xref: /netbsd-src/sys/dev/usb/if_rum.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.57 2016/11/25 12:56:29 skrll Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.57 2016/11/25 12:56:29 skrll Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
92 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
93 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
94 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
95 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
96 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
98 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
104 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
106 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
110 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
111 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
112 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
113 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
114 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
115 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
116 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
117 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
121 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
122 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
123 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
125 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
126 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
127 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
128 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
129 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
130 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
132 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
133 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
134 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
135 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
136 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
137 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
138 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
139 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
140 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
141 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
142 };
143 
144 static int		rum_attachhook(void *);
145 static int		rum_alloc_tx_list(struct rum_softc *);
146 static void		rum_free_tx_list(struct rum_softc *);
147 static int		rum_alloc_rx_list(struct rum_softc *);
148 static void		rum_free_rx_list(struct rum_softc *);
149 static int		rum_media_change(struct ifnet *);
150 static void		rum_next_scan(void *);
151 static void		rum_task(void *);
152 static int		rum_newstate(struct ieee80211com *,
153 			    enum ieee80211_state, int);
154 static void		rum_txeof(struct usbd_xfer *, void *,
155 			    usbd_status);
156 static void		rum_rxeof(struct usbd_xfer *, void *,
157 			    usbd_status);
158 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
159 static int		rum_ack_rate(struct ieee80211com *, int);
160 static uint16_t		rum_txtime(int, int, uint32_t);
161 static uint8_t		rum_plcp_signal(int);
162 static void		rum_setup_tx_desc(struct rum_softc *,
163 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
164 			    int);
165 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
166 			    struct ieee80211_node *);
167 static void		rum_start(struct ifnet *);
168 static void		rum_watchdog(struct ifnet *);
169 static int		rum_ioctl(struct ifnet *, u_long, void *);
170 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
171 			    int);
172 static uint32_t		rum_read(struct rum_softc *, uint16_t);
173 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
174 			    int);
175 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
176 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
177 			    size_t);
178 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
179 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
180 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
181 static void		rum_select_antenna(struct rum_softc *);
182 static void		rum_enable_mrr(struct rum_softc *);
183 static void		rum_set_txpreamble(struct rum_softc *);
184 static void		rum_set_basicrates(struct rum_softc *);
185 static void		rum_select_band(struct rum_softc *,
186 			    struct ieee80211_channel *);
187 static void		rum_set_chan(struct rum_softc *,
188 			    struct ieee80211_channel *);
189 static void		rum_enable_tsf_sync(struct rum_softc *);
190 static void		rum_update_slot(struct rum_softc *);
191 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
192 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
193 static void		rum_update_promisc(struct rum_softc *);
194 static const char	*rum_get_rf(int);
195 static void		rum_read_eeprom(struct rum_softc *);
196 static int		rum_bbp_init(struct rum_softc *);
197 static int		rum_init(struct ifnet *);
198 static void		rum_stop(struct ifnet *, int);
199 static int		rum_load_microcode(struct rum_softc *, const u_char *,
200 			    size_t);
201 static int		rum_prepare_beacon(struct rum_softc *);
202 static void		rum_newassoc(struct ieee80211_node *, int);
203 static void		rum_amrr_start(struct rum_softc *,
204 			    struct ieee80211_node *);
205 static void		rum_amrr_timeout(void *);
206 static void		rum_amrr_update(struct usbd_xfer *, void *,
207 			    usbd_status);
208 
209 /*
210  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
211  */
212 static const struct ieee80211_rateset rum_rateset_11a =
213 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
214 
215 static const struct ieee80211_rateset rum_rateset_11b =
216 	{ 4, { 2, 4, 11, 22 } };
217 
218 static const struct ieee80211_rateset rum_rateset_11g =
219 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
220 
221 static const struct {
222 	uint32_t	reg;
223 	uint32_t	val;
224 } rum_def_mac[] = {
225 	RT2573_DEF_MAC
226 };
227 
228 static const struct {
229 	uint8_t	reg;
230 	uint8_t	val;
231 } rum_def_bbp[] = {
232 	RT2573_DEF_BBP
233 };
234 
235 static const struct rfprog {
236 	uint8_t		chan;
237 	uint32_t	r1, r2, r3, r4;
238 }  rum_rf5226[] = {
239 	RT2573_RF5226
240 }, rum_rf5225[] = {
241 	RT2573_RF5225
242 };
243 
244 static int rum_match(device_t, cfdata_t, void *);
245 static void rum_attach(device_t, device_t, void *);
246 static int rum_detach(device_t, int);
247 static int rum_activate(device_t, enum devact);
248 extern struct cfdriver rum_cd;
249 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
250     rum_detach, rum_activate);
251 
252 static int
253 rum_match(device_t parent, cfdata_t match, void *aux)
254 {
255 	struct usb_attach_arg *uaa = aux;
256 
257 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
258 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
259 }
260 
261 static int
262 rum_attachhook(void *xsc)
263 {
264 	struct rum_softc *sc = xsc;
265 	firmware_handle_t fwh;
266 	const char *name = "rum-rt2573";
267 	u_char *ucode;
268 	size_t size;
269 	int error;
270 
271 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
272 		printf("%s: failed firmware_open of file %s (error %d)\n",
273 		    device_xname(sc->sc_dev), name, error);
274 		return error;
275 	}
276 	size = firmware_get_size(fwh);
277 	ucode = firmware_malloc(size);
278 	if (ucode == NULL) {
279 		printf("%s: failed to allocate firmware memory\n",
280 		    device_xname(sc->sc_dev));
281 		firmware_close(fwh);
282 		return ENOMEM;
283 	}
284 	error = firmware_read(fwh, 0, ucode, size);
285 	firmware_close(fwh);
286 	if (error != 0) {
287 		printf("%s: failed to read firmware (error %d)\n",
288 		    device_xname(sc->sc_dev), error);
289 		firmware_free(ucode, size);
290 		return error;
291 	}
292 
293 	if (rum_load_microcode(sc, ucode, size) != 0) {
294 		printf("%s: could not load 8051 microcode\n",
295 		    device_xname(sc->sc_dev));
296 		firmware_free(ucode, size);
297 		return ENXIO;
298 	}
299 
300 	firmware_free(ucode, size);
301 	sc->sc_flags |= RT2573_FWLOADED;
302 
303 	return 0;
304 }
305 
306 static void
307 rum_attach(device_t parent, device_t self, void *aux)
308 {
309 	struct rum_softc *sc = device_private(self);
310 	struct usb_attach_arg *uaa = aux;
311 	struct ieee80211com *ic = &sc->sc_ic;
312 	struct ifnet *ifp = &sc->sc_if;
313 	usb_interface_descriptor_t *id;
314 	usb_endpoint_descriptor_t *ed;
315 	usbd_status error;
316 	char *devinfop;
317 	int i, ntries;
318 	uint32_t tmp;
319 
320 	sc->sc_dev = self;
321 	sc->sc_udev = uaa->uaa_device;
322 	sc->sc_flags = 0;
323 
324 	aprint_naive("\n");
325 	aprint_normal("\n");
326 
327 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
328 	aprint_normal_dev(self, "%s\n", devinfop);
329 	usbd_devinfo_free(devinfop);
330 
331 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
332 	if (error != 0) {
333 		aprint_error_dev(self, "failed to set configuration"
334 		    ", err=%s\n", usbd_errstr(error));
335 		return;
336 	}
337 
338 	/* get the first interface handle */
339 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
340 	    &sc->sc_iface);
341 	if (error != 0) {
342 		aprint_error_dev(self, "could not get interface handle\n");
343 		return;
344 	}
345 
346 	/*
347 	 * Find endpoints.
348 	 */
349 	id = usbd_get_interface_descriptor(sc->sc_iface);
350 
351 	sc->sc_rx_no = sc->sc_tx_no = -1;
352 	for (i = 0; i < id->bNumEndpoints; i++) {
353 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
354 		if (ed == NULL) {
355 			aprint_error_dev(self,
356 			    "no endpoint descriptor for iface %d\n", i);
357 			return;
358 		}
359 
360 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
361 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 			sc->sc_rx_no = ed->bEndpointAddress;
363 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
364 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
365 			sc->sc_tx_no = ed->bEndpointAddress;
366 	}
367 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
368 		aprint_error_dev(self, "missing endpoint\n");
369 		return;
370 	}
371 
372 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
373 	callout_init(&sc->sc_scan_ch, 0);
374 
375 	sc->amrr.amrr_min_success_threshold =  1;
376 	sc->amrr.amrr_max_success_threshold = 10;
377 	callout_init(&sc->sc_amrr_ch, 0);
378 
379 	/* retrieve RT2573 rev. no */
380 	for (ntries = 0; ntries < 1000; ntries++) {
381 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
382 			break;
383 		DELAY(1000);
384 	}
385 	if (ntries == 1000) {
386 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
387 		return;
388 	}
389 
390 	/* retrieve MAC address and various other things from EEPROM */
391 	rum_read_eeprom(sc);
392 
393 	aprint_normal_dev(self,
394 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
395 	    sc->macbbp_rev, tmp,
396 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
397 
398 	ic->ic_ifp = ifp;
399 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
400 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
401 	ic->ic_state = IEEE80211_S_INIT;
402 
403 	/* set device capabilities */
404 	ic->ic_caps =
405 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
406 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
407 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
408 	    IEEE80211_C_TXPMGT |	/* tx power management */
409 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
410 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
411 	    IEEE80211_C_WPA;		/* 802.11i */
412 
413 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
414 		/* set supported .11a rates */
415 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
416 
417 		/* set supported .11a channels */
418 		for (i = 34; i <= 46; i += 4) {
419 			ic->ic_channels[i].ic_freq =
420 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
421 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
422 		}
423 		for (i = 36; i <= 64; i += 4) {
424 			ic->ic_channels[i].ic_freq =
425 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
426 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
427 		}
428 		for (i = 100; i <= 140; i += 4) {
429 			ic->ic_channels[i].ic_freq =
430 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 		}
433 		for (i = 149; i <= 165; i += 4) {
434 			ic->ic_channels[i].ic_freq =
435 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 		}
438 	}
439 
440 	/* set supported .11b and .11g rates */
441 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
442 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
443 
444 	/* set supported .11b and .11g channels (1 through 14) */
445 	for (i = 1; i <= 14; i++) {
446 		ic->ic_channels[i].ic_freq =
447 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
448 		ic->ic_channels[i].ic_flags =
449 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
450 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
451 	}
452 
453 	ifp->if_softc = sc;
454 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
455 	ifp->if_init = rum_init;
456 	ifp->if_ioctl = rum_ioctl;
457 	ifp->if_start = rum_start;
458 	ifp->if_watchdog = rum_watchdog;
459 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
460 	IFQ_SET_READY(&ifp->if_snd);
461 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
462 
463 	if_attach(ifp);
464 	ieee80211_ifattach(ic);
465 	ic->ic_newassoc = rum_newassoc;
466 
467 	/* override state transition machine */
468 	sc->sc_newstate = ic->ic_newstate;
469 	ic->ic_newstate = rum_newstate;
470 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
471 
472 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
473 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
474 	    &sc->sc_drvbpf);
475 
476 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
477 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
478 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
479 
480 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
481 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
482 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
483 
484 	ieee80211_announce(ic);
485 
486 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
487 
488 	if (!pmf_device_register(self, NULL, NULL))
489 		aprint_error_dev(self, "couldn't establish power handler\n");
490 
491 	return;
492 }
493 
494 static int
495 rum_detach(device_t self, int flags)
496 {
497 	struct rum_softc *sc = device_private(self);
498 	struct ieee80211com *ic = &sc->sc_ic;
499 	struct ifnet *ifp = &sc->sc_if;
500 	int s;
501 
502 	if (!ifp->if_softc)
503 		return 0;
504 
505 	pmf_device_deregister(self);
506 
507 	s = splusb();
508 
509 	rum_stop(ifp, 1);
510 	usb_rem_task(sc->sc_udev, &sc->sc_task);
511 	callout_stop(&sc->sc_scan_ch);
512 	callout_stop(&sc->sc_amrr_ch);
513 
514 	bpf_detach(ifp);
515 	ieee80211_ifdetach(ic);	/* free all nodes */
516 	if_detach(ifp);
517 
518 	splx(s);
519 
520 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
521 
522 	return 0;
523 }
524 
525 static int
526 rum_alloc_tx_list(struct rum_softc *sc)
527 {
528 	struct rum_tx_data *data;
529 	int i, error;
530 
531 	sc->tx_cur = sc->tx_queued = 0;
532 
533 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
534 		data = &sc->tx_data[i];
535 
536 		data->sc = sc;
537 
538 		error = usbd_create_xfer(sc->sc_tx_pipeh,
539 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
540 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
541 		if (error) {
542 			printf("%s: could not allocate tx xfer\n",
543 			    device_xname(sc->sc_dev));
544 			goto fail;
545 		}
546 		data->buf = usbd_get_buffer(data->xfer);
547 
548 		/* clean Tx descriptor */
549 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
550 	}
551 
552 	return 0;
553 
554 fail:	rum_free_tx_list(sc);
555 	return error;
556 }
557 
558 static void
559 rum_free_tx_list(struct rum_softc *sc)
560 {
561 	struct rum_tx_data *data;
562 	int i;
563 
564 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
565 		data = &sc->tx_data[i];
566 
567 		if (data->xfer != NULL) {
568 			usbd_destroy_xfer(data->xfer);
569 			data->xfer = NULL;
570 		}
571 
572 		if (data->ni != NULL) {
573 			ieee80211_free_node(data->ni);
574 			data->ni = NULL;
575 		}
576 	}
577 }
578 
579 static int
580 rum_alloc_rx_list(struct rum_softc *sc)
581 {
582 	struct rum_rx_data *data;
583 	int i, error;
584 
585 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
586 		data = &sc->rx_data[i];
587 
588 		data->sc = sc;
589 
590 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
591 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
592 		if (error) {
593 			printf("%s: could not allocate rx xfer\n",
594 			    device_xname(sc->sc_dev));
595 			goto fail;
596 		}
597 
598 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
599 		if (data->m == NULL) {
600 			printf("%s: could not allocate rx mbuf\n",
601 			    device_xname(sc->sc_dev));
602 			error = ENOMEM;
603 			goto fail;
604 		}
605 
606 		MCLGET(data->m, M_DONTWAIT);
607 		if (!(data->m->m_flags & M_EXT)) {
608 			printf("%s: could not allocate rx mbuf cluster\n",
609 			    device_xname(sc->sc_dev));
610 			error = ENOMEM;
611 			goto fail;
612 		}
613 
614 		data->buf = mtod(data->m, uint8_t *);
615 	}
616 
617 	return 0;
618 
619 fail:	rum_free_rx_list(sc);
620 	return error;
621 }
622 
623 static void
624 rum_free_rx_list(struct rum_softc *sc)
625 {
626 	struct rum_rx_data *data;
627 	int i;
628 
629 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
630 		data = &sc->rx_data[i];
631 
632 		if (data->xfer != NULL) {
633 			usbd_destroy_xfer(data->xfer);
634 			data->xfer = NULL;
635 		}
636 
637 		if (data->m != NULL) {
638 			m_freem(data->m);
639 			data->m = NULL;
640 		}
641 	}
642 }
643 
644 static int
645 rum_media_change(struct ifnet *ifp)
646 {
647 	int error;
648 
649 	error = ieee80211_media_change(ifp);
650 	if (error != ENETRESET)
651 		return error;
652 
653 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
654 		rum_init(ifp);
655 
656 	return 0;
657 }
658 
659 /*
660  * This function is called periodically (every 200ms) during scanning to
661  * switch from one channel to another.
662  */
663 static void
664 rum_next_scan(void *arg)
665 {
666 	struct rum_softc *sc = arg;
667 	struct ieee80211com *ic = &sc->sc_ic;
668 	int s;
669 
670 	s = splnet();
671 	if (ic->ic_state == IEEE80211_S_SCAN)
672 		ieee80211_next_scan(ic);
673 	splx(s);
674 }
675 
676 static void
677 rum_task(void *arg)
678 {
679 	struct rum_softc *sc = arg;
680 	struct ieee80211com *ic = &sc->sc_ic;
681 	enum ieee80211_state ostate;
682 	struct ieee80211_node *ni;
683 	uint32_t tmp;
684 
685 	ostate = ic->ic_state;
686 
687 	switch (sc->sc_state) {
688 	case IEEE80211_S_INIT:
689 		if (ostate == IEEE80211_S_RUN) {
690 			/* abort TSF synchronization */
691 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
692 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
693 		}
694 		break;
695 
696 	case IEEE80211_S_SCAN:
697 		rum_set_chan(sc, ic->ic_curchan);
698 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
699 		break;
700 
701 	case IEEE80211_S_AUTH:
702 		rum_set_chan(sc, ic->ic_curchan);
703 		break;
704 
705 	case IEEE80211_S_ASSOC:
706 		rum_set_chan(sc, ic->ic_curchan);
707 		break;
708 
709 	case IEEE80211_S_RUN:
710 		rum_set_chan(sc, ic->ic_curchan);
711 
712 		ni = ic->ic_bss;
713 
714 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
715 			rum_update_slot(sc);
716 			rum_enable_mrr(sc);
717 			rum_set_txpreamble(sc);
718 			rum_set_basicrates(sc);
719 			rum_set_bssid(sc, ni->ni_bssid);
720 		}
721 
722 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
723 		    ic->ic_opmode == IEEE80211_M_IBSS)
724 			rum_prepare_beacon(sc);
725 
726 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
727 			rum_enable_tsf_sync(sc);
728 
729 		if (ic->ic_opmode == IEEE80211_M_STA) {
730 			/* fake a join to init the tx rate */
731 			rum_newassoc(ic->ic_bss, 1);
732 
733 			/* enable automatic rate adaptation in STA mode */
734 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
735 				rum_amrr_start(sc, ni);
736 		}
737 
738 		break;
739 	}
740 
741 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
742 }
743 
744 static int
745 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
746 {
747 	struct rum_softc *sc = ic->ic_ifp->if_softc;
748 
749 	usb_rem_task(sc->sc_udev, &sc->sc_task);
750 	callout_stop(&sc->sc_scan_ch);
751 	callout_stop(&sc->sc_amrr_ch);
752 
753 	/* do it in a process context */
754 	sc->sc_state = nstate;
755 	sc->sc_arg = arg;
756 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
757 
758 	return 0;
759 }
760 
761 /* quickly determine if a given rate is CCK or OFDM */
762 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
763 
764 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
765 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
766 
767 static void
768 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
769 {
770 	struct rum_tx_data *data = priv;
771 	struct rum_softc *sc = data->sc;
772 	struct ifnet *ifp = &sc->sc_if;
773 	int s;
774 
775 	if (status != USBD_NORMAL_COMPLETION) {
776 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
777 			return;
778 
779 		printf("%s: could not transmit buffer: %s\n",
780 		    device_xname(sc->sc_dev), usbd_errstr(status));
781 
782 		if (status == USBD_STALLED)
783 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
784 
785 		ifp->if_oerrors++;
786 		return;
787 	}
788 
789 	s = splnet();
790 
791 	ieee80211_free_node(data->ni);
792 	data->ni = NULL;
793 
794 	sc->tx_queued--;
795 	ifp->if_opackets++;
796 
797 	DPRINTFN(10, ("tx done\n"));
798 
799 	sc->sc_tx_timer = 0;
800 	ifp->if_flags &= ~IFF_OACTIVE;
801 	rum_start(ifp);
802 
803 	splx(s);
804 }
805 
806 static void
807 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
808 {
809 	struct rum_rx_data *data = priv;
810 	struct rum_softc *sc = data->sc;
811 	struct ieee80211com *ic = &sc->sc_ic;
812 	struct ifnet *ifp = &sc->sc_if;
813 	struct rum_rx_desc *desc;
814 	struct ieee80211_frame *wh;
815 	struct ieee80211_node *ni;
816 	struct mbuf *mnew, *m;
817 	int s, len;
818 
819 	if (status != USBD_NORMAL_COMPLETION) {
820 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
821 			return;
822 
823 		if (status == USBD_STALLED)
824 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
825 		goto skip;
826 	}
827 
828 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
829 
830 	if (len < (int)(RT2573_RX_DESC_SIZE +
831 		        sizeof(struct ieee80211_frame_min))) {
832 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
833 		    len));
834 		ifp->if_ierrors++;
835 		goto skip;
836 	}
837 
838 	desc = (struct rum_rx_desc *)data->buf;
839 
840 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
841 		/*
842 		 * This should not happen since we did not request to receive
843 		 * those frames when we filled RT2573_TXRX_CSR0.
844 		 */
845 		DPRINTFN(5, ("CRC error\n"));
846 		ifp->if_ierrors++;
847 		goto skip;
848 	}
849 
850 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
851 	if (mnew == NULL) {
852 		printf("%s: could not allocate rx mbuf\n",
853 		    device_xname(sc->sc_dev));
854 		ifp->if_ierrors++;
855 		goto skip;
856 	}
857 
858 	MCLGET(mnew, M_DONTWAIT);
859 	if (!(mnew->m_flags & M_EXT)) {
860 		printf("%s: could not allocate rx mbuf cluster\n",
861 		    device_xname(sc->sc_dev));
862 		m_freem(mnew);
863 		ifp->if_ierrors++;
864 		goto skip;
865 	}
866 
867 	m = data->m;
868 	data->m = mnew;
869 	data->buf = mtod(data->m, uint8_t *);
870 
871 	/* finalize mbuf */
872 	m_set_rcvif(m, ifp);
873 	m->m_data = (void *)(desc + 1);
874 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
875 
876 	s = splnet();
877 
878 	if (sc->sc_drvbpf != NULL) {
879 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
880 
881 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
882 		tap->wr_rate = rum_rxrate(desc);
883 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
884 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
885 		tap->wr_antenna = sc->rx_ant;
886 		tap->wr_antsignal = desc->rssi;
887 
888 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
889 	}
890 
891 	wh = mtod(m, struct ieee80211_frame *);
892 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
893 
894 	/* send the frame to the 802.11 layer */
895 	ieee80211_input(ic, m, ni, desc->rssi, 0);
896 
897 	/* node is no longer needed */
898 	ieee80211_free_node(ni);
899 
900 	splx(s);
901 
902 	DPRINTFN(15, ("rx done\n"));
903 
904 skip:	/* setup a new transfer */
905 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
906 	    USBD_NO_TIMEOUT, rum_rxeof);
907 	usbd_transfer(xfer);
908 }
909 
910 /*
911  * This function is only used by the Rx radiotap code. It returns the rate at
912  * which a given frame was received.
913  */
914 static uint8_t
915 rum_rxrate(const struct rum_rx_desc *desc)
916 {
917 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
918 		/* reverse function of rum_plcp_signal */
919 		switch (desc->rate) {
920 		case 0xb:	return 12;
921 		case 0xf:	return 18;
922 		case 0xa:	return 24;
923 		case 0xe:	return 36;
924 		case 0x9:	return 48;
925 		case 0xd:	return 72;
926 		case 0x8:	return 96;
927 		case 0xc:	return 108;
928 		}
929 	} else {
930 		if (desc->rate == 10)
931 			return 2;
932 		if (desc->rate == 20)
933 			return 4;
934 		if (desc->rate == 55)
935 			return 11;
936 		if (desc->rate == 110)
937 			return 22;
938 	}
939 	return 2;	/* should not get there */
940 }
941 
942 /*
943  * Return the expected ack rate for a frame transmitted at rate `rate'.
944  * XXX: this should depend on the destination node basic rate set.
945  */
946 static int
947 rum_ack_rate(struct ieee80211com *ic, int rate)
948 {
949 	switch (rate) {
950 	/* CCK rates */
951 	case 2:
952 		return 2;
953 	case 4:
954 	case 11:
955 	case 22:
956 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
957 
958 	/* OFDM rates */
959 	case 12:
960 	case 18:
961 		return 12;
962 	case 24:
963 	case 36:
964 		return 24;
965 	case 48:
966 	case 72:
967 	case 96:
968 	case 108:
969 		return 48;
970 	}
971 
972 	/* default to 1Mbps */
973 	return 2;
974 }
975 
976 /*
977  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
978  * The function automatically determines the operating mode depending on the
979  * given rate. `flags' indicates whether short preamble is in use or not.
980  */
981 static uint16_t
982 rum_txtime(int len, int rate, uint32_t flags)
983 {
984 	uint16_t txtime;
985 
986 	if (RUM_RATE_IS_OFDM(rate)) {
987 		/* IEEE Std 802.11a-1999, pp. 37 */
988 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
989 		txtime = 16 + 4 + 4 * txtime + 6;
990 	} else {
991 		/* IEEE Std 802.11b-1999, pp. 28 */
992 		txtime = (16 * len + rate - 1) / rate;
993 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
994 			txtime +=  72 + 24;
995 		else
996 			txtime += 144 + 48;
997 	}
998 	return txtime;
999 }
1000 
1001 static uint8_t
1002 rum_plcp_signal(int rate)
1003 {
1004 	switch (rate) {
1005 	/* CCK rates (returned values are device-dependent) */
1006 	case 2:		return 0x0;
1007 	case 4:		return 0x1;
1008 	case 11:	return 0x2;
1009 	case 22:	return 0x3;
1010 
1011 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1012 	case 12:	return 0xb;
1013 	case 18:	return 0xf;
1014 	case 24:	return 0xa;
1015 	case 36:	return 0xe;
1016 	case 48:	return 0x9;
1017 	case 72:	return 0xd;
1018 	case 96:	return 0x8;
1019 	case 108:	return 0xc;
1020 
1021 	/* unsupported rates (should not get there) */
1022 	default:	return 0xff;
1023 	}
1024 }
1025 
1026 static void
1027 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1028     uint32_t flags, uint16_t xflags, int len, int rate)
1029 {
1030 	struct ieee80211com *ic = &sc->sc_ic;
1031 	uint16_t plcp_length;
1032 	int remainder;
1033 
1034 	desc->flags = htole32(flags);
1035 	desc->flags |= htole32(RT2573_TX_VALID);
1036 	desc->flags |= htole32(len << 16);
1037 
1038 	desc->xflags = htole16(xflags);
1039 
1040 	desc->wme = htole16(
1041 	    RT2573_QID(0) |
1042 	    RT2573_AIFSN(2) |
1043 	    RT2573_LOGCWMIN(4) |
1044 	    RT2573_LOGCWMAX(10));
1045 
1046 	/* setup PLCP fields */
1047 	desc->plcp_signal  = rum_plcp_signal(rate);
1048 	desc->plcp_service = 4;
1049 
1050 	len += IEEE80211_CRC_LEN;
1051 	if (RUM_RATE_IS_OFDM(rate)) {
1052 		desc->flags |= htole32(RT2573_TX_OFDM);
1053 
1054 		plcp_length = len & 0xfff;
1055 		desc->plcp_length_hi = plcp_length >> 6;
1056 		desc->plcp_length_lo = plcp_length & 0x3f;
1057 	} else {
1058 		plcp_length = (16 * len + rate - 1) / rate;
1059 		if (rate == 22) {
1060 			remainder = (16 * len) % 22;
1061 			if (remainder != 0 && remainder < 7)
1062 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1063 		}
1064 		desc->plcp_length_hi = plcp_length >> 8;
1065 		desc->plcp_length_lo = plcp_length & 0xff;
1066 
1067 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1068 			desc->plcp_signal |= 0x08;
1069 	}
1070 }
1071 
1072 #define RUM_TX_TIMEOUT	5000
1073 
1074 static int
1075 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1076 {
1077 	struct ieee80211com *ic = &sc->sc_ic;
1078 	struct rum_tx_desc *desc;
1079 	struct rum_tx_data *data;
1080 	struct ieee80211_frame *wh;
1081 	struct ieee80211_key *k;
1082 	uint32_t flags = 0;
1083 	uint16_t dur;
1084 	usbd_status error;
1085 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1086 
1087 	wh = mtod(m0, struct ieee80211_frame *);
1088 
1089 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1090 		k = ieee80211_crypto_encap(ic, ni, m0);
1091 		if (k == NULL) {
1092 			m_freem(m0);
1093 			return ENOBUFS;
1094 		}
1095 
1096 		/* packet header may have moved, reset our local pointer */
1097 		wh = mtod(m0, struct ieee80211_frame *);
1098 	}
1099 
1100 	/* compute actual packet length (including CRC and crypto overhead) */
1101 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1102 
1103 	/* pickup a rate */
1104 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1105 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1106 	     IEEE80211_FC0_TYPE_MGT)) {
1107 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1108 		rate = ni->ni_rates.rs_rates[0];
1109 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1110 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1111 	} else
1112 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1113 	if (rate == 0)
1114 		rate = 2;	/* XXX should not happen */
1115 	rate &= IEEE80211_RATE_VAL;
1116 
1117 	/* check if RTS/CTS or CTS-to-self protection must be used */
1118 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1119 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1120 		if (pktlen > ic->ic_rtsthreshold) {
1121 			needrts = 1;	/* RTS/CTS based on frame length */
1122 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1123 		    RUM_RATE_IS_OFDM(rate)) {
1124 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1125 				needcts = 1;	/* CTS-to-self */
1126 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1127 				needrts = 1;	/* RTS/CTS */
1128 		}
1129 	}
1130 	if (needrts || needcts) {
1131 		struct mbuf *mprot;
1132 		int protrate, ackrate;
1133 
1134 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1135 		ackrate  = rum_ack_rate(ic, rate);
1136 
1137 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1138 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1139 		      2 * sc->sifs;
1140 		if (needrts) {
1141 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1142 			    protrate), ic->ic_flags) + sc->sifs;
1143 			mprot = ieee80211_get_rts(ic, wh, dur);
1144 		} else {
1145 			mprot = ieee80211_get_cts_to_self(ic, dur);
1146 		}
1147 		if (mprot == NULL) {
1148 			aprint_error_dev(sc->sc_dev,
1149 			    "couldn't allocate protection frame\n");
1150 			m_freem(m0);
1151 			return ENOBUFS;
1152 		}
1153 
1154 		data = &sc->tx_data[sc->tx_cur];
1155 		desc = (struct rum_tx_desc *)data->buf;
1156 
1157 		/* avoid multiple free() of the same node for each fragment */
1158 		data->ni = ieee80211_ref_node(ni);
1159 
1160 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1161 		    data->buf + RT2573_TX_DESC_SIZE);
1162 		rum_setup_tx_desc(sc, desc,
1163 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1164 		    0, mprot->m_pkthdr.len, protrate);
1165 
1166 		/* no roundup necessary here */
1167 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1168 
1169 		/* XXX may want to pass the protection frame to BPF */
1170 
1171 		/* mbuf is no longer needed */
1172 		m_freem(mprot);
1173 
1174 		usbd_setup_xfer(data->xfer, data, data->buf,
1175 		    xferlen, USBD_FORCE_SHORT_XFER,
1176 		    RUM_TX_TIMEOUT, rum_txeof);
1177 		error = usbd_transfer(data->xfer);
1178 		if (error != USBD_NORMAL_COMPLETION &&
1179 		    error != USBD_IN_PROGRESS) {
1180 			m_freem(m0);
1181 			return error;
1182 		}
1183 
1184 		sc->tx_queued++;
1185 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1186 
1187 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1188 	}
1189 
1190 	data = &sc->tx_data[sc->tx_cur];
1191 	desc = (struct rum_tx_desc *)data->buf;
1192 
1193 	data->ni = ni;
1194 
1195 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1196 		flags |= RT2573_TX_NEED_ACK;
1197 
1198 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1199 		    ic->ic_flags) + sc->sifs;
1200 		*(uint16_t *)wh->i_dur = htole16(dur);
1201 
1202 		/* tell hardware to set timestamp in probe responses */
1203 		if ((wh->i_fc[0] &
1204 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1205 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1206 			flags |= RT2573_TX_TIMESTAMP;
1207 	}
1208 
1209 	if (sc->sc_drvbpf != NULL) {
1210 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1211 
1212 		tap->wt_flags = 0;
1213 		tap->wt_rate = rate;
1214 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1215 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1216 		tap->wt_antenna = sc->tx_ant;
1217 
1218 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1219 	}
1220 
1221 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1222 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1223 
1224 	/* align end on a 4-bytes boundary */
1225 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1226 
1227 	/*
1228 	 * No space left in the last URB to store the extra 4 bytes, force
1229 	 * sending of another URB.
1230 	 */
1231 	if ((xferlen % 64) == 0)
1232 		xferlen += 4;
1233 
1234 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1235 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1236 	    rate, xferlen));
1237 
1238 	/* mbuf is no longer needed */
1239 	m_freem(m0);
1240 
1241 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1242 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1243 	error = usbd_transfer(data->xfer);
1244 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1245 		return error;
1246 
1247 	sc->tx_queued++;
1248 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1249 
1250 	return 0;
1251 }
1252 
1253 static void
1254 rum_start(struct ifnet *ifp)
1255 {
1256 	struct rum_softc *sc = ifp->if_softc;
1257 	struct ieee80211com *ic = &sc->sc_ic;
1258 	struct ether_header *eh;
1259 	struct ieee80211_node *ni;
1260 	struct mbuf *m0;
1261 
1262 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1263 		return;
1264 
1265 	for (;;) {
1266 		IF_POLL(&ic->ic_mgtq, m0);
1267 		if (m0 != NULL) {
1268 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1269 				ifp->if_flags |= IFF_OACTIVE;
1270 				break;
1271 			}
1272 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1273 
1274 			ni = M_GETCTX(m0, struct ieee80211_node *);
1275 			M_CLEARCTX(m0);
1276 			bpf_mtap3(ic->ic_rawbpf, m0);
1277 			if (rum_tx_data(sc, m0, ni) != 0)
1278 				break;
1279 
1280 		} else {
1281 			if (ic->ic_state != IEEE80211_S_RUN)
1282 				break;
1283 			IFQ_POLL(&ifp->if_snd, m0);
1284 			if (m0 == NULL)
1285 				break;
1286 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1287 				ifp->if_flags |= IFF_OACTIVE;
1288 				break;
1289 			}
1290 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1291 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1292 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1293 				continue;
1294 
1295 			eh = mtod(m0, struct ether_header *);
1296 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1297 			if (ni == NULL) {
1298 				m_freem(m0);
1299 				continue;
1300 			}
1301 			bpf_mtap(ifp, m0);
1302 			m0 = ieee80211_encap(ic, m0, ni);
1303 			if (m0 == NULL) {
1304 				ieee80211_free_node(ni);
1305 				continue;
1306 			}
1307 			bpf_mtap3(ic->ic_rawbpf, m0);
1308 			if (rum_tx_data(sc, m0, ni) != 0) {
1309 				ieee80211_free_node(ni);
1310 				ifp->if_oerrors++;
1311 				break;
1312 			}
1313 		}
1314 
1315 		sc->sc_tx_timer = 5;
1316 		ifp->if_timer = 1;
1317 	}
1318 }
1319 
1320 static void
1321 rum_watchdog(struct ifnet *ifp)
1322 {
1323 	struct rum_softc *sc = ifp->if_softc;
1324 	struct ieee80211com *ic = &sc->sc_ic;
1325 
1326 	ifp->if_timer = 0;
1327 
1328 	if (sc->sc_tx_timer > 0) {
1329 		if (--sc->sc_tx_timer == 0) {
1330 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1331 			/*rum_init(ifp); XXX needs a process context! */
1332 			ifp->if_oerrors++;
1333 			return;
1334 		}
1335 		ifp->if_timer = 1;
1336 	}
1337 
1338 	ieee80211_watchdog(ic);
1339 }
1340 
1341 static int
1342 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1343 {
1344 #define IS_RUNNING(ifp) \
1345 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1346 
1347 	struct rum_softc *sc = ifp->if_softc;
1348 	struct ieee80211com *ic = &sc->sc_ic;
1349 	int s, error = 0;
1350 
1351 	s = splnet();
1352 
1353 	switch (cmd) {
1354 	case SIOCSIFFLAGS:
1355 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1356 			break;
1357 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1358 		case IFF_UP|IFF_RUNNING:
1359 			rum_update_promisc(sc);
1360 			break;
1361 		case IFF_UP:
1362 			rum_init(ifp);
1363 			break;
1364 		case IFF_RUNNING:
1365 			rum_stop(ifp, 1);
1366 			break;
1367 		case 0:
1368 			break;
1369 		}
1370 		break;
1371 
1372 	case SIOCADDMULTI:
1373 	case SIOCDELMULTI:
1374 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1375 			error = 0;
1376 		}
1377 		break;
1378 
1379 	default:
1380 		error = ieee80211_ioctl(ic, cmd, data);
1381 	}
1382 
1383 	if (error == ENETRESET) {
1384 		if (IS_RUNNING(ifp) &&
1385 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1386 			rum_init(ifp);
1387 		error = 0;
1388 	}
1389 
1390 	splx(s);
1391 
1392 	return error;
1393 #undef IS_RUNNING
1394 }
1395 
1396 static void
1397 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1398 {
1399 	usb_device_request_t req;
1400 	usbd_status error;
1401 
1402 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1403 	req.bRequest = RT2573_READ_EEPROM;
1404 	USETW(req.wValue, 0);
1405 	USETW(req.wIndex, addr);
1406 	USETW(req.wLength, len);
1407 
1408 	error = usbd_do_request(sc->sc_udev, &req, buf);
1409 	if (error != 0) {
1410 		printf("%s: could not read EEPROM: %s\n",
1411 		    device_xname(sc->sc_dev), usbd_errstr(error));
1412 	}
1413 }
1414 
1415 static uint32_t
1416 rum_read(struct rum_softc *sc, uint16_t reg)
1417 {
1418 	uint32_t val;
1419 
1420 	rum_read_multi(sc, reg, &val, sizeof(val));
1421 
1422 	return le32toh(val);
1423 }
1424 
1425 static void
1426 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1427 {
1428 	usb_device_request_t req;
1429 	usbd_status error;
1430 
1431 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1432 	req.bRequest = RT2573_READ_MULTI_MAC;
1433 	USETW(req.wValue, 0);
1434 	USETW(req.wIndex, reg);
1435 	USETW(req.wLength, len);
1436 
1437 	error = usbd_do_request(sc->sc_udev, &req, buf);
1438 	if (error != 0) {
1439 		printf("%s: could not multi read MAC register: %s\n",
1440 		    device_xname(sc->sc_dev), usbd_errstr(error));
1441 	}
1442 }
1443 
1444 static void
1445 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1446 {
1447 	uint32_t tmp = htole32(val);
1448 
1449 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1450 }
1451 
1452 static void
1453 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1454 {
1455 	usb_device_request_t req;
1456 	usbd_status error;
1457 	int offset;
1458 
1459 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1460 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1461 	USETW(req.wValue, 0);
1462 
1463 	/* write at most 64 bytes at a time */
1464 	for (offset = 0; offset < len; offset += 64) {
1465 		USETW(req.wIndex, reg + offset);
1466 		USETW(req.wLength, MIN(len - offset, 64));
1467 
1468 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1469 		if (error != 0) {
1470 			printf("%s: could not multi write MAC register: %s\n",
1471 			    device_xname(sc->sc_dev), usbd_errstr(error));
1472 		}
1473 	}
1474 }
1475 
1476 static void
1477 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1478 {
1479 	uint32_t tmp;
1480 	int ntries;
1481 
1482 	for (ntries = 0; ntries < 5; ntries++) {
1483 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1484 			break;
1485 	}
1486 	if (ntries == 5) {
1487 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1488 		return;
1489 	}
1490 
1491 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1492 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1493 }
1494 
1495 static uint8_t
1496 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1497 {
1498 	uint32_t val;
1499 	int ntries;
1500 
1501 	for (ntries = 0; ntries < 5; ntries++) {
1502 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1503 			break;
1504 	}
1505 	if (ntries == 5) {
1506 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1507 		return 0;
1508 	}
1509 
1510 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1511 	rum_write(sc, RT2573_PHY_CSR3, val);
1512 
1513 	for (ntries = 0; ntries < 100; ntries++) {
1514 		val = rum_read(sc, RT2573_PHY_CSR3);
1515 		if (!(val & RT2573_BBP_BUSY))
1516 			return val & 0xff;
1517 		DELAY(1);
1518 	}
1519 
1520 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1521 	return 0;
1522 }
1523 
1524 static void
1525 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1526 {
1527 	uint32_t tmp;
1528 	int ntries;
1529 
1530 	for (ntries = 0; ntries < 5; ntries++) {
1531 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1532 			break;
1533 	}
1534 	if (ntries == 5) {
1535 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1536 		return;
1537 	}
1538 
1539 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1540 	    (reg & 3);
1541 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1542 
1543 	/* remember last written value in sc */
1544 	sc->rf_regs[reg] = val;
1545 
1546 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1547 }
1548 
1549 static void
1550 rum_select_antenna(struct rum_softc *sc)
1551 {
1552 	uint8_t bbp4, bbp77;
1553 	uint32_t tmp;
1554 
1555 	bbp4  = rum_bbp_read(sc, 4);
1556 	bbp77 = rum_bbp_read(sc, 77);
1557 
1558 	/* TBD */
1559 
1560 	/* make sure Rx is disabled before switching antenna */
1561 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1562 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1563 
1564 	rum_bbp_write(sc,  4, bbp4);
1565 	rum_bbp_write(sc, 77, bbp77);
1566 
1567 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1568 }
1569 
1570 /*
1571  * Enable multi-rate retries for frames sent at OFDM rates.
1572  * In 802.11b/g mode, allow fallback to CCK rates.
1573  */
1574 static void
1575 rum_enable_mrr(struct rum_softc *sc)
1576 {
1577 	struct ieee80211com *ic = &sc->sc_ic;
1578 	uint32_t tmp;
1579 
1580 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1581 
1582 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1583 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1584 		tmp |= RT2573_MRR_CCK_FALLBACK;
1585 	tmp |= RT2573_MRR_ENABLED;
1586 
1587 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1588 }
1589 
1590 static void
1591 rum_set_txpreamble(struct rum_softc *sc)
1592 {
1593 	uint32_t tmp;
1594 
1595 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1596 
1597 	tmp &= ~RT2573_SHORT_PREAMBLE;
1598 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1599 		tmp |= RT2573_SHORT_PREAMBLE;
1600 
1601 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1602 }
1603 
1604 static void
1605 rum_set_basicrates(struct rum_softc *sc)
1606 {
1607 	struct ieee80211com *ic = &sc->sc_ic;
1608 
1609 	/* update basic rate set */
1610 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1611 		/* 11b basic rates: 1, 2Mbps */
1612 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1613 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1614 		/* 11a basic rates: 6, 12, 24Mbps */
1615 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1616 	} else {
1617 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1618 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1619 	}
1620 }
1621 
1622 /*
1623  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1624  * driver.
1625  */
1626 static void
1627 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1628 {
1629 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1630 	uint32_t tmp;
1631 
1632 	/* update all BBP registers that depend on the band */
1633 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1634 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1635 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1636 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1637 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1638 	}
1639 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1640 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1641 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1642 	}
1643 
1644 	sc->bbp17 = bbp17;
1645 	rum_bbp_write(sc,  17, bbp17);
1646 	rum_bbp_write(sc,  96, bbp96);
1647 	rum_bbp_write(sc, 104, bbp104);
1648 
1649 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 		rum_bbp_write(sc, 75, 0x80);
1652 		rum_bbp_write(sc, 86, 0x80);
1653 		rum_bbp_write(sc, 88, 0x80);
1654 	}
1655 
1656 	rum_bbp_write(sc, 35, bbp35);
1657 	rum_bbp_write(sc, 97, bbp97);
1658 	rum_bbp_write(sc, 98, bbp98);
1659 
1660 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1661 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1662 	if (IEEE80211_IS_CHAN_2GHZ(c))
1663 		tmp |= RT2573_PA_PE_2GHZ;
1664 	else
1665 		tmp |= RT2573_PA_PE_5GHZ;
1666 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1667 
1668 	/* 802.11a uses a 16 microseconds short interframe space */
1669 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1670 }
1671 
1672 static void
1673 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1674 {
1675 	struct ieee80211com *ic = &sc->sc_ic;
1676 	const struct rfprog *rfprog;
1677 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1678 	int8_t power;
1679 	u_int i, chan;
1680 
1681 	chan = ieee80211_chan2ieee(ic, c);
1682 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1683 		return;
1684 
1685 	/* select the appropriate RF settings based on what EEPROM says */
1686 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1687 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1688 
1689 	/* find the settings for this channel (we know it exists) */
1690 	for (i = 0; rfprog[i].chan != chan; i++);
1691 
1692 	power = sc->txpow[i];
1693 	if (power < 0) {
1694 		bbp94 += power;
1695 		power = 0;
1696 	} else if (power > 31) {
1697 		bbp94 += power - 31;
1698 		power = 31;
1699 	}
1700 
1701 	/*
1702 	 * If we are switching from the 2GHz band to the 5GHz band or
1703 	 * vice-versa, BBP registers need to be reprogrammed.
1704 	 */
1705 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1706 		rum_select_band(sc, c);
1707 		rum_select_antenna(sc);
1708 	}
1709 	ic->ic_curchan = c;
1710 
1711 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1712 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1713 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1714 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1715 
1716 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1717 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1718 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1719 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1720 
1721 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725 
1726 	DELAY(10);
1727 
1728 	/* enable smart mode for MIMO-capable RFs */
1729 	bbp3 = rum_bbp_read(sc, 3);
1730 
1731 	bbp3 &= ~RT2573_SMART_MODE;
1732 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1733 		bbp3 |= RT2573_SMART_MODE;
1734 
1735 	rum_bbp_write(sc, 3, bbp3);
1736 
1737 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1738 		rum_bbp_write(sc, 94, bbp94);
1739 }
1740 
1741 /*
1742  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1743  * and HostAP operating modes.
1744  */
1745 static void
1746 rum_enable_tsf_sync(struct rum_softc *sc)
1747 {
1748 	struct ieee80211com *ic = &sc->sc_ic;
1749 	uint32_t tmp;
1750 
1751 	if (ic->ic_opmode != IEEE80211_M_STA) {
1752 		/*
1753 		 * Change default 16ms TBTT adjustment to 8ms.
1754 		 * Must be done before enabling beacon generation.
1755 		 */
1756 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1757 	}
1758 
1759 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1760 
1761 	/* set beacon interval (in 1/16ms unit) */
1762 	tmp |= ic->ic_bss->ni_intval * 16;
1763 
1764 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1765 	if (ic->ic_opmode == IEEE80211_M_STA)
1766 		tmp |= RT2573_TSF_MODE(1);
1767 	else
1768 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1769 
1770 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1771 }
1772 
1773 static void
1774 rum_update_slot(struct rum_softc *sc)
1775 {
1776 	struct ieee80211com *ic = &sc->sc_ic;
1777 	uint8_t slottime;
1778 	uint32_t tmp;
1779 
1780 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1781 
1782 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1783 	tmp = (tmp & ~0xff) | slottime;
1784 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1785 
1786 	DPRINTF(("setting slot time to %uus\n", slottime));
1787 }
1788 
1789 static void
1790 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1791 {
1792 	uint32_t tmp;
1793 
1794 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1795 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1796 
1797 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1798 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1799 }
1800 
1801 static void
1802 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1803 {
1804 	uint32_t tmp;
1805 
1806 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1807 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1808 
1809 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1810 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1811 }
1812 
1813 static void
1814 rum_update_promisc(struct rum_softc *sc)
1815 {
1816 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1817 	uint32_t tmp;
1818 
1819 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1820 
1821 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1822 	if (!(ifp->if_flags & IFF_PROMISC))
1823 		tmp |= RT2573_DROP_NOT_TO_ME;
1824 
1825 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1826 
1827 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1828 	    "entering" : "leaving"));
1829 }
1830 
1831 static const char *
1832 rum_get_rf(int rev)
1833 {
1834 	switch (rev) {
1835 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1836 	case RT2573_RF_2528:	return "RT2528";
1837 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1838 	case RT2573_RF_5226:	return "RT5226";
1839 	default:		return "unknown";
1840 	}
1841 }
1842 
1843 static void
1844 rum_read_eeprom(struct rum_softc *sc)
1845 {
1846 	struct ieee80211com *ic = &sc->sc_ic;
1847 	uint16_t val;
1848 #ifdef RUM_DEBUG
1849 	int i;
1850 #endif
1851 
1852 	/* read MAC/BBP type */
1853 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1854 	sc->macbbp_rev = le16toh(val);
1855 
1856 	/* read MAC address */
1857 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1858 
1859 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1860 	val = le16toh(val);
1861 	sc->rf_rev =   (val >> 11) & 0x1f;
1862 	sc->hw_radio = (val >> 10) & 0x1;
1863 	sc->rx_ant =   (val >> 4)  & 0x3;
1864 	sc->tx_ant =   (val >> 2)  & 0x3;
1865 	sc->nb_ant =   val & 0x3;
1866 
1867 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1868 
1869 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1870 	val = le16toh(val);
1871 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1872 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1873 
1874 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1875 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1876 
1877 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1878 	val = le16toh(val);
1879 	if ((val & 0xff) != 0xff)
1880 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1881 
1882 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1883 	val = le16toh(val);
1884 	if ((val & 0xff) != 0xff)
1885 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1886 
1887 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1888 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1889 
1890 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1891 	val = le16toh(val);
1892 	if ((val & 0xff) != 0xff)
1893 		sc->rffreq = val & 0xff;
1894 
1895 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1896 
1897 	/* read Tx power for all a/b/g channels */
1898 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1899 	/* XXX default Tx power for 802.11a channels */
1900 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1901 #ifdef RUM_DEBUG
1902 	for (i = 0; i < 14; i++)
1903 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1904 #endif
1905 
1906 	/* read default values for BBP registers */
1907 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1908 #ifdef RUM_DEBUG
1909 	for (i = 0; i < 14; i++) {
1910 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 			continue;
1912 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1913 		    sc->bbp_prom[i].val));
1914 	}
1915 #endif
1916 }
1917 
1918 static int
1919 rum_bbp_init(struct rum_softc *sc)
1920 {
1921 	unsigned int i, ntries;
1922 	uint8_t val;
1923 
1924 	/* wait for BBP to be ready */
1925 	for (ntries = 0; ntries < 100; ntries++) {
1926 		val = rum_bbp_read(sc, 0);
1927 		if (val != 0 && val != 0xff)
1928 			break;
1929 		DELAY(1000);
1930 	}
1931 	if (ntries == 100) {
1932 		printf("%s: timeout waiting for BBP\n",
1933 		    device_xname(sc->sc_dev));
1934 		return EIO;
1935 	}
1936 
1937 	/* initialize BBP registers to default values */
1938 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
1939 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1940 
1941 	/* write vendor-specific BBP values (from EEPROM) */
1942 	for (i = 0; i < 16; i++) {
1943 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1944 			continue;
1945 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 static int
1952 rum_init(struct ifnet *ifp)
1953 {
1954 	struct rum_softc *sc = ifp->if_softc;
1955 	struct ieee80211com *ic = &sc->sc_ic;
1956 	uint32_t tmp;
1957 	usbd_status error = 0;
1958 	unsigned int i, ntries;
1959 
1960 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1961 		if (rum_attachhook(sc))
1962 			goto fail;
1963 	}
1964 
1965 	rum_stop(ifp, 0);
1966 
1967 	/* initialize MAC registers to default values */
1968 	for (i = 0; i < __arraycount(rum_def_mac); i++)
1969 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1970 
1971 	/* set host ready */
1972 	rum_write(sc, RT2573_MAC_CSR1, 3);
1973 	rum_write(sc, RT2573_MAC_CSR1, 0);
1974 
1975 	/* wait for BBP/RF to wakeup */
1976 	for (ntries = 0; ntries < 1000; ntries++) {
1977 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1978 			break;
1979 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1980 		DELAY(1000);
1981 	}
1982 	if (ntries == 1000) {
1983 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1984 		    device_xname(sc->sc_dev));
1985 		goto fail;
1986 	}
1987 
1988 	if ((error = rum_bbp_init(sc)) != 0)
1989 		goto fail;
1990 
1991 	/* select default channel */
1992 	rum_select_band(sc, ic->ic_curchan);
1993 	rum_select_antenna(sc);
1994 	rum_set_chan(sc, ic->ic_curchan);
1995 
1996 	/* clear STA registers */
1997 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1998 
1999 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2000 	rum_set_macaddr(sc, ic->ic_myaddr);
2001 
2002 	/* initialize ASIC */
2003 	rum_write(sc, RT2573_MAC_CSR1, 4);
2004 
2005 	/*
2006 	 * Allocate xfer for AMRR statistics requests.
2007 	 */
2008 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2009 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2010 	    &sc->amrr_xfer);
2011 	if (error) {
2012 		printf("%s: could not allocate AMRR xfer\n",
2013 		    device_xname(sc->sc_dev));
2014 		goto fail;
2015 	}
2016 
2017 	/*
2018 	 * Open Tx and Rx USB bulk pipes.
2019 	 */
2020 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2021 	    &sc->sc_tx_pipeh);
2022 	if (error != 0) {
2023 		printf("%s: could not open Tx pipe: %s\n",
2024 		    device_xname(sc->sc_dev), usbd_errstr(error));
2025 		goto fail;
2026 	}
2027 
2028 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2029 	    &sc->sc_rx_pipeh);
2030 	if (error != 0) {
2031 		printf("%s: could not open Rx pipe: %s\n",
2032 		    device_xname(sc->sc_dev), usbd_errstr(error));
2033 		goto fail;
2034 	}
2035 
2036 	/*
2037 	 * Allocate Tx and Rx xfer queues.
2038 	 */
2039 	error = rum_alloc_tx_list(sc);
2040 	if (error != 0) {
2041 		printf("%s: could not allocate Tx list\n",
2042 		    device_xname(sc->sc_dev));
2043 		goto fail;
2044 	}
2045 
2046 	error = rum_alloc_rx_list(sc);
2047 	if (error != 0) {
2048 		printf("%s: could not allocate Rx list\n",
2049 		    device_xname(sc->sc_dev));
2050 		goto fail;
2051 	}
2052 
2053 	/*
2054 	 * Start up the receive pipe.
2055 	 */
2056 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2057 		struct rum_rx_data *data;
2058 
2059 		data = &sc->rx_data[i];
2060 
2061 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2062 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2063 		error = usbd_transfer(data->xfer);
2064 		if (error != USBD_NORMAL_COMPLETION &&
2065 		    error != USBD_IN_PROGRESS) {
2066 			printf("%s: could not queue Rx transfer\n",
2067 			    device_xname(sc->sc_dev));
2068 			goto fail;
2069 		}
2070 	}
2071 
2072 	/* update Rx filter */
2073 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2074 
2075 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2076 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2077 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2078 		       RT2573_DROP_ACKCTS;
2079 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2080 			tmp |= RT2573_DROP_TODS;
2081 		if (!(ifp->if_flags & IFF_PROMISC))
2082 			tmp |= RT2573_DROP_NOT_TO_ME;
2083 	}
2084 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2085 
2086 	ifp->if_flags &= ~IFF_OACTIVE;
2087 	ifp->if_flags |= IFF_RUNNING;
2088 
2089 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2090 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2091 	else
2092 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2093 
2094 	return 0;
2095 
2096 fail:	rum_stop(ifp, 1);
2097 	return error;
2098 }
2099 
2100 static void
2101 rum_stop(struct ifnet *ifp, int disable)
2102 {
2103 	struct rum_softc *sc = ifp->if_softc;
2104 	struct ieee80211com *ic = &sc->sc_ic;
2105 	uint32_t tmp;
2106 
2107 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2108 
2109 	sc->sc_tx_timer = 0;
2110 	ifp->if_timer = 0;
2111 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2112 
2113 	/* disable Rx */
2114 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2115 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2116 
2117 	/* reset ASIC */
2118 	rum_write(sc, RT2573_MAC_CSR1, 3);
2119 	rum_write(sc, RT2573_MAC_CSR1, 0);
2120 
2121 	if (sc->amrr_xfer != NULL) {
2122 		usbd_destroy_xfer(sc->amrr_xfer);
2123 		sc->amrr_xfer = NULL;
2124 	}
2125 
2126 	if (sc->sc_rx_pipeh != NULL) {
2127 		usbd_abort_pipe(sc->sc_rx_pipeh);
2128 	}
2129 
2130 	if (sc->sc_tx_pipeh != NULL) {
2131 		usbd_abort_pipe(sc->sc_tx_pipeh);
2132 	}
2133 
2134 	rum_free_rx_list(sc);
2135 	rum_free_tx_list(sc);
2136 
2137 	if (sc->sc_rx_pipeh != NULL) {
2138 		usbd_close_pipe(sc->sc_rx_pipeh);
2139 		sc->sc_rx_pipeh = NULL;
2140 	}
2141 
2142 	if (sc->sc_tx_pipeh != NULL) {
2143 		usbd_close_pipe(sc->sc_tx_pipeh);
2144 		sc->sc_tx_pipeh = NULL;
2145 	}
2146 }
2147 
2148 static int
2149 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2150 {
2151 	usb_device_request_t req;
2152 	uint16_t reg = RT2573_MCU_CODE_BASE;
2153 	usbd_status error;
2154 
2155 	/* copy firmware image into NIC */
2156 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2157 		rum_write(sc, reg, UGETDW(ucode));
2158 
2159 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2160 	req.bRequest = RT2573_MCU_CNTL;
2161 	USETW(req.wValue, RT2573_MCU_RUN);
2162 	USETW(req.wIndex, 0);
2163 	USETW(req.wLength, 0);
2164 
2165 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2166 	if (error != 0) {
2167 		printf("%s: could not run firmware: %s\n",
2168 		    device_xname(sc->sc_dev), usbd_errstr(error));
2169 	}
2170 	return error;
2171 }
2172 
2173 static int
2174 rum_prepare_beacon(struct rum_softc *sc)
2175 {
2176 	struct ieee80211com *ic = &sc->sc_ic;
2177 	struct rum_tx_desc desc;
2178 	struct mbuf *m0;
2179 	int rate;
2180 
2181 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2182 	if (m0 == NULL) {
2183 		aprint_error_dev(sc->sc_dev,
2184 		    "could not allocate beacon frame\n");
2185 		return ENOBUFS;
2186 	}
2187 
2188 	/* send beacons at the lowest available rate */
2189 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2190 
2191 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2192 	    m0->m_pkthdr.len, rate);
2193 
2194 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2195 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2196 
2197 	/* copy beacon header and payload into NIC memory */
2198 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2199 	    m0->m_pkthdr.len);
2200 
2201 	m_freem(m0);
2202 
2203 	return 0;
2204 }
2205 
2206 static void
2207 rum_newassoc(struct ieee80211_node *ni, int isnew)
2208 {
2209 	/* start with lowest Tx rate */
2210 	ni->ni_txrate = 0;
2211 }
2212 
2213 static void
2214 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2215 {
2216 	int i;
2217 
2218 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2219 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2220 
2221 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2222 
2223 	/* set rate to some reasonable initial value */
2224 	for (i = ni->ni_rates.rs_nrates - 1;
2225 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2226 	     i--);
2227 	ni->ni_txrate = i;
2228 
2229 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2230 }
2231 
2232 static void
2233 rum_amrr_timeout(void *arg)
2234 {
2235 	struct rum_softc *sc = arg;
2236 	usb_device_request_t req;
2237 
2238 	/*
2239 	 * Asynchronously read statistic registers (cleared by read).
2240 	 */
2241 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2242 	req.bRequest = RT2573_READ_MULTI_MAC;
2243 	USETW(req.wValue, 0);
2244 	USETW(req.wIndex, RT2573_STA_CSR0);
2245 	USETW(req.wLength, sizeof(sc->sta));
2246 
2247 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2248 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2249 	    rum_amrr_update);
2250 	(void)usbd_transfer(sc->amrr_xfer);
2251 }
2252 
2253 static void
2254 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2255     usbd_status status)
2256 {
2257 	struct rum_softc *sc = (struct rum_softc *)priv;
2258 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2259 
2260 	if (status != USBD_NORMAL_COMPLETION) {
2261 		printf("%s: could not retrieve Tx statistics - cancelling "
2262 		    "automatic rate control\n", device_xname(sc->sc_dev));
2263 		return;
2264 	}
2265 
2266 	/* count TX retry-fail as Tx errors */
2267 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2268 
2269 	sc->amn.amn_retrycnt =
2270 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2271 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2272 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2273 
2274 	sc->amn.amn_txcnt =
2275 	    sc->amn.amn_retrycnt +
2276 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2277 
2278 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2279 
2280 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2281 }
2282 
2283 static int
2284 rum_activate(device_t self, enum devact act)
2285 {
2286 	switch (act) {
2287 	case DVACT_DEACTIVATE:
2288 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2289 		return 0;
2290 	default:
2291 		return 0;
2292 	}
2293 }
2294 
2295 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2296 
2297 #ifdef _MODULE
2298 #include "ioconf.c"
2299 #endif
2300 
2301 static int
2302 if_rum_modcmd(modcmd_t cmd, void *aux)
2303 {
2304 	int error = 0;
2305 
2306 	switch (cmd) {
2307 	case MODULE_CMD_INIT:
2308 #ifdef _MODULE
2309 		error = config_init_component(cfdriver_ioconf_rum,
2310 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2311 #endif
2312 		return error;
2313 	case MODULE_CMD_FINI:
2314 #ifdef _MODULE
2315 		error = config_fini_component(cfdriver_ioconf_rum,
2316 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2317 #endif
2318 		return error;
2319 	default:
2320 		return ENOTTY;
2321 	}
2322 }
2323