1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.43 2012/09/23 01:08:17 chs Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.43 2012/09/23 01:08:17 chs Exp $"); 28 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/conf.h> 40 #include <sys/device.h> 41 42 #include <sys/bus.h> 43 #include <machine/endian.h> 44 #include <sys/intr.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_arp.h> 49 #include <net/if_dl.h> 50 #include <net/if_ether.h> 51 #include <net/if_media.h> 52 #include <net/if_types.h> 53 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/ip.h> 58 59 #include <net80211/ieee80211_netbsd.h> 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_amrr.h> 62 #include <net80211/ieee80211_radiotap.h> 63 64 #include <dev/firmload.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include <dev/usb/usbdi_util.h> 69 #include <dev/usb/usbdevs.h> 70 71 #include <dev/usb/if_rumreg.h> 72 #include <dev/usb/if_rumvar.h> 73 74 #ifdef USB_DEBUG 75 #define RUM_DEBUG 76 #endif 77 78 #ifdef RUM_DEBUG 79 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 80 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 81 int rum_debug = 1; 82 #else 83 #define DPRINTF(x) 84 #define DPRINTFN(n, x) 85 #endif 86 87 /* various supported device vendors/products */ 88 static const struct usb_devno rum_devs[] = { 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 94 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 95 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 96 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 98 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 103 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 104 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 105 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 106 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 107 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 108 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 111 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 112 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 113 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 114 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 115 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 116 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 117 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 118 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 119 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 120 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 121 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 124 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 125 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 128 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 129 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 130 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 132 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 133 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 135 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 136 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 137 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 138 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 139 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 140 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 141 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 142 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 143 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 144 }; 145 146 static int rum_attachhook(void *); 147 static int rum_alloc_tx_list(struct rum_softc *); 148 static void rum_free_tx_list(struct rum_softc *); 149 static int rum_alloc_rx_list(struct rum_softc *); 150 static void rum_free_rx_list(struct rum_softc *); 151 static int rum_media_change(struct ifnet *); 152 static void rum_next_scan(void *); 153 static void rum_task(void *); 154 static int rum_newstate(struct ieee80211com *, 155 enum ieee80211_state, int); 156 static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 157 usbd_status); 158 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 159 usbd_status); 160 static uint8_t rum_rxrate(const struct rum_rx_desc *); 161 static int rum_ack_rate(struct ieee80211com *, int); 162 static uint16_t rum_txtime(int, int, uint32_t); 163 static uint8_t rum_plcp_signal(int); 164 static void rum_setup_tx_desc(struct rum_softc *, 165 struct rum_tx_desc *, uint32_t, uint16_t, int, 166 int); 167 static int rum_tx_data(struct rum_softc *, struct mbuf *, 168 struct ieee80211_node *); 169 static void rum_start(struct ifnet *); 170 static void rum_watchdog(struct ifnet *); 171 static int rum_ioctl(struct ifnet *, u_long, void *); 172 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 173 int); 174 static uint32_t rum_read(struct rum_softc *, uint16_t); 175 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 176 int); 177 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 178 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 179 size_t); 180 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 181 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 182 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 183 static void rum_select_antenna(struct rum_softc *); 184 static void rum_enable_mrr(struct rum_softc *); 185 static void rum_set_txpreamble(struct rum_softc *); 186 static void rum_set_basicrates(struct rum_softc *); 187 static void rum_select_band(struct rum_softc *, 188 struct ieee80211_channel *); 189 static void rum_set_chan(struct rum_softc *, 190 struct ieee80211_channel *); 191 static void rum_enable_tsf_sync(struct rum_softc *); 192 static void rum_update_slot(struct rum_softc *); 193 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 194 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 195 static void rum_update_promisc(struct rum_softc *); 196 static const char *rum_get_rf(int); 197 static void rum_read_eeprom(struct rum_softc *); 198 static int rum_bbp_init(struct rum_softc *); 199 static int rum_init(struct ifnet *); 200 static void rum_stop(struct ifnet *, int); 201 static int rum_load_microcode(struct rum_softc *, const u_char *, 202 size_t); 203 static int rum_prepare_beacon(struct rum_softc *); 204 static void rum_newassoc(struct ieee80211_node *, int); 205 static void rum_amrr_start(struct rum_softc *, 206 struct ieee80211_node *); 207 static void rum_amrr_timeout(void *); 208 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 209 usbd_status status); 210 211 /* 212 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 213 */ 214 static const struct ieee80211_rateset rum_rateset_11a = 215 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 216 217 static const struct ieee80211_rateset rum_rateset_11b = 218 { 4, { 2, 4, 11, 22 } }; 219 220 static const struct ieee80211_rateset rum_rateset_11g = 221 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 222 223 static const struct { 224 uint32_t reg; 225 uint32_t val; 226 } rum_def_mac[] = { 227 RT2573_DEF_MAC 228 }; 229 230 static const struct { 231 uint8_t reg; 232 uint8_t val; 233 } rum_def_bbp[] = { 234 RT2573_DEF_BBP 235 }; 236 237 static const struct rfprog { 238 uint8_t chan; 239 uint32_t r1, r2, r3, r4; 240 } rum_rf5226[] = { 241 RT2573_RF5226 242 }, rum_rf5225[] = { 243 RT2573_RF5225 244 }; 245 246 static int rum_match(device_t, cfdata_t, void *); 247 static void rum_attach(device_t, device_t, void *); 248 static int rum_detach(device_t, int); 249 static int rum_activate(device_t, enum devact); 250 extern struct cfdriver rum_cd; 251 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 252 rum_detach, rum_activate); 253 254 static int 255 rum_match(device_t parent, cfdata_t match, void *aux) 256 { 257 struct usb_attach_arg *uaa = aux; 258 259 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 260 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 261 } 262 263 static int 264 rum_attachhook(void *xsc) 265 { 266 struct rum_softc *sc = xsc; 267 firmware_handle_t fwh; 268 const char *name = "rum-rt2573"; 269 u_char *ucode; 270 size_t size; 271 int error; 272 273 if ((error = firmware_open("rum", name, &fwh)) != 0) { 274 printf("%s: failed loadfirmware of file %s (error %d)\n", 275 device_xname(sc->sc_dev), name, error); 276 return error; 277 } 278 size = firmware_get_size(fwh); 279 ucode = firmware_malloc(size); 280 if (ucode == NULL) { 281 printf("%s: failed to allocate firmware memory\n", 282 device_xname(sc->sc_dev)); 283 firmware_close(fwh); 284 return ENOMEM; 285 } 286 error = firmware_read(fwh, 0, ucode, size); 287 firmware_close(fwh); 288 if (error != 0) { 289 printf("%s: failed to read firmware (error %d)\n", 290 device_xname(sc->sc_dev), error); 291 firmware_free(ucode, 0); 292 return error; 293 } 294 295 if (rum_load_microcode(sc, ucode, size) != 0) { 296 printf("%s: could not load 8051 microcode\n", 297 device_xname(sc->sc_dev)); 298 firmware_free(ucode, 0); 299 return ENXIO; 300 } 301 302 firmware_free(ucode, 0); 303 sc->sc_flags |= RT2573_FWLOADED; 304 305 return 0; 306 } 307 308 static void 309 rum_attach(device_t parent, device_t self, void *aux) 310 { 311 struct rum_softc *sc = device_private(self); 312 struct usb_attach_arg *uaa = aux; 313 struct ieee80211com *ic = &sc->sc_ic; 314 struct ifnet *ifp = &sc->sc_if; 315 usb_interface_descriptor_t *id; 316 usb_endpoint_descriptor_t *ed; 317 usbd_status error; 318 char *devinfop; 319 int i, ntries; 320 uint32_t tmp; 321 322 sc->sc_dev = self; 323 sc->sc_udev = uaa->device; 324 sc->sc_flags = 0; 325 326 aprint_naive("\n"); 327 aprint_normal("\n"); 328 329 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 330 aprint_normal_dev(self, "%s\n", devinfop); 331 usbd_devinfo_free(devinfop); 332 333 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 334 aprint_error_dev(self, "could not set configuration no\n"); 335 return; 336 } 337 338 /* get the first interface handle */ 339 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 340 &sc->sc_iface); 341 if (error != 0) { 342 aprint_error_dev(self, "could not get interface handle\n"); 343 return; 344 } 345 346 /* 347 * Find endpoints. 348 */ 349 id = usbd_get_interface_descriptor(sc->sc_iface); 350 351 sc->sc_rx_no = sc->sc_tx_no = -1; 352 for (i = 0; i < id->bNumEndpoints; i++) { 353 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 354 if (ed == NULL) { 355 aprint_error_dev(self, 356 "no endpoint descriptor for iface %d\n", i); 357 return; 358 } 359 360 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 361 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 362 sc->sc_rx_no = ed->bEndpointAddress; 363 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 364 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 365 sc->sc_tx_no = ed->bEndpointAddress; 366 } 367 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 368 aprint_error_dev(self, "missing endpoint\n"); 369 return; 370 } 371 372 usb_init_task(&sc->sc_task, rum_task, sc); 373 callout_init(&sc->sc_scan_ch, 0); 374 375 sc->amrr.amrr_min_success_threshold = 1; 376 sc->amrr.amrr_max_success_threshold = 10; 377 callout_init(&sc->sc_amrr_ch, 0); 378 379 /* retrieve RT2573 rev. no */ 380 for (ntries = 0; ntries < 1000; ntries++) { 381 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 382 break; 383 DELAY(1000); 384 } 385 if (ntries == 1000) { 386 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 387 return; 388 } 389 390 /* retrieve MAC address and various other things from EEPROM */ 391 rum_read_eeprom(sc); 392 393 aprint_normal_dev(self, 394 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 395 sc->macbbp_rev, tmp, 396 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 397 398 ic->ic_ifp = ifp; 399 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 400 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 401 ic->ic_state = IEEE80211_S_INIT; 402 403 /* set device capabilities */ 404 ic->ic_caps = 405 IEEE80211_C_IBSS | /* IBSS mode supported */ 406 IEEE80211_C_MONITOR | /* monitor mode supported */ 407 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 408 IEEE80211_C_TXPMGT | /* tx power management */ 409 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 410 IEEE80211_C_SHSLOT | /* short slot time supported */ 411 IEEE80211_C_WPA; /* 802.11i */ 412 413 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 414 /* set supported .11a rates */ 415 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 416 417 /* set supported .11a channels */ 418 for (i = 34; i <= 46; i += 4) { 419 ic->ic_channels[i].ic_freq = 420 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 421 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 422 } 423 for (i = 36; i <= 64; i += 4) { 424 ic->ic_channels[i].ic_freq = 425 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 426 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 427 } 428 for (i = 100; i <= 140; i += 4) { 429 ic->ic_channels[i].ic_freq = 430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 431 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 432 } 433 for (i = 149; i <= 165; i += 4) { 434 ic->ic_channels[i].ic_freq = 435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 436 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 437 } 438 } 439 440 /* set supported .11b and .11g rates */ 441 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 442 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 443 444 /* set supported .11b and .11g channels (1 through 14) */ 445 for (i = 1; i <= 14; i++) { 446 ic->ic_channels[i].ic_freq = 447 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 448 ic->ic_channels[i].ic_flags = 449 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 450 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 451 } 452 453 ifp->if_softc = sc; 454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 455 ifp->if_init = rum_init; 456 ifp->if_ioctl = rum_ioctl; 457 ifp->if_start = rum_start; 458 ifp->if_watchdog = rum_watchdog; 459 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 460 IFQ_SET_READY(&ifp->if_snd); 461 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 462 463 if_attach(ifp); 464 ieee80211_ifattach(ic); 465 ic->ic_newassoc = rum_newassoc; 466 467 /* override state transition machine */ 468 sc->sc_newstate = ic->ic_newstate; 469 ic->ic_newstate = rum_newstate; 470 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 471 472 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 473 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 474 &sc->sc_drvbpf); 475 476 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 477 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 478 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 479 480 sc->sc_txtap_len = sizeof sc->sc_txtapu; 481 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 482 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 483 484 ieee80211_announce(ic); 485 486 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 487 sc->sc_dev); 488 489 return; 490 } 491 492 static int 493 rum_detach(device_t self, int flags) 494 { 495 struct rum_softc *sc = device_private(self); 496 struct ieee80211com *ic = &sc->sc_ic; 497 struct ifnet *ifp = &sc->sc_if; 498 int s; 499 500 if (!ifp->if_softc) 501 return 0; 502 503 s = splusb(); 504 505 rum_stop(ifp, 1); 506 usb_rem_task(sc->sc_udev, &sc->sc_task); 507 callout_stop(&sc->sc_scan_ch); 508 callout_stop(&sc->sc_amrr_ch); 509 510 if (sc->amrr_xfer != NULL) { 511 usbd_free_xfer(sc->amrr_xfer); 512 sc->amrr_xfer = NULL; 513 } 514 515 if (sc->sc_rx_pipeh != NULL) { 516 usbd_abort_pipe(sc->sc_rx_pipeh); 517 usbd_close_pipe(sc->sc_rx_pipeh); 518 } 519 520 if (sc->sc_tx_pipeh != NULL) { 521 usbd_abort_pipe(sc->sc_tx_pipeh); 522 usbd_close_pipe(sc->sc_tx_pipeh); 523 } 524 525 bpf_detach(ifp); 526 ieee80211_ifdetach(ic); /* free all nodes */ 527 if_detach(ifp); 528 529 splx(s); 530 531 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 532 533 return 0; 534 } 535 536 static int 537 rum_alloc_tx_list(struct rum_softc *sc) 538 { 539 struct rum_tx_data *data; 540 int i, error; 541 542 sc->tx_cur = sc->tx_queued = 0; 543 544 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 545 data = &sc->tx_data[i]; 546 547 data->sc = sc; 548 549 data->xfer = usbd_alloc_xfer(sc->sc_udev); 550 if (data->xfer == NULL) { 551 printf("%s: could not allocate tx xfer\n", 552 device_xname(sc->sc_dev)); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 data->buf = usbd_alloc_buffer(data->xfer, 558 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 559 if (data->buf == NULL) { 560 printf("%s: could not allocate tx buffer\n", 561 device_xname(sc->sc_dev)); 562 error = ENOMEM; 563 goto fail; 564 } 565 566 /* clean Tx descriptor */ 567 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 568 } 569 570 return 0; 571 572 fail: rum_free_tx_list(sc); 573 return error; 574 } 575 576 static void 577 rum_free_tx_list(struct rum_softc *sc) 578 { 579 struct rum_tx_data *data; 580 int i; 581 582 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 583 data = &sc->tx_data[i]; 584 585 if (data->xfer != NULL) { 586 usbd_free_xfer(data->xfer); 587 data->xfer = NULL; 588 } 589 590 if (data->ni != NULL) { 591 ieee80211_free_node(data->ni); 592 data->ni = NULL; 593 } 594 } 595 } 596 597 static int 598 rum_alloc_rx_list(struct rum_softc *sc) 599 { 600 struct rum_rx_data *data; 601 int i, error; 602 603 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 604 data = &sc->rx_data[i]; 605 606 data->sc = sc; 607 608 data->xfer = usbd_alloc_xfer(sc->sc_udev); 609 if (data->xfer == NULL) { 610 printf("%s: could not allocate rx xfer\n", 611 device_xname(sc->sc_dev)); 612 error = ENOMEM; 613 goto fail; 614 } 615 616 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 617 printf("%s: could not allocate rx buffer\n", 618 device_xname(sc->sc_dev)); 619 error = ENOMEM; 620 goto fail; 621 } 622 623 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 624 if (data->m == NULL) { 625 printf("%s: could not allocate rx mbuf\n", 626 device_xname(sc->sc_dev)); 627 error = ENOMEM; 628 goto fail; 629 } 630 631 MCLGET(data->m, M_DONTWAIT); 632 if (!(data->m->m_flags & M_EXT)) { 633 printf("%s: could not allocate rx mbuf cluster\n", 634 device_xname(sc->sc_dev)); 635 error = ENOMEM; 636 goto fail; 637 } 638 639 data->buf = mtod(data->m, uint8_t *); 640 } 641 642 return 0; 643 644 fail: rum_free_rx_list(sc); 645 return error; 646 } 647 648 static void 649 rum_free_rx_list(struct rum_softc *sc) 650 { 651 struct rum_rx_data *data; 652 int i; 653 654 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 655 data = &sc->rx_data[i]; 656 657 if (data->xfer != NULL) { 658 usbd_free_xfer(data->xfer); 659 data->xfer = NULL; 660 } 661 662 if (data->m != NULL) { 663 m_freem(data->m); 664 data->m = NULL; 665 } 666 } 667 } 668 669 static int 670 rum_media_change(struct ifnet *ifp) 671 { 672 int error; 673 674 error = ieee80211_media_change(ifp); 675 if (error != ENETRESET) 676 return error; 677 678 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 679 rum_init(ifp); 680 681 return 0; 682 } 683 684 /* 685 * This function is called periodically (every 200ms) during scanning to 686 * switch from one channel to another. 687 */ 688 static void 689 rum_next_scan(void *arg) 690 { 691 struct rum_softc *sc = arg; 692 struct ieee80211com *ic = &sc->sc_ic; 693 int s; 694 695 s = splnet(); 696 if (ic->ic_state == IEEE80211_S_SCAN) 697 ieee80211_next_scan(ic); 698 splx(s); 699 } 700 701 static void 702 rum_task(void *arg) 703 { 704 struct rum_softc *sc = arg; 705 struct ieee80211com *ic = &sc->sc_ic; 706 enum ieee80211_state ostate; 707 struct ieee80211_node *ni; 708 uint32_t tmp; 709 710 ostate = ic->ic_state; 711 712 switch (sc->sc_state) { 713 case IEEE80211_S_INIT: 714 if (ostate == IEEE80211_S_RUN) { 715 /* abort TSF synchronization */ 716 tmp = rum_read(sc, RT2573_TXRX_CSR9); 717 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 718 } 719 break; 720 721 case IEEE80211_S_SCAN: 722 rum_set_chan(sc, ic->ic_curchan); 723 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 724 break; 725 726 case IEEE80211_S_AUTH: 727 rum_set_chan(sc, ic->ic_curchan); 728 break; 729 730 case IEEE80211_S_ASSOC: 731 rum_set_chan(sc, ic->ic_curchan); 732 break; 733 734 case IEEE80211_S_RUN: 735 rum_set_chan(sc, ic->ic_curchan); 736 737 ni = ic->ic_bss; 738 739 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 740 rum_update_slot(sc); 741 rum_enable_mrr(sc); 742 rum_set_txpreamble(sc); 743 rum_set_basicrates(sc); 744 rum_set_bssid(sc, ni->ni_bssid); 745 } 746 747 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 748 ic->ic_opmode == IEEE80211_M_IBSS) 749 rum_prepare_beacon(sc); 750 751 if (ic->ic_opmode != IEEE80211_M_MONITOR) 752 rum_enable_tsf_sync(sc); 753 754 if (ic->ic_opmode == IEEE80211_M_STA) { 755 /* fake a join to init the tx rate */ 756 rum_newassoc(ic->ic_bss, 1); 757 758 /* enable automatic rate adaptation in STA mode */ 759 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 760 rum_amrr_start(sc, ni); 761 } 762 763 break; 764 } 765 766 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 767 } 768 769 static int 770 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 771 { 772 struct rum_softc *sc = ic->ic_ifp->if_softc; 773 774 usb_rem_task(sc->sc_udev, &sc->sc_task); 775 callout_stop(&sc->sc_scan_ch); 776 callout_stop(&sc->sc_amrr_ch); 777 778 /* do it in a process context */ 779 sc->sc_state = nstate; 780 sc->sc_arg = arg; 781 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 782 783 return 0; 784 } 785 786 /* quickly determine if a given rate is CCK or OFDM */ 787 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 788 789 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 790 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 791 792 static void 793 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 794 { 795 struct rum_tx_data *data = priv; 796 struct rum_softc *sc = data->sc; 797 struct ifnet *ifp = &sc->sc_if; 798 int s; 799 800 if (status != USBD_NORMAL_COMPLETION) { 801 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 802 return; 803 804 printf("%s: could not transmit buffer: %s\n", 805 device_xname(sc->sc_dev), usbd_errstr(status)); 806 807 if (status == USBD_STALLED) 808 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 809 810 ifp->if_oerrors++; 811 return; 812 } 813 814 s = splnet(); 815 816 ieee80211_free_node(data->ni); 817 data->ni = NULL; 818 819 sc->tx_queued--; 820 ifp->if_opackets++; 821 822 DPRINTFN(10, ("tx done\n")); 823 824 sc->sc_tx_timer = 0; 825 ifp->if_flags &= ~IFF_OACTIVE; 826 rum_start(ifp); 827 828 splx(s); 829 } 830 831 static void 832 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 833 { 834 struct rum_rx_data *data = priv; 835 struct rum_softc *sc = data->sc; 836 struct ieee80211com *ic = &sc->sc_ic; 837 struct ifnet *ifp = &sc->sc_if; 838 struct rum_rx_desc *desc; 839 struct ieee80211_frame *wh; 840 struct ieee80211_node *ni; 841 struct mbuf *mnew, *m; 842 int s, len; 843 844 if (status != USBD_NORMAL_COMPLETION) { 845 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 846 return; 847 848 if (status == USBD_STALLED) 849 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 850 goto skip; 851 } 852 853 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 854 855 if (len < (int)(RT2573_RX_DESC_SIZE + 856 sizeof(struct ieee80211_frame_min))) { 857 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 858 len)); 859 ifp->if_ierrors++; 860 goto skip; 861 } 862 863 desc = (struct rum_rx_desc *)data->buf; 864 865 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 866 /* 867 * This should not happen since we did not request to receive 868 * those frames when we filled RT2573_TXRX_CSR0. 869 */ 870 DPRINTFN(5, ("CRC error\n")); 871 ifp->if_ierrors++; 872 goto skip; 873 } 874 875 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 876 if (mnew == NULL) { 877 printf("%s: could not allocate rx mbuf\n", 878 device_xname(sc->sc_dev)); 879 ifp->if_ierrors++; 880 goto skip; 881 } 882 883 MCLGET(mnew, M_DONTWAIT); 884 if (!(mnew->m_flags & M_EXT)) { 885 printf("%s: could not allocate rx mbuf cluster\n", 886 device_xname(sc->sc_dev)); 887 m_freem(mnew); 888 ifp->if_ierrors++; 889 goto skip; 890 } 891 892 m = data->m; 893 data->m = mnew; 894 data->buf = mtod(data->m, uint8_t *); 895 896 /* finalize mbuf */ 897 m->m_pkthdr.rcvif = ifp; 898 m->m_data = (void *)(desc + 1); 899 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 900 901 s = splnet(); 902 903 if (sc->sc_drvbpf != NULL) { 904 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 905 906 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 907 tap->wr_rate = rum_rxrate(desc); 908 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 909 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 910 tap->wr_antenna = sc->rx_ant; 911 tap->wr_antsignal = desc->rssi; 912 913 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 914 } 915 916 wh = mtod(m, struct ieee80211_frame *); 917 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 918 919 /* send the frame to the 802.11 layer */ 920 ieee80211_input(ic, m, ni, desc->rssi, 0); 921 922 /* node is no longer needed */ 923 ieee80211_free_node(ni); 924 925 splx(s); 926 927 DPRINTFN(15, ("rx done\n")); 928 929 skip: /* setup a new transfer */ 930 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 931 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 932 usbd_transfer(xfer); 933 } 934 935 /* 936 * This function is only used by the Rx radiotap code. It returns the rate at 937 * which a given frame was received. 938 */ 939 static uint8_t 940 rum_rxrate(const struct rum_rx_desc *desc) 941 { 942 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 943 /* reverse function of rum_plcp_signal */ 944 switch (desc->rate) { 945 case 0xb: return 12; 946 case 0xf: return 18; 947 case 0xa: return 24; 948 case 0xe: return 36; 949 case 0x9: return 48; 950 case 0xd: return 72; 951 case 0x8: return 96; 952 case 0xc: return 108; 953 } 954 } else { 955 if (desc->rate == 10) 956 return 2; 957 if (desc->rate == 20) 958 return 4; 959 if (desc->rate == 55) 960 return 11; 961 if (desc->rate == 110) 962 return 22; 963 } 964 return 2; /* should not get there */ 965 } 966 967 /* 968 * Return the expected ack rate for a frame transmitted at rate `rate'. 969 * XXX: this should depend on the destination node basic rate set. 970 */ 971 static int 972 rum_ack_rate(struct ieee80211com *ic, int rate) 973 { 974 switch (rate) { 975 /* CCK rates */ 976 case 2: 977 return 2; 978 case 4: 979 case 11: 980 case 22: 981 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 982 983 /* OFDM rates */ 984 case 12: 985 case 18: 986 return 12; 987 case 24: 988 case 36: 989 return 24; 990 case 48: 991 case 72: 992 case 96: 993 case 108: 994 return 48; 995 } 996 997 /* default to 1Mbps */ 998 return 2; 999 } 1000 1001 /* 1002 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1003 * The function automatically determines the operating mode depending on the 1004 * given rate. `flags' indicates whether short preamble is in use or not. 1005 */ 1006 static uint16_t 1007 rum_txtime(int len, int rate, uint32_t flags) 1008 { 1009 uint16_t txtime; 1010 1011 if (RUM_RATE_IS_OFDM(rate)) { 1012 /* IEEE Std 802.11a-1999, pp. 37 */ 1013 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1014 txtime = 16 + 4 + 4 * txtime + 6; 1015 } else { 1016 /* IEEE Std 802.11b-1999, pp. 28 */ 1017 txtime = (16 * len + rate - 1) / rate; 1018 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1019 txtime += 72 + 24; 1020 else 1021 txtime += 144 + 48; 1022 } 1023 return txtime; 1024 } 1025 1026 static uint8_t 1027 rum_plcp_signal(int rate) 1028 { 1029 switch (rate) { 1030 /* CCK rates (returned values are device-dependent) */ 1031 case 2: return 0x0; 1032 case 4: return 0x1; 1033 case 11: return 0x2; 1034 case 22: return 0x3; 1035 1036 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1037 case 12: return 0xb; 1038 case 18: return 0xf; 1039 case 24: return 0xa; 1040 case 36: return 0xe; 1041 case 48: return 0x9; 1042 case 72: return 0xd; 1043 case 96: return 0x8; 1044 case 108: return 0xc; 1045 1046 /* unsupported rates (should not get there) */ 1047 default: return 0xff; 1048 } 1049 } 1050 1051 static void 1052 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1053 uint32_t flags, uint16_t xflags, int len, int rate) 1054 { 1055 struct ieee80211com *ic = &sc->sc_ic; 1056 uint16_t plcp_length; 1057 int remainder; 1058 1059 desc->flags = htole32(flags); 1060 desc->flags |= htole32(RT2573_TX_VALID); 1061 desc->flags |= htole32(len << 16); 1062 1063 desc->xflags = htole16(xflags); 1064 1065 desc->wme = htole16( 1066 RT2573_QID(0) | 1067 RT2573_AIFSN(2) | 1068 RT2573_LOGCWMIN(4) | 1069 RT2573_LOGCWMAX(10)); 1070 1071 /* setup PLCP fields */ 1072 desc->plcp_signal = rum_plcp_signal(rate); 1073 desc->plcp_service = 4; 1074 1075 len += IEEE80211_CRC_LEN; 1076 if (RUM_RATE_IS_OFDM(rate)) { 1077 desc->flags |= htole32(RT2573_TX_OFDM); 1078 1079 plcp_length = len & 0xfff; 1080 desc->plcp_length_hi = plcp_length >> 6; 1081 desc->plcp_length_lo = plcp_length & 0x3f; 1082 } else { 1083 plcp_length = (16 * len + rate - 1) / rate; 1084 if (rate == 22) { 1085 remainder = (16 * len) % 22; 1086 if (remainder != 0 && remainder < 7) 1087 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1088 } 1089 desc->plcp_length_hi = plcp_length >> 8; 1090 desc->plcp_length_lo = plcp_length & 0xff; 1091 1092 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1093 desc->plcp_signal |= 0x08; 1094 } 1095 } 1096 1097 #define RUM_TX_TIMEOUT 5000 1098 1099 static int 1100 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1101 { 1102 struct ieee80211com *ic = &sc->sc_ic; 1103 struct rum_tx_desc *desc; 1104 struct rum_tx_data *data; 1105 struct ieee80211_frame *wh; 1106 struct ieee80211_key *k; 1107 uint32_t flags = 0; 1108 uint16_t dur; 1109 usbd_status error; 1110 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1111 1112 wh = mtod(m0, struct ieee80211_frame *); 1113 1114 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1115 k = ieee80211_crypto_encap(ic, ni, m0); 1116 if (k == NULL) { 1117 m_freem(m0); 1118 return ENOBUFS; 1119 } 1120 1121 /* packet header may have moved, reset our local pointer */ 1122 wh = mtod(m0, struct ieee80211_frame *); 1123 } 1124 1125 /* compute actual packet length (including CRC and crypto overhead) */ 1126 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1127 1128 /* pickup a rate */ 1129 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1130 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1131 IEEE80211_FC0_TYPE_MGT)) { 1132 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1133 rate = ni->ni_rates.rs_rates[0]; 1134 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1135 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1136 } else 1137 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1138 if (rate == 0) 1139 rate = 2; /* XXX should not happen */ 1140 rate &= IEEE80211_RATE_VAL; 1141 1142 /* check if RTS/CTS or CTS-to-self protection must be used */ 1143 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1144 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1145 if (pktlen > ic->ic_rtsthreshold) { 1146 needrts = 1; /* RTS/CTS based on frame length */ 1147 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1148 RUM_RATE_IS_OFDM(rate)) { 1149 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1150 needcts = 1; /* CTS-to-self */ 1151 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1152 needrts = 1; /* RTS/CTS */ 1153 } 1154 } 1155 if (needrts || needcts) { 1156 struct mbuf *mprot; 1157 int protrate, ackrate; 1158 1159 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1160 ackrate = rum_ack_rate(ic, rate); 1161 1162 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1163 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1164 2 * sc->sifs; 1165 if (needrts) { 1166 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1167 protrate), ic->ic_flags) + sc->sifs; 1168 mprot = ieee80211_get_rts(ic, wh, dur); 1169 } else { 1170 mprot = ieee80211_get_cts_to_self(ic, dur); 1171 } 1172 if (mprot == NULL) { 1173 aprint_error_dev(sc->sc_dev, 1174 "couldn't allocate protection frame\n"); 1175 m_freem(m0); 1176 return ENOBUFS; 1177 } 1178 1179 data = &sc->tx_data[sc->tx_cur]; 1180 desc = (struct rum_tx_desc *)data->buf; 1181 1182 /* avoid multiple free() of the same node for each fragment */ 1183 data->ni = ieee80211_ref_node(ni); 1184 1185 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1186 data->buf + RT2573_TX_DESC_SIZE); 1187 rum_setup_tx_desc(sc, desc, 1188 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1189 0, mprot->m_pkthdr.len, protrate); 1190 1191 /* no roundup necessary here */ 1192 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1193 1194 /* XXX may want to pass the protection frame to BPF */ 1195 1196 /* mbuf is no longer needed */ 1197 m_freem(mprot); 1198 1199 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1200 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1201 RUM_TX_TIMEOUT, rum_txeof); 1202 error = usbd_transfer(data->xfer); 1203 if (error != USBD_NORMAL_COMPLETION && 1204 error != USBD_IN_PROGRESS) { 1205 m_freem(m0); 1206 return error; 1207 } 1208 1209 sc->tx_queued++; 1210 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1211 1212 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1213 } 1214 1215 data = &sc->tx_data[sc->tx_cur]; 1216 desc = (struct rum_tx_desc *)data->buf; 1217 1218 data->ni = ni; 1219 1220 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1221 flags |= RT2573_TX_NEED_ACK; 1222 1223 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1224 ic->ic_flags) + sc->sifs; 1225 *(uint16_t *)wh->i_dur = htole16(dur); 1226 1227 /* tell hardware to set timestamp in probe responses */ 1228 if ((wh->i_fc[0] & 1229 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1230 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1231 flags |= RT2573_TX_TIMESTAMP; 1232 } 1233 1234 if (sc->sc_drvbpf != NULL) { 1235 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1236 1237 tap->wt_flags = 0; 1238 tap->wt_rate = rate; 1239 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1240 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1241 tap->wt_antenna = sc->tx_ant; 1242 1243 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1244 } 1245 1246 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1247 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1248 1249 /* align end on a 4-bytes boundary */ 1250 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1251 1252 /* 1253 * No space left in the last URB to store the extra 4 bytes, force 1254 * sending of another URB. 1255 */ 1256 if ((xferlen % 64) == 0) 1257 xferlen += 4; 1258 1259 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1260 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1261 rate, xferlen)); 1262 1263 /* mbuf is no longer needed */ 1264 m_freem(m0); 1265 1266 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1267 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1268 error = usbd_transfer(data->xfer); 1269 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1270 return error; 1271 1272 sc->tx_queued++; 1273 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1274 1275 return 0; 1276 } 1277 1278 static void 1279 rum_start(struct ifnet *ifp) 1280 { 1281 struct rum_softc *sc = ifp->if_softc; 1282 struct ieee80211com *ic = &sc->sc_ic; 1283 struct ether_header *eh; 1284 struct ieee80211_node *ni; 1285 struct mbuf *m0; 1286 1287 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1288 return; 1289 1290 for (;;) { 1291 IF_POLL(&ic->ic_mgtq, m0); 1292 if (m0 != NULL) { 1293 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1294 ifp->if_flags |= IFF_OACTIVE; 1295 break; 1296 } 1297 IF_DEQUEUE(&ic->ic_mgtq, m0); 1298 1299 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1300 m0->m_pkthdr.rcvif = NULL; 1301 bpf_mtap3(ic->ic_rawbpf, m0); 1302 if (rum_tx_data(sc, m0, ni) != 0) 1303 break; 1304 1305 } else { 1306 if (ic->ic_state != IEEE80211_S_RUN) 1307 break; 1308 IFQ_POLL(&ifp->if_snd, m0); 1309 if (m0 == NULL) 1310 break; 1311 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1312 ifp->if_flags |= IFF_OACTIVE; 1313 break; 1314 } 1315 IFQ_DEQUEUE(&ifp->if_snd, m0); 1316 if (m0->m_len < (int)sizeof(struct ether_header) && 1317 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1318 continue; 1319 1320 eh = mtod(m0, struct ether_header *); 1321 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1322 if (ni == NULL) { 1323 m_freem(m0); 1324 continue; 1325 } 1326 bpf_mtap(ifp, m0); 1327 m0 = ieee80211_encap(ic, m0, ni); 1328 if (m0 == NULL) { 1329 ieee80211_free_node(ni); 1330 continue; 1331 } 1332 bpf_mtap3(ic->ic_rawbpf, m0); 1333 if (rum_tx_data(sc, m0, ni) != 0) { 1334 ieee80211_free_node(ni); 1335 ifp->if_oerrors++; 1336 break; 1337 } 1338 } 1339 1340 sc->sc_tx_timer = 5; 1341 ifp->if_timer = 1; 1342 } 1343 } 1344 1345 static void 1346 rum_watchdog(struct ifnet *ifp) 1347 { 1348 struct rum_softc *sc = ifp->if_softc; 1349 struct ieee80211com *ic = &sc->sc_ic; 1350 1351 ifp->if_timer = 0; 1352 1353 if (sc->sc_tx_timer > 0) { 1354 if (--sc->sc_tx_timer == 0) { 1355 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1356 /*rum_init(ifp); XXX needs a process context! */ 1357 ifp->if_oerrors++; 1358 return; 1359 } 1360 ifp->if_timer = 1; 1361 } 1362 1363 ieee80211_watchdog(ic); 1364 } 1365 1366 static int 1367 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1368 { 1369 #define IS_RUNNING(ifp) \ 1370 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1371 1372 struct rum_softc *sc = ifp->if_softc; 1373 struct ieee80211com *ic = &sc->sc_ic; 1374 int s, error = 0; 1375 1376 s = splnet(); 1377 1378 switch (cmd) { 1379 case SIOCSIFFLAGS: 1380 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1381 break; 1382 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1383 case IFF_UP|IFF_RUNNING: 1384 rum_update_promisc(sc); 1385 break; 1386 case IFF_UP: 1387 rum_init(ifp); 1388 break; 1389 case IFF_RUNNING: 1390 rum_stop(ifp, 1); 1391 break; 1392 case 0: 1393 break; 1394 } 1395 break; 1396 1397 case SIOCADDMULTI: 1398 case SIOCDELMULTI: 1399 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1400 error = 0; 1401 } 1402 break; 1403 1404 default: 1405 error = ieee80211_ioctl(ic, cmd, data); 1406 } 1407 1408 if (error == ENETRESET) { 1409 if (IS_RUNNING(ifp) && 1410 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1411 rum_init(ifp); 1412 error = 0; 1413 } 1414 1415 splx(s); 1416 1417 return error; 1418 #undef IS_RUNNING 1419 } 1420 1421 static void 1422 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1423 { 1424 usb_device_request_t req; 1425 usbd_status error; 1426 1427 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1428 req.bRequest = RT2573_READ_EEPROM; 1429 USETW(req.wValue, 0); 1430 USETW(req.wIndex, addr); 1431 USETW(req.wLength, len); 1432 1433 error = usbd_do_request(sc->sc_udev, &req, buf); 1434 if (error != 0) { 1435 printf("%s: could not read EEPROM: %s\n", 1436 device_xname(sc->sc_dev), usbd_errstr(error)); 1437 } 1438 } 1439 1440 static uint32_t 1441 rum_read(struct rum_softc *sc, uint16_t reg) 1442 { 1443 uint32_t val; 1444 1445 rum_read_multi(sc, reg, &val, sizeof val); 1446 1447 return le32toh(val); 1448 } 1449 1450 static void 1451 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1452 { 1453 usb_device_request_t req; 1454 usbd_status error; 1455 1456 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1457 req.bRequest = RT2573_READ_MULTI_MAC; 1458 USETW(req.wValue, 0); 1459 USETW(req.wIndex, reg); 1460 USETW(req.wLength, len); 1461 1462 error = usbd_do_request(sc->sc_udev, &req, buf); 1463 if (error != 0) { 1464 printf("%s: could not multi read MAC register: %s\n", 1465 device_xname(sc->sc_dev), usbd_errstr(error)); 1466 } 1467 } 1468 1469 static void 1470 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1471 { 1472 uint32_t tmp = htole32(val); 1473 1474 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1475 } 1476 1477 static void 1478 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1479 { 1480 usb_device_request_t req; 1481 usbd_status error; 1482 1483 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1484 req.bRequest = RT2573_WRITE_MULTI_MAC; 1485 USETW(req.wValue, 0); 1486 USETW(req.wIndex, reg); 1487 USETW(req.wLength, len); 1488 1489 error = usbd_do_request(sc->sc_udev, &req, buf); 1490 if (error != 0) { 1491 printf("%s: could not multi write MAC register: %s\n", 1492 device_xname(sc->sc_dev), usbd_errstr(error)); 1493 } 1494 } 1495 1496 static void 1497 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1498 { 1499 uint32_t tmp; 1500 int ntries; 1501 1502 for (ntries = 0; ntries < 5; ntries++) { 1503 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1504 break; 1505 } 1506 if (ntries == 5) { 1507 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1508 return; 1509 } 1510 1511 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1512 rum_write(sc, RT2573_PHY_CSR3, tmp); 1513 } 1514 1515 static uint8_t 1516 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1517 { 1518 uint32_t val; 1519 int ntries; 1520 1521 for (ntries = 0; ntries < 5; ntries++) { 1522 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1523 break; 1524 } 1525 if (ntries == 5) { 1526 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1527 return 0; 1528 } 1529 1530 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1531 rum_write(sc, RT2573_PHY_CSR3, val); 1532 1533 for (ntries = 0; ntries < 100; ntries++) { 1534 val = rum_read(sc, RT2573_PHY_CSR3); 1535 if (!(val & RT2573_BBP_BUSY)) 1536 return val & 0xff; 1537 DELAY(1); 1538 } 1539 1540 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1541 return 0; 1542 } 1543 1544 static void 1545 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1546 { 1547 uint32_t tmp; 1548 int ntries; 1549 1550 for (ntries = 0; ntries < 5; ntries++) { 1551 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1552 break; 1553 } 1554 if (ntries == 5) { 1555 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1556 return; 1557 } 1558 1559 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1560 (reg & 3); 1561 rum_write(sc, RT2573_PHY_CSR4, tmp); 1562 1563 /* remember last written value in sc */ 1564 sc->rf_regs[reg] = val; 1565 1566 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1567 } 1568 1569 static void 1570 rum_select_antenna(struct rum_softc *sc) 1571 { 1572 uint8_t bbp4, bbp77; 1573 uint32_t tmp; 1574 1575 bbp4 = rum_bbp_read(sc, 4); 1576 bbp77 = rum_bbp_read(sc, 77); 1577 1578 /* TBD */ 1579 1580 /* make sure Rx is disabled before switching antenna */ 1581 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1582 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1583 1584 rum_bbp_write(sc, 4, bbp4); 1585 rum_bbp_write(sc, 77, bbp77); 1586 1587 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1588 } 1589 1590 /* 1591 * Enable multi-rate retries for frames sent at OFDM rates. 1592 * In 802.11b/g mode, allow fallback to CCK rates. 1593 */ 1594 static void 1595 rum_enable_mrr(struct rum_softc *sc) 1596 { 1597 struct ieee80211com *ic = &sc->sc_ic; 1598 uint32_t tmp; 1599 1600 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1601 1602 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1603 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1604 tmp |= RT2573_MRR_CCK_FALLBACK; 1605 tmp |= RT2573_MRR_ENABLED; 1606 1607 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1608 } 1609 1610 static void 1611 rum_set_txpreamble(struct rum_softc *sc) 1612 { 1613 uint32_t tmp; 1614 1615 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1616 1617 tmp &= ~RT2573_SHORT_PREAMBLE; 1618 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1619 tmp |= RT2573_SHORT_PREAMBLE; 1620 1621 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1622 } 1623 1624 static void 1625 rum_set_basicrates(struct rum_softc *sc) 1626 { 1627 struct ieee80211com *ic = &sc->sc_ic; 1628 1629 /* update basic rate set */ 1630 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1631 /* 11b basic rates: 1, 2Mbps */ 1632 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1633 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1634 /* 11a basic rates: 6, 12, 24Mbps */ 1635 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1636 } else { 1637 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1638 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1639 } 1640 } 1641 1642 /* 1643 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1644 * driver. 1645 */ 1646 static void 1647 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1648 { 1649 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1650 uint32_t tmp; 1651 1652 /* update all BBP registers that depend on the band */ 1653 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1654 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1655 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1656 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1657 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1658 } 1659 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1660 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1661 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1662 } 1663 1664 sc->bbp17 = bbp17; 1665 rum_bbp_write(sc, 17, bbp17); 1666 rum_bbp_write(sc, 96, bbp96); 1667 rum_bbp_write(sc, 104, bbp104); 1668 1669 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1670 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1671 rum_bbp_write(sc, 75, 0x80); 1672 rum_bbp_write(sc, 86, 0x80); 1673 rum_bbp_write(sc, 88, 0x80); 1674 } 1675 1676 rum_bbp_write(sc, 35, bbp35); 1677 rum_bbp_write(sc, 97, bbp97); 1678 rum_bbp_write(sc, 98, bbp98); 1679 1680 tmp = rum_read(sc, RT2573_PHY_CSR0); 1681 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1682 if (IEEE80211_IS_CHAN_2GHZ(c)) 1683 tmp |= RT2573_PA_PE_2GHZ; 1684 else 1685 tmp |= RT2573_PA_PE_5GHZ; 1686 rum_write(sc, RT2573_PHY_CSR0, tmp); 1687 1688 /* 802.11a uses a 16 microseconds short interframe space */ 1689 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1690 } 1691 1692 static void 1693 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1694 { 1695 struct ieee80211com *ic = &sc->sc_ic; 1696 const struct rfprog *rfprog; 1697 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1698 int8_t power; 1699 u_int i, chan; 1700 1701 chan = ieee80211_chan2ieee(ic, c); 1702 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1703 return; 1704 1705 /* select the appropriate RF settings based on what EEPROM says */ 1706 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1707 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1708 1709 /* find the settings for this channel (we know it exists) */ 1710 for (i = 0; rfprog[i].chan != chan; i++); 1711 1712 power = sc->txpow[i]; 1713 if (power < 0) { 1714 bbp94 += power; 1715 power = 0; 1716 } else if (power > 31) { 1717 bbp94 += power - 31; 1718 power = 31; 1719 } 1720 1721 /* 1722 * If we are switching from the 2GHz band to the 5GHz band or 1723 * vice-versa, BBP registers need to be reprogrammed. 1724 */ 1725 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1726 rum_select_band(sc, c); 1727 rum_select_antenna(sc); 1728 } 1729 ic->ic_curchan = c; 1730 1731 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1732 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1733 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1734 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1735 1736 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1737 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1738 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1739 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1740 1741 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1742 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1743 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1744 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1745 1746 DELAY(10); 1747 1748 /* enable smart mode for MIMO-capable RFs */ 1749 bbp3 = rum_bbp_read(sc, 3); 1750 1751 bbp3 &= ~RT2573_SMART_MODE; 1752 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1753 bbp3 |= RT2573_SMART_MODE; 1754 1755 rum_bbp_write(sc, 3, bbp3); 1756 1757 if (bbp94 != RT2573_BBPR94_DEFAULT) 1758 rum_bbp_write(sc, 94, bbp94); 1759 } 1760 1761 /* 1762 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1763 * and HostAP operating modes. 1764 */ 1765 static void 1766 rum_enable_tsf_sync(struct rum_softc *sc) 1767 { 1768 struct ieee80211com *ic = &sc->sc_ic; 1769 uint32_t tmp; 1770 1771 if (ic->ic_opmode != IEEE80211_M_STA) { 1772 /* 1773 * Change default 16ms TBTT adjustment to 8ms. 1774 * Must be done before enabling beacon generation. 1775 */ 1776 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1777 } 1778 1779 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1780 1781 /* set beacon interval (in 1/16ms unit) */ 1782 tmp |= ic->ic_bss->ni_intval * 16; 1783 1784 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1785 if (ic->ic_opmode == IEEE80211_M_STA) 1786 tmp |= RT2573_TSF_MODE(1); 1787 else 1788 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1789 1790 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1791 } 1792 1793 static void 1794 rum_update_slot(struct rum_softc *sc) 1795 { 1796 struct ieee80211com *ic = &sc->sc_ic; 1797 uint8_t slottime; 1798 uint32_t tmp; 1799 1800 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1801 1802 tmp = rum_read(sc, RT2573_MAC_CSR9); 1803 tmp = (tmp & ~0xff) | slottime; 1804 rum_write(sc, RT2573_MAC_CSR9, tmp); 1805 1806 DPRINTF(("setting slot time to %uus\n", slottime)); 1807 } 1808 1809 static void 1810 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1811 { 1812 uint32_t tmp; 1813 1814 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1815 rum_write(sc, RT2573_MAC_CSR4, tmp); 1816 1817 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1818 rum_write(sc, RT2573_MAC_CSR5, tmp); 1819 } 1820 1821 static void 1822 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1823 { 1824 uint32_t tmp; 1825 1826 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1827 rum_write(sc, RT2573_MAC_CSR2, tmp); 1828 1829 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1830 rum_write(sc, RT2573_MAC_CSR3, tmp); 1831 } 1832 1833 static void 1834 rum_update_promisc(struct rum_softc *sc) 1835 { 1836 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1837 uint32_t tmp; 1838 1839 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1840 1841 tmp &= ~RT2573_DROP_NOT_TO_ME; 1842 if (!(ifp->if_flags & IFF_PROMISC)) 1843 tmp |= RT2573_DROP_NOT_TO_ME; 1844 1845 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1846 1847 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1848 "entering" : "leaving")); 1849 } 1850 1851 static const char * 1852 rum_get_rf(int rev) 1853 { 1854 switch (rev) { 1855 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1856 case RT2573_RF_2528: return "RT2528"; 1857 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1858 case RT2573_RF_5226: return "RT5226"; 1859 default: return "unknown"; 1860 } 1861 } 1862 1863 static void 1864 rum_read_eeprom(struct rum_softc *sc) 1865 { 1866 struct ieee80211com *ic = &sc->sc_ic; 1867 uint16_t val; 1868 #ifdef RUM_DEBUG 1869 int i; 1870 #endif 1871 1872 /* read MAC/BBP type */ 1873 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1874 sc->macbbp_rev = le16toh(val); 1875 1876 /* read MAC address */ 1877 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1878 1879 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1880 val = le16toh(val); 1881 sc->rf_rev = (val >> 11) & 0x1f; 1882 sc->hw_radio = (val >> 10) & 0x1; 1883 sc->rx_ant = (val >> 4) & 0x3; 1884 sc->tx_ant = (val >> 2) & 0x3; 1885 sc->nb_ant = val & 0x3; 1886 1887 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1888 1889 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1890 val = le16toh(val); 1891 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1892 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1893 1894 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1895 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1896 1897 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1898 val = le16toh(val); 1899 if ((val & 0xff) != 0xff) 1900 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1901 1902 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1903 val = le16toh(val); 1904 if ((val & 0xff) != 0xff) 1905 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1906 1907 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1908 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1909 1910 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1911 val = le16toh(val); 1912 if ((val & 0xff) != 0xff) 1913 sc->rffreq = val & 0xff; 1914 1915 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1916 1917 /* read Tx power for all a/b/g channels */ 1918 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1919 /* XXX default Tx power for 802.11a channels */ 1920 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1921 #ifdef RUM_DEBUG 1922 for (i = 0; i < 14; i++) 1923 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1924 #endif 1925 1926 /* read default values for BBP registers */ 1927 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1928 #ifdef RUM_DEBUG 1929 for (i = 0; i < 14; i++) { 1930 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1931 continue; 1932 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1933 sc->bbp_prom[i].val)); 1934 } 1935 #endif 1936 } 1937 1938 static int 1939 rum_bbp_init(struct rum_softc *sc) 1940 { 1941 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1942 unsigned int i, ntries; 1943 uint8_t val; 1944 1945 /* wait for BBP to be ready */ 1946 for (ntries = 0; ntries < 100; ntries++) { 1947 val = rum_bbp_read(sc, 0); 1948 if (val != 0 && val != 0xff) 1949 break; 1950 DELAY(1000); 1951 } 1952 if (ntries == 100) { 1953 printf("%s: timeout waiting for BBP\n", 1954 device_xname(sc->sc_dev)); 1955 return EIO; 1956 } 1957 1958 /* initialize BBP registers to default values */ 1959 for (i = 0; i < N(rum_def_bbp); i++) 1960 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1961 1962 /* write vendor-specific BBP values (from EEPROM) */ 1963 for (i = 0; i < 16; i++) { 1964 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1965 continue; 1966 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1967 } 1968 1969 return 0; 1970 #undef N 1971 } 1972 1973 static int 1974 rum_init(struct ifnet *ifp) 1975 { 1976 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1977 struct rum_softc *sc = ifp->if_softc; 1978 struct ieee80211com *ic = &sc->sc_ic; 1979 struct rum_rx_data *data; 1980 uint32_t tmp; 1981 usbd_status error = 0; 1982 unsigned int i, ntries; 1983 1984 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1985 if (rum_attachhook(sc)) 1986 goto fail; 1987 } 1988 1989 rum_stop(ifp, 0); 1990 1991 /* initialize MAC registers to default values */ 1992 for (i = 0; i < N(rum_def_mac); i++) 1993 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1994 1995 /* set host ready */ 1996 rum_write(sc, RT2573_MAC_CSR1, 3); 1997 rum_write(sc, RT2573_MAC_CSR1, 0); 1998 1999 /* wait for BBP/RF to wakeup */ 2000 for (ntries = 0; ntries < 1000; ntries++) { 2001 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2002 break; 2003 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2004 DELAY(1000); 2005 } 2006 if (ntries == 1000) { 2007 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2008 device_xname(sc->sc_dev)); 2009 goto fail; 2010 } 2011 2012 if ((error = rum_bbp_init(sc)) != 0) 2013 goto fail; 2014 2015 /* select default channel */ 2016 rum_select_band(sc, ic->ic_curchan); 2017 rum_select_antenna(sc); 2018 rum_set_chan(sc, ic->ic_curchan); 2019 2020 /* clear STA registers */ 2021 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2022 2023 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2024 rum_set_macaddr(sc, ic->ic_myaddr); 2025 2026 /* initialize ASIC */ 2027 rum_write(sc, RT2573_MAC_CSR1, 4); 2028 2029 /* 2030 * Allocate xfer for AMRR statistics requests. 2031 */ 2032 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2033 if (sc->amrr_xfer == NULL) { 2034 printf("%s: could not allocate AMRR xfer\n", 2035 device_xname(sc->sc_dev)); 2036 goto fail; 2037 } 2038 2039 /* 2040 * Open Tx and Rx USB bulk pipes. 2041 */ 2042 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2043 &sc->sc_tx_pipeh); 2044 if (error != 0) { 2045 printf("%s: could not open Tx pipe: %s\n", 2046 device_xname(sc->sc_dev), usbd_errstr(error)); 2047 goto fail; 2048 } 2049 2050 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2051 &sc->sc_rx_pipeh); 2052 if (error != 0) { 2053 printf("%s: could not open Rx pipe: %s\n", 2054 device_xname(sc->sc_dev), usbd_errstr(error)); 2055 goto fail; 2056 } 2057 2058 /* 2059 * Allocate Tx and Rx xfer queues. 2060 */ 2061 error = rum_alloc_tx_list(sc); 2062 if (error != 0) { 2063 printf("%s: could not allocate Tx list\n", 2064 device_xname(sc->sc_dev)); 2065 goto fail; 2066 } 2067 2068 error = rum_alloc_rx_list(sc); 2069 if (error != 0) { 2070 printf("%s: could not allocate Rx list\n", 2071 device_xname(sc->sc_dev)); 2072 goto fail; 2073 } 2074 2075 /* 2076 * Start up the receive pipe. 2077 */ 2078 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2079 data = &sc->rx_data[i]; 2080 2081 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2082 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2083 error = usbd_transfer(data->xfer); 2084 if (error != USBD_NORMAL_COMPLETION && 2085 error != USBD_IN_PROGRESS) { 2086 printf("%s: could not queue Rx transfer\n", 2087 device_xname(sc->sc_dev)); 2088 goto fail; 2089 } 2090 } 2091 2092 /* update Rx filter */ 2093 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2094 2095 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2096 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2097 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2098 RT2573_DROP_ACKCTS; 2099 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2100 tmp |= RT2573_DROP_TODS; 2101 if (!(ifp->if_flags & IFF_PROMISC)) 2102 tmp |= RT2573_DROP_NOT_TO_ME; 2103 } 2104 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2105 2106 ifp->if_flags &= ~IFF_OACTIVE; 2107 ifp->if_flags |= IFF_RUNNING; 2108 2109 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2110 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2111 else 2112 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2113 2114 return 0; 2115 2116 fail: rum_stop(ifp, 1); 2117 return error; 2118 #undef N 2119 } 2120 2121 static void 2122 rum_stop(struct ifnet *ifp, int disable) 2123 { 2124 struct rum_softc *sc = ifp->if_softc; 2125 struct ieee80211com *ic = &sc->sc_ic; 2126 uint32_t tmp; 2127 2128 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2129 2130 sc->sc_tx_timer = 0; 2131 ifp->if_timer = 0; 2132 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2133 2134 /* disable Rx */ 2135 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2136 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2137 2138 /* reset ASIC */ 2139 rum_write(sc, RT2573_MAC_CSR1, 3); 2140 rum_write(sc, RT2573_MAC_CSR1, 0); 2141 2142 if (sc->amrr_xfer != NULL) { 2143 usbd_free_xfer(sc->amrr_xfer); 2144 sc->amrr_xfer = NULL; 2145 } 2146 2147 if (sc->sc_rx_pipeh != NULL) { 2148 usbd_abort_pipe(sc->sc_rx_pipeh); 2149 usbd_close_pipe(sc->sc_rx_pipeh); 2150 sc->sc_rx_pipeh = NULL; 2151 } 2152 2153 if (sc->sc_tx_pipeh != NULL) { 2154 usbd_abort_pipe(sc->sc_tx_pipeh); 2155 usbd_close_pipe(sc->sc_tx_pipeh); 2156 sc->sc_tx_pipeh = NULL; 2157 } 2158 2159 rum_free_rx_list(sc); 2160 rum_free_tx_list(sc); 2161 } 2162 2163 static int 2164 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2165 { 2166 usb_device_request_t req; 2167 uint16_t reg = RT2573_MCU_CODE_BASE; 2168 usbd_status error; 2169 2170 /* copy firmware image into NIC */ 2171 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2172 rum_write(sc, reg, UGETDW(ucode)); 2173 2174 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2175 req.bRequest = RT2573_MCU_CNTL; 2176 USETW(req.wValue, RT2573_MCU_RUN); 2177 USETW(req.wIndex, 0); 2178 USETW(req.wLength, 0); 2179 2180 error = usbd_do_request(sc->sc_udev, &req, NULL); 2181 if (error != 0) { 2182 printf("%s: could not run firmware: %s\n", 2183 device_xname(sc->sc_dev), usbd_errstr(error)); 2184 } 2185 return error; 2186 } 2187 2188 static int 2189 rum_prepare_beacon(struct rum_softc *sc) 2190 { 2191 struct ieee80211com *ic = &sc->sc_ic; 2192 struct rum_tx_desc desc; 2193 struct mbuf *m0; 2194 int rate; 2195 2196 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2197 if (m0 == NULL) { 2198 aprint_error_dev(sc->sc_dev, 2199 "could not allocate beacon frame\n"); 2200 return ENOBUFS; 2201 } 2202 2203 /* send beacons at the lowest available rate */ 2204 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2205 2206 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2207 m0->m_pkthdr.len, rate); 2208 2209 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2210 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2211 2212 /* copy beacon header and payload into NIC memory */ 2213 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2214 m0->m_pkthdr.len); 2215 2216 m_freem(m0); 2217 2218 return 0; 2219 } 2220 2221 static void 2222 rum_newassoc(struct ieee80211_node *ni, int isnew) 2223 { 2224 /* start with lowest Tx rate */ 2225 ni->ni_txrate = 0; 2226 } 2227 2228 static void 2229 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2230 { 2231 int i; 2232 2233 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2234 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2235 2236 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2237 2238 /* set rate to some reasonable initial value */ 2239 for (i = ni->ni_rates.rs_nrates - 1; 2240 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2241 i--); 2242 ni->ni_txrate = i; 2243 2244 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2245 } 2246 2247 static void 2248 rum_amrr_timeout(void *arg) 2249 { 2250 struct rum_softc *sc = arg; 2251 usb_device_request_t req; 2252 2253 /* 2254 * Asynchronously read statistic registers (cleared by read). 2255 */ 2256 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2257 req.bRequest = RT2573_READ_MULTI_MAC; 2258 USETW(req.wValue, 0); 2259 USETW(req.wIndex, RT2573_STA_CSR0); 2260 USETW(req.wLength, sizeof sc->sta); 2261 2262 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2263 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2264 rum_amrr_update); 2265 (void)usbd_transfer(sc->amrr_xfer); 2266 } 2267 2268 static void 2269 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2270 usbd_status status) 2271 { 2272 struct rum_softc *sc = (struct rum_softc *)priv; 2273 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2274 2275 if (status != USBD_NORMAL_COMPLETION) { 2276 printf("%s: could not retrieve Tx statistics - cancelling " 2277 "automatic rate control\n", device_xname(sc->sc_dev)); 2278 return; 2279 } 2280 2281 /* count TX retry-fail as Tx errors */ 2282 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2283 2284 sc->amn.amn_retrycnt = 2285 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2286 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2287 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2288 2289 sc->amn.amn_txcnt = 2290 sc->amn.amn_retrycnt + 2291 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2292 2293 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2294 2295 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2296 } 2297 2298 static int 2299 rum_activate(device_t self, enum devact act) 2300 { 2301 switch (act) { 2302 case DVACT_DEACTIVATE: 2303 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2304 return 0; 2305 default: 2306 return 0; 2307 } 2308 } 2309 2310 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf"); 2311 2312 #ifdef _MODULE 2313 #include "ioconf.c" 2314 #endif 2315 2316 static int 2317 if_rum_modcmd(modcmd_t cmd, void *aux) 2318 { 2319 int error = 0; 2320 2321 switch (cmd) { 2322 case MODULE_CMD_INIT: 2323 #ifdef _MODULE 2324 error = config_init_component(cfdriver_ioconf_rum, 2325 cfattach_ioconf_rum, cfdata_ioconf_rum); 2326 #endif 2327 return error; 2328 case MODULE_CMD_FINI: 2329 #ifdef _MODULE 2330 error = config_fini_component(cfdriver_ioconf_rum, 2331 cfattach_ioconf_rum, cfdata_ioconf_rum); 2332 #endif 2333 return error; 2334 default: 2335 return ENOTTY; 2336 } 2337 } 2338