xref: /netbsd-src/sys/dev/usb/if_rum.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.65 2019/05/05 03:17:54 mrg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.65 2019/05/05 03:17:54 mrg Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
92 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
93 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
94 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
95 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
96 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
98 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
104 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
106 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
110 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
111 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
112 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
113 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
114 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
115 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
116 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
117 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
121 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
122 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
123 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
125 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
126 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
127 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
128 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
129 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
130 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
132 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
133 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
134 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
135 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
136 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
137 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
138 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
139 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
140 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
141 	{ USB_VENDOR_SYNET,		USB_PRODUCT_SYNET_MWP54SS },
142 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
143 };
144 
145 static int		rum_attachhook(void *);
146 static int		rum_alloc_tx_list(struct rum_softc *);
147 static void		rum_free_tx_list(struct rum_softc *);
148 static int		rum_alloc_rx_list(struct rum_softc *);
149 static void		rum_free_rx_list(struct rum_softc *);
150 static int		rum_media_change(struct ifnet *);
151 static void		rum_next_scan(void *);
152 static void		rum_task(void *);
153 static int		rum_newstate(struct ieee80211com *,
154 			    enum ieee80211_state, int);
155 static void		rum_txeof(struct usbd_xfer *, void *,
156 			    usbd_status);
157 static void		rum_rxeof(struct usbd_xfer *, void *,
158 			    usbd_status);
159 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
160 static int		rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t		rum_txtime(int, int, uint32_t);
162 static uint8_t		rum_plcp_signal(int);
163 static void		rum_setup_tx_desc(struct rum_softc *,
164 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
165 			    int);
166 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
167 			    struct ieee80211_node *);
168 static void		rum_start(struct ifnet *);
169 static void		rum_watchdog(struct ifnet *);
170 static int		rum_ioctl(struct ifnet *, u_long, void *);
171 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 			    int);
173 static uint32_t		rum_read(struct rum_softc *, uint16_t);
174 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
175 			    int);
176 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
178 			    size_t);
179 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
181 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void		rum_select_antenna(struct rum_softc *);
183 static void		rum_enable_mrr(struct rum_softc *);
184 static void		rum_set_txpreamble(struct rum_softc *);
185 static void		rum_set_basicrates(struct rum_softc *);
186 static void		rum_select_band(struct rum_softc *,
187 			    struct ieee80211_channel *);
188 static void		rum_set_chan(struct rum_softc *,
189 			    struct ieee80211_channel *);
190 static void		rum_enable_tsf_sync(struct rum_softc *);
191 static void		rum_update_slot(struct rum_softc *);
192 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void		rum_update_promisc(struct rum_softc *);
195 static const char	*rum_get_rf(int);
196 static void		rum_read_eeprom(struct rum_softc *);
197 static int		rum_bbp_init(struct rum_softc *);
198 static int		rum_init(struct ifnet *);
199 static void		rum_stop(struct ifnet *, int);
200 static int		rum_load_microcode(struct rum_softc *, const u_char *,
201 			    size_t);
202 static int		rum_prepare_beacon(struct rum_softc *);
203 static void		rum_newassoc(struct ieee80211_node *, int);
204 static void		rum_amrr_start(struct rum_softc *,
205 			    struct ieee80211_node *);
206 static void		rum_amrr_timeout(void *);
207 static void		rum_amrr_update(struct usbd_xfer *, void *,
208 			    usbd_status);
209 
210 static const struct {
211 	uint32_t	reg;
212 	uint32_t	val;
213 } rum_def_mac[] = {
214 	RT2573_DEF_MAC
215 };
216 
217 static const struct {
218 	uint8_t	reg;
219 	uint8_t	val;
220 } rum_def_bbp[] = {
221 	RT2573_DEF_BBP
222 };
223 
224 static const struct rfprog {
225 	uint8_t		chan;
226 	uint32_t	r1, r2, r3, r4;
227 }  rum_rf5226[] = {
228 	RT2573_RF5226
229 }, rum_rf5225[] = {
230 	RT2573_RF5225
231 };
232 
233 static int rum_match(device_t, cfdata_t, void *);
234 static void rum_attach(device_t, device_t, void *);
235 static int rum_detach(device_t, int);
236 static int rum_activate(device_t, enum devact);
237 
238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
239     rum_detach, rum_activate);
240 
241 static int
242 rum_match(device_t parent, cfdata_t match, void *aux)
243 {
244 	struct usb_attach_arg *uaa = aux;
245 
246 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249 
250 static int
251 rum_attachhook(void *xsc)
252 {
253 	struct rum_softc *sc = xsc;
254 	firmware_handle_t fwh;
255 	const char *name = "rum-rt2573";
256 	u_char *ucode;
257 	size_t size;
258 	int error;
259 
260 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 		printf("%s: failed firmware_open of file %s (error %d)\n",
262 		    device_xname(sc->sc_dev), name, error);
263 		return error;
264 	}
265 	size = firmware_get_size(fwh);
266 	ucode = firmware_malloc(size);
267 	if (ucode == NULL) {
268 		printf("%s: failed to allocate firmware memory\n",
269 		    device_xname(sc->sc_dev));
270 		firmware_close(fwh);
271 		return ENOMEM;
272 	}
273 	error = firmware_read(fwh, 0, ucode, size);
274 	firmware_close(fwh);
275 	if (error != 0) {
276 		printf("%s: failed to read firmware (error %d)\n",
277 		    device_xname(sc->sc_dev), error);
278 		firmware_free(ucode, size);
279 		return error;
280 	}
281 
282 	if (rum_load_microcode(sc, ucode, size) != 0) {
283 		printf("%s: could not load 8051 microcode\n",
284 		    device_xname(sc->sc_dev));
285 		firmware_free(ucode, size);
286 		return ENXIO;
287 	}
288 
289 	firmware_free(ucode, size);
290 	sc->sc_flags |= RT2573_FWLOADED;
291 
292 	return 0;
293 }
294 
295 static void
296 rum_attach(device_t parent, device_t self, void *aux)
297 {
298 	struct rum_softc *sc = device_private(self);
299 	struct usb_attach_arg *uaa = aux;
300 	struct ieee80211com *ic = &sc->sc_ic;
301 	struct ifnet *ifp = &sc->sc_if;
302 	usb_interface_descriptor_t *id;
303 	usb_endpoint_descriptor_t *ed;
304 	usbd_status error;
305 	char *devinfop;
306 	int i, ntries;
307 	uint32_t tmp;
308 
309 	sc->sc_dev = self;
310 	sc->sc_udev = uaa->uaa_device;
311 	sc->sc_flags = 0;
312 
313 	aprint_naive("\n");
314 	aprint_normal("\n");
315 
316 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
317 	aprint_normal_dev(self, "%s\n", devinfop);
318 	usbd_devinfo_free(devinfop);
319 
320 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
321 	if (error != 0) {
322 		aprint_error_dev(self, "failed to set configuration"
323 		    ", err=%s\n", usbd_errstr(error));
324 		return;
325 	}
326 
327 	/* get the first interface handle */
328 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
329 	    &sc->sc_iface);
330 	if (error != 0) {
331 		aprint_error_dev(self, "could not get interface handle\n");
332 		return;
333 	}
334 
335 	/*
336 	 * Find endpoints.
337 	 */
338 	id = usbd_get_interface_descriptor(sc->sc_iface);
339 
340 	sc->sc_rx_no = sc->sc_tx_no = -1;
341 	for (i = 0; i < id->bNumEndpoints; i++) {
342 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
343 		if (ed == NULL) {
344 			aprint_error_dev(self,
345 			    "no endpoint descriptor for iface %d\n", i);
346 			return;
347 		}
348 
349 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
350 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 			sc->sc_rx_no = ed->bEndpointAddress;
352 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
353 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 			sc->sc_tx_no = ed->bEndpointAddress;
355 	}
356 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
357 		aprint_error_dev(self, "missing endpoint\n");
358 		return;
359 	}
360 
361 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
362 	callout_init(&sc->sc_scan_ch, 0);
363 
364 	sc->amrr.amrr_min_success_threshold =  1;
365 	sc->amrr.amrr_max_success_threshold = 10;
366 	callout_init(&sc->sc_amrr_ch, 0);
367 
368 	/* retrieve RT2573 rev. no */
369 	for (ntries = 0; ntries < 1000; ntries++) {
370 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
371 			break;
372 		DELAY(1000);
373 	}
374 	if (ntries == 1000) {
375 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
376 		return;
377 	}
378 
379 	/* retrieve MAC address and various other things from EEPROM */
380 	rum_read_eeprom(sc);
381 
382 	aprint_normal_dev(self,
383 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
384 	    sc->macbbp_rev, tmp,
385 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
386 
387 	ic->ic_ifp = ifp;
388 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
389 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
390 	ic->ic_state = IEEE80211_S_INIT;
391 
392 	/* set device capabilities */
393 	ic->ic_caps =
394 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
395 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
396 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
397 	    IEEE80211_C_TXPMGT |	/* tx power management */
398 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
399 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
400 	    IEEE80211_C_WPA;		/* 802.11i */
401 
402 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
403 		/* set supported .11a rates */
404 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
405 
406 		/* set supported .11a channels */
407 		for (i = 34; i <= 46; i += 4) {
408 			ic->ic_channels[i].ic_freq =
409 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 		}
412 		for (i = 36; i <= 64; i += 4) {
413 			ic->ic_channels[i].ic_freq =
414 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 		}
417 		for (i = 100; i <= 140; i += 4) {
418 			ic->ic_channels[i].ic_freq =
419 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 		}
422 		for (i = 149; i <= 165; i += 4) {
423 			ic->ic_channels[i].ic_freq =
424 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 		}
427 	}
428 
429 	/* set supported .11b and .11g rates */
430 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432 
433 	/* set supported .11b and .11g channels (1 through 14) */
434 	for (i = 1; i <= 14; i++) {
435 		ic->ic_channels[i].ic_freq =
436 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 		ic->ic_channels[i].ic_flags =
438 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 	}
441 
442 	ifp->if_softc = sc;
443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 	ifp->if_init = rum_init;
445 	ifp->if_ioctl = rum_ioctl;
446 	ifp->if_start = rum_start;
447 	ifp->if_watchdog = rum_watchdog;
448 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 	IFQ_SET_READY(&ifp->if_snd);
450 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451 
452 	if_attach(ifp);
453 	ieee80211_ifattach(ic);
454 	ic->ic_newassoc = rum_newassoc;
455 
456 	/* override state transition machine */
457 	sc->sc_newstate = ic->ic_newstate;
458 	ic->ic_newstate = rum_newstate;
459 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
460 
461 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
462 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
463 	    &sc->sc_drvbpf);
464 
465 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
466 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
467 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
468 
469 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
470 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
471 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
472 
473 	ieee80211_announce(ic);
474 
475 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
476 
477 	if (!pmf_device_register(self, NULL, NULL))
478 		aprint_error_dev(self, "couldn't establish power handler\n");
479 
480 	return;
481 }
482 
483 static int
484 rum_detach(device_t self, int flags)
485 {
486 	struct rum_softc *sc = device_private(self);
487 	struct ieee80211com *ic = &sc->sc_ic;
488 	struct ifnet *ifp = &sc->sc_if;
489 	int s;
490 
491 	if (!ifp->if_softc)
492 		return 0;
493 
494 	pmf_device_deregister(self);
495 
496 	s = splusb();
497 
498 	rum_stop(ifp, 1);
499 	callout_halt(&sc->sc_scan_ch, NULL);
500 	callout_halt(&sc->sc_amrr_ch, NULL);
501 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
502 
503 	bpf_detach(ifp);
504 	ieee80211_ifdetach(ic);	/* free all nodes */
505 	if_detach(ifp);
506 
507 	splx(s);
508 
509 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
510 
511 	return 0;
512 }
513 
514 static int
515 rum_alloc_tx_list(struct rum_softc *sc)
516 {
517 	struct rum_tx_data *data;
518 	int i, error;
519 
520 	sc->tx_cur = sc->tx_queued = 0;
521 
522 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
523 		data = &sc->tx_data[i];
524 
525 		data->sc = sc;
526 
527 		error = usbd_create_xfer(sc->sc_tx_pipeh,
528 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
529 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
530 		if (error) {
531 			printf("%s: could not allocate tx xfer\n",
532 			    device_xname(sc->sc_dev));
533 			goto fail;
534 		}
535 		data->buf = usbd_get_buffer(data->xfer);
536 
537 		/* clean Tx descriptor */
538 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
539 	}
540 
541 	return 0;
542 
543 fail:	rum_free_tx_list(sc);
544 	return error;
545 }
546 
547 static void
548 rum_free_tx_list(struct rum_softc *sc)
549 {
550 	struct rum_tx_data *data;
551 	int i;
552 
553 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
554 		data = &sc->tx_data[i];
555 
556 		if (data->xfer != NULL) {
557 			usbd_destroy_xfer(data->xfer);
558 			data->xfer = NULL;
559 		}
560 
561 		if (data->ni != NULL) {
562 			ieee80211_free_node(data->ni);
563 			data->ni = NULL;
564 		}
565 	}
566 }
567 
568 static int
569 rum_alloc_rx_list(struct rum_softc *sc)
570 {
571 	struct rum_rx_data *data;
572 	int i, error;
573 
574 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
575 		data = &sc->rx_data[i];
576 
577 		data->sc = sc;
578 
579 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
580 		    0, 0, &data->xfer);
581 		if (error) {
582 			printf("%s: could not allocate rx xfer\n",
583 			    device_xname(sc->sc_dev));
584 			goto fail;
585 		}
586 
587 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
588 		if (data->m == NULL) {
589 			printf("%s: could not allocate rx mbuf\n",
590 			    device_xname(sc->sc_dev));
591 			error = ENOMEM;
592 			goto fail;
593 		}
594 
595 		MCLGET(data->m, M_DONTWAIT);
596 		if (!(data->m->m_flags & M_EXT)) {
597 			printf("%s: could not allocate rx mbuf cluster\n",
598 			    device_xname(sc->sc_dev));
599 			error = ENOMEM;
600 			goto fail;
601 		}
602 
603 		data->buf = mtod(data->m, uint8_t *);
604 	}
605 
606 	return 0;
607 
608 fail:	rum_free_rx_list(sc);
609 	return error;
610 }
611 
612 static void
613 rum_free_rx_list(struct rum_softc *sc)
614 {
615 	struct rum_rx_data *data;
616 	int i;
617 
618 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
619 		data = &sc->rx_data[i];
620 
621 		if (data->xfer != NULL) {
622 			usbd_destroy_xfer(data->xfer);
623 			data->xfer = NULL;
624 		}
625 
626 		if (data->m != NULL) {
627 			m_freem(data->m);
628 			data->m = NULL;
629 		}
630 	}
631 }
632 
633 static int
634 rum_media_change(struct ifnet *ifp)
635 {
636 	int error;
637 
638 	error = ieee80211_media_change(ifp);
639 	if (error != ENETRESET)
640 		return error;
641 
642 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
643 		rum_init(ifp);
644 
645 	return 0;
646 }
647 
648 /*
649  * This function is called periodically (every 200ms) during scanning to
650  * switch from one channel to another.
651  */
652 static void
653 rum_next_scan(void *arg)
654 {
655 	struct rum_softc *sc = arg;
656 	struct ieee80211com *ic = &sc->sc_ic;
657 	int s;
658 
659 	s = splnet();
660 	if (ic->ic_state == IEEE80211_S_SCAN)
661 		ieee80211_next_scan(ic);
662 	splx(s);
663 }
664 
665 static void
666 rum_task(void *arg)
667 {
668 	struct rum_softc *sc = arg;
669 	struct ieee80211com *ic = &sc->sc_ic;
670 	enum ieee80211_state ostate;
671 	struct ieee80211_node *ni;
672 	uint32_t tmp;
673 
674 	ostate = ic->ic_state;
675 
676 	switch (sc->sc_state) {
677 	case IEEE80211_S_INIT:
678 		if (ostate == IEEE80211_S_RUN) {
679 			/* abort TSF synchronization */
680 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
681 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
682 		}
683 		break;
684 
685 	case IEEE80211_S_SCAN:
686 		rum_set_chan(sc, ic->ic_curchan);
687 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
688 		break;
689 
690 	case IEEE80211_S_AUTH:
691 		rum_set_chan(sc, ic->ic_curchan);
692 		break;
693 
694 	case IEEE80211_S_ASSOC:
695 		rum_set_chan(sc, ic->ic_curchan);
696 		break;
697 
698 	case IEEE80211_S_RUN:
699 		rum_set_chan(sc, ic->ic_curchan);
700 
701 		ni = ic->ic_bss;
702 
703 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
704 			rum_update_slot(sc);
705 			rum_enable_mrr(sc);
706 			rum_set_txpreamble(sc);
707 			rum_set_basicrates(sc);
708 			rum_set_bssid(sc, ni->ni_bssid);
709 		}
710 
711 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
712 		    ic->ic_opmode == IEEE80211_M_IBSS)
713 			rum_prepare_beacon(sc);
714 
715 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
716 			rum_enable_tsf_sync(sc);
717 
718 		if (ic->ic_opmode == IEEE80211_M_STA) {
719 			/* fake a join to init the tx rate */
720 			rum_newassoc(ic->ic_bss, 1);
721 
722 			/* enable automatic rate adaptation in STA mode */
723 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
724 				rum_amrr_start(sc, ni);
725 		}
726 
727 		break;
728 	}
729 
730 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
731 }
732 
733 static int
734 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
735 {
736 	struct rum_softc *sc = ic->ic_ifp->if_softc;
737 
738 	/*
739 	 * XXXSMP: This does not wait for the task, if it is in flight,
740 	 * to complete.  If this code works at all, it must rely on the
741 	 * kernel lock to serialize with the USB task thread.
742 	 */
743 	usb_rem_task(sc->sc_udev, &sc->sc_task);
744 	callout_stop(&sc->sc_scan_ch);
745 	callout_stop(&sc->sc_amrr_ch);
746 
747 	/* do it in a process context */
748 	sc->sc_state = nstate;
749 	sc->sc_arg = arg;
750 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
751 
752 	return 0;
753 }
754 
755 /* quickly determine if a given rate is CCK or OFDM */
756 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
757 
758 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
759 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
760 
761 static void
762 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
763 {
764 	struct rum_tx_data *data = priv;
765 	struct rum_softc *sc = data->sc;
766 	struct ifnet *ifp = &sc->sc_if;
767 	int s;
768 
769 	if (status != USBD_NORMAL_COMPLETION) {
770 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
771 			return;
772 
773 		printf("%s: could not transmit buffer: %s\n",
774 		    device_xname(sc->sc_dev), usbd_errstr(status));
775 
776 		if (status == USBD_STALLED)
777 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
778 
779 		ifp->if_oerrors++;
780 		return;
781 	}
782 
783 	s = splnet();
784 
785 	ieee80211_free_node(data->ni);
786 	data->ni = NULL;
787 
788 	sc->tx_queued--;
789 	ifp->if_opackets++;
790 
791 	DPRINTFN(10, ("tx done\n"));
792 
793 	sc->sc_tx_timer = 0;
794 	ifp->if_flags &= ~IFF_OACTIVE;
795 	rum_start(ifp);
796 
797 	splx(s);
798 }
799 
800 static void
801 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
802 {
803 	struct rum_rx_data *data = priv;
804 	struct rum_softc *sc = data->sc;
805 	struct ieee80211com *ic = &sc->sc_ic;
806 	struct ifnet *ifp = &sc->sc_if;
807 	struct rum_rx_desc *desc;
808 	struct ieee80211_frame *wh;
809 	struct ieee80211_node *ni;
810 	struct mbuf *mnew, *m;
811 	int s, len;
812 
813 	if (status != USBD_NORMAL_COMPLETION) {
814 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
815 			return;
816 
817 		if (status == USBD_STALLED)
818 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
819 		goto skip;
820 	}
821 
822 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
823 
824 	if (len < (int)(RT2573_RX_DESC_SIZE +
825 		        sizeof(struct ieee80211_frame_min))) {
826 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
827 		    len));
828 		ifp->if_ierrors++;
829 		goto skip;
830 	}
831 
832 	desc = (struct rum_rx_desc *)data->buf;
833 
834 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
835 		/*
836 		 * This should not happen since we did not request to receive
837 		 * those frames when we filled RT2573_TXRX_CSR0.
838 		 */
839 		DPRINTFN(5, ("CRC error\n"));
840 		ifp->if_ierrors++;
841 		goto skip;
842 	}
843 
844 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
845 	if (mnew == NULL) {
846 		printf("%s: could not allocate rx mbuf\n",
847 		    device_xname(sc->sc_dev));
848 		ifp->if_ierrors++;
849 		goto skip;
850 	}
851 
852 	MCLGET(mnew, M_DONTWAIT);
853 	if (!(mnew->m_flags & M_EXT)) {
854 		printf("%s: could not allocate rx mbuf cluster\n",
855 		    device_xname(sc->sc_dev));
856 		m_freem(mnew);
857 		ifp->if_ierrors++;
858 		goto skip;
859 	}
860 
861 	m = data->m;
862 	data->m = mnew;
863 	data->buf = mtod(data->m, uint8_t *);
864 
865 	/* finalize mbuf */
866 	m_set_rcvif(m, ifp);
867 	m->m_data = (void *)(desc + 1);
868 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
869 
870 	s = splnet();
871 
872 	if (sc->sc_drvbpf != NULL) {
873 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
874 
875 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
876 		tap->wr_rate = rum_rxrate(desc);
877 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
878 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
879 		tap->wr_antenna = sc->rx_ant;
880 		tap->wr_antsignal = desc->rssi;
881 
882 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
883 	}
884 
885 	wh = mtod(m, struct ieee80211_frame *);
886 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
887 
888 	/* send the frame to the 802.11 layer */
889 	ieee80211_input(ic, m, ni, desc->rssi, 0);
890 
891 	/* node is no longer needed */
892 	ieee80211_free_node(ni);
893 
894 	splx(s);
895 
896 	DPRINTFN(15, ("rx done\n"));
897 
898 skip:	/* setup a new transfer */
899 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
900 	    USBD_NO_TIMEOUT, rum_rxeof);
901 	usbd_transfer(xfer);
902 }
903 
904 /*
905  * This function is only used by the Rx radiotap code. It returns the rate at
906  * which a given frame was received.
907  */
908 static uint8_t
909 rum_rxrate(const struct rum_rx_desc *desc)
910 {
911 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
912 		/* reverse function of rum_plcp_signal */
913 		switch (desc->rate) {
914 		case 0xb:	return 12;
915 		case 0xf:	return 18;
916 		case 0xa:	return 24;
917 		case 0xe:	return 36;
918 		case 0x9:	return 48;
919 		case 0xd:	return 72;
920 		case 0x8:	return 96;
921 		case 0xc:	return 108;
922 		}
923 	} else {
924 		if (desc->rate == 10)
925 			return 2;
926 		if (desc->rate == 20)
927 			return 4;
928 		if (desc->rate == 55)
929 			return 11;
930 		if (desc->rate == 110)
931 			return 22;
932 	}
933 	return 2;	/* should not get there */
934 }
935 
936 /*
937  * Return the expected ack rate for a frame transmitted at rate `rate'.
938  * XXX: this should depend on the destination node basic rate set.
939  */
940 static int
941 rum_ack_rate(struct ieee80211com *ic, int rate)
942 {
943 	switch (rate) {
944 	/* CCK rates */
945 	case 2:
946 		return 2;
947 	case 4:
948 	case 11:
949 	case 22:
950 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
951 
952 	/* OFDM rates */
953 	case 12:
954 	case 18:
955 		return 12;
956 	case 24:
957 	case 36:
958 		return 24;
959 	case 48:
960 	case 72:
961 	case 96:
962 	case 108:
963 		return 48;
964 	}
965 
966 	/* default to 1Mbps */
967 	return 2;
968 }
969 
970 /*
971  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
972  * The function automatically determines the operating mode depending on the
973  * given rate. `flags' indicates whether short preamble is in use or not.
974  */
975 static uint16_t
976 rum_txtime(int len, int rate, uint32_t flags)
977 {
978 	uint16_t txtime;
979 
980 	if (RUM_RATE_IS_OFDM(rate)) {
981 		/* IEEE Std 802.11a-1999, pp. 37 */
982 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
983 		txtime = 16 + 4 + 4 * txtime + 6;
984 	} else {
985 		/* IEEE Std 802.11b-1999, pp. 28 */
986 		txtime = (16 * len + rate - 1) / rate;
987 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
988 			txtime +=  72 + 24;
989 		else
990 			txtime += 144 + 48;
991 	}
992 	return txtime;
993 }
994 
995 static uint8_t
996 rum_plcp_signal(int rate)
997 {
998 	switch (rate) {
999 	/* CCK rates (returned values are device-dependent) */
1000 	case 2:		return 0x0;
1001 	case 4:		return 0x1;
1002 	case 11:	return 0x2;
1003 	case 22:	return 0x3;
1004 
1005 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1006 	case 12:	return 0xb;
1007 	case 18:	return 0xf;
1008 	case 24:	return 0xa;
1009 	case 36:	return 0xe;
1010 	case 48:	return 0x9;
1011 	case 72:	return 0xd;
1012 	case 96:	return 0x8;
1013 	case 108:	return 0xc;
1014 
1015 	/* unsupported rates (should not get there) */
1016 	default:	return 0xff;
1017 	}
1018 }
1019 
1020 static void
1021 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1022     uint32_t flags, uint16_t xflags, int len, int rate)
1023 {
1024 	struct ieee80211com *ic = &sc->sc_ic;
1025 	uint16_t plcp_length;
1026 	int remainder;
1027 
1028 	desc->flags = htole32(flags);
1029 	desc->flags |= htole32(RT2573_TX_VALID);
1030 	desc->flags |= htole32(len << 16);
1031 
1032 	desc->xflags = htole16(xflags);
1033 
1034 	desc->wme = htole16(
1035 	    RT2573_QID(0) |
1036 	    RT2573_AIFSN(2) |
1037 	    RT2573_LOGCWMIN(4) |
1038 	    RT2573_LOGCWMAX(10));
1039 
1040 	/* setup PLCP fields */
1041 	desc->plcp_signal  = rum_plcp_signal(rate);
1042 	desc->plcp_service = 4;
1043 
1044 	len += IEEE80211_CRC_LEN;
1045 	if (RUM_RATE_IS_OFDM(rate)) {
1046 		desc->flags |= htole32(RT2573_TX_OFDM);
1047 
1048 		plcp_length = len & 0xfff;
1049 		desc->plcp_length_hi = plcp_length >> 6;
1050 		desc->plcp_length_lo = plcp_length & 0x3f;
1051 	} else {
1052 		plcp_length = (16 * len + rate - 1) / rate;
1053 		if (rate == 22) {
1054 			remainder = (16 * len) % 22;
1055 			if (remainder != 0 && remainder < 7)
1056 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1057 		}
1058 		desc->plcp_length_hi = plcp_length >> 8;
1059 		desc->plcp_length_lo = plcp_length & 0xff;
1060 
1061 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1062 			desc->plcp_signal |= 0x08;
1063 	}
1064 }
1065 
1066 #define RUM_TX_TIMEOUT	5000
1067 
1068 static int
1069 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1070 {
1071 	struct ieee80211com *ic = &sc->sc_ic;
1072 	struct rum_tx_desc *desc;
1073 	struct rum_tx_data *data;
1074 	struct ieee80211_frame *wh;
1075 	struct ieee80211_key *k;
1076 	uint32_t flags = 0;
1077 	uint16_t dur;
1078 	usbd_status error;
1079 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1080 
1081 	wh = mtod(m0, struct ieee80211_frame *);
1082 
1083 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1084 		k = ieee80211_crypto_encap(ic, ni, m0);
1085 		if (k == NULL) {
1086 			m_freem(m0);
1087 			return ENOBUFS;
1088 		}
1089 
1090 		/* packet header may have moved, reset our local pointer */
1091 		wh = mtod(m0, struct ieee80211_frame *);
1092 	}
1093 
1094 	/* compute actual packet length (including CRC and crypto overhead) */
1095 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1096 
1097 	/* pickup a rate */
1098 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1099 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1100 	     IEEE80211_FC0_TYPE_MGT)) {
1101 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1102 		rate = ni->ni_rates.rs_rates[0];
1103 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1104 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1105 	} else
1106 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1107 	if (rate == 0)
1108 		rate = 2;	/* XXX should not happen */
1109 	rate &= IEEE80211_RATE_VAL;
1110 
1111 	/* check if RTS/CTS or CTS-to-self protection must be used */
1112 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1113 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1114 		if (pktlen > ic->ic_rtsthreshold) {
1115 			needrts = 1;	/* RTS/CTS based on frame length */
1116 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1117 		    RUM_RATE_IS_OFDM(rate)) {
1118 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1119 				needcts = 1;	/* CTS-to-self */
1120 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1121 				needrts = 1;	/* RTS/CTS */
1122 		}
1123 	}
1124 	if (needrts || needcts) {
1125 		struct mbuf *mprot;
1126 		int protrate, ackrate;
1127 
1128 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1129 		ackrate  = rum_ack_rate(ic, rate);
1130 
1131 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1132 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1133 		      2 * sc->sifs;
1134 		if (needrts) {
1135 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1136 			    protrate), ic->ic_flags) + sc->sifs;
1137 			mprot = ieee80211_get_rts(ic, wh, dur);
1138 		} else {
1139 			mprot = ieee80211_get_cts_to_self(ic, dur);
1140 		}
1141 		if (mprot == NULL) {
1142 			aprint_error_dev(sc->sc_dev,
1143 			    "couldn't allocate protection frame\n");
1144 			m_freem(m0);
1145 			return ENOBUFS;
1146 		}
1147 
1148 		data = &sc->tx_data[sc->tx_cur];
1149 		desc = (struct rum_tx_desc *)data->buf;
1150 
1151 		/* avoid multiple free() of the same node for each fragment */
1152 		data->ni = ieee80211_ref_node(ni);
1153 
1154 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1155 		    data->buf + RT2573_TX_DESC_SIZE);
1156 		rum_setup_tx_desc(sc, desc,
1157 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1158 		    0, mprot->m_pkthdr.len, protrate);
1159 
1160 		/* no roundup necessary here */
1161 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1162 
1163 		/* XXX may want to pass the protection frame to BPF */
1164 
1165 		/* mbuf is no longer needed */
1166 		m_freem(mprot);
1167 
1168 		usbd_setup_xfer(data->xfer, data, data->buf,
1169 		    xferlen, USBD_FORCE_SHORT_XFER,
1170 		    RUM_TX_TIMEOUT, rum_txeof);
1171 		error = usbd_transfer(data->xfer);
1172 		if (error != USBD_NORMAL_COMPLETION &&
1173 		    error != USBD_IN_PROGRESS) {
1174 			m_freem(m0);
1175 			return error;
1176 		}
1177 
1178 		sc->tx_queued++;
1179 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1180 
1181 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1182 	}
1183 
1184 	data = &sc->tx_data[sc->tx_cur];
1185 	desc = (struct rum_tx_desc *)data->buf;
1186 
1187 	data->ni = ni;
1188 
1189 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1190 		flags |= RT2573_TX_NEED_ACK;
1191 
1192 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1193 		    ic->ic_flags) + sc->sifs;
1194 		*(uint16_t *)wh->i_dur = htole16(dur);
1195 
1196 		/* tell hardware to set timestamp in probe responses */
1197 		if ((wh->i_fc[0] &
1198 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1199 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1200 			flags |= RT2573_TX_TIMESTAMP;
1201 	}
1202 
1203 	if (sc->sc_drvbpf != NULL) {
1204 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1205 
1206 		tap->wt_flags = 0;
1207 		tap->wt_rate = rate;
1208 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1209 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1210 		tap->wt_antenna = sc->tx_ant;
1211 
1212 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1213 	}
1214 
1215 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1216 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1217 
1218 	/* align end on a 4-bytes boundary */
1219 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1220 
1221 	/*
1222 	 * No space left in the last URB to store the extra 4 bytes, force
1223 	 * sending of another URB.
1224 	 */
1225 	if ((xferlen % 64) == 0)
1226 		xferlen += 4;
1227 
1228 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1229 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1230 	    rate, xferlen));
1231 
1232 	/* mbuf is no longer needed */
1233 	m_freem(m0);
1234 
1235 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1236 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1237 	error = usbd_transfer(data->xfer);
1238 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1239 		return error;
1240 
1241 	sc->tx_queued++;
1242 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1243 
1244 	return 0;
1245 }
1246 
1247 static void
1248 rum_start(struct ifnet *ifp)
1249 {
1250 	struct rum_softc *sc = ifp->if_softc;
1251 	struct ieee80211com *ic = &sc->sc_ic;
1252 	struct ether_header *eh;
1253 	struct ieee80211_node *ni;
1254 	struct mbuf *m0;
1255 
1256 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1257 		return;
1258 
1259 	for (;;) {
1260 		IF_POLL(&ic->ic_mgtq, m0);
1261 		if (m0 != NULL) {
1262 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1263 				ifp->if_flags |= IFF_OACTIVE;
1264 				break;
1265 			}
1266 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1267 
1268 			ni = M_GETCTX(m0, struct ieee80211_node *);
1269 			M_CLEARCTX(m0);
1270 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1271 			if (rum_tx_data(sc, m0, ni) != 0)
1272 				break;
1273 
1274 		} else {
1275 			if (ic->ic_state != IEEE80211_S_RUN)
1276 				break;
1277 			IFQ_POLL(&ifp->if_snd, m0);
1278 			if (m0 == NULL)
1279 				break;
1280 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1281 				ifp->if_flags |= IFF_OACTIVE;
1282 				break;
1283 			}
1284 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1285 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1286 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1287 				continue;
1288 
1289 			eh = mtod(m0, struct ether_header *);
1290 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1291 			if (ni == NULL) {
1292 				m_freem(m0);
1293 				continue;
1294 			}
1295 			bpf_mtap(ifp, m0, BPF_D_OUT);
1296 			m0 = ieee80211_encap(ic, m0, ni);
1297 			if (m0 == NULL) {
1298 				ieee80211_free_node(ni);
1299 				continue;
1300 			}
1301 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1302 			if (rum_tx_data(sc, m0, ni) != 0) {
1303 				ieee80211_free_node(ni);
1304 				ifp->if_oerrors++;
1305 				break;
1306 			}
1307 		}
1308 
1309 		sc->sc_tx_timer = 5;
1310 		ifp->if_timer = 1;
1311 	}
1312 }
1313 
1314 static void
1315 rum_watchdog(struct ifnet *ifp)
1316 {
1317 	struct rum_softc *sc = ifp->if_softc;
1318 	struct ieee80211com *ic = &sc->sc_ic;
1319 
1320 	ifp->if_timer = 0;
1321 
1322 	if (sc->sc_tx_timer > 0) {
1323 		if (--sc->sc_tx_timer == 0) {
1324 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1325 			/*rum_init(ifp); XXX needs a process context! */
1326 			ifp->if_oerrors++;
1327 			return;
1328 		}
1329 		ifp->if_timer = 1;
1330 	}
1331 
1332 	ieee80211_watchdog(ic);
1333 }
1334 
1335 static int
1336 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1337 {
1338 #define IS_RUNNING(ifp) \
1339 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1340 
1341 	struct rum_softc *sc = ifp->if_softc;
1342 	struct ieee80211com *ic = &sc->sc_ic;
1343 	int s, error = 0;
1344 
1345 	s = splnet();
1346 
1347 	switch (cmd) {
1348 	case SIOCSIFFLAGS:
1349 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1350 			break;
1351 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1352 		case IFF_UP|IFF_RUNNING:
1353 			rum_update_promisc(sc);
1354 			break;
1355 		case IFF_UP:
1356 			rum_init(ifp);
1357 			break;
1358 		case IFF_RUNNING:
1359 			rum_stop(ifp, 1);
1360 			break;
1361 		case 0:
1362 			break;
1363 		}
1364 		break;
1365 
1366 	case SIOCADDMULTI:
1367 	case SIOCDELMULTI:
1368 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1369 			error = 0;
1370 		}
1371 		break;
1372 
1373 	default:
1374 		error = ieee80211_ioctl(ic, cmd, data);
1375 	}
1376 
1377 	if (error == ENETRESET) {
1378 		if (IS_RUNNING(ifp) &&
1379 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1380 			rum_init(ifp);
1381 		error = 0;
1382 	}
1383 
1384 	splx(s);
1385 
1386 	return error;
1387 #undef IS_RUNNING
1388 }
1389 
1390 static void
1391 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1392 {
1393 	usb_device_request_t req;
1394 	usbd_status error;
1395 
1396 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1397 	req.bRequest = RT2573_READ_EEPROM;
1398 	USETW(req.wValue, 0);
1399 	USETW(req.wIndex, addr);
1400 	USETW(req.wLength, len);
1401 
1402 	error = usbd_do_request(sc->sc_udev, &req, buf);
1403 	if (error != 0) {
1404 		printf("%s: could not read EEPROM: %s\n",
1405 		    device_xname(sc->sc_dev), usbd_errstr(error));
1406 	}
1407 }
1408 
1409 static uint32_t
1410 rum_read(struct rum_softc *sc, uint16_t reg)
1411 {
1412 	uint32_t val;
1413 
1414 	rum_read_multi(sc, reg, &val, sizeof(val));
1415 
1416 	return le32toh(val);
1417 }
1418 
1419 static void
1420 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1421 {
1422 	usb_device_request_t req;
1423 	usbd_status error;
1424 
1425 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1426 	req.bRequest = RT2573_READ_MULTI_MAC;
1427 	USETW(req.wValue, 0);
1428 	USETW(req.wIndex, reg);
1429 	USETW(req.wLength, len);
1430 
1431 	error = usbd_do_request(sc->sc_udev, &req, buf);
1432 	if (error != 0) {
1433 		printf("%s: could not multi read MAC register: %s\n",
1434 		    device_xname(sc->sc_dev), usbd_errstr(error));
1435 	}
1436 }
1437 
1438 static void
1439 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1440 {
1441 	uint32_t tmp = htole32(val);
1442 
1443 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1444 }
1445 
1446 static void
1447 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1448 {
1449 	usb_device_request_t req;
1450 	usbd_status error;
1451 	int offset;
1452 
1453 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1454 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1455 	USETW(req.wValue, 0);
1456 
1457 	/* write at most 64 bytes at a time */
1458 	for (offset = 0; offset < len; offset += 64) {
1459 		USETW(req.wIndex, reg + offset);
1460 		USETW(req.wLength, MIN(len - offset, 64));
1461 
1462 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1463 		if (error != 0) {
1464 			printf("%s: could not multi write MAC register: %s\n",
1465 			    device_xname(sc->sc_dev), usbd_errstr(error));
1466 		}
1467 	}
1468 }
1469 
1470 static void
1471 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1472 {
1473 	uint32_t tmp;
1474 	int ntries;
1475 
1476 	for (ntries = 0; ntries < 5; ntries++) {
1477 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1478 			break;
1479 	}
1480 	if (ntries == 5) {
1481 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1482 		return;
1483 	}
1484 
1485 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1486 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1487 }
1488 
1489 static uint8_t
1490 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1491 {
1492 	uint32_t val;
1493 	int ntries;
1494 
1495 	for (ntries = 0; ntries < 5; ntries++) {
1496 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1497 			break;
1498 	}
1499 	if (ntries == 5) {
1500 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1501 		return 0;
1502 	}
1503 
1504 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1505 	rum_write(sc, RT2573_PHY_CSR3, val);
1506 
1507 	for (ntries = 0; ntries < 100; ntries++) {
1508 		val = rum_read(sc, RT2573_PHY_CSR3);
1509 		if (!(val & RT2573_BBP_BUSY))
1510 			return val & 0xff;
1511 		DELAY(1);
1512 	}
1513 
1514 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1515 	return 0;
1516 }
1517 
1518 static void
1519 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1520 {
1521 	uint32_t tmp;
1522 	int ntries;
1523 
1524 	for (ntries = 0; ntries < 5; ntries++) {
1525 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1526 			break;
1527 	}
1528 	if (ntries == 5) {
1529 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1530 		return;
1531 	}
1532 
1533 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1534 	    (reg & 3);
1535 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1536 
1537 	/* remember last written value in sc */
1538 	sc->rf_regs[reg] = val;
1539 
1540 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1541 }
1542 
1543 static void
1544 rum_select_antenna(struct rum_softc *sc)
1545 {
1546 	uint8_t bbp4, bbp77;
1547 	uint32_t tmp;
1548 
1549 	bbp4  = rum_bbp_read(sc, 4);
1550 	bbp77 = rum_bbp_read(sc, 77);
1551 
1552 	/* TBD */
1553 
1554 	/* make sure Rx is disabled before switching antenna */
1555 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1556 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1557 
1558 	rum_bbp_write(sc,  4, bbp4);
1559 	rum_bbp_write(sc, 77, bbp77);
1560 
1561 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1562 }
1563 
1564 /*
1565  * Enable multi-rate retries for frames sent at OFDM rates.
1566  * In 802.11b/g mode, allow fallback to CCK rates.
1567  */
1568 static void
1569 rum_enable_mrr(struct rum_softc *sc)
1570 {
1571 	struct ieee80211com *ic = &sc->sc_ic;
1572 	uint32_t tmp;
1573 
1574 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1575 
1576 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1577 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1578 		tmp |= RT2573_MRR_CCK_FALLBACK;
1579 	tmp |= RT2573_MRR_ENABLED;
1580 
1581 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1582 }
1583 
1584 static void
1585 rum_set_txpreamble(struct rum_softc *sc)
1586 {
1587 	uint32_t tmp;
1588 
1589 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1590 
1591 	tmp &= ~RT2573_SHORT_PREAMBLE;
1592 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1593 		tmp |= RT2573_SHORT_PREAMBLE;
1594 
1595 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1596 }
1597 
1598 static void
1599 rum_set_basicrates(struct rum_softc *sc)
1600 {
1601 	struct ieee80211com *ic = &sc->sc_ic;
1602 
1603 	/* update basic rate set */
1604 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1605 		/* 11b basic rates: 1, 2Mbps */
1606 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1607 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1608 		/* 11a basic rates: 6, 12, 24Mbps */
1609 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1610 	} else {
1611 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1612 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1613 	}
1614 }
1615 
1616 /*
1617  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1618  * driver.
1619  */
1620 static void
1621 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1622 {
1623 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1624 	uint32_t tmp;
1625 
1626 	/* update all BBP registers that depend on the band */
1627 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1628 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1629 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1630 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1631 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1632 	}
1633 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1634 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1635 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1636 	}
1637 
1638 	sc->bbp17 = bbp17;
1639 	rum_bbp_write(sc,  17, bbp17);
1640 	rum_bbp_write(sc,  96, bbp96);
1641 	rum_bbp_write(sc, 104, bbp104);
1642 
1643 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1644 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1645 		rum_bbp_write(sc, 75, 0x80);
1646 		rum_bbp_write(sc, 86, 0x80);
1647 		rum_bbp_write(sc, 88, 0x80);
1648 	}
1649 
1650 	rum_bbp_write(sc, 35, bbp35);
1651 	rum_bbp_write(sc, 97, bbp97);
1652 	rum_bbp_write(sc, 98, bbp98);
1653 
1654 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1655 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1656 	if (IEEE80211_IS_CHAN_2GHZ(c))
1657 		tmp |= RT2573_PA_PE_2GHZ;
1658 	else
1659 		tmp |= RT2573_PA_PE_5GHZ;
1660 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1661 
1662 	/* 802.11a uses a 16 microseconds short interframe space */
1663 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1664 }
1665 
1666 static void
1667 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1668 {
1669 	struct ieee80211com *ic = &sc->sc_ic;
1670 	const struct rfprog *rfprog;
1671 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1672 	int8_t power;
1673 	u_int i, chan;
1674 
1675 	chan = ieee80211_chan2ieee(ic, c);
1676 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1677 		return;
1678 
1679 	/* select the appropriate RF settings based on what EEPROM says */
1680 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1681 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1682 
1683 	/* find the settings for this channel (we know it exists) */
1684 	for (i = 0; rfprog[i].chan != chan; i++);
1685 
1686 	power = sc->txpow[i];
1687 	if (power < 0) {
1688 		bbp94 += power;
1689 		power = 0;
1690 	} else if (power > 31) {
1691 		bbp94 += power - 31;
1692 		power = 31;
1693 	}
1694 
1695 	/*
1696 	 * If we are switching from the 2GHz band to the 5GHz band or
1697 	 * vice-versa, BBP registers need to be reprogrammed.
1698 	 */
1699 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1700 		rum_select_band(sc, c);
1701 		rum_select_antenna(sc);
1702 	}
1703 	ic->ic_curchan = c;
1704 
1705 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1706 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1707 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1708 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1709 
1710 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1711 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1712 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1713 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1714 
1715 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1716 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1717 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1718 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1719 
1720 	DELAY(10);
1721 
1722 	/* enable smart mode for MIMO-capable RFs */
1723 	bbp3 = rum_bbp_read(sc, 3);
1724 
1725 	bbp3 &= ~RT2573_SMART_MODE;
1726 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1727 		bbp3 |= RT2573_SMART_MODE;
1728 
1729 	rum_bbp_write(sc, 3, bbp3);
1730 
1731 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1732 		rum_bbp_write(sc, 94, bbp94);
1733 }
1734 
1735 /*
1736  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1737  * and HostAP operating modes.
1738  */
1739 static void
1740 rum_enable_tsf_sync(struct rum_softc *sc)
1741 {
1742 	struct ieee80211com *ic = &sc->sc_ic;
1743 	uint32_t tmp;
1744 
1745 	if (ic->ic_opmode != IEEE80211_M_STA) {
1746 		/*
1747 		 * Change default 16ms TBTT adjustment to 8ms.
1748 		 * Must be done before enabling beacon generation.
1749 		 */
1750 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1751 	}
1752 
1753 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1754 
1755 	/* set beacon interval (in 1/16ms unit) */
1756 	tmp |= ic->ic_bss->ni_intval * 16;
1757 
1758 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1759 	if (ic->ic_opmode == IEEE80211_M_STA)
1760 		tmp |= RT2573_TSF_MODE(1);
1761 	else
1762 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1763 
1764 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1765 }
1766 
1767 static void
1768 rum_update_slot(struct rum_softc *sc)
1769 {
1770 	struct ieee80211com *ic = &sc->sc_ic;
1771 	uint8_t slottime;
1772 	uint32_t tmp;
1773 
1774 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1775 
1776 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1777 	tmp = (tmp & ~0xff) | slottime;
1778 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1779 
1780 	DPRINTF(("setting slot time to %uus\n", slottime));
1781 }
1782 
1783 static void
1784 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1785 {
1786 	uint32_t tmp;
1787 
1788 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1789 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1790 
1791 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1792 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1793 }
1794 
1795 static void
1796 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1797 {
1798 	uint32_t tmp;
1799 
1800 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1801 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1802 
1803 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1804 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1805 }
1806 
1807 static void
1808 rum_update_promisc(struct rum_softc *sc)
1809 {
1810 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1811 	uint32_t tmp;
1812 
1813 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1814 
1815 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1816 	if (!(ifp->if_flags & IFF_PROMISC))
1817 		tmp |= RT2573_DROP_NOT_TO_ME;
1818 
1819 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1820 
1821 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1822 	    "entering" : "leaving"));
1823 }
1824 
1825 static const char *
1826 rum_get_rf(int rev)
1827 {
1828 	switch (rev) {
1829 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1830 	case RT2573_RF_2528:	return "RT2528";
1831 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1832 	case RT2573_RF_5226:	return "RT5226";
1833 	default:		return "unknown";
1834 	}
1835 }
1836 
1837 static void
1838 rum_read_eeprom(struct rum_softc *sc)
1839 {
1840 	struct ieee80211com *ic = &sc->sc_ic;
1841 	uint16_t val;
1842 #ifdef RUM_DEBUG
1843 	int i;
1844 #endif
1845 
1846 	/* read MAC/BBP type */
1847 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1848 	sc->macbbp_rev = le16toh(val);
1849 
1850 	/* read MAC address */
1851 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1852 
1853 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1854 	val = le16toh(val);
1855 	sc->rf_rev =   (val >> 11) & 0x1f;
1856 	sc->hw_radio = (val >> 10) & 0x1;
1857 	sc->rx_ant =   (val >> 4)  & 0x3;
1858 	sc->tx_ant =   (val >> 2)  & 0x3;
1859 	sc->nb_ant =   val & 0x3;
1860 
1861 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1862 
1863 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1864 	val = le16toh(val);
1865 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1866 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1867 
1868 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1869 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1870 
1871 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1872 	val = le16toh(val);
1873 	if ((val & 0xff) != 0xff)
1874 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1875 
1876 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1877 	val = le16toh(val);
1878 	if ((val & 0xff) != 0xff)
1879 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1880 
1881 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1882 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1883 
1884 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1885 	val = le16toh(val);
1886 	if ((val & 0xff) != 0xff)
1887 		sc->rffreq = val & 0xff;
1888 
1889 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1890 
1891 	/* read Tx power for all a/b/g channels */
1892 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1893 	/* XXX default Tx power for 802.11a channels */
1894 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1895 #ifdef RUM_DEBUG
1896 	for (i = 0; i < 14; i++)
1897 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1898 #endif
1899 
1900 	/* read default values for BBP registers */
1901 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1902 #ifdef RUM_DEBUG
1903 	for (i = 0; i < 14; i++) {
1904 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1905 			continue;
1906 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1907 		    sc->bbp_prom[i].val));
1908 	}
1909 #endif
1910 }
1911 
1912 static int
1913 rum_bbp_init(struct rum_softc *sc)
1914 {
1915 	unsigned int i, ntries;
1916 	uint8_t val;
1917 
1918 	/* wait for BBP to be ready */
1919 	for (ntries = 0; ntries < 100; ntries++) {
1920 		val = rum_bbp_read(sc, 0);
1921 		if (val != 0 && val != 0xff)
1922 			break;
1923 		DELAY(1000);
1924 	}
1925 	if (ntries == 100) {
1926 		printf("%s: timeout waiting for BBP\n",
1927 		    device_xname(sc->sc_dev));
1928 		return EIO;
1929 	}
1930 
1931 	/* initialize BBP registers to default values */
1932 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
1933 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1934 
1935 	/* write vendor-specific BBP values (from EEPROM) */
1936 	for (i = 0; i < 16; i++) {
1937 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1938 			continue;
1939 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int
1946 rum_init(struct ifnet *ifp)
1947 {
1948 	struct rum_softc *sc = ifp->if_softc;
1949 	struct ieee80211com *ic = &sc->sc_ic;
1950 	uint32_t tmp;
1951 	usbd_status error = 0;
1952 	unsigned int i, ntries;
1953 
1954 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1955 		if (rum_attachhook(sc))
1956 			goto fail;
1957 	}
1958 
1959 	rum_stop(ifp, 0);
1960 
1961 	/* initialize MAC registers to default values */
1962 	for (i = 0; i < __arraycount(rum_def_mac); i++)
1963 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1964 
1965 	/* set host ready */
1966 	rum_write(sc, RT2573_MAC_CSR1, 3);
1967 	rum_write(sc, RT2573_MAC_CSR1, 0);
1968 
1969 	/* wait for BBP/RF to wakeup */
1970 	for (ntries = 0; ntries < 1000; ntries++) {
1971 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1972 			break;
1973 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1974 		DELAY(1000);
1975 	}
1976 	if (ntries == 1000) {
1977 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1978 		    device_xname(sc->sc_dev));
1979 		goto fail;
1980 	}
1981 
1982 	if ((error = rum_bbp_init(sc)) != 0)
1983 		goto fail;
1984 
1985 	/* select default channel */
1986 	rum_select_band(sc, ic->ic_curchan);
1987 	rum_select_antenna(sc);
1988 	rum_set_chan(sc, ic->ic_curchan);
1989 
1990 	/* clear STA registers */
1991 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1992 
1993 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1994 	rum_set_macaddr(sc, ic->ic_myaddr);
1995 
1996 	/* initialize ASIC */
1997 	rum_write(sc, RT2573_MAC_CSR1, 4);
1998 
1999 	/*
2000 	 * Allocate xfer for AMRR statistics requests.
2001 	 */
2002 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2003 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2004 	    &sc->amrr_xfer);
2005 	if (error) {
2006 		printf("%s: could not allocate AMRR xfer\n",
2007 		    device_xname(sc->sc_dev));
2008 		goto fail;
2009 	}
2010 
2011 	/*
2012 	 * Open Tx and Rx USB bulk pipes.
2013 	 */
2014 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2015 	    &sc->sc_tx_pipeh);
2016 	if (error != 0) {
2017 		printf("%s: could not open Tx pipe: %s\n",
2018 		    device_xname(sc->sc_dev), usbd_errstr(error));
2019 		goto fail;
2020 	}
2021 
2022 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2023 	    &sc->sc_rx_pipeh);
2024 	if (error != 0) {
2025 		printf("%s: could not open Rx pipe: %s\n",
2026 		    device_xname(sc->sc_dev), usbd_errstr(error));
2027 		goto fail;
2028 	}
2029 
2030 	/*
2031 	 * Allocate Tx and Rx xfer queues.
2032 	 */
2033 	error = rum_alloc_tx_list(sc);
2034 	if (error != 0) {
2035 		printf("%s: could not allocate Tx list\n",
2036 		    device_xname(sc->sc_dev));
2037 		goto fail;
2038 	}
2039 
2040 	error = rum_alloc_rx_list(sc);
2041 	if (error != 0) {
2042 		printf("%s: could not allocate Rx list\n",
2043 		    device_xname(sc->sc_dev));
2044 		goto fail;
2045 	}
2046 
2047 	/*
2048 	 * Start up the receive pipe.
2049 	 */
2050 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2051 		struct rum_rx_data *data;
2052 
2053 		data = &sc->rx_data[i];
2054 
2055 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2056 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2057 		error = usbd_transfer(data->xfer);
2058 		if (error != USBD_NORMAL_COMPLETION &&
2059 		    error != USBD_IN_PROGRESS) {
2060 			printf("%s: could not queue Rx transfer\n",
2061 			    device_xname(sc->sc_dev));
2062 			goto fail;
2063 		}
2064 	}
2065 
2066 	/* update Rx filter */
2067 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2068 
2069 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2070 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2071 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2072 		       RT2573_DROP_ACKCTS;
2073 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2074 			tmp |= RT2573_DROP_TODS;
2075 		if (!(ifp->if_flags & IFF_PROMISC))
2076 			tmp |= RT2573_DROP_NOT_TO_ME;
2077 	}
2078 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2079 
2080 	ifp->if_flags &= ~IFF_OACTIVE;
2081 	ifp->if_flags |= IFF_RUNNING;
2082 
2083 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2084 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2085 	else
2086 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2087 
2088 	return 0;
2089 
2090 fail:	rum_stop(ifp, 1);
2091 	return error;
2092 }
2093 
2094 static void
2095 rum_stop(struct ifnet *ifp, int disable)
2096 {
2097 	struct rum_softc *sc = ifp->if_softc;
2098 	struct ieee80211com *ic = &sc->sc_ic;
2099 	uint32_t tmp;
2100 
2101 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2102 
2103 	sc->sc_tx_timer = 0;
2104 	ifp->if_timer = 0;
2105 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2106 
2107 	/* disable Rx */
2108 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2109 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2110 
2111 	/* reset ASIC */
2112 	rum_write(sc, RT2573_MAC_CSR1, 3);
2113 	rum_write(sc, RT2573_MAC_CSR1, 0);
2114 
2115 	if (sc->amrr_xfer != NULL) {
2116 		usbd_destroy_xfer(sc->amrr_xfer);
2117 		sc->amrr_xfer = NULL;
2118 	}
2119 
2120 	if (sc->sc_rx_pipeh != NULL) {
2121 		usbd_abort_pipe(sc->sc_rx_pipeh);
2122 	}
2123 
2124 	if (sc->sc_tx_pipeh != NULL) {
2125 		usbd_abort_pipe(sc->sc_tx_pipeh);
2126 	}
2127 
2128 	rum_free_rx_list(sc);
2129 	rum_free_tx_list(sc);
2130 
2131 	if (sc->sc_rx_pipeh != NULL) {
2132 		usbd_close_pipe(sc->sc_rx_pipeh);
2133 		sc->sc_rx_pipeh = NULL;
2134 	}
2135 
2136 	if (sc->sc_tx_pipeh != NULL) {
2137 		usbd_close_pipe(sc->sc_tx_pipeh);
2138 		sc->sc_tx_pipeh = NULL;
2139 	}
2140 }
2141 
2142 static int
2143 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2144 {
2145 	usb_device_request_t req;
2146 	uint16_t reg = RT2573_MCU_CODE_BASE;
2147 	usbd_status error;
2148 
2149 	/* copy firmware image into NIC */
2150 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2151 		rum_write(sc, reg, UGETDW(ucode));
2152 
2153 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2154 	req.bRequest = RT2573_MCU_CNTL;
2155 	USETW(req.wValue, RT2573_MCU_RUN);
2156 	USETW(req.wIndex, 0);
2157 	USETW(req.wLength, 0);
2158 
2159 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2160 	if (error != 0) {
2161 		printf("%s: could not run firmware: %s\n",
2162 		    device_xname(sc->sc_dev), usbd_errstr(error));
2163 	}
2164 	return error;
2165 }
2166 
2167 static int
2168 rum_prepare_beacon(struct rum_softc *sc)
2169 {
2170 	struct ieee80211com *ic = &sc->sc_ic;
2171 	struct rum_tx_desc desc;
2172 	struct mbuf *m0;
2173 	int rate;
2174 
2175 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2176 	if (m0 == NULL) {
2177 		aprint_error_dev(sc->sc_dev,
2178 		    "could not allocate beacon frame\n");
2179 		return ENOBUFS;
2180 	}
2181 
2182 	/* send beacons at the lowest available rate */
2183 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2184 
2185 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2186 	    m0->m_pkthdr.len, rate);
2187 
2188 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2189 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2190 
2191 	/* copy beacon header and payload into NIC memory */
2192 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2193 	    m0->m_pkthdr.len);
2194 
2195 	m_freem(m0);
2196 
2197 	return 0;
2198 }
2199 
2200 static void
2201 rum_newassoc(struct ieee80211_node *ni, int isnew)
2202 {
2203 	/* start with lowest Tx rate */
2204 	ni->ni_txrate = 0;
2205 }
2206 
2207 static void
2208 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2209 {
2210 	int i;
2211 
2212 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2213 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2214 
2215 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2216 
2217 	/* set rate to some reasonable initial value */
2218 	for (i = ni->ni_rates.rs_nrates - 1;
2219 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2220 	     i--);
2221 	ni->ni_txrate = i;
2222 
2223 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2224 }
2225 
2226 static void
2227 rum_amrr_timeout(void *arg)
2228 {
2229 	struct rum_softc *sc = arg;
2230 	usb_device_request_t req;
2231 
2232 	/*
2233 	 * Asynchronously read statistic registers (cleared by read).
2234 	 */
2235 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2236 	req.bRequest = RT2573_READ_MULTI_MAC;
2237 	USETW(req.wValue, 0);
2238 	USETW(req.wIndex, RT2573_STA_CSR0);
2239 	USETW(req.wLength, sizeof(sc->sta));
2240 
2241 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2242 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2243 	    rum_amrr_update);
2244 	(void)usbd_transfer(sc->amrr_xfer);
2245 }
2246 
2247 static void
2248 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2249     usbd_status status)
2250 {
2251 	struct rum_softc *sc = (struct rum_softc *)priv;
2252 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2253 
2254 	if (status != USBD_NORMAL_COMPLETION) {
2255 		printf("%s: could not retrieve Tx statistics - cancelling "
2256 		    "automatic rate control\n", device_xname(sc->sc_dev));
2257 		return;
2258 	}
2259 
2260 	/* count TX retry-fail as Tx errors */
2261 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2262 
2263 	sc->amn.amn_retrycnt =
2264 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2265 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2266 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2267 
2268 	sc->amn.amn_txcnt =
2269 	    sc->amn.amn_retrycnt +
2270 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2271 
2272 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2273 
2274 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2275 }
2276 
2277 static int
2278 rum_activate(device_t self, enum devact act)
2279 {
2280 	switch (act) {
2281 	case DVACT_DEACTIVATE:
2282 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2283 		return 0;
2284 	default:
2285 		return 0;
2286 	}
2287 }
2288 
2289 MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2290 
2291 #ifdef _MODULE
2292 #include "ioconf.c"
2293 #endif
2294 
2295 static int
2296 if_rum_modcmd(modcmd_t cmd, void *aux)
2297 {
2298 	int error = 0;
2299 
2300 	switch (cmd) {
2301 	case MODULE_CMD_INIT:
2302 #ifdef _MODULE
2303 		error = config_init_component(cfdriver_ioconf_rum,
2304 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2305 #endif
2306 		return error;
2307 	case MODULE_CMD_FINI:
2308 #ifdef _MODULE
2309 		error = config_fini_component(cfdriver_ioconf_rum,
2310 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2311 #endif
2312 		return error;
2313 	default:
2314 		return ENOTTY;
2315 	}
2316 }
2317