xref: /netbsd-src/sys/dev/usb/if_upgt.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: if_upgt.c,v 1.12 2014/05/27 13:44:25 ryoon Exp $	*/
2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12 2014/05/27 13:44:25 ryoon Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/intr.h>
37 
38 #include <net/bpf.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_ether.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 
46 #include <net80211/ieee80211_var.h>
47 #include <net80211/ieee80211_radiotap.h>
48 
49 #include <dev/firmload.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 #include <dev/usb/usbdivar.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_upgtvar.h>
58 
59 /*
60  * Driver for the USB PrismGT devices.
61  *
62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
64  *
65  * TODO's:
66  * - Fix MONITOR mode (MAC filter).
67  * - Add HOSTAP mode.
68  * - Add IBSS mode.
69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70  *
71  * Parts of this driver has been influenced by reading the p54u driver
72  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
73  * Sebastien Bourdeauducq <lekernel@prism54.org>.
74  */
75 
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82 
83 /*
84  * Prototypes.
85  */
86 static int	upgt_match(device_t, cfdata_t, void *);
87 static void	upgt_attach(device_t, device_t, void *);
88 static int	upgt_detach(device_t, int);
89 static int	upgt_activate(device_t, devact_t);
90 
91 static void	upgt_attach_hook(device_t);
92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int	upgt_device_init(struct upgt_softc *);
94 static int	upgt_mem_init(struct upgt_softc *);
95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int	upgt_fw_alloc(struct upgt_softc *);
98 static void	upgt_fw_free(struct upgt_softc *);
99 static int	upgt_fw_verify(struct upgt_softc *);
100 static int	upgt_fw_load(struct upgt_softc *);
101 static int	upgt_fw_copy(char *, char *, int);
102 static int	upgt_eeprom_read(struct upgt_softc *);
103 static int	upgt_eeprom_parse(struct upgt_softc *);
104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108 
109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
110 static int	upgt_init(struct ifnet *);
111 static void	upgt_stop(struct upgt_softc *);
112 static int	upgt_media_change(struct ifnet *);
113 static void	upgt_newassoc(struct ieee80211_node *, int);
114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 		    int);
116 static void	upgt_newstate_task(void *);
117 static void	upgt_next_scan(void *);
118 static void	upgt_start(struct ifnet *);
119 static void	upgt_watchdog(struct ifnet *);
120 static void	upgt_tx_task(void *);
121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void	upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void	upgt_setup_rates(struct upgt_softc *);
125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t state);
127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
128 static void	upgt_set_led(struct upgt_softc *, int);
129 static void	upgt_set_led_blink(void *);
130 static int	upgt_get_stats(struct upgt_softc *);
131 
132 static int	upgt_alloc_tx(struct upgt_softc *);
133 static int	upgt_alloc_rx(struct upgt_softc *);
134 static int	upgt_alloc_cmd(struct upgt_softc *);
135 static void	upgt_free_tx(struct upgt_softc *);
136 static void	upgt_free_rx(struct upgt_softc *);
137 static void	upgt_free_cmd(struct upgt_softc *);
138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 		    usbd_pipe_handle, uint32_t *, int);
140 
141 #if 0
142 static void	upgt_hexdump(void *, int);
143 #endif
144 static uint32_t	upgt_crc32_le(const void *, size_t);
145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
146 
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
149 
150 static const struct usb_devno upgt_devs_1[] = {
151 	/* version 1 devices */
152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
153 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
154 };
155 
156 static const struct usb_devno upgt_devs_2[] = {
157 	/* version 2 devices */
158 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
159 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
160 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
162 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
163 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
164 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
166 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
167 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
168 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
170 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
171 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
172 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
173 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
174 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
175 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
176 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
177 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
178 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
179 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
181 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
182 };
183 
184 static int
185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
186     size_t *sizep)
187 {
188 	firmware_handle_t fh;
189 	int error;
190 
191 	if ((error = firmware_open(dname, iname, &fh)) != 0)
192 		return error;
193 	*sizep = firmware_get_size(fh);
194 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
195 		firmware_close(fh);
196 		return ENOMEM;
197 	}
198 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
199 		firmware_free(*ucodep, *sizep);
200 	firmware_close(fh);
201 
202 	return error;
203 }
204 
205 static int
206 upgt_match(device_t parent, cfdata_t match, void *aux)
207 {
208 	struct usb_attach_arg *uaa = aux;
209 
210 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
211 		return UMATCH_VENDOR_PRODUCT;
212 
213 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
214 		return UMATCH_VENDOR_PRODUCT;
215 
216 	return UMATCH_NONE;
217 }
218 
219 static void
220 upgt_attach(device_t parent, device_t self, void *aux)
221 {
222 	struct upgt_softc *sc = device_private(self);
223 	struct usb_attach_arg *uaa = aux;
224 	usb_interface_descriptor_t *id;
225 	usb_endpoint_descriptor_t *ed;
226 	usbd_status error;
227 	char *devinfop;
228 	int i;
229 
230 	aprint_naive("\n");
231 	aprint_normal("\n");
232 
233 	/*
234 	 * Attach USB device.
235 	 */
236 	sc->sc_dev = self;
237 	sc->sc_udev = uaa->device;
238 
239 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
240 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
241 	usbd_devinfo_free(devinfop);
242 
243 	/* check device type */
244 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
245 		return;
246 
247 	/* set configuration number */
248 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
249 	if (error != 0) {
250 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
251 		    ", err=%s\n", usbd_errstr(error));
252 		return;
253 	}
254 
255 	/* get the first interface handle */
256 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
257 	    &sc->sc_iface);
258 	if (error != 0) {
259 		aprint_error_dev(sc->sc_dev,
260 		    "could not get interface handle\n");
261 		return;
262 	}
263 
264 	/* find endpoints */
265 	id = usbd_get_interface_descriptor(sc->sc_iface);
266 	sc->sc_rx_no = sc->sc_tx_no = -1;
267 	for (i = 0; i < id->bNumEndpoints; i++) {
268 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
269 		if (ed == NULL) {
270 			aprint_error_dev(sc->sc_dev,
271 			    "no endpoint descriptor for iface %d\n", i);
272 			return;
273 		}
274 
275 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
276 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
277 			sc->sc_tx_no = ed->bEndpointAddress;
278 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
279 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
280 			sc->sc_rx_no = ed->bEndpointAddress;
281 
282 		/*
283 		 * 0x01 TX pipe
284 		 * 0x81 RX pipe
285 		 *
286 		 * Deprecated scheme (not used with fw version >2.5.6.x):
287 		 * 0x02 TX MGMT pipe
288 		 * 0x82 TX MGMT pipe
289 		 */
290 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
291 			break;
292 	}
293 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
294 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
295 		return;
296 	}
297 
298 	/* setup tasks and timeouts */
299 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
300 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
301 	callout_init(&sc->scan_to, 0);
302 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
303 	callout_init(&sc->led_to, 0);
304 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
305 
306 	/*
307 	 * Open TX and RX USB bulk pipes.
308 	 */
309 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
310 	    &sc->sc_tx_pipeh);
311 	if (error != 0) {
312 		aprint_error_dev(sc->sc_dev,
313 		    "could not open TX pipe: %s\n", usbd_errstr(error));
314 		goto fail;
315 	}
316 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
317 	    &sc->sc_rx_pipeh);
318 	if (error != 0) {
319 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
320 		    usbd_errstr(error));
321 		goto fail;
322 	}
323 
324 	/*
325 	 * Allocate TX, RX, and CMD xfers.
326 	 */
327 	if (upgt_alloc_tx(sc) != 0)
328 		goto fail;
329 	if (upgt_alloc_rx(sc) != 0)
330 		goto fail;
331 	if (upgt_alloc_cmd(sc) != 0)
332 		goto fail;
333 
334 	/*
335 	 * We need the firmware loaded from file system to complete the attach.
336 	 */
337 	config_mountroot(self, upgt_attach_hook);
338 
339 	return;
340 fail:
341 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
342 }
343 
344 static void
345 upgt_attach_hook(device_t arg)
346 {
347 	struct upgt_softc *sc = device_private(arg);
348 	struct ieee80211com *ic = &sc->sc_ic;
349 	struct ifnet *ifp = &sc->sc_if;
350 	usbd_status error;
351 	int i;
352 
353 	/*
354 	 * Load firmware file into memory.
355 	 */
356 	if (upgt_fw_alloc(sc) != 0)
357 		goto fail;
358 
359 	/*
360 	 * Initialize the device.
361 	 */
362 	if (upgt_device_init(sc) != 0)
363 		goto fail;
364 
365 	/*
366 	 * Verify the firmware.
367 	 */
368 	if (upgt_fw_verify(sc) != 0)
369 		goto fail;
370 
371 	/*
372 	 * Calculate device memory space.
373 	 */
374 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
375 		aprint_error_dev(sc->sc_dev,
376 		    "could not find memory space addresses on FW\n");
377 		goto fail;
378 	}
379 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
380 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
381 
382 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
383 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
384 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
385 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
386 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
387 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
388 
389 	upgt_mem_init(sc);
390 
391 	/*
392 	 * Load the firmware.
393 	 */
394 	if (upgt_fw_load(sc) != 0)
395 		goto fail;
396 
397 	/*
398 	 * Startup the RX pipe.
399 	 */
400 	struct upgt_data *data_rx = &sc->rx_data;
401 
402 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
403 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
404 	error = usbd_transfer(data_rx->xfer);
405 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
406 		aprint_error_dev(sc->sc_dev,
407 		    "could not queue RX transfer\n");
408 		goto fail;
409 	}
410 	usbd_delay_ms(sc->sc_udev, 100);
411 
412 	/*
413 	 * Read the whole EEPROM content and parse it.
414 	 */
415 	if (upgt_eeprom_read(sc) != 0)
416 		goto fail;
417 	if (upgt_eeprom_parse(sc) != 0)
418 		goto fail;
419 
420 	/*
421 	 * Setup the 802.11 device.
422 	 */
423 	ic->ic_ifp = ifp;
424 	ic->ic_phytype = IEEE80211_T_OFDM;
425 	ic->ic_opmode = IEEE80211_M_STA;
426 	ic->ic_state = IEEE80211_S_INIT;
427 	ic->ic_caps =
428 	    IEEE80211_C_MONITOR |
429 	    IEEE80211_C_SHPREAMBLE |
430 	    IEEE80211_C_SHSLOT;
431 
432 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434 
435 	for (i = 1; i <= 14; i++) {
436 		ic->ic_channels[i].ic_freq =
437 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
438 		ic->ic_channels[i].ic_flags =
439 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
440 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
441 	}
442 
443 	ifp->if_softc = sc;
444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 	ifp->if_init = upgt_init;
446 	ifp->if_ioctl = upgt_ioctl;
447 	ifp->if_start = upgt_start;
448 	ifp->if_watchdog = upgt_watchdog;
449 	IFQ_SET_READY(&ifp->if_snd);
450 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451 
452 	if_attach(ifp);
453 	ieee80211_ifattach(ic);
454 	ic->ic_newassoc = upgt_newassoc;
455 
456 	sc->sc_newstate = ic->ic_newstate;
457 	ic->ic_newstate = upgt_newstate;
458 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
459 
460 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
461 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
462 	    &sc->sc_drvbpf);
463 
464 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
465 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
466 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
467 
468 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
469 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
470 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
471 
472 	aprint_normal_dev(sc->sc_dev, "address %s\n",
473 	    ether_sprintf(ic->ic_myaddr));
474 
475 	ieee80211_announce(ic);
476 
477 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
478 
479 	/* device attached */
480 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
481 
482 	return;
483 fail:
484 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
485 }
486 
487 static int
488 upgt_detach(device_t self, int flags)
489 {
490 	struct upgt_softc *sc = device_private(self);
491 	struct ifnet *ifp = &sc->sc_if;
492 	struct ieee80211com *ic = &sc->sc_ic;
493 	int s;
494 
495 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
496 
497 	s = splnet();
498 
499 	if (ifp->if_flags & IFF_RUNNING)
500 		upgt_stop(sc);
501 
502 	/* remove tasks and timeouts */
503 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
504 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
505 	callout_destroy(&sc->scan_to);
506 	callout_destroy(&sc->led_to);
507 
508 	/* abort and close TX / RX pipes */
509 	if (sc->sc_tx_pipeh != NULL) {
510 		usbd_abort_pipe(sc->sc_tx_pipeh);
511 		usbd_close_pipe(sc->sc_tx_pipeh);
512 	}
513 	if (sc->sc_rx_pipeh != NULL) {
514 		usbd_abort_pipe(sc->sc_rx_pipeh);
515 		usbd_close_pipe(sc->sc_rx_pipeh);
516 	}
517 
518 	/* free xfers */
519 	upgt_free_tx(sc);
520 	upgt_free_rx(sc);
521 	upgt_free_cmd(sc);
522 
523 	/* free firmware */
524 	upgt_fw_free(sc);
525 
526 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
527 		/* detach interface */
528 		bpf_detach(ifp);
529 		ieee80211_ifdetach(ic);
530 		if_detach(ifp);
531 	}
532 
533 	splx(s);
534 
535 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
536 
537 	return 0;
538 }
539 
540 static int
541 upgt_activate(device_t self, devact_t act)
542 {
543 	struct upgt_softc *sc = device_private(self);
544 
545 	switch (act) {
546 	case DVACT_DEACTIVATE:
547 		if_deactivate(&sc->sc_if);
548 		return 0;
549 	default:
550 		return EOPNOTSUPP;
551 	}
552 }
553 
554 static int
555 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
556 {
557 
558 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
559 		sc->sc_device_type = 1;
560 		/* XXX */
561 		aprint_error_dev(sc->sc_dev,
562 		    "version 1 devices not supported yet\n");
563 		return 1;
564 	} else
565 		sc->sc_device_type = 2;
566 
567 	return 0;
568 }
569 
570 static int
571 upgt_device_init(struct upgt_softc *sc)
572 {
573 	struct upgt_data *data_cmd = &sc->cmd_data;
574 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
575 	int len;
576 
577 	len = sizeof(init_cmd);
578 	memcpy(data_cmd->buf, init_cmd, len);
579 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
580 		aprint_error_dev(sc->sc_dev,
581 		    "could not send device init string\n");
582 		return EIO;
583 	}
584 	usbd_delay_ms(sc->sc_udev, 100);
585 
586 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
587 
588 	return 0;
589 }
590 
591 static int
592 upgt_mem_init(struct upgt_softc *sc)
593 {
594 	int i;
595 
596 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
597 		sc->sc_memory.page[i].used = 0;
598 
599 		if (i == 0) {
600 			/*
601 			 * The first memory page is always reserved for
602 			 * command data.
603 			 */
604 			sc->sc_memory.page[i].addr =
605 			    sc->sc_memaddr_frame_start + MCLBYTES;
606 		} else {
607 			sc->sc_memory.page[i].addr =
608 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
609 		}
610 
611 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
612 		    sc->sc_memaddr_frame_end)
613 			break;
614 
615 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
616 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
617 	}
618 
619 	sc->sc_memory.pages = i;
620 
621 	DPRINTF(2, "%s: memory pages=%d\n",
622 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
623 
624 	return 0;
625 }
626 
627 static uint32_t
628 upgt_mem_alloc(struct upgt_softc *sc)
629 {
630 	int i;
631 
632 	for (i = 0; i < sc->sc_memory.pages; i++) {
633 		if (sc->sc_memory.page[i].used == 0) {
634 			sc->sc_memory.page[i].used = 1;
635 			return sc->sc_memory.page[i].addr;
636 		}
637 	}
638 
639 	return 0;
640 }
641 
642 static void
643 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
644 {
645 	int i;
646 
647 	for (i = 0; i < sc->sc_memory.pages; i++) {
648 		if (sc->sc_memory.page[i].addr == addr) {
649 			sc->sc_memory.page[i].used = 0;
650 			return;
651 		}
652 	}
653 
654 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
655 	    addr);
656 }
657 
658 
659 static int
660 upgt_fw_alloc(struct upgt_softc *sc)
661 {
662 	const char *name = "upgt-gw3887";
663 	int error;
664 
665 	if (sc->sc_fw == NULL) {
666 		error = firmware_load("upgt", name, &sc->sc_fw,
667 		    &sc->sc_fw_size);
668 		if (error != 0) {
669 			if (error == ENOENT) {
670 				/*
671 				 * The firmware file for upgt(4) is not in
672 				 * the default distribution due to its lisence
673 				 * so explicitly notify it if the firmware file
674 				 * is not found.
675 				 */
676 				aprint_error_dev(sc->sc_dev,
677 				    "firmware file %s is not installed\n",
678 				    name);
679 				aprint_error_dev(sc->sc_dev,
680 				    "(it is not included in the default"
681 				    " distribution)\n");
682 				aprint_error_dev(sc->sc_dev,
683 				    "see upgt(4) man page for details about "
684 				    "firmware installation\n");
685 			} else {
686 				aprint_error_dev(sc->sc_dev,
687 				    "could not read firmware %s\n", name);
688 			}
689 			return EIO;
690 		}
691 	}
692 
693 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
694 	    name);
695 
696 	return 0;
697 }
698 
699 static void
700 upgt_fw_free(struct upgt_softc *sc)
701 {
702 
703 	if (sc->sc_fw != NULL) {
704 		firmware_free(sc->sc_fw, sc->sc_fw_size);
705 		sc->sc_fw = NULL;
706 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
707 	}
708 }
709 
710 static int
711 upgt_fw_verify(struct upgt_softc *sc)
712 {
713 	struct upgt_fw_bra_option *bra_option;
714 	uint32_t bra_option_type, bra_option_len;
715 	uint32_t *uc;
716 	int offset, bra_end = 0;
717 
718 	/*
719 	 * Seek to beginning of Boot Record Area (BRA).
720 	 */
721 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
722 		uc = (uint32_t *)(sc->sc_fw + offset);
723 		if (*uc == 0)
724 			break;
725 	}
726 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
727 		uc = (uint32_t *)(sc->sc_fw + offset);
728 		if (*uc != 0)
729 			break;
730 	}
731 	if (offset == sc->sc_fw_size) {
732 		aprint_error_dev(sc->sc_dev,
733 		    "firmware Boot Record Area not found\n");
734 		return EIO;
735 	}
736 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
737 	    device_xname(sc->sc_dev), offset);
738 
739 	/*
740 	 * Parse Boot Record Area (BRA) options.
741 	 */
742 	while (offset < sc->sc_fw_size && bra_end == 0) {
743 		/* get current BRA option */
744 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
745 		bra_option_type = le32toh(bra_option->type);
746 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
747 
748 		switch (bra_option_type) {
749 		case UPGT_BRA_TYPE_FW:
750 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
751 			    device_xname(sc->sc_dev), bra_option_len);
752 
753 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
754 				aprint_error_dev(sc->sc_dev,
755 				    "wrong UPGT_BRA_TYPE_FW len\n");
756 				return EIO;
757 			}
758 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
759 			    bra_option_len) == 0) {
760 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
761 				break;
762 			}
763 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
764 			    bra_option_len) == 0) {
765 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
766 				break;
767 			}
768 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
769 			    bra_option_len) == 0) {
770 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
771 				break;
772 			}
773 			aprint_error_dev(sc->sc_dev,
774 			    "unsupported firmware type\n");
775 			return EIO;
776 		case UPGT_BRA_TYPE_VERSION:
777 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
778 			    device_xname(sc->sc_dev), bra_option_len);
779 			break;
780 		case UPGT_BRA_TYPE_DEPIF:
781 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
782 			    device_xname(sc->sc_dev), bra_option_len);
783 			break;
784 		case UPGT_BRA_TYPE_EXPIF:
785 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
786 			    device_xname(sc->sc_dev), bra_option_len);
787 			break;
788 		case UPGT_BRA_TYPE_DESCR:
789 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
790 			    device_xname(sc->sc_dev), bra_option_len);
791 
792 			struct upgt_fw_bra_descr *descr =
793 				(struct upgt_fw_bra_descr *)bra_option->data;
794 
795 			sc->sc_memaddr_frame_start =
796 			    le32toh(descr->memaddr_space_start);
797 			sc->sc_memaddr_frame_end =
798 			    le32toh(descr->memaddr_space_end);
799 
800 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
801 			    device_xname(sc->sc_dev),
802 			    sc->sc_memaddr_frame_start);
803 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
804 			    device_xname(sc->sc_dev),
805 			    sc->sc_memaddr_frame_end);
806 			break;
807 		case UPGT_BRA_TYPE_END:
808 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
809 			    device_xname(sc->sc_dev), bra_option_len);
810 			bra_end = 1;
811 			break;
812 		default:
813 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
814 			    device_xname(sc->sc_dev), bra_option_len);
815 			return EIO;
816 		}
817 
818 		/* jump to next BRA option */
819 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
820 	}
821 
822 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
823 
824 	return 0;
825 }
826 
827 static int
828 upgt_fw_load(struct upgt_softc *sc)
829 {
830 	struct upgt_data *data_cmd = &sc->cmd_data;
831 	struct upgt_data *data_rx = &sc->rx_data;
832 	struct upgt_fw_x2_header *x2;
833 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
834 	int offset, bsize, n, i, len;
835 	uint32_t crc;
836 
837 	/* send firmware start load command */
838 	len = sizeof(start_fwload_cmd);
839 	memcpy(data_cmd->buf, start_fwload_cmd, len);
840 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
841 		aprint_error_dev(sc->sc_dev,
842 		    "could not send start_firmware_load command\n");
843 		return EIO;
844 	}
845 
846 	/* send X2 header */
847 	len = sizeof(struct upgt_fw_x2_header);
848 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
849 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
850 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
851 	x2->len = htole32(sc->sc_fw_size);
852 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
853 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
854 	    sizeof(uint32_t));
855 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
856 		aprint_error_dev(sc->sc_dev,
857 		    "could not send firmware X2 header\n");
858 		return EIO;
859 	}
860 
861 	/* download firmware */
862 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
863 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
864 			bsize = UPGT_FW_BLOCK_SIZE;
865 		else
866 			bsize = sc->sc_fw_size - offset;
867 
868 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
869 
870 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
871 		    device_xname(sc->sc_dev), offset, n, bsize);
872 
873 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
874 		    != 0) {
875 			aprint_error_dev(sc->sc_dev,
876 			    "error while downloading firmware block\n");
877 			return EIO;
878 		}
879 
880 		bsize = n;
881 	}
882 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
883 
884 	/* load firmware */
885 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
886 	*((uint32_t *)(data_cmd->buf)    ) = crc;
887 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
888 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
889 	len = 6;
890 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
891 		aprint_error_dev(sc->sc_dev,
892 		    "could not send load_firmware command\n");
893 		return EIO;
894 	}
895 
896 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
897 		len = UPGT_FW_BLOCK_SIZE;
898 		memset(data_rx->buf, 0, 2);
899 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
900 		    USBD_SHORT_XFER_OK) != 0) {
901 			aprint_error_dev(sc->sc_dev,
902 			    "could not read firmware response\n");
903 			return EIO;
904 		}
905 
906 		if (memcmp(data_rx->buf, "OK", 2) == 0)
907 			break;	/* firmware load was successful */
908 	}
909 	if (i == UPGT_FIRMWARE_TIMEOUT) {
910 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
911 		return EIO;
912 	}
913 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
914 
915 	return 0;
916 }
917 
918 /*
919  * While copying the version 2 firmware, we need to replace two characters:
920  *
921  * 0x7e -> 0x7d 0x5e
922  * 0x7d -> 0x7d 0x5d
923  */
924 static int
925 upgt_fw_copy(char *src, char *dst, int size)
926 {
927 	int i, j;
928 
929 	for (i = 0, j = 0; i < size && j < size; i++) {
930 		switch (src[i]) {
931 		case 0x7e:
932 			dst[j] = 0x7d;
933 			j++;
934 			dst[j] = 0x5e;
935 			j++;
936 			break;
937 		case 0x7d:
938 			dst[j] = 0x7d;
939 			j++;
940 			dst[j] = 0x5d;
941 			j++;
942 			break;
943 		default:
944 			dst[j] = src[i];
945 			j++;
946 			break;
947 		}
948 	}
949 
950 	return i;
951 }
952 
953 static int
954 upgt_eeprom_read(struct upgt_softc *sc)
955 {
956 	struct upgt_data *data_cmd = &sc->cmd_data;
957 	struct upgt_lmac_mem *mem;
958 	struct upgt_lmac_eeprom	*eeprom;
959 	int offset, block, len;
960 
961 	offset = 0;
962 	block = UPGT_EEPROM_BLOCK_SIZE;
963 	while (offset < UPGT_EEPROM_SIZE) {
964 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
965 		    device_xname(sc->sc_dev), offset, block);
966 
967 		/*
968 		 * Transmit the URB containing the CMD data.
969 		 */
970 		len = sizeof(*mem) + sizeof(*eeprom) + block;
971 
972 		memset(data_cmd->buf, 0, len);
973 
974 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
975 		mem->addr = htole32(sc->sc_memaddr_frame_start +
976 		    UPGT_MEMSIZE_FRAME_HEAD);
977 
978 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
979 		eeprom->header1.flags = 0;
980 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
981 		eeprom->header1.len = htole16((
982 		    sizeof(struct upgt_lmac_eeprom) -
983 		    sizeof(struct upgt_lmac_header)) + block);
984 
985 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
986 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
987 		eeprom->header2.flags = 0;
988 
989 		eeprom->offset = htole16(offset);
990 		eeprom->len = htole16(block);
991 
992 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
993 		    len - sizeof(*mem));
994 
995 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
996 		    USBD_FORCE_SHORT_XFER) != 0) {
997 			aprint_error_dev(sc->sc_dev,
998 			    "could not transmit EEPROM data URB\n");
999 			return EIO;
1000 		}
1001 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1002 			aprint_error_dev(sc->sc_dev,
1003 			    "timeout while waiting for EEPROM data\n");
1004 			return EIO;
1005 		}
1006 
1007 		offset += block;
1008 		if (UPGT_EEPROM_SIZE - offset < block)
1009 			block = UPGT_EEPROM_SIZE - offset;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static int
1016 upgt_eeprom_parse(struct upgt_softc *sc)
1017 {
1018 	struct ieee80211com *ic = &sc->sc_ic;
1019 	struct upgt_eeprom_header *eeprom_header;
1020 	struct upgt_eeprom_option *eeprom_option;
1021 	uint16_t option_len;
1022 	uint16_t option_type;
1023 	uint16_t preamble_len;
1024 	int option_end = 0;
1025 
1026 	/* calculate eeprom options start offset */
1027 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1028 	preamble_len = le16toh(eeprom_header->preamble_len);
1029 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1030 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1031 
1032 	while (!option_end) {
1033 		/* the eeprom option length is stored in words */
1034 		option_len =
1035 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1036 		option_type =
1037 		    le16toh(eeprom_option->type);
1038 
1039 		switch (option_type) {
1040 		case UPGT_EEPROM_TYPE_NAME:
1041 			DPRINTF(1, "%s: EEPROM name len=%d\n",
1042 			    device_xname(sc->sc_dev), option_len);
1043 			break;
1044 		case UPGT_EEPROM_TYPE_SERIAL:
1045 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1046 			    device_xname(sc->sc_dev), option_len);
1047 			break;
1048 		case UPGT_EEPROM_TYPE_MAC:
1049 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1050 			    device_xname(sc->sc_dev), option_len);
1051 
1052 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1053 			break;
1054 		case UPGT_EEPROM_TYPE_HWRX:
1055 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1056 			    device_xname(sc->sc_dev), option_len);
1057 
1058 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1059 			break;
1060 		case UPGT_EEPROM_TYPE_CHIP:
1061 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1062 			    device_xname(sc->sc_dev), option_len);
1063 			break;
1064 		case UPGT_EEPROM_TYPE_FREQ3:
1065 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1066 			    device_xname(sc->sc_dev), option_len);
1067 
1068 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1069 			    option_len);
1070 			break;
1071 		case UPGT_EEPROM_TYPE_FREQ4:
1072 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1073 			    device_xname(sc->sc_dev), option_len);
1074 
1075 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1076 			    option_len);
1077 			break;
1078 		case UPGT_EEPROM_TYPE_FREQ5:
1079 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1080 			    device_xname(sc->sc_dev), option_len);
1081 			break;
1082 		case UPGT_EEPROM_TYPE_FREQ6:
1083 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1084 			    device_xname(sc->sc_dev), option_len);
1085 
1086 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1087 			    option_len);
1088 			break;
1089 		case UPGT_EEPROM_TYPE_END:
1090 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1091 			    device_xname(sc->sc_dev), option_len);
1092 			option_end = 1;
1093 			break;
1094 		case UPGT_EEPROM_TYPE_OFF:
1095 			DPRINTF(1, "%s: EEPROM off without end option\n",
1096 			    device_xname(sc->sc_dev));
1097 			return EIO;
1098 		default:
1099 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1100 			    device_xname(sc->sc_dev), option_type, option_len);
1101 			break;
1102 		}
1103 
1104 		/* jump to next EEPROM option */
1105 		eeprom_option = (struct upgt_eeprom_option *)
1106 		    (eeprom_option->data + option_len);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 static void
1113 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1114 {
1115 	struct upgt_eeprom_option_hwrx *option_hwrx;
1116 
1117 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1118 
1119 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1120 
1121 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1122 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1123 }
1124 
1125 static void
1126 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1127 {
1128 	struct upgt_eeprom_freq3_header *freq3_header;
1129 	struct upgt_lmac_freq3 *freq3;
1130 	int i, elements, flags;
1131 	unsigned channel;
1132 
1133 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1134 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1135 
1136 	flags = freq3_header->flags;
1137 	elements = freq3_header->elements;
1138 
1139 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1140 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1141 	__USE(flags);
1142 
1143 	for (i = 0; i < elements; i++) {
1144 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1145 
1146 		sc->sc_eeprom_freq3[channel] = freq3[i];
1147 
1148 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1149 		    device_xname(sc->sc_dev),
1150 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1151 	}
1152 }
1153 
1154 static void
1155 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1156 {
1157 	struct upgt_eeprom_freq4_header *freq4_header;
1158 	struct upgt_eeprom_freq4_1 *freq4_1;
1159 	struct upgt_eeprom_freq4_2 *freq4_2;
1160 	int i, j, elements, settings, flags;
1161 	unsigned channel;
1162 
1163 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1164 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1165 
1166 	flags = freq4_header->flags;
1167 	elements = freq4_header->elements;
1168 	settings = freq4_header->settings;
1169 
1170 	/* we need this value later */
1171 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1172 
1173 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1174 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1175 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1176 	__USE(flags);
1177 
1178 	for (i = 0; i < elements; i++) {
1179 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1180 
1181 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1182 
1183 		for (j = 0; j < settings; j++) {
1184 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1185 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1186 		}
1187 
1188 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1189 		    device_xname(sc->sc_dev),
1190 		    le16toh(freq4_1[i].freq), channel);
1191 	}
1192 }
1193 
1194 static void
1195 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1196 {
1197 	struct upgt_lmac_freq6 *freq6;
1198 	int i, elements;
1199 	unsigned channel;
1200 
1201 	freq6 = (struct upgt_lmac_freq6 *)data;
1202 
1203 	elements = len / sizeof(struct upgt_lmac_freq6);
1204 
1205 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1206 
1207 	for (i = 0; i < elements; i++) {
1208 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1209 
1210 		sc->sc_eeprom_freq6[channel] = freq6[i];
1211 
1212 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1213 		    device_xname(sc->sc_dev),
1214 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1215 	}
1216 }
1217 
1218 static int
1219 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1220 {
1221 	struct upgt_softc *sc = ifp->if_softc;
1222 	struct ieee80211com *ic = &sc->sc_ic;
1223 	int s, error = 0;
1224 
1225 	s = splnet();
1226 
1227 	switch (cmd) {
1228 	case SIOCSIFFLAGS:
1229 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1230 			break;
1231 		if (ifp->if_flags & IFF_UP) {
1232 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1233 				upgt_init(ifp);
1234 		} else {
1235 			if (ifp->if_flags & IFF_RUNNING)
1236 				upgt_stop(sc);
1237 		}
1238 		break;
1239 	case SIOCADDMULTI:
1240 	case SIOCDELMULTI:
1241 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1242 			/* setup multicast filter, etc */
1243 			error = 0;
1244 		}
1245 		break;
1246 	default:
1247 		error = ieee80211_ioctl(ic, cmd, data);
1248 		break;
1249 	}
1250 
1251 	if (error == ENETRESET) {
1252 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1253 		    (IFF_UP | IFF_RUNNING))
1254 			upgt_init(ifp);
1255 		error = 0;
1256 	}
1257 
1258 	splx(s);
1259 
1260 	return error;
1261 }
1262 
1263 static int
1264 upgt_init(struct ifnet *ifp)
1265 {
1266 	struct upgt_softc *sc = ifp->if_softc;
1267 	struct ieee80211com *ic = &sc->sc_ic;
1268 
1269 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1270 
1271 	if (ifp->if_flags & IFF_RUNNING)
1272 		upgt_stop(sc);
1273 
1274 	ifp->if_flags |= IFF_RUNNING;
1275 	ifp->if_flags &= ~IFF_OACTIVE;
1276 
1277 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1278 
1279 	/* setup device rates */
1280 	upgt_setup_rates(sc);
1281 
1282 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1283 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1284 	else
1285 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1286 
1287 	return 0;
1288 }
1289 
1290 static void
1291 upgt_stop(struct upgt_softc *sc)
1292 {
1293 	struct ieee80211com *ic = &sc->sc_ic;
1294 	struct ifnet *ifp = &sc->sc_if;
1295 
1296 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1297 
1298 	/* device down */
1299 	ifp->if_timer = 0;
1300 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1301 
1302 	/* change device back to initial state */
1303 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1304 }
1305 
1306 static int
1307 upgt_media_change(struct ifnet *ifp)
1308 {
1309 	struct upgt_softc *sc = ifp->if_softc;
1310 	int error;
1311 
1312 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1313 
1314 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
1315 		return error;
1316 
1317 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1318 	    (IFF_UP | IFF_RUNNING)) {
1319 		/* give pending USB transfers a chance to finish */
1320 		usbd_delay_ms(sc->sc_udev, 100);
1321 		upgt_init(ifp);
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static void
1328 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1329 {
1330 
1331 	ni->ni_txrate = 0;
1332 }
1333 
1334 static int
1335 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1336 {
1337 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1338 
1339 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1340 	callout_stop(&sc->scan_to);
1341 
1342 	/* do it in a process context */
1343 	sc->sc_state = nstate;
1344 	sc->sc_arg = arg;
1345 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1346 
1347 	return 0;
1348 }
1349 
1350 static void
1351 upgt_newstate_task(void *arg)
1352 {
1353 	struct upgt_softc *sc = arg;
1354 	struct ieee80211com *ic = &sc->sc_ic;
1355 	struct ieee80211_node *ni;
1356 	unsigned channel;
1357 
1358 	mutex_enter(&sc->sc_mtx);
1359 
1360 	switch (sc->sc_state) {
1361 	case IEEE80211_S_INIT:
1362 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1363 		    device_xname(sc->sc_dev));
1364 
1365 		/* do not accept any frames if the device is down */
1366 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1367 		upgt_set_led(sc, UPGT_LED_OFF);
1368 		break;
1369 	case IEEE80211_S_SCAN:
1370 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1371 		    device_xname(sc->sc_dev));
1372 
1373 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1374 		upgt_set_channel(sc, channel);
1375 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1376 		callout_schedule(&sc->scan_to, hz / 5);
1377 		break;
1378 	case IEEE80211_S_AUTH:
1379 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1380 		    device_xname(sc->sc_dev));
1381 
1382 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1383 		upgt_set_channel(sc, channel);
1384 		break;
1385 	case IEEE80211_S_ASSOC:
1386 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1387 		    device_xname(sc->sc_dev));
1388 
1389 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1390 		upgt_set_channel(sc, channel);
1391 		break;
1392 	case IEEE80211_S_RUN:
1393 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1394 		    device_xname(sc->sc_dev));
1395 
1396 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1397 		upgt_set_channel(sc, channel);
1398 
1399 		ni = ic->ic_bss;
1400 
1401 		/*
1402 		 * TX rate control is done by the firmware.
1403 		 * Report the maximum rate which is available therefore.
1404 		 */
1405 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1406 
1407 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1408 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1409 		upgt_set_led(sc, UPGT_LED_ON);
1410 		break;
1411 	}
1412 
1413 	mutex_exit(&sc->sc_mtx);
1414 
1415 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1416 }
1417 
1418 static void
1419 upgt_next_scan(void *arg)
1420 {
1421 	struct upgt_softc *sc = arg;
1422 	struct ieee80211com *ic = &sc->sc_ic;
1423 
1424 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1425 
1426 	if (ic->ic_state == IEEE80211_S_SCAN)
1427 		ieee80211_next_scan(ic);
1428 }
1429 
1430 static void
1431 upgt_start(struct ifnet *ifp)
1432 {
1433 	struct upgt_softc *sc = ifp->if_softc;
1434 	struct ieee80211com *ic = &sc->sc_ic;
1435 	struct ether_header *eh;
1436 	struct ieee80211_node *ni;
1437 	struct mbuf *m;
1438 	int i;
1439 
1440 	/* don't transmit packets if interface is busy or down */
1441 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1442 		return;
1443 
1444 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1445 
1446 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1447 		struct upgt_data *data_tx = &sc->tx_data[i];
1448 
1449 		if (data_tx->m != NULL)
1450 			continue;
1451 
1452 		IF_POLL(&ic->ic_mgtq, m);
1453 		if (m != NULL) {
1454 			/* management frame */
1455 			IF_DEQUEUE(&ic->ic_mgtq, m);
1456 
1457 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1458 			m->m_pkthdr.rcvif = NULL;
1459 
1460 			bpf_mtap3(ic->ic_rawbpf, m);
1461 
1462 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1463 				aprint_error_dev(sc->sc_dev,
1464 				    "no free prism memory\n");
1465 				m_freem(m);
1466 				ifp->if_oerrors++;
1467 				break;
1468 			}
1469 			data_tx->ni = ni;
1470 			data_tx->m = m;
1471 			sc->tx_queued++;
1472 		} else {
1473 			/* data frame */
1474 			if (ic->ic_state != IEEE80211_S_RUN)
1475 				break;
1476 
1477 			IFQ_POLL(&ifp->if_snd, m);
1478 			if (m == NULL)
1479 				break;
1480 
1481 			IFQ_DEQUEUE(&ifp->if_snd, m);
1482 			if (m->m_len < sizeof(struct ether_header) &&
1483 			    !(m = m_pullup(m, sizeof(struct ether_header))))
1484 				continue;
1485 
1486 			eh = mtod(m, struct ether_header *);
1487 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1488 			if (ni == NULL) {
1489 				m_freem(m);
1490 				continue;
1491 			}
1492 
1493 			bpf_mtap(ifp, m);
1494 
1495 			m = ieee80211_encap(ic, m, ni);
1496 			if (m == NULL) {
1497 				ieee80211_free_node(ni);
1498 				continue;
1499 			}
1500 
1501 			bpf_mtap3(ic->ic_rawbpf, m);
1502 
1503 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1504 				aprint_error_dev(sc->sc_dev,
1505 				    "no free prism memory\n");
1506 				m_freem(m);
1507 				ieee80211_free_node(ni);
1508 				ifp->if_oerrors++;
1509 				break;
1510 			}
1511 			data_tx->ni = ni;
1512 			data_tx->m = m;
1513 			sc->tx_queued++;
1514 		}
1515 	}
1516 
1517 	if (sc->tx_queued > 0) {
1518 		DPRINTF(2, "%s: tx_queued=%d\n",
1519 		    device_xname(sc->sc_dev), sc->tx_queued);
1520 		/* process the TX queue in process context */
1521 		ifp->if_timer = 5;
1522 		ifp->if_flags |= IFF_OACTIVE;
1523 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1524 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1525 	}
1526 }
1527 
1528 static void
1529 upgt_watchdog(struct ifnet *ifp)
1530 {
1531 	struct upgt_softc *sc = ifp->if_softc;
1532 	struct ieee80211com *ic = &sc->sc_ic;
1533 
1534 	if (ic->ic_state == IEEE80211_S_INIT)
1535 		return;
1536 
1537 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1538 
1539 	/* TODO: what shall we do on TX timeout? */
1540 
1541 	ieee80211_watchdog(ic);
1542 }
1543 
1544 static void
1545 upgt_tx_task(void *arg)
1546 {
1547 	struct upgt_softc *sc = arg;
1548 	struct ieee80211com *ic = &sc->sc_ic;
1549 	struct ieee80211_frame *wh;
1550 	struct ieee80211_key *k;
1551 	struct ifnet *ifp = &sc->sc_if;
1552 	struct upgt_lmac_mem *mem;
1553 	struct upgt_lmac_tx_desc *txdesc;
1554 	struct mbuf *m;
1555 	uint32_t addr;
1556 	int i, len, pad, s;
1557 	usbd_status error;
1558 
1559 	mutex_enter(&sc->sc_mtx);
1560 	upgt_set_led(sc, UPGT_LED_BLINK);
1561 	mutex_exit(&sc->sc_mtx);
1562 
1563 	s = splnet();
1564 
1565 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1566 		struct upgt_data *data_tx = &sc->tx_data[i];
1567 
1568 		if (data_tx->m == NULL)
1569 			continue;
1570 
1571 		m = data_tx->m;
1572 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1573 
1574 		/*
1575 		 * Software crypto.
1576 		 */
1577 		wh = mtod(m, struct ieee80211_frame *);
1578 
1579 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1580 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1581 			if (k == NULL) {
1582 				m_freem(m);
1583 				data_tx->m = NULL;
1584 				ieee80211_free_node(data_tx->ni);
1585 				data_tx->ni = NULL;
1586 				ifp->if_oerrors++;
1587 				break;
1588 			}
1589 
1590 			/* in case packet header moved, reset pointer */
1591 			wh = mtod(m, struct ieee80211_frame *);
1592 		}
1593 
1594 		/*
1595 		 * Transmit the URB containing the TX data.
1596 		 */
1597 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1598 
1599 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1600 		mem->addr = htole32(addr);
1601 
1602 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1603 
1604 		/* XXX differ between data and mgmt frames? */
1605 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1606 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1607 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1608 
1609 		txdesc->header2.reqid = htole32(data_tx->addr);
1610 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1611 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1612 
1613 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1614 		    IEEE80211_FC0_TYPE_MGT) {
1615 			/* always send mgmt frames at lowest rate (DS1) */
1616 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1617 		} else {
1618 			memcpy(txdesc->rates, sc->sc_cur_rateset,
1619 			    sizeof(txdesc->rates));
1620 		}
1621 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1622 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1623 
1624 		if (sc->sc_drvbpf != NULL) {
1625 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1626 
1627 			tap->wt_flags = 0;
1628 			tap->wt_rate = 0;	/* TODO: where to get from? */
1629 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1630 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1631 
1632 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1633 		}
1634 
1635 		/* copy frame below our TX descriptor header */
1636 		m_copydata(m, 0, m->m_pkthdr.len,
1637 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1638 
1639 		/* calculate frame size */
1640 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1641 
1642 		if (len & 3) {
1643 			/* we need to align the frame to a 4 byte boundary */
1644 			pad = 4 - (len & 3);
1645 			memset(data_tx->buf + len, 0, pad);
1646 			len += pad;
1647 		}
1648 
1649 		/* calculate frame checksum */
1650 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1651 		    len - sizeof(*mem));
1652 
1653 		/* we do not need the mbuf anymore */
1654 		m_freem(m);
1655 		data_tx->m = NULL;
1656 
1657 		ieee80211_free_node(data_tx->ni);
1658 		data_tx->ni = NULL;
1659 
1660 		DPRINTF(2, "%s: TX start data sending\n",
1661 		    device_xname(sc->sc_dev));
1662 
1663 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1664 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1665 		    UPGT_USB_TIMEOUT, NULL);
1666 		error = usbd_transfer(data_tx->xfer);
1667 		if (error != USBD_NORMAL_COMPLETION &&
1668 		    error != USBD_IN_PROGRESS) {
1669 			aprint_error_dev(sc->sc_dev,
1670 			    "could not transmit TX data URB\n");
1671 			ifp->if_oerrors++;
1672 			break;
1673 		}
1674 
1675 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1676 		    device_xname(sc->sc_dev), len);
1677 	}
1678 
1679 	splx(s);
1680 
1681 	/*
1682 	 * If we don't regulary read the device statistics, the RX queue
1683 	 * will stall.  It's strange, but it works, so we keep reading
1684 	 * the statistics here.  *shrug*
1685 	 */
1686 	mutex_enter(&sc->sc_mtx);
1687 	upgt_get_stats(sc);
1688 	mutex_exit(&sc->sc_mtx);
1689 }
1690 
1691 static void
1692 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1693 {
1694 	struct ifnet *ifp = &sc->sc_if;
1695 	struct upgt_lmac_tx_done_desc *desc;
1696 	int i, s;
1697 
1698 	s = splnet();
1699 
1700 	desc = (struct upgt_lmac_tx_done_desc *)data;
1701 
1702 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1703 		struct upgt_data *data_tx = &sc->tx_data[i];
1704 
1705 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1706 			upgt_mem_free(sc, data_tx->addr);
1707 			data_tx->addr = 0;
1708 
1709 			sc->tx_queued--;
1710 			ifp->if_opackets++;
1711 
1712 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1713 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1714 			    le32toh(desc->header2.reqid),
1715 			    le16toh(desc->status),
1716 			    le16toh(desc->rssi));
1717 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1718 			break;
1719 		}
1720 	}
1721 
1722 	if (sc->tx_queued == 0) {
1723 		/* TX queued was processed, continue */
1724 		ifp->if_timer = 0;
1725 		ifp->if_flags &= ~IFF_OACTIVE;
1726 		upgt_start(ifp);
1727 	}
1728 
1729 	splx(s);
1730 }
1731 
1732 static void
1733 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1734 {
1735 	struct upgt_data *data_rx = priv;
1736 	struct upgt_softc *sc = data_rx->sc;
1737 	int len;
1738 	struct upgt_lmac_header *header;
1739 	struct upgt_lmac_eeprom *eeprom;
1740 	uint8_t h1_type;
1741 	uint16_t h2_type;
1742 
1743 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1744 
1745 	if (status != USBD_NORMAL_COMPLETION) {
1746 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1747 			return;
1748 		if (status == USBD_STALLED)
1749 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1750 		goto skip;
1751 	}
1752 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1753 
1754 	/*
1755 	 * Check what type of frame came in.
1756 	 */
1757 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1758 
1759 	h1_type = header->header1.type;
1760 	h2_type = le16toh(header->header2.type);
1761 
1762 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1763 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1764 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1765 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1766 		uint16_t eeprom_len = le16toh(eeprom->len);
1767 
1768 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1769 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1770 
1771 		memcpy(sc->sc_eeprom + eeprom_offset,
1772 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1773 		    eeprom_len);
1774 
1775 		/* EEPROM data has arrived in time, wakeup tsleep() */
1776 		wakeup(sc);
1777 	} else
1778 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1779 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1780 		DPRINTF(2, "%s: received 802.11 TX done\n",
1781 		    device_xname(sc->sc_dev));
1782 
1783 		upgt_tx_done(sc, data_rx->buf + 4);
1784 	} else
1785 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1786 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1787 		DPRINTF(3, "%s: received 802.11 RX data\n",
1788 		    device_xname(sc->sc_dev));
1789 
1790 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1791 	} else
1792 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1793 	    h2_type == UPGT_H2_TYPE_STATS) {
1794 		DPRINTF(2, "%s: received statistic data\n",
1795 		    device_xname(sc->sc_dev));
1796 
1797 		/* TODO: what could we do with the statistic data? */
1798 	} else {
1799 		/* ignore unknown frame types */
1800 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1801 		    device_xname(sc->sc_dev), header->header1.type);
1802 	}
1803 
1804 skip:	/* setup new transfer */
1805 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1806 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1807 	(void)usbd_transfer(xfer);
1808 }
1809 
1810 static void
1811 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1812 {
1813 	struct ieee80211com *ic = &sc->sc_ic;
1814 	struct ifnet *ifp = &sc->sc_if;
1815 	struct upgt_lmac_rx_desc *rxdesc;
1816 	struct ieee80211_frame *wh;
1817 	struct ieee80211_node *ni;
1818 	struct mbuf *m;
1819 	int s;
1820 
1821 	/* access RX packet descriptor */
1822 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1823 
1824 	/* create mbuf which is suitable for strict alignment archs */
1825 #define ETHER_ALIGN	0
1826 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1827 	if (m == NULL) {
1828 		DPRINTF(1, "%s: could not create RX mbuf\n",
1829 		   device_xname(sc->sc_dev));
1830 		ifp->if_ierrors++;
1831 		return;
1832 	}
1833 
1834 	s = splnet();
1835 
1836 	if (sc->sc_drvbpf != NULL) {
1837 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1838 
1839 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1840 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1841 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1842 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1843 		tap->wr_antsignal = rxdesc->rssi;
1844 
1845 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1846 	}
1847 
1848 	/* trim FCS */
1849 	m_adj(m, -IEEE80211_CRC_LEN);
1850 
1851 	wh = mtod(m, struct ieee80211_frame *);
1852 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1853 
1854 	/* push the frame up to the 802.11 stack */
1855 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1856 
1857 	/* node is no longer needed */
1858 	ieee80211_free_node(ni);
1859 
1860 	splx(s);
1861 
1862 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1863 }
1864 
1865 static void
1866 upgt_setup_rates(struct upgt_softc *sc)
1867 {
1868 	struct ieee80211com *ic = &sc->sc_ic;
1869 
1870 	/*
1871 	 * 0x01 = OFMD6   0x10 = DS1
1872 	 * 0x04 = OFDM9   0x11 = DS2
1873 	 * 0x06 = OFDM12  0x12 = DS5
1874 	 * 0x07 = OFDM18  0x13 = DS11
1875 	 * 0x08 = OFDM24
1876 	 * 0x09 = OFDM36
1877 	 * 0x0a = OFDM48
1878 	 * 0x0b = OFDM54
1879 	 */
1880 	const uint8_t rateset_auto_11b[] =
1881 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1882 	const uint8_t rateset_auto_11g[] =
1883 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1884 	const uint8_t rateset_fix_11bg[] =
1885 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1886 	      0x08, 0x09, 0x0a, 0x0b };
1887 
1888 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1889 		/*
1890 		 * Automatic rate control is done by the device.
1891 		 * We just pass the rateset from which the device
1892 		 * will pickup a rate.
1893 		 */
1894 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1895 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1896 			    sizeof(sc->sc_cur_rateset));
1897 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1898 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1899 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1900 			    sizeof(sc->sc_cur_rateset));
1901 	} else {
1902 		/* set a fixed rate */
1903 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1904 		    sizeof(sc->sc_cur_rateset));
1905 	}
1906 }
1907 
1908 static uint8_t
1909 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1910 {
1911 	struct ieee80211com *ic = &sc->sc_ic;
1912 
1913 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1914 		if (rate < 0 || rate > 3)
1915 			/* invalid rate */
1916 			return 0;
1917 
1918 		switch (rate) {
1919 		case 0:
1920 			return 2;
1921 		case 1:
1922 			return 4;
1923 		case 2:
1924 			return 11;
1925 		case 3:
1926 			return 22;
1927 		default:
1928 			return 0;
1929 		}
1930 	}
1931 
1932 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1933 		if (rate < 0 || rate > 11)
1934 			/* invalid rate */
1935 			return 0;
1936 
1937 		switch (rate) {
1938 		case 0:
1939 			return 2;
1940 		case 1:
1941 			return 4;
1942 		case 2:
1943 			return 11;
1944 		case 3:
1945 			return 22;
1946 		case 4:
1947 			return 12;
1948 		case 5:
1949 			return 18;
1950 		case 6:
1951 			return 24;
1952 		case 7:
1953 			return 36;
1954 		case 8:
1955 			return 48;
1956 		case 9:
1957 			return 72;
1958 		case 10:
1959 			return 96;
1960 		case 11:
1961 			return 108;
1962 		default:
1963 			return 0;
1964 		}
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int
1971 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1972 {
1973 	struct ieee80211com *ic = &sc->sc_ic;
1974 	struct ieee80211_node *ni = ic->ic_bss;
1975 	struct upgt_data *data_cmd = &sc->cmd_data;
1976 	struct upgt_lmac_mem *mem;
1977 	struct upgt_lmac_filter *filter;
1978 	int len;
1979 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1980 
1981 	/*
1982 	 * Transmit the URB containing the CMD data.
1983 	 */
1984 	len = sizeof(*mem) + sizeof(*filter);
1985 
1986 	memset(data_cmd->buf, 0, len);
1987 
1988 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1989 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1990 	    UPGT_MEMSIZE_FRAME_HEAD);
1991 
1992 	filter = (struct upgt_lmac_filter *)(mem + 1);
1993 
1994 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1995 	filter->header1.type = UPGT_H1_TYPE_CTRL;
1996 	filter->header1.len = htole16(
1997 	    sizeof(struct upgt_lmac_filter) -
1998 	    sizeof(struct upgt_lmac_header));
1999 
2000 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2001 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2002 	filter->header2.flags = 0;
2003 
2004 	switch (state) {
2005 	case IEEE80211_S_INIT:
2006 		DPRINTF(1, "%s: set MAC filter to INIT\n",
2007 		    device_xname(sc->sc_dev));
2008 
2009 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2010 		break;
2011 	case IEEE80211_S_SCAN:
2012 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2013 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2014 
2015 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2016 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2017 		IEEE80211_ADDR_COPY(filter->src, broadcast);
2018 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2019 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2020 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2021 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2022 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2023 		break;
2024 	case IEEE80211_S_RUN:
2025 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2026 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2027 
2028 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2029 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2030 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2031 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2032 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2033 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2034 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2035 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2036 		break;
2037 	default:
2038 		aprint_error_dev(sc->sc_dev,
2039 		    "MAC filter does not know that state\n");
2040 		break;
2041 	}
2042 
2043 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2044 
2045 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2046 		aprint_error_dev(sc->sc_dev,
2047 		    "could not transmit macfilter CMD data URB\n");
2048 		return EIO;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static int
2055 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2056 {
2057 	struct upgt_data *data_cmd = &sc->cmd_data;
2058 	struct upgt_lmac_mem *mem;
2059 	struct upgt_lmac_channel *chan;
2060 	int len;
2061 
2062 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2063 	    channel);
2064 
2065 	/*
2066 	 * Transmit the URB containing the CMD data.
2067 	 */
2068 	len = sizeof(*mem) + sizeof(*chan);
2069 
2070 	memset(data_cmd->buf, 0, len);
2071 
2072 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2073 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2074 	    UPGT_MEMSIZE_FRAME_HEAD);
2075 
2076 	chan = (struct upgt_lmac_channel *)(mem + 1);
2077 
2078 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2079 	chan->header1.type = UPGT_H1_TYPE_CTRL;
2080 	chan->header1.len = htole16(
2081 	    sizeof(struct upgt_lmac_channel) -
2082 	    sizeof(struct upgt_lmac_header));
2083 
2084 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2085 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2086 	chan->header2.flags = 0;
2087 
2088 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2089 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2090 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2091 	chan->settings = sc->sc_eeprom_freq6_settings;
2092 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2093 
2094 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2095 	    sizeof(chan->freq3_1));
2096 
2097 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2098 	    sizeof(sc->sc_eeprom_freq4[channel]));
2099 
2100 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2101 	    sizeof(chan->freq3_2));
2102 
2103 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2104 
2105 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2106 		aprint_error_dev(sc->sc_dev,
2107 		    "could not transmit channel CMD data URB\n");
2108 		return EIO;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 static void
2115 upgt_set_led(struct upgt_softc *sc, int action)
2116 {
2117 	struct ieee80211com *ic = &sc->sc_ic;
2118 	struct upgt_data *data_cmd = &sc->cmd_data;
2119 	struct upgt_lmac_mem *mem;
2120 	struct upgt_lmac_led *led;
2121 	struct timeval t;
2122 	int len;
2123 
2124 	/*
2125 	 * Transmit the URB containing the CMD data.
2126 	 */
2127 	len = sizeof(*mem) + sizeof(*led);
2128 
2129 	memset(data_cmd->buf, 0, len);
2130 
2131 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2132 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2133 	    UPGT_MEMSIZE_FRAME_HEAD);
2134 
2135 	led = (struct upgt_lmac_led *)(mem + 1);
2136 
2137 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2138 	led->header1.type = UPGT_H1_TYPE_CTRL;
2139 	led->header1.len = htole16(
2140 	    sizeof(struct upgt_lmac_led) -
2141 	    sizeof(struct upgt_lmac_header));
2142 
2143 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2144 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2145 	led->header2.flags = 0;
2146 
2147 	switch (action) {
2148 	case UPGT_LED_OFF:
2149 		led->mode = htole16(UPGT_LED_MODE_SET);
2150 		led->action_fix = 0;
2151 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2152 		led->action_tmp_dur = 0;
2153 		break;
2154 	case UPGT_LED_ON:
2155 		led->mode = htole16(UPGT_LED_MODE_SET);
2156 		led->action_fix = 0;
2157 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2158 		led->action_tmp_dur = 0;
2159 		break;
2160 	case UPGT_LED_BLINK:
2161 		if (ic->ic_state != IEEE80211_S_RUN)
2162 			return;
2163 		if (sc->sc_led_blink)
2164 			/* previous blink was not finished */
2165 			return;
2166 		led->mode = htole16(UPGT_LED_MODE_SET);
2167 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2168 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2169 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2170 		/* lock blink */
2171 		sc->sc_led_blink = 1;
2172 		t.tv_sec = 0;
2173 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2174 		callout_schedule(&sc->led_to, tvtohz(&t));
2175 		break;
2176 	default:
2177 		return;
2178 	}
2179 
2180 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2181 
2182 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2183 		aprint_error_dev(sc->sc_dev,
2184 		    "could not transmit led CMD URB\n");
2185 	}
2186 }
2187 
2188 static void
2189 upgt_set_led_blink(void *arg)
2190 {
2191 	struct upgt_softc *sc = arg;
2192 
2193 	/* blink finished, we are ready for a next one */
2194 	sc->sc_led_blink = 0;
2195 	callout_stop(&sc->led_to);
2196 }
2197 
2198 static int
2199 upgt_get_stats(struct upgt_softc *sc)
2200 {
2201 	struct upgt_data *data_cmd = &sc->cmd_data;
2202 	struct upgt_lmac_mem *mem;
2203 	struct upgt_lmac_stats *stats;
2204 	int len;
2205 
2206 	/*
2207 	 * Transmit the URB containing the CMD data.
2208 	 */
2209 	len = sizeof(*mem) + sizeof(*stats);
2210 
2211 	memset(data_cmd->buf, 0, len);
2212 
2213 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2214 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2215 	    UPGT_MEMSIZE_FRAME_HEAD);
2216 
2217 	stats = (struct upgt_lmac_stats *)(mem + 1);
2218 
2219 	stats->header1.flags = 0;
2220 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2221 	stats->header1.len = htole16(
2222 	    sizeof(struct upgt_lmac_stats) -
2223 	    sizeof(struct upgt_lmac_header));
2224 
2225 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2226 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2227 	stats->header2.flags = 0;
2228 
2229 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2230 
2231 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2232 		aprint_error_dev(sc->sc_dev,
2233 		    "could not transmit statistics CMD data URB\n");
2234 		return EIO;
2235 	}
2236 
2237 	return 0;
2238 
2239 }
2240 
2241 static int
2242 upgt_alloc_tx(struct upgt_softc *sc)
2243 {
2244 	int i;
2245 
2246 	sc->tx_queued = 0;
2247 
2248 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2249 		struct upgt_data *data_tx = &sc->tx_data[i];
2250 
2251 		data_tx->sc = sc;
2252 
2253 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2254 		if (data_tx->xfer == NULL) {
2255 			aprint_error_dev(sc->sc_dev,
2256 			    "could not allocate TX xfer\n");
2257 			return ENOMEM;
2258 		}
2259 
2260 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2261 		if (data_tx->buf == NULL) {
2262 			aprint_error_dev(sc->sc_dev,
2263 			    "could not allocate TX buffer\n");
2264 			return ENOMEM;
2265 		}
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static int
2272 upgt_alloc_rx(struct upgt_softc *sc)
2273 {
2274 	struct upgt_data *data_rx = &sc->rx_data;
2275 
2276 	data_rx->sc = sc;
2277 
2278 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2279 	if (data_rx->xfer == NULL) {
2280 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2281 		return ENOMEM;
2282 	}
2283 
2284 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2285 	if (data_rx->buf == NULL) {
2286 		aprint_error_dev(sc->sc_dev,
2287 		    "could not allocate RX buffer\n");
2288 		return ENOMEM;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static int
2295 upgt_alloc_cmd(struct upgt_softc *sc)
2296 {
2297 	struct upgt_data *data_cmd = &sc->cmd_data;
2298 
2299 	data_cmd->sc = sc;
2300 
2301 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2302 	if (data_cmd->xfer == NULL) {
2303 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2304 		return ENOMEM;
2305 	}
2306 
2307 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2308 	if (data_cmd->buf == NULL) {
2309 		aprint_error_dev(sc->sc_dev,
2310 		    "could not allocate RX buffer\n");
2311 		return ENOMEM;
2312 	}
2313 
2314 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
2315 
2316 	return 0;
2317 }
2318 
2319 static void
2320 upgt_free_tx(struct upgt_softc *sc)
2321 {
2322 	int i;
2323 
2324 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2325 		struct upgt_data *data_tx = &sc->tx_data[i];
2326 
2327 		if (data_tx->xfer != NULL) {
2328 			usbd_free_xfer(data_tx->xfer);
2329 			data_tx->xfer = NULL;
2330 		}
2331 
2332 		data_tx->ni = NULL;
2333 	}
2334 }
2335 
2336 static void
2337 upgt_free_rx(struct upgt_softc *sc)
2338 {
2339 	struct upgt_data *data_rx = &sc->rx_data;
2340 
2341 	if (data_rx->xfer != NULL) {
2342 		usbd_free_xfer(data_rx->xfer);
2343 		data_rx->xfer = NULL;
2344 	}
2345 
2346 	data_rx->ni = NULL;
2347 }
2348 
2349 static void
2350 upgt_free_cmd(struct upgt_softc *sc)
2351 {
2352 	struct upgt_data *data_cmd = &sc->cmd_data;
2353 
2354 	if (data_cmd->xfer != NULL) {
2355 		usbd_free_xfer(data_cmd->xfer);
2356 		data_cmd->xfer = NULL;
2357 	}
2358 
2359 	mutex_destroy(&sc->sc_mtx);
2360 }
2361 
2362 static int
2363 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2364     usbd_pipe_handle pipeh, uint32_t *size, int flags)
2365 {
2366         usbd_status status;
2367 
2368 	status = usbd_bulk_transfer(data->xfer, pipeh,
2369 	    USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
2370 	    "upgt_bulk_xmit");
2371 	if (status != USBD_NORMAL_COMPLETION) {
2372 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2373 		    usbd_errstr(status));
2374 		return EIO;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 #if 0
2381 static void
2382 upgt_hexdump(void *buf, int len)
2383 {
2384 	int i;
2385 
2386 	for (i = 0; i < len; i++) {
2387 		if (i % 16 == 0)
2388 			printf("%s%5i:", i ? "\n" : "", i);
2389 		if (i % 4 == 0)
2390 			printf(" ");
2391 		printf("%02x", (int)*((uint8_t *)buf + i));
2392 	}
2393 	printf("\n");
2394 }
2395 #endif
2396 
2397 static uint32_t
2398 upgt_crc32_le(const void *buf, size_t size)
2399 {
2400 	uint32_t crc;
2401 
2402 	crc = ether_crc32_le(buf, size);
2403 
2404 	/* apply final XOR value as common for CRC-32 */
2405 	crc = htole32(crc ^ 0xffffffffU);
2406 
2407 	return crc;
2408 }
2409 
2410 /*
2411  * The firmware awaits a checksum for each frame we send to it.
2412  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2413  */
2414 static uint32_t
2415 upgt_chksum_le(const uint32_t *buf, size_t size)
2416 {
2417 	int i;
2418 	uint32_t crc = 0;
2419 
2420 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2421 		crc = htole32(crc ^ *buf++);
2422 		crc = htole32((crc >> 5) ^ (crc << 3));
2423 	}
2424 
2425 	return crc;
2426 }
2427