xref: /netbsd-src/sys/dev/usb/if_upgt.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: if_upgt.c,v 1.26 2019/09/14 12:53:24 maxv Exp $	*/
2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.26 2019/09/14 12:53:24 maxv Exp $");
22 
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26 
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52 
53 #include <dev/firmload.h>
54 
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60 
61 #include <dev/usb/if_upgtvar.h>
62 
63 /*
64  * Driver for the USB PrismGT devices.
65  *
66  * For now just USB 2.0 devices with the GW3887 chipset are supported.
67  * The driver has been written based on the firmware version 2.13.1.0_LM87.
68  *
69  * TODO's:
70  * - Fix MONITOR mode (MAC filter).
71  * - Add HOSTAP mode.
72  * - Add IBSS mode.
73  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74  *
75  * Parts of this driver has been influenced by reading the p54u driver
76  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
77  * Sebastien Bourdeauducq <lekernel@prism54.org>.
78  */
79 
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86 
87 /*
88  * Prototypes.
89  */
90 static int	upgt_match(device_t, cfdata_t, void *);
91 static void	upgt_attach(device_t, device_t, void *);
92 static int	upgt_detach(device_t, int);
93 static int	upgt_activate(device_t, devact_t);
94 
95 static void	upgt_attach_hook(device_t);
96 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int	upgt_device_init(struct upgt_softc *);
98 static int	upgt_mem_init(struct upgt_softc *);
99 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
100 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int	upgt_fw_alloc(struct upgt_softc *);
102 static void	upgt_fw_free(struct upgt_softc *);
103 static int	upgt_fw_verify(struct upgt_softc *);
104 static int	upgt_fw_load(struct upgt_softc *);
105 static int	upgt_fw_copy(char *, char *, int);
106 static int	upgt_eeprom_read(struct upgt_softc *);
107 static int	upgt_eeprom_parse(struct upgt_softc *);
108 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112 
113 static int	upgt_ioctl(struct ifnet *, u_long, void *);
114 static int	upgt_init(struct ifnet *);
115 static void	upgt_stop(struct upgt_softc *);
116 static int	upgt_media_change(struct ifnet *);
117 static void	upgt_newassoc(struct ieee80211_node *, int);
118 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 		    int);
120 static void	upgt_newstate_task(void *);
121 static void	upgt_next_scan(void *);
122 static void	upgt_start(struct ifnet *);
123 static void	upgt_watchdog(struct ifnet *);
124 static void	upgt_tx_task(void *);
125 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void	upgt_setup_rates(struct upgt_softc *);
129 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
130 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int	upgt_set_channel(struct upgt_softc *, unsigned);
132 static void	upgt_set_led(struct upgt_softc *, int);
133 static void	upgt_set_led_blink(void *);
134 static int	upgt_get_stats(struct upgt_softc *);
135 
136 static int	upgt_alloc_tx(struct upgt_softc *);
137 static int	upgt_alloc_rx(struct upgt_softc *);
138 static int	upgt_alloc_cmd(struct upgt_softc *);
139 static void	upgt_free_tx(struct upgt_softc *);
140 static void	upgt_free_rx(struct upgt_softc *);
141 static void	upgt_free_cmd(struct upgt_softc *);
142 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 		    struct usbd_pipe *, uint32_t *, int);
144 
145 #if 0
146 static void	upgt_hexdump(void *, int);
147 #endif
148 static uint32_t	upgt_crc32_le(const void *, size_t);
149 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
150 
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
153 
154 static const struct usb_devno upgt_devs_1[] = {
155 	/* version 1 devices */
156 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
157 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
158 };
159 
160 static const struct usb_devno upgt_devs_2[] = {
161 	/* version 2 devices */
162 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
163 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
164 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
165 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
170 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
171 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
172 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
173 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
176 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
177 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
178 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
180 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
181 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
182 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
185 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
186 };
187 
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190     size_t *sizep)
191 {
192 	firmware_handle_t fh;
193 	int error;
194 
195 	if ((error = firmware_open(dname, iname, &fh)) != 0)
196 		return error;
197 	*sizep = firmware_get_size(fh);
198 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 		firmware_close(fh);
200 		return ENOMEM;
201 	}
202 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 		firmware_free(*ucodep, *sizep);
204 	firmware_close(fh);
205 
206 	return error;
207 }
208 
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 	struct usb_attach_arg *uaa = aux;
213 
214 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 		return UMATCH_VENDOR_PRODUCT;
216 
217 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 		return UMATCH_VENDOR_PRODUCT;
219 
220 	return UMATCH_NONE;
221 }
222 
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 	struct upgt_softc *sc = device_private(self);
227 	struct usb_attach_arg *uaa = aux;
228 	usb_interface_descriptor_t *id;
229 	usb_endpoint_descriptor_t *ed;
230 	usbd_status error;
231 	char *devinfop;
232 	int i;
233 
234 	aprint_naive("\n");
235 	aprint_normal("\n");
236 
237 	/*
238 	 * Attach USB device.
239 	 */
240 	sc->sc_dev = self;
241 	sc->sc_udev = uaa->uaa_device;
242 	sc->sc_init_state = UPGT_INIT_NONE;
243 
244 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
245 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
246 	usbd_devinfo_free(devinfop);
247 
248 	/* check device type */
249 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
250 		return;
251 
252 	/* set configuration number */
253 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
254 	if (error != 0) {
255 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
256 		    ", err=%s\n", usbd_errstr(error));
257 		return;
258 	}
259 
260 	/* get the first interface handle */
261 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
262 	    &sc->sc_iface);
263 	if (error != 0) {
264 		aprint_error_dev(sc->sc_dev,
265 		    "could not get interface handle\n");
266 		return;
267 	}
268 
269 	/* find endpoints */
270 	id = usbd_get_interface_descriptor(sc->sc_iface);
271 	sc->sc_rx_no = sc->sc_tx_no = -1;
272 	for (i = 0; i < id->bNumEndpoints; i++) {
273 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
274 		if (ed == NULL) {
275 			aprint_error_dev(sc->sc_dev,
276 			    "no endpoint descriptor for iface %d\n", i);
277 			return;
278 		}
279 
280 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
281 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
282 			sc->sc_tx_no = ed->bEndpointAddress;
283 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
284 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
285 			sc->sc_rx_no = ed->bEndpointAddress;
286 
287 		/*
288 		 * 0x01 TX pipe
289 		 * 0x81 RX pipe
290 		 *
291 		 * Deprecated scheme (not used with fw version >2.5.6.x):
292 		 * 0x02 TX MGMT pipe
293 		 * 0x82 TX MGMT pipe
294 		 */
295 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
296 			break;
297 	}
298 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
299 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
300 		return;
301 	}
302 
303 	/* setup tasks and timeouts */
304 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
305 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
306 	callout_init(&sc->scan_to, 0);
307 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
308 	callout_init(&sc->led_to, 0);
309 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
310 	sc->sc_init_state = UPGT_INIT_INITED;
311 
312 	/*
313 	 * Open TX and RX USB bulk pipes.
314 	 */
315 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
316 	    &sc->sc_tx_pipeh);
317 	if (error != 0) {
318 		aprint_error_dev(sc->sc_dev,
319 		    "could not open TX pipe: %s\n", usbd_errstr(error));
320 		goto fail;
321 	}
322 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
323 	    &sc->sc_rx_pipeh);
324 	if (error != 0) {
325 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
326 		    usbd_errstr(error));
327 		goto fail;
328 	}
329 
330 	/*
331 	 * Allocate TX, RX, and CMD xfers.
332 	 */
333 	if (upgt_alloc_tx(sc) != 0)
334 		goto fail;
335 	if (upgt_alloc_rx(sc) != 0)
336 		goto fail;
337 	if (upgt_alloc_cmd(sc) != 0)
338 		goto fail;
339 
340 	/*
341 	 * We need the firmware loaded from file system to complete the attach.
342 	 */
343 	config_mountroot(self, upgt_attach_hook);
344 
345 	return;
346 fail:
347 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
348 }
349 
350 static void
351 upgt_attach_hook(device_t arg)
352 {
353 	struct upgt_softc *sc = device_private(arg);
354 	struct ieee80211com *ic = &sc->sc_ic;
355 	struct ifnet *ifp = &sc->sc_if;
356 	usbd_status error;
357 	int i;
358 
359 	/*
360 	 * Load firmware file into memory.
361 	 */
362 	if (upgt_fw_alloc(sc) != 0)
363 		goto fail;
364 
365 	/*
366 	 * Initialize the device.
367 	 */
368 	if (upgt_device_init(sc) != 0)
369 		goto fail;
370 
371 	/*
372 	 * Verify the firmware.
373 	 */
374 	if (upgt_fw_verify(sc) != 0)
375 		goto fail;
376 
377 	/*
378 	 * Calculate device memory space.
379 	 */
380 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
381 		aprint_error_dev(sc->sc_dev,
382 		    "could not find memory space addresses on FW\n");
383 		goto fail;
384 	}
385 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
386 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
387 
388 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
389 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
390 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
391 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
392 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
393 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
394 
395 	upgt_mem_init(sc);
396 
397 	/*
398 	 * Load the firmware.
399 	 */
400 	if (upgt_fw_load(sc) != 0)
401 		goto fail;
402 
403 	/*
404 	 * Startup the RX pipe.
405 	 */
406 	struct upgt_data *data_rx = &sc->rx_data;
407 
408 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
409 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
410 	error = usbd_transfer(data_rx->xfer);
411 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
412 		aprint_error_dev(sc->sc_dev,
413 		    "could not queue RX transfer\n");
414 		goto fail;
415 	}
416 	usbd_delay_ms(sc->sc_udev, 100);
417 
418 	/*
419 	 * Read the whole EEPROM content and parse it.
420 	 */
421 	if (upgt_eeprom_read(sc) != 0)
422 		goto fail;
423 	if (upgt_eeprom_parse(sc) != 0)
424 		goto fail;
425 
426 	/*
427 	 * Setup the 802.11 device.
428 	 */
429 	ic->ic_ifp = ifp;
430 	ic->ic_phytype = IEEE80211_T_OFDM;
431 	ic->ic_opmode = IEEE80211_M_STA;
432 	ic->ic_state = IEEE80211_S_INIT;
433 	ic->ic_caps =
434 	    IEEE80211_C_MONITOR |
435 	    IEEE80211_C_SHPREAMBLE |
436 	    IEEE80211_C_SHSLOT;
437 
438 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
439 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
440 
441 	for (i = 1; i <= 14; i++) {
442 		ic->ic_channels[i].ic_freq =
443 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 		ic->ic_channels[i].ic_flags =
445 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 	}
448 
449 	ifp->if_softc = sc;
450 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 	ifp->if_init = upgt_init;
452 	ifp->if_ioctl = upgt_ioctl;
453 	ifp->if_start = upgt_start;
454 	ifp->if_watchdog = upgt_watchdog;
455 	IFQ_SET_READY(&ifp->if_snd);
456 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
457 
458 	if_attach(ifp);
459 	ieee80211_ifattach(ic);
460 	ic->ic_newassoc = upgt_newassoc;
461 
462 	sc->sc_newstate = ic->ic_newstate;
463 	ic->ic_newstate = upgt_newstate;
464 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
465 
466 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
467 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
468 	    &sc->sc_drvbpf);
469 
470 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
471 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
472 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
473 
474 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
475 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
476 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
477 
478 	aprint_normal_dev(sc->sc_dev, "address %s\n",
479 	    ether_sprintf(ic->ic_myaddr));
480 
481 	ieee80211_announce(ic);
482 
483 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
484 
485 	/* device attached */
486 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
487 
488 	return;
489 fail:
490 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
491 }
492 
493 static int
494 upgt_detach(device_t self, int flags)
495 {
496 	struct upgt_softc *sc = device_private(self);
497 	struct ifnet *ifp = &sc->sc_if;
498 	struct ieee80211com *ic = &sc->sc_ic;
499 	int s;
500 
501 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
502 
503 	if (sc->sc_init_state < UPGT_INIT_INITED)
504 		return 0;
505 
506 	s = splnet();
507 
508 	if (ifp->if_flags & IFF_RUNNING)
509 		upgt_stop(sc);
510 
511 	/* remove tasks and timeouts */
512 	callout_halt(&sc->scan_to, NULL);
513 	callout_halt(&sc->led_to, NULL);
514 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
515 	    NULL);
516 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
517 	    NULL);
518 	callout_destroy(&sc->scan_to);
519 	callout_destroy(&sc->led_to);
520 
521 	/* abort and close TX / RX pipes */
522 	if (sc->sc_tx_pipeh != NULL) {
523 		usbd_abort_pipe(sc->sc_tx_pipeh);
524 	}
525 	if (sc->sc_rx_pipeh != NULL) {
526 		usbd_abort_pipe(sc->sc_rx_pipeh);
527 	}
528 
529 	/* free xfers */
530 	upgt_free_tx(sc);
531 	upgt_free_rx(sc);
532 	upgt_free_cmd(sc);
533 
534 	/* Close TX / RX pipes */
535 	if (sc->sc_tx_pipeh != NULL) {
536 		usbd_close_pipe(sc->sc_tx_pipeh);
537 	}
538 	if (sc->sc_rx_pipeh != NULL) {
539 		usbd_close_pipe(sc->sc_rx_pipeh);
540 	}
541 
542 	/* free firmware */
543 	upgt_fw_free(sc);
544 
545 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
546 		/* detach interface */
547 		bpf_detach(ifp);
548 		ieee80211_ifdetach(ic);
549 		if_detach(ifp);
550 	}
551 
552 	splx(s);
553 
554 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
555 
556 	return 0;
557 }
558 
559 static int
560 upgt_activate(device_t self, devact_t act)
561 {
562 	struct upgt_softc *sc = device_private(self);
563 
564 	switch (act) {
565 	case DVACT_DEACTIVATE:
566 		if_deactivate(&sc->sc_if);
567 		return 0;
568 	default:
569 		return EOPNOTSUPP;
570 	}
571 }
572 
573 static int
574 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
575 {
576 
577 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
578 		sc->sc_device_type = 1;
579 		/* XXX */
580 		aprint_error_dev(sc->sc_dev,
581 		    "version 1 devices not supported yet\n");
582 		return 1;
583 	} else
584 		sc->sc_device_type = 2;
585 
586 	return 0;
587 }
588 
589 static int
590 upgt_device_init(struct upgt_softc *sc)
591 {
592 	struct upgt_data *data_cmd = &sc->cmd_data;
593 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
594 	int len;
595 
596 	len = sizeof(init_cmd);
597 	memcpy(data_cmd->buf, init_cmd, len);
598 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
599 		aprint_error_dev(sc->sc_dev,
600 		    "could not send device init string\n");
601 		return EIO;
602 	}
603 	usbd_delay_ms(sc->sc_udev, 100);
604 
605 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
606 
607 	return 0;
608 }
609 
610 static int
611 upgt_mem_init(struct upgt_softc *sc)
612 {
613 	int i;
614 
615 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
616 		sc->sc_memory.page[i].used = 0;
617 
618 		if (i == 0) {
619 			/*
620 			 * The first memory page is always reserved for
621 			 * command data.
622 			 */
623 			sc->sc_memory.page[i].addr =
624 			    sc->sc_memaddr_frame_start + MCLBYTES;
625 		} else {
626 			sc->sc_memory.page[i].addr =
627 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
628 		}
629 
630 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
631 		    sc->sc_memaddr_frame_end)
632 			break;
633 
634 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
635 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
636 	}
637 
638 	sc->sc_memory.pages = i;
639 
640 	DPRINTF(2, "%s: memory pages=%d\n",
641 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
642 
643 	return 0;
644 }
645 
646 static uint32_t
647 upgt_mem_alloc(struct upgt_softc *sc)
648 {
649 	int i;
650 
651 	for (i = 0; i < sc->sc_memory.pages; i++) {
652 		if (sc->sc_memory.page[i].used == 0) {
653 			sc->sc_memory.page[i].used = 1;
654 			return sc->sc_memory.page[i].addr;
655 		}
656 	}
657 
658 	return 0;
659 }
660 
661 static void
662 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
663 {
664 	int i;
665 
666 	for (i = 0; i < sc->sc_memory.pages; i++) {
667 		if (sc->sc_memory.page[i].addr == addr) {
668 			sc->sc_memory.page[i].used = 0;
669 			return;
670 		}
671 	}
672 
673 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
674 	    addr);
675 }
676 
677 
678 static int
679 upgt_fw_alloc(struct upgt_softc *sc)
680 {
681 	const char *name = "upgt-gw3887";
682 	int error;
683 
684 	if (sc->sc_fw == NULL) {
685 		error = firmware_load("upgt", name, &sc->sc_fw,
686 		    &sc->sc_fw_size);
687 		if (error != 0) {
688 			if (error == ENOENT) {
689 				/*
690 				 * The firmware file for upgt(4) is not in
691 				 * the default distribution due to its lisence
692 				 * so explicitly notify it if the firmware file
693 				 * is not found.
694 				 */
695 				aprint_error_dev(sc->sc_dev,
696 				    "firmware file %s is not installed\n",
697 				    name);
698 				aprint_error_dev(sc->sc_dev,
699 				    "(it is not included in the default"
700 				    " distribution)\n");
701 				aprint_error_dev(sc->sc_dev,
702 				    "see upgt(4) man page for details about "
703 				    "firmware installation\n");
704 			} else {
705 				aprint_error_dev(sc->sc_dev,
706 				    "could not read firmware %s\n", name);
707 			}
708 			return EIO;
709 		}
710 	}
711 
712 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
713 	    name);
714 
715 	return 0;
716 }
717 
718 static void
719 upgt_fw_free(struct upgt_softc *sc)
720 {
721 
722 	if (sc->sc_fw != NULL) {
723 		firmware_free(sc->sc_fw, sc->sc_fw_size);
724 		sc->sc_fw = NULL;
725 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
726 	}
727 }
728 
729 static int
730 upgt_fw_verify(struct upgt_softc *sc)
731 {
732 	struct upgt_fw_bra_option *bra_option;
733 	uint32_t bra_option_type, bra_option_len;
734 	uint32_t *uc;
735 	int offset, bra_end = 0;
736 
737 	/*
738 	 * Seek to beginning of Boot Record Area (BRA).
739 	 */
740 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
741 		uc = (uint32_t *)(sc->sc_fw + offset);
742 		if (*uc == 0)
743 			break;
744 	}
745 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
746 		uc = (uint32_t *)(sc->sc_fw + offset);
747 		if (*uc != 0)
748 			break;
749 	}
750 	if (offset == sc->sc_fw_size) {
751 		aprint_error_dev(sc->sc_dev,
752 		    "firmware Boot Record Area not found\n");
753 		return EIO;
754 	}
755 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
756 	    device_xname(sc->sc_dev), offset);
757 
758 	/*
759 	 * Parse Boot Record Area (BRA) options.
760 	 */
761 	while (offset < sc->sc_fw_size && bra_end == 0) {
762 		/* get current BRA option */
763 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
764 		bra_option_type = le32toh(bra_option->type);
765 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
766 
767 		switch (bra_option_type) {
768 		case UPGT_BRA_TYPE_FW:
769 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
770 			    device_xname(sc->sc_dev), bra_option_len);
771 
772 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
773 				aprint_error_dev(sc->sc_dev,
774 				    "wrong UPGT_BRA_TYPE_FW len\n");
775 				return EIO;
776 			}
777 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
778 			    bra_option_len) == 0) {
779 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
780 				break;
781 			}
782 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
783 			    bra_option_len) == 0) {
784 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
785 				break;
786 			}
787 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
788 			    bra_option_len) == 0) {
789 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
790 				break;
791 			}
792 			aprint_error_dev(sc->sc_dev,
793 			    "unsupported firmware type\n");
794 			return EIO;
795 		case UPGT_BRA_TYPE_VERSION:
796 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
797 			    device_xname(sc->sc_dev), bra_option_len);
798 			break;
799 		case UPGT_BRA_TYPE_DEPIF:
800 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
801 			    device_xname(sc->sc_dev), bra_option_len);
802 			break;
803 		case UPGT_BRA_TYPE_EXPIF:
804 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
805 			    device_xname(sc->sc_dev), bra_option_len);
806 			break;
807 		case UPGT_BRA_TYPE_DESCR:
808 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
809 			    device_xname(sc->sc_dev), bra_option_len);
810 
811 			struct upgt_fw_bra_descr *descr =
812 				(struct upgt_fw_bra_descr *)bra_option->data;
813 
814 			sc->sc_memaddr_frame_start =
815 			    le32toh(descr->memaddr_space_start);
816 			sc->sc_memaddr_frame_end =
817 			    le32toh(descr->memaddr_space_end);
818 
819 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
820 			    device_xname(sc->sc_dev),
821 			    sc->sc_memaddr_frame_start);
822 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
823 			    device_xname(sc->sc_dev),
824 			    sc->sc_memaddr_frame_end);
825 			break;
826 		case UPGT_BRA_TYPE_END:
827 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
828 			    device_xname(sc->sc_dev), bra_option_len);
829 			bra_end = 1;
830 			break;
831 		default:
832 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
833 			    device_xname(sc->sc_dev), bra_option_len);
834 			return EIO;
835 		}
836 
837 		/* jump to next BRA option */
838 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
839 	}
840 
841 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
842 
843 	return 0;
844 }
845 
846 static int
847 upgt_fw_load(struct upgt_softc *sc)
848 {
849 	struct upgt_data *data_cmd = &sc->cmd_data;
850 	struct upgt_data *data_rx = &sc->rx_data;
851 	struct upgt_fw_x2_header *x2;
852 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
853 	int offset, bsize, n, i, len;
854 	uint32_t crc;
855 
856 	/* send firmware start load command */
857 	len = sizeof(start_fwload_cmd);
858 	memcpy(data_cmd->buf, start_fwload_cmd, len);
859 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
860 		aprint_error_dev(sc->sc_dev,
861 		    "could not send start_firmware_load command\n");
862 		return EIO;
863 	}
864 
865 	/* send X2 header */
866 	len = sizeof(struct upgt_fw_x2_header);
867 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
868 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
869 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
870 	x2->len = htole32(sc->sc_fw_size);
871 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
872 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
873 	    sizeof(uint32_t));
874 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
875 		aprint_error_dev(sc->sc_dev,
876 		    "could not send firmware X2 header\n");
877 		return EIO;
878 	}
879 
880 	/* download firmware */
881 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
882 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
883 			bsize = UPGT_FW_BLOCK_SIZE;
884 		else
885 			bsize = sc->sc_fw_size - offset;
886 
887 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
888 
889 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
890 		    device_xname(sc->sc_dev), offset, n, bsize);
891 
892 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
893 		    != 0) {
894 			aprint_error_dev(sc->sc_dev,
895 			    "error while downloading firmware block\n");
896 			return EIO;
897 		}
898 
899 		bsize = n;
900 	}
901 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
902 
903 	/* load firmware */
904 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
905 	*((uint32_t *)(data_cmd->buf)    ) = crc;
906 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
907 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
908 	len = 6;
909 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
910 		aprint_error_dev(sc->sc_dev,
911 		    "could not send load_firmware command\n");
912 		return EIO;
913 	}
914 
915 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
916 		len = UPGT_FW_BLOCK_SIZE;
917 		memset(data_rx->buf, 0, 2);
918 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
919 		    USBD_SHORT_XFER_OK) != 0) {
920 			aprint_error_dev(sc->sc_dev,
921 			    "could not read firmware response\n");
922 			return EIO;
923 		}
924 
925 		if (memcmp(data_rx->buf, "OK", 2) == 0)
926 			break;	/* firmware load was successful */
927 	}
928 	if (i == UPGT_FIRMWARE_TIMEOUT) {
929 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
930 		return EIO;
931 	}
932 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
933 
934 	return 0;
935 }
936 
937 /*
938  * While copying the version 2 firmware, we need to replace two characters:
939  *
940  * 0x7e -> 0x7d 0x5e
941  * 0x7d -> 0x7d 0x5d
942  */
943 static int
944 upgt_fw_copy(char *src, char *dst, int size)
945 {
946 	int i, j;
947 
948 	for (i = 0, j = 0; i < size && j < size; i++) {
949 		switch (src[i]) {
950 		case 0x7e:
951 			dst[j] = 0x7d;
952 			j++;
953 			dst[j] = 0x5e;
954 			j++;
955 			break;
956 		case 0x7d:
957 			dst[j] = 0x7d;
958 			j++;
959 			dst[j] = 0x5d;
960 			j++;
961 			break;
962 		default:
963 			dst[j] = src[i];
964 			j++;
965 			break;
966 		}
967 	}
968 
969 	return i;
970 }
971 
972 static int
973 upgt_eeprom_read(struct upgt_softc *sc)
974 {
975 	struct upgt_data *data_cmd = &sc->cmd_data;
976 	struct upgt_lmac_mem *mem;
977 	struct upgt_lmac_eeprom	*eeprom;
978 	int offset, block, len;
979 
980 	offset = 0;
981 	block = UPGT_EEPROM_BLOCK_SIZE;
982 	while (offset < UPGT_EEPROM_SIZE) {
983 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
984 		    device_xname(sc->sc_dev), offset, block);
985 
986 		/*
987 		 * Transmit the URB containing the CMD data.
988 		 */
989 		len = sizeof(*mem) + sizeof(*eeprom) + block;
990 
991 		memset(data_cmd->buf, 0, len);
992 
993 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
994 		mem->addr = htole32(sc->sc_memaddr_frame_start +
995 		    UPGT_MEMSIZE_FRAME_HEAD);
996 
997 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
998 		eeprom->header1.flags = 0;
999 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1000 		eeprom->header1.len = htole16((
1001 		    sizeof(struct upgt_lmac_eeprom) -
1002 		    sizeof(struct upgt_lmac_header)) + block);
1003 
1004 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1005 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1006 		eeprom->header2.flags = 0;
1007 
1008 		eeprom->offset = htole16(offset);
1009 		eeprom->len = htole16(block);
1010 
1011 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1012 		    len - sizeof(*mem));
1013 
1014 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1015 		    USBD_FORCE_SHORT_XFER) != 0) {
1016 			aprint_error_dev(sc->sc_dev,
1017 			    "could not transmit EEPROM data URB\n");
1018 			return EIO;
1019 		}
1020 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1021 			aprint_error_dev(sc->sc_dev,
1022 			    "timeout while waiting for EEPROM data\n");
1023 			return EIO;
1024 		}
1025 
1026 		offset += block;
1027 		if (UPGT_EEPROM_SIZE - offset < block)
1028 			block = UPGT_EEPROM_SIZE - offset;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int
1035 upgt_eeprom_parse(struct upgt_softc *sc)
1036 {
1037 	struct ieee80211com *ic = &sc->sc_ic;
1038 	struct upgt_eeprom_header *eeprom_header;
1039 	struct upgt_eeprom_option *eeprom_option;
1040 	uint16_t option_len;
1041 	uint16_t option_type;
1042 	uint16_t preamble_len;
1043 	int option_end = 0;
1044 
1045 	/* calculate eeprom options start offset */
1046 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1047 	preamble_len = le16toh(eeprom_header->preamble_len);
1048 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1049 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1050 
1051 	while (!option_end) {
1052 		/* the eeprom option length is stored in words */
1053 		option_len =
1054 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1055 		option_type =
1056 		    le16toh(eeprom_option->type);
1057 
1058 		switch (option_type) {
1059 		case UPGT_EEPROM_TYPE_NAME:
1060 			DPRINTF(1, "%s: EEPROM name len=%d\n",
1061 			    device_xname(sc->sc_dev), option_len);
1062 			break;
1063 		case UPGT_EEPROM_TYPE_SERIAL:
1064 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1065 			    device_xname(sc->sc_dev), option_len);
1066 			break;
1067 		case UPGT_EEPROM_TYPE_MAC:
1068 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1069 			    device_xname(sc->sc_dev), option_len);
1070 
1071 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1072 			break;
1073 		case UPGT_EEPROM_TYPE_HWRX:
1074 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1075 			    device_xname(sc->sc_dev), option_len);
1076 
1077 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1078 			break;
1079 		case UPGT_EEPROM_TYPE_CHIP:
1080 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1081 			    device_xname(sc->sc_dev), option_len);
1082 			break;
1083 		case UPGT_EEPROM_TYPE_FREQ3:
1084 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1085 			    device_xname(sc->sc_dev), option_len);
1086 
1087 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1088 			    option_len);
1089 			break;
1090 		case UPGT_EEPROM_TYPE_FREQ4:
1091 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1092 			    device_xname(sc->sc_dev), option_len);
1093 
1094 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1095 			    option_len);
1096 			break;
1097 		case UPGT_EEPROM_TYPE_FREQ5:
1098 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1099 			    device_xname(sc->sc_dev), option_len);
1100 			break;
1101 		case UPGT_EEPROM_TYPE_FREQ6:
1102 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1103 			    device_xname(sc->sc_dev), option_len);
1104 
1105 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1106 			    option_len);
1107 			break;
1108 		case UPGT_EEPROM_TYPE_END:
1109 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1110 			    device_xname(sc->sc_dev), option_len);
1111 			option_end = 1;
1112 			break;
1113 		case UPGT_EEPROM_TYPE_OFF:
1114 			DPRINTF(1, "%s: EEPROM off without end option\n",
1115 			    device_xname(sc->sc_dev));
1116 			return EIO;
1117 		default:
1118 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1119 			    device_xname(sc->sc_dev), option_type, option_len);
1120 			break;
1121 		}
1122 
1123 		/* jump to next EEPROM option */
1124 		eeprom_option = (struct upgt_eeprom_option *)
1125 		    (eeprom_option->data + option_len);
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static void
1132 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1133 {
1134 	struct upgt_eeprom_option_hwrx *option_hwrx;
1135 
1136 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1137 
1138 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1139 
1140 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1141 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1142 }
1143 
1144 static void
1145 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1146 {
1147 	struct upgt_eeprom_freq3_header *freq3_header;
1148 	struct upgt_lmac_freq3 *freq3;
1149 	int i, elements, flags;
1150 	unsigned channel;
1151 
1152 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1153 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1154 
1155 	flags = freq3_header->flags;
1156 	elements = freq3_header->elements;
1157 
1158 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1159 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1160 	__USE(flags);
1161 
1162 	for (i = 0; i < elements; i++) {
1163 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1164 
1165 		sc->sc_eeprom_freq3[channel] = freq3[i];
1166 
1167 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1168 		    device_xname(sc->sc_dev),
1169 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1170 	}
1171 }
1172 
1173 static void
1174 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1175 {
1176 	struct upgt_eeprom_freq4_header *freq4_header;
1177 	struct upgt_eeprom_freq4_1 *freq4_1;
1178 	struct upgt_eeprom_freq4_2 *freq4_2;
1179 	int i, j, elements, settings, flags;
1180 	unsigned channel;
1181 
1182 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1183 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1184 
1185 	flags = freq4_header->flags;
1186 	elements = freq4_header->elements;
1187 	settings = freq4_header->settings;
1188 
1189 	/* we need this value later */
1190 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1191 
1192 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1193 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1194 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1195 	__USE(flags);
1196 
1197 	for (i = 0; i < elements; i++) {
1198 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1199 
1200 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1201 
1202 		for (j = 0; j < settings; j++) {
1203 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1204 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1205 		}
1206 
1207 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1208 		    device_xname(sc->sc_dev),
1209 		    le16toh(freq4_1[i].freq), channel);
1210 	}
1211 }
1212 
1213 static void
1214 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1215 {
1216 	struct upgt_lmac_freq6 *freq6;
1217 	int i, elements;
1218 	unsigned channel;
1219 
1220 	freq6 = (struct upgt_lmac_freq6 *)data;
1221 
1222 	elements = len / sizeof(struct upgt_lmac_freq6);
1223 
1224 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1225 
1226 	for (i = 0; i < elements; i++) {
1227 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1228 
1229 		sc->sc_eeprom_freq6[channel] = freq6[i];
1230 
1231 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1232 		    device_xname(sc->sc_dev),
1233 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1234 	}
1235 }
1236 
1237 static int
1238 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1239 {
1240 	struct upgt_softc *sc = ifp->if_softc;
1241 	struct ieee80211com *ic = &sc->sc_ic;
1242 	int s, error = 0;
1243 
1244 	s = splnet();
1245 
1246 	switch (cmd) {
1247 	case SIOCSIFFLAGS:
1248 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1249 			break;
1250 		if (ifp->if_flags & IFF_UP) {
1251 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1252 				upgt_init(ifp);
1253 		} else {
1254 			if (ifp->if_flags & IFF_RUNNING)
1255 				upgt_stop(sc);
1256 		}
1257 		break;
1258 	case SIOCADDMULTI:
1259 	case SIOCDELMULTI:
1260 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1261 			/* setup multicast filter, etc */
1262 			error = 0;
1263 		}
1264 		break;
1265 	default:
1266 		error = ieee80211_ioctl(ic, cmd, data);
1267 		break;
1268 	}
1269 
1270 	if (error == ENETRESET) {
1271 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1272 		    (IFF_UP | IFF_RUNNING))
1273 			upgt_init(ifp);
1274 		error = 0;
1275 	}
1276 
1277 	splx(s);
1278 
1279 	return error;
1280 }
1281 
1282 static int
1283 upgt_init(struct ifnet *ifp)
1284 {
1285 	struct upgt_softc *sc = ifp->if_softc;
1286 	struct ieee80211com *ic = &sc->sc_ic;
1287 
1288 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1289 
1290 	if (ifp->if_flags & IFF_RUNNING)
1291 		upgt_stop(sc);
1292 
1293 	ifp->if_flags |= IFF_RUNNING;
1294 	ifp->if_flags &= ~IFF_OACTIVE;
1295 
1296 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1297 
1298 	/* setup device rates */
1299 	upgt_setup_rates(sc);
1300 
1301 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1302 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1303 	else
1304 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1305 
1306 	return 0;
1307 }
1308 
1309 static void
1310 upgt_stop(struct upgt_softc *sc)
1311 {
1312 	struct ieee80211com *ic = &sc->sc_ic;
1313 	struct ifnet *ifp = &sc->sc_if;
1314 
1315 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1316 
1317 	/* device down */
1318 	ifp->if_timer = 0;
1319 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1320 
1321 	/* change device back to initial state */
1322 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1323 }
1324 
1325 static int
1326 upgt_media_change(struct ifnet *ifp)
1327 {
1328 	struct upgt_softc *sc = ifp->if_softc;
1329 	int error;
1330 
1331 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1332 
1333 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1334 		return error;
1335 
1336 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1337 	    (IFF_UP | IFF_RUNNING)) {
1338 		/* give pending USB transfers a chance to finish */
1339 		usbd_delay_ms(sc->sc_udev, 100);
1340 		upgt_init(ifp);
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static void
1347 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1348 {
1349 
1350 	ni->ni_txrate = 0;
1351 }
1352 
1353 static int
1354 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1355 {
1356 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1357 
1358 	/*
1359 	 * XXXSMP: This does not wait for the task, if it is in flight,
1360 	 * to complete.  If this code works at all, it must rely on the
1361 	 * kernel lock to serialize with the USB task thread.
1362 	 */
1363 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1364 	callout_stop(&sc->scan_to);
1365 
1366 	/* do it in a process context */
1367 	sc->sc_state = nstate;
1368 	sc->sc_arg = arg;
1369 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1370 
1371 	return 0;
1372 }
1373 
1374 static void
1375 upgt_newstate_task(void *arg)
1376 {
1377 	struct upgt_softc *sc = arg;
1378 	struct ieee80211com *ic = &sc->sc_ic;
1379 	struct ieee80211_node *ni;
1380 	unsigned channel;
1381 
1382 	mutex_enter(&sc->sc_mtx);
1383 
1384 	switch (sc->sc_state) {
1385 	case IEEE80211_S_INIT:
1386 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1387 		    device_xname(sc->sc_dev));
1388 
1389 		/* do not accept any frames if the device is down */
1390 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1391 		upgt_set_led(sc, UPGT_LED_OFF);
1392 		break;
1393 	case IEEE80211_S_SCAN:
1394 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1395 		    device_xname(sc->sc_dev));
1396 
1397 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1398 		upgt_set_channel(sc, channel);
1399 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1400 		callout_schedule(&sc->scan_to, hz / 5);
1401 		break;
1402 	case IEEE80211_S_AUTH:
1403 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1404 		    device_xname(sc->sc_dev));
1405 
1406 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1407 		upgt_set_channel(sc, channel);
1408 		break;
1409 	case IEEE80211_S_ASSOC:
1410 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1411 		    device_xname(sc->sc_dev));
1412 
1413 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1414 		upgt_set_channel(sc, channel);
1415 		break;
1416 	case IEEE80211_S_RUN:
1417 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1418 		    device_xname(sc->sc_dev));
1419 
1420 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1421 		upgt_set_channel(sc, channel);
1422 
1423 		ni = ic->ic_bss;
1424 
1425 		/*
1426 		 * TX rate control is done by the firmware.
1427 		 * Report the maximum rate which is available therefore.
1428 		 */
1429 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1430 
1431 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1432 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1433 		upgt_set_led(sc, UPGT_LED_ON);
1434 		break;
1435 	}
1436 
1437 	mutex_exit(&sc->sc_mtx);
1438 
1439 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1440 }
1441 
1442 static void
1443 upgt_next_scan(void *arg)
1444 {
1445 	struct upgt_softc *sc = arg;
1446 	struct ieee80211com *ic = &sc->sc_ic;
1447 
1448 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1449 
1450 	if (ic->ic_state == IEEE80211_S_SCAN)
1451 		ieee80211_next_scan(ic);
1452 }
1453 
1454 static void
1455 upgt_start(struct ifnet *ifp)
1456 {
1457 	struct upgt_softc *sc = ifp->if_softc;
1458 	struct ieee80211com *ic = &sc->sc_ic;
1459 	struct ether_header *eh;
1460 	struct ieee80211_node *ni;
1461 	struct mbuf *m;
1462 	int i;
1463 
1464 	/* don't transmit packets if interface is busy or down */
1465 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1466 		return;
1467 
1468 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1469 
1470 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1471 		struct upgt_data *data_tx = &sc->tx_data[i];
1472 
1473 		if (data_tx->m != NULL)
1474 			continue;
1475 
1476 		IF_POLL(&ic->ic_mgtq, m);
1477 		if (m != NULL) {
1478 			/* management frame */
1479 			IF_DEQUEUE(&ic->ic_mgtq, m);
1480 
1481 			ni = M_GETCTX(m, struct ieee80211_node *);
1482 			M_CLEARCTX(m);
1483 
1484 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1485 
1486 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1487 				aprint_error_dev(sc->sc_dev,
1488 				    "no free prism memory\n");
1489 				m_freem(m);
1490 				ifp->if_oerrors++;
1491 				break;
1492 			}
1493 			data_tx->ni = ni;
1494 			data_tx->m = m;
1495 			sc->tx_queued++;
1496 		} else {
1497 			/* data frame */
1498 			if (ic->ic_state != IEEE80211_S_RUN)
1499 				break;
1500 
1501 			IFQ_POLL(&ifp->if_snd, m);
1502 			if (m == NULL)
1503 				break;
1504 
1505 			IFQ_DEQUEUE(&ifp->if_snd, m);
1506 			if (m->m_len < sizeof(struct ether_header) &&
1507 			    !(m = m_pullup(m, sizeof(struct ether_header))))
1508 				continue;
1509 
1510 			eh = mtod(m, struct ether_header *);
1511 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1512 			if (ni == NULL) {
1513 				m_freem(m);
1514 				continue;
1515 			}
1516 
1517 			bpf_mtap(ifp, m, BPF_D_OUT);
1518 
1519 			m = ieee80211_encap(ic, m, ni);
1520 			if (m == NULL) {
1521 				ieee80211_free_node(ni);
1522 				continue;
1523 			}
1524 
1525 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1526 
1527 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1528 				aprint_error_dev(sc->sc_dev,
1529 				    "no free prism memory\n");
1530 				m_freem(m);
1531 				ieee80211_free_node(ni);
1532 				ifp->if_oerrors++;
1533 				break;
1534 			}
1535 			data_tx->ni = ni;
1536 			data_tx->m = m;
1537 			sc->tx_queued++;
1538 		}
1539 	}
1540 
1541 	if (sc->tx_queued > 0) {
1542 		DPRINTF(2, "%s: tx_queued=%d\n",
1543 		    device_xname(sc->sc_dev), sc->tx_queued);
1544 		/* process the TX queue in process context */
1545 		ifp->if_timer = 5;
1546 		ifp->if_flags |= IFF_OACTIVE;
1547 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1548 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1549 	}
1550 }
1551 
1552 static void
1553 upgt_watchdog(struct ifnet *ifp)
1554 {
1555 	struct upgt_softc *sc = ifp->if_softc;
1556 	struct ieee80211com *ic = &sc->sc_ic;
1557 
1558 	if (ic->ic_state == IEEE80211_S_INIT)
1559 		return;
1560 
1561 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1562 
1563 	/* TODO: what shall we do on TX timeout? */
1564 
1565 	ieee80211_watchdog(ic);
1566 }
1567 
1568 static void
1569 upgt_tx_task(void *arg)
1570 {
1571 	struct upgt_softc *sc = arg;
1572 	struct ieee80211com *ic = &sc->sc_ic;
1573 	struct ieee80211_frame *wh;
1574 	struct ieee80211_key *k;
1575 	struct ifnet *ifp = &sc->sc_if;
1576 	struct upgt_lmac_mem *mem;
1577 	struct upgt_lmac_tx_desc *txdesc;
1578 	struct mbuf *m;
1579 	uint32_t addr;
1580 	int i, len, pad, s;
1581 	usbd_status error;
1582 
1583 	mutex_enter(&sc->sc_mtx);
1584 	upgt_set_led(sc, UPGT_LED_BLINK);
1585 	mutex_exit(&sc->sc_mtx);
1586 
1587 	s = splnet();
1588 
1589 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1590 		struct upgt_data *data_tx = &sc->tx_data[i];
1591 
1592 		if (data_tx->m == NULL)
1593 			continue;
1594 
1595 		m = data_tx->m;
1596 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1597 
1598 		/*
1599 		 * Software crypto.
1600 		 */
1601 		wh = mtod(m, struct ieee80211_frame *);
1602 
1603 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1604 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1605 			if (k == NULL) {
1606 				m_freem(m);
1607 				data_tx->m = NULL;
1608 				ieee80211_free_node(data_tx->ni);
1609 				data_tx->ni = NULL;
1610 				ifp->if_oerrors++;
1611 				break;
1612 			}
1613 
1614 			/* in case packet header moved, reset pointer */
1615 			wh = mtod(m, struct ieee80211_frame *);
1616 		}
1617 
1618 		/*
1619 		 * Transmit the URB containing the TX data.
1620 		 */
1621 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1622 
1623 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1624 		mem->addr = htole32(addr);
1625 
1626 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1627 
1628 		/* XXX differ between data and mgmt frames? */
1629 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1630 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1631 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1632 
1633 		txdesc->header2.reqid = htole32(data_tx->addr);
1634 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1635 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1636 
1637 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1638 		    IEEE80211_FC0_TYPE_MGT) {
1639 			/* always send mgmt frames at lowest rate (DS1) */
1640 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1641 		} else {
1642 			memcpy(txdesc->rates, sc->sc_cur_rateset,
1643 			    sizeof(txdesc->rates));
1644 		}
1645 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1646 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1647 
1648 		if (sc->sc_drvbpf != NULL) {
1649 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1650 
1651 			tap->wt_flags = 0;
1652 			tap->wt_rate = 0;	/* TODO: where to get from? */
1653 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1654 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1655 
1656 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1657 			    BPF_D_OUT);
1658 		}
1659 
1660 		/* copy frame below our TX descriptor header */
1661 		m_copydata(m, 0, m->m_pkthdr.len,
1662 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1663 
1664 		/* calculate frame size */
1665 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1666 
1667 		if (len & 3) {
1668 			/* we need to align the frame to a 4 byte boundary */
1669 			pad = 4 - (len & 3);
1670 			memset(data_tx->buf + len, 0, pad);
1671 			len += pad;
1672 		}
1673 
1674 		/* calculate frame checksum */
1675 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1676 		    len - sizeof(*mem));
1677 
1678 		/* we do not need the mbuf anymore */
1679 		m_freem(m);
1680 		data_tx->m = NULL;
1681 
1682 		ieee80211_free_node(data_tx->ni);
1683 		data_tx->ni = NULL;
1684 
1685 		DPRINTF(2, "%s: TX start data sending\n",
1686 		    device_xname(sc->sc_dev));
1687 
1688 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1689 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1690 		error = usbd_transfer(data_tx->xfer);
1691 		if (error != USBD_NORMAL_COMPLETION &&
1692 		    error != USBD_IN_PROGRESS) {
1693 			aprint_error_dev(sc->sc_dev,
1694 			    "could not transmit TX data URB\n");
1695 			ifp->if_oerrors++;
1696 			break;
1697 		}
1698 
1699 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1700 		    device_xname(sc->sc_dev), len);
1701 	}
1702 
1703 	splx(s);
1704 
1705 	/*
1706 	 * If we don't regulary read the device statistics, the RX queue
1707 	 * will stall.  It's strange, but it works, so we keep reading
1708 	 * the statistics here.  *shrug*
1709 	 */
1710 	mutex_enter(&sc->sc_mtx);
1711 	upgt_get_stats(sc);
1712 	mutex_exit(&sc->sc_mtx);
1713 }
1714 
1715 static void
1716 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1717 {
1718 	struct ifnet *ifp = &sc->sc_if;
1719 	struct upgt_lmac_tx_done_desc *desc;
1720 	int i, s;
1721 
1722 	s = splnet();
1723 
1724 	desc = (struct upgt_lmac_tx_done_desc *)data;
1725 
1726 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1727 		struct upgt_data *data_tx = &sc->tx_data[i];
1728 
1729 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1730 			upgt_mem_free(sc, data_tx->addr);
1731 			data_tx->addr = 0;
1732 
1733 			sc->tx_queued--;
1734 			ifp->if_opackets++;
1735 
1736 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1737 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1738 			    le32toh(desc->header2.reqid),
1739 			    le16toh(desc->status),
1740 			    le16toh(desc->rssi));
1741 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1742 			break;
1743 		}
1744 	}
1745 
1746 	if (sc->tx_queued == 0) {
1747 		/* TX queued was processed, continue */
1748 		ifp->if_timer = 0;
1749 		ifp->if_flags &= ~IFF_OACTIVE;
1750 		upgt_start(ifp);
1751 	}
1752 
1753 	splx(s);
1754 }
1755 
1756 static void
1757 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1758 {
1759 	struct upgt_data *data_rx = priv;
1760 	struct upgt_softc *sc = data_rx->sc;
1761 	int len;
1762 	struct upgt_lmac_header *header;
1763 	struct upgt_lmac_eeprom *eeprom;
1764 	uint8_t h1_type;
1765 	uint16_t h2_type;
1766 
1767 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1768 
1769 	if (status != USBD_NORMAL_COMPLETION) {
1770 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1771 			return;
1772 		if (status == USBD_STALLED)
1773 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1774 		goto skip;
1775 	}
1776 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1777 
1778 	/*
1779 	 * Check what type of frame came in.
1780 	 */
1781 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1782 
1783 	h1_type = header->header1.type;
1784 	h2_type = le16toh(header->header2.type);
1785 
1786 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1787 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1788 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1789 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1790 		uint16_t eeprom_len = le16toh(eeprom->len);
1791 
1792 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1793 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1794 
1795 		memcpy(sc->sc_eeprom + eeprom_offset,
1796 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1797 		    eeprom_len);
1798 
1799 		/* EEPROM data has arrived in time, wakeup tsleep() */
1800 		wakeup(sc);
1801 	} else
1802 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1803 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1804 		DPRINTF(2, "%s: received 802.11 TX done\n",
1805 		    device_xname(sc->sc_dev));
1806 
1807 		upgt_tx_done(sc, data_rx->buf + 4);
1808 	} else
1809 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1810 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1811 		DPRINTF(3, "%s: received 802.11 RX data\n",
1812 		    device_xname(sc->sc_dev));
1813 
1814 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1815 	} else
1816 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1817 	    h2_type == UPGT_H2_TYPE_STATS) {
1818 		DPRINTF(2, "%s: received statistic data\n",
1819 		    device_xname(sc->sc_dev));
1820 
1821 		/* TODO: what could we do with the statistic data? */
1822 	} else {
1823 		/* ignore unknown frame types */
1824 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1825 		    device_xname(sc->sc_dev), header->header1.type);
1826 	}
1827 
1828 skip:	/* setup new transfer */
1829 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1830 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1831 	(void)usbd_transfer(xfer);
1832 }
1833 
1834 static void
1835 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1836 {
1837 	struct ieee80211com *ic = &sc->sc_ic;
1838 	struct ifnet *ifp = &sc->sc_if;
1839 	struct upgt_lmac_rx_desc *rxdesc;
1840 	struct ieee80211_frame *wh;
1841 	struct ieee80211_node *ni;
1842 	struct mbuf *m;
1843 	int s;
1844 
1845 	/* access RX packet descriptor */
1846 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1847 
1848 	/* create mbuf which is suitable for strict alignment archs */
1849 	m = m_devget(rxdesc->data, pkglen, 0, ifp);
1850 	if (m == NULL) {
1851 		DPRINTF(1, "%s: could not create RX mbuf\n",
1852 		   device_xname(sc->sc_dev));
1853 		ifp->if_ierrors++;
1854 		return;
1855 	}
1856 
1857 	s = splnet();
1858 
1859 	if (sc->sc_drvbpf != NULL) {
1860 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1861 
1862 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1863 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1864 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1865 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1866 		tap->wr_antsignal = rxdesc->rssi;
1867 
1868 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1869 	}
1870 
1871 	/* trim FCS */
1872 	m_adj(m, -IEEE80211_CRC_LEN);
1873 
1874 	wh = mtod(m, struct ieee80211_frame *);
1875 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1876 
1877 	/* push the frame up to the 802.11 stack */
1878 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1879 
1880 	/* node is no longer needed */
1881 	ieee80211_free_node(ni);
1882 
1883 	splx(s);
1884 
1885 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1886 }
1887 
1888 static void
1889 upgt_setup_rates(struct upgt_softc *sc)
1890 {
1891 	struct ieee80211com *ic = &sc->sc_ic;
1892 
1893 	/*
1894 	 * 0x01 = OFMD6   0x10 = DS1
1895 	 * 0x04 = OFDM9   0x11 = DS2
1896 	 * 0x06 = OFDM12  0x12 = DS5
1897 	 * 0x07 = OFDM18  0x13 = DS11
1898 	 * 0x08 = OFDM24
1899 	 * 0x09 = OFDM36
1900 	 * 0x0a = OFDM48
1901 	 * 0x0b = OFDM54
1902 	 */
1903 	const uint8_t rateset_auto_11b[] =
1904 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1905 	const uint8_t rateset_auto_11g[] =
1906 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1907 	const uint8_t rateset_fix_11bg[] =
1908 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1909 	      0x08, 0x09, 0x0a, 0x0b };
1910 
1911 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1912 		/*
1913 		 * Automatic rate control is done by the device.
1914 		 * We just pass the rateset from which the device
1915 		 * will pickup a rate.
1916 		 */
1917 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1918 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1919 			    sizeof(sc->sc_cur_rateset));
1920 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1921 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1922 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1923 			    sizeof(sc->sc_cur_rateset));
1924 	} else {
1925 		/* set a fixed rate */
1926 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1927 		    sizeof(sc->sc_cur_rateset));
1928 	}
1929 }
1930 
1931 static uint8_t
1932 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1933 {
1934 	struct ieee80211com *ic = &sc->sc_ic;
1935 
1936 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1937 		if (rate < 0 || rate > 3)
1938 			/* invalid rate */
1939 			return 0;
1940 
1941 		switch (rate) {
1942 		case 0:
1943 			return 2;
1944 		case 1:
1945 			return 4;
1946 		case 2:
1947 			return 11;
1948 		case 3:
1949 			return 22;
1950 		default:
1951 			return 0;
1952 		}
1953 	}
1954 
1955 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1956 		if (rate < 0 || rate > 11)
1957 			/* invalid rate */
1958 			return 0;
1959 
1960 		switch (rate) {
1961 		case 0:
1962 			return 2;
1963 		case 1:
1964 			return 4;
1965 		case 2:
1966 			return 11;
1967 		case 3:
1968 			return 22;
1969 		case 4:
1970 			return 12;
1971 		case 5:
1972 			return 18;
1973 		case 6:
1974 			return 24;
1975 		case 7:
1976 			return 36;
1977 		case 8:
1978 			return 48;
1979 		case 9:
1980 			return 72;
1981 		case 10:
1982 			return 96;
1983 		case 11:
1984 			return 108;
1985 		default:
1986 			return 0;
1987 		}
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static int
1994 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1995 {
1996 	struct ieee80211com *ic = &sc->sc_ic;
1997 	struct ieee80211_node *ni = ic->ic_bss;
1998 	struct upgt_data *data_cmd = &sc->cmd_data;
1999 	struct upgt_lmac_mem *mem;
2000 	struct upgt_lmac_filter *filter;
2001 	int len;
2002 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2003 
2004 	/*
2005 	 * Transmit the URB containing the CMD data.
2006 	 */
2007 	len = sizeof(*mem) + sizeof(*filter);
2008 
2009 	memset(data_cmd->buf, 0, len);
2010 
2011 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2012 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2013 	    UPGT_MEMSIZE_FRAME_HEAD);
2014 
2015 	filter = (struct upgt_lmac_filter *)(mem + 1);
2016 
2017 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2018 	filter->header1.type = UPGT_H1_TYPE_CTRL;
2019 	filter->header1.len = htole16(
2020 	    sizeof(struct upgt_lmac_filter) -
2021 	    sizeof(struct upgt_lmac_header));
2022 
2023 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2024 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2025 	filter->header2.flags = 0;
2026 
2027 	switch (state) {
2028 	case IEEE80211_S_INIT:
2029 		DPRINTF(1, "%s: set MAC filter to INIT\n",
2030 		    device_xname(sc->sc_dev));
2031 
2032 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2033 		break;
2034 	case IEEE80211_S_SCAN:
2035 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2036 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2037 
2038 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2039 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2040 		IEEE80211_ADDR_COPY(filter->src, broadcast);
2041 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2042 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2043 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2044 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2045 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2046 		break;
2047 	case IEEE80211_S_RUN:
2048 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2049 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2050 
2051 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2052 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2053 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2054 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2055 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2056 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2057 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2058 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2059 		break;
2060 	default:
2061 		aprint_error_dev(sc->sc_dev,
2062 		    "MAC filter does not know that state\n");
2063 		break;
2064 	}
2065 
2066 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2067 
2068 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2069 		aprint_error_dev(sc->sc_dev,
2070 		    "could not transmit macfilter CMD data URB\n");
2071 		return EIO;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static int
2078 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2079 {
2080 	struct upgt_data *data_cmd = &sc->cmd_data;
2081 	struct upgt_lmac_mem *mem;
2082 	struct upgt_lmac_channel *chan;
2083 	int len;
2084 
2085 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2086 	    channel);
2087 
2088 	/*
2089 	 * Transmit the URB containing the CMD data.
2090 	 */
2091 	len = sizeof(*mem) + sizeof(*chan);
2092 
2093 	memset(data_cmd->buf, 0, len);
2094 
2095 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2096 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2097 	    UPGT_MEMSIZE_FRAME_HEAD);
2098 
2099 	chan = (struct upgt_lmac_channel *)(mem + 1);
2100 
2101 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2102 	chan->header1.type = UPGT_H1_TYPE_CTRL;
2103 	chan->header1.len = htole16(
2104 	    sizeof(struct upgt_lmac_channel) -
2105 	    sizeof(struct upgt_lmac_header));
2106 
2107 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2108 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2109 	chan->header2.flags = 0;
2110 
2111 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2112 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2113 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2114 	chan->settings = sc->sc_eeprom_freq6_settings;
2115 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2116 
2117 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2118 	    sizeof(chan->freq3_1));
2119 
2120 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2121 	    sizeof(sc->sc_eeprom_freq4[channel]));
2122 
2123 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2124 	    sizeof(chan->freq3_2));
2125 
2126 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2127 
2128 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2129 		aprint_error_dev(sc->sc_dev,
2130 		    "could not transmit channel CMD data URB\n");
2131 		return EIO;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static void
2138 upgt_set_led(struct upgt_softc *sc, int action)
2139 {
2140 	struct ieee80211com *ic = &sc->sc_ic;
2141 	struct upgt_data *data_cmd = &sc->cmd_data;
2142 	struct upgt_lmac_mem *mem;
2143 	struct upgt_lmac_led *led;
2144 	struct timeval t;
2145 	int len;
2146 
2147 	/*
2148 	 * Transmit the URB containing the CMD data.
2149 	 */
2150 	len = sizeof(*mem) + sizeof(*led);
2151 
2152 	memset(data_cmd->buf, 0, len);
2153 
2154 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2155 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2156 	    UPGT_MEMSIZE_FRAME_HEAD);
2157 
2158 	led = (struct upgt_lmac_led *)(mem + 1);
2159 
2160 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2161 	led->header1.type = UPGT_H1_TYPE_CTRL;
2162 	led->header1.len = htole16(
2163 	    sizeof(struct upgt_lmac_led) -
2164 	    sizeof(struct upgt_lmac_header));
2165 
2166 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2167 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2168 	led->header2.flags = 0;
2169 
2170 	switch (action) {
2171 	case UPGT_LED_OFF:
2172 		led->mode = htole16(UPGT_LED_MODE_SET);
2173 		led->action_fix = 0;
2174 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2175 		led->action_tmp_dur = 0;
2176 		break;
2177 	case UPGT_LED_ON:
2178 		led->mode = htole16(UPGT_LED_MODE_SET);
2179 		led->action_fix = 0;
2180 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2181 		led->action_tmp_dur = 0;
2182 		break;
2183 	case UPGT_LED_BLINK:
2184 		if (ic->ic_state != IEEE80211_S_RUN)
2185 			return;
2186 		if (sc->sc_led_blink)
2187 			/* previous blink was not finished */
2188 			return;
2189 		led->mode = htole16(UPGT_LED_MODE_SET);
2190 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2191 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2192 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2193 		/* lock blink */
2194 		sc->sc_led_blink = 1;
2195 		t.tv_sec = 0;
2196 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2197 		callout_schedule(&sc->led_to, tvtohz(&t));
2198 		break;
2199 	default:
2200 		return;
2201 	}
2202 
2203 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2204 
2205 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2206 		aprint_error_dev(sc->sc_dev,
2207 		    "could not transmit led CMD URB\n");
2208 	}
2209 }
2210 
2211 static void
2212 upgt_set_led_blink(void *arg)
2213 {
2214 	struct upgt_softc *sc = arg;
2215 
2216 	/* blink finished, we are ready for a next one */
2217 	sc->sc_led_blink = 0;
2218 	callout_stop(&sc->led_to);
2219 }
2220 
2221 static int
2222 upgt_get_stats(struct upgt_softc *sc)
2223 {
2224 	struct upgt_data *data_cmd = &sc->cmd_data;
2225 	struct upgt_lmac_mem *mem;
2226 	struct upgt_lmac_stats *stats;
2227 	int len;
2228 
2229 	/*
2230 	 * Transmit the URB containing the CMD data.
2231 	 */
2232 	len = sizeof(*mem) + sizeof(*stats);
2233 
2234 	memset(data_cmd->buf, 0, len);
2235 
2236 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2237 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2238 	    UPGT_MEMSIZE_FRAME_HEAD);
2239 
2240 	stats = (struct upgt_lmac_stats *)(mem + 1);
2241 
2242 	stats->header1.flags = 0;
2243 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2244 	stats->header1.len = htole16(
2245 	    sizeof(struct upgt_lmac_stats) -
2246 	    sizeof(struct upgt_lmac_header));
2247 
2248 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2249 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2250 	stats->header2.flags = 0;
2251 
2252 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2253 
2254 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2255 		aprint_error_dev(sc->sc_dev,
2256 		    "could not transmit statistics CMD data URB\n");
2257 		return EIO;
2258 	}
2259 
2260 	return 0;
2261 
2262 }
2263 
2264 static int
2265 upgt_alloc_tx(struct upgt_softc *sc)
2266 {
2267 	int i;
2268 
2269 	sc->tx_queued = 0;
2270 
2271 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2272 		struct upgt_data *data_tx = &sc->tx_data[i];
2273 
2274 		data_tx->sc = sc;
2275 
2276 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2277 		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2278 		if (err) {
2279 			aprint_error_dev(sc->sc_dev,
2280 			    "could not allocate TX xfer\n");
2281 			return err;
2282 		}
2283 
2284 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 static int
2291 upgt_alloc_rx(struct upgt_softc *sc)
2292 {
2293 	struct upgt_data *data_rx = &sc->rx_data;
2294 
2295 	data_rx->sc = sc;
2296 
2297 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2298 	    0, 0, &data_rx->xfer);
2299 	if (err) {
2300 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2301 		return err;
2302 	}
2303 
2304 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
2305 
2306 	return 0;
2307 }
2308 
2309 static int
2310 upgt_alloc_cmd(struct upgt_softc *sc)
2311 {
2312 	struct upgt_data *data_cmd = &sc->cmd_data;
2313 
2314 	data_cmd->sc = sc;
2315 
2316 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2317 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2318 	if (err) {
2319 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2320 		return err;
2321 	}
2322 
2323 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2324 
2325 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2326 
2327 	return 0;
2328 }
2329 
2330 static void
2331 upgt_free_tx(struct upgt_softc *sc)
2332 {
2333 	int i;
2334 
2335 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2336 		struct upgt_data *data_tx = &sc->tx_data[i];
2337 
2338 		if (data_tx->xfer != NULL) {
2339 			usbd_destroy_xfer(data_tx->xfer);
2340 			data_tx->xfer = NULL;
2341 		}
2342 
2343 		data_tx->ni = NULL;
2344 	}
2345 }
2346 
2347 static void
2348 upgt_free_rx(struct upgt_softc *sc)
2349 {
2350 	struct upgt_data *data_rx = &sc->rx_data;
2351 
2352 	if (data_rx->xfer != NULL) {
2353 		usbd_destroy_xfer(data_rx->xfer);
2354 		data_rx->xfer = NULL;
2355 	}
2356 
2357 	data_rx->ni = NULL;
2358 }
2359 
2360 static void
2361 upgt_free_cmd(struct upgt_softc *sc)
2362 {
2363 	struct upgt_data *data_cmd = &sc->cmd_data;
2364 
2365 	if (data_cmd->xfer != NULL) {
2366 		usbd_destroy_xfer(data_cmd->xfer);
2367 		data_cmd->xfer = NULL;
2368 	}
2369 
2370 	mutex_destroy(&sc->sc_mtx);
2371 }
2372 
2373 static int
2374 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2375     struct usbd_pipe *pipeh, uint32_t *size, int flags)
2376 {
2377         usbd_status status;
2378 
2379 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2380 	    data->buf, size);
2381 	if (status != USBD_NORMAL_COMPLETION) {
2382 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2383 		    usbd_errstr(status));
2384 		return EIO;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 #if 0
2391 static void
2392 upgt_hexdump(void *buf, int len)
2393 {
2394 	int i;
2395 
2396 	for (i = 0; i < len; i++) {
2397 		if (i % 16 == 0)
2398 			printf("%s%5i:", i ? "\n" : "", i);
2399 		if (i % 4 == 0)
2400 			printf(" ");
2401 		printf("%02x", (int)*((uint8_t *)buf + i));
2402 	}
2403 	printf("\n");
2404 }
2405 #endif
2406 
2407 static uint32_t
2408 upgt_crc32_le(const void *buf, size_t size)
2409 {
2410 	uint32_t crc;
2411 
2412 	crc = ether_crc32_le(buf, size);
2413 
2414 	/* apply final XOR value as common for CRC-32 */
2415 	crc = htole32(crc ^ 0xffffffffU);
2416 
2417 	return crc;
2418 }
2419 
2420 /*
2421  * The firmware awaits a checksum for each frame we send to it.
2422  * The algorithm used is uncommon but somehow similar to CRC32.
2423  */
2424 static uint32_t
2425 upgt_chksum_le(const uint32_t *buf, size_t size)
2426 {
2427 	int i;
2428 	uint32_t crc = 0;
2429 
2430 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2431 		crc = htole32(crc ^ *buf++);
2432 		crc = htole32((crc >> 5) ^ (crc << 3));
2433 	}
2434 
2435 	return crc;
2436 }
2437