309 	ifp->if_timer = 0;
1310 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1311 
1312 	/* change device back to initial state */
1313 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1314 }
1315 
1316 static int
1317 upgt_media_change(struct ifnet *ifp)
1318 {
1319 	struct upgt_softc *sc = ifp->if_softc;
1320 	int error;
1321 
1322 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1323 
1324 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1325 		return error;
1326 
1327 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1328 	    (IFF_UP | IFF_RUNNING)) {
1329 		/* give pending USB transfers a chance to finish */
1330 		usbd_delay_ms(sc->sc_udev, 100);
1331 		upgt_init(ifp);
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static void
1338 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1339 {
1340 
1341 	ni->ni_txrate = 0;
1342 }
1343 
1344 static int
1345 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1346 {
1347 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1348 
1349 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1350 	callout_stop(&sc->scan_to);
1351 
1352 	/* do it in a process context */
1353 	sc->sc_state = nstate;
1354 	sc->sc_arg = arg;
1355 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1356 
1357 	return 0;
1358 }
1359 
1360 static void
1361 upgt_newstate_task(void *arg)
1362 {
1363 	struct upgt_softc *sc = arg;
1364 	struct ieee80211com *ic = &sc->sc_ic;
1365 	struct ieee80211_node *ni;
1366 	unsigned channel;
1367 
1368 	mutex_enter(&sc->sc_mtx);
1369 
1370 	switch (sc->sc_state) {
1371 	case IEEE80211_S_INIT:
1372 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1373 		    device_xname(sc->sc_dev));
1374 
1375 		/* do not accept any frames if the device is down */
1376 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1377 		upgt_set_led(sc, UPGT_LED_OFF);
1378 		break;
1379 	case IEEE80211_S_SCAN:
1380 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1381 		    device_xname(sc->sc_dev));
1382 
1383 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1384 		upgt_set_channel(sc, channel);
1385 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1386 		callout_schedule(&sc->scan_to, hz / 5);
1387 		break;
1388 	case IEEE80211_S_AUTH:
1389 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1390 		    device_xname(sc->sc_dev));
1391 
1392 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1393 		upgt_set_channel(sc, channel);
1394 		break;
1395 	case IEEE80211_S_ASSOC:
1396 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1397 		    device_xname(sc->sc_dev));
1398 
1399 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1400 		upgt_set_channel(sc, channel);
1401 		break;
1402 	case IEEE80211_S_RUN:
1403 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1404 		    device_xname(sc->sc_dev));
1405 
1406 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1407 		upgt_set_channel(sc, channel);
1408 
1409 		ni = ic->ic_bss;
1410 
1411 		/*
1412 		 * TX rate control is done by the firmware.
1413 		 * Report the maximum rate which is available therefore.
1414 		 */
1415 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1416 
1417 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1418 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1419 		upgt_set_led(sc, UPGT_LED_ON);
1420 		break;
1421 	}
1422 
1423 	mutex_exit(&sc->sc_mtx);
1424 
1425 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1426 }
1427 
1428 static void
1429 upgt_next_scan(void *arg)
1430 {
1431 	struct upgt_softc *sc = arg;
1432 	struct ieee80211com *ic = &sc->sc_ic;
1433 
1434 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1435 
1436 	if (ic->ic_state == IEEE80211_S_SCAN)
1437 		ieee80211_next_scan(ic);
1438 }
1439 
1440 static void
1441 upgt_start(struct ifnet *ifp)
1442 {
1443 	struct upgt_softc *sc = ifp->if_softc;
1444 	struct ieee80211com *ic = &sc->sc_ic;
1445 	struct ether_header *eh;
1446 	struct ieee80211_node *ni;
1447 	struct mbuf *m;
1448 	int i;
1449 
1450 	/* don't transmit packets if interface is busy or down */
1451 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1452 		return;
1453 
1454 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1455 
1456 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1457 		struct upgt_data *data_tx = &sc->tx_data[i];
1458 
1459 		if (data_tx->m != NULL)
1460 			continue;
1461 
1462 		IF_POLL(&ic->ic_mgtq, m);
1463 		if (m != NULL) {
1464 			/* management frame */
1465 			IF_DEQUEUE(&ic->ic_mgtq, m);
1466 
1467 			ni = M_GETCTX(m, struct ieee80211_node *);
1468 			M_CLEARCTX(m);
1469 
1470 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1471 
1472 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1473 				aprint_error_dev(sc->sc_dev,
1474 				    "no free prism memory\n");
1475 				m_freem(m);
1476 				ifp->if_oerrors++;
1477 				break;
1478 			}
1479 			data_tx->ni = ni;
1480 			data_tx->m = m;
1481 			sc->tx_queued++;
1482 		} else {
1483 			/* data frame */
1484 			if (ic->ic_state != IEEE80211_S_RUN)
1485 				break;
1486 
1487 			IFQ_POLL(&ifp->if_snd, m);
1488 			if (m == NULL)
1489 				break;
1490 
1491 			IFQ_DEQUEUE(&ifp->if_snd, m);
1492 			if (m->m_len < sizeof(struct ether_header) &&
1493 			    !(m = m_pullup(m, sizeof(struct ether_header))))
1494 				continue;
1495 
1496 			eh = mtod(m, struct ether_header *);
1497 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1498 			if (ni == NULL) {
1499 				m_freem(m);
1500 				continue;
1501 			}
1502 
1503 			bpf_mtap(ifp, m, BPF_D_OUT);
1504 
1505 			m = ieee80211_encap(ic, m, ni);
1506 			if (m == NULL) {
1507 				ieee80211_free_node(ni);
1508 				continue;
1509 			}
1510 
1511 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1512 
1513 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1514 				aprint_error_dev(sc->sc_dev,
1515 				    "no free prism memory\n");
1516 				m_freem(m);
1517 				ieee80211_free_node(ni);
1518 				ifp->if_oerrors++;
1519 				break;
1520 			}
1521 			data_tx->ni = ni;
1522 			data_tx->m = m;
1523 			sc->tx_queued++;
1524 		}
1525 	}
1526 
1527 	if (sc->tx_queued > 0) {
1528 		DPRINTF(2, "%s: tx_queued=%d\n",
1529 		    device_xname(sc->sc_dev), sc->tx_queued);
1530 		/* process the TX queue in process context */
1531 		ifp->if_timer = 5;
1532 		ifp->if_flags |= IFF_OACTIVE;
1533 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1534 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1535 	}
1536 }
1537 
1538 static void
1539 upgt_watchdog(struct ifnet *ifp)
1540 {
1541 	struct upgt_softc *sc = ifp->if_softc;
1542 	struct ieee80211com *ic = &sc->sc_ic;
1543 
1544 	if (ic->ic_state == IEEE80211_S_INIT)
1545 		return;
1546 
1547 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1548 
1549 	/* TODO: what shall we do on TX timeout? */
1550 
1551 	ieee80211_watchdog(ic);
1552 }
1553 
1554 static void
1555 upgt_tx_task(void *arg)
1556 {
1557 	struct upgt_softc *sc = arg;
1558 	struct ieee80211com *ic = &sc->sc_ic;
1559 	struct ieee80211_frame *wh;
1560 	struct ieee80211_key *k;
1561 	struct ifnet *ifp = &sc->sc_if;
1562 	struct upgt_lmac_mem *mem;
1563 	struct upgt_lmac_tx_desc *txdesc;
1564 	struct mbuf *m;
1565 	uint32_t addr;
1566 	int i, len, pad, s;
1567 	usbd_status error;
1568 
1569 	mutex_enter(&sc->sc_mtx);
1570 	upgt_set_led(sc, UPGT_LED_BLINK);
1571 	mutex_exit(&sc->sc_mtx);
1572 
1573 	s = splnet();
1574 
1575 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1576 		struct upgt_data *data_tx = &sc->tx_data[i];
1577 
1578 		if (data_tx->m == NULL)
1579 			continue;
1580 
1581 		m = data_tx->m;
1582 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1583 
1584 		/*
1585 		 * Software crypto.
1586 		 */
1587 		wh = mtod(m, struct ieee80211_frame *);
1588 
1589 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1590 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1591 			if (k == NULL) {
1592 				m_freem(m);
1593 				data_tx->m = NULL;
1594 				ieee80211_free_node(data_tx->ni);
1595 				data_tx->ni = NULL;
1596 				ifp->if_oerrors++;
1597 				break;
1598 			}
1599 
1600 			/* in case packet header moved, reset pointer */
1601 			wh = mtod(m, struct ieee80211_frame *);
1602 		}
1603 
1604 		/*
1605 		 * Transmit the URB containing the TX data.
1606 		 */
1607 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1608 
1609 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1610 		mem->addr = htole32(addr);
1611 
1612 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1613 
1614 		/* XXX differ between data and mgmt frames? */
1615 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1616 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1617 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1618 
1619 		txdesc->header2.reqid = htole32(data_tx->addr);
1620 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1621 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1622 
1623 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1624 		    IEEE80211_FC0_TYPE_MGT) {
1625 			/* always send mgmt frames at lowest rate (DS1) */
1626 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1627 		} else {
1628 			memcpy(txdesc->rates, sc->sc_cur_rateset,
1629 			    sizeof(txdesc->rates));
1630 		}
1631 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1632 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1633 
1634 		if (sc->sc_drvbpf != NULL) {
1635 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1636 
1637 			tap->wt_flags = 0;
1638 			tap->wt_rate = 0;	/* TODO: where to get from? */
1639 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1640 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1641 
1642 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1643 			    BPF_D_OUT);
1644 		}
1645 
1646 		/* copy frame below our TX descriptor header */
1647 		m_copydata(m, 0, m->m_pkthdr.len,
1648 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1649 
1650 		/* calculate frame size */
1651 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1652 
1653 		if (len & 3) {
1654 			/* we need to align the frame to a 4 byte boundary */
1655 			pad = 4 - (len & 3);
1656 			memset(data_tx->buf + len, 0, pad);
1657 			len += pad;
1658 		}
1659 
1660 		/* calculate frame checksum */
1661 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1662 		    len - sizeof(*mem));
1663 
1664 		/* we do not need the mbuf anymore */
1665 		m_freem(m);
1666 		data_tx->m = NULL;
1667 
1668 		ieee80211_free_node(data_tx->ni);
1669 		data_tx->ni = NULL;
1670 
1671 		DPRINTF(2, "%s: TX start data sending\n",
1672 		    device_xname(sc->sc_dev));
1673 
1674 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1675 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1676 		error = usbd_transfer(data_tx->xfer);
1677 		if (error != USBD_NORMAL_COMPLETION &&
1678 		    error != USBD_IN_PROGRESS) {
1679 			aprint_error_dev(sc->sc_dev,
1680 			    "could not transmit TX data URB\n");
1681 			ifp->if_oerrors++;
1682 			break;
1683 		}
1684 
1685 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1686 		    device_xname(sc->sc_dev), len);
1687 	}
1688 
1689 	splx(s);
1690 
1691 	/*
1692 	 * If we don't regulary read the device statistics, the RX queue
1693 	 * will stall.  It's strange, but it works, so we keep reading
1694 	 * the statistics here.  *shrug*
1695 	 */
1696 	mutex_enter(&sc->sc_mtx);
1697 	upgt_get_stats(sc);
1698 	mutex_exit(&sc->sc_mtx);
1699 }
1700 
1701 static void
1702 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1703 {
1704 	struct ifnet *ifp = &sc->sc_if;
1705 	struct upgt_lmac_tx_done_desc *desc;
1706 	int i, s;
1707 
1708 	s = splnet();
1709 
1710 	desc = (struct upgt_lmac_tx_done_desc *)data;
1711 
1712 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1713 		struct upgt_data *data_tx = &sc->tx_data[i];
1714 
1715 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1716 			upgt_mem_free(sc, data_tx->addr);
1717 			data_tx->addr = 0;
1718 
1719 			sc->tx_queued--;
1720 			ifp->if_opackets++;
1721 
1722 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1723 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1724 			    le32toh(desc->header2.reqid),
1725 			    le16toh(desc->status),
1726 			    le16toh(desc->rssi));
1727 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1728 			break;
1729 		}
1730 	}
1731 
1732 	if (sc->tx_queued == 0) {
1733 		/* TX queued was processed, continue */
1734 		ifp->if_timer = 0;
1735 		ifp->if_flags &= ~IFF_OACTIVE;
1736 		upgt_start(ifp);
1737 	}
1738 
1739 	splx(s);
1740 }
1741 
1742 static void
1743 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1744 {
1745 	struct upgt_data *data_rx = priv;
1746 	struct upgt_softc *sc = data_rx->sc;
1747 	int len;
1748 	struct upgt_lmac_header *header;
1749 	struct upgt_lmac_eeprom *eeprom;
1750 	uint8_t h1_type;
1751 	uint16_t h2_type;
1752 
1753 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1754 
1755 	if (status != USBD_NORMAL_COMPLETION) {
1756 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1757 			return;
1758 		if (status == USBD_STALLED)
1759 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1760 		goto skip;
1761 	}
1762 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1763 
1764 	/*
1765 	 * Check what type of frame came in.
1766 	 */
1767 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1768 
1769 	h1_type = header->header1.type;
1770 	h2_type = le16toh(header->header2.type);
1771 
1772 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1773 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1774 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1775 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1776 		uint16_t eeprom_len = le16toh(eeprom->len);
1777 
1778 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1779 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1780 
1781 		memcpy(sc->sc_eeprom + eeprom_offset,
1782 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1783 		    eeprom_len);
1784 
1785 		/* EEPROM data has arrived in time, wakeup tsleep() */
1786 		wakeup(sc);
1787 	} else
1788 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1789 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1790 		DPRINTF(2, "%s: received 802.11 TX done\n",
1791 		    device_xname(sc->sc_dev));
1792 
1793 		upgt_tx_done(sc, data_rx->buf + 4);
1794 	} else
1795 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1796 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1797 		DPRINTF(3, "%s: received 802.11 RX data\n",
1798 		    device_xname(sc->sc_dev));
1799 
1800 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1801 	} else
1802 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1803 	    h2_type == UPGT_H2_TYPE_STATS) {
1804 		DPRINTF(2, "%s: received statistic data\n",
1805 		    device_xname(sc->sc_dev));
1806 
1807 		/* TODO: what could we do with the statistic data? */
1808 	} else {
1809 		/* ignore unknown frame types */
1810 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1811 		    device_xname(sc->sc_dev), header->header1.type);
1812 	}
1813 
1814 skip:	/* setup new transfer */
1815 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1816 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1817 	(void)usbd_transfer(xfer);
1818 }
1819 
1820 static void
1821 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1822 {
1823 	struct ieee80211com *ic = &sc->sc_ic;
1824 	struct ifnet *ifp = &sc->sc_if;
1825 	struct upgt_lmac_rx_desc *rxdesc;
1826 	struct ieee80211_frame *wh;
1827 	struct ieee80211_node *ni;
1828 	struct mbuf *m;
1829 	int s;
1830 
1831 	/* access RX packet descriptor */
1832 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1833 
1834 	/* create mbuf which is suitable for strict alignment archs */
1835 #define ETHER_ALIGN	0
1836 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1837 	if (m == NULL) {
1838 		DPRINTF(1, "%s: could not create RX mbuf\n",
1839 		   device_xname(sc->sc_dev));
1840 		ifp->if_ierrors++;
1841 		return;
1842 	}
1843 
1844 	s = splnet();
1845 
1846 	if (sc->sc_drvbpf != NULL) {
1847 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1848 
1849 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1850 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1851 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1852 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1853 		tap->wr_antsignal = rxdesc->rssi;
1854 
1855 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1856 	}
1857 
1858 	/* trim FCS */
1859 	m_adj(m, -IEEE80211_CRC_LEN);
1860 
1861 	wh = mtod(m, struct ieee80211_frame *);
1862 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1863 
1864 	/* push the frame up to the 802.11 stack */
1865 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1866 
1867 	/* node is no longer needed */
1868 	ieee80211_free_node(ni);
1869 
1870 	splx(s);
1871 
1872 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1873 }
1874 
1875 static void
1876 upgt_setup_rates(struct upgt_softc *sc)
1877 {
1878 	struct ieee80211com *ic = &sc->sc_ic;
1879 
1880 	/*
1881 	 * 0x01 = OFMD6   0x10 = DS1
1882 	 * 0x04 = OFDM9   0x11 = DS2
1883 	 * 0x06 = OFDM12  0x12 = DS5
1884 	 * 0x07 = OFDM18  0x13 = DS11
1885 	 * 0x08 = OFDM24
1886 	 * 0x09 = OFDM36
1887 	 * 0x0a = OFDM48
1888 	 * 0x0b = OFDM54
1889 	 */
1890 	const uint8_t rateset_auto_11b[] =
1891 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1892 	const uint8_t rateset_auto_11g[] =
1893 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1894 	const uint8_t rateset_fix_11bg[] =
1895 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1896 	      0x08, 0x09, 0x0a, 0x0b };
1897 
1898 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1899 		/*
1900 		 * Automatic rate control is done by the device.
1901 		 * We just pass the rateset from which the device
1902 		 * will pickup a rate.
1903 		 */
1904 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1905 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1906 			    sizeof(sc->sc_cur_rateset));
1907 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1908 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1909 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1910 			    sizeof(sc->sc_cur_rateset));
1911 	} else {
1912 		/* set a fixed rate */
1913 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1914 		    sizeof(sc->sc_cur_rateset));
1915 	}
1916 }
1917 
1918 static uint8_t
1919 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1920 {
1921 	struct ieee80211com *ic = &sc->sc_ic;
1922 
1923 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1924 		if (rate < 0 || rate > 3)
1925 			/* invalid rate */
1926 			return 0;
1927 
1928 		switch (rate) {
1929 		case 0:
1930 			return 2;
1931 		case 1:
1932 			return 4;
1933 		case 2:
1934 			return 11;
1935 		case 3:
1936 			return 22;
1937 		default:
1938 			return 0;
1939 		}
1940 	}
1941 
1942 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1943 		if (rate < 0 || rate > 11)
1944 			/* invalid rate */
1945 			return 0;
1946 
1947 		switch (rate) {
1948 		case 0:
1949 			return 2;
1950 		case 1:
1951 			return 4;
1952 		case 2:
1953 			return 11;
1954 		case 3:
1955 			return 22;
1956 		case 4:
1957 			return 12;
1958 		case 5:
1959 			return 18;
1960 		case 6:
1961 			return 24;
1962 		case 7:
1963 			return 36;
1964 		case 8:
1965 			return 48;
1966 		case 9:
1967 			return 72;
1968 		case 10:
1969 			return 96;
1970 		case 11:
1971 			return 108;
1972 		default:
1973 			return 0;
1974 		}
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static int
1981 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1982 {
1983 	struct ieee80211com *ic = &sc->sc_ic;
1984 	struct ieee80211_node *ni = ic->ic_bss;
1985 	struct upgt_data *data_cmd = &sc->cmd_data;
1986 	struct upgt_lmac_mem *mem;
1987 	struct upgt_lmac_filter *filter;
1988 	int len;
1989 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1990 
1991 	/*
1992 	 * Transmit the URB containing the CMD data.
1993 	 */
1994 	len = sizeof(*mem) + sizeof(*filter);
1995 
1996 	memset(data_cmd->buf, 0, len);
1997 
1998 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1999 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2000 	    UPGT_MEMSIZE_FRAME_HEAD);
2001 
2002 	filter = (struct upgt_lmac_filter *)(mem + 1);
2003 
2004 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2005 	filter->header1.type = UPGT_H1_TYPE_CTRL;
2006 	filter->header1.len = htole16(
2007 	    sizeof(struct upgt_lmac_filter) -
2008 	    sizeof(struct upgt_lmac_header));
2009 
2010 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2011 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2012 	filter->header2.flags = 0;
2013 
2014 	switch (state) {
2015 	case IEEE80211_S_INIT:
2016 		DPRINTF(1, "%s: set MAC filter to INIT\n",
2017 		    device_xname(sc->sc_dev));
2018 
2019 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2020 		break;
2021 	case IEEE80211_S_SCAN:
2022 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2023 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2024 
2025 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2026 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2027 		IEEE80211_ADDR_COPY(filter->src, broadcast);
2028 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2029 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2030 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2031 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2032 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2033 		break;
2034 	case IEEE80211_S_RUN:
2035 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2036 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2037 
2038 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2039 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2040 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2041 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2042 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2043 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2044 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2045 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2046 		break;
2047 	default:
2048 		aprint_error_dev(sc->sc_dev,
2049 		    "MAC filter does not know that state\n");
2050 		break;
2051 	}
2052 
2053 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2054 
2055 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2056 		aprint_error_dev(sc->sc_dev,
2057 		    "could not transmit macfilter CMD data URB\n");
2058 		return EIO;
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static int
2065 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2066 {
2067 	struct upgt_data *data_cmd = &sc->cmd_data;
2068 	struct upgt_lmac_mem *mem;
2069 	struct upgt_lmac_channel *chan;
2070 	int len;
2071 
2072 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2073 	    channel);
2074 
2075 	/*
2076 	 * Transmit the URB containing the CMD data.
2077 	 */
2078 	len = sizeof(*mem) + sizeof(*chan);
2079 
2080 	memset(data_cmd->buf, 0, len);
2081 
2082 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2083 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2084 	    UPGT_MEMSIZE_FRAME_HEAD);
2085 
2086 	chan = (struct upgt_lmac_channel *)(mem + 1);
2087 
2088 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2089 	chan->header1.type = UPGT_H1_TYPE_CTRL;
2090 	chan->header1.len = htole16(
2091 	    sizeof(struct upgt_lmac_channel) -
2092 	    sizeof(struct upgt_lmac_header));
2093 
2094 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2095 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2096 	chan->header2.flags = 0;
2097 
2098 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2099 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2100 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2101 	chan->settings = sc->sc_eeprom_freq6_settings;
2102 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2103 
2104 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2105 	    sizeof(chan->freq3_1));
2106 
2107 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2108 	    sizeof(sc->sc_eeprom_freq4[channel]));
2109 
2110 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2111 	    sizeof(chan->freq3_2));
2112 
2113 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2114 
2115 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2116 		aprint_error_dev(sc->sc_dev,
2117 		    "could not transmit channel CMD data URB\n");
2118 		return EIO;
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 static void
2125 upgt_set_led(struct upgt_softc *sc, int action)
2126 {
2127 	struct ieee80211com *ic = &sc->sc_ic;
2128 	struct upgt_data *data_cmd = &sc->cmd_data;
2129 	struct upgt_lmac_mem *mem;
2130 	struct upgt_lmac_led *led;
2131 	struct timeval t;
2132 	int len;
2133 
2134 	/*
2135 	 * Transmit the URB containing the CMD data.
2136 	 */
2137 	len = sizeof(*mem) + sizeof(*led);
2138 
2139 	memset(data_cmd->buf, 0, len);
2140 
2141 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2142 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2143 	    UPGT_MEMSIZE_FRAME_HEAD);
2144 
2145 	led = (struct upgt_lmac_led *)(mem + 1);
2146 
2147 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2148 	led->header1.type = UPGT_H1_TYPE_CTRL;
2149 	led->header1.len = htole16(
2150 	    sizeof(struct upgt_lmac_led) -
2151 	    sizeof(struct upgt_lmac_header));
2152 
2153 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2154 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2155 	led->header2.flags = 0;
2156 
2157 	switch (action) {
2158 	case UPGT_LED_OFF:
2159 		led->mode = htole16(UPGT_LED_MODE_SET);
2160 		led->action_fix = 0;
2161 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2162 		led->action_tmp_dur = 0;
2163 		break;
2164 	case UPGT_LED_ON:
2165 		led->mode = htole16(UPGT_LED_MODE_SET);
2166 		led->action_fix = 0;
2167 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2168 		led->action_tmp_dur = 0;
2169 		break;
2170 	case UPGT_LED_BLINK:
2171 		if (ic->ic_state != IEEE80211_S_RUN)
2172 			return;
2173 		if (sc->sc_led_blink)
2174 			/* previous blink was not finished */
2175 			return;
2176 		led->mode = htole16(UPGT_LED_MODE_SET);
2177 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2178 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2179 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2180 		/* lock blink */
2181 		sc->sc_led_blink = 1;
2182 		t.tv_sec = 0;
2183 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2184 		callout_schedule(&sc->led_to, tvtohz(&t));
2185 		break;
2186 	default:
2187 		return;
2188 	}
2189 
2190 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2191 
2192 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2193 		aprint_error_dev(sc->sc_dev,
2194 		    "could not transmit led CMD URB\n");
2195 	}
2196 }
2197 
2198 static void
2199 upgt_set_led_blink(void *arg)
2200 {
2201 	struct upgt_softc *sc = arg;
2202 
2203 	/* blink finished, we are ready for a next one */
2204 	sc->sc_led_blink = 0;
2205 	callout_stop(&sc->led_to);
2206 }
2207 
2208 static int
2209 upgt_get_stats(struct upgt_softc *sc)
2210 {
2211 	struct upgt_data *data_cmd = &sc->cmd_data;
2212 	struct upgt_lmac_mem *mem;
2213 	struct upgt_lmac_stats *stats;
2214 	int len;
2215 
2216 	/*
2217 	 * Transmit the URB containing the CMD data.
2218 	 */
2219 	len = sizeof(*mem) + sizeof(*stats);
2220 
2221 	memset(data_cmd->buf, 0, len);
2222 
2223 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2224 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2225 	    UPGT_MEMSIZE_FRAME_HEAD);
2226 
2227 	stats = (struct upgt_lmac_stats *)(mem + 1);
2228 
2229 	stats->header1.flags = 0;
2230 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2231 	stats->header1.len = htole16(
2232 	    sizeof(struct upgt_lmac_stats) -
2233 	    sizeof(struct upgt_lmac_header));
2234 
2235 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2236 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2237 	stats->header2.flags = 0;
2238 
2239 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2240 
2241 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2242 		aprint_error_dev(sc->sc_dev,
2243 		    "could not transmit statistics CMD data URB\n");
2244 		return EIO;
2245 	}
2246 
2247 	return 0;
2248 
2249 }
2250 
2251 static int
2252 upgt_alloc_tx(struct upgt_softc *sc)
2253 {
2254 	int i;
2255 
2256 	sc->tx_queued = 0;
2257 
2258 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2259 		struct upgt_data *data_tx = &sc->tx_data[i];
2260 
2261 		data_tx->sc = sc;
2262 
2263 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2264 		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2265 		if (err) {
2266 			aprint_error_dev(sc->sc_dev,
2267 			    "could not allocate TX xfer\n");
2268 			return err;
2269 		}
2270 
2271 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 static int
2278 upgt_alloc_rx(struct upgt_softc *sc)
2279 {
2280 	struct upgt_data *data_rx = &sc->rx_data;
2281 
2282 	data_rx->sc = sc;
2283 
2284 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2285 	    0, 0, &data_rx->xfer);
2286 	if (err) {
2287 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2288 		return err;
2289 	}
2290 
2291 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
2292 
2293 	return 0;
2294 }
2295 
2296 static int
2297 upgt_alloc_cmd(struct upgt_softc *sc)
2298 {
2299 	struct upgt_data *data_cmd = &sc->cmd_data;
2300 
2301 	data_cmd->sc = sc;
2302 
2303 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2304 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2305 	if (err) {
2306 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2307 		return err;
2308 	}
2309 
2310 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2311 
2312 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2313 
2314 	return 0;
2315 }
2316 
2317 static void
2318 upgt_free_tx(struct upgt_softc *sc)
2319 {
2320 	int i;
2321 
2322 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2323 		struct upgt_data *data_tx = &sc->tx_data[i];
2324 
2325 		if (data_tx->xfer != NULL) {
2326 			usbd_destroy_xfer(data_tx->xfer);
2327 			data_tx->xfer = NULL;
2328 		}
2329 
2330 		data_tx->ni = NULL;
2331 	}
2332 }
2333 
2334 static void
2335 upgt_free_rx(struct upgt_softc *sc)
2336 {
2337 	struct upgt_data *data_rx = &sc->rx_data;
2338 
2339 	if (data_rx->xfer != NULL) {
2340 		usbd_destroy_xfer(data_rx->xfer);
2341 		data_rx->xfer = NULL;
2342 	}
2343 
2344 	data_rx->ni = NULL;
2345 }
2346 
2347 static void
2348 upgt_free_cmd(struct upgt_softc *sc)
2349 {
2350 	struct upgt_data *data_cmd = &sc->cmd_data;
2351 
2352 	if (data_cmd->xfer != NULL) {
2353 		usbd_destroy_xfer(data_cmd->xfer);
2354 		data_cmd->xfer = NULL;
2355 	}
2356 
2357 	mutex_destroy(&sc->sc_mtx);
2358 }
2359 
2360 static int
2361 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2362     struct usbd_pipe *pipeh, uint32_t *size, int flags)
2363 {
2364         usbd_status status;
2365 
2366 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2367 	    data->buf, size);
2368 	if (status != USBD_NORMAL_COMPLETION) {
2369 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2370 		    usbd_errstr(status));
2371 		return EIO;
2372 	}
2373 
2374 	return 0;
2375 }
2376 
2377 #if 0
2378 static void
2379 upgt_hexdump(void *buf, int len)
2380 {
2381 	int i;
2382 
2383 	for (i = 0; i < len; i++) {
2384 		if (i % 16 == 0)
2385 			printf("%s%5i:", i ? "\n" : "", i);
2386 		if (i % 4 == 0)
2387 			printf(" ");
2388 		printf("%02x", (int)*((uint8_t *)buf + i));
2389 	}
2390 	printf("\n");
2391 }
2392 #endif
2393 
2394 static uint32_t
2395 upgt_crc32_le(const void *buf, size_t size)
2396 {
2397 	uint32_t crc;
2398 
2399 	crc = ether_crc32_le(buf, size);
2400 
2401 	/* apply final XOR value as common for CRC-32 */
2402 	crc = htole32(crc ^ 0xffffffffU);
2403 
2404 	return crc;
2405 }
2406 
2407 /*
2408  * The firmware awaits a checksum for each frame we send to it.
2409  * The algorithm used is uncommon but somehow similar to CRC32.
2410  */
2411 static uint32_t
2412 upgt_chksum_le(const uint32_t *buf, size_t size)
2413 {
2414 	int i;
2415 	uint32_t crc = 0;
2416 
2417 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2418 		crc = htole32(crc ^ *buf++);
2419 		crc = htole32((crc >> 5) ^ (crc << 3));
2420 	}
2421 
2422 	return crc;
2423 }
2424