1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.27 2009/08/02 20:55:45 tshiozak Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.27 2009/08/02 20:55:45 tshiozak Exp $"); 28 29 #include "bpfilter.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/conf.h> 40 #include <sys/device.h> 41 42 #include <sys/bus.h> 43 #include <machine/endian.h> 44 #include <sys/intr.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/firmload.h> 67 68 #include <dev/usb/usb.h> 69 #include <dev/usb/usbdi.h> 70 #include <dev/usb/usbdi_util.h> 71 #include <dev/usb/usbdevs.h> 72 73 #include <dev/usb/if_rumreg.h> 74 #include <dev/usb/if_rumvar.h> 75 76 #ifdef USB_DEBUG 77 #define RUM_DEBUG 78 #endif 79 80 #ifdef RUM_DEBUG 81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0) 82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0) 83 int rum_debug = 1; 84 #else 85 #define DPRINTF(x) 86 #define DPRINTFN(n, x) 87 #endif 88 89 /* various supported device vendors/products */ 90 static const struct usb_devno rum_devs[] = { 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 96 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 103 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 105 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 107 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 111 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 112 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 113 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 115 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 116 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 124 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 132 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 }, 133 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 135 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 136 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 } 137 }; 138 139 Static int rum_attachhook(void *); 140 Static int rum_alloc_tx_list(struct rum_softc *); 141 Static void rum_free_tx_list(struct rum_softc *); 142 Static int rum_alloc_rx_list(struct rum_softc *); 143 Static void rum_free_rx_list(struct rum_softc *); 144 Static int rum_media_change(struct ifnet *); 145 Static void rum_next_scan(void *); 146 Static void rum_task(void *); 147 Static int rum_newstate(struct ieee80211com *, 148 enum ieee80211_state, int); 149 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 150 usbd_status); 151 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 152 usbd_status); 153 #if NBPFILTER > 0 154 Static uint8_t rum_rxrate(const struct rum_rx_desc *); 155 #endif 156 Static int rum_ack_rate(struct ieee80211com *, int); 157 Static uint16_t rum_txtime(int, int, uint32_t); 158 Static uint8_t rum_plcp_signal(int); 159 Static void rum_setup_tx_desc(struct rum_softc *, 160 struct rum_tx_desc *, uint32_t, uint16_t, int, 161 int); 162 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 163 struct ieee80211_node *); 164 Static int rum_tx_data(struct rum_softc *, struct mbuf *, 165 struct ieee80211_node *); 166 Static void rum_start(struct ifnet *); 167 Static void rum_watchdog(struct ifnet *); 168 Static int rum_ioctl(struct ifnet *, u_long, void *); 169 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 170 int); 171 Static uint32_t rum_read(struct rum_softc *, uint16_t); 172 Static void rum_read_multi(struct rum_softc *, uint16_t, void *, 173 int); 174 Static void rum_write(struct rum_softc *, uint16_t, uint32_t); 175 Static void rum_write_multi(struct rum_softc *, uint16_t, void *, 176 size_t); 177 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 178 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 179 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 180 Static void rum_select_antenna(struct rum_softc *); 181 Static void rum_enable_mrr(struct rum_softc *); 182 Static void rum_set_txpreamble(struct rum_softc *); 183 Static void rum_set_basicrates(struct rum_softc *); 184 Static void rum_select_band(struct rum_softc *, 185 struct ieee80211_channel *); 186 Static void rum_set_chan(struct rum_softc *, 187 struct ieee80211_channel *); 188 Static void rum_enable_tsf_sync(struct rum_softc *); 189 Static void rum_update_slot(struct rum_softc *); 190 Static void rum_set_bssid(struct rum_softc *, const uint8_t *); 191 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 192 Static void rum_update_promisc(struct rum_softc *); 193 Static const char *rum_get_rf(int); 194 Static void rum_read_eeprom(struct rum_softc *); 195 Static int rum_bbp_init(struct rum_softc *); 196 Static int rum_init(struct ifnet *); 197 Static void rum_stop(struct ifnet *, int); 198 Static int rum_load_microcode(struct rum_softc *, const u_char *, 199 size_t); 200 Static int rum_prepare_beacon(struct rum_softc *); 201 Static void rum_newassoc(struct ieee80211_node *, int); 202 Static void rum_amrr_start(struct rum_softc *, 203 struct ieee80211_node *); 204 Static void rum_amrr_timeout(void *); 205 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 206 usbd_status status); 207 208 /* 209 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 210 */ 211 static const struct ieee80211_rateset rum_rateset_11a = 212 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 213 214 static const struct ieee80211_rateset rum_rateset_11b = 215 { 4, { 2, 4, 11, 22 } }; 216 217 static const struct ieee80211_rateset rum_rateset_11g = 218 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 219 220 static const struct { 221 uint32_t reg; 222 uint32_t val; 223 } rum_def_mac[] = { 224 RT2573_DEF_MAC 225 }; 226 227 static const struct { 228 uint8_t reg; 229 uint8_t val; 230 } rum_def_bbp[] = { 231 RT2573_DEF_BBP 232 }; 233 234 static const struct rfprog { 235 uint8_t chan; 236 uint32_t r1, r2, r3, r4; 237 } rum_rf5226[] = { 238 RT2573_RF5226 239 }, rum_rf5225[] = { 240 RT2573_RF5225 241 }; 242 243 USB_DECLARE_DRIVER(rum); 244 245 USB_MATCH(rum) 246 { 247 USB_MATCH_START(rum, uaa); 248 249 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 250 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 251 } 252 253 Static int 254 rum_attachhook(void *xsc) 255 { 256 struct rum_softc *sc = xsc; 257 firmware_handle_t fwh; 258 const char *name = "rum-rt2573"; 259 u_char *ucode; 260 size_t size; 261 int error; 262 263 if ((error = firmware_open("rum", name, &fwh)) != 0) { 264 printf("%s: failed loadfirmware of file %s (error %d)\n", 265 USBDEVNAME(sc->sc_dev), name, error); 266 return error; 267 } 268 size = firmware_get_size(fwh); 269 ucode = firmware_malloc(size); 270 if (ucode == NULL) { 271 printf("%s: failed to allocate firmware memory\n", 272 USBDEVNAME(sc->sc_dev)); 273 firmware_close(fwh); 274 return ENOMEM; 275 } 276 error = firmware_read(fwh, 0, ucode, size); 277 firmware_close(fwh); 278 if (error != 0) { 279 printf("%s: failed to read firmware (error %d)\n", 280 USBDEVNAME(sc->sc_dev), error); 281 firmware_free(ucode, 0); 282 return error; 283 } 284 285 if (rum_load_microcode(sc, ucode, size) != 0) { 286 printf("%s: could not load 8051 microcode\n", 287 USBDEVNAME(sc->sc_dev)); 288 firmware_free(ucode, 0); 289 return ENXIO; 290 } 291 292 firmware_free(ucode, 0); 293 sc->sc_flags |= RT2573_FWLOADED; 294 295 return 0; 296 } 297 298 USB_ATTACH(rum) 299 { 300 USB_ATTACH_START(rum, sc, uaa); 301 struct ieee80211com *ic = &sc->sc_ic; 302 struct ifnet *ifp = &sc->sc_if; 303 usb_interface_descriptor_t *id; 304 usb_endpoint_descriptor_t *ed; 305 usbd_status error; 306 char *devinfop; 307 int i, ntries; 308 uint32_t tmp; 309 310 sc->sc_dev = self; 311 sc->sc_udev = uaa->device; 312 sc->sc_flags = 0; 313 314 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 315 USB_ATTACH_SETUP; 316 aprint_normal_dev(self, "%s\n", devinfop); 317 usbd_devinfo_free(devinfop); 318 319 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 320 aprint_error_dev(self, "could not set configuration no\n"); 321 USB_ATTACH_ERROR_RETURN; 322 } 323 324 /* get the first interface handle */ 325 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 326 &sc->sc_iface); 327 if (error != 0) { 328 aprint_error_dev(self, "could not get interface handle\n"); 329 USB_ATTACH_ERROR_RETURN; 330 } 331 332 /* 333 * Find endpoints. 334 */ 335 id = usbd_get_interface_descriptor(sc->sc_iface); 336 337 sc->sc_rx_no = sc->sc_tx_no = -1; 338 for (i = 0; i < id->bNumEndpoints; i++) { 339 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 340 if (ed == NULL) { 341 aprint_error_dev(self, 342 "no endpoint descriptor for iface %d\n", i); 343 USB_ATTACH_ERROR_RETURN; 344 } 345 346 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 347 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 348 sc->sc_rx_no = ed->bEndpointAddress; 349 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 351 sc->sc_tx_no = ed->bEndpointAddress; 352 } 353 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 354 aprint_error_dev(self, "missing endpoint\n"); 355 USB_ATTACH_ERROR_RETURN; 356 } 357 358 usb_init_task(&sc->sc_task, rum_task, sc); 359 usb_callout_init(sc->sc_scan_ch); 360 361 sc->amrr.amrr_min_success_threshold = 1; 362 sc->amrr.amrr_max_success_threshold = 10; 363 usb_callout_init(sc->sc_amrr_ch); 364 365 /* retrieve RT2573 rev. no */ 366 for (ntries = 0; ntries < 1000; ntries++) { 367 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 368 break; 369 DELAY(1000); 370 } 371 if (ntries == 1000) { 372 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 373 USB_ATTACH_ERROR_RETURN; 374 } 375 376 /* retrieve MAC address and various other things from EEPROM */ 377 rum_read_eeprom(sc); 378 379 aprint_normal_dev(self, 380 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 381 sc->macbbp_rev, tmp, 382 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 383 384 ic->ic_ifp = ifp; 385 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 386 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 387 ic->ic_state = IEEE80211_S_INIT; 388 389 /* set device capabilities */ 390 ic->ic_caps = 391 IEEE80211_C_IBSS | /* IBSS mode supported */ 392 IEEE80211_C_MONITOR | /* monitor mode supported */ 393 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 394 IEEE80211_C_TXPMGT | /* tx power management */ 395 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 396 IEEE80211_C_SHSLOT | /* short slot time supported */ 397 IEEE80211_C_WPA; /* 802.11i */ 398 399 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 400 /* set supported .11a rates */ 401 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 402 403 /* set supported .11a channels */ 404 for (i = 34; i <= 46; i += 4) { 405 ic->ic_channels[i].ic_freq = 406 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 407 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 408 } 409 for (i = 36; i <= 64; i += 4) { 410 ic->ic_channels[i].ic_freq = 411 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 412 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 413 } 414 for (i = 100; i <= 140; i += 4) { 415 ic->ic_channels[i].ic_freq = 416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 418 } 419 for (i = 149; i <= 165; i += 4) { 420 ic->ic_channels[i].ic_freq = 421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 423 } 424 } 425 426 /* set supported .11b and .11g rates */ 427 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 428 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 429 430 /* set supported .11b and .11g channels (1 through 14) */ 431 for (i = 1; i <= 14; i++) { 432 ic->ic_channels[i].ic_freq = 433 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 434 ic->ic_channels[i].ic_flags = 435 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 436 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 437 } 438 439 ifp->if_softc = sc; 440 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 441 ifp->if_init = rum_init; 442 ifp->if_ioctl = rum_ioctl; 443 ifp->if_start = rum_start; 444 ifp->if_watchdog = rum_watchdog; 445 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 446 IFQ_SET_READY(&ifp->if_snd); 447 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 448 449 if_attach(ifp); 450 ieee80211_ifattach(ic); 451 ic->ic_newassoc = rum_newassoc; 452 453 /* override state transition machine */ 454 sc->sc_newstate = ic->ic_newstate; 455 ic->ic_newstate = rum_newstate; 456 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 457 458 #if NBPFILTER > 0 459 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 460 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf); 461 462 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 463 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 464 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 465 466 sc->sc_txtap_len = sizeof sc->sc_txtapu; 467 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 468 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 469 #endif 470 471 ieee80211_announce(ic); 472 473 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 474 USBDEV(sc->sc_dev)); 475 476 USB_ATTACH_SUCCESS_RETURN; 477 } 478 479 USB_DETACH(rum) 480 { 481 USB_DETACH_START(rum, sc); 482 struct ieee80211com *ic = &sc->sc_ic; 483 struct ifnet *ifp = &sc->sc_if; 484 int s; 485 486 if (!ifp->if_softc) 487 return 0; 488 489 s = splusb(); 490 491 rum_stop(ifp, 1); 492 usb_rem_task(sc->sc_udev, &sc->sc_task); 493 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc); 494 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc); 495 496 if (sc->amrr_xfer != NULL) { 497 usbd_free_xfer(sc->amrr_xfer); 498 sc->amrr_xfer = NULL; 499 } 500 501 if (sc->sc_rx_pipeh != NULL) { 502 usbd_abort_pipe(sc->sc_rx_pipeh); 503 usbd_close_pipe(sc->sc_rx_pipeh); 504 } 505 506 if (sc->sc_tx_pipeh != NULL) { 507 usbd_abort_pipe(sc->sc_tx_pipeh); 508 usbd_close_pipe(sc->sc_tx_pipeh); 509 } 510 511 #if NBPFILTER > 0 512 bpfdetach(ifp); 513 #endif 514 ieee80211_ifdetach(ic); /* free all nodes */ 515 if_detach(ifp); 516 517 splx(s); 518 519 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 520 USBDEV(sc->sc_dev)); 521 522 return 0; 523 } 524 525 Static int 526 rum_alloc_tx_list(struct rum_softc *sc) 527 { 528 struct rum_tx_data *data; 529 int i, error; 530 531 sc->tx_queued = 0; 532 533 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 534 data = &sc->tx_data[i]; 535 536 data->sc = sc; 537 538 data->xfer = usbd_alloc_xfer(sc->sc_udev); 539 if (data->xfer == NULL) { 540 printf("%s: could not allocate tx xfer\n", 541 USBDEVNAME(sc->sc_dev)); 542 error = ENOMEM; 543 goto fail; 544 } 545 546 data->buf = usbd_alloc_buffer(data->xfer, 547 RT2573_TX_DESC_SIZE + MCLBYTES); 548 if (data->buf == NULL) { 549 printf("%s: could not allocate tx buffer\n", 550 USBDEVNAME(sc->sc_dev)); 551 error = ENOMEM; 552 goto fail; 553 } 554 555 /* clean Tx descriptor */ 556 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 557 } 558 559 return 0; 560 561 fail: rum_free_tx_list(sc); 562 return error; 563 } 564 565 Static void 566 rum_free_tx_list(struct rum_softc *sc) 567 { 568 struct rum_tx_data *data; 569 int i; 570 571 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 572 data = &sc->tx_data[i]; 573 574 if (data->xfer != NULL) { 575 usbd_free_xfer(data->xfer); 576 data->xfer = NULL; 577 } 578 579 if (data->ni != NULL) { 580 ieee80211_free_node(data->ni); 581 data->ni = NULL; 582 } 583 } 584 } 585 586 Static int 587 rum_alloc_rx_list(struct rum_softc *sc) 588 { 589 struct rum_rx_data *data; 590 int i, error; 591 592 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 593 data = &sc->rx_data[i]; 594 595 data->sc = sc; 596 597 data->xfer = usbd_alloc_xfer(sc->sc_udev); 598 if (data->xfer == NULL) { 599 printf("%s: could not allocate rx xfer\n", 600 USBDEVNAME(sc->sc_dev)); 601 error = ENOMEM; 602 goto fail; 603 } 604 605 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 606 printf("%s: could not allocate rx buffer\n", 607 USBDEVNAME(sc->sc_dev)); 608 error = ENOMEM; 609 goto fail; 610 } 611 612 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 613 if (data->m == NULL) { 614 printf("%s: could not allocate rx mbuf\n", 615 USBDEVNAME(sc->sc_dev)); 616 error = ENOMEM; 617 goto fail; 618 } 619 620 MCLGET(data->m, M_DONTWAIT); 621 if (!(data->m->m_flags & M_EXT)) { 622 printf("%s: could not allocate rx mbuf cluster\n", 623 USBDEVNAME(sc->sc_dev)); 624 error = ENOMEM; 625 goto fail; 626 } 627 628 data->buf = mtod(data->m, uint8_t *); 629 } 630 631 return 0; 632 633 fail: rum_free_tx_list(sc); 634 return error; 635 } 636 637 Static void 638 rum_free_rx_list(struct rum_softc *sc) 639 { 640 struct rum_rx_data *data; 641 int i; 642 643 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 644 data = &sc->rx_data[i]; 645 646 if (data->xfer != NULL) { 647 usbd_free_xfer(data->xfer); 648 data->xfer = NULL; 649 } 650 651 if (data->m != NULL) { 652 m_freem(data->m); 653 data->m = NULL; 654 } 655 } 656 } 657 658 Static int 659 rum_media_change(struct ifnet *ifp) 660 { 661 int error; 662 663 error = ieee80211_media_change(ifp); 664 if (error != ENETRESET) 665 return error; 666 667 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 668 rum_init(ifp); 669 670 return 0; 671 } 672 673 /* 674 * This function is called periodically (every 200ms) during scanning to 675 * switch from one channel to another. 676 */ 677 Static void 678 rum_next_scan(void *arg) 679 { 680 struct rum_softc *sc = arg; 681 struct ieee80211com *ic = &sc->sc_ic; 682 683 if (ic->ic_state == IEEE80211_S_SCAN) 684 ieee80211_next_scan(ic); 685 } 686 687 Static void 688 rum_task(void *arg) 689 { 690 struct rum_softc *sc = arg; 691 struct ieee80211com *ic = &sc->sc_ic; 692 enum ieee80211_state ostate; 693 struct ieee80211_node *ni; 694 uint32_t tmp; 695 696 ostate = ic->ic_state; 697 698 switch (sc->sc_state) { 699 case IEEE80211_S_INIT: 700 if (ostate == IEEE80211_S_RUN) { 701 /* abort TSF synchronization */ 702 tmp = rum_read(sc, RT2573_TXRX_CSR9); 703 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 704 } 705 break; 706 707 case IEEE80211_S_SCAN: 708 rum_set_chan(sc, ic->ic_curchan); 709 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 710 break; 711 712 case IEEE80211_S_AUTH: 713 rum_set_chan(sc, ic->ic_curchan); 714 break; 715 716 case IEEE80211_S_ASSOC: 717 rum_set_chan(sc, ic->ic_curchan); 718 break; 719 720 case IEEE80211_S_RUN: 721 rum_set_chan(sc, ic->ic_curchan); 722 723 ni = ic->ic_bss; 724 725 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 726 rum_update_slot(sc); 727 rum_enable_mrr(sc); 728 rum_set_txpreamble(sc); 729 rum_set_basicrates(sc); 730 rum_set_bssid(sc, ni->ni_bssid); 731 } 732 733 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 734 ic->ic_opmode == IEEE80211_M_IBSS) 735 rum_prepare_beacon(sc); 736 737 if (ic->ic_opmode != IEEE80211_M_MONITOR) 738 rum_enable_tsf_sync(sc); 739 740 if (ic->ic_opmode == IEEE80211_M_STA) { 741 /* fake a join to init the tx rate */ 742 rum_newassoc(ic->ic_bss, 1); 743 744 /* enable automatic rate adaptation in STA mode */ 745 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 746 rum_amrr_start(sc, ni); 747 } 748 749 break; 750 } 751 752 sc->sc_newstate(ic, sc->sc_state, -1); 753 } 754 755 Static int 756 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 757 { 758 struct rum_softc *sc = ic->ic_ifp->if_softc; 759 760 usb_rem_task(sc->sc_udev, &sc->sc_task); 761 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc); 762 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc); 763 764 /* do it in a process context */ 765 sc->sc_state = nstate; 766 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 767 768 return 0; 769 } 770 771 /* quickly determine if a given rate is CCK or OFDM */ 772 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 773 774 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 775 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 776 777 Static void 778 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 779 { 780 struct rum_tx_data *data = priv; 781 struct rum_softc *sc = data->sc; 782 struct ifnet *ifp = &sc->sc_if; 783 int s; 784 785 if (status != USBD_NORMAL_COMPLETION) { 786 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 787 return; 788 789 printf("%s: could not transmit buffer: %s\n", 790 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 791 792 if (status == USBD_STALLED) 793 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 794 795 ifp->if_oerrors++; 796 return; 797 } 798 799 s = splnet(); 800 801 ieee80211_free_node(data->ni); 802 data->ni = NULL; 803 804 sc->tx_queued--; 805 ifp->if_opackets++; 806 807 DPRINTFN(10, ("tx done\n")); 808 809 sc->sc_tx_timer = 0; 810 ifp->if_flags &= ~IFF_OACTIVE; 811 rum_start(ifp); 812 813 splx(s); 814 } 815 816 Static void 817 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 818 { 819 struct rum_rx_data *data = priv; 820 struct rum_softc *sc = data->sc; 821 struct ieee80211com *ic = &sc->sc_ic; 822 struct ifnet *ifp = &sc->sc_if; 823 struct rum_rx_desc *desc; 824 struct ieee80211_frame *wh; 825 struct ieee80211_node *ni; 826 struct mbuf *mnew, *m; 827 int s, len; 828 829 if (status != USBD_NORMAL_COMPLETION) { 830 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 831 return; 832 833 if (status == USBD_STALLED) 834 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 835 goto skip; 836 } 837 838 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 839 840 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 841 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), 842 len)); 843 ifp->if_ierrors++; 844 goto skip; 845 } 846 847 desc = (struct rum_rx_desc *)data->buf; 848 849 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 850 /* 851 * This should not happen since we did not request to receive 852 * those frames when we filled RT2573_TXRX_CSR0. 853 */ 854 DPRINTFN(5, ("CRC error\n")); 855 ifp->if_ierrors++; 856 goto skip; 857 } 858 859 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 860 if (mnew == NULL) { 861 printf("%s: could not allocate rx mbuf\n", 862 USBDEVNAME(sc->sc_dev)); 863 ifp->if_ierrors++; 864 goto skip; 865 } 866 867 MCLGET(mnew, M_DONTWAIT); 868 if (!(mnew->m_flags & M_EXT)) { 869 printf("%s: could not allocate rx mbuf cluster\n", 870 USBDEVNAME(sc->sc_dev)); 871 m_freem(mnew); 872 ifp->if_ierrors++; 873 goto skip; 874 } 875 876 m = data->m; 877 data->m = mnew; 878 data->buf = mtod(data->m, uint8_t *); 879 880 /* finalize mbuf */ 881 m->m_pkthdr.rcvif = ifp; 882 m->m_data = (void *)(desc + 1); 883 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 884 885 s = splnet(); 886 887 #if NBPFILTER > 0 888 if (sc->sc_drvbpf != NULL) { 889 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 890 891 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 892 tap->wr_rate = rum_rxrate(desc); 893 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 894 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 895 tap->wr_antenna = sc->rx_ant; 896 tap->wr_antsignal = desc->rssi; 897 898 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 899 } 900 #endif 901 902 wh = mtod(m, struct ieee80211_frame *); 903 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 904 905 /* send the frame to the 802.11 layer */ 906 ieee80211_input(ic, m, ni, desc->rssi, 0); 907 908 /* node is no longer needed */ 909 ieee80211_free_node(ni); 910 911 splx(s); 912 913 DPRINTFN(15, ("rx done\n")); 914 915 skip: /* setup a new transfer */ 916 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 917 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 918 usbd_transfer(xfer); 919 } 920 921 /* 922 * This function is only used by the Rx radiotap code. It returns the rate at 923 * which a given frame was received. 924 */ 925 #if NBPFILTER > 0 926 Static uint8_t 927 rum_rxrate(const struct rum_rx_desc *desc) 928 { 929 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 930 /* reverse function of rum_plcp_signal */ 931 switch (desc->rate) { 932 case 0xb: return 12; 933 case 0xf: return 18; 934 case 0xa: return 24; 935 case 0xe: return 36; 936 case 0x9: return 48; 937 case 0xd: return 72; 938 case 0x8: return 96; 939 case 0xc: return 108; 940 } 941 } else { 942 if (desc->rate == 10) 943 return 2; 944 if (desc->rate == 20) 945 return 4; 946 if (desc->rate == 55) 947 return 11; 948 if (desc->rate == 110) 949 return 22; 950 } 951 return 2; /* should not get there */ 952 } 953 #endif 954 955 /* 956 * Return the expected ack rate for a frame transmitted at rate `rate'. 957 * XXX: this should depend on the destination node basic rate set. 958 */ 959 Static int 960 rum_ack_rate(struct ieee80211com *ic, int rate) 961 { 962 switch (rate) { 963 /* CCK rates */ 964 case 2: 965 return 2; 966 case 4: 967 case 11: 968 case 22: 969 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 970 971 /* OFDM rates */ 972 case 12: 973 case 18: 974 return 12; 975 case 24: 976 case 36: 977 return 24; 978 case 48: 979 case 72: 980 case 96: 981 case 108: 982 return 48; 983 } 984 985 /* default to 1Mbps */ 986 return 2; 987 } 988 989 /* 990 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 991 * The function automatically determines the operating mode depending on the 992 * given rate. `flags' indicates whether short preamble is in use or not. 993 */ 994 Static uint16_t 995 rum_txtime(int len, int rate, uint32_t flags) 996 { 997 uint16_t txtime; 998 999 if (RUM_RATE_IS_OFDM(rate)) { 1000 /* IEEE Std 802.11a-1999, pp. 37 */ 1001 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1002 txtime = 16 + 4 + 4 * txtime + 6; 1003 } else { 1004 /* IEEE Std 802.11b-1999, pp. 28 */ 1005 txtime = (16 * len + rate - 1) / rate; 1006 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1007 txtime += 72 + 24; 1008 else 1009 txtime += 144 + 48; 1010 } 1011 return txtime; 1012 } 1013 1014 Static uint8_t 1015 rum_plcp_signal(int rate) 1016 { 1017 switch (rate) { 1018 /* CCK rates (returned values are device-dependent) */ 1019 case 2: return 0x0; 1020 case 4: return 0x1; 1021 case 11: return 0x2; 1022 case 22: return 0x3; 1023 1024 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1025 case 12: return 0xb; 1026 case 18: return 0xf; 1027 case 24: return 0xa; 1028 case 36: return 0xe; 1029 case 48: return 0x9; 1030 case 72: return 0xd; 1031 case 96: return 0x8; 1032 case 108: return 0xc; 1033 1034 /* unsupported rates (should not get there) */ 1035 default: return 0xff; 1036 } 1037 } 1038 1039 Static void 1040 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1041 uint32_t flags, uint16_t xflags, int len, int rate) 1042 { 1043 struct ieee80211com *ic = &sc->sc_ic; 1044 uint16_t plcp_length; 1045 int remainder; 1046 1047 desc->flags = htole32(flags); 1048 desc->flags |= htole32(RT2573_TX_VALID); 1049 desc->flags |= htole32(len << 16); 1050 1051 desc->xflags = htole16(xflags); 1052 1053 desc->wme = htole16( 1054 RT2573_QID(0) | 1055 RT2573_AIFSN(2) | 1056 RT2573_LOGCWMIN(4) | 1057 RT2573_LOGCWMAX(10)); 1058 1059 /* setup PLCP fields */ 1060 desc->plcp_signal = rum_plcp_signal(rate); 1061 desc->plcp_service = 4; 1062 1063 len += IEEE80211_CRC_LEN; 1064 if (RUM_RATE_IS_OFDM(rate)) { 1065 desc->flags |= htole32(RT2573_TX_OFDM); 1066 1067 plcp_length = len & 0xfff; 1068 desc->plcp_length_hi = plcp_length >> 6; 1069 desc->plcp_length_lo = plcp_length & 0x3f; 1070 } else { 1071 plcp_length = (16 * len + rate - 1) / rate; 1072 if (rate == 22) { 1073 remainder = (16 * len) % 22; 1074 if (remainder != 0 && remainder < 7) 1075 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1076 } 1077 desc->plcp_length_hi = plcp_length >> 8; 1078 desc->plcp_length_lo = plcp_length & 0xff; 1079 1080 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1081 desc->plcp_signal |= 0x08; 1082 } 1083 } 1084 1085 #define RUM_TX_TIMEOUT 5000 1086 1087 Static int 1088 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1089 { 1090 struct ieee80211com *ic = &sc->sc_ic; 1091 struct rum_tx_desc *desc; 1092 struct rum_tx_data *data; 1093 struct ieee80211_frame *wh; 1094 struct ieee80211_key *k; 1095 uint32_t flags = 0; 1096 uint16_t dur; 1097 usbd_status error; 1098 int xferlen, rate; 1099 1100 data = &sc->tx_data[0]; 1101 desc = (struct rum_tx_desc *)data->buf; 1102 1103 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1104 1105 data->m = m0; 1106 data->ni = ni; 1107 1108 wh = mtod(m0, struct ieee80211_frame *); 1109 1110 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1111 k = ieee80211_crypto_encap(ic, ni, m0); 1112 if (k == NULL) { 1113 m_freem(m0); 1114 return ENOBUFS; 1115 } 1116 } 1117 1118 wh = mtod(m0, struct ieee80211_frame *); 1119 1120 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1121 flags |= RT2573_TX_NEED_ACK; 1122 1123 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1124 ic->ic_flags) + sc->sifs; 1125 *(uint16_t *)wh->i_dur = htole16(dur); 1126 1127 /* tell hardware to set timestamp in probe responses */ 1128 if ((wh->i_fc[0] & 1129 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1130 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1131 flags |= RT2573_TX_TIMESTAMP; 1132 } 1133 1134 #if NBPFILTER > 0 1135 if (sc->sc_drvbpf != NULL) { 1136 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1137 1138 tap->wt_flags = 0; 1139 tap->wt_rate = rate; 1140 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1141 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1142 tap->wt_antenna = sc->tx_ant; 1143 1144 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1145 } 1146 #endif 1147 1148 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1149 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1150 1151 /* align end on a 4-bytes boundary */ 1152 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1153 1154 /* 1155 * No space left in the last URB to store the extra 4 bytes, force 1156 * sending of another URB. 1157 */ 1158 if ((xferlen % 64) == 0) 1159 xferlen += 4; 1160 1161 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n", 1162 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1163 rate, xferlen)); 1164 1165 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1166 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1167 1168 error = usbd_transfer(data->xfer); 1169 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1170 m_freem(m0); 1171 return error; 1172 } 1173 1174 sc->tx_queued++; 1175 1176 return 0; 1177 } 1178 1179 Static int 1180 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1181 { 1182 struct ieee80211com *ic = &sc->sc_ic; 1183 struct rum_tx_desc *desc; 1184 struct rum_tx_data *data; 1185 struct ieee80211_frame *wh; 1186 struct ieee80211_key *k; 1187 uint32_t flags = 0; 1188 uint16_t dur; 1189 usbd_status error; 1190 int xferlen, rate; 1191 1192 wh = mtod(m0, struct ieee80211_frame *); 1193 1194 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1195 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1196 else 1197 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1198 if (rate == 0) 1199 rate = 2; /* XXX should not happen */ 1200 rate &= IEEE80211_RATE_VAL; 1201 1202 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1203 k = ieee80211_crypto_encap(ic, ni, m0); 1204 if (k == NULL) { 1205 m_freem(m0); 1206 return ENOBUFS; 1207 } 1208 1209 /* packet header may have moved, reset our local pointer */ 1210 wh = mtod(m0, struct ieee80211_frame *); 1211 } 1212 1213 data = &sc->tx_data[0]; 1214 desc = (struct rum_tx_desc *)data->buf; 1215 1216 data->ni = ni; 1217 1218 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1219 flags |= RT2573_TX_NEED_ACK; 1220 1221 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1222 ic->ic_flags) + sc->sifs; 1223 *(uint16_t *)wh->i_dur = htole16(dur); 1224 } 1225 1226 #if NBPFILTER > 0 1227 if (sc->sc_drvbpf != NULL) { 1228 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1229 1230 tap->wt_flags = 0; 1231 tap->wt_rate = rate; 1232 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1233 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1234 tap->wt_antenna = sc->tx_ant; 1235 1236 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1237 } 1238 #endif 1239 1240 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1241 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1242 1243 /* align end on a 4-bytes boundary */ 1244 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1245 1246 /* 1247 * No space left in the last URB to store the extra 4 bytes, force 1248 * sending of another URB. 1249 */ 1250 if ((xferlen % 64) == 0) 1251 xferlen += 4; 1252 1253 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1254 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1255 rate, xferlen)); 1256 1257 /* mbuf is no longer needed */ 1258 m_freem(m0); 1259 1260 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1261 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1262 1263 error = usbd_transfer(data->xfer); 1264 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1265 return error; 1266 1267 sc->tx_queued++; 1268 1269 return 0; 1270 } 1271 1272 Static void 1273 rum_start(struct ifnet *ifp) 1274 { 1275 struct rum_softc *sc = ifp->if_softc; 1276 struct ieee80211com *ic = &sc->sc_ic; 1277 struct ether_header *eh; 1278 struct ieee80211_node *ni; 1279 struct mbuf *m0; 1280 1281 for (;;) { 1282 IF_POLL(&ic->ic_mgtq, m0); 1283 if (m0 != NULL) { 1284 if (sc->tx_queued >= RUM_TX_LIST_COUNT) { 1285 ifp->if_flags |= IFF_OACTIVE; 1286 break; 1287 } 1288 IF_DEQUEUE(&ic->ic_mgtq, m0); 1289 1290 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1291 m0->m_pkthdr.rcvif = NULL; 1292 #if NBPFILTER > 0 1293 if (ic->ic_rawbpf != NULL) 1294 bpf_mtap(ic->ic_rawbpf, m0); 1295 #endif 1296 if (rum_tx_mgt(sc, m0, ni) != 0) 1297 break; 1298 1299 } else { 1300 if (ic->ic_state != IEEE80211_S_RUN) 1301 break; 1302 IFQ_POLL(&ifp->if_snd, m0); 1303 if (m0 == NULL) 1304 break; 1305 if (sc->tx_queued >= RUM_TX_LIST_COUNT) { 1306 ifp->if_flags |= IFF_OACTIVE; 1307 break; 1308 } 1309 IFQ_DEQUEUE(&ifp->if_snd, m0); 1310 if (m0->m_len < sizeof(struct ether_header) && 1311 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1312 continue; 1313 1314 eh = mtod(m0, struct ether_header *); 1315 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1316 if (ni == NULL) { 1317 m_freem(m0); 1318 continue; 1319 } 1320 #if NBPFILTER > 0 1321 if (ifp->if_bpf != NULL) 1322 bpf_mtap(ifp->if_bpf, m0); 1323 #endif 1324 m0 = ieee80211_encap(ic, m0, ni); 1325 if (m0 == NULL) { 1326 ieee80211_free_node(ni); 1327 continue; 1328 } 1329 #if NBPFILTER > 0 1330 if (ic->ic_rawbpf != NULL) 1331 bpf_mtap(ic->ic_rawbpf, m0); 1332 #endif 1333 if (rum_tx_data(sc, m0, ni) != 0) { 1334 ieee80211_free_node(ni); 1335 ifp->if_oerrors++; 1336 break; 1337 } 1338 } 1339 1340 sc->sc_tx_timer = 5; 1341 ifp->if_timer = 1; 1342 } 1343 } 1344 1345 Static void 1346 rum_watchdog(struct ifnet *ifp) 1347 { 1348 struct rum_softc *sc = ifp->if_softc; 1349 struct ieee80211com *ic = &sc->sc_ic; 1350 1351 ifp->if_timer = 0; 1352 1353 if (sc->sc_tx_timer > 0) { 1354 if (--sc->sc_tx_timer == 0) { 1355 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 1356 /*rum_init(ifp); XXX needs a process context! */ 1357 ifp->if_oerrors++; 1358 return; 1359 } 1360 ifp->if_timer = 1; 1361 } 1362 1363 ieee80211_watchdog(ic); 1364 } 1365 1366 Static int 1367 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1368 { 1369 struct rum_softc *sc = ifp->if_softc; 1370 struct ieee80211com *ic = &sc->sc_ic; 1371 int s, error = 0; 1372 1373 s = splnet(); 1374 1375 switch (cmd) { 1376 case SIOCSIFFLAGS: 1377 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1378 break; 1379 /* XXX re-use ether_ioctl() */ 1380 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1381 case IFF_UP|IFF_RUNNING: 1382 rum_update_promisc(sc); 1383 break; 1384 case IFF_UP: 1385 rum_init(ifp); 1386 break; 1387 case IFF_RUNNING: 1388 rum_stop(ifp, 1); 1389 break; 1390 case 0: 1391 break; 1392 } 1393 break; 1394 1395 default: 1396 error = ieee80211_ioctl(ic, cmd, data); 1397 } 1398 1399 if (error == ENETRESET) { 1400 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1401 (IFF_UP | IFF_RUNNING)) 1402 rum_init(ifp); 1403 error = 0; 1404 } 1405 1406 splx(s); 1407 1408 return error; 1409 } 1410 1411 Static void 1412 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1413 { 1414 usb_device_request_t req; 1415 usbd_status error; 1416 1417 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1418 req.bRequest = RT2573_READ_EEPROM; 1419 USETW(req.wValue, 0); 1420 USETW(req.wIndex, addr); 1421 USETW(req.wLength, len); 1422 1423 error = usbd_do_request(sc->sc_udev, &req, buf); 1424 if (error != 0) { 1425 printf("%s: could not read EEPROM: %s\n", 1426 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1427 } 1428 } 1429 1430 Static uint32_t 1431 rum_read(struct rum_softc *sc, uint16_t reg) 1432 { 1433 uint32_t val; 1434 1435 rum_read_multi(sc, reg, &val, sizeof val); 1436 1437 return le32toh(val); 1438 } 1439 1440 Static void 1441 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1442 { 1443 usb_device_request_t req; 1444 usbd_status error; 1445 1446 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1447 req.bRequest = RT2573_READ_MULTI_MAC; 1448 USETW(req.wValue, 0); 1449 USETW(req.wIndex, reg); 1450 USETW(req.wLength, len); 1451 1452 error = usbd_do_request(sc->sc_udev, &req, buf); 1453 if (error != 0) { 1454 printf("%s: could not multi read MAC register: %s\n", 1455 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1456 } 1457 } 1458 1459 Static void 1460 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1461 { 1462 uint32_t tmp = htole32(val); 1463 1464 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1465 } 1466 1467 Static void 1468 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1469 { 1470 usb_device_request_t req; 1471 usbd_status error; 1472 1473 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1474 req.bRequest = RT2573_WRITE_MULTI_MAC; 1475 USETW(req.wValue, 0); 1476 USETW(req.wIndex, reg); 1477 USETW(req.wLength, len); 1478 1479 error = usbd_do_request(sc->sc_udev, &req, buf); 1480 if (error != 0) { 1481 printf("%s: could not multi write MAC register: %s\n", 1482 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1483 } 1484 } 1485 1486 Static void 1487 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1488 { 1489 uint32_t tmp; 1490 int ntries; 1491 1492 for (ntries = 0; ntries < 5; ntries++) { 1493 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1494 break; 1495 } 1496 if (ntries == 5) { 1497 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); 1498 return; 1499 } 1500 1501 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1502 rum_write(sc, RT2573_PHY_CSR3, tmp); 1503 } 1504 1505 Static uint8_t 1506 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1507 { 1508 uint32_t val; 1509 int ntries; 1510 1511 for (ntries = 0; ntries < 5; ntries++) { 1512 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1513 break; 1514 } 1515 if (ntries == 5) { 1516 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1517 return 0; 1518 } 1519 1520 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1521 rum_write(sc, RT2573_PHY_CSR3, val); 1522 1523 for (ntries = 0; ntries < 100; ntries++) { 1524 val = rum_read(sc, RT2573_PHY_CSR3); 1525 if (!(val & RT2573_BBP_BUSY)) 1526 return val & 0xff; 1527 DELAY(1); 1528 } 1529 1530 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1531 return 0; 1532 } 1533 1534 Static void 1535 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1536 { 1537 uint32_t tmp; 1538 int ntries; 1539 1540 for (ntries = 0; ntries < 5; ntries++) { 1541 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1542 break; 1543 } 1544 if (ntries == 5) { 1545 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); 1546 return; 1547 } 1548 1549 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1550 (reg & 3); 1551 rum_write(sc, RT2573_PHY_CSR4, tmp); 1552 1553 /* remember last written value in sc */ 1554 sc->rf_regs[reg] = val; 1555 1556 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1557 } 1558 1559 Static void 1560 rum_select_antenna(struct rum_softc *sc) 1561 { 1562 uint8_t bbp4, bbp77; 1563 uint32_t tmp; 1564 1565 bbp4 = rum_bbp_read(sc, 4); 1566 bbp77 = rum_bbp_read(sc, 77); 1567 1568 /* TBD */ 1569 1570 /* make sure Rx is disabled before switching antenna */ 1571 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1572 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1573 1574 rum_bbp_write(sc, 4, bbp4); 1575 rum_bbp_write(sc, 77, bbp77); 1576 1577 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1578 } 1579 1580 /* 1581 * Enable multi-rate retries for frames sent at OFDM rates. 1582 * In 802.11b/g mode, allow fallback to CCK rates. 1583 */ 1584 Static void 1585 rum_enable_mrr(struct rum_softc *sc) 1586 { 1587 struct ieee80211com *ic = &sc->sc_ic; 1588 uint32_t tmp; 1589 1590 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1591 1592 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1593 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1594 tmp |= RT2573_MRR_CCK_FALLBACK; 1595 tmp |= RT2573_MRR_ENABLED; 1596 1597 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1598 } 1599 1600 Static void 1601 rum_set_txpreamble(struct rum_softc *sc) 1602 { 1603 uint32_t tmp; 1604 1605 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1606 1607 tmp &= ~RT2573_SHORT_PREAMBLE; 1608 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1609 tmp |= RT2573_SHORT_PREAMBLE; 1610 1611 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1612 } 1613 1614 Static void 1615 rum_set_basicrates(struct rum_softc *sc) 1616 { 1617 struct ieee80211com *ic = &sc->sc_ic; 1618 1619 /* update basic rate set */ 1620 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1621 /* 11b basic rates: 1, 2Mbps */ 1622 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1623 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1624 /* 11a basic rates: 6, 12, 24Mbps */ 1625 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1626 } else { 1627 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1628 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1629 } 1630 } 1631 1632 /* 1633 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1634 * driver. 1635 */ 1636 Static void 1637 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1638 { 1639 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1640 uint32_t tmp; 1641 1642 /* update all BBP registers that depend on the band */ 1643 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1644 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1645 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1646 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1647 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1648 } 1649 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1650 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1651 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1652 } 1653 1654 sc->bbp17 = bbp17; 1655 rum_bbp_write(sc, 17, bbp17); 1656 rum_bbp_write(sc, 96, bbp96); 1657 rum_bbp_write(sc, 104, bbp104); 1658 1659 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1660 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1661 rum_bbp_write(sc, 75, 0x80); 1662 rum_bbp_write(sc, 86, 0x80); 1663 rum_bbp_write(sc, 88, 0x80); 1664 } 1665 1666 rum_bbp_write(sc, 35, bbp35); 1667 rum_bbp_write(sc, 97, bbp97); 1668 rum_bbp_write(sc, 98, bbp98); 1669 1670 tmp = rum_read(sc, RT2573_PHY_CSR0); 1671 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1672 if (IEEE80211_IS_CHAN_2GHZ(c)) 1673 tmp |= RT2573_PA_PE_2GHZ; 1674 else 1675 tmp |= RT2573_PA_PE_5GHZ; 1676 rum_write(sc, RT2573_PHY_CSR0, tmp); 1677 1678 /* 802.11a uses a 16 microseconds short interframe space */ 1679 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1680 } 1681 1682 Static void 1683 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1684 { 1685 struct ieee80211com *ic = &sc->sc_ic; 1686 const struct rfprog *rfprog; 1687 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1688 int8_t power; 1689 u_int i, chan; 1690 1691 chan = ieee80211_chan2ieee(ic, c); 1692 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1693 return; 1694 1695 /* select the appropriate RF settings based on what EEPROM says */ 1696 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1697 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1698 1699 /* find the settings for this channel (we know it exists) */ 1700 for (i = 0; rfprog[i].chan != chan; i++); 1701 1702 power = sc->txpow[i]; 1703 if (power < 0) { 1704 bbp94 += power; 1705 power = 0; 1706 } else if (power > 31) { 1707 bbp94 += power - 31; 1708 power = 31; 1709 } 1710 1711 /* 1712 * If we are switching from the 2GHz band to the 5GHz band or 1713 * vice-versa, BBP registers need to be reprogrammed. 1714 */ 1715 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1716 rum_select_band(sc, c); 1717 rum_select_antenna(sc); 1718 } 1719 ic->ic_curchan = c; 1720 1721 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1722 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1723 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1724 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1725 1726 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1727 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1728 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1729 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1730 1731 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1732 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1733 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1734 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1735 1736 DELAY(10); 1737 1738 /* enable smart mode for MIMO-capable RFs */ 1739 bbp3 = rum_bbp_read(sc, 3); 1740 1741 bbp3 &= ~RT2573_SMART_MODE; 1742 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1743 bbp3 |= RT2573_SMART_MODE; 1744 1745 rum_bbp_write(sc, 3, bbp3); 1746 1747 if (bbp94 != RT2573_BBPR94_DEFAULT) 1748 rum_bbp_write(sc, 94, bbp94); 1749 } 1750 1751 /* 1752 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1753 * and HostAP operating modes. 1754 */ 1755 Static void 1756 rum_enable_tsf_sync(struct rum_softc *sc) 1757 { 1758 struct ieee80211com *ic = &sc->sc_ic; 1759 uint32_t tmp; 1760 1761 if (ic->ic_opmode != IEEE80211_M_STA) { 1762 /* 1763 * Change default 16ms TBTT adjustment to 8ms. 1764 * Must be done before enabling beacon generation. 1765 */ 1766 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1767 } 1768 1769 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1770 1771 /* set beacon interval (in 1/16ms unit) */ 1772 tmp |= ic->ic_bss->ni_intval * 16; 1773 1774 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1775 if (ic->ic_opmode == IEEE80211_M_STA) 1776 tmp |= RT2573_TSF_MODE(1); 1777 else 1778 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1779 1780 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1781 } 1782 1783 Static void 1784 rum_update_slot(struct rum_softc *sc) 1785 { 1786 struct ieee80211com *ic = &sc->sc_ic; 1787 uint8_t slottime; 1788 uint32_t tmp; 1789 1790 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1791 1792 tmp = rum_read(sc, RT2573_MAC_CSR9); 1793 tmp = (tmp & ~0xff) | slottime; 1794 rum_write(sc, RT2573_MAC_CSR9, tmp); 1795 1796 DPRINTF(("setting slot time to %uus\n", slottime)); 1797 } 1798 1799 Static void 1800 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1801 { 1802 uint32_t tmp; 1803 1804 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1805 rum_write(sc, RT2573_MAC_CSR4, tmp); 1806 1807 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1808 rum_write(sc, RT2573_MAC_CSR5, tmp); 1809 } 1810 1811 Static void 1812 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1813 { 1814 uint32_t tmp; 1815 1816 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1817 rum_write(sc, RT2573_MAC_CSR2, tmp); 1818 1819 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1820 rum_write(sc, RT2573_MAC_CSR3, tmp); 1821 } 1822 1823 Static void 1824 rum_update_promisc(struct rum_softc *sc) 1825 { 1826 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1827 uint32_t tmp; 1828 1829 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1830 1831 tmp &= ~RT2573_DROP_NOT_TO_ME; 1832 if (!(ifp->if_flags & IFF_PROMISC)) 1833 tmp |= RT2573_DROP_NOT_TO_ME; 1834 1835 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1836 1837 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1838 "entering" : "leaving")); 1839 } 1840 1841 Static const char * 1842 rum_get_rf(int rev) 1843 { 1844 switch (rev) { 1845 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1846 case RT2573_RF_2528: return "RT2528"; 1847 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1848 case RT2573_RF_5226: return "RT5226"; 1849 default: return "unknown"; 1850 } 1851 } 1852 1853 Static void 1854 rum_read_eeprom(struct rum_softc *sc) 1855 { 1856 struct ieee80211com *ic = &sc->sc_ic; 1857 uint16_t val; 1858 #ifdef RUM_DEBUG 1859 int i; 1860 #endif 1861 1862 /* read MAC/BBP type */ 1863 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1864 sc->macbbp_rev = le16toh(val); 1865 1866 /* read MAC address */ 1867 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1868 1869 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1870 val = le16toh(val); 1871 sc->rf_rev = (val >> 11) & 0x1f; 1872 sc->hw_radio = (val >> 10) & 0x1; 1873 sc->rx_ant = (val >> 4) & 0x3; 1874 sc->tx_ant = (val >> 2) & 0x3; 1875 sc->nb_ant = val & 0x3; 1876 1877 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1878 1879 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1880 val = le16toh(val); 1881 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1882 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1883 1884 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1885 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1886 1887 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1888 val = le16toh(val); 1889 if ((val & 0xff) != 0xff) 1890 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1891 1892 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1893 val = le16toh(val); 1894 if ((val & 0xff) != 0xff) 1895 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1896 1897 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1898 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1899 1900 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1901 val = le16toh(val); 1902 if ((val & 0xff) != 0xff) 1903 sc->rffreq = val & 0xff; 1904 1905 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1906 1907 /* read Tx power for all a/b/g channels */ 1908 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1909 /* XXX default Tx power for 802.11a channels */ 1910 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1911 #ifdef RUM_DEBUG 1912 for (i = 0; i < 14; i++) 1913 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1914 #endif 1915 1916 /* read default values for BBP registers */ 1917 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1918 #ifdef RUM_DEBUG 1919 for (i = 0; i < 14; i++) { 1920 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1921 continue; 1922 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1923 sc->bbp_prom[i].val)); 1924 } 1925 #endif 1926 } 1927 1928 Static int 1929 rum_bbp_init(struct rum_softc *sc) 1930 { 1931 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1932 int i, ntries; 1933 uint8_t val; 1934 1935 /* wait for BBP to be ready */ 1936 for (ntries = 0; ntries < 100; ntries++) { 1937 val = rum_bbp_read(sc, 0); 1938 if (val != 0 && val != 0xff) 1939 break; 1940 DELAY(1000); 1941 } 1942 if (ntries == 100) { 1943 printf("%s: timeout waiting for BBP\n", 1944 USBDEVNAME(sc->sc_dev)); 1945 return EIO; 1946 } 1947 1948 /* initialize BBP registers to default values */ 1949 for (i = 0; i < N(rum_def_bbp); i++) 1950 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1951 1952 /* write vendor-specific BBP values (from EEPROM) */ 1953 for (i = 0; i < 16; i++) { 1954 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1955 continue; 1956 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1957 } 1958 1959 return 0; 1960 #undef N 1961 } 1962 1963 Static int 1964 rum_init(struct ifnet *ifp) 1965 { 1966 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1967 struct rum_softc *sc = ifp->if_softc; 1968 struct ieee80211com *ic = &sc->sc_ic; 1969 struct rum_rx_data *data; 1970 uint32_t tmp; 1971 usbd_status error = 0; 1972 int i, ntries; 1973 1974 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1975 if (rum_attachhook(sc)) 1976 goto fail; 1977 } 1978 1979 rum_stop(ifp, 0); 1980 1981 /* initialize MAC registers to default values */ 1982 for (i = 0; i < N(rum_def_mac); i++) 1983 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1984 1985 /* set host ready */ 1986 rum_write(sc, RT2573_MAC_CSR1, 3); 1987 rum_write(sc, RT2573_MAC_CSR1, 0); 1988 1989 /* wait for BBP/RF to wakeup */ 1990 for (ntries = 0; ntries < 1000; ntries++) { 1991 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1992 break; 1993 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1994 DELAY(1000); 1995 } 1996 if (ntries == 1000) { 1997 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1998 USBDEVNAME(sc->sc_dev)); 1999 goto fail; 2000 } 2001 2002 if ((error = rum_bbp_init(sc)) != 0) 2003 goto fail; 2004 2005 /* select default channel */ 2006 rum_select_band(sc, ic->ic_curchan); 2007 rum_select_antenna(sc); 2008 rum_set_chan(sc, ic->ic_curchan); 2009 2010 /* clear STA registers */ 2011 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2012 2013 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2014 rum_set_macaddr(sc, ic->ic_myaddr); 2015 2016 /* initialize ASIC */ 2017 rum_write(sc, RT2573_MAC_CSR1, 4); 2018 2019 /* 2020 * Allocate xfer for AMRR statistics requests. 2021 */ 2022 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2023 if (sc->amrr_xfer == NULL) { 2024 printf("%s: could not allocate AMRR xfer\n", 2025 USBDEVNAME(sc->sc_dev)); 2026 goto fail; 2027 } 2028 2029 /* 2030 * Open Tx and Rx USB bulk pipes. 2031 */ 2032 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2033 &sc->sc_tx_pipeh); 2034 if (error != 0) { 2035 printf("%s: could not open Tx pipe: %s\n", 2036 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2037 goto fail; 2038 } 2039 2040 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2041 &sc->sc_rx_pipeh); 2042 if (error != 0) { 2043 printf("%s: could not open Rx pipe: %s\n", 2044 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2045 goto fail; 2046 } 2047 2048 /* 2049 * Allocate Tx and Rx xfer queues. 2050 */ 2051 error = rum_alloc_tx_list(sc); 2052 if (error != 0) { 2053 printf("%s: could not allocate Tx list\n", 2054 USBDEVNAME(sc->sc_dev)); 2055 goto fail; 2056 } 2057 2058 error = rum_alloc_rx_list(sc); 2059 if (error != 0) { 2060 printf("%s: could not allocate Rx list\n", 2061 USBDEVNAME(sc->sc_dev)); 2062 goto fail; 2063 } 2064 2065 /* 2066 * Start up the receive pipe. 2067 */ 2068 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2069 data = &sc->rx_data[i]; 2070 2071 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2072 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2073 error = usbd_transfer(data->xfer); 2074 if (error != USBD_NORMAL_COMPLETION && 2075 error != USBD_IN_PROGRESS) { 2076 printf("%s: could not queue Rx transfer\n", 2077 USBDEVNAME(sc->sc_dev)); 2078 goto fail; 2079 } 2080 } 2081 2082 /* update Rx filter */ 2083 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2084 2085 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2086 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2087 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2088 RT2573_DROP_ACKCTS; 2089 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2090 tmp |= RT2573_DROP_TODS; 2091 if (!(ifp->if_flags & IFF_PROMISC)) 2092 tmp |= RT2573_DROP_NOT_TO_ME; 2093 } 2094 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2095 2096 ifp->if_flags &= ~IFF_OACTIVE; 2097 ifp->if_flags |= IFF_RUNNING; 2098 2099 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2100 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2101 else 2102 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2103 2104 return 0; 2105 2106 fail: rum_stop(ifp, 1); 2107 return error; 2108 #undef N 2109 } 2110 2111 Static void 2112 rum_stop(struct ifnet *ifp, int disable) 2113 { 2114 struct rum_softc *sc = ifp->if_softc; 2115 struct ieee80211com *ic = &sc->sc_ic; 2116 uint32_t tmp; 2117 2118 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2119 2120 sc->sc_tx_timer = 0; 2121 ifp->if_timer = 0; 2122 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2123 2124 /* disable Rx */ 2125 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2126 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2127 2128 /* reset ASIC */ 2129 rum_write(sc, RT2573_MAC_CSR1, 3); 2130 rum_write(sc, RT2573_MAC_CSR1, 0); 2131 2132 if (sc->sc_rx_pipeh != NULL) { 2133 usbd_abort_pipe(sc->sc_rx_pipeh); 2134 usbd_close_pipe(sc->sc_rx_pipeh); 2135 sc->sc_rx_pipeh = NULL; 2136 } 2137 2138 if (sc->sc_tx_pipeh != NULL) { 2139 usbd_abort_pipe(sc->sc_tx_pipeh); 2140 usbd_close_pipe(sc->sc_tx_pipeh); 2141 sc->sc_tx_pipeh = NULL; 2142 } 2143 2144 rum_free_rx_list(sc); 2145 rum_free_tx_list(sc); 2146 } 2147 2148 Static int 2149 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2150 { 2151 usb_device_request_t req; 2152 uint16_t reg = RT2573_MCU_CODE_BASE; 2153 usbd_status error; 2154 2155 /* copy firmware image into NIC */ 2156 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2157 rum_write(sc, reg, UGETDW(ucode)); 2158 2159 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2160 req.bRequest = RT2573_MCU_CNTL; 2161 USETW(req.wValue, RT2573_MCU_RUN); 2162 USETW(req.wIndex, 0); 2163 USETW(req.wLength, 0); 2164 2165 error = usbd_do_request(sc->sc_udev, &req, NULL); 2166 if (error != 0) { 2167 printf("%s: could not run firmware: %s\n", 2168 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2169 } 2170 return error; 2171 } 2172 2173 Static int 2174 rum_prepare_beacon(struct rum_softc *sc) 2175 { 2176 struct ieee80211com *ic = &sc->sc_ic; 2177 struct rum_tx_desc desc; 2178 struct mbuf *m0; 2179 int rate; 2180 2181 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2182 if (m0 == NULL) { 2183 aprint_error_dev(sc->sc_dev, 2184 "could not allocate beacon frame\n"); 2185 return ENOBUFS; 2186 } 2187 2188 /* send beacons at the lowest available rate */ 2189 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2190 2191 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2192 m0->m_pkthdr.len, rate); 2193 2194 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2195 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2196 2197 /* copy beacon header and payload into NIC memory */ 2198 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2199 m0->m_pkthdr.len); 2200 2201 m_freem(m0); 2202 2203 return 0; 2204 } 2205 2206 Static void 2207 rum_newassoc(struct ieee80211_node *ni, int isnew) 2208 { 2209 /* start with lowest Tx rate */ 2210 ni->ni_txrate = 0; 2211 } 2212 2213 Static void 2214 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2215 { 2216 int i; 2217 2218 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2219 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2220 2221 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2222 2223 /* set rate to some reasonable initial value */ 2224 for (i = ni->ni_rates.rs_nrates - 1; 2225 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2226 i--); 2227 ni->ni_txrate = i; 2228 2229 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2230 } 2231 2232 Static void 2233 rum_amrr_timeout(void *arg) 2234 { 2235 struct rum_softc *sc = arg; 2236 usb_device_request_t req; 2237 2238 /* 2239 * Asynchronously read statistic registers (cleared by read). 2240 */ 2241 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2242 req.bRequest = RT2573_READ_MULTI_MAC; 2243 USETW(req.wValue, 0); 2244 USETW(req.wIndex, RT2573_STA_CSR0); 2245 USETW(req.wLength, sizeof sc->sta); 2246 2247 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2248 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2249 rum_amrr_update); 2250 (void)usbd_transfer(sc->amrr_xfer); 2251 } 2252 2253 Static void 2254 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2255 usbd_status status) 2256 { 2257 struct rum_softc *sc = (struct rum_softc *)priv; 2258 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2259 2260 if (status != USBD_NORMAL_COMPLETION) { 2261 printf("%s: could not retrieve Tx statistics - cancelling " 2262 "automatic rate control\n", USBDEVNAME(sc->sc_dev)); 2263 return; 2264 } 2265 2266 /* count TX retry-fail as Tx errors */ 2267 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2268 2269 sc->amn.amn_retrycnt = 2270 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2271 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2272 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2273 2274 sc->amn.amn_txcnt = 2275 sc->amn.amn_retrycnt + 2276 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2277 2278 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2279 2280 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2281 } 2282 2283 int 2284 rum_activate(device_ptr_t self, enum devact act) 2285 { 2286 switch (act) { 2287 case DVACT_ACTIVATE: 2288 return EOPNOTSUPP; 2289 2290 case DVACT_DEACTIVATE: 2291 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2292 break; 2293 } 2294 2295 return 0; 2296 } 2297