1 /* $NetBSD: if_upgt.c,v 1.12 2014/05/27 13:44:25 ryoon Exp $ */ 2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12 2014/05/27 13:44:25 ryoon Exp $"); 22 23 #include <sys/param.h> 24 #include <sys/callout.h> 25 #include <sys/device.h> 26 #include <sys/errno.h> 27 #include <sys/kernel.h> 28 #include <sys/kthread.h> 29 #include <sys/mbuf.h> 30 #include <sys/proc.h> 31 #include <sys/sockio.h> 32 #include <sys/systm.h> 33 #include <sys/vnode.h> 34 #include <sys/bus.h> 35 #include <sys/endian.h> 36 #include <sys/intr.h> 37 38 #include <net/bpf.h> 39 #include <net/if.h> 40 #include <net/if_arp.h> 41 #include <net/if_dl.h> 42 #include <net/if_ether.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 46 #include <net80211/ieee80211_var.h> 47 #include <net80211/ieee80211_radiotap.h> 48 49 #include <dev/firmload.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include <dev/usb/usbdi_util.h> 54 #include <dev/usb/usbdivar.h> 55 #include <dev/usb/usbdevs.h> 56 57 #include <dev/usb/if_upgtvar.h> 58 59 /* 60 * Driver for the USB PrismGT devices. 61 * 62 * For now just USB 2.0 devices with the GW3887 chipset are supported. 63 * The driver has been written based on the firmware version 2.13.1.0_LM87. 64 * 65 * TODO's: 66 * - Fix MONITOR mode (MAC filter). 67 * - Add HOSTAP mode. 68 * - Add IBSS mode. 69 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 70 * 71 * Parts of this driver has been influenced by reading the p54u driver 72 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 73 * Sebastien Bourdeauducq <lekernel@prism54.org>. 74 */ 75 76 #ifdef UPGT_DEBUG 77 int upgt_debug = 2; 78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 79 #else 80 #define DPRINTF(l, x...) 81 #endif 82 83 /* 84 * Prototypes. 85 */ 86 static int upgt_match(device_t, cfdata_t, void *); 87 static void upgt_attach(device_t, device_t, void *); 88 static int upgt_detach(device_t, int); 89 static int upgt_activate(device_t, devact_t); 90 91 static void upgt_attach_hook(device_t); 92 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 93 static int upgt_device_init(struct upgt_softc *); 94 static int upgt_mem_init(struct upgt_softc *); 95 static uint32_t upgt_mem_alloc(struct upgt_softc *); 96 static void upgt_mem_free(struct upgt_softc *, uint32_t); 97 static int upgt_fw_alloc(struct upgt_softc *); 98 static void upgt_fw_free(struct upgt_softc *); 99 static int upgt_fw_verify(struct upgt_softc *); 100 static int upgt_fw_load(struct upgt_softc *); 101 static int upgt_fw_copy(char *, char *, int); 102 static int upgt_eeprom_read(struct upgt_softc *); 103 static int upgt_eeprom_parse(struct upgt_softc *); 104 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 105 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 106 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 107 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 108 109 static int upgt_ioctl(struct ifnet *, u_long, void *); 110 static int upgt_init(struct ifnet *); 111 static void upgt_stop(struct upgt_softc *); 112 static int upgt_media_change(struct ifnet *); 113 static void upgt_newassoc(struct ieee80211_node *, int); 114 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state, 115 int); 116 static void upgt_newstate_task(void *); 117 static void upgt_next_scan(void *); 118 static void upgt_start(struct ifnet *); 119 static void upgt_watchdog(struct ifnet *); 120 static void upgt_tx_task(void *); 121 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 122 static void upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status); 123 static void upgt_rx(struct upgt_softc *, uint8_t *, int); 124 static void upgt_setup_rates(struct upgt_softc *); 125 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 126 static int upgt_set_macfilter(struct upgt_softc *, uint8_t state); 127 static int upgt_set_channel(struct upgt_softc *, unsigned); 128 static void upgt_set_led(struct upgt_softc *, int); 129 static void upgt_set_led_blink(void *); 130 static int upgt_get_stats(struct upgt_softc *); 131 132 static int upgt_alloc_tx(struct upgt_softc *); 133 static int upgt_alloc_rx(struct upgt_softc *); 134 static int upgt_alloc_cmd(struct upgt_softc *); 135 static void upgt_free_tx(struct upgt_softc *); 136 static void upgt_free_rx(struct upgt_softc *); 137 static void upgt_free_cmd(struct upgt_softc *); 138 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 139 usbd_pipe_handle, uint32_t *, int); 140 141 #if 0 142 static void upgt_hexdump(void *, int); 143 #endif 144 static uint32_t upgt_crc32_le(const void *, size_t); 145 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 146 147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc), 148 upgt_match, upgt_attach, upgt_detach, upgt_activate); 149 150 static const struct usb_devno upgt_devs_1[] = { 151 /* version 1 devices */ 152 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G }, 153 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 } 154 }; 155 156 static const struct usb_devno upgt_devs_2[] = { 157 /* version 2 devices */ 158 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 159 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 160 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 161 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 162 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 163 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT }, 164 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST }, 165 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 166 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 167 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 168 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 169 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 170 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 171 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 172 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 173 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 174 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ }, 175 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 176 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 177 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 178 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 }, 179 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 }, 180 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 181 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 182 }; 183 184 static int 185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep, 186 size_t *sizep) 187 { 188 firmware_handle_t fh; 189 int error; 190 191 if ((error = firmware_open(dname, iname, &fh)) != 0) 192 return error; 193 *sizep = firmware_get_size(fh); 194 if ((*ucodep = firmware_malloc(*sizep)) == NULL) { 195 firmware_close(fh); 196 return ENOMEM; 197 } 198 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0) 199 firmware_free(*ucodep, *sizep); 200 firmware_close(fh); 201 202 return error; 203 } 204 205 static int 206 upgt_match(device_t parent, cfdata_t match, void *aux) 207 { 208 struct usb_attach_arg *uaa = aux; 209 210 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL) 211 return UMATCH_VENDOR_PRODUCT; 212 213 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL) 214 return UMATCH_VENDOR_PRODUCT; 215 216 return UMATCH_NONE; 217 } 218 219 static void 220 upgt_attach(device_t parent, device_t self, void *aux) 221 { 222 struct upgt_softc *sc = device_private(self); 223 struct usb_attach_arg *uaa = aux; 224 usb_interface_descriptor_t *id; 225 usb_endpoint_descriptor_t *ed; 226 usbd_status error; 227 char *devinfop; 228 int i; 229 230 aprint_naive("\n"); 231 aprint_normal("\n"); 232 233 /* 234 * Attach USB device. 235 */ 236 sc->sc_dev = self; 237 sc->sc_udev = uaa->device; 238 239 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 240 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop); 241 usbd_devinfo_free(devinfop); 242 243 /* check device type */ 244 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0) 245 return; 246 247 /* set configuration number */ 248 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0); 249 if (error != 0) { 250 aprint_error_dev(sc->sc_dev, "failed to set configuration" 251 ", err=%s\n", usbd_errstr(error)); 252 return; 253 } 254 255 /* get the first interface handle */ 256 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 257 &sc->sc_iface); 258 if (error != 0) { 259 aprint_error_dev(sc->sc_dev, 260 "could not get interface handle\n"); 261 return; 262 } 263 264 /* find endpoints */ 265 id = usbd_get_interface_descriptor(sc->sc_iface); 266 sc->sc_rx_no = sc->sc_tx_no = -1; 267 for (i = 0; i < id->bNumEndpoints; i++) { 268 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 269 if (ed == NULL) { 270 aprint_error_dev(sc->sc_dev, 271 "no endpoint descriptor for iface %d\n", i); 272 return; 273 } 274 275 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 276 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 277 sc->sc_tx_no = ed->bEndpointAddress; 278 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 279 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 280 sc->sc_rx_no = ed->bEndpointAddress; 281 282 /* 283 * 0x01 TX pipe 284 * 0x81 RX pipe 285 * 286 * Deprecated scheme (not used with fw version >2.5.6.x): 287 * 0x02 TX MGMT pipe 288 * 0x82 TX MGMT pipe 289 */ 290 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 291 break; 292 } 293 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 294 aprint_error_dev(sc->sc_dev, "missing endpoint\n"); 295 return; 296 } 297 298 /* setup tasks and timeouts */ 299 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0); 300 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0); 301 callout_init(&sc->scan_to, 0); 302 callout_setfunc(&sc->scan_to, upgt_next_scan, sc); 303 callout_init(&sc->led_to, 0); 304 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc); 305 306 /* 307 * Open TX and RX USB bulk pipes. 308 */ 309 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 310 &sc->sc_tx_pipeh); 311 if (error != 0) { 312 aprint_error_dev(sc->sc_dev, 313 "could not open TX pipe: %s\n", usbd_errstr(error)); 314 goto fail; 315 } 316 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 317 &sc->sc_rx_pipeh); 318 if (error != 0) { 319 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n", 320 usbd_errstr(error)); 321 goto fail; 322 } 323 324 /* 325 * Allocate TX, RX, and CMD xfers. 326 */ 327 if (upgt_alloc_tx(sc) != 0) 328 goto fail; 329 if (upgt_alloc_rx(sc) != 0) 330 goto fail; 331 if (upgt_alloc_cmd(sc) != 0) 332 goto fail; 333 334 /* 335 * We need the firmware loaded from file system to complete the attach. 336 */ 337 config_mountroot(self, upgt_attach_hook); 338 339 return; 340 fail: 341 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__); 342 } 343 344 static void 345 upgt_attach_hook(device_t arg) 346 { 347 struct upgt_softc *sc = device_private(arg); 348 struct ieee80211com *ic = &sc->sc_ic; 349 struct ifnet *ifp = &sc->sc_if; 350 usbd_status error; 351 int i; 352 353 /* 354 * Load firmware file into memory. 355 */ 356 if (upgt_fw_alloc(sc) != 0) 357 goto fail; 358 359 /* 360 * Initialize the device. 361 */ 362 if (upgt_device_init(sc) != 0) 363 goto fail; 364 365 /* 366 * Verify the firmware. 367 */ 368 if (upgt_fw_verify(sc) != 0) 369 goto fail; 370 371 /* 372 * Calculate device memory space. 373 */ 374 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 375 aprint_error_dev(sc->sc_dev, 376 "could not find memory space addresses on FW\n"); 377 goto fail; 378 } 379 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 380 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 381 382 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 383 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start); 384 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 385 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end); 386 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 387 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start); 388 389 upgt_mem_init(sc); 390 391 /* 392 * Load the firmware. 393 */ 394 if (upgt_fw_load(sc) != 0) 395 goto fail; 396 397 /* 398 * Startup the RX pipe. 399 */ 400 struct upgt_data *data_rx = &sc->rx_data; 401 402 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, 403 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 404 error = usbd_transfer(data_rx->xfer); 405 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 406 aprint_error_dev(sc->sc_dev, 407 "could not queue RX transfer\n"); 408 goto fail; 409 } 410 usbd_delay_ms(sc->sc_udev, 100); 411 412 /* 413 * Read the whole EEPROM content and parse it. 414 */ 415 if (upgt_eeprom_read(sc) != 0) 416 goto fail; 417 if (upgt_eeprom_parse(sc) != 0) 418 goto fail; 419 420 /* 421 * Setup the 802.11 device. 422 */ 423 ic->ic_ifp = ifp; 424 ic->ic_phytype = IEEE80211_T_OFDM; 425 ic->ic_opmode = IEEE80211_M_STA; 426 ic->ic_state = IEEE80211_S_INIT; 427 ic->ic_caps = 428 IEEE80211_C_MONITOR | 429 IEEE80211_C_SHPREAMBLE | 430 IEEE80211_C_SHSLOT; 431 432 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 433 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 434 435 for (i = 1; i <= 14; i++) { 436 ic->ic_channels[i].ic_freq = 437 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 438 ic->ic_channels[i].ic_flags = 439 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 440 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 441 } 442 443 ifp->if_softc = sc; 444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 445 ifp->if_init = upgt_init; 446 ifp->if_ioctl = upgt_ioctl; 447 ifp->if_start = upgt_start; 448 ifp->if_watchdog = upgt_watchdog; 449 IFQ_SET_READY(&ifp->if_snd); 450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 451 452 if_attach(ifp); 453 ieee80211_ifattach(ic); 454 ic->ic_newassoc = upgt_newassoc; 455 456 sc->sc_newstate = ic->ic_newstate; 457 ic->ic_newstate = upgt_newstate; 458 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status); 459 460 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 461 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 462 &sc->sc_drvbpf); 463 464 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 465 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 466 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 467 468 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 469 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 470 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 471 472 aprint_normal_dev(sc->sc_dev, "address %s\n", 473 ether_sprintf(ic->ic_myaddr)); 474 475 ieee80211_announce(ic); 476 477 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 478 479 /* device attached */ 480 sc->sc_flags |= UPGT_DEVICE_ATTACHED; 481 482 return; 483 fail: 484 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__); 485 } 486 487 static int 488 upgt_detach(device_t self, int flags) 489 { 490 struct upgt_softc *sc = device_private(self); 491 struct ifnet *ifp = &sc->sc_if; 492 struct ieee80211com *ic = &sc->sc_ic; 493 int s; 494 495 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 496 497 s = splnet(); 498 499 if (ifp->if_flags & IFF_RUNNING) 500 upgt_stop(sc); 501 502 /* remove tasks and timeouts */ 503 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 504 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 505 callout_destroy(&sc->scan_to); 506 callout_destroy(&sc->led_to); 507 508 /* abort and close TX / RX pipes */ 509 if (sc->sc_tx_pipeh != NULL) { 510 usbd_abort_pipe(sc->sc_tx_pipeh); 511 usbd_close_pipe(sc->sc_tx_pipeh); 512 } 513 if (sc->sc_rx_pipeh != NULL) { 514 usbd_abort_pipe(sc->sc_rx_pipeh); 515 usbd_close_pipe(sc->sc_rx_pipeh); 516 } 517 518 /* free xfers */ 519 upgt_free_tx(sc); 520 upgt_free_rx(sc); 521 upgt_free_cmd(sc); 522 523 /* free firmware */ 524 upgt_fw_free(sc); 525 526 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) { 527 /* detach interface */ 528 bpf_detach(ifp); 529 ieee80211_ifdetach(ic); 530 if_detach(ifp); 531 } 532 533 splx(s); 534 535 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 536 537 return 0; 538 } 539 540 static int 541 upgt_activate(device_t self, devact_t act) 542 { 543 struct upgt_softc *sc = device_private(self); 544 545 switch (act) { 546 case DVACT_DEACTIVATE: 547 if_deactivate(&sc->sc_if); 548 return 0; 549 default: 550 return EOPNOTSUPP; 551 } 552 } 553 554 static int 555 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 556 { 557 558 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 559 sc->sc_device_type = 1; 560 /* XXX */ 561 aprint_error_dev(sc->sc_dev, 562 "version 1 devices not supported yet\n"); 563 return 1; 564 } else 565 sc->sc_device_type = 2; 566 567 return 0; 568 } 569 570 static int 571 upgt_device_init(struct upgt_softc *sc) 572 { 573 struct upgt_data *data_cmd = &sc->cmd_data; 574 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 575 int len; 576 577 len = sizeof(init_cmd); 578 memcpy(data_cmd->buf, init_cmd, len); 579 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 580 aprint_error_dev(sc->sc_dev, 581 "could not send device init string\n"); 582 return EIO; 583 } 584 usbd_delay_ms(sc->sc_udev, 100); 585 586 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev)); 587 588 return 0; 589 } 590 591 static int 592 upgt_mem_init(struct upgt_softc *sc) 593 { 594 int i; 595 596 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 597 sc->sc_memory.page[i].used = 0; 598 599 if (i == 0) { 600 /* 601 * The first memory page is always reserved for 602 * command data. 603 */ 604 sc->sc_memory.page[i].addr = 605 sc->sc_memaddr_frame_start + MCLBYTES; 606 } else { 607 sc->sc_memory.page[i].addr = 608 sc->sc_memory.page[i - 1].addr + MCLBYTES; 609 } 610 611 if (sc->sc_memory.page[i].addr + MCLBYTES >= 612 sc->sc_memaddr_frame_end) 613 break; 614 615 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 616 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr); 617 } 618 619 sc->sc_memory.pages = i; 620 621 DPRINTF(2, "%s: memory pages=%d\n", 622 device_xname(sc->sc_dev), sc->sc_memory.pages); 623 624 return 0; 625 } 626 627 static uint32_t 628 upgt_mem_alloc(struct upgt_softc *sc) 629 { 630 int i; 631 632 for (i = 0; i < sc->sc_memory.pages; i++) { 633 if (sc->sc_memory.page[i].used == 0) { 634 sc->sc_memory.page[i].used = 1; 635 return sc->sc_memory.page[i].addr; 636 } 637 } 638 639 return 0; 640 } 641 642 static void 643 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 644 { 645 int i; 646 647 for (i = 0; i < sc->sc_memory.pages; i++) { 648 if (sc->sc_memory.page[i].addr == addr) { 649 sc->sc_memory.page[i].used = 0; 650 return; 651 } 652 } 653 654 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n", 655 addr); 656 } 657 658 659 static int 660 upgt_fw_alloc(struct upgt_softc *sc) 661 { 662 const char *name = "upgt-gw3887"; 663 int error; 664 665 if (sc->sc_fw == NULL) { 666 error = firmware_load("upgt", name, &sc->sc_fw, 667 &sc->sc_fw_size); 668 if (error != 0) { 669 if (error == ENOENT) { 670 /* 671 * The firmware file for upgt(4) is not in 672 * the default distribution due to its lisence 673 * so explicitly notify it if the firmware file 674 * is not found. 675 */ 676 aprint_error_dev(sc->sc_dev, 677 "firmware file %s is not installed\n", 678 name); 679 aprint_error_dev(sc->sc_dev, 680 "(it is not included in the default" 681 " distribution)\n"); 682 aprint_error_dev(sc->sc_dev, 683 "see upgt(4) man page for details about " 684 "firmware installation\n"); 685 } else { 686 aprint_error_dev(sc->sc_dev, 687 "could not read firmware %s\n", name); 688 } 689 return EIO; 690 } 691 } 692 693 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev), 694 name); 695 696 return 0; 697 } 698 699 static void 700 upgt_fw_free(struct upgt_softc *sc) 701 { 702 703 if (sc->sc_fw != NULL) { 704 firmware_free(sc->sc_fw, sc->sc_fw_size); 705 sc->sc_fw = NULL; 706 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev)); 707 } 708 } 709 710 static int 711 upgt_fw_verify(struct upgt_softc *sc) 712 { 713 struct upgt_fw_bra_option *bra_option; 714 uint32_t bra_option_type, bra_option_len; 715 uint32_t *uc; 716 int offset, bra_end = 0; 717 718 /* 719 * Seek to beginning of Boot Record Area (BRA). 720 */ 721 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 722 uc = (uint32_t *)(sc->sc_fw + offset); 723 if (*uc == 0) 724 break; 725 } 726 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 727 uc = (uint32_t *)(sc->sc_fw + offset); 728 if (*uc != 0) 729 break; 730 } 731 if (offset == sc->sc_fw_size) { 732 aprint_error_dev(sc->sc_dev, 733 "firmware Boot Record Area not found\n"); 734 return EIO; 735 } 736 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 737 device_xname(sc->sc_dev), offset); 738 739 /* 740 * Parse Boot Record Area (BRA) options. 741 */ 742 while (offset < sc->sc_fw_size && bra_end == 0) { 743 /* get current BRA option */ 744 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 745 bra_option_type = le32toh(bra_option->type); 746 bra_option_len = le32toh(bra_option->len) * sizeof(*uc); 747 748 switch (bra_option_type) { 749 case UPGT_BRA_TYPE_FW: 750 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 751 device_xname(sc->sc_dev), bra_option_len); 752 753 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 754 aprint_error_dev(sc->sc_dev, 755 "wrong UPGT_BRA_TYPE_FW len\n"); 756 return EIO; 757 } 758 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 759 bra_option_len) == 0) { 760 sc->sc_fw_type = UPGT_FWTYPE_LM86; 761 break; 762 } 763 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 764 bra_option_len) == 0) { 765 sc->sc_fw_type = UPGT_FWTYPE_LM87; 766 break; 767 } 768 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 769 bra_option_len) == 0) { 770 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 771 break; 772 } 773 aprint_error_dev(sc->sc_dev, 774 "unsupported firmware type\n"); 775 return EIO; 776 case UPGT_BRA_TYPE_VERSION: 777 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 778 device_xname(sc->sc_dev), bra_option_len); 779 break; 780 case UPGT_BRA_TYPE_DEPIF: 781 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 782 device_xname(sc->sc_dev), bra_option_len); 783 break; 784 case UPGT_BRA_TYPE_EXPIF: 785 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 786 device_xname(sc->sc_dev), bra_option_len); 787 break; 788 case UPGT_BRA_TYPE_DESCR: 789 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 790 device_xname(sc->sc_dev), bra_option_len); 791 792 struct upgt_fw_bra_descr *descr = 793 (struct upgt_fw_bra_descr *)bra_option->data; 794 795 sc->sc_memaddr_frame_start = 796 le32toh(descr->memaddr_space_start); 797 sc->sc_memaddr_frame_end = 798 le32toh(descr->memaddr_space_end); 799 800 DPRINTF(2, "%s: memory address space start=0x%08x\n", 801 device_xname(sc->sc_dev), 802 sc->sc_memaddr_frame_start); 803 DPRINTF(2, "%s: memory address space end=0x%08x\n", 804 device_xname(sc->sc_dev), 805 sc->sc_memaddr_frame_end); 806 break; 807 case UPGT_BRA_TYPE_END: 808 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 809 device_xname(sc->sc_dev), bra_option_len); 810 bra_end = 1; 811 break; 812 default: 813 DPRINTF(1, "%s: unknown BRA option len=%d\n", 814 device_xname(sc->sc_dev), bra_option_len); 815 return EIO; 816 } 817 818 /* jump to next BRA option */ 819 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 820 } 821 822 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev)); 823 824 return 0; 825 } 826 827 static int 828 upgt_fw_load(struct upgt_softc *sc) 829 { 830 struct upgt_data *data_cmd = &sc->cmd_data; 831 struct upgt_data *data_rx = &sc->rx_data; 832 struct upgt_fw_x2_header *x2; 833 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d }; 834 int offset, bsize, n, i, len; 835 uint32_t crc; 836 837 /* send firmware start load command */ 838 len = sizeof(start_fwload_cmd); 839 memcpy(data_cmd->buf, start_fwload_cmd, len); 840 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 841 aprint_error_dev(sc->sc_dev, 842 "could not send start_firmware_load command\n"); 843 return EIO; 844 } 845 846 /* send X2 header */ 847 len = sizeof(struct upgt_fw_x2_header); 848 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 849 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 850 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 851 x2->len = htole32(sc->sc_fw_size); 852 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 853 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 854 sizeof(uint32_t)); 855 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 856 aprint_error_dev(sc->sc_dev, 857 "could not send firmware X2 header\n"); 858 return EIO; 859 } 860 861 /* download firmware */ 862 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 863 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 864 bsize = UPGT_FW_BLOCK_SIZE; 865 else 866 bsize = sc->sc_fw_size - offset; 867 868 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 869 870 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 871 device_xname(sc->sc_dev), offset, n, bsize); 872 873 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 874 != 0) { 875 aprint_error_dev(sc->sc_dev, 876 "error while downloading firmware block\n"); 877 return EIO; 878 } 879 880 bsize = n; 881 } 882 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev)); 883 884 /* load firmware */ 885 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 886 *((uint32_t *)(data_cmd->buf) ) = crc; 887 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 888 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 889 len = 6; 890 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 891 aprint_error_dev(sc->sc_dev, 892 "could not send load_firmware command\n"); 893 return EIO; 894 } 895 896 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 897 len = UPGT_FW_BLOCK_SIZE; 898 memset(data_rx->buf, 0, 2); 899 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 900 USBD_SHORT_XFER_OK) != 0) { 901 aprint_error_dev(sc->sc_dev, 902 "could not read firmware response\n"); 903 return EIO; 904 } 905 906 if (memcmp(data_rx->buf, "OK", 2) == 0) 907 break; /* firmware load was successful */ 908 } 909 if (i == UPGT_FIRMWARE_TIMEOUT) { 910 aprint_error_dev(sc->sc_dev, "firmware load failed\n"); 911 return EIO; 912 } 913 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev)); 914 915 return 0; 916 } 917 918 /* 919 * While copying the version 2 firmware, we need to replace two characters: 920 * 921 * 0x7e -> 0x7d 0x5e 922 * 0x7d -> 0x7d 0x5d 923 */ 924 static int 925 upgt_fw_copy(char *src, char *dst, int size) 926 { 927 int i, j; 928 929 for (i = 0, j = 0; i < size && j < size; i++) { 930 switch (src[i]) { 931 case 0x7e: 932 dst[j] = 0x7d; 933 j++; 934 dst[j] = 0x5e; 935 j++; 936 break; 937 case 0x7d: 938 dst[j] = 0x7d; 939 j++; 940 dst[j] = 0x5d; 941 j++; 942 break; 943 default: 944 dst[j] = src[i]; 945 j++; 946 break; 947 } 948 } 949 950 return i; 951 } 952 953 static int 954 upgt_eeprom_read(struct upgt_softc *sc) 955 { 956 struct upgt_data *data_cmd = &sc->cmd_data; 957 struct upgt_lmac_mem *mem; 958 struct upgt_lmac_eeprom *eeprom; 959 int offset, block, len; 960 961 offset = 0; 962 block = UPGT_EEPROM_BLOCK_SIZE; 963 while (offset < UPGT_EEPROM_SIZE) { 964 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 965 device_xname(sc->sc_dev), offset, block); 966 967 /* 968 * Transmit the URB containing the CMD data. 969 */ 970 len = sizeof(*mem) + sizeof(*eeprom) + block; 971 972 memset(data_cmd->buf, 0, len); 973 974 mem = (struct upgt_lmac_mem *)data_cmd->buf; 975 mem->addr = htole32(sc->sc_memaddr_frame_start + 976 UPGT_MEMSIZE_FRAME_HEAD); 977 978 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 979 eeprom->header1.flags = 0; 980 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 981 eeprom->header1.len = htole16(( 982 sizeof(struct upgt_lmac_eeprom) - 983 sizeof(struct upgt_lmac_header)) + block); 984 985 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 986 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 987 eeprom->header2.flags = 0; 988 989 eeprom->offset = htole16(offset); 990 eeprom->len = htole16(block); 991 992 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 993 len - sizeof(*mem)); 994 995 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 996 USBD_FORCE_SHORT_XFER) != 0) { 997 aprint_error_dev(sc->sc_dev, 998 "could not transmit EEPROM data URB\n"); 999 return EIO; 1000 } 1001 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) { 1002 aprint_error_dev(sc->sc_dev, 1003 "timeout while waiting for EEPROM data\n"); 1004 return EIO; 1005 } 1006 1007 offset += block; 1008 if (UPGT_EEPROM_SIZE - offset < block) 1009 block = UPGT_EEPROM_SIZE - offset; 1010 } 1011 1012 return 0; 1013 } 1014 1015 static int 1016 upgt_eeprom_parse(struct upgt_softc *sc) 1017 { 1018 struct ieee80211com *ic = &sc->sc_ic; 1019 struct upgt_eeprom_header *eeprom_header; 1020 struct upgt_eeprom_option *eeprom_option; 1021 uint16_t option_len; 1022 uint16_t option_type; 1023 uint16_t preamble_len; 1024 int option_end = 0; 1025 1026 /* calculate eeprom options start offset */ 1027 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1028 preamble_len = le16toh(eeprom_header->preamble_len); 1029 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1030 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1031 1032 while (!option_end) { 1033 /* the eeprom option length is stored in words */ 1034 option_len = 1035 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1036 option_type = 1037 le16toh(eeprom_option->type); 1038 1039 switch (option_type) { 1040 case UPGT_EEPROM_TYPE_NAME: 1041 DPRINTF(1, "%s: EEPROM name len=%d\n", 1042 device_xname(sc->sc_dev), option_len); 1043 break; 1044 case UPGT_EEPROM_TYPE_SERIAL: 1045 DPRINTF(1, "%s: EEPROM serial len=%d\n", 1046 device_xname(sc->sc_dev), option_len); 1047 break; 1048 case UPGT_EEPROM_TYPE_MAC: 1049 DPRINTF(1, "%s: EEPROM mac len=%d\n", 1050 device_xname(sc->sc_dev), option_len); 1051 1052 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 1053 break; 1054 case UPGT_EEPROM_TYPE_HWRX: 1055 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 1056 device_xname(sc->sc_dev), option_len); 1057 1058 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1059 break; 1060 case UPGT_EEPROM_TYPE_CHIP: 1061 DPRINTF(1, "%s: EEPROM chip len=%d\n", 1062 device_xname(sc->sc_dev), option_len); 1063 break; 1064 case UPGT_EEPROM_TYPE_FREQ3: 1065 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 1066 device_xname(sc->sc_dev), option_len); 1067 1068 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1069 option_len); 1070 break; 1071 case UPGT_EEPROM_TYPE_FREQ4: 1072 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 1073 device_xname(sc->sc_dev), option_len); 1074 1075 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1076 option_len); 1077 break; 1078 case UPGT_EEPROM_TYPE_FREQ5: 1079 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 1080 device_xname(sc->sc_dev), option_len); 1081 break; 1082 case UPGT_EEPROM_TYPE_FREQ6: 1083 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 1084 device_xname(sc->sc_dev), option_len); 1085 1086 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1087 option_len); 1088 break; 1089 case UPGT_EEPROM_TYPE_END: 1090 DPRINTF(1, "%s: EEPROM end len=%d\n", 1091 device_xname(sc->sc_dev), option_len); 1092 option_end = 1; 1093 break; 1094 case UPGT_EEPROM_TYPE_OFF: 1095 DPRINTF(1, "%s: EEPROM off without end option\n", 1096 device_xname(sc->sc_dev)); 1097 return EIO; 1098 default: 1099 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1100 device_xname(sc->sc_dev), option_type, option_len); 1101 break; 1102 } 1103 1104 /* jump to next EEPROM option */ 1105 eeprom_option = (struct upgt_eeprom_option *) 1106 (eeprom_option->data + option_len); 1107 } 1108 1109 return 0; 1110 } 1111 1112 static void 1113 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1114 { 1115 struct upgt_eeprom_option_hwrx *option_hwrx; 1116 1117 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1118 1119 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1120 1121 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1122 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx); 1123 } 1124 1125 static void 1126 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1127 { 1128 struct upgt_eeprom_freq3_header *freq3_header; 1129 struct upgt_lmac_freq3 *freq3; 1130 int i, elements, flags; 1131 unsigned channel; 1132 1133 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1134 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1135 1136 flags = freq3_header->flags; 1137 elements = freq3_header->elements; 1138 1139 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags); 1140 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1141 __USE(flags); 1142 1143 for (i = 0; i < elements; i++) { 1144 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1145 1146 sc->sc_eeprom_freq3[channel] = freq3[i]; 1147 1148 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1149 device_xname(sc->sc_dev), 1150 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1151 } 1152 } 1153 1154 static void 1155 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1156 { 1157 struct upgt_eeprom_freq4_header *freq4_header; 1158 struct upgt_eeprom_freq4_1 *freq4_1; 1159 struct upgt_eeprom_freq4_2 *freq4_2; 1160 int i, j, elements, settings, flags; 1161 unsigned channel; 1162 1163 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1164 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1165 1166 flags = freq4_header->flags; 1167 elements = freq4_header->elements; 1168 settings = freq4_header->settings; 1169 1170 /* we need this value later */ 1171 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1172 1173 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags); 1174 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1175 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings); 1176 __USE(flags); 1177 1178 for (i = 0; i < elements; i++) { 1179 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1180 1181 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1182 1183 for (j = 0; j < settings; j++) { 1184 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1185 sc->sc_eeprom_freq4[channel][j].pad = 0; 1186 } 1187 1188 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1189 device_xname(sc->sc_dev), 1190 le16toh(freq4_1[i].freq), channel); 1191 } 1192 } 1193 1194 static void 1195 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1196 { 1197 struct upgt_lmac_freq6 *freq6; 1198 int i, elements; 1199 unsigned channel; 1200 1201 freq6 = (struct upgt_lmac_freq6 *)data; 1202 1203 elements = len / sizeof(struct upgt_lmac_freq6); 1204 1205 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1206 1207 for (i = 0; i < elements; i++) { 1208 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1209 1210 sc->sc_eeprom_freq6[channel] = freq6[i]; 1211 1212 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1213 device_xname(sc->sc_dev), 1214 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1215 } 1216 } 1217 1218 static int 1219 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1220 { 1221 struct upgt_softc *sc = ifp->if_softc; 1222 struct ieee80211com *ic = &sc->sc_ic; 1223 int s, error = 0; 1224 1225 s = splnet(); 1226 1227 switch (cmd) { 1228 case SIOCSIFFLAGS: 1229 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1230 break; 1231 if (ifp->if_flags & IFF_UP) { 1232 if ((ifp->if_flags & IFF_RUNNING) == 0) 1233 upgt_init(ifp); 1234 } else { 1235 if (ifp->if_flags & IFF_RUNNING) 1236 upgt_stop(sc); 1237 } 1238 break; 1239 case SIOCADDMULTI: 1240 case SIOCDELMULTI: 1241 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1242 /* setup multicast filter, etc */ 1243 error = 0; 1244 } 1245 break; 1246 default: 1247 error = ieee80211_ioctl(ic, cmd, data); 1248 break; 1249 } 1250 1251 if (error == ENETRESET) { 1252 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1253 (IFF_UP | IFF_RUNNING)) 1254 upgt_init(ifp); 1255 error = 0; 1256 } 1257 1258 splx(s); 1259 1260 return error; 1261 } 1262 1263 static int 1264 upgt_init(struct ifnet *ifp) 1265 { 1266 struct upgt_softc *sc = ifp->if_softc; 1267 struct ieee80211com *ic = &sc->sc_ic; 1268 1269 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1270 1271 if (ifp->if_flags & IFF_RUNNING) 1272 upgt_stop(sc); 1273 1274 ifp->if_flags |= IFF_RUNNING; 1275 ifp->if_flags &= ~IFF_OACTIVE; 1276 1277 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1278 1279 /* setup device rates */ 1280 upgt_setup_rates(sc); 1281 1282 if (ic->ic_opmode == IEEE80211_M_MONITOR) 1283 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1284 else 1285 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1286 1287 return 0; 1288 } 1289 1290 static void 1291 upgt_stop(struct upgt_softc *sc) 1292 { 1293 struct ieee80211com *ic = &sc->sc_ic; 1294 struct ifnet *ifp = &sc->sc_if; 1295 1296 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1297 1298 /* device down */ 1299 ifp->if_timer = 0; 1300 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1301 1302 /* change device back to initial state */ 1303 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1304 } 1305 1306 static int 1307 upgt_media_change(struct ifnet *ifp) 1308 { 1309 struct upgt_softc *sc = ifp->if_softc; 1310 int error; 1311 1312 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1313 1314 if ((error = ieee80211_media_change(ifp) != ENETRESET)) 1315 return error; 1316 1317 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1318 (IFF_UP | IFF_RUNNING)) { 1319 /* give pending USB transfers a chance to finish */ 1320 usbd_delay_ms(sc->sc_udev, 100); 1321 upgt_init(ifp); 1322 } 1323 1324 return 0; 1325 } 1326 1327 static void 1328 upgt_newassoc(struct ieee80211_node *ni, int isnew) 1329 { 1330 1331 ni->ni_txrate = 0; 1332 } 1333 1334 static int 1335 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1336 { 1337 struct upgt_softc *sc = ic->ic_ifp->if_softc; 1338 1339 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1340 callout_stop(&sc->scan_to); 1341 1342 /* do it in a process context */ 1343 sc->sc_state = nstate; 1344 sc->sc_arg = arg; 1345 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER); 1346 1347 return 0; 1348 } 1349 1350 static void 1351 upgt_newstate_task(void *arg) 1352 { 1353 struct upgt_softc *sc = arg; 1354 struct ieee80211com *ic = &sc->sc_ic; 1355 struct ieee80211_node *ni; 1356 unsigned channel; 1357 1358 mutex_enter(&sc->sc_mtx); 1359 1360 switch (sc->sc_state) { 1361 case IEEE80211_S_INIT: 1362 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1363 device_xname(sc->sc_dev)); 1364 1365 /* do not accept any frames if the device is down */ 1366 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1367 upgt_set_led(sc, UPGT_LED_OFF); 1368 break; 1369 case IEEE80211_S_SCAN: 1370 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1371 device_xname(sc->sc_dev)); 1372 1373 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1374 upgt_set_channel(sc, channel); 1375 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1376 callout_schedule(&sc->scan_to, hz / 5); 1377 break; 1378 case IEEE80211_S_AUTH: 1379 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1380 device_xname(sc->sc_dev)); 1381 1382 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1383 upgt_set_channel(sc, channel); 1384 break; 1385 case IEEE80211_S_ASSOC: 1386 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1387 device_xname(sc->sc_dev)); 1388 1389 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1390 upgt_set_channel(sc, channel); 1391 break; 1392 case IEEE80211_S_RUN: 1393 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1394 device_xname(sc->sc_dev)); 1395 1396 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1397 upgt_set_channel(sc, channel); 1398 1399 ni = ic->ic_bss; 1400 1401 /* 1402 * TX rate control is done by the firmware. 1403 * Report the maximum rate which is available therefore. 1404 */ 1405 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1406 1407 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1408 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1409 upgt_set_led(sc, UPGT_LED_ON); 1410 break; 1411 } 1412 1413 mutex_exit(&sc->sc_mtx); 1414 1415 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1416 } 1417 1418 static void 1419 upgt_next_scan(void *arg) 1420 { 1421 struct upgt_softc *sc = arg; 1422 struct ieee80211com *ic = &sc->sc_ic; 1423 1424 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1425 1426 if (ic->ic_state == IEEE80211_S_SCAN) 1427 ieee80211_next_scan(ic); 1428 } 1429 1430 static void 1431 upgt_start(struct ifnet *ifp) 1432 { 1433 struct upgt_softc *sc = ifp->if_softc; 1434 struct ieee80211com *ic = &sc->sc_ic; 1435 struct ether_header *eh; 1436 struct ieee80211_node *ni; 1437 struct mbuf *m; 1438 int i; 1439 1440 /* don't transmit packets if interface is busy or down */ 1441 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1442 return; 1443 1444 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1445 1446 for (i = 0; i < UPGT_TX_COUNT; i++) { 1447 struct upgt_data *data_tx = &sc->tx_data[i]; 1448 1449 if (data_tx->m != NULL) 1450 continue; 1451 1452 IF_POLL(&ic->ic_mgtq, m); 1453 if (m != NULL) { 1454 /* management frame */ 1455 IF_DEQUEUE(&ic->ic_mgtq, m); 1456 1457 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1458 m->m_pkthdr.rcvif = NULL; 1459 1460 bpf_mtap3(ic->ic_rawbpf, m); 1461 1462 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1463 aprint_error_dev(sc->sc_dev, 1464 "no free prism memory\n"); 1465 m_freem(m); 1466 ifp->if_oerrors++; 1467 break; 1468 } 1469 data_tx->ni = ni; 1470 data_tx->m = m; 1471 sc->tx_queued++; 1472 } else { 1473 /* data frame */ 1474 if (ic->ic_state != IEEE80211_S_RUN) 1475 break; 1476 1477 IFQ_POLL(&ifp->if_snd, m); 1478 if (m == NULL) 1479 break; 1480 1481 IFQ_DEQUEUE(&ifp->if_snd, m); 1482 if (m->m_len < sizeof(struct ether_header) && 1483 !(m = m_pullup(m, sizeof(struct ether_header)))) 1484 continue; 1485 1486 eh = mtod(m, struct ether_header *); 1487 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1488 if (ni == NULL) { 1489 m_freem(m); 1490 continue; 1491 } 1492 1493 bpf_mtap(ifp, m); 1494 1495 m = ieee80211_encap(ic, m, ni); 1496 if (m == NULL) { 1497 ieee80211_free_node(ni); 1498 continue; 1499 } 1500 1501 bpf_mtap3(ic->ic_rawbpf, m); 1502 1503 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1504 aprint_error_dev(sc->sc_dev, 1505 "no free prism memory\n"); 1506 m_freem(m); 1507 ieee80211_free_node(ni); 1508 ifp->if_oerrors++; 1509 break; 1510 } 1511 data_tx->ni = ni; 1512 data_tx->m = m; 1513 sc->tx_queued++; 1514 } 1515 } 1516 1517 if (sc->tx_queued > 0) { 1518 DPRINTF(2, "%s: tx_queued=%d\n", 1519 device_xname(sc->sc_dev), sc->tx_queued); 1520 /* process the TX queue in process context */ 1521 ifp->if_timer = 5; 1522 ifp->if_flags |= IFF_OACTIVE; 1523 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1524 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER); 1525 } 1526 } 1527 1528 static void 1529 upgt_watchdog(struct ifnet *ifp) 1530 { 1531 struct upgt_softc *sc = ifp->if_softc; 1532 struct ieee80211com *ic = &sc->sc_ic; 1533 1534 if (ic->ic_state == IEEE80211_S_INIT) 1535 return; 1536 1537 aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); 1538 1539 /* TODO: what shall we do on TX timeout? */ 1540 1541 ieee80211_watchdog(ic); 1542 } 1543 1544 static void 1545 upgt_tx_task(void *arg) 1546 { 1547 struct upgt_softc *sc = arg; 1548 struct ieee80211com *ic = &sc->sc_ic; 1549 struct ieee80211_frame *wh; 1550 struct ieee80211_key *k; 1551 struct ifnet *ifp = &sc->sc_if; 1552 struct upgt_lmac_mem *mem; 1553 struct upgt_lmac_tx_desc *txdesc; 1554 struct mbuf *m; 1555 uint32_t addr; 1556 int i, len, pad, s; 1557 usbd_status error; 1558 1559 mutex_enter(&sc->sc_mtx); 1560 upgt_set_led(sc, UPGT_LED_BLINK); 1561 mutex_exit(&sc->sc_mtx); 1562 1563 s = splnet(); 1564 1565 for (i = 0; i < UPGT_TX_COUNT; i++) { 1566 struct upgt_data *data_tx = &sc->tx_data[i]; 1567 1568 if (data_tx->m == NULL) 1569 continue; 1570 1571 m = data_tx->m; 1572 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1573 1574 /* 1575 * Software crypto. 1576 */ 1577 wh = mtod(m, struct ieee80211_frame *); 1578 1579 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1580 k = ieee80211_crypto_encap(ic, data_tx->ni, m); 1581 if (k == NULL) { 1582 m_freem(m); 1583 data_tx->m = NULL; 1584 ieee80211_free_node(data_tx->ni); 1585 data_tx->ni = NULL; 1586 ifp->if_oerrors++; 1587 break; 1588 } 1589 1590 /* in case packet header moved, reset pointer */ 1591 wh = mtod(m, struct ieee80211_frame *); 1592 } 1593 1594 /* 1595 * Transmit the URB containing the TX data. 1596 */ 1597 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc)); 1598 1599 mem = (struct upgt_lmac_mem *)data_tx->buf; 1600 mem->addr = htole32(addr); 1601 1602 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1603 1604 /* XXX differ between data and mgmt frames? */ 1605 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1606 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1607 txdesc->header1.len = htole16(m->m_pkthdr.len); 1608 1609 txdesc->header2.reqid = htole32(data_tx->addr); 1610 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1611 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1612 1613 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1614 IEEE80211_FC0_TYPE_MGT) { 1615 /* always send mgmt frames at lowest rate (DS1) */ 1616 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1617 } else { 1618 memcpy(txdesc->rates, sc->sc_cur_rateset, 1619 sizeof(txdesc->rates)); 1620 } 1621 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1622 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1623 1624 if (sc->sc_drvbpf != NULL) { 1625 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1626 1627 tap->wt_flags = 0; 1628 tap->wt_rate = 0; /* TODO: where to get from? */ 1629 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1630 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1631 1632 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 1633 } 1634 1635 /* copy frame below our TX descriptor header */ 1636 m_copydata(m, 0, m->m_pkthdr.len, 1637 data_tx->buf + sizeof(*mem) + sizeof(*txdesc)); 1638 1639 /* calculate frame size */ 1640 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1641 1642 if (len & 3) { 1643 /* we need to align the frame to a 4 byte boundary */ 1644 pad = 4 - (len & 3); 1645 memset(data_tx->buf + len, 0, pad); 1646 len += pad; 1647 } 1648 1649 /* calculate frame checksum */ 1650 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1651 len - sizeof(*mem)); 1652 1653 /* we do not need the mbuf anymore */ 1654 m_freem(m); 1655 data_tx->m = NULL; 1656 1657 ieee80211_free_node(data_tx->ni); 1658 data_tx->ni = NULL; 1659 1660 DPRINTF(2, "%s: TX start data sending\n", 1661 device_xname(sc->sc_dev)); 1662 1663 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx, 1664 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1665 UPGT_USB_TIMEOUT, NULL); 1666 error = usbd_transfer(data_tx->xfer); 1667 if (error != USBD_NORMAL_COMPLETION && 1668 error != USBD_IN_PROGRESS) { 1669 aprint_error_dev(sc->sc_dev, 1670 "could not transmit TX data URB\n"); 1671 ifp->if_oerrors++; 1672 break; 1673 } 1674 1675 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1676 device_xname(sc->sc_dev), len); 1677 } 1678 1679 splx(s); 1680 1681 /* 1682 * If we don't regulary read the device statistics, the RX queue 1683 * will stall. It's strange, but it works, so we keep reading 1684 * the statistics here. *shrug* 1685 */ 1686 mutex_enter(&sc->sc_mtx); 1687 upgt_get_stats(sc); 1688 mutex_exit(&sc->sc_mtx); 1689 } 1690 1691 static void 1692 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1693 { 1694 struct ifnet *ifp = &sc->sc_if; 1695 struct upgt_lmac_tx_done_desc *desc; 1696 int i, s; 1697 1698 s = splnet(); 1699 1700 desc = (struct upgt_lmac_tx_done_desc *)data; 1701 1702 for (i = 0; i < UPGT_TX_COUNT; i++) { 1703 struct upgt_data *data_tx = &sc->tx_data[i]; 1704 1705 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1706 upgt_mem_free(sc, data_tx->addr); 1707 data_tx->addr = 0; 1708 1709 sc->tx_queued--; 1710 ifp->if_opackets++; 1711 1712 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev)); 1713 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1714 le32toh(desc->header2.reqid), 1715 le16toh(desc->status), 1716 le16toh(desc->rssi)); 1717 DPRINTF(2, "seq=%d\n", le16toh(desc->seq)); 1718 break; 1719 } 1720 } 1721 1722 if (sc->tx_queued == 0) { 1723 /* TX queued was processed, continue */ 1724 ifp->if_timer = 0; 1725 ifp->if_flags &= ~IFF_OACTIVE; 1726 upgt_start(ifp); 1727 } 1728 1729 splx(s); 1730 } 1731 1732 static void 1733 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1734 { 1735 struct upgt_data *data_rx = priv; 1736 struct upgt_softc *sc = data_rx->sc; 1737 int len; 1738 struct upgt_lmac_header *header; 1739 struct upgt_lmac_eeprom *eeprom; 1740 uint8_t h1_type; 1741 uint16_t h2_type; 1742 1743 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1744 1745 if (status != USBD_NORMAL_COMPLETION) { 1746 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1747 return; 1748 if (status == USBD_STALLED) 1749 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1750 goto skip; 1751 } 1752 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1753 1754 /* 1755 * Check what type of frame came in. 1756 */ 1757 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1758 1759 h1_type = header->header1.type; 1760 h2_type = le16toh(header->header2.type); 1761 1762 if (h1_type == UPGT_H1_TYPE_CTRL && 1763 h2_type == UPGT_H2_TYPE_EEPROM) { 1764 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1765 uint16_t eeprom_offset = le16toh(eeprom->offset); 1766 uint16_t eeprom_len = le16toh(eeprom->len); 1767 1768 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1769 device_xname(sc->sc_dev), eeprom_offset, eeprom_len); 1770 1771 memcpy(sc->sc_eeprom + eeprom_offset, 1772 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1773 eeprom_len); 1774 1775 /* EEPROM data has arrived in time, wakeup tsleep() */ 1776 wakeup(sc); 1777 } else 1778 if (h1_type == UPGT_H1_TYPE_CTRL && 1779 h2_type == UPGT_H2_TYPE_TX_DONE) { 1780 DPRINTF(2, "%s: received 802.11 TX done\n", 1781 device_xname(sc->sc_dev)); 1782 1783 upgt_tx_done(sc, data_rx->buf + 4); 1784 } else 1785 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1786 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1787 DPRINTF(3, "%s: received 802.11 RX data\n", 1788 device_xname(sc->sc_dev)); 1789 1790 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len)); 1791 } else 1792 if (h1_type == UPGT_H1_TYPE_CTRL && 1793 h2_type == UPGT_H2_TYPE_STATS) { 1794 DPRINTF(2, "%s: received statistic data\n", 1795 device_xname(sc->sc_dev)); 1796 1797 /* TODO: what could we do with the statistic data? */ 1798 } else { 1799 /* ignore unknown frame types */ 1800 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1801 device_xname(sc->sc_dev), header->header1.type); 1802 } 1803 1804 skip: /* setup new transfer */ 1805 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, 1806 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1807 (void)usbd_transfer(xfer); 1808 } 1809 1810 static void 1811 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1812 { 1813 struct ieee80211com *ic = &sc->sc_ic; 1814 struct ifnet *ifp = &sc->sc_if; 1815 struct upgt_lmac_rx_desc *rxdesc; 1816 struct ieee80211_frame *wh; 1817 struct ieee80211_node *ni; 1818 struct mbuf *m; 1819 int s; 1820 1821 /* access RX packet descriptor */ 1822 rxdesc = (struct upgt_lmac_rx_desc *)data; 1823 1824 /* create mbuf which is suitable for strict alignment archs */ 1825 #define ETHER_ALIGN 0 1826 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL); 1827 if (m == NULL) { 1828 DPRINTF(1, "%s: could not create RX mbuf\n", 1829 device_xname(sc->sc_dev)); 1830 ifp->if_ierrors++; 1831 return; 1832 } 1833 1834 s = splnet(); 1835 1836 if (sc->sc_drvbpf != NULL) { 1837 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1838 1839 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1840 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1841 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1842 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1843 tap->wr_antsignal = rxdesc->rssi; 1844 1845 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1846 } 1847 1848 /* trim FCS */ 1849 m_adj(m, -IEEE80211_CRC_LEN); 1850 1851 wh = mtod(m, struct ieee80211_frame *); 1852 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1853 1854 /* push the frame up to the 802.11 stack */ 1855 ieee80211_input(ic, m, ni, rxdesc->rssi, 0); 1856 1857 /* node is no longer needed */ 1858 ieee80211_free_node(ni); 1859 1860 splx(s); 1861 1862 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev)); 1863 } 1864 1865 static void 1866 upgt_setup_rates(struct upgt_softc *sc) 1867 { 1868 struct ieee80211com *ic = &sc->sc_ic; 1869 1870 /* 1871 * 0x01 = OFMD6 0x10 = DS1 1872 * 0x04 = OFDM9 0x11 = DS2 1873 * 0x06 = OFDM12 0x12 = DS5 1874 * 0x07 = OFDM18 0x13 = DS11 1875 * 0x08 = OFDM24 1876 * 0x09 = OFDM36 1877 * 0x0a = OFDM48 1878 * 0x0b = OFDM54 1879 */ 1880 const uint8_t rateset_auto_11b[] = 1881 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1882 const uint8_t rateset_auto_11g[] = 1883 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1884 const uint8_t rateset_fix_11bg[] = 1885 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1886 0x08, 0x09, 0x0a, 0x0b }; 1887 1888 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1889 /* 1890 * Automatic rate control is done by the device. 1891 * We just pass the rateset from which the device 1892 * will pickup a rate. 1893 */ 1894 if (ic->ic_curmode == IEEE80211_MODE_11B) 1895 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 1896 sizeof(sc->sc_cur_rateset)); 1897 if (ic->ic_curmode == IEEE80211_MODE_11G || 1898 ic->ic_curmode == IEEE80211_MODE_AUTO) 1899 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 1900 sizeof(sc->sc_cur_rateset)); 1901 } else { 1902 /* set a fixed rate */ 1903 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1904 sizeof(sc->sc_cur_rateset)); 1905 } 1906 } 1907 1908 static uint8_t 1909 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1910 { 1911 struct ieee80211com *ic = &sc->sc_ic; 1912 1913 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1914 if (rate < 0 || rate > 3) 1915 /* invalid rate */ 1916 return 0; 1917 1918 switch (rate) { 1919 case 0: 1920 return 2; 1921 case 1: 1922 return 4; 1923 case 2: 1924 return 11; 1925 case 3: 1926 return 22; 1927 default: 1928 return 0; 1929 } 1930 } 1931 1932 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1933 if (rate < 0 || rate > 11) 1934 /* invalid rate */ 1935 return 0; 1936 1937 switch (rate) { 1938 case 0: 1939 return 2; 1940 case 1: 1941 return 4; 1942 case 2: 1943 return 11; 1944 case 3: 1945 return 22; 1946 case 4: 1947 return 12; 1948 case 5: 1949 return 18; 1950 case 6: 1951 return 24; 1952 case 7: 1953 return 36; 1954 case 8: 1955 return 48; 1956 case 9: 1957 return 72; 1958 case 10: 1959 return 96; 1960 case 11: 1961 return 108; 1962 default: 1963 return 0; 1964 } 1965 } 1966 1967 return 0; 1968 } 1969 1970 static int 1971 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1972 { 1973 struct ieee80211com *ic = &sc->sc_ic; 1974 struct ieee80211_node *ni = ic->ic_bss; 1975 struct upgt_data *data_cmd = &sc->cmd_data; 1976 struct upgt_lmac_mem *mem; 1977 struct upgt_lmac_filter *filter; 1978 int len; 1979 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1980 1981 /* 1982 * Transmit the URB containing the CMD data. 1983 */ 1984 len = sizeof(*mem) + sizeof(*filter); 1985 1986 memset(data_cmd->buf, 0, len); 1987 1988 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1989 mem->addr = htole32(sc->sc_memaddr_frame_start + 1990 UPGT_MEMSIZE_FRAME_HEAD); 1991 1992 filter = (struct upgt_lmac_filter *)(mem + 1); 1993 1994 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1995 filter->header1.type = UPGT_H1_TYPE_CTRL; 1996 filter->header1.len = htole16( 1997 sizeof(struct upgt_lmac_filter) - 1998 sizeof(struct upgt_lmac_header)); 1999 2000 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2001 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 2002 filter->header2.flags = 0; 2003 2004 switch (state) { 2005 case IEEE80211_S_INIT: 2006 DPRINTF(1, "%s: set MAC filter to INIT\n", 2007 device_xname(sc->sc_dev)); 2008 2009 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 2010 break; 2011 case IEEE80211_S_SCAN: 2012 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 2013 device_xname(sc->sc_dev), ether_sprintf(broadcast)); 2014 2015 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 2016 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 2017 IEEE80211_ADDR_COPY(filter->src, broadcast); 2018 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 2019 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 2020 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 2021 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 2022 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 2023 break; 2024 case IEEE80211_S_RUN: 2025 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 2026 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid)); 2027 2028 filter->type = htole16(UPGT_FILTER_TYPE_STA); 2029 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 2030 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 2031 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 2032 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 2033 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 2034 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 2035 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 2036 break; 2037 default: 2038 aprint_error_dev(sc->sc_dev, 2039 "MAC filter does not know that state\n"); 2040 break; 2041 } 2042 2043 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter)); 2044 2045 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2046 aprint_error_dev(sc->sc_dev, 2047 "could not transmit macfilter CMD data URB\n"); 2048 return EIO; 2049 } 2050 2051 return 0; 2052 } 2053 2054 static int 2055 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 2056 { 2057 struct upgt_data *data_cmd = &sc->cmd_data; 2058 struct upgt_lmac_mem *mem; 2059 struct upgt_lmac_channel *chan; 2060 int len; 2061 2062 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__, 2063 channel); 2064 2065 /* 2066 * Transmit the URB containing the CMD data. 2067 */ 2068 len = sizeof(*mem) + sizeof(*chan); 2069 2070 memset(data_cmd->buf, 0, len); 2071 2072 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2073 mem->addr = htole32(sc->sc_memaddr_frame_start + 2074 UPGT_MEMSIZE_FRAME_HEAD); 2075 2076 chan = (struct upgt_lmac_channel *)(mem + 1); 2077 2078 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2079 chan->header1.type = UPGT_H1_TYPE_CTRL; 2080 chan->header1.len = htole16( 2081 sizeof(struct upgt_lmac_channel) - 2082 sizeof(struct upgt_lmac_header)); 2083 2084 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2085 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 2086 chan->header2.flags = 0; 2087 2088 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 2089 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 2090 chan->freq6 = sc->sc_eeprom_freq6[channel]; 2091 chan->settings = sc->sc_eeprom_freq6_settings; 2092 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 2093 2094 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 2095 sizeof(chan->freq3_1)); 2096 2097 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 2098 sizeof(sc->sc_eeprom_freq4[channel])); 2099 2100 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 2101 sizeof(chan->freq3_2)); 2102 2103 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan)); 2104 2105 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2106 aprint_error_dev(sc->sc_dev, 2107 "could not transmit channel CMD data URB\n"); 2108 return EIO; 2109 } 2110 2111 return 0; 2112 } 2113 2114 static void 2115 upgt_set_led(struct upgt_softc *sc, int action) 2116 { 2117 struct ieee80211com *ic = &sc->sc_ic; 2118 struct upgt_data *data_cmd = &sc->cmd_data; 2119 struct upgt_lmac_mem *mem; 2120 struct upgt_lmac_led *led; 2121 struct timeval t; 2122 int len; 2123 2124 /* 2125 * Transmit the URB containing the CMD data. 2126 */ 2127 len = sizeof(*mem) + sizeof(*led); 2128 2129 memset(data_cmd->buf, 0, len); 2130 2131 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2132 mem->addr = htole32(sc->sc_memaddr_frame_start + 2133 UPGT_MEMSIZE_FRAME_HEAD); 2134 2135 led = (struct upgt_lmac_led *)(mem + 1); 2136 2137 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2138 led->header1.type = UPGT_H1_TYPE_CTRL; 2139 led->header1.len = htole16( 2140 sizeof(struct upgt_lmac_led) - 2141 sizeof(struct upgt_lmac_header)); 2142 2143 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2144 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2145 led->header2.flags = 0; 2146 2147 switch (action) { 2148 case UPGT_LED_OFF: 2149 led->mode = htole16(UPGT_LED_MODE_SET); 2150 led->action_fix = 0; 2151 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2152 led->action_tmp_dur = 0; 2153 break; 2154 case UPGT_LED_ON: 2155 led->mode = htole16(UPGT_LED_MODE_SET); 2156 led->action_fix = 0; 2157 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2158 led->action_tmp_dur = 0; 2159 break; 2160 case UPGT_LED_BLINK: 2161 if (ic->ic_state != IEEE80211_S_RUN) 2162 return; 2163 if (sc->sc_led_blink) 2164 /* previous blink was not finished */ 2165 return; 2166 led->mode = htole16(UPGT_LED_MODE_SET); 2167 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2168 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2169 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2170 /* lock blink */ 2171 sc->sc_led_blink = 1; 2172 t.tv_sec = 0; 2173 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L; 2174 callout_schedule(&sc->led_to, tvtohz(&t)); 2175 break; 2176 default: 2177 return; 2178 } 2179 2180 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led)); 2181 2182 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2183 aprint_error_dev(sc->sc_dev, 2184 "could not transmit led CMD URB\n"); 2185 } 2186 } 2187 2188 static void 2189 upgt_set_led_blink(void *arg) 2190 { 2191 struct upgt_softc *sc = arg; 2192 2193 /* blink finished, we are ready for a next one */ 2194 sc->sc_led_blink = 0; 2195 callout_stop(&sc->led_to); 2196 } 2197 2198 static int 2199 upgt_get_stats(struct upgt_softc *sc) 2200 { 2201 struct upgt_data *data_cmd = &sc->cmd_data; 2202 struct upgt_lmac_mem *mem; 2203 struct upgt_lmac_stats *stats; 2204 int len; 2205 2206 /* 2207 * Transmit the URB containing the CMD data. 2208 */ 2209 len = sizeof(*mem) + sizeof(*stats); 2210 2211 memset(data_cmd->buf, 0, len); 2212 2213 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2214 mem->addr = htole32(sc->sc_memaddr_frame_start + 2215 UPGT_MEMSIZE_FRAME_HEAD); 2216 2217 stats = (struct upgt_lmac_stats *)(mem + 1); 2218 2219 stats->header1.flags = 0; 2220 stats->header1.type = UPGT_H1_TYPE_CTRL; 2221 stats->header1.len = htole16( 2222 sizeof(struct upgt_lmac_stats) - 2223 sizeof(struct upgt_lmac_header)); 2224 2225 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2226 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2227 stats->header2.flags = 0; 2228 2229 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats)); 2230 2231 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2232 aprint_error_dev(sc->sc_dev, 2233 "could not transmit statistics CMD data URB\n"); 2234 return EIO; 2235 } 2236 2237 return 0; 2238 2239 } 2240 2241 static int 2242 upgt_alloc_tx(struct upgt_softc *sc) 2243 { 2244 int i; 2245 2246 sc->tx_queued = 0; 2247 2248 for (i = 0; i < UPGT_TX_COUNT; i++) { 2249 struct upgt_data *data_tx = &sc->tx_data[i]; 2250 2251 data_tx->sc = sc; 2252 2253 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev); 2254 if (data_tx->xfer == NULL) { 2255 aprint_error_dev(sc->sc_dev, 2256 "could not allocate TX xfer\n"); 2257 return ENOMEM; 2258 } 2259 2260 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES); 2261 if (data_tx->buf == NULL) { 2262 aprint_error_dev(sc->sc_dev, 2263 "could not allocate TX buffer\n"); 2264 return ENOMEM; 2265 } 2266 } 2267 2268 return 0; 2269 } 2270 2271 static int 2272 upgt_alloc_rx(struct upgt_softc *sc) 2273 { 2274 struct upgt_data *data_rx = &sc->rx_data; 2275 2276 data_rx->sc = sc; 2277 2278 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev); 2279 if (data_rx->xfer == NULL) { 2280 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n"); 2281 return ENOMEM; 2282 } 2283 2284 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES); 2285 if (data_rx->buf == NULL) { 2286 aprint_error_dev(sc->sc_dev, 2287 "could not allocate RX buffer\n"); 2288 return ENOMEM; 2289 } 2290 2291 return 0; 2292 } 2293 2294 static int 2295 upgt_alloc_cmd(struct upgt_softc *sc) 2296 { 2297 struct upgt_data *data_cmd = &sc->cmd_data; 2298 2299 data_cmd->sc = sc; 2300 2301 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev); 2302 if (data_cmd->xfer == NULL) { 2303 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n"); 2304 return ENOMEM; 2305 } 2306 2307 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES); 2308 if (data_cmd->buf == NULL) { 2309 aprint_error_dev(sc->sc_dev, 2310 "could not allocate RX buffer\n"); 2311 return ENOMEM; 2312 } 2313 2314 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET); 2315 2316 return 0; 2317 } 2318 2319 static void 2320 upgt_free_tx(struct upgt_softc *sc) 2321 { 2322 int i; 2323 2324 for (i = 0; i < UPGT_TX_COUNT; i++) { 2325 struct upgt_data *data_tx = &sc->tx_data[i]; 2326 2327 if (data_tx->xfer != NULL) { 2328 usbd_free_xfer(data_tx->xfer); 2329 data_tx->xfer = NULL; 2330 } 2331 2332 data_tx->ni = NULL; 2333 } 2334 } 2335 2336 static void 2337 upgt_free_rx(struct upgt_softc *sc) 2338 { 2339 struct upgt_data *data_rx = &sc->rx_data; 2340 2341 if (data_rx->xfer != NULL) { 2342 usbd_free_xfer(data_rx->xfer); 2343 data_rx->xfer = NULL; 2344 } 2345 2346 data_rx->ni = NULL; 2347 } 2348 2349 static void 2350 upgt_free_cmd(struct upgt_softc *sc) 2351 { 2352 struct upgt_data *data_cmd = &sc->cmd_data; 2353 2354 if (data_cmd->xfer != NULL) { 2355 usbd_free_xfer(data_cmd->xfer); 2356 data_cmd->xfer = NULL; 2357 } 2358 2359 mutex_destroy(&sc->sc_mtx); 2360 } 2361 2362 static int 2363 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2364 usbd_pipe_handle pipeh, uint32_t *size, int flags) 2365 { 2366 usbd_status status; 2367 2368 status = usbd_bulk_transfer(data->xfer, pipeh, 2369 USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size, 2370 "upgt_bulk_xmit"); 2371 if (status != USBD_NORMAL_COMPLETION) { 2372 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__, 2373 usbd_errstr(status)); 2374 return EIO; 2375 } 2376 2377 return 0; 2378 } 2379 2380 #if 0 2381 static void 2382 upgt_hexdump(void *buf, int len) 2383 { 2384 int i; 2385 2386 for (i = 0; i < len; i++) { 2387 if (i % 16 == 0) 2388 printf("%s%5i:", i ? "\n" : "", i); 2389 if (i % 4 == 0) 2390 printf(" "); 2391 printf("%02x", (int)*((uint8_t *)buf + i)); 2392 } 2393 printf("\n"); 2394 } 2395 #endif 2396 2397 static uint32_t 2398 upgt_crc32_le(const void *buf, size_t size) 2399 { 2400 uint32_t crc; 2401 2402 crc = ether_crc32_le(buf, size); 2403 2404 /* apply final XOR value as common for CRC-32 */ 2405 crc = htole32(crc ^ 0xffffffffU); 2406 2407 return crc; 2408 } 2409 2410 /* 2411 * The firmware awaits a checksum for each frame we send to it. 2412 * The algorithm used therefor is uncommon but somehow similar to CRC32. 2413 */ 2414 static uint32_t 2415 upgt_chksum_le(const uint32_t *buf, size_t size) 2416 { 2417 int i; 2418 uint32_t crc = 0; 2419 2420 for (i = 0; i < size; i += sizeof(uint32_t)) { 2421 crc = htole32(crc ^ *buf++); 2422 crc = htole32((crc >> 5) ^ (crc << 3)); 2423 } 2424 2425 return crc; 2426 } 2427