1 /* $NetBSD: if_upgt.c,v 1.26 2019/09/14 12:53:24 maxv Exp $ */ 2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.26 2019/09/14 12:53:24 maxv Exp $"); 22 23 #ifdef _KERNEL_OPT 24 #include "opt_usb.h" 25 #endif 26 27 #include <sys/param.h> 28 #include <sys/callout.h> 29 #include <sys/device.h> 30 #include <sys/errno.h> 31 #include <sys/kernel.h> 32 #include <sys/kthread.h> 33 #include <sys/mbuf.h> 34 #include <sys/proc.h> 35 #include <sys/sockio.h> 36 #include <sys/systm.h> 37 #include <sys/vnode.h> 38 #include <sys/bus.h> 39 #include <sys/endian.h> 40 #include <sys/intr.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_radiotap.h> 52 53 #include <dev/firmload.h> 54 55 #include <dev/usb/usb.h> 56 #include <dev/usb/usbdi.h> 57 #include <dev/usb/usbdi_util.h> 58 #include <dev/usb/usbdivar.h> 59 #include <dev/usb/usbdevs.h> 60 61 #include <dev/usb/if_upgtvar.h> 62 63 /* 64 * Driver for the USB PrismGT devices. 65 * 66 * For now just USB 2.0 devices with the GW3887 chipset are supported. 67 * The driver has been written based on the firmware version 2.13.1.0_LM87. 68 * 69 * TODO's: 70 * - Fix MONITOR mode (MAC filter). 71 * - Add HOSTAP mode. 72 * - Add IBSS mode. 73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 74 * 75 * Parts of this driver has been influenced by reading the p54u driver 76 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 77 * Sebastien Bourdeauducq <lekernel@prism54.org>. 78 */ 79 80 #ifdef UPGT_DEBUG 81 int upgt_debug = 2; 82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 83 #else 84 #define DPRINTF(l, x...) 85 #endif 86 87 /* 88 * Prototypes. 89 */ 90 static int upgt_match(device_t, cfdata_t, void *); 91 static void upgt_attach(device_t, device_t, void *); 92 static int upgt_detach(device_t, int); 93 static int upgt_activate(device_t, devact_t); 94 95 static void upgt_attach_hook(device_t); 96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 97 static int upgt_device_init(struct upgt_softc *); 98 static int upgt_mem_init(struct upgt_softc *); 99 static uint32_t upgt_mem_alloc(struct upgt_softc *); 100 static void upgt_mem_free(struct upgt_softc *, uint32_t); 101 static int upgt_fw_alloc(struct upgt_softc *); 102 static void upgt_fw_free(struct upgt_softc *); 103 static int upgt_fw_verify(struct upgt_softc *); 104 static int upgt_fw_load(struct upgt_softc *); 105 static int upgt_fw_copy(char *, char *, int); 106 static int upgt_eeprom_read(struct upgt_softc *); 107 static int upgt_eeprom_parse(struct upgt_softc *); 108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 112 113 static int upgt_ioctl(struct ifnet *, u_long, void *); 114 static int upgt_init(struct ifnet *); 115 static void upgt_stop(struct upgt_softc *); 116 static int upgt_media_change(struct ifnet *); 117 static void upgt_newassoc(struct ieee80211_node *, int); 118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state, 119 int); 120 static void upgt_newstate_task(void *); 121 static void upgt_next_scan(void *); 122 static void upgt_start(struct ifnet *); 123 static void upgt_watchdog(struct ifnet *); 124 static void upgt_tx_task(void *); 125 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status); 127 static void upgt_rx(struct upgt_softc *, uint8_t *, int); 128 static void upgt_setup_rates(struct upgt_softc *); 129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 131 static int upgt_set_channel(struct upgt_softc *, unsigned); 132 static void upgt_set_led(struct upgt_softc *, int); 133 static void upgt_set_led_blink(void *); 134 static int upgt_get_stats(struct upgt_softc *); 135 136 static int upgt_alloc_tx(struct upgt_softc *); 137 static int upgt_alloc_rx(struct upgt_softc *); 138 static int upgt_alloc_cmd(struct upgt_softc *); 139 static void upgt_free_tx(struct upgt_softc *); 140 static void upgt_free_rx(struct upgt_softc *); 141 static void upgt_free_cmd(struct upgt_softc *); 142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 143 struct usbd_pipe *, uint32_t *, int); 144 145 #if 0 146 static void upgt_hexdump(void *, int); 147 #endif 148 static uint32_t upgt_crc32_le(const void *, size_t); 149 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 150 151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc), 152 upgt_match, upgt_attach, upgt_detach, upgt_activate); 153 154 static const struct usb_devno upgt_devs_1[] = { 155 /* version 1 devices */ 156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G }, 157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 } 158 }; 159 160 static const struct usb_devno upgt_devs_2[] = { 161 /* version 2 devices */ 162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT }, 168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST }, 169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ }, 179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 }, 183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 }, 184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 186 }; 187 188 static int 189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep, 190 size_t *sizep) 191 { 192 firmware_handle_t fh; 193 int error; 194 195 if ((error = firmware_open(dname, iname, &fh)) != 0) 196 return error; 197 *sizep = firmware_get_size(fh); 198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) { 199 firmware_close(fh); 200 return ENOMEM; 201 } 202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0) 203 firmware_free(*ucodep, *sizep); 204 firmware_close(fh); 205 206 return error; 207 } 208 209 static int 210 upgt_match(device_t parent, cfdata_t match, void *aux) 211 { 212 struct usb_attach_arg *uaa = aux; 213 214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL) 215 return UMATCH_VENDOR_PRODUCT; 216 217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL) 218 return UMATCH_VENDOR_PRODUCT; 219 220 return UMATCH_NONE; 221 } 222 223 static void 224 upgt_attach(device_t parent, device_t self, void *aux) 225 { 226 struct upgt_softc *sc = device_private(self); 227 struct usb_attach_arg *uaa = aux; 228 usb_interface_descriptor_t *id; 229 usb_endpoint_descriptor_t *ed; 230 usbd_status error; 231 char *devinfop; 232 int i; 233 234 aprint_naive("\n"); 235 aprint_normal("\n"); 236 237 /* 238 * Attach USB device. 239 */ 240 sc->sc_dev = self; 241 sc->sc_udev = uaa->uaa_device; 242 sc->sc_init_state = UPGT_INIT_NONE; 243 244 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 245 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop); 246 usbd_devinfo_free(devinfop); 247 248 /* check device type */ 249 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0) 250 return; 251 252 /* set configuration number */ 253 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0); 254 if (error != 0) { 255 aprint_error_dev(sc->sc_dev, "failed to set configuration" 256 ", err=%s\n", usbd_errstr(error)); 257 return; 258 } 259 260 /* get the first interface handle */ 261 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 262 &sc->sc_iface); 263 if (error != 0) { 264 aprint_error_dev(sc->sc_dev, 265 "could not get interface handle\n"); 266 return; 267 } 268 269 /* find endpoints */ 270 id = usbd_get_interface_descriptor(sc->sc_iface); 271 sc->sc_rx_no = sc->sc_tx_no = -1; 272 for (i = 0; i < id->bNumEndpoints; i++) { 273 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 274 if (ed == NULL) { 275 aprint_error_dev(sc->sc_dev, 276 "no endpoint descriptor for iface %d\n", i); 277 return; 278 } 279 280 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 281 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 282 sc->sc_tx_no = ed->bEndpointAddress; 283 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 284 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 285 sc->sc_rx_no = ed->bEndpointAddress; 286 287 /* 288 * 0x01 TX pipe 289 * 0x81 RX pipe 290 * 291 * Deprecated scheme (not used with fw version >2.5.6.x): 292 * 0x02 TX MGMT pipe 293 * 0x82 TX MGMT pipe 294 */ 295 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 296 break; 297 } 298 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 299 aprint_error_dev(sc->sc_dev, "missing endpoint\n"); 300 return; 301 } 302 303 /* setup tasks and timeouts */ 304 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0); 305 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0); 306 callout_init(&sc->scan_to, 0); 307 callout_setfunc(&sc->scan_to, upgt_next_scan, sc); 308 callout_init(&sc->led_to, 0); 309 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc); 310 sc->sc_init_state = UPGT_INIT_INITED; 311 312 /* 313 * Open TX and RX USB bulk pipes. 314 */ 315 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 316 &sc->sc_tx_pipeh); 317 if (error != 0) { 318 aprint_error_dev(sc->sc_dev, 319 "could not open TX pipe: %s\n", usbd_errstr(error)); 320 goto fail; 321 } 322 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 323 &sc->sc_rx_pipeh); 324 if (error != 0) { 325 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n", 326 usbd_errstr(error)); 327 goto fail; 328 } 329 330 /* 331 * Allocate TX, RX, and CMD xfers. 332 */ 333 if (upgt_alloc_tx(sc) != 0) 334 goto fail; 335 if (upgt_alloc_rx(sc) != 0) 336 goto fail; 337 if (upgt_alloc_cmd(sc) != 0) 338 goto fail; 339 340 /* 341 * We need the firmware loaded from file system to complete the attach. 342 */ 343 config_mountroot(self, upgt_attach_hook); 344 345 return; 346 fail: 347 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__); 348 } 349 350 static void 351 upgt_attach_hook(device_t arg) 352 { 353 struct upgt_softc *sc = device_private(arg); 354 struct ieee80211com *ic = &sc->sc_ic; 355 struct ifnet *ifp = &sc->sc_if; 356 usbd_status error; 357 int i; 358 359 /* 360 * Load firmware file into memory. 361 */ 362 if (upgt_fw_alloc(sc) != 0) 363 goto fail; 364 365 /* 366 * Initialize the device. 367 */ 368 if (upgt_device_init(sc) != 0) 369 goto fail; 370 371 /* 372 * Verify the firmware. 373 */ 374 if (upgt_fw_verify(sc) != 0) 375 goto fail; 376 377 /* 378 * Calculate device memory space. 379 */ 380 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 381 aprint_error_dev(sc->sc_dev, 382 "could not find memory space addresses on FW\n"); 383 goto fail; 384 } 385 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 386 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 387 388 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start); 390 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 391 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end); 392 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 393 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start); 394 395 upgt_mem_init(sc); 396 397 /* 398 * Load the firmware. 399 */ 400 if (upgt_fw_load(sc) != 0) 401 goto fail; 402 403 /* 404 * Startup the RX pipe. 405 */ 406 struct upgt_data *data_rx = &sc->rx_data; 407 408 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf, 409 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 410 error = usbd_transfer(data_rx->xfer); 411 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 412 aprint_error_dev(sc->sc_dev, 413 "could not queue RX transfer\n"); 414 goto fail; 415 } 416 usbd_delay_ms(sc->sc_udev, 100); 417 418 /* 419 * Read the whole EEPROM content and parse it. 420 */ 421 if (upgt_eeprom_read(sc) != 0) 422 goto fail; 423 if (upgt_eeprom_parse(sc) != 0) 424 goto fail; 425 426 /* 427 * Setup the 802.11 device. 428 */ 429 ic->ic_ifp = ifp; 430 ic->ic_phytype = IEEE80211_T_OFDM; 431 ic->ic_opmode = IEEE80211_M_STA; 432 ic->ic_state = IEEE80211_S_INIT; 433 ic->ic_caps = 434 IEEE80211_C_MONITOR | 435 IEEE80211_C_SHPREAMBLE | 436 IEEE80211_C_SHSLOT; 437 438 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 439 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 440 441 for (i = 1; i <= 14; i++) { 442 ic->ic_channels[i].ic_freq = 443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 444 ic->ic_channels[i].ic_flags = 445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 447 } 448 449 ifp->if_softc = sc; 450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 451 ifp->if_init = upgt_init; 452 ifp->if_ioctl = upgt_ioctl; 453 ifp->if_start = upgt_start; 454 ifp->if_watchdog = upgt_watchdog; 455 IFQ_SET_READY(&ifp->if_snd); 456 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 457 458 if_attach(ifp); 459 ieee80211_ifattach(ic); 460 ic->ic_newassoc = upgt_newassoc; 461 462 sc->sc_newstate = ic->ic_newstate; 463 ic->ic_newstate = upgt_newstate; 464 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status); 465 466 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 467 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 468 &sc->sc_drvbpf); 469 470 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 471 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 472 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 473 474 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 475 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 476 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 477 478 aprint_normal_dev(sc->sc_dev, "address %s\n", 479 ether_sprintf(ic->ic_myaddr)); 480 481 ieee80211_announce(ic); 482 483 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 484 485 /* device attached */ 486 sc->sc_flags |= UPGT_DEVICE_ATTACHED; 487 488 return; 489 fail: 490 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__); 491 } 492 493 static int 494 upgt_detach(device_t self, int flags) 495 { 496 struct upgt_softc *sc = device_private(self); 497 struct ifnet *ifp = &sc->sc_if; 498 struct ieee80211com *ic = &sc->sc_ic; 499 int s; 500 501 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 502 503 if (sc->sc_init_state < UPGT_INIT_INITED) 504 return 0; 505 506 s = splnet(); 507 508 if (ifp->if_flags & IFF_RUNNING) 509 upgt_stop(sc); 510 511 /* remove tasks and timeouts */ 512 callout_halt(&sc->scan_to, NULL); 513 callout_halt(&sc->led_to, NULL); 514 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER, 515 NULL); 516 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER, 517 NULL); 518 callout_destroy(&sc->scan_to); 519 callout_destroy(&sc->led_to); 520 521 /* abort and close TX / RX pipes */ 522 if (sc->sc_tx_pipeh != NULL) { 523 usbd_abort_pipe(sc->sc_tx_pipeh); 524 } 525 if (sc->sc_rx_pipeh != NULL) { 526 usbd_abort_pipe(sc->sc_rx_pipeh); 527 } 528 529 /* free xfers */ 530 upgt_free_tx(sc); 531 upgt_free_rx(sc); 532 upgt_free_cmd(sc); 533 534 /* Close TX / RX pipes */ 535 if (sc->sc_tx_pipeh != NULL) { 536 usbd_close_pipe(sc->sc_tx_pipeh); 537 } 538 if (sc->sc_rx_pipeh != NULL) { 539 usbd_close_pipe(sc->sc_rx_pipeh); 540 } 541 542 /* free firmware */ 543 upgt_fw_free(sc); 544 545 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) { 546 /* detach interface */ 547 bpf_detach(ifp); 548 ieee80211_ifdetach(ic); 549 if_detach(ifp); 550 } 551 552 splx(s); 553 554 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 555 556 return 0; 557 } 558 559 static int 560 upgt_activate(device_t self, devact_t act) 561 { 562 struct upgt_softc *sc = device_private(self); 563 564 switch (act) { 565 case DVACT_DEACTIVATE: 566 if_deactivate(&sc->sc_if); 567 return 0; 568 default: 569 return EOPNOTSUPP; 570 } 571 } 572 573 static int 574 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 575 { 576 577 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 578 sc->sc_device_type = 1; 579 /* XXX */ 580 aprint_error_dev(sc->sc_dev, 581 "version 1 devices not supported yet\n"); 582 return 1; 583 } else 584 sc->sc_device_type = 2; 585 586 return 0; 587 } 588 589 static int 590 upgt_device_init(struct upgt_softc *sc) 591 { 592 struct upgt_data *data_cmd = &sc->cmd_data; 593 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 594 int len; 595 596 len = sizeof(init_cmd); 597 memcpy(data_cmd->buf, init_cmd, len); 598 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 599 aprint_error_dev(sc->sc_dev, 600 "could not send device init string\n"); 601 return EIO; 602 } 603 usbd_delay_ms(sc->sc_udev, 100); 604 605 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev)); 606 607 return 0; 608 } 609 610 static int 611 upgt_mem_init(struct upgt_softc *sc) 612 { 613 int i; 614 615 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 616 sc->sc_memory.page[i].used = 0; 617 618 if (i == 0) { 619 /* 620 * The first memory page is always reserved for 621 * command data. 622 */ 623 sc->sc_memory.page[i].addr = 624 sc->sc_memaddr_frame_start + MCLBYTES; 625 } else { 626 sc->sc_memory.page[i].addr = 627 sc->sc_memory.page[i - 1].addr + MCLBYTES; 628 } 629 630 if (sc->sc_memory.page[i].addr + MCLBYTES >= 631 sc->sc_memaddr_frame_end) 632 break; 633 634 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 635 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr); 636 } 637 638 sc->sc_memory.pages = i; 639 640 DPRINTF(2, "%s: memory pages=%d\n", 641 device_xname(sc->sc_dev), sc->sc_memory.pages); 642 643 return 0; 644 } 645 646 static uint32_t 647 upgt_mem_alloc(struct upgt_softc *sc) 648 { 649 int i; 650 651 for (i = 0; i < sc->sc_memory.pages; i++) { 652 if (sc->sc_memory.page[i].used == 0) { 653 sc->sc_memory.page[i].used = 1; 654 return sc->sc_memory.page[i].addr; 655 } 656 } 657 658 return 0; 659 } 660 661 static void 662 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 663 { 664 int i; 665 666 for (i = 0; i < sc->sc_memory.pages; i++) { 667 if (sc->sc_memory.page[i].addr == addr) { 668 sc->sc_memory.page[i].used = 0; 669 return; 670 } 671 } 672 673 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n", 674 addr); 675 } 676 677 678 static int 679 upgt_fw_alloc(struct upgt_softc *sc) 680 { 681 const char *name = "upgt-gw3887"; 682 int error; 683 684 if (sc->sc_fw == NULL) { 685 error = firmware_load("upgt", name, &sc->sc_fw, 686 &sc->sc_fw_size); 687 if (error != 0) { 688 if (error == ENOENT) { 689 /* 690 * The firmware file for upgt(4) is not in 691 * the default distribution due to its lisence 692 * so explicitly notify it if the firmware file 693 * is not found. 694 */ 695 aprint_error_dev(sc->sc_dev, 696 "firmware file %s is not installed\n", 697 name); 698 aprint_error_dev(sc->sc_dev, 699 "(it is not included in the default" 700 " distribution)\n"); 701 aprint_error_dev(sc->sc_dev, 702 "see upgt(4) man page for details about " 703 "firmware installation\n"); 704 } else { 705 aprint_error_dev(sc->sc_dev, 706 "could not read firmware %s\n", name); 707 } 708 return EIO; 709 } 710 } 711 712 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev), 713 name); 714 715 return 0; 716 } 717 718 static void 719 upgt_fw_free(struct upgt_softc *sc) 720 { 721 722 if (sc->sc_fw != NULL) { 723 firmware_free(sc->sc_fw, sc->sc_fw_size); 724 sc->sc_fw = NULL; 725 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev)); 726 } 727 } 728 729 static int 730 upgt_fw_verify(struct upgt_softc *sc) 731 { 732 struct upgt_fw_bra_option *bra_option; 733 uint32_t bra_option_type, bra_option_len; 734 uint32_t *uc; 735 int offset, bra_end = 0; 736 737 /* 738 * Seek to beginning of Boot Record Area (BRA). 739 */ 740 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 741 uc = (uint32_t *)(sc->sc_fw + offset); 742 if (*uc == 0) 743 break; 744 } 745 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 746 uc = (uint32_t *)(sc->sc_fw + offset); 747 if (*uc != 0) 748 break; 749 } 750 if (offset == sc->sc_fw_size) { 751 aprint_error_dev(sc->sc_dev, 752 "firmware Boot Record Area not found\n"); 753 return EIO; 754 } 755 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 756 device_xname(sc->sc_dev), offset); 757 758 /* 759 * Parse Boot Record Area (BRA) options. 760 */ 761 while (offset < sc->sc_fw_size && bra_end == 0) { 762 /* get current BRA option */ 763 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 764 bra_option_type = le32toh(bra_option->type); 765 bra_option_len = le32toh(bra_option->len) * sizeof(*uc); 766 767 switch (bra_option_type) { 768 case UPGT_BRA_TYPE_FW: 769 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 770 device_xname(sc->sc_dev), bra_option_len); 771 772 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 773 aprint_error_dev(sc->sc_dev, 774 "wrong UPGT_BRA_TYPE_FW len\n"); 775 return EIO; 776 } 777 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 778 bra_option_len) == 0) { 779 sc->sc_fw_type = UPGT_FWTYPE_LM86; 780 break; 781 } 782 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 783 bra_option_len) == 0) { 784 sc->sc_fw_type = UPGT_FWTYPE_LM87; 785 break; 786 } 787 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 788 bra_option_len) == 0) { 789 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 790 break; 791 } 792 aprint_error_dev(sc->sc_dev, 793 "unsupported firmware type\n"); 794 return EIO; 795 case UPGT_BRA_TYPE_VERSION: 796 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 797 device_xname(sc->sc_dev), bra_option_len); 798 break; 799 case UPGT_BRA_TYPE_DEPIF: 800 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 801 device_xname(sc->sc_dev), bra_option_len); 802 break; 803 case UPGT_BRA_TYPE_EXPIF: 804 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 805 device_xname(sc->sc_dev), bra_option_len); 806 break; 807 case UPGT_BRA_TYPE_DESCR: 808 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 809 device_xname(sc->sc_dev), bra_option_len); 810 811 struct upgt_fw_bra_descr *descr = 812 (struct upgt_fw_bra_descr *)bra_option->data; 813 814 sc->sc_memaddr_frame_start = 815 le32toh(descr->memaddr_space_start); 816 sc->sc_memaddr_frame_end = 817 le32toh(descr->memaddr_space_end); 818 819 DPRINTF(2, "%s: memory address space start=0x%08x\n", 820 device_xname(sc->sc_dev), 821 sc->sc_memaddr_frame_start); 822 DPRINTF(2, "%s: memory address space end=0x%08x\n", 823 device_xname(sc->sc_dev), 824 sc->sc_memaddr_frame_end); 825 break; 826 case UPGT_BRA_TYPE_END: 827 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 828 device_xname(sc->sc_dev), bra_option_len); 829 bra_end = 1; 830 break; 831 default: 832 DPRINTF(1, "%s: unknown BRA option len=%d\n", 833 device_xname(sc->sc_dev), bra_option_len); 834 return EIO; 835 } 836 837 /* jump to next BRA option */ 838 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 839 } 840 841 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev)); 842 843 return 0; 844 } 845 846 static int 847 upgt_fw_load(struct upgt_softc *sc) 848 { 849 struct upgt_data *data_cmd = &sc->cmd_data; 850 struct upgt_data *data_rx = &sc->rx_data; 851 struct upgt_fw_x2_header *x2; 852 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d }; 853 int offset, bsize, n, i, len; 854 uint32_t crc; 855 856 /* send firmware start load command */ 857 len = sizeof(start_fwload_cmd); 858 memcpy(data_cmd->buf, start_fwload_cmd, len); 859 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 860 aprint_error_dev(sc->sc_dev, 861 "could not send start_firmware_load command\n"); 862 return EIO; 863 } 864 865 /* send X2 header */ 866 len = sizeof(struct upgt_fw_x2_header); 867 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 868 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 869 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 870 x2->len = htole32(sc->sc_fw_size); 871 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 872 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 873 sizeof(uint32_t)); 874 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 875 aprint_error_dev(sc->sc_dev, 876 "could not send firmware X2 header\n"); 877 return EIO; 878 } 879 880 /* download firmware */ 881 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 882 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 883 bsize = UPGT_FW_BLOCK_SIZE; 884 else 885 bsize = sc->sc_fw_size - offset; 886 887 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 888 889 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 890 device_xname(sc->sc_dev), offset, n, bsize); 891 892 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 893 != 0) { 894 aprint_error_dev(sc->sc_dev, 895 "error while downloading firmware block\n"); 896 return EIO; 897 } 898 899 bsize = n; 900 } 901 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev)); 902 903 /* load firmware */ 904 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 905 *((uint32_t *)(data_cmd->buf) ) = crc; 906 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 907 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 908 len = 6; 909 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 910 aprint_error_dev(sc->sc_dev, 911 "could not send load_firmware command\n"); 912 return EIO; 913 } 914 915 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 916 len = UPGT_FW_BLOCK_SIZE; 917 memset(data_rx->buf, 0, 2); 918 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 919 USBD_SHORT_XFER_OK) != 0) { 920 aprint_error_dev(sc->sc_dev, 921 "could not read firmware response\n"); 922 return EIO; 923 } 924 925 if (memcmp(data_rx->buf, "OK", 2) == 0) 926 break; /* firmware load was successful */ 927 } 928 if (i == UPGT_FIRMWARE_TIMEOUT) { 929 aprint_error_dev(sc->sc_dev, "firmware load failed\n"); 930 return EIO; 931 } 932 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev)); 933 934 return 0; 935 } 936 937 /* 938 * While copying the version 2 firmware, we need to replace two characters: 939 * 940 * 0x7e -> 0x7d 0x5e 941 * 0x7d -> 0x7d 0x5d 942 */ 943 static int 944 upgt_fw_copy(char *src, char *dst, int size) 945 { 946 int i, j; 947 948 for (i = 0, j = 0; i < size && j < size; i++) { 949 switch (src[i]) { 950 case 0x7e: 951 dst[j] = 0x7d; 952 j++; 953 dst[j] = 0x5e; 954 j++; 955 break; 956 case 0x7d: 957 dst[j] = 0x7d; 958 j++; 959 dst[j] = 0x5d; 960 j++; 961 break; 962 default: 963 dst[j] = src[i]; 964 j++; 965 break; 966 } 967 } 968 969 return i; 970 } 971 972 static int 973 upgt_eeprom_read(struct upgt_softc *sc) 974 { 975 struct upgt_data *data_cmd = &sc->cmd_data; 976 struct upgt_lmac_mem *mem; 977 struct upgt_lmac_eeprom *eeprom; 978 int offset, block, len; 979 980 offset = 0; 981 block = UPGT_EEPROM_BLOCK_SIZE; 982 while (offset < UPGT_EEPROM_SIZE) { 983 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 984 device_xname(sc->sc_dev), offset, block); 985 986 /* 987 * Transmit the URB containing the CMD data. 988 */ 989 len = sizeof(*mem) + sizeof(*eeprom) + block; 990 991 memset(data_cmd->buf, 0, len); 992 993 mem = (struct upgt_lmac_mem *)data_cmd->buf; 994 mem->addr = htole32(sc->sc_memaddr_frame_start + 995 UPGT_MEMSIZE_FRAME_HEAD); 996 997 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 998 eeprom->header1.flags = 0; 999 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1000 eeprom->header1.len = htole16(( 1001 sizeof(struct upgt_lmac_eeprom) - 1002 sizeof(struct upgt_lmac_header)) + block); 1003 1004 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1005 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1006 eeprom->header2.flags = 0; 1007 1008 eeprom->offset = htole16(offset); 1009 eeprom->len = htole16(block); 1010 1011 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1012 len - sizeof(*mem)); 1013 1014 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 1015 USBD_FORCE_SHORT_XFER) != 0) { 1016 aprint_error_dev(sc->sc_dev, 1017 "could not transmit EEPROM data URB\n"); 1018 return EIO; 1019 } 1020 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) { 1021 aprint_error_dev(sc->sc_dev, 1022 "timeout while waiting for EEPROM data\n"); 1023 return EIO; 1024 } 1025 1026 offset += block; 1027 if (UPGT_EEPROM_SIZE - offset < block) 1028 block = UPGT_EEPROM_SIZE - offset; 1029 } 1030 1031 return 0; 1032 } 1033 1034 static int 1035 upgt_eeprom_parse(struct upgt_softc *sc) 1036 { 1037 struct ieee80211com *ic = &sc->sc_ic; 1038 struct upgt_eeprom_header *eeprom_header; 1039 struct upgt_eeprom_option *eeprom_option; 1040 uint16_t option_len; 1041 uint16_t option_type; 1042 uint16_t preamble_len; 1043 int option_end = 0; 1044 1045 /* calculate eeprom options start offset */ 1046 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1047 preamble_len = le16toh(eeprom_header->preamble_len); 1048 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1049 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1050 1051 while (!option_end) { 1052 /* the eeprom option length is stored in words */ 1053 option_len = 1054 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1055 option_type = 1056 le16toh(eeprom_option->type); 1057 1058 switch (option_type) { 1059 case UPGT_EEPROM_TYPE_NAME: 1060 DPRINTF(1, "%s: EEPROM name len=%d\n", 1061 device_xname(sc->sc_dev), option_len); 1062 break; 1063 case UPGT_EEPROM_TYPE_SERIAL: 1064 DPRINTF(1, "%s: EEPROM serial len=%d\n", 1065 device_xname(sc->sc_dev), option_len); 1066 break; 1067 case UPGT_EEPROM_TYPE_MAC: 1068 DPRINTF(1, "%s: EEPROM mac len=%d\n", 1069 device_xname(sc->sc_dev), option_len); 1070 1071 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 1072 break; 1073 case UPGT_EEPROM_TYPE_HWRX: 1074 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 1075 device_xname(sc->sc_dev), option_len); 1076 1077 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1078 break; 1079 case UPGT_EEPROM_TYPE_CHIP: 1080 DPRINTF(1, "%s: EEPROM chip len=%d\n", 1081 device_xname(sc->sc_dev), option_len); 1082 break; 1083 case UPGT_EEPROM_TYPE_FREQ3: 1084 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 1085 device_xname(sc->sc_dev), option_len); 1086 1087 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1088 option_len); 1089 break; 1090 case UPGT_EEPROM_TYPE_FREQ4: 1091 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 1092 device_xname(sc->sc_dev), option_len); 1093 1094 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1095 option_len); 1096 break; 1097 case UPGT_EEPROM_TYPE_FREQ5: 1098 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 1099 device_xname(sc->sc_dev), option_len); 1100 break; 1101 case UPGT_EEPROM_TYPE_FREQ6: 1102 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 1103 device_xname(sc->sc_dev), option_len); 1104 1105 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1106 option_len); 1107 break; 1108 case UPGT_EEPROM_TYPE_END: 1109 DPRINTF(1, "%s: EEPROM end len=%d\n", 1110 device_xname(sc->sc_dev), option_len); 1111 option_end = 1; 1112 break; 1113 case UPGT_EEPROM_TYPE_OFF: 1114 DPRINTF(1, "%s: EEPROM off without end option\n", 1115 device_xname(sc->sc_dev)); 1116 return EIO; 1117 default: 1118 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1119 device_xname(sc->sc_dev), option_type, option_len); 1120 break; 1121 } 1122 1123 /* jump to next EEPROM option */ 1124 eeprom_option = (struct upgt_eeprom_option *) 1125 (eeprom_option->data + option_len); 1126 } 1127 1128 return 0; 1129 } 1130 1131 static void 1132 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1133 { 1134 struct upgt_eeprom_option_hwrx *option_hwrx; 1135 1136 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1137 1138 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1139 1140 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1141 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx); 1142 } 1143 1144 static void 1145 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1146 { 1147 struct upgt_eeprom_freq3_header *freq3_header; 1148 struct upgt_lmac_freq3 *freq3; 1149 int i, elements, flags; 1150 unsigned channel; 1151 1152 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1153 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1154 1155 flags = freq3_header->flags; 1156 elements = freq3_header->elements; 1157 1158 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags); 1159 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1160 __USE(flags); 1161 1162 for (i = 0; i < elements; i++) { 1163 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1164 1165 sc->sc_eeprom_freq3[channel] = freq3[i]; 1166 1167 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1168 device_xname(sc->sc_dev), 1169 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1170 } 1171 } 1172 1173 static void 1174 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1175 { 1176 struct upgt_eeprom_freq4_header *freq4_header; 1177 struct upgt_eeprom_freq4_1 *freq4_1; 1178 struct upgt_eeprom_freq4_2 *freq4_2; 1179 int i, j, elements, settings, flags; 1180 unsigned channel; 1181 1182 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1183 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1184 1185 flags = freq4_header->flags; 1186 elements = freq4_header->elements; 1187 settings = freq4_header->settings; 1188 1189 /* we need this value later */ 1190 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1191 1192 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags); 1193 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1194 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings); 1195 __USE(flags); 1196 1197 for (i = 0; i < elements; i++) { 1198 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1199 1200 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1201 1202 for (j = 0; j < settings; j++) { 1203 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1204 sc->sc_eeprom_freq4[channel][j].pad = 0; 1205 } 1206 1207 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1208 device_xname(sc->sc_dev), 1209 le16toh(freq4_1[i].freq), channel); 1210 } 1211 } 1212 1213 static void 1214 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1215 { 1216 struct upgt_lmac_freq6 *freq6; 1217 int i, elements; 1218 unsigned channel; 1219 1220 freq6 = (struct upgt_lmac_freq6 *)data; 1221 1222 elements = len / sizeof(struct upgt_lmac_freq6); 1223 1224 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements); 1225 1226 for (i = 0; i < elements; i++) { 1227 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1228 1229 sc->sc_eeprom_freq6[channel] = freq6[i]; 1230 1231 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1232 device_xname(sc->sc_dev), 1233 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1234 } 1235 } 1236 1237 static int 1238 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1239 { 1240 struct upgt_softc *sc = ifp->if_softc; 1241 struct ieee80211com *ic = &sc->sc_ic; 1242 int s, error = 0; 1243 1244 s = splnet(); 1245 1246 switch (cmd) { 1247 case SIOCSIFFLAGS: 1248 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1249 break; 1250 if (ifp->if_flags & IFF_UP) { 1251 if ((ifp->if_flags & IFF_RUNNING) == 0) 1252 upgt_init(ifp); 1253 } else { 1254 if (ifp->if_flags & IFF_RUNNING) 1255 upgt_stop(sc); 1256 } 1257 break; 1258 case SIOCADDMULTI: 1259 case SIOCDELMULTI: 1260 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1261 /* setup multicast filter, etc */ 1262 error = 0; 1263 } 1264 break; 1265 default: 1266 error = ieee80211_ioctl(ic, cmd, data); 1267 break; 1268 } 1269 1270 if (error == ENETRESET) { 1271 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1272 (IFF_UP | IFF_RUNNING)) 1273 upgt_init(ifp); 1274 error = 0; 1275 } 1276 1277 splx(s); 1278 1279 return error; 1280 } 1281 1282 static int 1283 upgt_init(struct ifnet *ifp) 1284 { 1285 struct upgt_softc *sc = ifp->if_softc; 1286 struct ieee80211com *ic = &sc->sc_ic; 1287 1288 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1289 1290 if (ifp->if_flags & IFF_RUNNING) 1291 upgt_stop(sc); 1292 1293 ifp->if_flags |= IFF_RUNNING; 1294 ifp->if_flags &= ~IFF_OACTIVE; 1295 1296 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1297 1298 /* setup device rates */ 1299 upgt_setup_rates(sc); 1300 1301 if (ic->ic_opmode == IEEE80211_M_MONITOR) 1302 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1303 else 1304 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1305 1306 return 0; 1307 } 1308 1309 static void 1310 upgt_stop(struct upgt_softc *sc) 1311 { 1312 struct ieee80211com *ic = &sc->sc_ic; 1313 struct ifnet *ifp = &sc->sc_if; 1314 1315 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1316 1317 /* device down */ 1318 ifp->if_timer = 0; 1319 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1320 1321 /* change device back to initial state */ 1322 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1323 } 1324 1325 static int 1326 upgt_media_change(struct ifnet *ifp) 1327 { 1328 struct upgt_softc *sc = ifp->if_softc; 1329 int error; 1330 1331 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1332 1333 if ((error = ieee80211_media_change(ifp)) != ENETRESET) 1334 return error; 1335 1336 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1337 (IFF_UP | IFF_RUNNING)) { 1338 /* give pending USB transfers a chance to finish */ 1339 usbd_delay_ms(sc->sc_udev, 100); 1340 upgt_init(ifp); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static void 1347 upgt_newassoc(struct ieee80211_node *ni, int isnew) 1348 { 1349 1350 ni->ni_txrate = 0; 1351 } 1352 1353 static int 1354 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1355 { 1356 struct upgt_softc *sc = ic->ic_ifp->if_softc; 1357 1358 /* 1359 * XXXSMP: This does not wait for the task, if it is in flight, 1360 * to complete. If this code works at all, it must rely on the 1361 * kernel lock to serialize with the USB task thread. 1362 */ 1363 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1364 callout_stop(&sc->scan_to); 1365 1366 /* do it in a process context */ 1367 sc->sc_state = nstate; 1368 sc->sc_arg = arg; 1369 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER); 1370 1371 return 0; 1372 } 1373 1374 static void 1375 upgt_newstate_task(void *arg) 1376 { 1377 struct upgt_softc *sc = arg; 1378 struct ieee80211com *ic = &sc->sc_ic; 1379 struct ieee80211_node *ni; 1380 unsigned channel; 1381 1382 mutex_enter(&sc->sc_mtx); 1383 1384 switch (sc->sc_state) { 1385 case IEEE80211_S_INIT: 1386 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1387 device_xname(sc->sc_dev)); 1388 1389 /* do not accept any frames if the device is down */ 1390 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1391 upgt_set_led(sc, UPGT_LED_OFF); 1392 break; 1393 case IEEE80211_S_SCAN: 1394 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1395 device_xname(sc->sc_dev)); 1396 1397 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1398 upgt_set_channel(sc, channel); 1399 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1400 callout_schedule(&sc->scan_to, hz / 5); 1401 break; 1402 case IEEE80211_S_AUTH: 1403 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1404 device_xname(sc->sc_dev)); 1405 1406 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1407 upgt_set_channel(sc, channel); 1408 break; 1409 case IEEE80211_S_ASSOC: 1410 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1411 device_xname(sc->sc_dev)); 1412 1413 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1414 upgt_set_channel(sc, channel); 1415 break; 1416 case IEEE80211_S_RUN: 1417 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1418 device_xname(sc->sc_dev)); 1419 1420 channel = ieee80211_chan2ieee(ic, ic->ic_curchan); 1421 upgt_set_channel(sc, channel); 1422 1423 ni = ic->ic_bss; 1424 1425 /* 1426 * TX rate control is done by the firmware. 1427 * Report the maximum rate which is available therefore. 1428 */ 1429 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1430 1431 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1432 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1433 upgt_set_led(sc, UPGT_LED_ON); 1434 break; 1435 } 1436 1437 mutex_exit(&sc->sc_mtx); 1438 1439 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1440 } 1441 1442 static void 1443 upgt_next_scan(void *arg) 1444 { 1445 struct upgt_softc *sc = arg; 1446 struct ieee80211com *ic = &sc->sc_ic; 1447 1448 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1449 1450 if (ic->ic_state == IEEE80211_S_SCAN) 1451 ieee80211_next_scan(ic); 1452 } 1453 1454 static void 1455 upgt_start(struct ifnet *ifp) 1456 { 1457 struct upgt_softc *sc = ifp->if_softc; 1458 struct ieee80211com *ic = &sc->sc_ic; 1459 struct ether_header *eh; 1460 struct ieee80211_node *ni; 1461 struct mbuf *m; 1462 int i; 1463 1464 /* don't transmit packets if interface is busy or down */ 1465 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1466 return; 1467 1468 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1469 1470 for (i = 0; i < UPGT_TX_COUNT; i++) { 1471 struct upgt_data *data_tx = &sc->tx_data[i]; 1472 1473 if (data_tx->m != NULL) 1474 continue; 1475 1476 IF_POLL(&ic->ic_mgtq, m); 1477 if (m != NULL) { 1478 /* management frame */ 1479 IF_DEQUEUE(&ic->ic_mgtq, m); 1480 1481 ni = M_GETCTX(m, struct ieee80211_node *); 1482 M_CLEARCTX(m); 1483 1484 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 1485 1486 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1487 aprint_error_dev(sc->sc_dev, 1488 "no free prism memory\n"); 1489 m_freem(m); 1490 ifp->if_oerrors++; 1491 break; 1492 } 1493 data_tx->ni = ni; 1494 data_tx->m = m; 1495 sc->tx_queued++; 1496 } else { 1497 /* data frame */ 1498 if (ic->ic_state != IEEE80211_S_RUN) 1499 break; 1500 1501 IFQ_POLL(&ifp->if_snd, m); 1502 if (m == NULL) 1503 break; 1504 1505 IFQ_DEQUEUE(&ifp->if_snd, m); 1506 if (m->m_len < sizeof(struct ether_header) && 1507 !(m = m_pullup(m, sizeof(struct ether_header)))) 1508 continue; 1509 1510 eh = mtod(m, struct ether_header *); 1511 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1512 if (ni == NULL) { 1513 m_freem(m); 1514 continue; 1515 } 1516 1517 bpf_mtap(ifp, m, BPF_D_OUT); 1518 1519 m = ieee80211_encap(ic, m, ni); 1520 if (m == NULL) { 1521 ieee80211_free_node(ni); 1522 continue; 1523 } 1524 1525 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 1526 1527 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1528 aprint_error_dev(sc->sc_dev, 1529 "no free prism memory\n"); 1530 m_freem(m); 1531 ieee80211_free_node(ni); 1532 ifp->if_oerrors++; 1533 break; 1534 } 1535 data_tx->ni = ni; 1536 data_tx->m = m; 1537 sc->tx_queued++; 1538 } 1539 } 1540 1541 if (sc->tx_queued > 0) { 1542 DPRINTF(2, "%s: tx_queued=%d\n", 1543 device_xname(sc->sc_dev), sc->tx_queued); 1544 /* process the TX queue in process context */ 1545 ifp->if_timer = 5; 1546 ifp->if_flags |= IFF_OACTIVE; 1547 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1548 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER); 1549 } 1550 } 1551 1552 static void 1553 upgt_watchdog(struct ifnet *ifp) 1554 { 1555 struct upgt_softc *sc = ifp->if_softc; 1556 struct ieee80211com *ic = &sc->sc_ic; 1557 1558 if (ic->ic_state == IEEE80211_S_INIT) 1559 return; 1560 1561 aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); 1562 1563 /* TODO: what shall we do on TX timeout? */ 1564 1565 ieee80211_watchdog(ic); 1566 } 1567 1568 static void 1569 upgt_tx_task(void *arg) 1570 { 1571 struct upgt_softc *sc = arg; 1572 struct ieee80211com *ic = &sc->sc_ic; 1573 struct ieee80211_frame *wh; 1574 struct ieee80211_key *k; 1575 struct ifnet *ifp = &sc->sc_if; 1576 struct upgt_lmac_mem *mem; 1577 struct upgt_lmac_tx_desc *txdesc; 1578 struct mbuf *m; 1579 uint32_t addr; 1580 int i, len, pad, s; 1581 usbd_status error; 1582 1583 mutex_enter(&sc->sc_mtx); 1584 upgt_set_led(sc, UPGT_LED_BLINK); 1585 mutex_exit(&sc->sc_mtx); 1586 1587 s = splnet(); 1588 1589 for (i = 0; i < UPGT_TX_COUNT; i++) { 1590 struct upgt_data *data_tx = &sc->tx_data[i]; 1591 1592 if (data_tx->m == NULL) 1593 continue; 1594 1595 m = data_tx->m; 1596 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1597 1598 /* 1599 * Software crypto. 1600 */ 1601 wh = mtod(m, struct ieee80211_frame *); 1602 1603 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1604 k = ieee80211_crypto_encap(ic, data_tx->ni, m); 1605 if (k == NULL) { 1606 m_freem(m); 1607 data_tx->m = NULL; 1608 ieee80211_free_node(data_tx->ni); 1609 data_tx->ni = NULL; 1610 ifp->if_oerrors++; 1611 break; 1612 } 1613 1614 /* in case packet header moved, reset pointer */ 1615 wh = mtod(m, struct ieee80211_frame *); 1616 } 1617 1618 /* 1619 * Transmit the URB containing the TX data. 1620 */ 1621 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc)); 1622 1623 mem = (struct upgt_lmac_mem *)data_tx->buf; 1624 mem->addr = htole32(addr); 1625 1626 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1627 1628 /* XXX differ between data and mgmt frames? */ 1629 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1630 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1631 txdesc->header1.len = htole16(m->m_pkthdr.len); 1632 1633 txdesc->header2.reqid = htole32(data_tx->addr); 1634 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1635 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1636 1637 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1638 IEEE80211_FC0_TYPE_MGT) { 1639 /* always send mgmt frames at lowest rate (DS1) */ 1640 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1641 } else { 1642 memcpy(txdesc->rates, sc->sc_cur_rateset, 1643 sizeof(txdesc->rates)); 1644 } 1645 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1646 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1647 1648 if (sc->sc_drvbpf != NULL) { 1649 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1650 1651 tap->wt_flags = 0; 1652 tap->wt_rate = 0; /* TODO: where to get from? */ 1653 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1654 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1655 1656 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, 1657 BPF_D_OUT); 1658 } 1659 1660 /* copy frame below our TX descriptor header */ 1661 m_copydata(m, 0, m->m_pkthdr.len, 1662 data_tx->buf + sizeof(*mem) + sizeof(*txdesc)); 1663 1664 /* calculate frame size */ 1665 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1666 1667 if (len & 3) { 1668 /* we need to align the frame to a 4 byte boundary */ 1669 pad = 4 - (len & 3); 1670 memset(data_tx->buf + len, 0, pad); 1671 len += pad; 1672 } 1673 1674 /* calculate frame checksum */ 1675 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1676 len - sizeof(*mem)); 1677 1678 /* we do not need the mbuf anymore */ 1679 m_freem(m); 1680 data_tx->m = NULL; 1681 1682 ieee80211_free_node(data_tx->ni); 1683 data_tx->ni = NULL; 1684 1685 DPRINTF(2, "%s: TX start data sending\n", 1686 device_xname(sc->sc_dev)); 1687 1688 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len, 1689 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL); 1690 error = usbd_transfer(data_tx->xfer); 1691 if (error != USBD_NORMAL_COMPLETION && 1692 error != USBD_IN_PROGRESS) { 1693 aprint_error_dev(sc->sc_dev, 1694 "could not transmit TX data URB\n"); 1695 ifp->if_oerrors++; 1696 break; 1697 } 1698 1699 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1700 device_xname(sc->sc_dev), len); 1701 } 1702 1703 splx(s); 1704 1705 /* 1706 * If we don't regulary read the device statistics, the RX queue 1707 * will stall. It's strange, but it works, so we keep reading 1708 * the statistics here. *shrug* 1709 */ 1710 mutex_enter(&sc->sc_mtx); 1711 upgt_get_stats(sc); 1712 mutex_exit(&sc->sc_mtx); 1713 } 1714 1715 static void 1716 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1717 { 1718 struct ifnet *ifp = &sc->sc_if; 1719 struct upgt_lmac_tx_done_desc *desc; 1720 int i, s; 1721 1722 s = splnet(); 1723 1724 desc = (struct upgt_lmac_tx_done_desc *)data; 1725 1726 for (i = 0; i < UPGT_TX_COUNT; i++) { 1727 struct upgt_data *data_tx = &sc->tx_data[i]; 1728 1729 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1730 upgt_mem_free(sc, data_tx->addr); 1731 data_tx->addr = 0; 1732 1733 sc->tx_queued--; 1734 ifp->if_opackets++; 1735 1736 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev)); 1737 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1738 le32toh(desc->header2.reqid), 1739 le16toh(desc->status), 1740 le16toh(desc->rssi)); 1741 DPRINTF(2, "seq=%d\n", le16toh(desc->seq)); 1742 break; 1743 } 1744 } 1745 1746 if (sc->tx_queued == 0) { 1747 /* TX queued was processed, continue */ 1748 ifp->if_timer = 0; 1749 ifp->if_flags &= ~IFF_OACTIVE; 1750 upgt_start(ifp); 1751 } 1752 1753 splx(s); 1754 } 1755 1756 static void 1757 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status) 1758 { 1759 struct upgt_data *data_rx = priv; 1760 struct upgt_softc *sc = data_rx->sc; 1761 int len; 1762 struct upgt_lmac_header *header; 1763 struct upgt_lmac_eeprom *eeprom; 1764 uint8_t h1_type; 1765 uint16_t h2_type; 1766 1767 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__); 1768 1769 if (status != USBD_NORMAL_COMPLETION) { 1770 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1771 return; 1772 if (status == USBD_STALLED) 1773 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1774 goto skip; 1775 } 1776 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1777 1778 /* 1779 * Check what type of frame came in. 1780 */ 1781 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1782 1783 h1_type = header->header1.type; 1784 h2_type = le16toh(header->header2.type); 1785 1786 if (h1_type == UPGT_H1_TYPE_CTRL && 1787 h2_type == UPGT_H2_TYPE_EEPROM) { 1788 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1789 uint16_t eeprom_offset = le16toh(eeprom->offset); 1790 uint16_t eeprom_len = le16toh(eeprom->len); 1791 1792 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1793 device_xname(sc->sc_dev), eeprom_offset, eeprom_len); 1794 1795 memcpy(sc->sc_eeprom + eeprom_offset, 1796 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1797 eeprom_len); 1798 1799 /* EEPROM data has arrived in time, wakeup tsleep() */ 1800 wakeup(sc); 1801 } else 1802 if (h1_type == UPGT_H1_TYPE_CTRL && 1803 h2_type == UPGT_H2_TYPE_TX_DONE) { 1804 DPRINTF(2, "%s: received 802.11 TX done\n", 1805 device_xname(sc->sc_dev)); 1806 1807 upgt_tx_done(sc, data_rx->buf + 4); 1808 } else 1809 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1810 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1811 DPRINTF(3, "%s: received 802.11 RX data\n", 1812 device_xname(sc->sc_dev)); 1813 1814 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len)); 1815 } else 1816 if (h1_type == UPGT_H1_TYPE_CTRL && 1817 h2_type == UPGT_H2_TYPE_STATS) { 1818 DPRINTF(2, "%s: received statistic data\n", 1819 device_xname(sc->sc_dev)); 1820 1821 /* TODO: what could we do with the statistic data? */ 1822 } else { 1823 /* ignore unknown frame types */ 1824 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1825 device_xname(sc->sc_dev), header->header1.type); 1826 } 1827 1828 skip: /* setup new transfer */ 1829 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES, 1830 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1831 (void)usbd_transfer(xfer); 1832 } 1833 1834 static void 1835 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1836 { 1837 struct ieee80211com *ic = &sc->sc_ic; 1838 struct ifnet *ifp = &sc->sc_if; 1839 struct upgt_lmac_rx_desc *rxdesc; 1840 struct ieee80211_frame *wh; 1841 struct ieee80211_node *ni; 1842 struct mbuf *m; 1843 int s; 1844 1845 /* access RX packet descriptor */ 1846 rxdesc = (struct upgt_lmac_rx_desc *)data; 1847 1848 /* create mbuf which is suitable for strict alignment archs */ 1849 m = m_devget(rxdesc->data, pkglen, 0, ifp); 1850 if (m == NULL) { 1851 DPRINTF(1, "%s: could not create RX mbuf\n", 1852 device_xname(sc->sc_dev)); 1853 ifp->if_ierrors++; 1854 return; 1855 } 1856 1857 s = splnet(); 1858 1859 if (sc->sc_drvbpf != NULL) { 1860 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1861 1862 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1863 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1864 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1865 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1866 tap->wr_antsignal = rxdesc->rssi; 1867 1868 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 1869 } 1870 1871 /* trim FCS */ 1872 m_adj(m, -IEEE80211_CRC_LEN); 1873 1874 wh = mtod(m, struct ieee80211_frame *); 1875 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1876 1877 /* push the frame up to the 802.11 stack */ 1878 ieee80211_input(ic, m, ni, rxdesc->rssi, 0); 1879 1880 /* node is no longer needed */ 1881 ieee80211_free_node(ni); 1882 1883 splx(s); 1884 1885 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev)); 1886 } 1887 1888 static void 1889 upgt_setup_rates(struct upgt_softc *sc) 1890 { 1891 struct ieee80211com *ic = &sc->sc_ic; 1892 1893 /* 1894 * 0x01 = OFMD6 0x10 = DS1 1895 * 0x04 = OFDM9 0x11 = DS2 1896 * 0x06 = OFDM12 0x12 = DS5 1897 * 0x07 = OFDM18 0x13 = DS11 1898 * 0x08 = OFDM24 1899 * 0x09 = OFDM36 1900 * 0x0a = OFDM48 1901 * 0x0b = OFDM54 1902 */ 1903 const uint8_t rateset_auto_11b[] = 1904 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1905 const uint8_t rateset_auto_11g[] = 1906 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1907 const uint8_t rateset_fix_11bg[] = 1908 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1909 0x08, 0x09, 0x0a, 0x0b }; 1910 1911 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1912 /* 1913 * Automatic rate control is done by the device. 1914 * We just pass the rateset from which the device 1915 * will pickup a rate. 1916 */ 1917 if (ic->ic_curmode == IEEE80211_MODE_11B) 1918 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 1919 sizeof(sc->sc_cur_rateset)); 1920 if (ic->ic_curmode == IEEE80211_MODE_11G || 1921 ic->ic_curmode == IEEE80211_MODE_AUTO) 1922 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 1923 sizeof(sc->sc_cur_rateset)); 1924 } else { 1925 /* set a fixed rate */ 1926 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1927 sizeof(sc->sc_cur_rateset)); 1928 } 1929 } 1930 1931 static uint8_t 1932 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1933 { 1934 struct ieee80211com *ic = &sc->sc_ic; 1935 1936 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1937 if (rate < 0 || rate > 3) 1938 /* invalid rate */ 1939 return 0; 1940 1941 switch (rate) { 1942 case 0: 1943 return 2; 1944 case 1: 1945 return 4; 1946 case 2: 1947 return 11; 1948 case 3: 1949 return 22; 1950 default: 1951 return 0; 1952 } 1953 } 1954 1955 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1956 if (rate < 0 || rate > 11) 1957 /* invalid rate */ 1958 return 0; 1959 1960 switch (rate) { 1961 case 0: 1962 return 2; 1963 case 1: 1964 return 4; 1965 case 2: 1966 return 11; 1967 case 3: 1968 return 22; 1969 case 4: 1970 return 12; 1971 case 5: 1972 return 18; 1973 case 6: 1974 return 24; 1975 case 7: 1976 return 36; 1977 case 8: 1978 return 48; 1979 case 9: 1980 return 72; 1981 case 10: 1982 return 96; 1983 case 11: 1984 return 108; 1985 default: 1986 return 0; 1987 } 1988 } 1989 1990 return 0; 1991 } 1992 1993 static int 1994 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1995 { 1996 struct ieee80211com *ic = &sc->sc_ic; 1997 struct ieee80211_node *ni = ic->ic_bss; 1998 struct upgt_data *data_cmd = &sc->cmd_data; 1999 struct upgt_lmac_mem *mem; 2000 struct upgt_lmac_filter *filter; 2001 int len; 2002 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 2003 2004 /* 2005 * Transmit the URB containing the CMD data. 2006 */ 2007 len = sizeof(*mem) + sizeof(*filter); 2008 2009 memset(data_cmd->buf, 0, len); 2010 2011 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2012 mem->addr = htole32(sc->sc_memaddr_frame_start + 2013 UPGT_MEMSIZE_FRAME_HEAD); 2014 2015 filter = (struct upgt_lmac_filter *)(mem + 1); 2016 2017 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2018 filter->header1.type = UPGT_H1_TYPE_CTRL; 2019 filter->header1.len = htole16( 2020 sizeof(struct upgt_lmac_filter) - 2021 sizeof(struct upgt_lmac_header)); 2022 2023 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2024 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 2025 filter->header2.flags = 0; 2026 2027 switch (state) { 2028 case IEEE80211_S_INIT: 2029 DPRINTF(1, "%s: set MAC filter to INIT\n", 2030 device_xname(sc->sc_dev)); 2031 2032 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 2033 break; 2034 case IEEE80211_S_SCAN: 2035 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 2036 device_xname(sc->sc_dev), ether_sprintf(broadcast)); 2037 2038 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 2039 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 2040 IEEE80211_ADDR_COPY(filter->src, broadcast); 2041 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 2042 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 2043 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 2044 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 2045 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 2046 break; 2047 case IEEE80211_S_RUN: 2048 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 2049 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid)); 2050 2051 filter->type = htole16(UPGT_FILTER_TYPE_STA); 2052 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 2053 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 2054 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 2055 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 2056 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 2057 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 2058 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 2059 break; 2060 default: 2061 aprint_error_dev(sc->sc_dev, 2062 "MAC filter does not know that state\n"); 2063 break; 2064 } 2065 2066 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter)); 2067 2068 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2069 aprint_error_dev(sc->sc_dev, 2070 "could not transmit macfilter CMD data URB\n"); 2071 return EIO; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static int 2078 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 2079 { 2080 struct upgt_data *data_cmd = &sc->cmd_data; 2081 struct upgt_lmac_mem *mem; 2082 struct upgt_lmac_channel *chan; 2083 int len; 2084 2085 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__, 2086 channel); 2087 2088 /* 2089 * Transmit the URB containing the CMD data. 2090 */ 2091 len = sizeof(*mem) + sizeof(*chan); 2092 2093 memset(data_cmd->buf, 0, len); 2094 2095 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2096 mem->addr = htole32(sc->sc_memaddr_frame_start + 2097 UPGT_MEMSIZE_FRAME_HEAD); 2098 2099 chan = (struct upgt_lmac_channel *)(mem + 1); 2100 2101 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2102 chan->header1.type = UPGT_H1_TYPE_CTRL; 2103 chan->header1.len = htole16( 2104 sizeof(struct upgt_lmac_channel) - 2105 sizeof(struct upgt_lmac_header)); 2106 2107 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2108 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 2109 chan->header2.flags = 0; 2110 2111 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 2112 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 2113 chan->freq6 = sc->sc_eeprom_freq6[channel]; 2114 chan->settings = sc->sc_eeprom_freq6_settings; 2115 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 2116 2117 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 2118 sizeof(chan->freq3_1)); 2119 2120 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 2121 sizeof(sc->sc_eeprom_freq4[channel])); 2122 2123 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 2124 sizeof(chan->freq3_2)); 2125 2126 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan)); 2127 2128 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2129 aprint_error_dev(sc->sc_dev, 2130 "could not transmit channel CMD data URB\n"); 2131 return EIO; 2132 } 2133 2134 return 0; 2135 } 2136 2137 static void 2138 upgt_set_led(struct upgt_softc *sc, int action) 2139 { 2140 struct ieee80211com *ic = &sc->sc_ic; 2141 struct upgt_data *data_cmd = &sc->cmd_data; 2142 struct upgt_lmac_mem *mem; 2143 struct upgt_lmac_led *led; 2144 struct timeval t; 2145 int len; 2146 2147 /* 2148 * Transmit the URB containing the CMD data. 2149 */ 2150 len = sizeof(*mem) + sizeof(*led); 2151 2152 memset(data_cmd->buf, 0, len); 2153 2154 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2155 mem->addr = htole32(sc->sc_memaddr_frame_start + 2156 UPGT_MEMSIZE_FRAME_HEAD); 2157 2158 led = (struct upgt_lmac_led *)(mem + 1); 2159 2160 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2161 led->header1.type = UPGT_H1_TYPE_CTRL; 2162 led->header1.len = htole16( 2163 sizeof(struct upgt_lmac_led) - 2164 sizeof(struct upgt_lmac_header)); 2165 2166 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2167 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2168 led->header2.flags = 0; 2169 2170 switch (action) { 2171 case UPGT_LED_OFF: 2172 led->mode = htole16(UPGT_LED_MODE_SET); 2173 led->action_fix = 0; 2174 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2175 led->action_tmp_dur = 0; 2176 break; 2177 case UPGT_LED_ON: 2178 led->mode = htole16(UPGT_LED_MODE_SET); 2179 led->action_fix = 0; 2180 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2181 led->action_tmp_dur = 0; 2182 break; 2183 case UPGT_LED_BLINK: 2184 if (ic->ic_state != IEEE80211_S_RUN) 2185 return; 2186 if (sc->sc_led_blink) 2187 /* previous blink was not finished */ 2188 return; 2189 led->mode = htole16(UPGT_LED_MODE_SET); 2190 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2191 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2192 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2193 /* lock blink */ 2194 sc->sc_led_blink = 1; 2195 t.tv_sec = 0; 2196 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L; 2197 callout_schedule(&sc->led_to, tvtohz(&t)); 2198 break; 2199 default: 2200 return; 2201 } 2202 2203 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led)); 2204 2205 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2206 aprint_error_dev(sc->sc_dev, 2207 "could not transmit led CMD URB\n"); 2208 } 2209 } 2210 2211 static void 2212 upgt_set_led_blink(void *arg) 2213 { 2214 struct upgt_softc *sc = arg; 2215 2216 /* blink finished, we are ready for a next one */ 2217 sc->sc_led_blink = 0; 2218 callout_stop(&sc->led_to); 2219 } 2220 2221 static int 2222 upgt_get_stats(struct upgt_softc *sc) 2223 { 2224 struct upgt_data *data_cmd = &sc->cmd_data; 2225 struct upgt_lmac_mem *mem; 2226 struct upgt_lmac_stats *stats; 2227 int len; 2228 2229 /* 2230 * Transmit the URB containing the CMD data. 2231 */ 2232 len = sizeof(*mem) + sizeof(*stats); 2233 2234 memset(data_cmd->buf, 0, len); 2235 2236 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2237 mem->addr = htole32(sc->sc_memaddr_frame_start + 2238 UPGT_MEMSIZE_FRAME_HEAD); 2239 2240 stats = (struct upgt_lmac_stats *)(mem + 1); 2241 2242 stats->header1.flags = 0; 2243 stats->header1.type = UPGT_H1_TYPE_CTRL; 2244 stats->header1.len = htole16( 2245 sizeof(struct upgt_lmac_stats) - 2246 sizeof(struct upgt_lmac_header)); 2247 2248 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2249 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2250 stats->header2.flags = 0; 2251 2252 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats)); 2253 2254 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2255 aprint_error_dev(sc->sc_dev, 2256 "could not transmit statistics CMD data URB\n"); 2257 return EIO; 2258 } 2259 2260 return 0; 2261 2262 } 2263 2264 static int 2265 upgt_alloc_tx(struct upgt_softc *sc) 2266 { 2267 int i; 2268 2269 sc->tx_queued = 0; 2270 2271 for (i = 0; i < UPGT_TX_COUNT; i++) { 2272 struct upgt_data *data_tx = &sc->tx_data[i]; 2273 2274 data_tx->sc = sc; 2275 2276 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 2277 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer); 2278 if (err) { 2279 aprint_error_dev(sc->sc_dev, 2280 "could not allocate TX xfer\n"); 2281 return err; 2282 } 2283 2284 data_tx->buf = usbd_get_buffer(data_tx->xfer); 2285 } 2286 2287 return 0; 2288 } 2289 2290 static int 2291 upgt_alloc_rx(struct upgt_softc *sc) 2292 { 2293 struct upgt_data *data_rx = &sc->rx_data; 2294 2295 data_rx->sc = sc; 2296 2297 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 2298 0, 0, &data_rx->xfer); 2299 if (err) { 2300 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n"); 2301 return err; 2302 } 2303 2304 data_rx->buf = usbd_get_buffer(data_rx->xfer); 2305 2306 return 0; 2307 } 2308 2309 static int 2310 upgt_alloc_cmd(struct upgt_softc *sc) 2311 { 2312 struct upgt_data *data_cmd = &sc->cmd_data; 2313 2314 data_cmd->sc = sc; 2315 2316 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 2317 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer); 2318 if (err) { 2319 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n"); 2320 return err; 2321 } 2322 2323 data_cmd->buf = usbd_get_buffer(data_cmd->xfer); 2324 2325 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 2326 2327 return 0; 2328 } 2329 2330 static void 2331 upgt_free_tx(struct upgt_softc *sc) 2332 { 2333 int i; 2334 2335 for (i = 0; i < UPGT_TX_COUNT; i++) { 2336 struct upgt_data *data_tx = &sc->tx_data[i]; 2337 2338 if (data_tx->xfer != NULL) { 2339 usbd_destroy_xfer(data_tx->xfer); 2340 data_tx->xfer = NULL; 2341 } 2342 2343 data_tx->ni = NULL; 2344 } 2345 } 2346 2347 static void 2348 upgt_free_rx(struct upgt_softc *sc) 2349 { 2350 struct upgt_data *data_rx = &sc->rx_data; 2351 2352 if (data_rx->xfer != NULL) { 2353 usbd_destroy_xfer(data_rx->xfer); 2354 data_rx->xfer = NULL; 2355 } 2356 2357 data_rx->ni = NULL; 2358 } 2359 2360 static void 2361 upgt_free_cmd(struct upgt_softc *sc) 2362 { 2363 struct upgt_data *data_cmd = &sc->cmd_data; 2364 2365 if (data_cmd->xfer != NULL) { 2366 usbd_destroy_xfer(data_cmd->xfer); 2367 data_cmd->xfer = NULL; 2368 } 2369 2370 mutex_destroy(&sc->sc_mtx); 2371 } 2372 2373 static int 2374 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2375 struct usbd_pipe *pipeh, uint32_t *size, int flags) 2376 { 2377 usbd_status status; 2378 2379 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT, 2380 data->buf, size); 2381 if (status != USBD_NORMAL_COMPLETION) { 2382 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__, 2383 usbd_errstr(status)); 2384 return EIO; 2385 } 2386 2387 return 0; 2388 } 2389 2390 #if 0 2391 static void 2392 upgt_hexdump(void *buf, int len) 2393 { 2394 int i; 2395 2396 for (i = 0; i < len; i++) { 2397 if (i % 16 == 0) 2398 printf("%s%5i:", i ? "\n" : "", i); 2399 if (i % 4 == 0) 2400 printf(" "); 2401 printf("%02x", (int)*((uint8_t *)buf + i)); 2402 } 2403 printf("\n"); 2404 } 2405 #endif 2406 2407 static uint32_t 2408 upgt_crc32_le(const void *buf, size_t size) 2409 { 2410 uint32_t crc; 2411 2412 crc = ether_crc32_le(buf, size); 2413 2414 /* apply final XOR value as common for CRC-32 */ 2415 crc = htole32(crc ^ 0xffffffffU); 2416 2417 return crc; 2418 } 2419 2420 /* 2421 * The firmware awaits a checksum for each frame we send to it. 2422 * The algorithm used is uncommon but somehow similar to CRC32. 2423 */ 2424 static uint32_t 2425 upgt_chksum_le(const uint32_t *buf, size_t size) 2426 { 2427 int i; 2428 uint32_t crc = 0; 2429 2430 for (i = 0; i < size; i += sizeof(uint32_t)) { 2431 crc = htole32(crc ^ *buf++); 2432 crc = htole32((crc >> 5) ^ (crc << 3)); 2433 } 2434 2435 return crc; 2436 } 2437