1 /* $NetBSD: if_upgt.c,v 1.20 2018/06/26 06:48:02 msaitoh Exp $ */ 2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.20 2018/06/26 06:48:02 msaitoh Exp $"); 22 23 #ifdef _KERNEL_OPT 24 #include "opt_usb.h" 25 #endif 26 27 #include <sys/param.h> 28 #include <sys/callout.h> 29 #include <sys/device.h> 30 #include <sys/errno.h> 31 #include <sys/kernel.h> 32 #include <sys/kthread.h> 33 #include <sys/mbuf.h> 34 #include <sys/proc.h> 35 #include <sys/sockio.h> 36 #include <sys/systm.h> 37 #include <sys/vnode.h> 38 #include <sys/bus.h> 39 #include <sys/endian.h> 40 #include <sys/intr.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_radiotap.h> 52 53 #include <dev/firmload.h> 54 55 #include <dev/usb/usb.h> 56 #include <dev/usb/usbdi.h> 57 #include <dev/usb/usbdi_util.h> 58 #include <dev/usb/usbdivar.h> 59 #include <dev/usb/usbdevs.h> 60 61 #include <dev/usb/if_upgtvar.h> 62 63 /* 64 * Driver for the USB PrismGT devices. 65 * 66 * For now just USB 2.0 devices with the GW3887 chipset are supported. 67 * The driver has been written based on the firmware version 2.13.1.0_LM87. 68 * 69 * TODO's: 70 * - Fix MONITOR mode (MAC filter). 71 * - Add HOSTAP mode. 72 * - Add IBSS mode. 73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 74 * 75 * Parts of this driver has been influenced by reading the p54u driver 76 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 77 * Sebastien Bourdeauducq <lekernel@prism54.org>. 78 */ 79 80 #ifdef UPGT_DEBUG 81 int upgt_debug = 2; 82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 83 #else 84 #define DPRINTF(l, x...) 85 #endif 86 87 /* 88 * Prototypes. 89 */ 90 static int upgt_match(device_t, cfdata_t, void *); 91 static void upgt_attach(device_t, device_t, void *); 92 static int upgt_detach(device_t, int); 93 static int upgt_activate(device_t, devact_t); 94 95 static void upgt_attach_hook(device_t); 96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 97 static int upgt_device_init(struct upgt_softc *); 98 static int upgt_mem_init(struct upgt_softc *); 99 static uint32_t upgt_mem_alloc(struct upgt_softc *); 100 static void upgt_mem_free(struct upgt_softc *, uint32_t); 101 static int upgt_fw_alloc(struct upgt_softc *); 102 static void upgt_fw_free(struct upgt_softc *); 103 static int upgt_fw_verify(struct upgt_softc *); 104 static int upgt_fw_load(struct upgt_softc *); 105 static int upgt_fw_copy(char *, char *, int); 106 static int upgt_eeprom_read(struct upgt_softc *); 107 static int upgt_eeprom_parse(struct upgt_softc *); 108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 112 113 static int upgt_ioctl(struct ifnet *, u_long, void *); 114 static int upgt_init(struct ifnet *); 115 static void upgt_stop(struct upgt_softc *); 116 static int upgt_media_change(struct ifnet *); 117 static void upgt_newassoc(struct ieee80211_node *, int); 118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state, 119 int); 120 static void upgt_newstate_task(void *); 121 static void upgt_next_scan(void *); 122 static void upgt_start(struct ifnet *); 123 static void upgt_watchdog(struct ifnet *); 124 static void upgt_tx_task(void *); 125 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status); 127 static void upgt_rx(struct upgt_softc *, uint8_t *, int); 128 static void upgt_setup_rates(struct upgt_softc *); 129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 131 static int upgt_set_channel(struct upgt_softc *, unsigned); 132 static void upgt_set_led(struct upgt_softc *, int); 133 static void upgt_set_led_blink(void *); 134 static int upgt_get_stats(struct upgt_softc *); 135 136 static int upgt_alloc_tx(struct upgt_softc *); 137 static int upgt_alloc_rx(struct upgt_softc *); 138 static int upgt_alloc_cmd(struct upgt_softc *); 139 static void upgt_free_tx(struct upgt_softc *); 140 static void upgt_free_rx(struct upgt_softc *); 141 static void upgt_free_cmd(struct upgt_softc *); 142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 143 struct usbd_pipe *, uint32_t *, int); 144 145 #if 0 146 static void upgt_hexdump(void *, int); 147 #endif 148 static uint32_t upgt_crc32_le(const void *, size_t); 149 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 150 151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc), 152 upgt_match, upgt_attach, upgt_detach, upgt_activate); 153 154 static const struct usb_devno upgt_devs_1[] = { 155 /* version 1 devices */ 156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G }, 157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 } 158 }; 159 160 static const struct usb_devno upgt_devs_2[] = { 161 /* version 2 devices */ 162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT }, 168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST }, 169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ }, 179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 }, 183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 }, 184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 186 }; 187 188 static int 189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep, 190 size_t *sizep) 191 { 192 firmware_handle_t fh; 193 int error; 194 195 if ((error = firmware_open(dname, iname, &fh)) != 0) 196 return error; 197 *sizep = firmware_get_size(fh); 198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) { 199 firmware_close(fh); 200 return ENOMEM; 201 } 202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0) 203 firmware_free(*ucodep, *sizep); 204 firmware_close(fh); 205 206 return error; 207 } 208 209 static int 210 upgt_match(device_t parent, cfdata_t match, void *aux) 211 { 212 struct usb_attach_arg *uaa = aux; 213 214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL) 215 return UMATCH_VENDOR_PRODUCT; 216 217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL) 218 return UMATCH_VENDOR_PRODUCT; 219 220 return UMATCH_NONE; 221 } 222 223 static void 224 upgt_attach(device_t parent, device_t self, void *aux) 225 { 226 struct upgt_softc *sc = device_private(self); 227 struct usb_attach_arg *uaa = aux; 228 usb_interface_descriptor_t *id; 229 usb_endpoint_descriptor_t *ed; 230 usbd_status error; 231 char *devinfop; 232 int i; 233 234 aprint_naive("\n"); 235 aprint_normal("\n"); 236 237 /* 238 * Attach USB device. 239 */ 240 sc->sc_dev = self; 241 sc->sc_udev = uaa->uaa_device; 242 243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop); 245 usbd_devinfo_free(devinfop); 246 247 /* check device type */ 248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0) 249 return; 250 251 /* set configuration number */ 252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0); 253 if (error != 0) { 254 aprint_error_dev(sc->sc_dev, "failed to set configuration" 255 ", err=%s\n", usbd_errstr(error)); 256 return; 257 } 258 259 /* get the first interface handle */ 260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 261 &sc->sc_iface); 262 if (error != 0) { 263 aprint_error_dev(sc->sc_dev, 264 "could not get interface handle\n"); 265 return; 266 } 267 268 /* find endpoints */ 269 id = usbd_get_interface_descriptor(sc->sc_iface); 270 sc->sc_rx_no = sc->sc_tx_no = -1; 271 for (i = 0; i < id->bNumEndpoints; i++) { 272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 273 if (ed == NULL) { 274 aprint_error_dev(sc->sc_dev, 275 "no endpoint descriptor for iface %d\n", i); 276 return; 277 } 278 279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 281 sc->sc_tx_no = ed->bEndpointAddress; 282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 284 sc->sc_rx_no = ed->bEndpointAddress; 285 286 /* 287 * 0x01 TX pipe 288 * 0x81 RX pipe 289 * 290 * Deprecated scheme (not used with fw version >2.5.6.x): 291 * 0x02 TX MGMT pipe 292 * 0x82 TX MGMT pipe 293 */ 294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 295 break; 296 } 297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 298 aprint_error_dev(sc->sc_dev, "missing endpoint\n"); 299 return; 300 } 301 302 /* setup tasks and timeouts */ 303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0); 304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0); 305 callout_init(&sc->scan_to, 0); 306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc); 307 callout_init(&sc->led_to, 0); 308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc); 309 310 /* 311 * Open TX and RX USB bulk pipes. 312 */ 313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 314 &sc->sc_tx_pipeh); 315 if (error != 0) { 316 aprint_error_dev(sc->sc_dev, 317 "could not open TX pipe: %s\n", usbd_errstr(error)); 318 goto fail; 319 } 320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 321 &sc->sc_rx_pipeh); 322 if (error != 0) { 323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n", 324 usbd_errstr(error)); 325 goto fail; 326 } 327 328 /* 329 * Allocate TX, RX, and CMD xfers. 330 */ 331 if (upgt_alloc_tx(sc) != 0) 332 goto fail; 333 if (upgt_alloc_rx(sc) != 0) 334 goto fail; 335 if (upgt_alloc_cmd(sc) != 0) 336 goto fail; 337 338 /* 339 * We need the firmware loaded from file system to complete the attach. 340 */ 341 config_mountroot(self, upgt_attach_hook); 342 343 return; 344 fail: 345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__); 346 } 347 348 static void 349 upgt_attach_hook(device_t arg) 350 { 351 struct upgt_softc *sc = device_private(arg); 352 struct ieee80211com *ic = &sc->sc_ic; 353 struct ifnet *ifp = &sc->sc_if; 354 usbd_status error; 355 int i; 356 357 /* 358 * Load firmware file into memory. 359 */ 360 if (upgt_fw_alloc(sc) != 0) 361 goto fail; 362 363 /* 364 * Initialize the device. 365 */ 366 if (upgt_device_init(sc) != 0) 367 goto fail; 368 369 /* 370 * Verify the firmware. 371 */ 372 if (upgt_fw_verify(sc) != 0) 373 goto fail; 374 375 /* 376 * Calculate device memory space. 377 */ 378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 379 aprint_error_dev(sc->sc_dev, 380 "could not find memory space addresses on FW\n"); 381 goto fail; 382 } 383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 385 386 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start); 388 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end); 390 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start); 392 393 upgt_mem_init(sc); 394 395 /* 396 * Load the firmware. 397 */ 398 if (upgt_fw_load(sc) != 0) 399 goto fail; 400 401 /* 402 * Startup the RX pipe. 403 */ 404 struct upgt_data *data_rx = &sc->rx_data; 405 406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf, 407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 408 error = usbd_transfer(data_rx->xfer); 409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 410 aprint_error_dev(sc->sc_dev, 411 "could not queue RX transfer\n"); 412 goto fail; 413 } 414 usbd_delay_ms(sc->sc_udev, 100); 415 416 /* 417 * Read the whole EEPROM content and parse it. 418 */ 419 if (upgt_eeprom_read(sc) != 0) 420 goto fail; 421 if (upgt_eeprom_parse(sc) != 0) 422 goto fail; 423 424 /* 425 * Setup the 802.11 device. 426 */ 427 ic->ic_ifp = ifp; 428 ic->ic_phytype = IEEE80211_T_OFDM; 429 ic->ic_opmode = IEEE80211_M_STA; 430 ic->ic_state = IEEE80211_S_INIT; 431 ic->ic_caps = 432 IEEE80211_C_MONITOR | 433 IEEE80211_C_SHPREAMBLE | 434 IEEE80211_C_SHSLOT; 435 436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 438 439 for (i = 1; i <= 14; i++) { 440 ic->ic_channels[i].ic_freq = 441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 442 ic->ic_channels[i].ic_flags = 443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 445 } 446 447 ifp->if_softc = sc; 448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 449 ifp->if_init = upgt_init; 450 ifp->if_ioctl = upgt_ioctl; 451 ifp->if_start = upgt_start; 452 ifp->if_watchdog = upgt_watchdog; 453 IFQ_SET_READY(&ifp->if_snd); 454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 455 456 if_attach(ifp); 457 ieee80211_ifattach(ic); 458 ic->ic_newassoc = upgt_newassoc; 459 460 sc->sc_newstate = ic->ic_newstate; 461 ic->ic_newstate = upgt_newstate; 462 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status); 463 464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 465 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 466 &sc->sc_drvbpf); 467 468 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 470 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 471 472 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 474 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 475 476 aprint_normal_dev(sc->sc_dev, "address %s\n", 477 ether_sprintf(ic->ic_myaddr)); 478 479 ieee80211_announce(ic); 480 481 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 482 483 /* device attached */ 484 sc->sc_flags |= UPGT_DEVICE_ATTACHED; 485 486 return; 487 fail: 488 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__); 489 } 490 491 static int 492 upgt_detach(device_t self, int flags) 493 { 494 struct upgt_softc *sc = device_private(self); 495 struct ifnet *ifp = &sc->sc_if; 496 struct ieee80211com *ic = &sc->sc_ic; 497 int s; 498 499 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 500 501 s = splnet(); 502 503 if (ifp->if_flags & IFF_RUNNING) 504 upgt_stop(sc); 505 506 /* remove tasks and timeouts */ 507 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 508 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 509 callout_destroy(&sc->scan_to); 510 callout_destroy(&sc->led_to); 511 512 /* abort and close TX / RX pipes */ 513 if (sc->sc_tx_pipeh != NULL) { 514 usbd_abort_pipe(sc->sc_tx_pipeh); 515 } 516 if (sc->sc_rx_pipeh != NULL) { 517 usbd_abort_pipe(sc->sc_rx_pipeh); 518 } 519 520 /* free xfers */ 521 upgt_free_tx(sc); 522 upgt_free_rx(sc); 523 upgt_free_cmd(sc); 524 525 /* Close TX / RX pipes */ 526 if (sc->sc_tx_pipeh != NULL) { 527 usbd_close_pipe(sc->sc_tx_pipeh); 528 } 529 if (sc->sc_rx_pipeh != NULL) { 530 usbd_close_pipe(sc->sc_rx_pipeh); 531 } 532 533 /* free firmware */ 534 upgt_fw_free(sc); 535 536 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) { 537 /* detach interface */ 538 bpf_detach(ifp); 539 ieee80211_ifdetach(ic); 540 if_detach(ifp); 541 } 542 543 splx(s); 544 545 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 546 547 return 0; 548 } 549 550 static int 551 upgt_activate(device_t self, devact_t act) 552 { 553 struct upgt_softc *sc = device_private(self); 554 555 switch (act) { 556 case DVACT_DEACTIVATE: 557 if_deactivate(&sc->sc_if); 558 return 0; 559 default: 560 return EOPNOTSUPP; 561 } 562 } 563 564 static int 565 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 566 { 567 568 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 569 sc->sc_device_type = 1; 570 /* XXX */ 571 aprint_error_dev(sc->sc_dev, 572 "version 1 devices not supported yet\n"); 573 return 1; 574 } else 575 sc->sc_device_type = 2; 576 577 return 0; 578 } 579 580 static int 581 upgt_device_init(struct upgt_softc *sc) 582 { 583 struct upgt_data *data_cmd = &sc->cmd_data; 584 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 585 int len; 586 587 len = sizeof(init_cmd); 588 memcpy(data_cmd->buf, init_cmd, len); 589 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 590 aprint_error_dev(sc->sc_dev, 591 "could not send device init string\n"); 592 return EIO; 593 } 594 usbd_delay_ms(sc->sc_udev, 100); 595 596 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev)); 597 598 return 0; 599 } 600 601 static int 602 upgt_mem_init(struct upgt_softc *sc) 603 { 604 int i; 605 606 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 607 sc->sc_memory.page[i].used = 0; 608 609 if (i == 0) { 610 /* 611 * The first memory page is always reserved for 612 * command data. 613 */ 614 sc->sc_memory.page[i].addr = 615 sc->sc_memaddr_frame_start + MCLBYTES; 616 } else { 617 sc->sc_memory.page[i].addr = 618 sc->sc_memory.page[i - 1].addr + MCLBYTES; 619 } 620 621 if (sc->sc_memory.page[i].addr + MCLBYTES >= 622 sc->sc_memaddr_frame_end) 623 break; 624 625 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 626 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr); 627 } 628 629 sc->sc_memory.pages = i; 630 631 DPRINTF(2, "%s: memory pages=%d\n", 632 device_xname(sc->sc_dev), sc->sc_memory.pages); 633 634 return 0; 635 } 636 637 static uint32_t 638 upgt_mem_alloc(struct upgt_softc *sc) 639 { 640 int i; 641 642 for (i = 0; i < sc->sc_memory.pages; i++) { 643 if (sc->sc_memory.page[i].used == 0) { 644 sc->sc_memory.page[i].used = 1; 645 return sc->sc_memory.page[i].addr; 646 } 647 } 648 649 return 0; 650 } 651 652 static void 653 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 654 { 655 int i; 656 657 for (i = 0; i < sc->sc_memory.pages; i++) { 658 if (sc->sc_memory.page[i].addr == addr) { 659 sc->sc_memory.page[i].used = 0; 660 return; 661 } 662 } 663 664 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n", 665 addr); 666 } 667 668 669 static int 670 upgt_fw_alloc(struct upgt_softc *sc) 671 { 672 const char *name = "upgt-gw3887"; 673 int error; 674 675 if (sc->sc_fw == NULL) { 676 error = firmware_load("upgt", name, &sc->sc_fw, 677 &sc->sc_fw_size); 678 if (error != 0) { 679 if (error == ENOENT) { 680 /* 681 * The firmware file for upgt(4) is not in 682 * the default distribution due to its lisence 683 * so explicitly notify it if the firmware file 684 * is not found. 685 */ 686 aprint_error_dev(sc->sc_dev, 687 "firmware file %s is not installed\n", 688 name); 689 aprint_error_dev(sc->sc_dev, 690 "(it is not included in the default" 691 " distribution)\n"); 692 aprint_error_dev(sc->sc_dev, 693 "see upgt(4) man page for details about " 694 "firmware installation\n"); 695 } else { 696 aprint_error_dev(sc->sc_dev, 697 "could not read firmware %s\n", name); 698 } 699 return EIO; 700 } 701 } 702 703 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev), 704 name); 705 706 return 0; 707 } 708 709 static void 710 upgt_fw_free(struct upgt_softc *sc) 711 { 712 713 if (sc->sc_fw != NULL) { 714 firmware_free(sc->sc_fw, sc->sc_fw_size); 715 sc->sc_fw = NULL; 716 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev)); 717 } 718 } 719 720 static int 721 upgt_fw_verify(struct upgt_softc *sc) 722 { 723 struct upgt_fw_bra_option *bra_option; 724 uint32_t bra_option_type, bra_option_len; 725 uint32_t *uc; 726 int offset, bra_end = 0; 727 728 /* 729 * Seek to beginning of Boot Record Area (BRA). 730 */ 731 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 732 uc = (uint32_t *)(sc->sc_fw + offset); 733 if (*uc == 0) 734 break; 735 } 736 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 737 uc = (uint32_t *)(sc->sc_fw + offset); 738 if (*uc != 0) 739 break; 740 } 741 if (offset == sc->sc_fw_size) { 742 aprint_error_dev(sc->sc_dev, 743 "firmware Boot Record Area not found\n"); 744 return EIO; 745 } 746 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 747 device_xname(sc->sc_dev), offset); 748 749 /* 750 * Parse Boot Record Area (BRA) options. 751 */ 752 while (offset < sc->sc_fw_size && bra_end == 0) { 753 /* get current BRA option */ 754 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 755 bra_option_type = le32toh(bra_option->type); 756 bra_option_len = le32toh(bra_option->len) * sizeof(*uc); 757 758 switch (bra_option_type) { 759 case UPGT_BRA_TYPE_FW: 760 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 761 device_xname(sc->sc_dev), bra_option_len); 762 763 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 764 aprint_error_dev(sc->sc_dev, 765 "wrong UPGT_BRA_TYPE_FW len\n"); 766 return EIO; 767 } 768 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 769 bra_option_len) == 0) { 770 sc->sc_fw_type = UPGT_FWTYPE_LM86; 771 break; 772 } 773 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 774 bra_option_len) == 0) { 775 sc->sc_fw_type = UPGT_FWTYPE_LM87; 776 break; 777 } 778 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 779 bra_option_len) == 0) { 780 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 781 break; 782 } 783 aprint_error_dev(sc->sc_dev, 784 "unsupported firmware type\n"); 785 return EIO; 786 case UPGT_BRA_TYPE_VERSION: 787 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 788 device_xname(sc->sc_dev), bra_option_len); 789 break; 790 case UPGT_BRA_TYPE_DEPIF: 791 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 792 device_xname(sc->sc_dev), bra_option_len); 793 break; 794 case UPGT_BRA_TYPE_EXPIF: 795 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 796 device_xname(sc->sc_dev), bra_option_len); 797 break; 798 case UPGT_BRA_TYPE_DESCR: 799 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 800 device_xname(sc->sc_dev), bra_option_len); 801 802 struct upgt_fw_bra_descr *descr = 803 (struct upgt_fw_bra_descr *)bra_option->data; 804 805 sc->sc_memaddr_frame_start = 806 le32toh(descr->memaddr_space_start); 807 sc->sc_memaddr_frame_end = 808 le32toh(descr->memaddr_space_end); 809 810 DPRINTF(2, "%s: memory address space start=0x%08x\n", 811 device_xname(sc->sc_dev), 812 sc->sc_memaddr_frame_start); 813 DPRINTF(2, "%s: memory address space end=0x%08x\n", 814 device_xname(sc->sc_dev), 815 sc->sc_memaddr_frame_end); 816 break; 817 case UPGT_BRA_TYPE_END: 818 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 819 device_xname(sc->sc_dev), bra_option_len); 820 bra_end = 1; 821 break; 822 default: 823 DPRINTF(1, "%s: unknown BRA option len=%d\n", 824 device_xname(sc->sc_dev), bra_option_len); 825 return EIO; 826 } 827 828 /* jump to next BRA option */ 829 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 830 } 831 832 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev)); 833 834 return 0; 835 } 836 837 static int 838 upgt_fw_load(struct upgt_softc *sc) 839 { 840 struct upgt_data *data_cmd = &sc->cmd_data; 841 struct upgt_data *data_rx = &sc->rx_data; 842 struct upgt_fw_x2_header *x2; 843 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d }; 844 int offset, bsize, n, i, len; 845 uint32_t crc; 846 847 /* send firmware start load command */ 848 len = sizeof(start_fwload_cmd); 849 memcpy(data_cmd->buf, start_fwload_cmd, len); 850 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 851 aprint_error_dev(sc->sc_dev, 852 "could not send start_firmware_load command\n"); 853 return EIO; 854 } 855 856 /* send X2 header */ 857 len = sizeof(struct upgt_fw_x2_header); 858 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 859 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 860 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 861 x2->len = htole32(sc->sc_fw_size); 862 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 863 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 864 sizeof(uint32_t)); 865 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 866 aprint_error_dev(sc->sc_dev, 867 "could not send firmware X2 header\n"); 868 return EIO; 869 } 870 871 /* download firmware */ 872 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 873 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 874 bsize = UPGT_FW_BLOCK_SIZE; 875 else 876 bsize = sc->sc_fw_size - offset; 877 878 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 879 880 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 881 device_xname(sc->sc_dev), offset, n, bsize); 882 883 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 884 != 0) { 885 aprint_error_dev(sc->sc_dev, 886 "error while downloading firmware block\n"); 887 return EIO; 888 } 889 890 bsize = n; 891 } 892 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev)); 893 894 /* load firmware */ 895 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 896 *((uint32_t *)(data_cmd->buf) ) = crc; 897 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 898 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 899 len = 6; 900 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 901 aprint_error_dev(sc->sc_dev, 902 "could not send load_firmware command\n"); 903 return EIO; 904 } 905 906 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 907 len = UPGT_FW_BLOCK_SIZE; 908 memset(data_rx->buf, 0, 2); 909 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 910 USBD_SHORT_XFER_OK) != 0) { 911 aprint_error_dev(sc->sc_dev, 912 "could not read firmware response\n"); 913 return EIO; 914 } 915 916 if (memcmp(data_rx->buf, "OK", 2) == 0) 917 break; /* firmware load was successful */ 918 } 919 if (i == UPGT_FIRMWARE_TIMEOUT) { 920 aprint_error_dev(sc->sc_dev, "firmware load failed\n"); 921 return EIO; 922 } 923 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev)); 924 925 return 0; 926 } 927 928 /* 929 * While copying the version 2 firmware, we need to replace two characters: 930 * 931 * 0x7e -> 0x7d 0x5e 932 * 0x7d -> 0x7d 0x5d 933 */ 934 static int 935 upgt_fw_copy(char *src, char *dst, int size) 936 { 937 int i, j; 938 939 for (i = 0, j = 0; i < size && j < size; i++) { 940 switch (src[i]) { 941 case 0x7e: 942 dst[j] = 0x7d; 943 j++; 944 dst[j] = 0x5e; 945 j++; 946 break; 947 case 0x7d: 948 dst[j] = 0x7d; 949 j++; 950 dst[j] = 0x5d; 951 j++; 952 break; 953 default: 954 dst[j] = src[i]; 955 j++; 956 break; 957 } 958 } 959 960 return i; 961 } 962 963 static int 964 upgt_eeprom_read(struct upgt_softc *sc) 965 { 966 struct upgt_data *data_cmd = &sc->cmd_data; 967 struct upgt_lmac_mem *mem; 968 struct upgt_lmac_eeprom *eeprom; 969 int offset, block, len; 970 971 offset = 0; 972 block = UPGT_EEPROM_BLOCK_SIZE; 973 while (offset < UPGT_EEPROM_SIZE) { 974 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 975 device_xname(sc->sc_dev), offset, block); 976 977 /* 978 * Transmit the URB containing the CMD data. 979 */ 980 len = sizeof(*mem) + sizeof(*eeprom) + block; 981 982 memset(data_cmd->buf, 0, len); 983 984 mem = (struct upgt_lmac_mem *)data_cmd->buf; 985 mem->addr = htole32(sc->sc_memaddr_frame_start + 986 UPGT_MEMSIZE_FRAME_HEAD); 987 988 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 989 eeprom->header1.flags = 0; 990 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 991 eeprom->header1.len = htole16(( 992 sizeof(struct upgt_lmac_eeprom) - 993 sizeof(struct upgt_lmac_header)) + block); 994 995 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 996 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 997 eeprom->header2.flags = 0; 998 999 eeprom->offset = htole16(offset); 1000 eeprom->len = htole16(block); 1001 1002 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1003 len - sizeof(*mem)); 1004 1005 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 1006 USBD_FORCE_SHORT_XFER) != 0) { 1007 aprint_error_dev(sc->sc_dev, 1008 "could not transmit EEPROM data URB\n"); 1009 return EIO; 1010 } 1011 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) { 1012 aprint_error_dev(sc->sc_dev, 1013 "timeout while waiting for EEPROM data\n"); 1014 return EIO; 1015 } 1016 1017 offset += block; 1018 if (UPGT_EEPROM_SIZE - offset < block) 1019 block = UPGT_EEPROM_SIZE - offset; 1020 } 1021 1022 return 0; 1023 } 1024 1025 static int 1026 upgt_eeprom_parse(struct upgt_softc *sc) 1027 { 1028 struct ieee80211com *ic = &sc->sc_ic; 1029 struct upgt_eeprom_header *eeprom_header; 1030 struct upgt_eeprom_option *eeprom_option; 1031 uint16_t option_len; 1032 uint16_t option_type; 1033 uint16_t preamble_len; 1034 int option_end = 0; 1035 1036 /* calculate eeprom options start offset */ 1037 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1038 preamble_len = le16toh(eeprom_header->preamble_len); 1039 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1040 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1041 1042 while (!option_end) { 1043 /* the eeprom option length is stored in words */ 1044 option_len = 1045 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1046 option_type = 1047 le16toh(eeprom_option->type); 1048 1049 switch (option_type) { 1050 case UPGT_EEPROM_TYPE_NAME: 1051 DPRINTF(1, "%s: EEPROM name len=%d\n", 1052 device_xname(sc->sc_dev), option_len); 1053 break; 1054 case UPGT_EEPROM_TYPE_SERIAL: 1055 DPRINTF(1, "%s: EEPROM serial len=%d\n", 1056 device_xname(sc->sc_dev), option_len); 1057 break; 1058 case UPGT_EEPROM_TYPE_MAC: 1059 DPRINTF(1, "%s: EEPROM mac len=%d\n", 1060 device_xname(sc->sc_dev), option_len); 1061 1062 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 1063 break; 1064 case UPGT_EEPROM_TYPE_HWRX: 1065 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 1066 device_xname(sc->sc_dev), option_len); 1067 1068 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1069 break; 1070 case UPGT_EEPROM_TYPE_CHIP: 1071 DPRINTF(1, "%s: EEPROM chip len=%d\n", 1072 device_xname(sc->sc_dev), option_len); 1073 break; 1074 case UPGT_EEPROM_TYPE_FREQ3: 1075 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 1076 device_xname(sc->sc_dev), option_len); 1077 1078 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1079 option_len); 1080 break; 1081 case UPGT_EEPROM_TYPE_FREQ4: 1082 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 1083 device_xname(sc->sc_dev), option_len); 1084 1085 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1086 option_len); 1087 break; 1088 case UPGT_EEPROM_TYPE_FREQ5: 1089 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 1090 device_xname(sc->sc_dev), option_len); 1091 break; 1092 case UPGT_EEPROM_TYPE_FREQ6: 1093 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 1094 device_xname(sc->sc_dev), option_len); 1095 1096 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1097 option_len); 1098 break; 1099 case UPGT_EEPROM_TYPE_END: 1100 DPRINTF(1, "%s: EEPROM end len=%d\n", 1101 device_xname(sc->sc_dev), option_len); 1102 option_end = 1; 1103 break; 1104 case UPGT_EEPROM_TYPE_OFF: 1105 DPRINTF(1, "%s: EEPROM off without end option\n", 1106 device_xname(sc->sc_dev)); 1107 return EIO; 1108 default: 1109 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1110 device_xname(sc->sc_dev), option_type, option_len); 1111 break; 1112 } 1113 1114 /* jump to next EEPROM option */ 1115 eeprom_option = (struct upgt_eeprom_option *) 1116 (eeprom_option->data + option_len); 1117 } 1118 1119 return 0; 1120 } 1121 1122 static void 1123 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1124 { 1125 struct upgt_eeprom_option_hwrx *option_hwrx; 1126 1127 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1128 1129 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1130 1131 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1132 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx); 1133 } 1134 1135 static void 1136 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1137 { 1138 struct upgt_eeprom_freq3_header *freq3_header; 1139 struct upgt_lmac_freq3 *freq3; 1140 int i, elements, flags; 1141 unsigned channel; 1142 1143 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1144 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1145 1146 flags = freq3_header->flags; 1147 elements = freq3_header->elements; 1148 1149 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags); 1150 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1151 __USE(flags); 1152 1153 for (i = 0; i < elements; i++) { 1154 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1155 1156 sc->sc_eeprom_freq3[channel] = freq3[i]; 1157 1158 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1159 device_xname(sc->sc_dev), 1160 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1161 } 1162 } 1163 1164 static void 1165 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1166 { 1167 struct upgt_eeprom_freq4_header *freq4_header; 1168 struct upgt_eeprom_freq4_1 *freq4_1; 1169 struct upgt_eeprom_freq4_2 *freq4_2; 1170 int i, j, elements, settings, flags; 1171 unsigned channel; 1172 1173 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1174 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1175 1176 flags = freq4_header->flags; 1177 elements = freq4_header->elements; 1178 settings = freq4_header->settings; 1179 1180 /* we need this value later */ 1181 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1182 1183 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags); 1184 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1185 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings); 1186 __USE(flags); 1187 1188 for (i = 0; i < elements; i++) { 1189 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1190 1191 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1192 1193 for (j = 0; j < settings; j++) { 1194 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1195 sc->sc_eeprom_freq4[channel][j].pad = 0; 1196 } 1197 1198 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1199 device_xname(sc->sc_dev), 1200 le16toh(freq4_1[i].freq), channel); 1201 } 1202 } 1203 1204 static void 1205 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1206 { 1207 struct upgt_lmac_freq6 *freq6; 1208 int i, elements; 1209 unsigned channel; 1210 1211 freq6 = (struct upgt_lmac_freq6 *)data; 1212 1213 elements = len / sizeof(struct upgt_lmac_freq6); 1214 1215 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1216 1217 for (i = 0; i < elements; i++) { 1218 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1219 1220 sc->sc_eeprom_freq6[channel] = freq6[i]; 1221 1222 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1223 device_xname(sc->sc_dev), 1224 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1225 } 1226 } 1227 1228 static int 1229 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1230 { 1231 struct upgt_softc *sc = ifp->if_softc; 1232 struct ieee80211com *ic = &sc->sc_ic; 1233 int s, error = 0; 1234 1235 s = splnet(); 1236 1237 switch (cmd) { 1238 case SIOCSIFFLAGS: 1239 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1240 break; 1241 if (ifp->if_flags & IFF_UP) { 1242 if ((ifp->if_flags & IFF_RUNNING) == 0) 1243 upgt_init(ifp); 1244 } else { 1245 if (ifp->if_flags & IFF_RUNNING) 1246 upgt_stop(sc); 1247 } 1248 break; 1249 case SIOCADDMULTI: 1250 case SIOCDELMULTI: 1251 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1252 /* setup multicast filter, etc */ 1253 error = 0; 1254 } 1255 break; 1256 default: 1257 error = ieee80211_ioctl(ic, cmd, data); 1258 break; 1259 } 1260 1261 if (error == ENETRESET) { 1262 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1263 (IFF_UP | IFF_RUNNING)) 1264 upgt_init(ifp); 1265 error = 0; 1266 } 1267 1268 splx(s); 1269 1270 return error; 1271 } 1272 1273 static int 1274 upgt_init(struct ifnet *ifp) 1275 { 1276 struct upgt_softc *sc = ifp->if_softc; 1277 struct ieee80211com *ic = &sc->sc_ic; 1278 1279 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1280 1281 if (ifp->if_flags & IFF_RUNNING) 1282 upgt_stop(sc); 1283 1284 ifp->if_flags |= IFF_RUNNING; 1285 ifp->if_flags &= ~IFF_OACTIVE; 1286 1287 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1288 1289 /* setup device rates */ 1290 upgt_setup_rates(sc); 1291 1292 if (ic->ic_opmode == IEEE80211_M_MONITOR) 1293 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1294 else 1295 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1296 1297 return 0; 1298 } 1299 1300 static void 1301 upgt_stop(struct upgt_softc *sc) 1302 { 1303 struct ieee80211com *ic = &sc->sc_ic; 1304 struct ifnet *ifp = &sc->sc_if; 1305 1306 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1307 1308 /* device down */ 1309 ifp->if_timer = 0; 1310 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1311 1312 /* change device back to initial state */ 1313 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1314 } 1315 1316 static int 1317 upgt_media_change(struct ifnet *ifp) 1318 { 1319 struct upgt_softc *sc = ifp->if_softc; 1320 int error; 1321 1322 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1323 1324 if ((error = ieee80211_media_change(ifp)) != ENETRESET) 1325 return error; 1326 1327 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1328 (IFF_UP | IFF_RUNNING)) { 1329 /* give pending USB transfers a chance to finish */ 1330 usbd_delay_ms(sc->sc_udev, 100); 1331 upgt_init(ifp); 1332 } 1333 1334 return 0; 1335 } 1336 1337 static void 1338 upgt_newassoc(struct ieee80211_node *ni, int isnew) 1339 { 1340 1341 ni->ni_txrate = 0; 1342 } 1343 1344 static int 1345 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1346 { 1347 struct upgt_softc *sc = ic->ic_ifp->if_softc; 1348 1349 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1350 callout_stop(&sc->scan_to); 1351 1352 /* do it in a process context */ 1353 sc->sc_state = nstate; 1354 sc->sc_arg = arg; 1355 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER); 1356 1357 return 0; 1358 } 1359 1360 static void 1361 upgt_newstate_task(void *arg) 1362 { 1363 struct upgt_softc *sc = arg; 1364 struct ieee80211com *ic = &sc->sc_ic; 1365 struct ieee80211_node *ni; 1366 unsigned channel; 1367 1368 mutex_enter(&sc->sc_mtx); 1369 1370 switch (sc->sc_state) { 1371 case IEEE80211_S_INIT: 1372 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1373 device_xname(sc->sc_dev)); 1374 1375 /* do not accept any frames if the device is down */ 1376 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1377 upgt_set_led(sc, UPGT_LED_OFF); 1378 break; 1379 case IEEE80211_S_SCAN: 1380 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1381 device_xname(sc->sc_dev)); 1382 1383 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1384 upgt_set_channel(sc, channel); 1385 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1386 callout_schedule(&sc->scan_to, hz / 5); 1387 break; 1388 case IEEE80211_S_AUTH: 1389 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1390 device_xname(sc->sc_dev)); 1391 1392 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1393 upgt_set_channel(sc, channel); 1394 break; 1395 case IEEE80211_S_ASSOC: 1396 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1397 device_xname(sc->sc_dev)); 1398 1399 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1400 upgt_set_channel(sc, channel); 1401 break; 1402 case IEEE80211_S_RUN: 1403 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1404 device_xname(sc->sc_dev)); 1405 1406 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1407 upgt_set_channel(sc, channel); 1408 1409 ni = ic->ic_bss; 1410 1411 /* 1412 * TX rate control is done by the firmware. 1413 * Report the maximum rate which is available therefore. 1414 */ 1415 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1416 1417 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1418 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1419 upgt_set_led(sc, UPGT_LED_ON); 1420 break; 1421 } 1422 1423 mutex_exit(&sc->sc_mtx); 1424 1425 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1426 } 1427 1428 static void 1429 upgt_next_scan(void *arg) 1430 { 1431 struct upgt_softc *sc = arg; 1432 struct ieee80211com *ic = &sc->sc_ic; 1433 1434 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1435 1436 if (ic->ic_state == IEEE80211_S_SCAN) 1437 ieee80211_next_scan(ic); 1438 } 1439 1440 static void 1441 upgt_start(struct ifnet *ifp) 1442 { 1443 struct upgt_softc *sc = ifp->if_softc; 1444 struct ieee80211com *ic = &sc->sc_ic; 1445 struct ether_header *eh; 1446 struct ieee80211_node *ni; 1447 struct mbuf *m; 1448 int i; 1449 1450 /* don't transmit packets if interface is busy or down */ 1451 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1452 return; 1453 1454 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1455 1456 for (i = 0; i < UPGT_TX_COUNT; i++) { 1457 struct upgt_data *data_tx = &sc->tx_data[i]; 1458 1459 if (data_tx->m != NULL) 1460 continue; 1461 1462 IF_POLL(&ic->ic_mgtq, m); 1463 if (m != NULL) { 1464 /* management frame */ 1465 IF_DEQUEUE(&ic->ic_mgtq, m); 1466 1467 ni = M_GETCTX(m, struct ieee80211_node *); 1468 M_CLEARCTX(m); 1469 1470 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 1471 1472 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1473 aprint_error_dev(sc->sc_dev, 1474 "no free prism memory\n"); 1475 m_freem(m); 1476 ifp->if_oerrors++; 1477 break; 1478 } 1479 data_tx->ni = ni; 1480 data_tx->m = m; 1481 sc->tx_queued++; 1482 } else { 1483 /* data frame */ 1484 if (ic->ic_state != IEEE80211_S_RUN) 1485 break; 1486 1487 IFQ_POLL(&ifp->if_snd, m); 1488 if (m == NULL) 1489 break; 1490 1491 IFQ_DEQUEUE(&ifp->if_snd, m); 1492 if (m->m_len < sizeof(struct ether_header) && 1493 !(m = m_pullup(m, sizeof(struct ether_header)))) 1494 continue; 1495 1496 eh = mtod(m, struct ether_header *); 1497 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1498 if (ni == NULL) { 1499 m_freem(m); 1500 continue; 1501 } 1502 1503 bpf_mtap(ifp, m, BPF_D_OUT); 1504 1505 m = ieee80211_encap(ic, m, ni); 1506 if (m == NULL) { 1507 ieee80211_free_node(ni); 1508 continue; 1509 } 1510 1511 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 1512 1513 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1514 aprint_error_dev(sc->sc_dev, 1515 "no free prism memory\n"); 1516 m_freem(m); 1517 ieee80211_free_node(ni); 1518 ifp->if_oerrors++; 1519 break; 1520 } 1521 data_tx->ni = ni; 1522 data_tx->m = m; 1523 sc->tx_queued++; 1524 } 1525 } 1526 1527 if (sc->tx_queued > 0) { 1528 DPRINTF(2, "%s: tx_queued=%d\n", 1529 device_xname(sc->sc_dev), sc->tx_queued); 1530 /* process the TX queue in process context */ 1531 ifp->if_timer = 5; 1532 ifp->if_flags |= IFF_OACTIVE; 1533 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1534 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER); 1535 } 1536 } 1537 1538 static void 1539 upgt_watchdog(struct ifnet *ifp) 1540 { 1541 struct upgt_softc *sc = ifp->if_softc; 1542 struct ieee80211com *ic = &sc->sc_ic; 1543 1544 if (ic->ic_state == IEEE80211_S_INIT) 1545 return; 1546 1547 aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); 1548 1549 /* TODO: what shall we do on TX timeout? */ 1550 1551 ieee80211_watchdog(ic); 1552 } 1553 1554 static void 1555 upgt_tx_task(void *arg) 1556 { 1557 struct upgt_softc *sc = arg; 1558 struct ieee80211com *ic = &sc->sc_ic; 1559 struct ieee80211_frame *wh; 1560 struct ieee80211_key *k; 1561 struct ifnet *ifp = &sc->sc_if; 1562 struct upgt_lmac_mem *mem; 1563 struct upgt_lmac_tx_desc *txdesc; 1564 struct mbuf *m; 1565 uint32_t addr; 1566 int i, len, pad, s; 1567 usbd_status error; 1568 1569 mutex_enter(&sc->sc_mtx); 1570 upgt_set_led(sc, UPGT_LED_BLINK); 1571 mutex_exit(&sc->sc_mtx); 1572 1573 s = splnet(); 1574 1575 for (i = 0; i < UPGT_TX_COUNT; i++) { 1576 struct upgt_data *data_tx = &sc->tx_data[i]; 1577 1578 if (data_tx->m == NULL) 1579 continue; 1580 1581 m = data_tx->m; 1582 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1583 1584 /* 1585 * Software crypto. 1586 */ 1587 wh = mtod(m, struct ieee80211_frame *); 1588 1589 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1590 k = ieee80211_crypto_encap(ic, data_tx->ni, m); 1591 if (k == NULL) { 1592 m_freem(m); 1593 data_tx->m = NULL; 1594 ieee80211_free_node(data_tx->ni); 1595 data_tx->ni = NULL; 1596 ifp->if_oerrors++; 1597 break; 1598 } 1599 1600 /* in case packet header moved, reset pointer */ 1601 wh = mtod(m, struct ieee80211_frame *); 1602 } 1603 1604 /* 1605 * Transmit the URB containing the TX data. 1606 */ 1607 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc)); 1608 1609 mem = (struct upgt_lmac_mem *)data_tx->buf; 1610 mem->addr = htole32(addr); 1611 1612 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1613 1614 /* XXX differ between data and mgmt frames? */ 1615 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1616 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1617 txdesc->header1.len = htole16(m->m_pkthdr.len); 1618 1619 txdesc->header2.reqid = htole32(data_tx->addr); 1620 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1621 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1622 1623 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1624 IEEE80211_FC0_TYPE_MGT) { 1625 /* always send mgmt frames at lowest rate (DS1) */ 1626 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1627 } else { 1628 memcpy(txdesc->rates, sc->sc_cur_rateset, 1629 sizeof(txdesc->rates)); 1630 } 1631 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1632 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1633 1634 if (sc->sc_drvbpf != NULL) { 1635 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1636 1637 tap->wt_flags = 0; 1638 tap->wt_rate = 0; /* TODO: where to get from? */ 1639 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1640 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1641 1642 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, 1643 BPF_D_OUT); 1644 } 1645 1646 /* copy frame below our TX descriptor header */ 1647 m_copydata(m, 0, m->m_pkthdr.len, 1648 data_tx->buf + sizeof(*mem) + sizeof(*txdesc)); 1649 1650 /* calculate frame size */ 1651 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1652 1653 if (len & 3) { 1654 /* we need to align the frame to a 4 byte boundary */ 1655 pad = 4 - (len & 3); 1656 memset(data_tx->buf + len, 0, pad); 1657 len += pad; 1658 } 1659 1660 /* calculate frame checksum */ 1661 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1662 len - sizeof(*mem)); 1663 1664 /* we do not need the mbuf anymore */ 1665 m_freem(m); 1666 data_tx->m = NULL; 1667 1668 ieee80211_free_node(data_tx->ni); 1669 data_tx->ni = NULL; 1670 1671 DPRINTF(2, "%s: TX start data sending\n", 1672 device_xname(sc->sc_dev)); 1673 1674 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len, 1675 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL); 1676 error = usbd_transfer(data_tx->xfer); 1677 if (error != USBD_NORMAL_COMPLETION && 1678 error != USBD_IN_PROGRESS) { 1679 aprint_error_dev(sc->sc_dev, 1680 "could not transmit TX data URB\n"); 1681 ifp->if_oerrors++; 1682 break; 1683 } 1684 1685 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1686 device_xname(sc->sc_dev), len); 1687 } 1688 1689 splx(s); 1690 1691 /* 1692 * If we don't regulary read the device statistics, the RX queue 1693 * will stall. It's strange, but it works, so we keep reading 1694 * the statistics here. *shrug* 1695 */ 1696 mutex_enter(&sc->sc_mtx); 1697 upgt_get_stats(sc); 1698 mutex_exit(&sc->sc_mtx); 1699 } 1700 1701 static void 1702 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1703 { 1704 struct ifnet *ifp = &sc->sc_if; 1705 struct upgt_lmac_tx_done_desc *desc; 1706 int i, s; 1707 1708 s = splnet(); 1709 1710 desc = (struct upgt_lmac_tx_done_desc *)data; 1711 1712 for (i = 0; i < UPGT_TX_COUNT; i++) { 1713 struct upgt_data *data_tx = &sc->tx_data[i]; 1714 1715 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1716 upgt_mem_free(sc, data_tx->addr); 1717 data_tx->addr = 0; 1718 1719 sc->tx_queued--; 1720 ifp->if_opackets++; 1721 1722 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev)); 1723 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1724 le32toh(desc->header2.reqid), 1725 le16toh(desc->status), 1726 le16toh(desc->rssi)); 1727 DPRINTF(2, "seq=%d\n", le16toh(desc->seq)); 1728 break; 1729 } 1730 } 1731 1732 if (sc->tx_queued == 0) { 1733 /* TX queued was processed, continue */ 1734 ifp->if_timer = 0; 1735 ifp->if_flags &= ~IFF_OACTIVE; 1736 upgt_start(ifp); 1737 } 1738 1739 splx(s); 1740 } 1741 1742 static void 1743 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status) 1744 { 1745 struct upgt_data *data_rx = priv; 1746 struct upgt_softc *sc = data_rx->sc; 1747 int len; 1748 struct upgt_lmac_header *header; 1749 struct upgt_lmac_eeprom *eeprom; 1750 uint8_t h1_type; 1751 uint16_t h2_type; 1752 1753 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1754 1755 if (status != USBD_NORMAL_COMPLETION) { 1756 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1757 return; 1758 if (status == USBD_STALLED) 1759 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1760 goto skip; 1761 } 1762 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1763 1764 /* 1765 * Check what type of frame came in. 1766 */ 1767 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1768 1769 h1_type = header->header1.type; 1770 h2_type = le16toh(header->header2.type); 1771 1772 if (h1_type == UPGT_H1_TYPE_CTRL && 1773 h2_type == UPGT_H2_TYPE_EEPROM) { 1774 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1775 uint16_t eeprom_offset = le16toh(eeprom->offset); 1776 uint16_t eeprom_len = le16toh(eeprom->len); 1777 1778 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1779 device_xname(sc->sc_dev), eeprom_offset, eeprom_len); 1780 1781 memcpy(sc->sc_eeprom + eeprom_offset, 1782 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1783 eeprom_len); 1784 1785 /* EEPROM data has arrived in time, wakeup tsleep() */ 1786 wakeup(sc); 1787 } else 1788 if (h1_type == UPGT_H1_TYPE_CTRL && 1789 h2_type == UPGT_H2_TYPE_TX_DONE) { 1790 DPRINTF(2, "%s: received 802.11 TX done\n", 1791 device_xname(sc->sc_dev)); 1792 1793 upgt_tx_done(sc, data_rx->buf + 4); 1794 } else 1795 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1796 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1797 DPRINTF(3, "%s: received 802.11 RX data\n", 1798 device_xname(sc->sc_dev)); 1799 1800 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len)); 1801 } else 1802 if (h1_type == UPGT_H1_TYPE_CTRL && 1803 h2_type == UPGT_H2_TYPE_STATS) { 1804 DPRINTF(2, "%s: received statistic data\n", 1805 device_xname(sc->sc_dev)); 1806 1807 /* TODO: what could we do with the statistic data? */ 1808 } else { 1809 /* ignore unknown frame types */ 1810 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1811 device_xname(sc->sc_dev), header->header1.type); 1812 } 1813 1814 skip: /* setup new transfer */ 1815 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES, 1816 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1817 (void)usbd_transfer(xfer); 1818 } 1819 1820 static void 1821 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1822 { 1823 struct ieee80211com *ic = &sc->sc_ic; 1824 struct ifnet *ifp = &sc->sc_if; 1825 struct upgt_lmac_rx_desc *rxdesc; 1826 struct ieee80211_frame *wh; 1827 struct ieee80211_node *ni; 1828 struct mbuf *m; 1829 int s; 1830 1831 /* access RX packet descriptor */ 1832 rxdesc = (struct upgt_lmac_rx_desc *)data; 1833 1834 /* create mbuf which is suitable for strict alignment archs */ 1835 #define ETHER_ALIGN 0 1836 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL); 1837 if (m == NULL) { 1838 DPRINTF(1, "%s: could not create RX mbuf\n", 1839 device_xname(sc->sc_dev)); 1840 ifp->if_ierrors++; 1841 return; 1842 } 1843 1844 s = splnet(); 1845 1846 if (sc->sc_drvbpf != NULL) { 1847 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1848 1849 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1850 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1851 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1852 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1853 tap->wr_antsignal = rxdesc->rssi; 1854 1855 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 1856 } 1857 1858 /* trim FCS */ 1859 m_adj(m, -IEEE80211_CRC_LEN); 1860 1861 wh = mtod(m, struct ieee80211_frame *); 1862 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1863 1864 /* push the frame up to the 802.11 stack */ 1865 ieee80211_input(ic, m, ni, rxdesc->rssi, 0); 1866 1867 /* node is no longer needed */ 1868 ieee80211_free_node(ni); 1869 1870 splx(s); 1871 1872 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev)); 1873 } 1874 1875 static void 1876 upgt_setup_rates(struct upgt_softc *sc) 1877 { 1878 struct ieee80211com *ic = &sc->sc_ic; 1879 1880 /* 1881 * 0x01 = OFMD6 0x10 = DS1 1882 * 0x04 = OFDM9 0x11 = DS2 1883 * 0x06 = OFDM12 0x12 = DS5 1884 * 0x07 = OFDM18 0x13 = DS11 1885 * 0x08 = OFDM24 1886 * 0x09 = OFDM36 1887 * 0x0a = OFDM48 1888 * 0x0b = OFDM54 1889 */ 1890 const uint8_t rateset_auto_11b[] = 1891 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1892 const uint8_t rateset_auto_11g[] = 1893 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1894 const uint8_t rateset_fix_11bg[] = 1895 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1896 0x08, 0x09, 0x0a, 0x0b }; 1897 1898 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1899 /* 1900 * Automatic rate control is done by the device. 1901 * We just pass the rateset from which the device 1902 * will pickup a rate. 1903 */ 1904 if (ic->ic_curmode == IEEE80211_MODE_11B) 1905 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 1906 sizeof(sc->sc_cur_rateset)); 1907 if (ic->ic_curmode == IEEE80211_MODE_11G || 1908 ic->ic_curmode == IEEE80211_MODE_AUTO) 1909 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 1910 sizeof(sc->sc_cur_rateset)); 1911 } else { 1912 /* set a fixed rate */ 1913 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1914 sizeof(sc->sc_cur_rateset)); 1915 } 1916 } 1917 1918 static uint8_t 1919 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1920 { 1921 struct ieee80211com *ic = &sc->sc_ic; 1922 1923 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1924 if (rate < 0 || rate > 3) 1925 /* invalid rate */ 1926 return 0; 1927 1928 switch (rate) { 1929 case 0: 1930 return 2; 1931 case 1: 1932 return 4; 1933 case 2: 1934 return 11; 1935 case 3: 1936 return 22; 1937 default: 1938 return 0; 1939 } 1940 } 1941 1942 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1943 if (rate < 0 || rate > 11) 1944 /* invalid rate */ 1945 return 0; 1946 1947 switch (rate) { 1948 case 0: 1949 return 2; 1950 case 1: 1951 return 4; 1952 case 2: 1953 return 11; 1954 case 3: 1955 return 22; 1956 case 4: 1957 return 12; 1958 case 5: 1959 return 18; 1960 case 6: 1961 return 24; 1962 case 7: 1963 return 36; 1964 case 8: 1965 return 48; 1966 case 9: 1967 return 72; 1968 case 10: 1969 return 96; 1970 case 11: 1971 return 108; 1972 default: 1973 return 0; 1974 } 1975 } 1976 1977 return 0; 1978 } 1979 1980 static int 1981 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1982 { 1983 struct ieee80211com *ic = &sc->sc_ic; 1984 struct ieee80211_node *ni = ic->ic_bss; 1985 struct upgt_data *data_cmd = &sc->cmd_data; 1986 struct upgt_lmac_mem *mem; 1987 struct upgt_lmac_filter *filter; 1988 int len; 1989 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1990 1991 /* 1992 * Transmit the URB containing the CMD data. 1993 */ 1994 len = sizeof(*mem) + sizeof(*filter); 1995 1996 memset(data_cmd->buf, 0, len); 1997 1998 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1999 mem->addr = htole32(sc->sc_memaddr_frame_start + 2000 UPGT_MEMSIZE_FRAME_HEAD); 2001 2002 filter = (struct upgt_lmac_filter *)(mem + 1); 2003 2004 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2005 filter->header1.type = UPGT_H1_TYPE_CTRL; 2006 filter->header1.len = htole16( 2007 sizeof(struct upgt_lmac_filter) - 2008 sizeof(struct upgt_lmac_header)); 2009 2010 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2011 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 2012 filter->header2.flags = 0; 2013 2014 switch (state) { 2015 case IEEE80211_S_INIT: 2016 DPRINTF(1, "%s: set MAC filter to INIT\n", 2017 device_xname(sc->sc_dev)); 2018 2019 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 2020 break; 2021 case IEEE80211_S_SCAN: 2022 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 2023 device_xname(sc->sc_dev), ether_sprintf(broadcast)); 2024 2025 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 2026 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 2027 IEEE80211_ADDR_COPY(filter->src, broadcast); 2028 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 2029 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 2030 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 2031 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 2032 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 2033 break; 2034 case IEEE80211_S_RUN: 2035 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 2036 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid)); 2037 2038 filter->type = htole16(UPGT_FILTER_TYPE_STA); 2039 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 2040 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 2041 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 2042 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 2043 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 2044 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 2045 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 2046 break; 2047 default: 2048 aprint_error_dev(sc->sc_dev, 2049 "MAC filter does not know that state\n"); 2050 break; 2051 } 2052 2053 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter)); 2054 2055 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2056 aprint_error_dev(sc->sc_dev, 2057 "could not transmit macfilter CMD data URB\n"); 2058 return EIO; 2059 } 2060 2061 return 0; 2062 } 2063 2064 static int 2065 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 2066 { 2067 struct upgt_data *data_cmd = &sc->cmd_data; 2068 struct upgt_lmac_mem *mem; 2069 struct upgt_lmac_channel *chan; 2070 int len; 2071 2072 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__, 2073 channel); 2074 2075 /* 2076 * Transmit the URB containing the CMD data. 2077 */ 2078 len = sizeof(*mem) + sizeof(*chan); 2079 2080 memset(data_cmd->buf, 0, len); 2081 2082 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2083 mem->addr = htole32(sc->sc_memaddr_frame_start + 2084 UPGT_MEMSIZE_FRAME_HEAD); 2085 2086 chan = (struct upgt_lmac_channel *)(mem + 1); 2087 2088 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2089 chan->header1.type = UPGT_H1_TYPE_CTRL; 2090 chan->header1.len = htole16( 2091 sizeof(struct upgt_lmac_channel) - 2092 sizeof(struct upgt_lmac_header)); 2093 2094 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2095 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 2096 chan->header2.flags = 0; 2097 2098 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 2099 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 2100 chan->freq6 = sc->sc_eeprom_freq6[channel]; 2101 chan->settings = sc->sc_eeprom_freq6_settings; 2102 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 2103 2104 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 2105 sizeof(chan->freq3_1)); 2106 2107 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 2108 sizeof(sc->sc_eeprom_freq4[channel])); 2109 2110 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 2111 sizeof(chan->freq3_2)); 2112 2113 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan)); 2114 2115 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2116 aprint_error_dev(sc->sc_dev, 2117 "could not transmit channel CMD data URB\n"); 2118 return EIO; 2119 } 2120 2121 return 0; 2122 } 2123 2124 static void 2125 upgt_set_led(struct upgt_softc *sc, int action) 2126 { 2127 struct ieee80211com *ic = &sc->sc_ic; 2128 struct upgt_data *data_cmd = &sc->cmd_data; 2129 struct upgt_lmac_mem *mem; 2130 struct upgt_lmac_led *led; 2131 struct timeval t; 2132 int len; 2133 2134 /* 2135 * Transmit the URB containing the CMD data. 2136 */ 2137 len = sizeof(*mem) + sizeof(*led); 2138 2139 memset(data_cmd->buf, 0, len); 2140 2141 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2142 mem->addr = htole32(sc->sc_memaddr_frame_start + 2143 UPGT_MEMSIZE_FRAME_HEAD); 2144 2145 led = (struct upgt_lmac_led *)(mem + 1); 2146 2147 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2148 led->header1.type = UPGT_H1_TYPE_CTRL; 2149 led->header1.len = htole16( 2150 sizeof(struct upgt_lmac_led) - 2151 sizeof(struct upgt_lmac_header)); 2152 2153 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2154 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2155 led->header2.flags = 0; 2156 2157 switch (action) { 2158 case UPGT_LED_OFF: 2159 led->mode = htole16(UPGT_LED_MODE_SET); 2160 led->action_fix = 0; 2161 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2162 led->action_tmp_dur = 0; 2163 break; 2164 case UPGT_LED_ON: 2165 led->mode = htole16(UPGT_LED_MODE_SET); 2166 led->action_fix = 0; 2167 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2168 led->action_tmp_dur = 0; 2169 break; 2170 case UPGT_LED_BLINK: 2171 if (ic->ic_state != IEEE80211_S_RUN) 2172 return; 2173 if (sc->sc_led_blink) 2174 /* previous blink was not finished */ 2175 return; 2176 led->mode = htole16(UPGT_LED_MODE_SET); 2177 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2178 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2179 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2180 /* lock blink */ 2181 sc->sc_led_blink = 1; 2182 t.tv_sec = 0; 2183 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L; 2184 callout_schedule(&sc->led_to, tvtohz(&t)); 2185 break; 2186 default: 2187 return; 2188 } 2189 2190 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led)); 2191 2192 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2193 aprint_error_dev(sc->sc_dev, 2194 "could not transmit led CMD URB\n"); 2195 } 2196 } 2197 2198 static void 2199 upgt_set_led_blink(void *arg) 2200 { 2201 struct upgt_softc *sc = arg; 2202 2203 /* blink finished, we are ready for a next one */ 2204 sc->sc_led_blink = 0; 2205 callout_stop(&sc->led_to); 2206 } 2207 2208 static int 2209 upgt_get_stats(struct upgt_softc *sc) 2210 { 2211 struct upgt_data *data_cmd = &sc->cmd_data; 2212 struct upgt_lmac_mem *mem; 2213 struct upgt_lmac_stats *stats; 2214 int len; 2215 2216 /* 2217 * Transmit the URB containing the CMD data. 2218 */ 2219 len = sizeof(*mem) + sizeof(*stats); 2220 2221 memset(data_cmd->buf, 0, len); 2222 2223 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2224 mem->addr = htole32(sc->sc_memaddr_frame_start + 2225 UPGT_MEMSIZE_FRAME_HEAD); 2226 2227 stats = (struct upgt_lmac_stats *)(mem + 1); 2228 2229 stats->header1.flags = 0; 2230 stats->header1.type = UPGT_H1_TYPE_CTRL; 2231 stats->header1.len = htole16( 2232 sizeof(struct upgt_lmac_stats) - 2233 sizeof(struct upgt_lmac_header)); 2234 2235 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2236 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2237 stats->header2.flags = 0; 2238 2239 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats)); 2240 2241 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2242 aprint_error_dev(sc->sc_dev, 2243 "could not transmit statistics CMD data URB\n"); 2244 return EIO; 2245 } 2246 2247 return 0; 2248 2249 } 2250 2251 static int 2252 upgt_alloc_tx(struct upgt_softc *sc) 2253 { 2254 int i; 2255 2256 sc->tx_queued = 0; 2257 2258 for (i = 0; i < UPGT_TX_COUNT; i++) { 2259 struct upgt_data *data_tx = &sc->tx_data[i]; 2260 2261 data_tx->sc = sc; 2262 2263 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 2264 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer); 2265 if (err) { 2266 aprint_error_dev(sc->sc_dev, 2267 "could not allocate TX xfer\n"); 2268 return err; 2269 } 2270 2271 data_tx->buf = usbd_get_buffer(data_tx->xfer); 2272 } 2273 2274 return 0; 2275 } 2276 2277 static int 2278 upgt_alloc_rx(struct upgt_softc *sc) 2279 { 2280 struct upgt_data *data_rx = &sc->rx_data; 2281 2282 data_rx->sc = sc; 2283 2284 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 2285 0, 0, &data_rx->xfer); 2286 if (err) { 2287 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n"); 2288 return err; 2289 } 2290 2291 data_rx->buf = usbd_get_buffer(data_rx->xfer); 2292 2293 return 0; 2294 } 2295 2296 static int 2297 upgt_alloc_cmd(struct upgt_softc *sc) 2298 { 2299 struct upgt_data *data_cmd = &sc->cmd_data; 2300 2301 data_cmd->sc = sc; 2302 2303 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 2304 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer); 2305 if (err) { 2306 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n"); 2307 return err; 2308 } 2309 2310 data_cmd->buf = usbd_get_buffer(data_cmd->xfer); 2311 2312 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 2313 2314 return 0; 2315 } 2316 2317 static void 2318 upgt_free_tx(struct upgt_softc *sc) 2319 { 2320 int i; 2321 2322 for (i = 0; i < UPGT_TX_COUNT; i++) { 2323 struct upgt_data *data_tx = &sc->tx_data[i]; 2324 2325 if (data_tx->xfer != NULL) { 2326 usbd_destroy_xfer(data_tx->xfer); 2327 data_tx->xfer = NULL; 2328 } 2329 2330 data_tx->ni = NULL; 2331 } 2332 } 2333 2334 static void 2335 upgt_free_rx(struct upgt_softc *sc) 2336 { 2337 struct upgt_data *data_rx = &sc->rx_data; 2338 2339 if (data_rx->xfer != NULL) { 2340 usbd_destroy_xfer(data_rx->xfer); 2341 data_rx->xfer = NULL; 2342 } 2343 2344 data_rx->ni = NULL; 2345 } 2346 2347 static void 2348 upgt_free_cmd(struct upgt_softc *sc) 2349 { 2350 struct upgt_data *data_cmd = &sc->cmd_data; 2351 2352 if (data_cmd->xfer != NULL) { 2353 usbd_destroy_xfer(data_cmd->xfer); 2354 data_cmd->xfer = NULL; 2355 } 2356 2357 mutex_destroy(&sc->sc_mtx); 2358 } 2359 2360 static int 2361 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2362 struct usbd_pipe *pipeh, uint32_t *size, int flags) 2363 { 2364 usbd_status status; 2365 2366 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT, 2367 data->buf, size); 2368 if (status != USBD_NORMAL_COMPLETION) { 2369 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__, 2370 usbd_errstr(status)); 2371 return EIO; 2372 } 2373 2374 return 0; 2375 } 2376 2377 #if 0 2378 static void 2379 upgt_hexdump(void *buf, int len) 2380 { 2381 int i; 2382 2383 for (i = 0; i < len; i++) { 2384 if (i % 16 == 0) 2385 printf("%s%5i:", i ? "\n" : "", i); 2386 if (i % 4 == 0) 2387 printf(" "); 2388 printf("%02x", (int)*((uint8_t *)buf + i)); 2389 } 2390 printf("\n"); 2391 } 2392 #endif 2393 2394 static uint32_t 2395 upgt_crc32_le(const void *buf, size_t size) 2396 { 2397 uint32_t crc; 2398 2399 crc = ether_crc32_le(buf, size); 2400 2401 /* apply final XOR value as common for CRC-32 */ 2402 crc = htole32(crc ^ 0xffffffffU); 2403 2404 return crc; 2405 } 2406 2407 /* 2408 * The firmware awaits a checksum for each frame we send to it. 2409 * The algorithm used is uncommon but somehow similar to CRC32. 2410 */ 2411 static uint32_t 2412 upgt_chksum_le(const uint32_t *buf, size_t size) 2413 { 2414 int i; 2415 uint32_t crc = 0; 2416 2417 for (i = 0; i < size; i += sizeof(uint32_t)) { 2418 crc = htole32(crc ^ *buf++); 2419 crc = htole32((crc >> 5) ^ (crc << 3)); 2420 } 2421 2422 return crc; 2423 } 2424