xref: /netbsd-src/sys/dev/usb/if_upgt.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_upgt.c,v 1.10 2013/11/08 03:12:17 christos Exp $	*/
2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.10 2013/11/08 03:12:17 christos Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/intr.h>
37 
38 #include <net/bpf.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_ether.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 
46 #include <net80211/ieee80211_var.h>
47 #include <net80211/ieee80211_radiotap.h>
48 
49 #include <dev/firmload.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 #include <dev/usb/usbdivar.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_upgtvar.h>
58 
59 /*
60  * Driver for the USB PrismGT devices.
61  *
62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
64  *
65  * TODO's:
66  * - Fix MONITOR mode (MAC filter).
67  * - Add HOSTAP mode.
68  * - Add IBSS mode.
69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70  *
71  * Parts of this driver has been influenced by reading the p54u driver
72  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
73  * Sebastien Bourdeauducq <lekernel@prism54.org>.
74  */
75 
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82 
83 /*
84  * Prototypes.
85  */
86 static int	upgt_match(device_t, cfdata_t, void *);
87 static void	upgt_attach(device_t, device_t, void *);
88 static int	upgt_detach(device_t, int);
89 static int	upgt_activate(device_t, devact_t);
90 
91 static void	upgt_attach_hook(device_t);
92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int	upgt_device_init(struct upgt_softc *);
94 static int	upgt_mem_init(struct upgt_softc *);
95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int	upgt_fw_alloc(struct upgt_softc *);
98 static void	upgt_fw_free(struct upgt_softc *);
99 static int	upgt_fw_verify(struct upgt_softc *);
100 static int	upgt_fw_load(struct upgt_softc *);
101 static int	upgt_fw_copy(char *, char *, int);
102 static int	upgt_eeprom_read(struct upgt_softc *);
103 static int	upgt_eeprom_parse(struct upgt_softc *);
104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108 
109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
110 static int	upgt_init(struct ifnet *);
111 static void	upgt_stop(struct upgt_softc *);
112 static int	upgt_media_change(struct ifnet *);
113 static void	upgt_newassoc(struct ieee80211_node *, int);
114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 		    int);
116 static void	upgt_newstate_task(void *);
117 static void	upgt_next_scan(void *);
118 static void	upgt_start(struct ifnet *);
119 static void	upgt_watchdog(struct ifnet *);
120 static void	upgt_tx_task(void *);
121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void	upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void	upgt_setup_rates(struct upgt_softc *);
125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t state);
127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
128 static void	upgt_set_led(struct upgt_softc *, int);
129 static void	upgt_set_led_blink(void *);
130 static int	upgt_get_stats(struct upgt_softc *);
131 
132 static int	upgt_alloc_tx(struct upgt_softc *);
133 static int	upgt_alloc_rx(struct upgt_softc *);
134 static int	upgt_alloc_cmd(struct upgt_softc *);
135 static void	upgt_free_tx(struct upgt_softc *);
136 static void	upgt_free_rx(struct upgt_softc *);
137 static void	upgt_free_cmd(struct upgt_softc *);
138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 		    usbd_pipe_handle, uint32_t *, int);
140 
141 #if 0
142 static void	upgt_hexdump(void *, int);
143 #endif
144 static uint32_t	upgt_crc32_le(const void *, size_t);
145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
146 
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
149 
150 static const struct usb_devno upgt_devs_1[] = {
151 	/* version 1 devices */
152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
153 };
154 
155 static const struct usb_devno upgt_devs_2[] = {
156 	/* version 2 devices */
157 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
158 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
159 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
160 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
162 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
163 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
164 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
166 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
167 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
168 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
170 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
171 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
172 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
173 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
174 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
175 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
176 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
177 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
178 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
179 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
181 };
182 
183 static int
184 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
185     size_t *sizep)
186 {
187 	firmware_handle_t fh;
188 	int error;
189 
190 	if ((error = firmware_open(dname, iname, &fh)) != 0)
191 		return error;
192 	*sizep = firmware_get_size(fh);
193 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
194 		firmware_close(fh);
195 		return ENOMEM;
196 	}
197 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
198 		firmware_free(*ucodep, *sizep);
199 	firmware_close(fh);
200 
201 	return error;
202 }
203 
204 static int
205 upgt_match(device_t parent, cfdata_t match, void *aux)
206 {
207 	struct usb_attach_arg *uaa = aux;
208 
209 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
210 		return UMATCH_VENDOR_PRODUCT;
211 
212 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
213 		return UMATCH_VENDOR_PRODUCT;
214 
215 	return UMATCH_NONE;
216 }
217 
218 static void
219 upgt_attach(device_t parent, device_t self, void *aux)
220 {
221 	struct upgt_softc *sc = device_private(self);
222 	struct usb_attach_arg *uaa = aux;
223 	usb_interface_descriptor_t *id;
224 	usb_endpoint_descriptor_t *ed;
225 	usbd_status error;
226 	char *devinfop;
227 	int i;
228 
229 	aprint_naive("\n");
230 	aprint_normal("\n");
231 
232 	/*
233 	 * Attach USB device.
234 	 */
235 	sc->sc_dev = self;
236 	sc->sc_udev = uaa->device;
237 
238 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
239 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
240 	usbd_devinfo_free(devinfop);
241 
242 	/* check device type */
243 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
244 		return;
245 
246 	/* set configuration number */
247 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
248 	if (error != 0) {
249 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
250 		    ", err=%s\n", usbd_errstr(error));
251 		return;
252 	}
253 
254 	/* get the first interface handle */
255 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
256 	    &sc->sc_iface);
257 	if (error != 0) {
258 		aprint_error_dev(sc->sc_dev,
259 		    "could not get interface handle\n");
260 		return;
261 	}
262 
263 	/* find endpoints */
264 	id = usbd_get_interface_descriptor(sc->sc_iface);
265 	sc->sc_rx_no = sc->sc_tx_no = -1;
266 	for (i = 0; i < id->bNumEndpoints; i++) {
267 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
268 		if (ed == NULL) {
269 			aprint_error_dev(sc->sc_dev,
270 			    "no endpoint descriptor for iface %d\n", i);
271 			return;
272 		}
273 
274 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
275 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
276 			sc->sc_tx_no = ed->bEndpointAddress;
277 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
278 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
279 			sc->sc_rx_no = ed->bEndpointAddress;
280 
281 		/*
282 		 * 0x01 TX pipe
283 		 * 0x81 RX pipe
284 		 *
285 		 * Deprecated scheme (not used with fw version >2.5.6.x):
286 		 * 0x02 TX MGMT pipe
287 		 * 0x82 TX MGMT pipe
288 		 */
289 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
290 			break;
291 	}
292 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
293 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
294 		return;
295 	}
296 
297 	/* setup tasks and timeouts */
298 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
299 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
300 	callout_init(&sc->scan_to, 0);
301 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
302 	callout_init(&sc->led_to, 0);
303 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
304 
305 	/*
306 	 * Open TX and RX USB bulk pipes.
307 	 */
308 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
309 	    &sc->sc_tx_pipeh);
310 	if (error != 0) {
311 		aprint_error_dev(sc->sc_dev,
312 		    "could not open TX pipe: %s\n", usbd_errstr(error));
313 		goto fail;
314 	}
315 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
316 	    &sc->sc_rx_pipeh);
317 	if (error != 0) {
318 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
319 		    usbd_errstr(error));
320 		goto fail;
321 	}
322 
323 	/*
324 	 * Allocate TX, RX, and CMD xfers.
325 	 */
326 	if (upgt_alloc_tx(sc) != 0)
327 		goto fail;
328 	if (upgt_alloc_rx(sc) != 0)
329 		goto fail;
330 	if (upgt_alloc_cmd(sc) != 0)
331 		goto fail;
332 
333 	/*
334 	 * We need the firmware loaded from file system to complete the attach.
335 	 */
336 	config_mountroot(self, upgt_attach_hook);
337 
338 	return;
339 fail:
340 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
341 }
342 
343 static void
344 upgt_attach_hook(device_t arg)
345 {
346 	struct upgt_softc *sc = device_private(arg);
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_if;
349 	usbd_status error;
350 	int i;
351 
352 	/*
353 	 * Load firmware file into memory.
354 	 */
355 	if (upgt_fw_alloc(sc) != 0)
356 		goto fail;
357 
358 	/*
359 	 * Initialize the device.
360 	 */
361 	if (upgt_device_init(sc) != 0)
362 		goto fail;
363 
364 	/*
365 	 * Verify the firmware.
366 	 */
367 	if (upgt_fw_verify(sc) != 0)
368 		goto fail;
369 
370 	/*
371 	 * Calculate device memory space.
372 	 */
373 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
374 		aprint_error_dev(sc->sc_dev,
375 		    "could not find memory space addresses on FW\n");
376 		goto fail;
377 	}
378 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
379 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
380 
381 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
382 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
383 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
384 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
385 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
386 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
387 
388 	upgt_mem_init(sc);
389 
390 	/*
391 	 * Load the firmware.
392 	 */
393 	if (upgt_fw_load(sc) != 0)
394 		goto fail;
395 
396 	/*
397 	 * Startup the RX pipe.
398 	 */
399 	struct upgt_data *data_rx = &sc->rx_data;
400 
401 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
402 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
403 	error = usbd_transfer(data_rx->xfer);
404 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
405 		aprint_error_dev(sc->sc_dev,
406 		    "could not queue RX transfer\n");
407 		goto fail;
408 	}
409 	usbd_delay_ms(sc->sc_udev, 100);
410 
411 	/*
412 	 * Read the whole EEPROM content and parse it.
413 	 */
414 	if (upgt_eeprom_read(sc) != 0)
415 		goto fail;
416 	if (upgt_eeprom_parse(sc) != 0)
417 		goto fail;
418 
419 	/*
420 	 * Setup the 802.11 device.
421 	 */
422 	ic->ic_ifp = ifp;
423 	ic->ic_phytype = IEEE80211_T_OFDM;
424 	ic->ic_opmode = IEEE80211_M_STA;
425 	ic->ic_state = IEEE80211_S_INIT;
426 	ic->ic_caps =
427 	    IEEE80211_C_MONITOR |
428 	    IEEE80211_C_SHPREAMBLE |
429 	    IEEE80211_C_SHSLOT;
430 
431 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
432 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
433 
434 	for (i = 1; i <= 14; i++) {
435 		ic->ic_channels[i].ic_freq =
436 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 		ic->ic_channels[i].ic_flags =
438 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 	}
441 
442 	ifp->if_softc = sc;
443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 	ifp->if_init = upgt_init;
445 	ifp->if_ioctl = upgt_ioctl;
446 	ifp->if_start = upgt_start;
447 	ifp->if_watchdog = upgt_watchdog;
448 	IFQ_SET_READY(&ifp->if_snd);
449 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
450 
451 	if_attach(ifp);
452 	ieee80211_ifattach(ic);
453 	ic->ic_newassoc = upgt_newassoc;
454 
455 	sc->sc_newstate = ic->ic_newstate;
456 	ic->ic_newstate = upgt_newstate;
457 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
458 
459 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
460 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
461 	    &sc->sc_drvbpf);
462 
463 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
464 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
465 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
466 
467 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
468 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
469 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
470 
471 	aprint_normal_dev(sc->sc_dev, "address %s\n",
472 	    ether_sprintf(ic->ic_myaddr));
473 
474 	ieee80211_announce(ic);
475 
476 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
477 
478 	/* device attached */
479 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
480 
481 	return;
482 fail:
483 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
484 }
485 
486 static int
487 upgt_detach(device_t self, int flags)
488 {
489 	struct upgt_softc *sc = device_private(self);
490 	struct ifnet *ifp = &sc->sc_if;
491 	struct ieee80211com *ic = &sc->sc_ic;
492 	int s;
493 
494 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
495 
496 	s = splnet();
497 
498 	if (ifp->if_flags & IFF_RUNNING)
499 		upgt_stop(sc);
500 
501 	/* remove tasks and timeouts */
502 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
503 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
504 	callout_destroy(&sc->scan_to);
505 	callout_destroy(&sc->led_to);
506 
507 	/* abort and close TX / RX pipes */
508 	if (sc->sc_tx_pipeh != NULL) {
509 		usbd_abort_pipe(sc->sc_tx_pipeh);
510 		usbd_close_pipe(sc->sc_tx_pipeh);
511 	}
512 	if (sc->sc_rx_pipeh != NULL) {
513 		usbd_abort_pipe(sc->sc_rx_pipeh);
514 		usbd_close_pipe(sc->sc_rx_pipeh);
515 	}
516 
517 	/* free xfers */
518 	upgt_free_tx(sc);
519 	upgt_free_rx(sc);
520 	upgt_free_cmd(sc);
521 
522 	/* free firmware */
523 	upgt_fw_free(sc);
524 
525 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
526 		/* detach interface */
527 		bpf_detach(ifp);
528 		ieee80211_ifdetach(ic);
529 		if_detach(ifp);
530 	}
531 
532 	splx(s);
533 
534 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
535 
536 	return 0;
537 }
538 
539 static int
540 upgt_activate(device_t self, devact_t act)
541 {
542 	struct upgt_softc *sc = device_private(self);
543 
544 	switch (act) {
545 	case DVACT_DEACTIVATE:
546 		if_deactivate(&sc->sc_if);
547 		return 0;
548 	default:
549 		return EOPNOTSUPP;
550 	}
551 }
552 
553 static int
554 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
555 {
556 
557 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
558 		sc->sc_device_type = 1;
559 		/* XXX */
560 		aprint_error_dev(sc->sc_dev,
561 		    "version 1 devices not supported yet\n");
562 		return 1;
563 	} else
564 		sc->sc_device_type = 2;
565 
566 	return 0;
567 }
568 
569 static int
570 upgt_device_init(struct upgt_softc *sc)
571 {
572 	struct upgt_data *data_cmd = &sc->cmd_data;
573 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
574 	int len;
575 
576 	len = sizeof(init_cmd);
577 	memcpy(data_cmd->buf, init_cmd, len);
578 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
579 		aprint_error_dev(sc->sc_dev,
580 		    "could not send device init string\n");
581 		return EIO;
582 	}
583 	usbd_delay_ms(sc->sc_udev, 100);
584 
585 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
586 
587 	return 0;
588 }
589 
590 static int
591 upgt_mem_init(struct upgt_softc *sc)
592 {
593 	int i;
594 
595 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
596 		sc->sc_memory.page[i].used = 0;
597 
598 		if (i == 0) {
599 			/*
600 			 * The first memory page is always reserved for
601 			 * command data.
602 			 */
603 			sc->sc_memory.page[i].addr =
604 			    sc->sc_memaddr_frame_start + MCLBYTES;
605 		} else {
606 			sc->sc_memory.page[i].addr =
607 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
608 		}
609 
610 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
611 		    sc->sc_memaddr_frame_end)
612 			break;
613 
614 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
615 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
616 	}
617 
618 	sc->sc_memory.pages = i;
619 
620 	DPRINTF(2, "%s: memory pages=%d\n",
621 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
622 
623 	return 0;
624 }
625 
626 static uint32_t
627 upgt_mem_alloc(struct upgt_softc *sc)
628 {
629 	int i;
630 
631 	for (i = 0; i < sc->sc_memory.pages; i++) {
632 		if (sc->sc_memory.page[i].used == 0) {
633 			sc->sc_memory.page[i].used = 1;
634 			return sc->sc_memory.page[i].addr;
635 		}
636 	}
637 
638 	return 0;
639 }
640 
641 static void
642 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
643 {
644 	int i;
645 
646 	for (i = 0; i < sc->sc_memory.pages; i++) {
647 		if (sc->sc_memory.page[i].addr == addr) {
648 			sc->sc_memory.page[i].used = 0;
649 			return;
650 		}
651 	}
652 
653 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
654 	    addr);
655 }
656 
657 
658 static int
659 upgt_fw_alloc(struct upgt_softc *sc)
660 {
661 	const char *name = "upgt-gw3887";
662 	int error;
663 
664 	if (sc->sc_fw == NULL) {
665 		error = firmware_load("upgt", name, &sc->sc_fw,
666 		    &sc->sc_fw_size);
667 		if (error != 0) {
668 			if (error == ENOENT) {
669 				/*
670 				 * The firmware file for upgt(4) is not in
671 				 * the default distribution due to its lisence
672 				 * so explicitly notify it if the firmware file
673 				 * is not found.
674 				 */
675 				aprint_error_dev(sc->sc_dev,
676 				    "firmware file %s is not installed\n",
677 				    name);
678 				aprint_error_dev(sc->sc_dev,
679 				    "(it is not included in the default"
680 				    " distribution)\n");
681 				aprint_error_dev(sc->sc_dev,
682 				    "see upgt(4) man page for details about "
683 				    "firmware installation\n");
684 			} else {
685 				aprint_error_dev(sc->sc_dev,
686 				    "could not read firmware %s\n", name);
687 			}
688 			return EIO;
689 		}
690 	}
691 
692 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
693 	    name);
694 
695 	return 0;
696 }
697 
698 static void
699 upgt_fw_free(struct upgt_softc *sc)
700 {
701 
702 	if (sc->sc_fw != NULL) {
703 		firmware_free(sc->sc_fw, sc->sc_fw_size);
704 		sc->sc_fw = NULL;
705 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
706 	}
707 }
708 
709 static int
710 upgt_fw_verify(struct upgt_softc *sc)
711 {
712 	struct upgt_fw_bra_option *bra_option;
713 	uint32_t bra_option_type, bra_option_len;
714 	uint32_t *uc;
715 	int offset, bra_end = 0;
716 
717 	/*
718 	 * Seek to beginning of Boot Record Area (BRA).
719 	 */
720 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
721 		uc = (uint32_t *)(sc->sc_fw + offset);
722 		if (*uc == 0)
723 			break;
724 	}
725 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
726 		uc = (uint32_t *)(sc->sc_fw + offset);
727 		if (*uc != 0)
728 			break;
729 	}
730 	if (offset == sc->sc_fw_size) {
731 		aprint_error_dev(sc->sc_dev,
732 		    "firmware Boot Record Area not found\n");
733 		return EIO;
734 	}
735 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
736 	    device_xname(sc->sc_dev), offset);
737 
738 	/*
739 	 * Parse Boot Record Area (BRA) options.
740 	 */
741 	while (offset < sc->sc_fw_size && bra_end == 0) {
742 		/* get current BRA option */
743 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
744 		bra_option_type = le32toh(bra_option->type);
745 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
746 
747 		switch (bra_option_type) {
748 		case UPGT_BRA_TYPE_FW:
749 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
750 			    device_xname(sc->sc_dev), bra_option_len);
751 
752 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
753 				aprint_error_dev(sc->sc_dev,
754 				    "wrong UPGT_BRA_TYPE_FW len\n");
755 				return EIO;
756 			}
757 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
758 			    bra_option_len) == 0) {
759 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
760 				break;
761 			}
762 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
763 			    bra_option_len) == 0) {
764 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
765 				break;
766 			}
767 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
768 			    bra_option_len) == 0) {
769 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
770 				break;
771 			}
772 			aprint_error_dev(sc->sc_dev,
773 			    "unsupported firmware type\n");
774 			return EIO;
775 		case UPGT_BRA_TYPE_VERSION:
776 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
777 			    device_xname(sc->sc_dev), bra_option_len);
778 			break;
779 		case UPGT_BRA_TYPE_DEPIF:
780 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
781 			    device_xname(sc->sc_dev), bra_option_len);
782 			break;
783 		case UPGT_BRA_TYPE_EXPIF:
784 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
785 			    device_xname(sc->sc_dev), bra_option_len);
786 			break;
787 		case UPGT_BRA_TYPE_DESCR:
788 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
789 			    device_xname(sc->sc_dev), bra_option_len);
790 
791 			struct upgt_fw_bra_descr *descr =
792 				(struct upgt_fw_bra_descr *)bra_option->data;
793 
794 			sc->sc_memaddr_frame_start =
795 			    le32toh(descr->memaddr_space_start);
796 			sc->sc_memaddr_frame_end =
797 			    le32toh(descr->memaddr_space_end);
798 
799 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
800 			    device_xname(sc->sc_dev),
801 			    sc->sc_memaddr_frame_start);
802 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
803 			    device_xname(sc->sc_dev),
804 			    sc->sc_memaddr_frame_end);
805 			break;
806 		case UPGT_BRA_TYPE_END:
807 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
808 			    device_xname(sc->sc_dev), bra_option_len);
809 			bra_end = 1;
810 			break;
811 		default:
812 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
813 			    device_xname(sc->sc_dev), bra_option_len);
814 			return EIO;
815 		}
816 
817 		/* jump to next BRA option */
818 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
819 	}
820 
821 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
822 
823 	return 0;
824 }
825 
826 static int
827 upgt_fw_load(struct upgt_softc *sc)
828 {
829 	struct upgt_data *data_cmd = &sc->cmd_data;
830 	struct upgt_data *data_rx = &sc->rx_data;
831 	struct upgt_fw_x2_header *x2;
832 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
833 	int offset, bsize, n, i, len;
834 	uint32_t crc;
835 
836 	/* send firmware start load command */
837 	len = sizeof(start_fwload_cmd);
838 	memcpy(data_cmd->buf, start_fwload_cmd, len);
839 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
840 		aprint_error_dev(sc->sc_dev,
841 		    "could not send start_firmware_load command\n");
842 		return EIO;
843 	}
844 
845 	/* send X2 header */
846 	len = sizeof(struct upgt_fw_x2_header);
847 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
848 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
849 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
850 	x2->len = htole32(sc->sc_fw_size);
851 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
852 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
853 	    sizeof(uint32_t));
854 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
855 		aprint_error_dev(sc->sc_dev,
856 		    "could not send firmware X2 header\n");
857 		return EIO;
858 	}
859 
860 	/* download firmware */
861 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
862 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
863 			bsize = UPGT_FW_BLOCK_SIZE;
864 		else
865 			bsize = sc->sc_fw_size - offset;
866 
867 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
868 
869 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
870 		    device_xname(sc->sc_dev), offset, n, bsize);
871 
872 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
873 		    != 0) {
874 			aprint_error_dev(sc->sc_dev,
875 			    "error while downloading firmware block\n");
876 			return EIO;
877 		}
878 
879 		bsize = n;
880 	}
881 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
882 
883 	/* load firmware */
884 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
885 	*((uint32_t *)(data_cmd->buf)    ) = crc;
886 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
887 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
888 	len = 6;
889 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
890 		aprint_error_dev(sc->sc_dev,
891 		    "could not send load_firmware command\n");
892 		return EIO;
893 	}
894 
895 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
896 		len = UPGT_FW_BLOCK_SIZE;
897 		memset(data_rx->buf, 0, 2);
898 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
899 		    USBD_SHORT_XFER_OK) != 0) {
900 			aprint_error_dev(sc->sc_dev,
901 			    "could not read firmware response\n");
902 			return EIO;
903 		}
904 
905 		if (memcmp(data_rx->buf, "OK", 2) == 0)
906 			break;	/* firmware load was successful */
907 	}
908 	if (i == UPGT_FIRMWARE_TIMEOUT) {
909 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
910 		return EIO;
911 	}
912 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
913 
914 	return 0;
915 }
916 
917 /*
918  * While copying the version 2 firmware, we need to replace two characters:
919  *
920  * 0x7e -> 0x7d 0x5e
921  * 0x7d -> 0x7d 0x5d
922  */
923 static int
924 upgt_fw_copy(char *src, char *dst, int size)
925 {
926 	int i, j;
927 
928 	for (i = 0, j = 0; i < size && j < size; i++) {
929 		switch (src[i]) {
930 		case 0x7e:
931 			dst[j] = 0x7d;
932 			j++;
933 			dst[j] = 0x5e;
934 			j++;
935 			break;
936 		case 0x7d:
937 			dst[j] = 0x7d;
938 			j++;
939 			dst[j] = 0x5d;
940 			j++;
941 			break;
942 		default:
943 			dst[j] = src[i];
944 			j++;
945 			break;
946 		}
947 	}
948 
949 	return i;
950 }
951 
952 static int
953 upgt_eeprom_read(struct upgt_softc *sc)
954 {
955 	struct upgt_data *data_cmd = &sc->cmd_data;
956 	struct upgt_lmac_mem *mem;
957 	struct upgt_lmac_eeprom	*eeprom;
958 	int offset, block, len;
959 
960 	offset = 0;
961 	block = UPGT_EEPROM_BLOCK_SIZE;
962 	while (offset < UPGT_EEPROM_SIZE) {
963 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
964 		    device_xname(sc->sc_dev), offset, block);
965 
966 		/*
967 		 * Transmit the URB containing the CMD data.
968 		 */
969 		len = sizeof(*mem) + sizeof(*eeprom) + block;
970 
971 		memset(data_cmd->buf, 0, len);
972 
973 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
974 		mem->addr = htole32(sc->sc_memaddr_frame_start +
975 		    UPGT_MEMSIZE_FRAME_HEAD);
976 
977 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
978 		eeprom->header1.flags = 0;
979 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
980 		eeprom->header1.len = htole16((
981 		    sizeof(struct upgt_lmac_eeprom) -
982 		    sizeof(struct upgt_lmac_header)) + block);
983 
984 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
985 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
986 		eeprom->header2.flags = 0;
987 
988 		eeprom->offset = htole16(offset);
989 		eeprom->len = htole16(block);
990 
991 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
992 		    len - sizeof(*mem));
993 
994 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
995 		    USBD_FORCE_SHORT_XFER) != 0) {
996 			aprint_error_dev(sc->sc_dev,
997 			    "could not transmit EEPROM data URB\n");
998 			return EIO;
999 		}
1000 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1001 			aprint_error_dev(sc->sc_dev,
1002 			    "timeout while waiting for EEPROM data\n");
1003 			return EIO;
1004 		}
1005 
1006 		offset += block;
1007 		if (UPGT_EEPROM_SIZE - offset < block)
1008 			block = UPGT_EEPROM_SIZE - offset;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int
1015 upgt_eeprom_parse(struct upgt_softc *sc)
1016 {
1017 	struct ieee80211com *ic = &sc->sc_ic;
1018 	struct upgt_eeprom_header *eeprom_header;
1019 	struct upgt_eeprom_option *eeprom_option;
1020 	uint16_t option_len;
1021 	uint16_t option_type;
1022 	uint16_t preamble_len;
1023 	int option_end = 0;
1024 
1025 	/* calculate eeprom options start offset */
1026 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1027 	preamble_len = le16toh(eeprom_header->preamble_len);
1028 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1029 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1030 
1031 	while (!option_end) {
1032 		/* the eeprom option length is stored in words */
1033 		option_len =
1034 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1035 		option_type =
1036 		    le16toh(eeprom_option->type);
1037 
1038 		switch (option_type) {
1039 		case UPGT_EEPROM_TYPE_NAME:
1040 			DPRINTF(1, "%s: EEPROM name len=%d\n",
1041 			    device_xname(sc->sc_dev), option_len);
1042 			break;
1043 		case UPGT_EEPROM_TYPE_SERIAL:
1044 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1045 			    device_xname(sc->sc_dev), option_len);
1046 			break;
1047 		case UPGT_EEPROM_TYPE_MAC:
1048 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1049 			    device_xname(sc->sc_dev), option_len);
1050 
1051 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1052 			break;
1053 		case UPGT_EEPROM_TYPE_HWRX:
1054 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1055 			    device_xname(sc->sc_dev), option_len);
1056 
1057 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1058 			break;
1059 		case UPGT_EEPROM_TYPE_CHIP:
1060 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1061 			    device_xname(sc->sc_dev), option_len);
1062 			break;
1063 		case UPGT_EEPROM_TYPE_FREQ3:
1064 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1065 			    device_xname(sc->sc_dev), option_len);
1066 
1067 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1068 			    option_len);
1069 			break;
1070 		case UPGT_EEPROM_TYPE_FREQ4:
1071 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1072 			    device_xname(sc->sc_dev), option_len);
1073 
1074 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1075 			    option_len);
1076 			break;
1077 		case UPGT_EEPROM_TYPE_FREQ5:
1078 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1079 			    device_xname(sc->sc_dev), option_len);
1080 			break;
1081 		case UPGT_EEPROM_TYPE_FREQ6:
1082 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1083 			    device_xname(sc->sc_dev), option_len);
1084 
1085 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1086 			    option_len);
1087 			break;
1088 		case UPGT_EEPROM_TYPE_END:
1089 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1090 			    device_xname(sc->sc_dev), option_len);
1091 			option_end = 1;
1092 			break;
1093 		case UPGT_EEPROM_TYPE_OFF:
1094 			DPRINTF(1, "%s: EEPROM off without end option\n",
1095 			    device_xname(sc->sc_dev));
1096 			return EIO;
1097 		default:
1098 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1099 			    device_xname(sc->sc_dev), option_type, option_len);
1100 			break;
1101 		}
1102 
1103 		/* jump to next EEPROM option */
1104 		eeprom_option = (struct upgt_eeprom_option *)
1105 		    (eeprom_option->data + option_len);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static void
1112 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1113 {
1114 	struct upgt_eeprom_option_hwrx *option_hwrx;
1115 
1116 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1117 
1118 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1119 
1120 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1121 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1122 }
1123 
1124 static void
1125 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1126 {
1127 	struct upgt_eeprom_freq3_header *freq3_header;
1128 	struct upgt_lmac_freq3 *freq3;
1129 	int i, elements, flags;
1130 	unsigned channel;
1131 
1132 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1133 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1134 
1135 	flags = freq3_header->flags;
1136 	elements = freq3_header->elements;
1137 
1138 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1139 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1140 	__USE(flags);
1141 
1142 	for (i = 0; i < elements; i++) {
1143 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1144 
1145 		sc->sc_eeprom_freq3[channel] = freq3[i];
1146 
1147 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1148 		    device_xname(sc->sc_dev),
1149 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1150 	}
1151 }
1152 
1153 static void
1154 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1155 {
1156 	struct upgt_eeprom_freq4_header *freq4_header;
1157 	struct upgt_eeprom_freq4_1 *freq4_1;
1158 	struct upgt_eeprom_freq4_2 *freq4_2;
1159 	int i, j, elements, settings, flags;
1160 	unsigned channel;
1161 
1162 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1163 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1164 
1165 	flags = freq4_header->flags;
1166 	elements = freq4_header->elements;
1167 	settings = freq4_header->settings;
1168 
1169 	/* we need this value later */
1170 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1171 
1172 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1173 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1174 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1175 	__USE(flags);
1176 
1177 	for (i = 0; i < elements; i++) {
1178 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1179 
1180 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1181 
1182 		for (j = 0; j < settings; j++) {
1183 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1184 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1185 		}
1186 
1187 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1188 		    device_xname(sc->sc_dev),
1189 		    le16toh(freq4_1[i].freq), channel);
1190 	}
1191 }
1192 
1193 static void
1194 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1195 {
1196 	struct upgt_lmac_freq6 *freq6;
1197 	int i, elements;
1198 	unsigned channel;
1199 
1200 	freq6 = (struct upgt_lmac_freq6 *)data;
1201 
1202 	elements = len / sizeof(struct upgt_lmac_freq6);
1203 
1204 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1205 
1206 	for (i = 0; i < elements; i++) {
1207 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1208 
1209 		sc->sc_eeprom_freq6[channel] = freq6[i];
1210 
1211 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1212 		    device_xname(sc->sc_dev),
1213 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1214 	}
1215 }
1216 
1217 static int
1218 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1219 {
1220 	struct upgt_softc *sc = ifp->if_softc;
1221 	struct ieee80211com *ic = &sc->sc_ic;
1222 	int s, error = 0;
1223 
1224 	s = splnet();
1225 
1226 	switch (cmd) {
1227 	case SIOCSIFFLAGS:
1228 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1229 			break;
1230 		if (ifp->if_flags & IFF_UP) {
1231 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1232 				upgt_init(ifp);
1233 		} else {
1234 			if (ifp->if_flags & IFF_RUNNING)
1235 				upgt_stop(sc);
1236 		}
1237 		break;
1238 	case SIOCADDMULTI:
1239 	case SIOCDELMULTI:
1240 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1241 			/* setup multicast filter, etc */
1242 			error = 0;
1243 		}
1244 		break;
1245 	default:
1246 		error = ieee80211_ioctl(ic, cmd, data);
1247 		break;
1248 	}
1249 
1250 	if (error == ENETRESET) {
1251 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1252 		    (IFF_UP | IFF_RUNNING))
1253 			upgt_init(ifp);
1254 		error = 0;
1255 	}
1256 
1257 	splx(s);
1258 
1259 	return error;
1260 }
1261 
1262 static int
1263 upgt_init(struct ifnet *ifp)
1264 {
1265 	struct upgt_softc *sc = ifp->if_softc;
1266 	struct ieee80211com *ic = &sc->sc_ic;
1267 
1268 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1269 
1270 	if (ifp->if_flags & IFF_RUNNING)
1271 		upgt_stop(sc);
1272 
1273 	ifp->if_flags |= IFF_RUNNING;
1274 	ifp->if_flags &= ~IFF_OACTIVE;
1275 
1276 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1277 
1278 	/* setup device rates */
1279 	upgt_setup_rates(sc);
1280 
1281 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1282 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1283 	else
1284 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1285 
1286 	return 0;
1287 }
1288 
1289 static void
1290 upgt_stop(struct upgt_softc *sc)
1291 {
1292 	struct ieee80211com *ic = &sc->sc_ic;
1293 	struct ifnet *ifp = &sc->sc_if;
1294 
1295 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1296 
1297 	/* device down */
1298 	ifp->if_timer = 0;
1299 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1300 
1301 	/* change device back to initial state */
1302 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1303 }
1304 
1305 static int
1306 upgt_media_change(struct ifnet *ifp)
1307 {
1308 	struct upgt_softc *sc = ifp->if_softc;
1309 	int error;
1310 
1311 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1312 
1313 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
1314 		return error;
1315 
1316 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1317 	    (IFF_UP | IFF_RUNNING)) {
1318 		/* give pending USB transfers a chance to finish */
1319 		usbd_delay_ms(sc->sc_udev, 100);
1320 		upgt_init(ifp);
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static void
1327 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1328 {
1329 
1330 	ni->ni_txrate = 0;
1331 }
1332 
1333 static int
1334 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1335 {
1336 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1337 
1338 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1339 	callout_stop(&sc->scan_to);
1340 
1341 	/* do it in a process context */
1342 	sc->sc_state = nstate;
1343 	sc->sc_arg = arg;
1344 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1345 
1346 	return 0;
1347 }
1348 
1349 static void
1350 upgt_newstate_task(void *arg)
1351 {
1352 	struct upgt_softc *sc = arg;
1353 	struct ieee80211com *ic = &sc->sc_ic;
1354 	struct ieee80211_node *ni;
1355 	unsigned channel;
1356 
1357 	mutex_enter(&sc->sc_mtx);
1358 
1359 	switch (sc->sc_state) {
1360 	case IEEE80211_S_INIT:
1361 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1362 		    device_xname(sc->sc_dev));
1363 
1364 		/* do not accept any frames if the device is down */
1365 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1366 		upgt_set_led(sc, UPGT_LED_OFF);
1367 		break;
1368 	case IEEE80211_S_SCAN:
1369 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1370 		    device_xname(sc->sc_dev));
1371 
1372 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1373 		upgt_set_channel(sc, channel);
1374 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1375 		callout_schedule(&sc->scan_to, hz / 5);
1376 		break;
1377 	case IEEE80211_S_AUTH:
1378 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1379 		    device_xname(sc->sc_dev));
1380 
1381 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1382 		upgt_set_channel(sc, channel);
1383 		break;
1384 	case IEEE80211_S_ASSOC:
1385 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1386 		    device_xname(sc->sc_dev));
1387 
1388 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1389 		upgt_set_channel(sc, channel);
1390 		break;
1391 	case IEEE80211_S_RUN:
1392 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1393 		    device_xname(sc->sc_dev));
1394 
1395 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1396 		upgt_set_channel(sc, channel);
1397 
1398 		ni = ic->ic_bss;
1399 
1400 		/*
1401 		 * TX rate control is done by the firmware.
1402 		 * Report the maximum rate which is available therefore.
1403 		 */
1404 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1405 
1406 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1407 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1408 		upgt_set_led(sc, UPGT_LED_ON);
1409 		break;
1410 	}
1411 
1412 	mutex_exit(&sc->sc_mtx);
1413 
1414 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1415 }
1416 
1417 static void
1418 upgt_next_scan(void *arg)
1419 {
1420 	struct upgt_softc *sc = arg;
1421 	struct ieee80211com *ic = &sc->sc_ic;
1422 
1423 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1424 
1425 	if (ic->ic_state == IEEE80211_S_SCAN)
1426 		ieee80211_next_scan(ic);
1427 }
1428 
1429 static void
1430 upgt_start(struct ifnet *ifp)
1431 {
1432 	struct upgt_softc *sc = ifp->if_softc;
1433 	struct ieee80211com *ic = &sc->sc_ic;
1434 	struct ether_header *eh;
1435 	struct ieee80211_node *ni;
1436 	struct mbuf *m;
1437 	int i;
1438 
1439 	/* don't transmit packets if interface is busy or down */
1440 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1441 		return;
1442 
1443 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1444 
1445 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1446 		struct upgt_data *data_tx = &sc->tx_data[i];
1447 
1448 		if (data_tx->m != NULL)
1449 			continue;
1450 
1451 		IF_POLL(&ic->ic_mgtq, m);
1452 		if (m != NULL) {
1453 			/* management frame */
1454 			IF_DEQUEUE(&ic->ic_mgtq, m);
1455 
1456 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1457 			m->m_pkthdr.rcvif = NULL;
1458 
1459 			bpf_mtap3(ic->ic_rawbpf, m);
1460 
1461 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1462 				aprint_error_dev(sc->sc_dev,
1463 				    "no free prism memory\n");
1464 				m_freem(m);
1465 				ifp->if_oerrors++;
1466 				break;
1467 			}
1468 			data_tx->ni = ni;
1469 			data_tx->m = m;
1470 			sc->tx_queued++;
1471 		} else {
1472 			/* data frame */
1473 			if (ic->ic_state != IEEE80211_S_RUN)
1474 				break;
1475 
1476 			IFQ_POLL(&ifp->if_snd, m);
1477 			if (m == NULL)
1478 				break;
1479 
1480 			IFQ_DEQUEUE(&ifp->if_snd, m);
1481 			if (m->m_len < sizeof(struct ether_header) &&
1482 			    !(m = m_pullup(m, sizeof(struct ether_header))))
1483 				continue;
1484 
1485 			eh = mtod(m, struct ether_header *);
1486 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1487 			if (ni == NULL) {
1488 				m_freem(m);
1489 				continue;
1490 			}
1491 
1492 			bpf_mtap(ifp, m);
1493 
1494 			m = ieee80211_encap(ic, m, ni);
1495 			if (m == NULL) {
1496 				ieee80211_free_node(ni);
1497 				continue;
1498 			}
1499 
1500 			bpf_mtap3(ic->ic_rawbpf, m);
1501 
1502 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1503 				aprint_error_dev(sc->sc_dev,
1504 				    "no free prism memory\n");
1505 				m_freem(m);
1506 				ieee80211_free_node(ni);
1507 				ifp->if_oerrors++;
1508 				break;
1509 			}
1510 			data_tx->ni = ni;
1511 			data_tx->m = m;
1512 			sc->tx_queued++;
1513 		}
1514 	}
1515 
1516 	if (sc->tx_queued > 0) {
1517 		DPRINTF(2, "%s: tx_queued=%d\n",
1518 		    device_xname(sc->sc_dev), sc->tx_queued);
1519 		/* process the TX queue in process context */
1520 		ifp->if_timer = 5;
1521 		ifp->if_flags |= IFF_OACTIVE;
1522 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1523 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1524 	}
1525 }
1526 
1527 static void
1528 upgt_watchdog(struct ifnet *ifp)
1529 {
1530 	struct upgt_softc *sc = ifp->if_softc;
1531 	struct ieee80211com *ic = &sc->sc_ic;
1532 
1533 	if (ic->ic_state == IEEE80211_S_INIT)
1534 		return;
1535 
1536 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1537 
1538 	/* TODO: what shall we do on TX timeout? */
1539 
1540 	ieee80211_watchdog(ic);
1541 }
1542 
1543 static void
1544 upgt_tx_task(void *arg)
1545 {
1546 	struct upgt_softc *sc = arg;
1547 	struct ieee80211com *ic = &sc->sc_ic;
1548 	struct ieee80211_frame *wh;
1549 	struct ieee80211_key *k;
1550 	struct ifnet *ifp = &sc->sc_if;
1551 	struct upgt_lmac_mem *mem;
1552 	struct upgt_lmac_tx_desc *txdesc;
1553 	struct mbuf *m;
1554 	uint32_t addr;
1555 	int i, len, pad, s;
1556 	usbd_status error;
1557 
1558 	mutex_enter(&sc->sc_mtx);
1559 	upgt_set_led(sc, UPGT_LED_BLINK);
1560 	mutex_exit(&sc->sc_mtx);
1561 
1562 	s = splnet();
1563 
1564 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1565 		struct upgt_data *data_tx = &sc->tx_data[i];
1566 
1567 		if (data_tx->m == NULL)
1568 			continue;
1569 
1570 		m = data_tx->m;
1571 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1572 
1573 		/*
1574 		 * Software crypto.
1575 		 */
1576 		wh = mtod(m, struct ieee80211_frame *);
1577 
1578 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1579 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1580 			if (k == NULL) {
1581 				m_freem(m);
1582 				data_tx->m = NULL;
1583 				ieee80211_free_node(data_tx->ni);
1584 				data_tx->ni = NULL;
1585 				ifp->if_oerrors++;
1586 				break;
1587 			}
1588 
1589 			/* in case packet header moved, reset pointer */
1590 			wh = mtod(m, struct ieee80211_frame *);
1591 		}
1592 
1593 		/*
1594 		 * Transmit the URB containing the TX data.
1595 		 */
1596 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1597 
1598 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1599 		mem->addr = htole32(addr);
1600 
1601 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1602 
1603 		/* XXX differ between data and mgmt frames? */
1604 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1605 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1606 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1607 
1608 		txdesc->header2.reqid = htole32(data_tx->addr);
1609 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1610 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1611 
1612 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1613 		    IEEE80211_FC0_TYPE_MGT) {
1614 			/* always send mgmt frames at lowest rate (DS1) */
1615 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1616 		} else {
1617 			memcpy(txdesc->rates, sc->sc_cur_rateset,
1618 			    sizeof(txdesc->rates));
1619 		}
1620 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1621 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1622 
1623 		if (sc->sc_drvbpf != NULL) {
1624 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1625 
1626 			tap->wt_flags = 0;
1627 			tap->wt_rate = 0;	/* TODO: where to get from? */
1628 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1629 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1630 
1631 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1632 		}
1633 
1634 		/* copy frame below our TX descriptor header */
1635 		m_copydata(m, 0, m->m_pkthdr.len,
1636 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1637 
1638 		/* calculate frame size */
1639 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1640 
1641 		if (len & 3) {
1642 			/* we need to align the frame to a 4 byte boundary */
1643 			pad = 4 - (len & 3);
1644 			memset(data_tx->buf + len, 0, pad);
1645 			len += pad;
1646 		}
1647 
1648 		/* calculate frame checksum */
1649 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1650 		    len - sizeof(*mem));
1651 
1652 		/* we do not need the mbuf anymore */
1653 		m_freem(m);
1654 		data_tx->m = NULL;
1655 
1656 		ieee80211_free_node(data_tx->ni);
1657 		data_tx->ni = NULL;
1658 
1659 		DPRINTF(2, "%s: TX start data sending\n",
1660 		    device_xname(sc->sc_dev));
1661 
1662 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1663 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1664 		    UPGT_USB_TIMEOUT, NULL);
1665 		error = usbd_transfer(data_tx->xfer);
1666 		if (error != USBD_NORMAL_COMPLETION &&
1667 		    error != USBD_IN_PROGRESS) {
1668 			aprint_error_dev(sc->sc_dev,
1669 			    "could not transmit TX data URB\n");
1670 			ifp->if_oerrors++;
1671 			break;
1672 		}
1673 
1674 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1675 		    device_xname(sc->sc_dev), len);
1676 	}
1677 
1678 	splx(s);
1679 
1680 	/*
1681 	 * If we don't regulary read the device statistics, the RX queue
1682 	 * will stall.  It's strange, but it works, so we keep reading
1683 	 * the statistics here.  *shrug*
1684 	 */
1685 	mutex_enter(&sc->sc_mtx);
1686 	upgt_get_stats(sc);
1687 	mutex_exit(&sc->sc_mtx);
1688 }
1689 
1690 static void
1691 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1692 {
1693 	struct ifnet *ifp = &sc->sc_if;
1694 	struct upgt_lmac_tx_done_desc *desc;
1695 	int i, s;
1696 
1697 	s = splnet();
1698 
1699 	desc = (struct upgt_lmac_tx_done_desc *)data;
1700 
1701 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1702 		struct upgt_data *data_tx = &sc->tx_data[i];
1703 
1704 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1705 			upgt_mem_free(sc, data_tx->addr);
1706 			data_tx->addr = 0;
1707 
1708 			sc->tx_queued--;
1709 			ifp->if_opackets++;
1710 
1711 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1712 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1713 			    le32toh(desc->header2.reqid),
1714 			    le16toh(desc->status),
1715 			    le16toh(desc->rssi));
1716 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1717 			break;
1718 		}
1719 	}
1720 
1721 	if (sc->tx_queued == 0) {
1722 		/* TX queued was processed, continue */
1723 		ifp->if_timer = 0;
1724 		ifp->if_flags &= ~IFF_OACTIVE;
1725 		upgt_start(ifp);
1726 	}
1727 
1728 	splx(s);
1729 }
1730 
1731 static void
1732 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1733 {
1734 	struct upgt_data *data_rx = priv;
1735 	struct upgt_softc *sc = data_rx->sc;
1736 	int len;
1737 	struct upgt_lmac_header *header;
1738 	struct upgt_lmac_eeprom *eeprom;
1739 	uint8_t h1_type;
1740 	uint16_t h2_type;
1741 
1742 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1743 
1744 	if (status != USBD_NORMAL_COMPLETION) {
1745 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1746 			return;
1747 		if (status == USBD_STALLED)
1748 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1749 		goto skip;
1750 	}
1751 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1752 
1753 	/*
1754 	 * Check what type of frame came in.
1755 	 */
1756 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1757 
1758 	h1_type = header->header1.type;
1759 	h2_type = le16toh(header->header2.type);
1760 
1761 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1762 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1763 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1764 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1765 		uint16_t eeprom_len = le16toh(eeprom->len);
1766 
1767 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1768 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1769 
1770 		memcpy(sc->sc_eeprom + eeprom_offset,
1771 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1772 		    eeprom_len);
1773 
1774 		/* EEPROM data has arrived in time, wakeup tsleep() */
1775 		wakeup(sc);
1776 	} else
1777 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1778 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1779 		DPRINTF(2, "%s: received 802.11 TX done\n",
1780 		    device_xname(sc->sc_dev));
1781 
1782 		upgt_tx_done(sc, data_rx->buf + 4);
1783 	} else
1784 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1785 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1786 		DPRINTF(3, "%s: received 802.11 RX data\n",
1787 		    device_xname(sc->sc_dev));
1788 
1789 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1790 	} else
1791 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1792 	    h2_type == UPGT_H2_TYPE_STATS) {
1793 		DPRINTF(2, "%s: received statistic data\n",
1794 		    device_xname(sc->sc_dev));
1795 
1796 		/* TODO: what could we do with the statistic data? */
1797 	} else {
1798 		/* ignore unknown frame types */
1799 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1800 		    device_xname(sc->sc_dev), header->header1.type);
1801 	}
1802 
1803 skip:	/* setup new transfer */
1804 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1805 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1806 	(void)usbd_transfer(xfer);
1807 }
1808 
1809 static void
1810 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1811 {
1812 	struct ieee80211com *ic = &sc->sc_ic;
1813 	struct ifnet *ifp = &sc->sc_if;
1814 	struct upgt_lmac_rx_desc *rxdesc;
1815 	struct ieee80211_frame *wh;
1816 	struct ieee80211_node *ni;
1817 	struct mbuf *m;
1818 	int s;
1819 
1820 	/* access RX packet descriptor */
1821 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1822 
1823 	/* create mbuf which is suitable for strict alignment archs */
1824 #define ETHER_ALIGN	0
1825 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1826 	if (m == NULL) {
1827 		DPRINTF(1, "%s: could not create RX mbuf\n",
1828 		   device_xname(sc->sc_dev));
1829 		ifp->if_ierrors++;
1830 		return;
1831 	}
1832 
1833 	s = splnet();
1834 
1835 	if (sc->sc_drvbpf != NULL) {
1836 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1837 
1838 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1839 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1840 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1841 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1842 		tap->wr_antsignal = rxdesc->rssi;
1843 
1844 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1845 	}
1846 
1847 	/* trim FCS */
1848 	m_adj(m, -IEEE80211_CRC_LEN);
1849 
1850 	wh = mtod(m, struct ieee80211_frame *);
1851 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1852 
1853 	/* push the frame up to the 802.11 stack */
1854 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1855 
1856 	/* node is no longer needed */
1857 	ieee80211_free_node(ni);
1858 
1859 	splx(s);
1860 
1861 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1862 }
1863 
1864 static void
1865 upgt_setup_rates(struct upgt_softc *sc)
1866 {
1867 	struct ieee80211com *ic = &sc->sc_ic;
1868 
1869 	/*
1870 	 * 0x01 = OFMD6   0x10 = DS1
1871 	 * 0x04 = OFDM9   0x11 = DS2
1872 	 * 0x06 = OFDM12  0x12 = DS5
1873 	 * 0x07 = OFDM18  0x13 = DS11
1874 	 * 0x08 = OFDM24
1875 	 * 0x09 = OFDM36
1876 	 * 0x0a = OFDM48
1877 	 * 0x0b = OFDM54
1878 	 */
1879 	const uint8_t rateset_auto_11b[] =
1880 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1881 	const uint8_t rateset_auto_11g[] =
1882 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1883 	const uint8_t rateset_fix_11bg[] =
1884 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1885 	      0x08, 0x09, 0x0a, 0x0b };
1886 
1887 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1888 		/*
1889 		 * Automatic rate control is done by the device.
1890 		 * We just pass the rateset from which the device
1891 		 * will pickup a rate.
1892 		 */
1893 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1894 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1895 			    sizeof(sc->sc_cur_rateset));
1896 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1897 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1898 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1899 			    sizeof(sc->sc_cur_rateset));
1900 	} else {
1901 		/* set a fixed rate */
1902 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1903 		    sizeof(sc->sc_cur_rateset));
1904 	}
1905 }
1906 
1907 static uint8_t
1908 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1909 {
1910 	struct ieee80211com *ic = &sc->sc_ic;
1911 
1912 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1913 		if (rate < 0 || rate > 3)
1914 			/* invalid rate */
1915 			return 0;
1916 
1917 		switch (rate) {
1918 		case 0:
1919 			return 2;
1920 		case 1:
1921 			return 4;
1922 		case 2:
1923 			return 11;
1924 		case 3:
1925 			return 22;
1926 		default:
1927 			return 0;
1928 		}
1929 	}
1930 
1931 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1932 		if (rate < 0 || rate > 11)
1933 			/* invalid rate */
1934 			return 0;
1935 
1936 		switch (rate) {
1937 		case 0:
1938 			return 2;
1939 		case 1:
1940 			return 4;
1941 		case 2:
1942 			return 11;
1943 		case 3:
1944 			return 22;
1945 		case 4:
1946 			return 12;
1947 		case 5:
1948 			return 18;
1949 		case 6:
1950 			return 24;
1951 		case 7:
1952 			return 36;
1953 		case 8:
1954 			return 48;
1955 		case 9:
1956 			return 72;
1957 		case 10:
1958 			return 96;
1959 		case 11:
1960 			return 108;
1961 		default:
1962 			return 0;
1963 		}
1964 	}
1965 
1966 	return 0;
1967 }
1968 
1969 static int
1970 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1971 {
1972 	struct ieee80211com *ic = &sc->sc_ic;
1973 	struct ieee80211_node *ni = ic->ic_bss;
1974 	struct upgt_data *data_cmd = &sc->cmd_data;
1975 	struct upgt_lmac_mem *mem;
1976 	struct upgt_lmac_filter *filter;
1977 	int len;
1978 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1979 
1980 	/*
1981 	 * Transmit the URB containing the CMD data.
1982 	 */
1983 	len = sizeof(*mem) + sizeof(*filter);
1984 
1985 	memset(data_cmd->buf, 0, len);
1986 
1987 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1988 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1989 	    UPGT_MEMSIZE_FRAME_HEAD);
1990 
1991 	filter = (struct upgt_lmac_filter *)(mem + 1);
1992 
1993 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1994 	filter->header1.type = UPGT_H1_TYPE_CTRL;
1995 	filter->header1.len = htole16(
1996 	    sizeof(struct upgt_lmac_filter) -
1997 	    sizeof(struct upgt_lmac_header));
1998 
1999 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2000 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2001 	filter->header2.flags = 0;
2002 
2003 	switch (state) {
2004 	case IEEE80211_S_INIT:
2005 		DPRINTF(1, "%s: set MAC filter to INIT\n",
2006 		    device_xname(sc->sc_dev));
2007 
2008 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2009 		break;
2010 	case IEEE80211_S_SCAN:
2011 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2012 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2013 
2014 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2015 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2016 		IEEE80211_ADDR_COPY(filter->src, broadcast);
2017 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2018 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2019 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2020 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2021 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2022 		break;
2023 	case IEEE80211_S_RUN:
2024 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2025 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2026 
2027 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2028 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2029 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2030 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2031 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2032 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2033 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2034 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2035 		break;
2036 	default:
2037 		aprint_error_dev(sc->sc_dev,
2038 		    "MAC filter does not know that state\n");
2039 		break;
2040 	}
2041 
2042 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2043 
2044 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2045 		aprint_error_dev(sc->sc_dev,
2046 		    "could not transmit macfilter CMD data URB\n");
2047 		return EIO;
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 static int
2054 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2055 {
2056 	struct upgt_data *data_cmd = &sc->cmd_data;
2057 	struct upgt_lmac_mem *mem;
2058 	struct upgt_lmac_channel *chan;
2059 	int len;
2060 
2061 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2062 	    channel);
2063 
2064 	/*
2065 	 * Transmit the URB containing the CMD data.
2066 	 */
2067 	len = sizeof(*mem) + sizeof(*chan);
2068 
2069 	memset(data_cmd->buf, 0, len);
2070 
2071 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2072 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2073 	    UPGT_MEMSIZE_FRAME_HEAD);
2074 
2075 	chan = (struct upgt_lmac_channel *)(mem + 1);
2076 
2077 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2078 	chan->header1.type = UPGT_H1_TYPE_CTRL;
2079 	chan->header1.len = htole16(
2080 	    sizeof(struct upgt_lmac_channel) -
2081 	    sizeof(struct upgt_lmac_header));
2082 
2083 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2084 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2085 	chan->header2.flags = 0;
2086 
2087 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2088 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2089 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2090 	chan->settings = sc->sc_eeprom_freq6_settings;
2091 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2092 
2093 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2094 	    sizeof(chan->freq3_1));
2095 
2096 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2097 	    sizeof(sc->sc_eeprom_freq4[channel]));
2098 
2099 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2100 	    sizeof(chan->freq3_2));
2101 
2102 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2103 
2104 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2105 		aprint_error_dev(sc->sc_dev,
2106 		    "could not transmit channel CMD data URB\n");
2107 		return EIO;
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 static void
2114 upgt_set_led(struct upgt_softc *sc, int action)
2115 {
2116 	struct ieee80211com *ic = &sc->sc_ic;
2117 	struct upgt_data *data_cmd = &sc->cmd_data;
2118 	struct upgt_lmac_mem *mem;
2119 	struct upgt_lmac_led *led;
2120 	struct timeval t;
2121 	int len;
2122 
2123 	/*
2124 	 * Transmit the URB containing the CMD data.
2125 	 */
2126 	len = sizeof(*mem) + sizeof(*led);
2127 
2128 	memset(data_cmd->buf, 0, len);
2129 
2130 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2131 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2132 	    UPGT_MEMSIZE_FRAME_HEAD);
2133 
2134 	led = (struct upgt_lmac_led *)(mem + 1);
2135 
2136 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2137 	led->header1.type = UPGT_H1_TYPE_CTRL;
2138 	led->header1.len = htole16(
2139 	    sizeof(struct upgt_lmac_led) -
2140 	    sizeof(struct upgt_lmac_header));
2141 
2142 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2143 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2144 	led->header2.flags = 0;
2145 
2146 	switch (action) {
2147 	case UPGT_LED_OFF:
2148 		led->mode = htole16(UPGT_LED_MODE_SET);
2149 		led->action_fix = 0;
2150 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2151 		led->action_tmp_dur = 0;
2152 		break;
2153 	case UPGT_LED_ON:
2154 		led->mode = htole16(UPGT_LED_MODE_SET);
2155 		led->action_fix = 0;
2156 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2157 		led->action_tmp_dur = 0;
2158 		break;
2159 	case UPGT_LED_BLINK:
2160 		if (ic->ic_state != IEEE80211_S_RUN)
2161 			return;
2162 		if (sc->sc_led_blink)
2163 			/* previous blink was not finished */
2164 			return;
2165 		led->mode = htole16(UPGT_LED_MODE_SET);
2166 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2167 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2168 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2169 		/* lock blink */
2170 		sc->sc_led_blink = 1;
2171 		t.tv_sec = 0;
2172 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2173 		callout_schedule(&sc->led_to, tvtohz(&t));
2174 		break;
2175 	default:
2176 		return;
2177 	}
2178 
2179 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2180 
2181 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2182 		aprint_error_dev(sc->sc_dev,
2183 		    "could not transmit led CMD URB\n");
2184 	}
2185 }
2186 
2187 static void
2188 upgt_set_led_blink(void *arg)
2189 {
2190 	struct upgt_softc *sc = arg;
2191 
2192 	/* blink finished, we are ready for a next one */
2193 	sc->sc_led_blink = 0;
2194 	callout_stop(&sc->led_to);
2195 }
2196 
2197 static int
2198 upgt_get_stats(struct upgt_softc *sc)
2199 {
2200 	struct upgt_data *data_cmd = &sc->cmd_data;
2201 	struct upgt_lmac_mem *mem;
2202 	struct upgt_lmac_stats *stats;
2203 	int len;
2204 
2205 	/*
2206 	 * Transmit the URB containing the CMD data.
2207 	 */
2208 	len = sizeof(*mem) + sizeof(*stats);
2209 
2210 	memset(data_cmd->buf, 0, len);
2211 
2212 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2213 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2214 	    UPGT_MEMSIZE_FRAME_HEAD);
2215 
2216 	stats = (struct upgt_lmac_stats *)(mem + 1);
2217 
2218 	stats->header1.flags = 0;
2219 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2220 	stats->header1.len = htole16(
2221 	    sizeof(struct upgt_lmac_stats) -
2222 	    sizeof(struct upgt_lmac_header));
2223 
2224 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2225 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2226 	stats->header2.flags = 0;
2227 
2228 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2229 
2230 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2231 		aprint_error_dev(sc->sc_dev,
2232 		    "could not transmit statistics CMD data URB\n");
2233 		return EIO;
2234 	}
2235 
2236 	return 0;
2237 
2238 }
2239 
2240 static int
2241 upgt_alloc_tx(struct upgt_softc *sc)
2242 {
2243 	int i;
2244 
2245 	sc->tx_queued = 0;
2246 
2247 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2248 		struct upgt_data *data_tx = &sc->tx_data[i];
2249 
2250 		data_tx->sc = sc;
2251 
2252 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2253 		if (data_tx->xfer == NULL) {
2254 			aprint_error_dev(sc->sc_dev,
2255 			    "could not allocate TX xfer\n");
2256 			return ENOMEM;
2257 		}
2258 
2259 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2260 		if (data_tx->buf == NULL) {
2261 			aprint_error_dev(sc->sc_dev,
2262 			    "could not allocate TX buffer\n");
2263 			return ENOMEM;
2264 		}
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 static int
2271 upgt_alloc_rx(struct upgt_softc *sc)
2272 {
2273 	struct upgt_data *data_rx = &sc->rx_data;
2274 
2275 	data_rx->sc = sc;
2276 
2277 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2278 	if (data_rx->xfer == NULL) {
2279 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2280 		return ENOMEM;
2281 	}
2282 
2283 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2284 	if (data_rx->buf == NULL) {
2285 		aprint_error_dev(sc->sc_dev,
2286 		    "could not allocate RX buffer\n");
2287 		return ENOMEM;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 static int
2294 upgt_alloc_cmd(struct upgt_softc *sc)
2295 {
2296 	struct upgt_data *data_cmd = &sc->cmd_data;
2297 
2298 	data_cmd->sc = sc;
2299 
2300 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2301 	if (data_cmd->xfer == NULL) {
2302 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2303 		return ENOMEM;
2304 	}
2305 
2306 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2307 	if (data_cmd->buf == NULL) {
2308 		aprint_error_dev(sc->sc_dev,
2309 		    "could not allocate RX buffer\n");
2310 		return ENOMEM;
2311 	}
2312 
2313 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
2314 
2315 	return 0;
2316 }
2317 
2318 static void
2319 upgt_free_tx(struct upgt_softc *sc)
2320 {
2321 	int i;
2322 
2323 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2324 		struct upgt_data *data_tx = &sc->tx_data[i];
2325 
2326 		if (data_tx->xfer != NULL) {
2327 			usbd_free_xfer(data_tx->xfer);
2328 			data_tx->xfer = NULL;
2329 		}
2330 
2331 		data_tx->ni = NULL;
2332 	}
2333 }
2334 
2335 static void
2336 upgt_free_rx(struct upgt_softc *sc)
2337 {
2338 	struct upgt_data *data_rx = &sc->rx_data;
2339 
2340 	if (data_rx->xfer != NULL) {
2341 		usbd_free_xfer(data_rx->xfer);
2342 		data_rx->xfer = NULL;
2343 	}
2344 
2345 	data_rx->ni = NULL;
2346 }
2347 
2348 static void
2349 upgt_free_cmd(struct upgt_softc *sc)
2350 {
2351 	struct upgt_data *data_cmd = &sc->cmd_data;
2352 
2353 	if (data_cmd->xfer != NULL) {
2354 		usbd_free_xfer(data_cmd->xfer);
2355 		data_cmd->xfer = NULL;
2356 	}
2357 
2358 	mutex_destroy(&sc->sc_mtx);
2359 }
2360 
2361 static int
2362 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2363     usbd_pipe_handle pipeh, uint32_t *size, int flags)
2364 {
2365         usbd_status status;
2366 
2367 	status = usbd_bulk_transfer(data->xfer, pipeh,
2368 	    USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
2369 	    "upgt_bulk_xmit");
2370 	if (status != USBD_NORMAL_COMPLETION) {
2371 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2372 		    usbd_errstr(status));
2373 		return EIO;
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 #if 0
2380 static void
2381 upgt_hexdump(void *buf, int len)
2382 {
2383 	int i;
2384 
2385 	for (i = 0; i < len; i++) {
2386 		if (i % 16 == 0)
2387 			printf("%s%5i:", i ? "\n" : "", i);
2388 		if (i % 4 == 0)
2389 			printf(" ");
2390 		printf("%02x", (int)*((uint8_t *)buf + i));
2391 	}
2392 	printf("\n");
2393 }
2394 #endif
2395 
2396 static uint32_t
2397 upgt_crc32_le(const void *buf, size_t size)
2398 {
2399 	uint32_t crc;
2400 
2401 	crc = ether_crc32_le(buf, size);
2402 
2403 	/* apply final XOR value as common for CRC-32 */
2404 	crc = htole32(crc ^ 0xffffffffU);
2405 
2406 	return crc;
2407 }
2408 
2409 /*
2410  * The firmware awaits a checksum for each frame we send to it.
2411  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2412  */
2413 static uint32_t
2414 upgt_chksum_le(const uint32_t *buf, size_t size)
2415 {
2416 	int i;
2417 	uint32_t crc = 0;
2418 
2419 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2420 		crc = htole32(crc ^ *buf++);
2421 		crc = htole32((crc >> 5) ^ (crc << 3));
2422 	}
2423 
2424 	return crc;
2425 }
2426