xref: /netbsd-src/sys/dev/usb/if_rum.c (revision e61202360d5611414dd6f6115934a96aa1f50b1a)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.43 2012/09/23 01:08:17 chs Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.43 2012/09/23 01:08:17 chs Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_ether.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 
59 #include <net80211/ieee80211_netbsd.h>
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/firmload.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_rumreg.h>
72 #include <dev/usb/if_rumvar.h>
73 
74 #ifdef USB_DEBUG
75 #define RUM_DEBUG
76 #endif
77 
78 #ifdef RUM_DEBUG
79 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
81 int rum_debug = 1;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno rum_devs[] = {
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
92 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
93 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
94 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
95 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
96 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
98 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
99 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
101 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
105 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
106 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
107 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
108 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
110 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
111 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
112 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
113 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
114 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
115 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
116 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
117 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
118 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
119 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
120 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
121 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
122 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
123 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
124 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
125 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
126 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
127 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
128 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
129 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
130 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
131 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
132 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
133 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
134 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
135 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
136 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
137 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
138 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
139 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
140 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
141 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
142 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
143 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
144 };
145 
146 static int		rum_attachhook(void *);
147 static int		rum_alloc_tx_list(struct rum_softc *);
148 static void		rum_free_tx_list(struct rum_softc *);
149 static int		rum_alloc_rx_list(struct rum_softc *);
150 static void		rum_free_rx_list(struct rum_softc *);
151 static int		rum_media_change(struct ifnet *);
152 static void		rum_next_scan(void *);
153 static void		rum_task(void *);
154 static int		rum_newstate(struct ieee80211com *,
155 			    enum ieee80211_state, int);
156 static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
157 			    usbd_status);
158 static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
159 			    usbd_status);
160 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
161 static int		rum_ack_rate(struct ieee80211com *, int);
162 static uint16_t		rum_txtime(int, int, uint32_t);
163 static uint8_t		rum_plcp_signal(int);
164 static void		rum_setup_tx_desc(struct rum_softc *,
165 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
166 			    int);
167 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
168 			    struct ieee80211_node *);
169 static void		rum_start(struct ifnet *);
170 static void		rum_watchdog(struct ifnet *);
171 static int		rum_ioctl(struct ifnet *, u_long, void *);
172 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
173 			    int);
174 static uint32_t		rum_read(struct rum_softc *, uint16_t);
175 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
176 			    int);
177 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
178 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
179 			    size_t);
180 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
181 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
182 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
183 static void		rum_select_antenna(struct rum_softc *);
184 static void		rum_enable_mrr(struct rum_softc *);
185 static void		rum_set_txpreamble(struct rum_softc *);
186 static void		rum_set_basicrates(struct rum_softc *);
187 static void		rum_select_band(struct rum_softc *,
188 			    struct ieee80211_channel *);
189 static void		rum_set_chan(struct rum_softc *,
190 			    struct ieee80211_channel *);
191 static void		rum_enable_tsf_sync(struct rum_softc *);
192 static void		rum_update_slot(struct rum_softc *);
193 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
194 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
195 static void		rum_update_promisc(struct rum_softc *);
196 static const char	*rum_get_rf(int);
197 static void		rum_read_eeprom(struct rum_softc *);
198 static int		rum_bbp_init(struct rum_softc *);
199 static int		rum_init(struct ifnet *);
200 static void		rum_stop(struct ifnet *, int);
201 static int		rum_load_microcode(struct rum_softc *, const u_char *,
202 			    size_t);
203 static int		rum_prepare_beacon(struct rum_softc *);
204 static void		rum_newassoc(struct ieee80211_node *, int);
205 static void		rum_amrr_start(struct rum_softc *,
206 			    struct ieee80211_node *);
207 static void		rum_amrr_timeout(void *);
208 static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
209 			    usbd_status status);
210 
211 /*
212  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
213  */
214 static const struct ieee80211_rateset rum_rateset_11a =
215 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
216 
217 static const struct ieee80211_rateset rum_rateset_11b =
218 	{ 4, { 2, 4, 11, 22 } };
219 
220 static const struct ieee80211_rateset rum_rateset_11g =
221 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
222 
223 static const struct {
224 	uint32_t	reg;
225 	uint32_t	val;
226 } rum_def_mac[] = {
227 	RT2573_DEF_MAC
228 };
229 
230 static const struct {
231 	uint8_t	reg;
232 	uint8_t	val;
233 } rum_def_bbp[] = {
234 	RT2573_DEF_BBP
235 };
236 
237 static const struct rfprog {
238 	uint8_t		chan;
239 	uint32_t	r1, r2, r3, r4;
240 }  rum_rf5226[] = {
241 	RT2573_RF5226
242 }, rum_rf5225[] = {
243 	RT2573_RF5225
244 };
245 
246 static int rum_match(device_t, cfdata_t, void *);
247 static void rum_attach(device_t, device_t, void *);
248 static int rum_detach(device_t, int);
249 static int rum_activate(device_t, enum devact);
250 extern struct cfdriver rum_cd;
251 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
252     rum_detach, rum_activate);
253 
254 static int
255 rum_match(device_t parent, cfdata_t match, void *aux)
256 {
257 	struct usb_attach_arg *uaa = aux;
258 
259 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
260 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
261 }
262 
263 static int
264 rum_attachhook(void *xsc)
265 {
266 	struct rum_softc *sc = xsc;
267 	firmware_handle_t fwh;
268 	const char *name = "rum-rt2573";
269 	u_char *ucode;
270 	size_t size;
271 	int error;
272 
273 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
274 		printf("%s: failed loadfirmware of file %s (error %d)\n",
275 		    device_xname(sc->sc_dev), name, error);
276 		return error;
277 	}
278 	size = firmware_get_size(fwh);
279 	ucode = firmware_malloc(size);
280 	if (ucode == NULL) {
281 		printf("%s: failed to allocate firmware memory\n",
282 		    device_xname(sc->sc_dev));
283 		firmware_close(fwh);
284 		return ENOMEM;
285 	}
286 	error = firmware_read(fwh, 0, ucode, size);
287 	firmware_close(fwh);
288 	if (error != 0) {
289 		printf("%s: failed to read firmware (error %d)\n",
290 		    device_xname(sc->sc_dev), error);
291 		firmware_free(ucode, 0);
292 		return error;
293 	}
294 
295 	if (rum_load_microcode(sc, ucode, size) != 0) {
296 		printf("%s: could not load 8051 microcode\n",
297 		    device_xname(sc->sc_dev));
298 		firmware_free(ucode, 0);
299 		return ENXIO;
300 	}
301 
302 	firmware_free(ucode, 0);
303 	sc->sc_flags |= RT2573_FWLOADED;
304 
305 	return 0;
306 }
307 
308 static void
309 rum_attach(device_t parent, device_t self, void *aux)
310 {
311 	struct rum_softc *sc = device_private(self);
312 	struct usb_attach_arg *uaa = aux;
313 	struct ieee80211com *ic = &sc->sc_ic;
314 	struct ifnet *ifp = &sc->sc_if;
315 	usb_interface_descriptor_t *id;
316 	usb_endpoint_descriptor_t *ed;
317 	usbd_status error;
318 	char *devinfop;
319 	int i, ntries;
320 	uint32_t tmp;
321 
322 	sc->sc_dev = self;
323 	sc->sc_udev = uaa->device;
324 	sc->sc_flags = 0;
325 
326 	aprint_naive("\n");
327 	aprint_normal("\n");
328 
329 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
330 	aprint_normal_dev(self, "%s\n", devinfop);
331 	usbd_devinfo_free(devinfop);
332 
333 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
334 		aprint_error_dev(self, "could not set configuration no\n");
335 		return;
336 	}
337 
338 	/* get the first interface handle */
339 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
340 	    &sc->sc_iface);
341 	if (error != 0) {
342 		aprint_error_dev(self, "could not get interface handle\n");
343 		return;
344 	}
345 
346 	/*
347 	 * Find endpoints.
348 	 */
349 	id = usbd_get_interface_descriptor(sc->sc_iface);
350 
351 	sc->sc_rx_no = sc->sc_tx_no = -1;
352 	for (i = 0; i < id->bNumEndpoints; i++) {
353 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
354 		if (ed == NULL) {
355 			aprint_error_dev(self,
356 			    "no endpoint descriptor for iface %d\n", i);
357 			return;
358 		}
359 
360 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
361 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 			sc->sc_rx_no = ed->bEndpointAddress;
363 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
364 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
365 			sc->sc_tx_no = ed->bEndpointAddress;
366 	}
367 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
368 		aprint_error_dev(self, "missing endpoint\n");
369 		return;
370 	}
371 
372 	usb_init_task(&sc->sc_task, rum_task, sc);
373 	callout_init(&sc->sc_scan_ch, 0);
374 
375 	sc->amrr.amrr_min_success_threshold =  1;
376 	sc->amrr.amrr_max_success_threshold = 10;
377 	callout_init(&sc->sc_amrr_ch, 0);
378 
379 	/* retrieve RT2573 rev. no */
380 	for (ntries = 0; ntries < 1000; ntries++) {
381 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
382 			break;
383 		DELAY(1000);
384 	}
385 	if (ntries == 1000) {
386 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
387 		return;
388 	}
389 
390 	/* retrieve MAC address and various other things from EEPROM */
391 	rum_read_eeprom(sc);
392 
393 	aprint_normal_dev(self,
394 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
395 	    sc->macbbp_rev, tmp,
396 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
397 
398 	ic->ic_ifp = ifp;
399 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
400 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
401 	ic->ic_state = IEEE80211_S_INIT;
402 
403 	/* set device capabilities */
404 	ic->ic_caps =
405 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
406 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
407 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
408 	    IEEE80211_C_TXPMGT |	/* tx power management */
409 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
410 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
411 	    IEEE80211_C_WPA;		/* 802.11i */
412 
413 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
414 		/* set supported .11a rates */
415 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
416 
417 		/* set supported .11a channels */
418 		for (i = 34; i <= 46; i += 4) {
419 			ic->ic_channels[i].ic_freq =
420 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
421 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
422 		}
423 		for (i = 36; i <= 64; i += 4) {
424 			ic->ic_channels[i].ic_freq =
425 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
426 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
427 		}
428 		for (i = 100; i <= 140; i += 4) {
429 			ic->ic_channels[i].ic_freq =
430 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
431 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
432 		}
433 		for (i = 149; i <= 165; i += 4) {
434 			ic->ic_channels[i].ic_freq =
435 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
436 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
437 		}
438 	}
439 
440 	/* set supported .11b and .11g rates */
441 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
442 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
443 
444 	/* set supported .11b and .11g channels (1 through 14) */
445 	for (i = 1; i <= 14; i++) {
446 		ic->ic_channels[i].ic_freq =
447 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
448 		ic->ic_channels[i].ic_flags =
449 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
450 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
451 	}
452 
453 	ifp->if_softc = sc;
454 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
455 	ifp->if_init = rum_init;
456 	ifp->if_ioctl = rum_ioctl;
457 	ifp->if_start = rum_start;
458 	ifp->if_watchdog = rum_watchdog;
459 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
460 	IFQ_SET_READY(&ifp->if_snd);
461 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
462 
463 	if_attach(ifp);
464 	ieee80211_ifattach(ic);
465 	ic->ic_newassoc = rum_newassoc;
466 
467 	/* override state transition machine */
468 	sc->sc_newstate = ic->ic_newstate;
469 	ic->ic_newstate = rum_newstate;
470 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
471 
472 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
473 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
474 	    &sc->sc_drvbpf);
475 
476 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
477 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
478 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
479 
480 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
481 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
482 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
483 
484 	ieee80211_announce(ic);
485 
486 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
487 	    sc->sc_dev);
488 
489 	return;
490 }
491 
492 static int
493 rum_detach(device_t self, int flags)
494 {
495 	struct rum_softc *sc = device_private(self);
496 	struct ieee80211com *ic = &sc->sc_ic;
497 	struct ifnet *ifp = &sc->sc_if;
498 	int s;
499 
500 	if (!ifp->if_softc)
501 		return 0;
502 
503 	s = splusb();
504 
505 	rum_stop(ifp, 1);
506 	usb_rem_task(sc->sc_udev, &sc->sc_task);
507 	callout_stop(&sc->sc_scan_ch);
508 	callout_stop(&sc->sc_amrr_ch);
509 
510 	if (sc->amrr_xfer != NULL) {
511 		usbd_free_xfer(sc->amrr_xfer);
512 		sc->amrr_xfer = NULL;
513 	}
514 
515 	if (sc->sc_rx_pipeh != NULL) {
516 		usbd_abort_pipe(sc->sc_rx_pipeh);
517 		usbd_close_pipe(sc->sc_rx_pipeh);
518 	}
519 
520 	if (sc->sc_tx_pipeh != NULL) {
521 		usbd_abort_pipe(sc->sc_tx_pipeh);
522 		usbd_close_pipe(sc->sc_tx_pipeh);
523 	}
524 
525 	bpf_detach(ifp);
526 	ieee80211_ifdetach(ic);	/* free all nodes */
527 	if_detach(ifp);
528 
529 	splx(s);
530 
531 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
532 
533 	return 0;
534 }
535 
536 static int
537 rum_alloc_tx_list(struct rum_softc *sc)
538 {
539 	struct rum_tx_data *data;
540 	int i, error;
541 
542 	sc->tx_cur = sc->tx_queued = 0;
543 
544 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
545 		data = &sc->tx_data[i];
546 
547 		data->sc = sc;
548 
549 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
550 		if (data->xfer == NULL) {
551 			printf("%s: could not allocate tx xfer\n",
552 			    device_xname(sc->sc_dev));
553 			error = ENOMEM;
554 			goto fail;
555 		}
556 
557 		data->buf = usbd_alloc_buffer(data->xfer,
558 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
559 		if (data->buf == NULL) {
560 			printf("%s: could not allocate tx buffer\n",
561 			    device_xname(sc->sc_dev));
562 			error = ENOMEM;
563 			goto fail;
564 		}
565 
566 		/* clean Tx descriptor */
567 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
568 	}
569 
570 	return 0;
571 
572 fail:	rum_free_tx_list(sc);
573 	return error;
574 }
575 
576 static void
577 rum_free_tx_list(struct rum_softc *sc)
578 {
579 	struct rum_tx_data *data;
580 	int i;
581 
582 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
583 		data = &sc->tx_data[i];
584 
585 		if (data->xfer != NULL) {
586 			usbd_free_xfer(data->xfer);
587 			data->xfer = NULL;
588 		}
589 
590 		if (data->ni != NULL) {
591 			ieee80211_free_node(data->ni);
592 			data->ni = NULL;
593 		}
594 	}
595 }
596 
597 static int
598 rum_alloc_rx_list(struct rum_softc *sc)
599 {
600 	struct rum_rx_data *data;
601 	int i, error;
602 
603 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
604 		data = &sc->rx_data[i];
605 
606 		data->sc = sc;
607 
608 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
609 		if (data->xfer == NULL) {
610 			printf("%s: could not allocate rx xfer\n",
611 			    device_xname(sc->sc_dev));
612 			error = ENOMEM;
613 			goto fail;
614 		}
615 
616 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
617 			printf("%s: could not allocate rx buffer\n",
618 			    device_xname(sc->sc_dev));
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 
623 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
624 		if (data->m == NULL) {
625 			printf("%s: could not allocate rx mbuf\n",
626 			    device_xname(sc->sc_dev));
627 			error = ENOMEM;
628 			goto fail;
629 		}
630 
631 		MCLGET(data->m, M_DONTWAIT);
632 		if (!(data->m->m_flags & M_EXT)) {
633 			printf("%s: could not allocate rx mbuf cluster\n",
634 			    device_xname(sc->sc_dev));
635 			error = ENOMEM;
636 			goto fail;
637 		}
638 
639 		data->buf = mtod(data->m, uint8_t *);
640 	}
641 
642 	return 0;
643 
644 fail:	rum_free_rx_list(sc);
645 	return error;
646 }
647 
648 static void
649 rum_free_rx_list(struct rum_softc *sc)
650 {
651 	struct rum_rx_data *data;
652 	int i;
653 
654 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
655 		data = &sc->rx_data[i];
656 
657 		if (data->xfer != NULL) {
658 			usbd_free_xfer(data->xfer);
659 			data->xfer = NULL;
660 		}
661 
662 		if (data->m != NULL) {
663 			m_freem(data->m);
664 			data->m = NULL;
665 		}
666 	}
667 }
668 
669 static int
670 rum_media_change(struct ifnet *ifp)
671 {
672 	int error;
673 
674 	error = ieee80211_media_change(ifp);
675 	if (error != ENETRESET)
676 		return error;
677 
678 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
679 		rum_init(ifp);
680 
681 	return 0;
682 }
683 
684 /*
685  * This function is called periodically (every 200ms) during scanning to
686  * switch from one channel to another.
687  */
688 static void
689 rum_next_scan(void *arg)
690 {
691 	struct rum_softc *sc = arg;
692 	struct ieee80211com *ic = &sc->sc_ic;
693 	int s;
694 
695 	s = splnet();
696 	if (ic->ic_state == IEEE80211_S_SCAN)
697 		ieee80211_next_scan(ic);
698 	splx(s);
699 }
700 
701 static void
702 rum_task(void *arg)
703 {
704 	struct rum_softc *sc = arg;
705 	struct ieee80211com *ic = &sc->sc_ic;
706 	enum ieee80211_state ostate;
707 	struct ieee80211_node *ni;
708 	uint32_t tmp;
709 
710 	ostate = ic->ic_state;
711 
712 	switch (sc->sc_state) {
713 	case IEEE80211_S_INIT:
714 		if (ostate == IEEE80211_S_RUN) {
715 			/* abort TSF synchronization */
716 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
717 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
718 		}
719 		break;
720 
721 	case IEEE80211_S_SCAN:
722 		rum_set_chan(sc, ic->ic_curchan);
723 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
724 		break;
725 
726 	case IEEE80211_S_AUTH:
727 		rum_set_chan(sc, ic->ic_curchan);
728 		break;
729 
730 	case IEEE80211_S_ASSOC:
731 		rum_set_chan(sc, ic->ic_curchan);
732 		break;
733 
734 	case IEEE80211_S_RUN:
735 		rum_set_chan(sc, ic->ic_curchan);
736 
737 		ni = ic->ic_bss;
738 
739 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
740 			rum_update_slot(sc);
741 			rum_enable_mrr(sc);
742 			rum_set_txpreamble(sc);
743 			rum_set_basicrates(sc);
744 			rum_set_bssid(sc, ni->ni_bssid);
745 		}
746 
747 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
748 		    ic->ic_opmode == IEEE80211_M_IBSS)
749 			rum_prepare_beacon(sc);
750 
751 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
752 			rum_enable_tsf_sync(sc);
753 
754 		if (ic->ic_opmode == IEEE80211_M_STA) {
755 			/* fake a join to init the tx rate */
756 			rum_newassoc(ic->ic_bss, 1);
757 
758 			/* enable automatic rate adaptation in STA mode */
759 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
760 				rum_amrr_start(sc, ni);
761 		}
762 
763 		break;
764 	}
765 
766 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
767 }
768 
769 static int
770 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
771 {
772 	struct rum_softc *sc = ic->ic_ifp->if_softc;
773 
774 	usb_rem_task(sc->sc_udev, &sc->sc_task);
775 	callout_stop(&sc->sc_scan_ch);
776 	callout_stop(&sc->sc_amrr_ch);
777 
778 	/* do it in a process context */
779 	sc->sc_state = nstate;
780 	sc->sc_arg = arg;
781 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
782 
783 	return 0;
784 }
785 
786 /* quickly determine if a given rate is CCK or OFDM */
787 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
788 
789 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
790 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
791 
792 static void
793 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
794 {
795 	struct rum_tx_data *data = priv;
796 	struct rum_softc *sc = data->sc;
797 	struct ifnet *ifp = &sc->sc_if;
798 	int s;
799 
800 	if (status != USBD_NORMAL_COMPLETION) {
801 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
802 			return;
803 
804 		printf("%s: could not transmit buffer: %s\n",
805 		    device_xname(sc->sc_dev), usbd_errstr(status));
806 
807 		if (status == USBD_STALLED)
808 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
809 
810 		ifp->if_oerrors++;
811 		return;
812 	}
813 
814 	s = splnet();
815 
816 	ieee80211_free_node(data->ni);
817 	data->ni = NULL;
818 
819 	sc->tx_queued--;
820 	ifp->if_opackets++;
821 
822 	DPRINTFN(10, ("tx done\n"));
823 
824 	sc->sc_tx_timer = 0;
825 	ifp->if_flags &= ~IFF_OACTIVE;
826 	rum_start(ifp);
827 
828 	splx(s);
829 }
830 
831 static void
832 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
833 {
834 	struct rum_rx_data *data = priv;
835 	struct rum_softc *sc = data->sc;
836 	struct ieee80211com *ic = &sc->sc_ic;
837 	struct ifnet *ifp = &sc->sc_if;
838 	struct rum_rx_desc *desc;
839 	struct ieee80211_frame *wh;
840 	struct ieee80211_node *ni;
841 	struct mbuf *mnew, *m;
842 	int s, len;
843 
844 	if (status != USBD_NORMAL_COMPLETION) {
845 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
846 			return;
847 
848 		if (status == USBD_STALLED)
849 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
850 		goto skip;
851 	}
852 
853 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
854 
855 	if (len < (int)(RT2573_RX_DESC_SIZE +
856 		        sizeof(struct ieee80211_frame_min))) {
857 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
858 		    len));
859 		ifp->if_ierrors++;
860 		goto skip;
861 	}
862 
863 	desc = (struct rum_rx_desc *)data->buf;
864 
865 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
866 		/*
867 		 * This should not happen since we did not request to receive
868 		 * those frames when we filled RT2573_TXRX_CSR0.
869 		 */
870 		DPRINTFN(5, ("CRC error\n"));
871 		ifp->if_ierrors++;
872 		goto skip;
873 	}
874 
875 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
876 	if (mnew == NULL) {
877 		printf("%s: could not allocate rx mbuf\n",
878 		    device_xname(sc->sc_dev));
879 		ifp->if_ierrors++;
880 		goto skip;
881 	}
882 
883 	MCLGET(mnew, M_DONTWAIT);
884 	if (!(mnew->m_flags & M_EXT)) {
885 		printf("%s: could not allocate rx mbuf cluster\n",
886 		    device_xname(sc->sc_dev));
887 		m_freem(mnew);
888 		ifp->if_ierrors++;
889 		goto skip;
890 	}
891 
892 	m = data->m;
893 	data->m = mnew;
894 	data->buf = mtod(data->m, uint8_t *);
895 
896 	/* finalize mbuf */
897 	m->m_pkthdr.rcvif = ifp;
898 	m->m_data = (void *)(desc + 1);
899 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
900 
901 	s = splnet();
902 
903 	if (sc->sc_drvbpf != NULL) {
904 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
905 
906 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
907 		tap->wr_rate = rum_rxrate(desc);
908 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
909 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
910 		tap->wr_antenna = sc->rx_ant;
911 		tap->wr_antsignal = desc->rssi;
912 
913 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
914 	}
915 
916 	wh = mtod(m, struct ieee80211_frame *);
917 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
918 
919 	/* send the frame to the 802.11 layer */
920 	ieee80211_input(ic, m, ni, desc->rssi, 0);
921 
922 	/* node is no longer needed */
923 	ieee80211_free_node(ni);
924 
925 	splx(s);
926 
927 	DPRINTFN(15, ("rx done\n"));
928 
929 skip:	/* setup a new transfer */
930 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
931 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
932 	usbd_transfer(xfer);
933 }
934 
935 /*
936  * This function is only used by the Rx radiotap code. It returns the rate at
937  * which a given frame was received.
938  */
939 static uint8_t
940 rum_rxrate(const struct rum_rx_desc *desc)
941 {
942 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
943 		/* reverse function of rum_plcp_signal */
944 		switch (desc->rate) {
945 		case 0xb:	return 12;
946 		case 0xf:	return 18;
947 		case 0xa:	return 24;
948 		case 0xe:	return 36;
949 		case 0x9:	return 48;
950 		case 0xd:	return 72;
951 		case 0x8:	return 96;
952 		case 0xc:	return 108;
953 		}
954 	} else {
955 		if (desc->rate == 10)
956 			return 2;
957 		if (desc->rate == 20)
958 			return 4;
959 		if (desc->rate == 55)
960 			return 11;
961 		if (desc->rate == 110)
962 			return 22;
963 	}
964 	return 2;	/* should not get there */
965 }
966 
967 /*
968  * Return the expected ack rate for a frame transmitted at rate `rate'.
969  * XXX: this should depend on the destination node basic rate set.
970  */
971 static int
972 rum_ack_rate(struct ieee80211com *ic, int rate)
973 {
974 	switch (rate) {
975 	/* CCK rates */
976 	case 2:
977 		return 2;
978 	case 4:
979 	case 11:
980 	case 22:
981 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
982 
983 	/* OFDM rates */
984 	case 12:
985 	case 18:
986 		return 12;
987 	case 24:
988 	case 36:
989 		return 24;
990 	case 48:
991 	case 72:
992 	case 96:
993 	case 108:
994 		return 48;
995 	}
996 
997 	/* default to 1Mbps */
998 	return 2;
999 }
1000 
1001 /*
1002  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1003  * The function automatically determines the operating mode depending on the
1004  * given rate. `flags' indicates whether short preamble is in use or not.
1005  */
1006 static uint16_t
1007 rum_txtime(int len, int rate, uint32_t flags)
1008 {
1009 	uint16_t txtime;
1010 
1011 	if (RUM_RATE_IS_OFDM(rate)) {
1012 		/* IEEE Std 802.11a-1999, pp. 37 */
1013 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1014 		txtime = 16 + 4 + 4 * txtime + 6;
1015 	} else {
1016 		/* IEEE Std 802.11b-1999, pp. 28 */
1017 		txtime = (16 * len + rate - 1) / rate;
1018 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1019 			txtime +=  72 + 24;
1020 		else
1021 			txtime += 144 + 48;
1022 	}
1023 	return txtime;
1024 }
1025 
1026 static uint8_t
1027 rum_plcp_signal(int rate)
1028 {
1029 	switch (rate) {
1030 	/* CCK rates (returned values are device-dependent) */
1031 	case 2:		return 0x0;
1032 	case 4:		return 0x1;
1033 	case 11:	return 0x2;
1034 	case 22:	return 0x3;
1035 
1036 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1037 	case 12:	return 0xb;
1038 	case 18:	return 0xf;
1039 	case 24:	return 0xa;
1040 	case 36:	return 0xe;
1041 	case 48:	return 0x9;
1042 	case 72:	return 0xd;
1043 	case 96:	return 0x8;
1044 	case 108:	return 0xc;
1045 
1046 	/* unsupported rates (should not get there) */
1047 	default:	return 0xff;
1048 	}
1049 }
1050 
1051 static void
1052 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1053     uint32_t flags, uint16_t xflags, int len, int rate)
1054 {
1055 	struct ieee80211com *ic = &sc->sc_ic;
1056 	uint16_t plcp_length;
1057 	int remainder;
1058 
1059 	desc->flags = htole32(flags);
1060 	desc->flags |= htole32(RT2573_TX_VALID);
1061 	desc->flags |= htole32(len << 16);
1062 
1063 	desc->xflags = htole16(xflags);
1064 
1065 	desc->wme = htole16(
1066 	    RT2573_QID(0) |
1067 	    RT2573_AIFSN(2) |
1068 	    RT2573_LOGCWMIN(4) |
1069 	    RT2573_LOGCWMAX(10));
1070 
1071 	/* setup PLCP fields */
1072 	desc->plcp_signal  = rum_plcp_signal(rate);
1073 	desc->plcp_service = 4;
1074 
1075 	len += IEEE80211_CRC_LEN;
1076 	if (RUM_RATE_IS_OFDM(rate)) {
1077 		desc->flags |= htole32(RT2573_TX_OFDM);
1078 
1079 		plcp_length = len & 0xfff;
1080 		desc->plcp_length_hi = plcp_length >> 6;
1081 		desc->plcp_length_lo = plcp_length & 0x3f;
1082 	} else {
1083 		plcp_length = (16 * len + rate - 1) / rate;
1084 		if (rate == 22) {
1085 			remainder = (16 * len) % 22;
1086 			if (remainder != 0 && remainder < 7)
1087 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1088 		}
1089 		desc->plcp_length_hi = plcp_length >> 8;
1090 		desc->plcp_length_lo = plcp_length & 0xff;
1091 
1092 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1093 			desc->plcp_signal |= 0x08;
1094 	}
1095 }
1096 
1097 #define RUM_TX_TIMEOUT	5000
1098 
1099 static int
1100 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1101 {
1102 	struct ieee80211com *ic = &sc->sc_ic;
1103 	struct rum_tx_desc *desc;
1104 	struct rum_tx_data *data;
1105 	struct ieee80211_frame *wh;
1106 	struct ieee80211_key *k;
1107 	uint32_t flags = 0;
1108 	uint16_t dur;
1109 	usbd_status error;
1110 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1111 
1112 	wh = mtod(m0, struct ieee80211_frame *);
1113 
1114 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1115 		k = ieee80211_crypto_encap(ic, ni, m0);
1116 		if (k == NULL) {
1117 			m_freem(m0);
1118 			return ENOBUFS;
1119 		}
1120 
1121 		/* packet header may have moved, reset our local pointer */
1122 		wh = mtod(m0, struct ieee80211_frame *);
1123 	}
1124 
1125 	/* compute actual packet length (including CRC and crypto overhead) */
1126 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1127 
1128 	/* pickup a rate */
1129 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1130 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1131 	     IEEE80211_FC0_TYPE_MGT)) {
1132 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1133 		rate = ni->ni_rates.rs_rates[0];
1134 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1135 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1136 	} else
1137 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1138 	if (rate == 0)
1139 		rate = 2;	/* XXX should not happen */
1140 	rate &= IEEE80211_RATE_VAL;
1141 
1142 	/* check if RTS/CTS or CTS-to-self protection must be used */
1143 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1144 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1145 		if (pktlen > ic->ic_rtsthreshold) {
1146 			needrts = 1;	/* RTS/CTS based on frame length */
1147 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1148 		    RUM_RATE_IS_OFDM(rate)) {
1149 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1150 				needcts = 1;	/* CTS-to-self */
1151 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1152 				needrts = 1;	/* RTS/CTS */
1153 		}
1154 	}
1155 	if (needrts || needcts) {
1156 		struct mbuf *mprot;
1157 		int protrate, ackrate;
1158 
1159 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1160 		ackrate  = rum_ack_rate(ic, rate);
1161 
1162 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1163 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1164 		      2 * sc->sifs;
1165 		if (needrts) {
1166 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1167 			    protrate), ic->ic_flags) + sc->sifs;
1168 			mprot = ieee80211_get_rts(ic, wh, dur);
1169 		} else {
1170 			mprot = ieee80211_get_cts_to_self(ic, dur);
1171 		}
1172 		if (mprot == NULL) {
1173 			aprint_error_dev(sc->sc_dev,
1174 			    "couldn't allocate protection frame\n");
1175 			m_freem(m0);
1176 			return ENOBUFS;
1177 		}
1178 
1179 		data = &sc->tx_data[sc->tx_cur];
1180 		desc = (struct rum_tx_desc *)data->buf;
1181 
1182 		/* avoid multiple free() of the same node for each fragment */
1183 		data->ni = ieee80211_ref_node(ni);
1184 
1185 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1186 		    data->buf + RT2573_TX_DESC_SIZE);
1187 		rum_setup_tx_desc(sc, desc,
1188 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1189 		    0, mprot->m_pkthdr.len, protrate);
1190 
1191 		/* no roundup necessary here */
1192 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1193 
1194 		/* XXX may want to pass the protection frame to BPF */
1195 
1196 		/* mbuf is no longer needed */
1197 		m_freem(mprot);
1198 
1199 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1200 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1201 		    RUM_TX_TIMEOUT, rum_txeof);
1202 		error = usbd_transfer(data->xfer);
1203 		if (error != USBD_NORMAL_COMPLETION &&
1204 		    error != USBD_IN_PROGRESS) {
1205 			m_freem(m0);
1206 			return error;
1207 		}
1208 
1209 		sc->tx_queued++;
1210 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1211 
1212 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1213 	}
1214 
1215 	data = &sc->tx_data[sc->tx_cur];
1216 	desc = (struct rum_tx_desc *)data->buf;
1217 
1218 	data->ni = ni;
1219 
1220 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1221 		flags |= RT2573_TX_NEED_ACK;
1222 
1223 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1224 		    ic->ic_flags) + sc->sifs;
1225 		*(uint16_t *)wh->i_dur = htole16(dur);
1226 
1227 		/* tell hardware to set timestamp in probe responses */
1228 		if ((wh->i_fc[0] &
1229 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1230 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1231 			flags |= RT2573_TX_TIMESTAMP;
1232 	}
1233 
1234 	if (sc->sc_drvbpf != NULL) {
1235 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1236 
1237 		tap->wt_flags = 0;
1238 		tap->wt_rate = rate;
1239 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1240 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1241 		tap->wt_antenna = sc->tx_ant;
1242 
1243 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1244 	}
1245 
1246 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1247 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1248 
1249 	/* align end on a 4-bytes boundary */
1250 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1251 
1252 	/*
1253 	 * No space left in the last URB to store the extra 4 bytes, force
1254 	 * sending of another URB.
1255 	 */
1256 	if ((xferlen % 64) == 0)
1257 		xferlen += 4;
1258 
1259 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1260 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1261 	    rate, xferlen));
1262 
1263 	/* mbuf is no longer needed */
1264 	m_freem(m0);
1265 
1266 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1267 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1268 	error = usbd_transfer(data->xfer);
1269 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1270 		return error;
1271 
1272 	sc->tx_queued++;
1273 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1274 
1275 	return 0;
1276 }
1277 
1278 static void
1279 rum_start(struct ifnet *ifp)
1280 {
1281 	struct rum_softc *sc = ifp->if_softc;
1282 	struct ieee80211com *ic = &sc->sc_ic;
1283 	struct ether_header *eh;
1284 	struct ieee80211_node *ni;
1285 	struct mbuf *m0;
1286 
1287 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1288 		return;
1289 
1290 	for (;;) {
1291 		IF_POLL(&ic->ic_mgtq, m0);
1292 		if (m0 != NULL) {
1293 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1294 				ifp->if_flags |= IFF_OACTIVE;
1295 				break;
1296 			}
1297 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1298 
1299 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1300 			m0->m_pkthdr.rcvif = NULL;
1301 			bpf_mtap3(ic->ic_rawbpf, m0);
1302 			if (rum_tx_data(sc, m0, ni) != 0)
1303 				break;
1304 
1305 		} else {
1306 			if (ic->ic_state != IEEE80211_S_RUN)
1307 				break;
1308 			IFQ_POLL(&ifp->if_snd, m0);
1309 			if (m0 == NULL)
1310 				break;
1311 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1312 				ifp->if_flags |= IFF_OACTIVE;
1313 				break;
1314 			}
1315 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1316 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1317 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1318 				continue;
1319 
1320 			eh = mtod(m0, struct ether_header *);
1321 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1322 			if (ni == NULL) {
1323 				m_freem(m0);
1324 				continue;
1325 			}
1326 			bpf_mtap(ifp, m0);
1327 			m0 = ieee80211_encap(ic, m0, ni);
1328 			if (m0 == NULL) {
1329 				ieee80211_free_node(ni);
1330 				continue;
1331 			}
1332 			bpf_mtap3(ic->ic_rawbpf, m0);
1333 			if (rum_tx_data(sc, m0, ni) != 0) {
1334 				ieee80211_free_node(ni);
1335 				ifp->if_oerrors++;
1336 				break;
1337 			}
1338 		}
1339 
1340 		sc->sc_tx_timer = 5;
1341 		ifp->if_timer = 1;
1342 	}
1343 }
1344 
1345 static void
1346 rum_watchdog(struct ifnet *ifp)
1347 {
1348 	struct rum_softc *sc = ifp->if_softc;
1349 	struct ieee80211com *ic = &sc->sc_ic;
1350 
1351 	ifp->if_timer = 0;
1352 
1353 	if (sc->sc_tx_timer > 0) {
1354 		if (--sc->sc_tx_timer == 0) {
1355 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1356 			/*rum_init(ifp); XXX needs a process context! */
1357 			ifp->if_oerrors++;
1358 			return;
1359 		}
1360 		ifp->if_timer = 1;
1361 	}
1362 
1363 	ieee80211_watchdog(ic);
1364 }
1365 
1366 static int
1367 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1368 {
1369 #define IS_RUNNING(ifp) \
1370 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1371 
1372 	struct rum_softc *sc = ifp->if_softc;
1373 	struct ieee80211com *ic = &sc->sc_ic;
1374 	int s, error = 0;
1375 
1376 	s = splnet();
1377 
1378 	switch (cmd) {
1379 	case SIOCSIFFLAGS:
1380 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1381 			break;
1382 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1383 		case IFF_UP|IFF_RUNNING:
1384 			rum_update_promisc(sc);
1385 			break;
1386 		case IFF_UP:
1387 			rum_init(ifp);
1388 			break;
1389 		case IFF_RUNNING:
1390 			rum_stop(ifp, 1);
1391 			break;
1392 		case 0:
1393 			break;
1394 		}
1395 		break;
1396 
1397 	case SIOCADDMULTI:
1398 	case SIOCDELMULTI:
1399 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1400 			error = 0;
1401 		}
1402 		break;
1403 
1404 	default:
1405 		error = ieee80211_ioctl(ic, cmd, data);
1406 	}
1407 
1408 	if (error == ENETRESET) {
1409 		if (IS_RUNNING(ifp) &&
1410 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1411 			rum_init(ifp);
1412 		error = 0;
1413 	}
1414 
1415 	splx(s);
1416 
1417 	return error;
1418 #undef IS_RUNNING
1419 }
1420 
1421 static void
1422 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1423 {
1424 	usb_device_request_t req;
1425 	usbd_status error;
1426 
1427 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1428 	req.bRequest = RT2573_READ_EEPROM;
1429 	USETW(req.wValue, 0);
1430 	USETW(req.wIndex, addr);
1431 	USETW(req.wLength, len);
1432 
1433 	error = usbd_do_request(sc->sc_udev, &req, buf);
1434 	if (error != 0) {
1435 		printf("%s: could not read EEPROM: %s\n",
1436 		    device_xname(sc->sc_dev), usbd_errstr(error));
1437 	}
1438 }
1439 
1440 static uint32_t
1441 rum_read(struct rum_softc *sc, uint16_t reg)
1442 {
1443 	uint32_t val;
1444 
1445 	rum_read_multi(sc, reg, &val, sizeof val);
1446 
1447 	return le32toh(val);
1448 }
1449 
1450 static void
1451 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1452 {
1453 	usb_device_request_t req;
1454 	usbd_status error;
1455 
1456 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1457 	req.bRequest = RT2573_READ_MULTI_MAC;
1458 	USETW(req.wValue, 0);
1459 	USETW(req.wIndex, reg);
1460 	USETW(req.wLength, len);
1461 
1462 	error = usbd_do_request(sc->sc_udev, &req, buf);
1463 	if (error != 0) {
1464 		printf("%s: could not multi read MAC register: %s\n",
1465 		    device_xname(sc->sc_dev), usbd_errstr(error));
1466 	}
1467 }
1468 
1469 static void
1470 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1471 {
1472 	uint32_t tmp = htole32(val);
1473 
1474 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1475 }
1476 
1477 static void
1478 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1479 {
1480 	usb_device_request_t req;
1481 	usbd_status error;
1482 
1483 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1484 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1485 	USETW(req.wValue, 0);
1486 	USETW(req.wIndex, reg);
1487 	USETW(req.wLength, len);
1488 
1489 	error = usbd_do_request(sc->sc_udev, &req, buf);
1490 	if (error != 0) {
1491 		printf("%s: could not multi write MAC register: %s\n",
1492 		    device_xname(sc->sc_dev), usbd_errstr(error));
1493 	}
1494 }
1495 
1496 static void
1497 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1498 {
1499 	uint32_t tmp;
1500 	int ntries;
1501 
1502 	for (ntries = 0; ntries < 5; ntries++) {
1503 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1504 			break;
1505 	}
1506 	if (ntries == 5) {
1507 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1508 		return;
1509 	}
1510 
1511 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1512 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1513 }
1514 
1515 static uint8_t
1516 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1517 {
1518 	uint32_t val;
1519 	int ntries;
1520 
1521 	for (ntries = 0; ntries < 5; ntries++) {
1522 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1523 			break;
1524 	}
1525 	if (ntries == 5) {
1526 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1527 		return 0;
1528 	}
1529 
1530 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1531 	rum_write(sc, RT2573_PHY_CSR3, val);
1532 
1533 	for (ntries = 0; ntries < 100; ntries++) {
1534 		val = rum_read(sc, RT2573_PHY_CSR3);
1535 		if (!(val & RT2573_BBP_BUSY))
1536 			return val & 0xff;
1537 		DELAY(1);
1538 	}
1539 
1540 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1541 	return 0;
1542 }
1543 
1544 static void
1545 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1546 {
1547 	uint32_t tmp;
1548 	int ntries;
1549 
1550 	for (ntries = 0; ntries < 5; ntries++) {
1551 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1552 			break;
1553 	}
1554 	if (ntries == 5) {
1555 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1556 		return;
1557 	}
1558 
1559 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1560 	    (reg & 3);
1561 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1562 
1563 	/* remember last written value in sc */
1564 	sc->rf_regs[reg] = val;
1565 
1566 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1567 }
1568 
1569 static void
1570 rum_select_antenna(struct rum_softc *sc)
1571 {
1572 	uint8_t bbp4, bbp77;
1573 	uint32_t tmp;
1574 
1575 	bbp4  = rum_bbp_read(sc, 4);
1576 	bbp77 = rum_bbp_read(sc, 77);
1577 
1578 	/* TBD */
1579 
1580 	/* make sure Rx is disabled before switching antenna */
1581 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1582 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1583 
1584 	rum_bbp_write(sc,  4, bbp4);
1585 	rum_bbp_write(sc, 77, bbp77);
1586 
1587 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1588 }
1589 
1590 /*
1591  * Enable multi-rate retries for frames sent at OFDM rates.
1592  * In 802.11b/g mode, allow fallback to CCK rates.
1593  */
1594 static void
1595 rum_enable_mrr(struct rum_softc *sc)
1596 {
1597 	struct ieee80211com *ic = &sc->sc_ic;
1598 	uint32_t tmp;
1599 
1600 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1601 
1602 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1603 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1604 		tmp |= RT2573_MRR_CCK_FALLBACK;
1605 	tmp |= RT2573_MRR_ENABLED;
1606 
1607 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1608 }
1609 
1610 static void
1611 rum_set_txpreamble(struct rum_softc *sc)
1612 {
1613 	uint32_t tmp;
1614 
1615 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1616 
1617 	tmp &= ~RT2573_SHORT_PREAMBLE;
1618 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1619 		tmp |= RT2573_SHORT_PREAMBLE;
1620 
1621 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1622 }
1623 
1624 static void
1625 rum_set_basicrates(struct rum_softc *sc)
1626 {
1627 	struct ieee80211com *ic = &sc->sc_ic;
1628 
1629 	/* update basic rate set */
1630 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1631 		/* 11b basic rates: 1, 2Mbps */
1632 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1633 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1634 		/* 11a basic rates: 6, 12, 24Mbps */
1635 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1636 	} else {
1637 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1638 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1639 	}
1640 }
1641 
1642 /*
1643  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1644  * driver.
1645  */
1646 static void
1647 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1648 {
1649 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1650 	uint32_t tmp;
1651 
1652 	/* update all BBP registers that depend on the band */
1653 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1654 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1655 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1656 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1657 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1658 	}
1659 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1660 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1661 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1662 	}
1663 
1664 	sc->bbp17 = bbp17;
1665 	rum_bbp_write(sc,  17, bbp17);
1666 	rum_bbp_write(sc,  96, bbp96);
1667 	rum_bbp_write(sc, 104, bbp104);
1668 
1669 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1670 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1671 		rum_bbp_write(sc, 75, 0x80);
1672 		rum_bbp_write(sc, 86, 0x80);
1673 		rum_bbp_write(sc, 88, 0x80);
1674 	}
1675 
1676 	rum_bbp_write(sc, 35, bbp35);
1677 	rum_bbp_write(sc, 97, bbp97);
1678 	rum_bbp_write(sc, 98, bbp98);
1679 
1680 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1681 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1682 	if (IEEE80211_IS_CHAN_2GHZ(c))
1683 		tmp |= RT2573_PA_PE_2GHZ;
1684 	else
1685 		tmp |= RT2573_PA_PE_5GHZ;
1686 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1687 
1688 	/* 802.11a uses a 16 microseconds short interframe space */
1689 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1690 }
1691 
1692 static void
1693 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1694 {
1695 	struct ieee80211com *ic = &sc->sc_ic;
1696 	const struct rfprog *rfprog;
1697 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1698 	int8_t power;
1699 	u_int i, chan;
1700 
1701 	chan = ieee80211_chan2ieee(ic, c);
1702 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1703 		return;
1704 
1705 	/* select the appropriate RF settings based on what EEPROM says */
1706 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1707 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1708 
1709 	/* find the settings for this channel (we know it exists) */
1710 	for (i = 0; rfprog[i].chan != chan; i++);
1711 
1712 	power = sc->txpow[i];
1713 	if (power < 0) {
1714 		bbp94 += power;
1715 		power = 0;
1716 	} else if (power > 31) {
1717 		bbp94 += power - 31;
1718 		power = 31;
1719 	}
1720 
1721 	/*
1722 	 * If we are switching from the 2GHz band to the 5GHz band or
1723 	 * vice-versa, BBP registers need to be reprogrammed.
1724 	 */
1725 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1726 		rum_select_band(sc, c);
1727 		rum_select_antenna(sc);
1728 	}
1729 	ic->ic_curchan = c;
1730 
1731 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1732 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1733 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1734 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1735 
1736 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1737 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1738 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1739 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1740 
1741 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1742 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1743 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1744 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1745 
1746 	DELAY(10);
1747 
1748 	/* enable smart mode for MIMO-capable RFs */
1749 	bbp3 = rum_bbp_read(sc, 3);
1750 
1751 	bbp3 &= ~RT2573_SMART_MODE;
1752 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1753 		bbp3 |= RT2573_SMART_MODE;
1754 
1755 	rum_bbp_write(sc, 3, bbp3);
1756 
1757 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1758 		rum_bbp_write(sc, 94, bbp94);
1759 }
1760 
1761 /*
1762  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1763  * and HostAP operating modes.
1764  */
1765 static void
1766 rum_enable_tsf_sync(struct rum_softc *sc)
1767 {
1768 	struct ieee80211com *ic = &sc->sc_ic;
1769 	uint32_t tmp;
1770 
1771 	if (ic->ic_opmode != IEEE80211_M_STA) {
1772 		/*
1773 		 * Change default 16ms TBTT adjustment to 8ms.
1774 		 * Must be done before enabling beacon generation.
1775 		 */
1776 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1777 	}
1778 
1779 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1780 
1781 	/* set beacon interval (in 1/16ms unit) */
1782 	tmp |= ic->ic_bss->ni_intval * 16;
1783 
1784 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1785 	if (ic->ic_opmode == IEEE80211_M_STA)
1786 		tmp |= RT2573_TSF_MODE(1);
1787 	else
1788 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1789 
1790 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1791 }
1792 
1793 static void
1794 rum_update_slot(struct rum_softc *sc)
1795 {
1796 	struct ieee80211com *ic = &sc->sc_ic;
1797 	uint8_t slottime;
1798 	uint32_t tmp;
1799 
1800 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1801 
1802 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1803 	tmp = (tmp & ~0xff) | slottime;
1804 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1805 
1806 	DPRINTF(("setting slot time to %uus\n", slottime));
1807 }
1808 
1809 static void
1810 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1811 {
1812 	uint32_t tmp;
1813 
1814 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1815 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1816 
1817 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1818 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1819 }
1820 
1821 static void
1822 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1823 {
1824 	uint32_t tmp;
1825 
1826 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1827 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1828 
1829 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1830 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1831 }
1832 
1833 static void
1834 rum_update_promisc(struct rum_softc *sc)
1835 {
1836 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1837 	uint32_t tmp;
1838 
1839 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1840 
1841 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1842 	if (!(ifp->if_flags & IFF_PROMISC))
1843 		tmp |= RT2573_DROP_NOT_TO_ME;
1844 
1845 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1846 
1847 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1848 	    "entering" : "leaving"));
1849 }
1850 
1851 static const char *
1852 rum_get_rf(int rev)
1853 {
1854 	switch (rev) {
1855 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1856 	case RT2573_RF_2528:	return "RT2528";
1857 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1858 	case RT2573_RF_5226:	return "RT5226";
1859 	default:		return "unknown";
1860 	}
1861 }
1862 
1863 static void
1864 rum_read_eeprom(struct rum_softc *sc)
1865 {
1866 	struct ieee80211com *ic = &sc->sc_ic;
1867 	uint16_t val;
1868 #ifdef RUM_DEBUG
1869 	int i;
1870 #endif
1871 
1872 	/* read MAC/BBP type */
1873 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1874 	sc->macbbp_rev = le16toh(val);
1875 
1876 	/* read MAC address */
1877 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1878 
1879 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1880 	val = le16toh(val);
1881 	sc->rf_rev =   (val >> 11) & 0x1f;
1882 	sc->hw_radio = (val >> 10) & 0x1;
1883 	sc->rx_ant =   (val >> 4)  & 0x3;
1884 	sc->tx_ant =   (val >> 2)  & 0x3;
1885 	sc->nb_ant =   val & 0x3;
1886 
1887 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1888 
1889 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1890 	val = le16toh(val);
1891 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1892 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1893 
1894 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1895 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1896 
1897 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1898 	val = le16toh(val);
1899 	if ((val & 0xff) != 0xff)
1900 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1901 
1902 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1903 	val = le16toh(val);
1904 	if ((val & 0xff) != 0xff)
1905 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1906 
1907 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1908 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1909 
1910 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1911 	val = le16toh(val);
1912 	if ((val & 0xff) != 0xff)
1913 		sc->rffreq = val & 0xff;
1914 
1915 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1916 
1917 	/* read Tx power for all a/b/g channels */
1918 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1919 	/* XXX default Tx power for 802.11a channels */
1920 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1921 #ifdef RUM_DEBUG
1922 	for (i = 0; i < 14; i++)
1923 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1924 #endif
1925 
1926 	/* read default values for BBP registers */
1927 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1928 #ifdef RUM_DEBUG
1929 	for (i = 0; i < 14; i++) {
1930 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1931 			continue;
1932 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1933 		    sc->bbp_prom[i].val));
1934 	}
1935 #endif
1936 }
1937 
1938 static int
1939 rum_bbp_init(struct rum_softc *sc)
1940 {
1941 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1942 	unsigned int i, ntries;
1943 	uint8_t val;
1944 
1945 	/* wait for BBP to be ready */
1946 	for (ntries = 0; ntries < 100; ntries++) {
1947 		val = rum_bbp_read(sc, 0);
1948 		if (val != 0 && val != 0xff)
1949 			break;
1950 		DELAY(1000);
1951 	}
1952 	if (ntries == 100) {
1953 		printf("%s: timeout waiting for BBP\n",
1954 		    device_xname(sc->sc_dev));
1955 		return EIO;
1956 	}
1957 
1958 	/* initialize BBP registers to default values */
1959 	for (i = 0; i < N(rum_def_bbp); i++)
1960 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1961 
1962 	/* write vendor-specific BBP values (from EEPROM) */
1963 	for (i = 0; i < 16; i++) {
1964 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1965 			continue;
1966 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1967 	}
1968 
1969 	return 0;
1970 #undef N
1971 }
1972 
1973 static int
1974 rum_init(struct ifnet *ifp)
1975 {
1976 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1977 	struct rum_softc *sc = ifp->if_softc;
1978 	struct ieee80211com *ic = &sc->sc_ic;
1979 	struct rum_rx_data *data;
1980 	uint32_t tmp;
1981 	usbd_status error = 0;
1982 	unsigned int i, ntries;
1983 
1984 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1985 		if (rum_attachhook(sc))
1986 			goto fail;
1987 	}
1988 
1989 	rum_stop(ifp, 0);
1990 
1991 	/* initialize MAC registers to default values */
1992 	for (i = 0; i < N(rum_def_mac); i++)
1993 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1994 
1995 	/* set host ready */
1996 	rum_write(sc, RT2573_MAC_CSR1, 3);
1997 	rum_write(sc, RT2573_MAC_CSR1, 0);
1998 
1999 	/* wait for BBP/RF to wakeup */
2000 	for (ntries = 0; ntries < 1000; ntries++) {
2001 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2002 			break;
2003 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2004 		DELAY(1000);
2005 	}
2006 	if (ntries == 1000) {
2007 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2008 		    device_xname(sc->sc_dev));
2009 		goto fail;
2010 	}
2011 
2012 	if ((error = rum_bbp_init(sc)) != 0)
2013 		goto fail;
2014 
2015 	/* select default channel */
2016 	rum_select_band(sc, ic->ic_curchan);
2017 	rum_select_antenna(sc);
2018 	rum_set_chan(sc, ic->ic_curchan);
2019 
2020 	/* clear STA registers */
2021 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2022 
2023 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2024 	rum_set_macaddr(sc, ic->ic_myaddr);
2025 
2026 	/* initialize ASIC */
2027 	rum_write(sc, RT2573_MAC_CSR1, 4);
2028 
2029 	/*
2030 	 * Allocate xfer for AMRR statistics requests.
2031 	 */
2032 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2033 	if (sc->amrr_xfer == NULL) {
2034 		printf("%s: could not allocate AMRR xfer\n",
2035 		    device_xname(sc->sc_dev));
2036 		goto fail;
2037 	}
2038 
2039 	/*
2040 	 * Open Tx and Rx USB bulk pipes.
2041 	 */
2042 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2043 	    &sc->sc_tx_pipeh);
2044 	if (error != 0) {
2045 		printf("%s: could not open Tx pipe: %s\n",
2046 		    device_xname(sc->sc_dev), usbd_errstr(error));
2047 		goto fail;
2048 	}
2049 
2050 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2051 	    &sc->sc_rx_pipeh);
2052 	if (error != 0) {
2053 		printf("%s: could not open Rx pipe: %s\n",
2054 		    device_xname(sc->sc_dev), usbd_errstr(error));
2055 		goto fail;
2056 	}
2057 
2058 	/*
2059 	 * Allocate Tx and Rx xfer queues.
2060 	 */
2061 	error = rum_alloc_tx_list(sc);
2062 	if (error != 0) {
2063 		printf("%s: could not allocate Tx list\n",
2064 		    device_xname(sc->sc_dev));
2065 		goto fail;
2066 	}
2067 
2068 	error = rum_alloc_rx_list(sc);
2069 	if (error != 0) {
2070 		printf("%s: could not allocate Rx list\n",
2071 		    device_xname(sc->sc_dev));
2072 		goto fail;
2073 	}
2074 
2075 	/*
2076 	 * Start up the receive pipe.
2077 	 */
2078 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2079 		data = &sc->rx_data[i];
2080 
2081 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2082 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2083 		error = usbd_transfer(data->xfer);
2084 		if (error != USBD_NORMAL_COMPLETION &&
2085 		    error != USBD_IN_PROGRESS) {
2086 			printf("%s: could not queue Rx transfer\n",
2087 			    device_xname(sc->sc_dev));
2088 			goto fail;
2089 		}
2090 	}
2091 
2092 	/* update Rx filter */
2093 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2094 
2095 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2096 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2097 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2098 		       RT2573_DROP_ACKCTS;
2099 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2100 			tmp |= RT2573_DROP_TODS;
2101 		if (!(ifp->if_flags & IFF_PROMISC))
2102 			tmp |= RT2573_DROP_NOT_TO_ME;
2103 	}
2104 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2105 
2106 	ifp->if_flags &= ~IFF_OACTIVE;
2107 	ifp->if_flags |= IFF_RUNNING;
2108 
2109 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2110 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2111 	else
2112 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2113 
2114 	return 0;
2115 
2116 fail:	rum_stop(ifp, 1);
2117 	return error;
2118 #undef N
2119 }
2120 
2121 static void
2122 rum_stop(struct ifnet *ifp, int disable)
2123 {
2124 	struct rum_softc *sc = ifp->if_softc;
2125 	struct ieee80211com *ic = &sc->sc_ic;
2126 	uint32_t tmp;
2127 
2128 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2129 
2130 	sc->sc_tx_timer = 0;
2131 	ifp->if_timer = 0;
2132 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2133 
2134 	/* disable Rx */
2135 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2136 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2137 
2138 	/* reset ASIC */
2139 	rum_write(sc, RT2573_MAC_CSR1, 3);
2140 	rum_write(sc, RT2573_MAC_CSR1, 0);
2141 
2142 	if (sc->amrr_xfer != NULL) {
2143 		usbd_free_xfer(sc->amrr_xfer);
2144 		sc->amrr_xfer = NULL;
2145 	}
2146 
2147 	if (sc->sc_rx_pipeh != NULL) {
2148 		usbd_abort_pipe(sc->sc_rx_pipeh);
2149 		usbd_close_pipe(sc->sc_rx_pipeh);
2150 		sc->sc_rx_pipeh = NULL;
2151 	}
2152 
2153 	if (sc->sc_tx_pipeh != NULL) {
2154 		usbd_abort_pipe(sc->sc_tx_pipeh);
2155 		usbd_close_pipe(sc->sc_tx_pipeh);
2156 		sc->sc_tx_pipeh = NULL;
2157 	}
2158 
2159 	rum_free_rx_list(sc);
2160 	rum_free_tx_list(sc);
2161 }
2162 
2163 static int
2164 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2165 {
2166 	usb_device_request_t req;
2167 	uint16_t reg = RT2573_MCU_CODE_BASE;
2168 	usbd_status error;
2169 
2170 	/* copy firmware image into NIC */
2171 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2172 		rum_write(sc, reg, UGETDW(ucode));
2173 
2174 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2175 	req.bRequest = RT2573_MCU_CNTL;
2176 	USETW(req.wValue, RT2573_MCU_RUN);
2177 	USETW(req.wIndex, 0);
2178 	USETW(req.wLength, 0);
2179 
2180 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2181 	if (error != 0) {
2182 		printf("%s: could not run firmware: %s\n",
2183 		    device_xname(sc->sc_dev), usbd_errstr(error));
2184 	}
2185 	return error;
2186 }
2187 
2188 static int
2189 rum_prepare_beacon(struct rum_softc *sc)
2190 {
2191 	struct ieee80211com *ic = &sc->sc_ic;
2192 	struct rum_tx_desc desc;
2193 	struct mbuf *m0;
2194 	int rate;
2195 
2196 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2197 	if (m0 == NULL) {
2198 		aprint_error_dev(sc->sc_dev,
2199 		    "could not allocate beacon frame\n");
2200 		return ENOBUFS;
2201 	}
2202 
2203 	/* send beacons at the lowest available rate */
2204 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2205 
2206 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2207 	    m0->m_pkthdr.len, rate);
2208 
2209 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2210 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2211 
2212 	/* copy beacon header and payload into NIC memory */
2213 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2214 	    m0->m_pkthdr.len);
2215 
2216 	m_freem(m0);
2217 
2218 	return 0;
2219 }
2220 
2221 static void
2222 rum_newassoc(struct ieee80211_node *ni, int isnew)
2223 {
2224 	/* start with lowest Tx rate */
2225 	ni->ni_txrate = 0;
2226 }
2227 
2228 static void
2229 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2230 {
2231 	int i;
2232 
2233 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2234 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2235 
2236 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2237 
2238 	/* set rate to some reasonable initial value */
2239 	for (i = ni->ni_rates.rs_nrates - 1;
2240 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2241 	     i--);
2242 	ni->ni_txrate = i;
2243 
2244 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2245 }
2246 
2247 static void
2248 rum_amrr_timeout(void *arg)
2249 {
2250 	struct rum_softc *sc = arg;
2251 	usb_device_request_t req;
2252 
2253 	/*
2254 	 * Asynchronously read statistic registers (cleared by read).
2255 	 */
2256 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2257 	req.bRequest = RT2573_READ_MULTI_MAC;
2258 	USETW(req.wValue, 0);
2259 	USETW(req.wIndex, RT2573_STA_CSR0);
2260 	USETW(req.wLength, sizeof sc->sta);
2261 
2262 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2263 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2264 	    rum_amrr_update);
2265 	(void)usbd_transfer(sc->amrr_xfer);
2266 }
2267 
2268 static void
2269 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2270     usbd_status status)
2271 {
2272 	struct rum_softc *sc = (struct rum_softc *)priv;
2273 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2274 
2275 	if (status != USBD_NORMAL_COMPLETION) {
2276 		printf("%s: could not retrieve Tx statistics - cancelling "
2277 		    "automatic rate control\n", device_xname(sc->sc_dev));
2278 		return;
2279 	}
2280 
2281 	/* count TX retry-fail as Tx errors */
2282 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2283 
2284 	sc->amn.amn_retrycnt =
2285 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2286 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2287 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2288 
2289 	sc->amn.amn_txcnt =
2290 	    sc->amn.amn_retrycnt +
2291 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2292 
2293 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2294 
2295 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2296 }
2297 
2298 static int
2299 rum_activate(device_t self, enum devact act)
2300 {
2301 	switch (act) {
2302 	case DVACT_DEACTIVATE:
2303 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2304 		return 0;
2305 	default:
2306 		return 0;
2307 	}
2308 }
2309 
2310 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2311 
2312 #ifdef _MODULE
2313 #include "ioconf.c"
2314 #endif
2315 
2316 static int
2317 if_rum_modcmd(modcmd_t cmd, void *aux)
2318 {
2319 	int error = 0;
2320 
2321 	switch (cmd) {
2322 	case MODULE_CMD_INIT:
2323 #ifdef _MODULE
2324 		error = config_init_component(cfdriver_ioconf_rum,
2325 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2326 #endif
2327 		return error;
2328 	case MODULE_CMD_FINI:
2329 #ifdef _MODULE
2330 		error = config_fini_component(cfdriver_ioconf_rum,
2331 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2332 #endif
2333 		return error;
2334 	default:
2335 		return ENOTTY;
2336 	}
2337 }
2338