xref: /netbsd-src/sys/dev/usb/if_rum.c (revision de4fa6c51a9708fc05f88b618fa6fad87c9508ec)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.27 2009/08/02 20:55:45 tshiozak Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.27 2009/08/02 20:55:45 tshiozak Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79 
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88 
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
92 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
93 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
94 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
95 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
96 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
97 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
98 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
99 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
100 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
101 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
105 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
106 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
107 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132 	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
133 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
135 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
136 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
137 };
138 
139 Static int		rum_attachhook(void *);
140 Static int		rum_alloc_tx_list(struct rum_softc *);
141 Static void		rum_free_tx_list(struct rum_softc *);
142 Static int		rum_alloc_rx_list(struct rum_softc *);
143 Static void		rum_free_rx_list(struct rum_softc *);
144 Static int		rum_media_change(struct ifnet *);
145 Static void		rum_next_scan(void *);
146 Static void		rum_task(void *);
147 Static int		rum_newstate(struct ieee80211com *,
148 			    enum ieee80211_state, int);
149 Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
150 			    usbd_status);
151 Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
152 			    usbd_status);
153 #if NBPFILTER > 0
154 Static uint8_t		rum_rxrate(const struct rum_rx_desc *);
155 #endif
156 Static int		rum_ack_rate(struct ieee80211com *, int);
157 Static uint16_t		rum_txtime(int, int, uint32_t);
158 Static uint8_t		rum_plcp_signal(int);
159 Static void		rum_setup_tx_desc(struct rum_softc *,
160 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
161 			    int);
162 Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
163 			    struct ieee80211_node *);
164 Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
165 			    struct ieee80211_node *);
166 Static void		rum_start(struct ifnet *);
167 Static void		rum_watchdog(struct ifnet *);
168 Static int		rum_ioctl(struct ifnet *, u_long, void *);
169 Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
170 			    int);
171 Static uint32_t		rum_read(struct rum_softc *, uint16_t);
172 Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
173 			    int);
174 Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
175 Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
176 			    size_t);
177 Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
178 Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
179 Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
180 Static void		rum_select_antenna(struct rum_softc *);
181 Static void		rum_enable_mrr(struct rum_softc *);
182 Static void		rum_set_txpreamble(struct rum_softc *);
183 Static void		rum_set_basicrates(struct rum_softc *);
184 Static void		rum_select_band(struct rum_softc *,
185 			    struct ieee80211_channel *);
186 Static void		rum_set_chan(struct rum_softc *,
187 			    struct ieee80211_channel *);
188 Static void		rum_enable_tsf_sync(struct rum_softc *);
189 Static void		rum_update_slot(struct rum_softc *);
190 Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
191 Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
192 Static void		rum_update_promisc(struct rum_softc *);
193 Static const char	*rum_get_rf(int);
194 Static void		rum_read_eeprom(struct rum_softc *);
195 Static int		rum_bbp_init(struct rum_softc *);
196 Static int		rum_init(struct ifnet *);
197 Static void		rum_stop(struct ifnet *, int);
198 Static int		rum_load_microcode(struct rum_softc *, const u_char *,
199 			    size_t);
200 Static int		rum_prepare_beacon(struct rum_softc *);
201 Static void		rum_newassoc(struct ieee80211_node *, int);
202 Static void		rum_amrr_start(struct rum_softc *,
203 			    struct ieee80211_node *);
204 Static void		rum_amrr_timeout(void *);
205 Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
206 			    usbd_status status);
207 
208 /*
209  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
210  */
211 static const struct ieee80211_rateset rum_rateset_11a =
212 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
213 
214 static const struct ieee80211_rateset rum_rateset_11b =
215 	{ 4, { 2, 4, 11, 22 } };
216 
217 static const struct ieee80211_rateset rum_rateset_11g =
218 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
219 
220 static const struct {
221 	uint32_t	reg;
222 	uint32_t	val;
223 } rum_def_mac[] = {
224 	RT2573_DEF_MAC
225 };
226 
227 static const struct {
228 	uint8_t	reg;
229 	uint8_t	val;
230 } rum_def_bbp[] = {
231 	RT2573_DEF_BBP
232 };
233 
234 static const struct rfprog {
235 	uint8_t		chan;
236 	uint32_t	r1, r2, r3, r4;
237 }  rum_rf5226[] = {
238 	RT2573_RF5226
239 }, rum_rf5225[] = {
240 	RT2573_RF5225
241 };
242 
243 USB_DECLARE_DRIVER(rum);
244 
245 USB_MATCH(rum)
246 {
247 	USB_MATCH_START(rum, uaa);
248 
249 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
250 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251 }
252 
253 Static int
254 rum_attachhook(void *xsc)
255 {
256 	struct rum_softc *sc = xsc;
257 	firmware_handle_t fwh;
258 	const char *name = "rum-rt2573";
259 	u_char *ucode;
260 	size_t size;
261 	int error;
262 
263 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
264 		printf("%s: failed loadfirmware of file %s (error %d)\n",
265 		    USBDEVNAME(sc->sc_dev), name, error);
266 		return error;
267 	}
268 	size = firmware_get_size(fwh);
269 	ucode = firmware_malloc(size);
270 	if (ucode == NULL) {
271 		printf("%s: failed to allocate firmware memory\n",
272 		    USBDEVNAME(sc->sc_dev));
273 		firmware_close(fwh);
274 		return ENOMEM;
275 	}
276 	error = firmware_read(fwh, 0, ucode, size);
277 	firmware_close(fwh);
278 	if (error != 0) {
279 		printf("%s: failed to read firmware (error %d)\n",
280 		    USBDEVNAME(sc->sc_dev), error);
281 		firmware_free(ucode, 0);
282 		return error;
283 	}
284 
285 	if (rum_load_microcode(sc, ucode, size) != 0) {
286 		printf("%s: could not load 8051 microcode\n",
287 		    USBDEVNAME(sc->sc_dev));
288 		firmware_free(ucode, 0);
289 		return ENXIO;
290 	}
291 
292 	firmware_free(ucode, 0);
293 	sc->sc_flags |= RT2573_FWLOADED;
294 
295 	return 0;
296 }
297 
298 USB_ATTACH(rum)
299 {
300 	USB_ATTACH_START(rum, sc, uaa);
301 	struct ieee80211com *ic = &sc->sc_ic;
302 	struct ifnet *ifp = &sc->sc_if;
303 	usb_interface_descriptor_t *id;
304 	usb_endpoint_descriptor_t *ed;
305 	usbd_status error;
306 	char *devinfop;
307 	int i, ntries;
308 	uint32_t tmp;
309 
310 	sc->sc_dev = self;
311 	sc->sc_udev = uaa->device;
312 	sc->sc_flags = 0;
313 
314 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
315 	USB_ATTACH_SETUP;
316 	aprint_normal_dev(self, "%s\n", devinfop);
317 	usbd_devinfo_free(devinfop);
318 
319 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
320 		aprint_error_dev(self, "could not set configuration no\n");
321 		USB_ATTACH_ERROR_RETURN;
322 	}
323 
324 	/* get the first interface handle */
325 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
326 	    &sc->sc_iface);
327 	if (error != 0) {
328 		aprint_error_dev(self, "could not get interface handle\n");
329 		USB_ATTACH_ERROR_RETURN;
330 	}
331 
332 	/*
333 	 * Find endpoints.
334 	 */
335 	id = usbd_get_interface_descriptor(sc->sc_iface);
336 
337 	sc->sc_rx_no = sc->sc_tx_no = -1;
338 	for (i = 0; i < id->bNumEndpoints; i++) {
339 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
340 		if (ed == NULL) {
341 			aprint_error_dev(self,
342 			    "no endpoint descriptor for iface %d\n", i);
343 			USB_ATTACH_ERROR_RETURN;
344 		}
345 
346 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
347 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
348 			sc->sc_rx_no = ed->bEndpointAddress;
349 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
350 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 			sc->sc_tx_no = ed->bEndpointAddress;
352 	}
353 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
354 		aprint_error_dev(self, "missing endpoint\n");
355 		USB_ATTACH_ERROR_RETURN;
356 	}
357 
358 	usb_init_task(&sc->sc_task, rum_task, sc);
359 	usb_callout_init(sc->sc_scan_ch);
360 
361 	sc->amrr.amrr_min_success_threshold =  1;
362 	sc->amrr.amrr_max_success_threshold = 10;
363 	usb_callout_init(sc->sc_amrr_ch);
364 
365 	/* retrieve RT2573 rev. no */
366 	for (ntries = 0; ntries < 1000; ntries++) {
367 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
368 			break;
369 		DELAY(1000);
370 	}
371 	if (ntries == 1000) {
372 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
373 		USB_ATTACH_ERROR_RETURN;
374 	}
375 
376 	/* retrieve MAC address and various other things from EEPROM */
377 	rum_read_eeprom(sc);
378 
379 	aprint_normal_dev(self,
380 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
381 	    sc->macbbp_rev, tmp,
382 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
383 
384 	ic->ic_ifp = ifp;
385 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
386 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
387 	ic->ic_state = IEEE80211_S_INIT;
388 
389 	/* set device capabilities */
390 	ic->ic_caps =
391 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
392 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
393 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
394 	    IEEE80211_C_TXPMGT |	/* tx power management */
395 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
396 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
397 	    IEEE80211_C_WPA;		/* 802.11i */
398 
399 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
400 		/* set supported .11a rates */
401 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
402 
403 		/* set supported .11a channels */
404 		for (i = 34; i <= 46; i += 4) {
405 			ic->ic_channels[i].ic_freq =
406 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
407 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
408 		}
409 		for (i = 36; i <= 64; i += 4) {
410 			ic->ic_channels[i].ic_freq =
411 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 		}
414 		for (i = 100; i <= 140; i += 4) {
415 			ic->ic_channels[i].ic_freq =
416 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 		}
419 		for (i = 149; i <= 165; i += 4) {
420 			ic->ic_channels[i].ic_freq =
421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 		}
424 	}
425 
426 	/* set supported .11b and .11g rates */
427 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
428 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
429 
430 	/* set supported .11b and .11g channels (1 through 14) */
431 	for (i = 1; i <= 14; i++) {
432 		ic->ic_channels[i].ic_freq =
433 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
434 		ic->ic_channels[i].ic_flags =
435 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
436 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
437 	}
438 
439 	ifp->if_softc = sc;
440 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
441 	ifp->if_init = rum_init;
442 	ifp->if_ioctl = rum_ioctl;
443 	ifp->if_start = rum_start;
444 	ifp->if_watchdog = rum_watchdog;
445 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
446 	IFQ_SET_READY(&ifp->if_snd);
447 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
448 
449 	if_attach(ifp);
450 	ieee80211_ifattach(ic);
451 	ic->ic_newassoc = rum_newassoc;
452 
453 	/* override state transition machine */
454 	sc->sc_newstate = ic->ic_newstate;
455 	ic->ic_newstate = rum_newstate;
456 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
457 
458 #if NBPFILTER > 0
459 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
460 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
461 
462 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
463 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
465 
466 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
467 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
469 #endif
470 
471 	ieee80211_announce(ic);
472 
473 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
474 	    USBDEV(sc->sc_dev));
475 
476 	USB_ATTACH_SUCCESS_RETURN;
477 }
478 
479 USB_DETACH(rum)
480 {
481 	USB_DETACH_START(rum, sc);
482 	struct ieee80211com *ic = &sc->sc_ic;
483 	struct ifnet *ifp = &sc->sc_if;
484 	int s;
485 
486 	if (!ifp->if_softc)
487 		return 0;
488 
489 	s = splusb();
490 
491 	rum_stop(ifp, 1);
492 	usb_rem_task(sc->sc_udev, &sc->sc_task);
493 	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
494 	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
495 
496 	if (sc->amrr_xfer != NULL) {
497 		usbd_free_xfer(sc->amrr_xfer);
498 		sc->amrr_xfer = NULL;
499 	}
500 
501 	if (sc->sc_rx_pipeh != NULL) {
502 		usbd_abort_pipe(sc->sc_rx_pipeh);
503 		usbd_close_pipe(sc->sc_rx_pipeh);
504 	}
505 
506 	if (sc->sc_tx_pipeh != NULL) {
507 		usbd_abort_pipe(sc->sc_tx_pipeh);
508 		usbd_close_pipe(sc->sc_tx_pipeh);
509 	}
510 
511 #if NBPFILTER > 0
512 	bpfdetach(ifp);
513 #endif
514 	ieee80211_ifdetach(ic);	/* free all nodes */
515 	if_detach(ifp);
516 
517 	splx(s);
518 
519 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
520 	    USBDEV(sc->sc_dev));
521 
522 	return 0;
523 }
524 
525 Static int
526 rum_alloc_tx_list(struct rum_softc *sc)
527 {
528 	struct rum_tx_data *data;
529 	int i, error;
530 
531 	sc->tx_queued = 0;
532 
533 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
534 		data = &sc->tx_data[i];
535 
536 		data->sc = sc;
537 
538 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
539 		if (data->xfer == NULL) {
540 			printf("%s: could not allocate tx xfer\n",
541 			    USBDEVNAME(sc->sc_dev));
542 			error = ENOMEM;
543 			goto fail;
544 		}
545 
546 		data->buf = usbd_alloc_buffer(data->xfer,
547 		    RT2573_TX_DESC_SIZE + MCLBYTES);
548 		if (data->buf == NULL) {
549 			printf("%s: could not allocate tx buffer\n",
550 			    USBDEVNAME(sc->sc_dev));
551 			error = ENOMEM;
552 			goto fail;
553 		}
554 
555 		/* clean Tx descriptor */
556 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
557 	}
558 
559 	return 0;
560 
561 fail:	rum_free_tx_list(sc);
562 	return error;
563 }
564 
565 Static void
566 rum_free_tx_list(struct rum_softc *sc)
567 {
568 	struct rum_tx_data *data;
569 	int i;
570 
571 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
572 		data = &sc->tx_data[i];
573 
574 		if (data->xfer != NULL) {
575 			usbd_free_xfer(data->xfer);
576 			data->xfer = NULL;
577 		}
578 
579 		if (data->ni != NULL) {
580 			ieee80211_free_node(data->ni);
581 			data->ni = NULL;
582 		}
583 	}
584 }
585 
586 Static int
587 rum_alloc_rx_list(struct rum_softc *sc)
588 {
589 	struct rum_rx_data *data;
590 	int i, error;
591 
592 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
593 		data = &sc->rx_data[i];
594 
595 		data->sc = sc;
596 
597 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
598 		if (data->xfer == NULL) {
599 			printf("%s: could not allocate rx xfer\n",
600 			    USBDEVNAME(sc->sc_dev));
601 			error = ENOMEM;
602 			goto fail;
603 		}
604 
605 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
606 			printf("%s: could not allocate rx buffer\n",
607 			    USBDEVNAME(sc->sc_dev));
608 			error = ENOMEM;
609 			goto fail;
610 		}
611 
612 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
613 		if (data->m == NULL) {
614 			printf("%s: could not allocate rx mbuf\n",
615 			    USBDEVNAME(sc->sc_dev));
616 			error = ENOMEM;
617 			goto fail;
618 		}
619 
620 		MCLGET(data->m, M_DONTWAIT);
621 		if (!(data->m->m_flags & M_EXT)) {
622 			printf("%s: could not allocate rx mbuf cluster\n",
623 			    USBDEVNAME(sc->sc_dev));
624 			error = ENOMEM;
625 			goto fail;
626 		}
627 
628 		data->buf = mtod(data->m, uint8_t *);
629 	}
630 
631 	return 0;
632 
633 fail:	rum_free_tx_list(sc);
634 	return error;
635 }
636 
637 Static void
638 rum_free_rx_list(struct rum_softc *sc)
639 {
640 	struct rum_rx_data *data;
641 	int i;
642 
643 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
644 		data = &sc->rx_data[i];
645 
646 		if (data->xfer != NULL) {
647 			usbd_free_xfer(data->xfer);
648 			data->xfer = NULL;
649 		}
650 
651 		if (data->m != NULL) {
652 			m_freem(data->m);
653 			data->m = NULL;
654 		}
655 	}
656 }
657 
658 Static int
659 rum_media_change(struct ifnet *ifp)
660 {
661 	int error;
662 
663 	error = ieee80211_media_change(ifp);
664 	if (error != ENETRESET)
665 		return error;
666 
667 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
668 		rum_init(ifp);
669 
670 	return 0;
671 }
672 
673 /*
674  * This function is called periodically (every 200ms) during scanning to
675  * switch from one channel to another.
676  */
677 Static void
678 rum_next_scan(void *arg)
679 {
680 	struct rum_softc *sc = arg;
681 	struct ieee80211com *ic = &sc->sc_ic;
682 
683 	if (ic->ic_state == IEEE80211_S_SCAN)
684 		ieee80211_next_scan(ic);
685 }
686 
687 Static void
688 rum_task(void *arg)
689 {
690 	struct rum_softc *sc = arg;
691 	struct ieee80211com *ic = &sc->sc_ic;
692 	enum ieee80211_state ostate;
693 	struct ieee80211_node *ni;
694 	uint32_t tmp;
695 
696 	ostate = ic->ic_state;
697 
698 	switch (sc->sc_state) {
699 	case IEEE80211_S_INIT:
700 		if (ostate == IEEE80211_S_RUN) {
701 			/* abort TSF synchronization */
702 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
703 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
704 		}
705 		break;
706 
707 	case IEEE80211_S_SCAN:
708 		rum_set_chan(sc, ic->ic_curchan);
709 		usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
710 		break;
711 
712 	case IEEE80211_S_AUTH:
713 		rum_set_chan(sc, ic->ic_curchan);
714 		break;
715 
716 	case IEEE80211_S_ASSOC:
717 		rum_set_chan(sc, ic->ic_curchan);
718 		break;
719 
720 	case IEEE80211_S_RUN:
721 		rum_set_chan(sc, ic->ic_curchan);
722 
723 		ni = ic->ic_bss;
724 
725 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
726 			rum_update_slot(sc);
727 			rum_enable_mrr(sc);
728 			rum_set_txpreamble(sc);
729 			rum_set_basicrates(sc);
730 			rum_set_bssid(sc, ni->ni_bssid);
731 		}
732 
733 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
734 		    ic->ic_opmode == IEEE80211_M_IBSS)
735 			rum_prepare_beacon(sc);
736 
737 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
738 			rum_enable_tsf_sync(sc);
739 
740 		if (ic->ic_opmode == IEEE80211_M_STA) {
741 			/* fake a join to init the tx rate */
742 			rum_newassoc(ic->ic_bss, 1);
743 
744 			/* enable automatic rate adaptation in STA mode */
745 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
746 				rum_amrr_start(sc, ni);
747 		}
748 
749 		break;
750 	}
751 
752 	sc->sc_newstate(ic, sc->sc_state, -1);
753 }
754 
755 Static int
756 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
757 {
758 	struct rum_softc *sc = ic->ic_ifp->if_softc;
759 
760 	usb_rem_task(sc->sc_udev, &sc->sc_task);
761 	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
762 	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
763 
764 	/* do it in a process context */
765 	sc->sc_state = nstate;
766 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
767 
768 	return 0;
769 }
770 
771 /* quickly determine if a given rate is CCK or OFDM */
772 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
773 
774 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
775 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
776 
777 Static void
778 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
779 {
780 	struct rum_tx_data *data = priv;
781 	struct rum_softc *sc = data->sc;
782 	struct ifnet *ifp = &sc->sc_if;
783 	int s;
784 
785 	if (status != USBD_NORMAL_COMPLETION) {
786 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
787 			return;
788 
789 		printf("%s: could not transmit buffer: %s\n",
790 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
791 
792 		if (status == USBD_STALLED)
793 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
794 
795 		ifp->if_oerrors++;
796 		return;
797 	}
798 
799 	s = splnet();
800 
801 	ieee80211_free_node(data->ni);
802 	data->ni = NULL;
803 
804 	sc->tx_queued--;
805 	ifp->if_opackets++;
806 
807 	DPRINTFN(10, ("tx done\n"));
808 
809 	sc->sc_tx_timer = 0;
810 	ifp->if_flags &= ~IFF_OACTIVE;
811 	rum_start(ifp);
812 
813 	splx(s);
814 }
815 
816 Static void
817 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
818 {
819 	struct rum_rx_data *data = priv;
820 	struct rum_softc *sc = data->sc;
821 	struct ieee80211com *ic = &sc->sc_ic;
822 	struct ifnet *ifp = &sc->sc_if;
823 	struct rum_rx_desc *desc;
824 	struct ieee80211_frame *wh;
825 	struct ieee80211_node *ni;
826 	struct mbuf *mnew, *m;
827 	int s, len;
828 
829 	if (status != USBD_NORMAL_COMPLETION) {
830 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
831 			return;
832 
833 		if (status == USBD_STALLED)
834 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
835 		goto skip;
836 	}
837 
838 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
839 
840 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
841 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
842 		    len));
843 		ifp->if_ierrors++;
844 		goto skip;
845 	}
846 
847 	desc = (struct rum_rx_desc *)data->buf;
848 
849 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
850 		/*
851 		 * This should not happen since we did not request to receive
852 		 * those frames when we filled RT2573_TXRX_CSR0.
853 		 */
854 		DPRINTFN(5, ("CRC error\n"));
855 		ifp->if_ierrors++;
856 		goto skip;
857 	}
858 
859 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
860 	if (mnew == NULL) {
861 		printf("%s: could not allocate rx mbuf\n",
862 		    USBDEVNAME(sc->sc_dev));
863 		ifp->if_ierrors++;
864 		goto skip;
865 	}
866 
867 	MCLGET(mnew, M_DONTWAIT);
868 	if (!(mnew->m_flags & M_EXT)) {
869 		printf("%s: could not allocate rx mbuf cluster\n",
870 		    USBDEVNAME(sc->sc_dev));
871 		m_freem(mnew);
872 		ifp->if_ierrors++;
873 		goto skip;
874 	}
875 
876 	m = data->m;
877 	data->m = mnew;
878 	data->buf = mtod(data->m, uint8_t *);
879 
880 	/* finalize mbuf */
881 	m->m_pkthdr.rcvif = ifp;
882 	m->m_data = (void *)(desc + 1);
883 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
884 
885 	s = splnet();
886 
887 #if NBPFILTER > 0
888 	if (sc->sc_drvbpf != NULL) {
889 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
890 
891 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
892 		tap->wr_rate = rum_rxrate(desc);
893 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
894 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
895 		tap->wr_antenna = sc->rx_ant;
896 		tap->wr_antsignal = desc->rssi;
897 
898 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
899 	}
900 #endif
901 
902 	wh = mtod(m, struct ieee80211_frame *);
903 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
904 
905 	/* send the frame to the 802.11 layer */
906 	ieee80211_input(ic, m, ni, desc->rssi, 0);
907 
908 	/* node is no longer needed */
909 	ieee80211_free_node(ni);
910 
911 	splx(s);
912 
913 	DPRINTFN(15, ("rx done\n"));
914 
915 skip:	/* setup a new transfer */
916 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
917 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
918 	usbd_transfer(xfer);
919 }
920 
921 /*
922  * This function is only used by the Rx radiotap code. It returns the rate at
923  * which a given frame was received.
924  */
925 #if NBPFILTER > 0
926 Static uint8_t
927 rum_rxrate(const struct rum_rx_desc *desc)
928 {
929 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
930 		/* reverse function of rum_plcp_signal */
931 		switch (desc->rate) {
932 		case 0xb:	return 12;
933 		case 0xf:	return 18;
934 		case 0xa:	return 24;
935 		case 0xe:	return 36;
936 		case 0x9:	return 48;
937 		case 0xd:	return 72;
938 		case 0x8:	return 96;
939 		case 0xc:	return 108;
940 		}
941 	} else {
942 		if (desc->rate == 10)
943 			return 2;
944 		if (desc->rate == 20)
945 			return 4;
946 		if (desc->rate == 55)
947 			return 11;
948 		if (desc->rate == 110)
949 			return 22;
950 	}
951 	return 2;	/* should not get there */
952 }
953 #endif
954 
955 /*
956  * Return the expected ack rate for a frame transmitted at rate `rate'.
957  * XXX: this should depend on the destination node basic rate set.
958  */
959 Static int
960 rum_ack_rate(struct ieee80211com *ic, int rate)
961 {
962 	switch (rate) {
963 	/* CCK rates */
964 	case 2:
965 		return 2;
966 	case 4:
967 	case 11:
968 	case 22:
969 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
970 
971 	/* OFDM rates */
972 	case 12:
973 	case 18:
974 		return 12;
975 	case 24:
976 	case 36:
977 		return 24;
978 	case 48:
979 	case 72:
980 	case 96:
981 	case 108:
982 		return 48;
983 	}
984 
985 	/* default to 1Mbps */
986 	return 2;
987 }
988 
989 /*
990  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
991  * The function automatically determines the operating mode depending on the
992  * given rate. `flags' indicates whether short preamble is in use or not.
993  */
994 Static uint16_t
995 rum_txtime(int len, int rate, uint32_t flags)
996 {
997 	uint16_t txtime;
998 
999 	if (RUM_RATE_IS_OFDM(rate)) {
1000 		/* IEEE Std 802.11a-1999, pp. 37 */
1001 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1002 		txtime = 16 + 4 + 4 * txtime + 6;
1003 	} else {
1004 		/* IEEE Std 802.11b-1999, pp. 28 */
1005 		txtime = (16 * len + rate - 1) / rate;
1006 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1007 			txtime +=  72 + 24;
1008 		else
1009 			txtime += 144 + 48;
1010 	}
1011 	return txtime;
1012 }
1013 
1014 Static uint8_t
1015 rum_plcp_signal(int rate)
1016 {
1017 	switch (rate) {
1018 	/* CCK rates (returned values are device-dependent) */
1019 	case 2:		return 0x0;
1020 	case 4:		return 0x1;
1021 	case 11:	return 0x2;
1022 	case 22:	return 0x3;
1023 
1024 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1025 	case 12:	return 0xb;
1026 	case 18:	return 0xf;
1027 	case 24:	return 0xa;
1028 	case 36:	return 0xe;
1029 	case 48:	return 0x9;
1030 	case 72:	return 0xd;
1031 	case 96:	return 0x8;
1032 	case 108:	return 0xc;
1033 
1034 	/* unsupported rates (should not get there) */
1035 	default:	return 0xff;
1036 	}
1037 }
1038 
1039 Static void
1040 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1041     uint32_t flags, uint16_t xflags, int len, int rate)
1042 {
1043 	struct ieee80211com *ic = &sc->sc_ic;
1044 	uint16_t plcp_length;
1045 	int remainder;
1046 
1047 	desc->flags = htole32(flags);
1048 	desc->flags |= htole32(RT2573_TX_VALID);
1049 	desc->flags |= htole32(len << 16);
1050 
1051 	desc->xflags = htole16(xflags);
1052 
1053 	desc->wme = htole16(
1054 	    RT2573_QID(0) |
1055 	    RT2573_AIFSN(2) |
1056 	    RT2573_LOGCWMIN(4) |
1057 	    RT2573_LOGCWMAX(10));
1058 
1059 	/* setup PLCP fields */
1060 	desc->plcp_signal  = rum_plcp_signal(rate);
1061 	desc->plcp_service = 4;
1062 
1063 	len += IEEE80211_CRC_LEN;
1064 	if (RUM_RATE_IS_OFDM(rate)) {
1065 		desc->flags |= htole32(RT2573_TX_OFDM);
1066 
1067 		plcp_length = len & 0xfff;
1068 		desc->plcp_length_hi = plcp_length >> 6;
1069 		desc->plcp_length_lo = plcp_length & 0x3f;
1070 	} else {
1071 		plcp_length = (16 * len + rate - 1) / rate;
1072 		if (rate == 22) {
1073 			remainder = (16 * len) % 22;
1074 			if (remainder != 0 && remainder < 7)
1075 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1076 		}
1077 		desc->plcp_length_hi = plcp_length >> 8;
1078 		desc->plcp_length_lo = plcp_length & 0xff;
1079 
1080 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1081 			desc->plcp_signal |= 0x08;
1082 	}
1083 }
1084 
1085 #define RUM_TX_TIMEOUT	5000
1086 
1087 Static int
1088 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1089 {
1090 	struct ieee80211com *ic = &sc->sc_ic;
1091 	struct rum_tx_desc *desc;
1092 	struct rum_tx_data *data;
1093 	struct ieee80211_frame *wh;
1094 	struct ieee80211_key *k;
1095 	uint32_t flags = 0;
1096 	uint16_t dur;
1097 	usbd_status error;
1098 	int xferlen, rate;
1099 
1100 	data = &sc->tx_data[0];
1101 	desc = (struct rum_tx_desc *)data->buf;
1102 
1103 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1104 
1105 	data->m = m0;
1106 	data->ni = ni;
1107 
1108 	wh = mtod(m0, struct ieee80211_frame *);
1109 
1110 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1111 		k = ieee80211_crypto_encap(ic, ni, m0);
1112 		if (k == NULL) {
1113 			m_freem(m0);
1114 			return ENOBUFS;
1115 		}
1116 	}
1117 
1118 	wh = mtod(m0, struct ieee80211_frame *);
1119 
1120 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1121 		flags |= RT2573_TX_NEED_ACK;
1122 
1123 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1124 		    ic->ic_flags) + sc->sifs;
1125 		*(uint16_t *)wh->i_dur = htole16(dur);
1126 
1127 		/* tell hardware to set timestamp in probe responses */
1128 		if ((wh->i_fc[0] &
1129 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1130 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1131 			flags |= RT2573_TX_TIMESTAMP;
1132 	}
1133 
1134 #if NBPFILTER > 0
1135 	if (sc->sc_drvbpf != NULL) {
1136 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1137 
1138 		tap->wt_flags = 0;
1139 		tap->wt_rate = rate;
1140 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1141 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1142 		tap->wt_antenna = sc->tx_ant;
1143 
1144 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1145 	}
1146 #endif
1147 
1148 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1149 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1150 
1151 	/* align end on a 4-bytes boundary */
1152 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1153 
1154 	/*
1155 	 * No space left in the last URB to store the extra 4 bytes, force
1156 	 * sending of another URB.
1157 	 */
1158 	if ((xferlen % 64) == 0)
1159 		xferlen += 4;
1160 
1161 	DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1162 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1163 	    rate, xferlen));
1164 
1165 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1166 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1167 
1168 	error = usbd_transfer(data->xfer);
1169 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1170 		m_freem(m0);
1171 		return error;
1172 	}
1173 
1174 	sc->tx_queued++;
1175 
1176 	return 0;
1177 }
1178 
1179 Static int
1180 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1181 {
1182 	struct ieee80211com *ic = &sc->sc_ic;
1183 	struct rum_tx_desc *desc;
1184 	struct rum_tx_data *data;
1185 	struct ieee80211_frame *wh;
1186 	struct ieee80211_key *k;
1187 	uint32_t flags = 0;
1188 	uint16_t dur;
1189 	usbd_status error;
1190 	int xferlen, rate;
1191 
1192 	wh = mtod(m0, struct ieee80211_frame *);
1193 
1194 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1195 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1196 	else
1197 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1198 	if (rate == 0)
1199 		rate = 2;	/* XXX should not happen */
1200 	rate &= IEEE80211_RATE_VAL;
1201 
1202 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1203 		k = ieee80211_crypto_encap(ic, ni, m0);
1204 		if (k == NULL) {
1205 			m_freem(m0);
1206 			return ENOBUFS;
1207 		}
1208 
1209 		/* packet header may have moved, reset our local pointer */
1210 		wh = mtod(m0, struct ieee80211_frame *);
1211 	}
1212 
1213 	data = &sc->tx_data[0];
1214 	desc = (struct rum_tx_desc *)data->buf;
1215 
1216 	data->ni = ni;
1217 
1218 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1219 		flags |= RT2573_TX_NEED_ACK;
1220 
1221 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1222 		    ic->ic_flags) + sc->sifs;
1223 		*(uint16_t *)wh->i_dur = htole16(dur);
1224 	}
1225 
1226 #if NBPFILTER > 0
1227 	if (sc->sc_drvbpf != NULL) {
1228 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1229 
1230 		tap->wt_flags = 0;
1231 		tap->wt_rate = rate;
1232 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1233 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1234 		tap->wt_antenna = sc->tx_ant;
1235 
1236 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1237 	}
1238 #endif
1239 
1240 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1241 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1242 
1243 	/* align end on a 4-bytes boundary */
1244 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1245 
1246 	/*
1247 	 * No space left in the last URB to store the extra 4 bytes, force
1248 	 * sending of another URB.
1249 	 */
1250 	if ((xferlen % 64) == 0)
1251 		xferlen += 4;
1252 
1253 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1254 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1255 	    rate, xferlen));
1256 
1257 	/* mbuf is no longer needed */
1258 	m_freem(m0);
1259 
1260 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1261 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1262 
1263 	error = usbd_transfer(data->xfer);
1264 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1265 		return error;
1266 
1267 	sc->tx_queued++;
1268 
1269 	return 0;
1270 }
1271 
1272 Static void
1273 rum_start(struct ifnet *ifp)
1274 {
1275 	struct rum_softc *sc = ifp->if_softc;
1276 	struct ieee80211com *ic = &sc->sc_ic;
1277 	struct ether_header *eh;
1278 	struct ieee80211_node *ni;
1279 	struct mbuf *m0;
1280 
1281 	for (;;) {
1282 		IF_POLL(&ic->ic_mgtq, m0);
1283 		if (m0 != NULL) {
1284 			if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1285 				ifp->if_flags |= IFF_OACTIVE;
1286 				break;
1287 			}
1288 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1289 
1290 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1291 			m0->m_pkthdr.rcvif = NULL;
1292 #if NBPFILTER > 0
1293 			if (ic->ic_rawbpf != NULL)
1294 				bpf_mtap(ic->ic_rawbpf, m0);
1295 #endif
1296 			if (rum_tx_mgt(sc, m0, ni) != 0)
1297 				break;
1298 
1299 		} else {
1300 			if (ic->ic_state != IEEE80211_S_RUN)
1301 				break;
1302 			IFQ_POLL(&ifp->if_snd, m0);
1303 			if (m0 == NULL)
1304 				break;
1305 			if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1306 				ifp->if_flags |= IFF_OACTIVE;
1307 				break;
1308 			}
1309 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1310 			if (m0->m_len < sizeof(struct ether_header) &&
1311 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1312 				continue;
1313 
1314 			eh = mtod(m0, struct ether_header *);
1315 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1316 			if (ni == NULL) {
1317 				m_freem(m0);
1318 				continue;
1319 			}
1320 #if NBPFILTER > 0
1321 			if (ifp->if_bpf != NULL)
1322 				bpf_mtap(ifp->if_bpf, m0);
1323 #endif
1324 			m0 = ieee80211_encap(ic, m0, ni);
1325 			if (m0 == NULL) {
1326 				ieee80211_free_node(ni);
1327 				continue;
1328 			}
1329 #if NBPFILTER > 0
1330 			if (ic->ic_rawbpf != NULL)
1331 				bpf_mtap(ic->ic_rawbpf, m0);
1332 #endif
1333 			if (rum_tx_data(sc, m0, ni) != 0) {
1334 				ieee80211_free_node(ni);
1335 				ifp->if_oerrors++;
1336 				break;
1337 			}
1338 		}
1339 
1340 		sc->sc_tx_timer = 5;
1341 		ifp->if_timer = 1;
1342 	}
1343 }
1344 
1345 Static void
1346 rum_watchdog(struct ifnet *ifp)
1347 {
1348 	struct rum_softc *sc = ifp->if_softc;
1349 	struct ieee80211com *ic = &sc->sc_ic;
1350 
1351 	ifp->if_timer = 0;
1352 
1353 	if (sc->sc_tx_timer > 0) {
1354 		if (--sc->sc_tx_timer == 0) {
1355 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1356 			/*rum_init(ifp); XXX needs a process context! */
1357 			ifp->if_oerrors++;
1358 			return;
1359 		}
1360 		ifp->if_timer = 1;
1361 	}
1362 
1363 	ieee80211_watchdog(ic);
1364 }
1365 
1366 Static int
1367 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1368 {
1369 	struct rum_softc *sc = ifp->if_softc;
1370 	struct ieee80211com *ic = &sc->sc_ic;
1371 	int s, error = 0;
1372 
1373 	s = splnet();
1374 
1375 	switch (cmd) {
1376 	case SIOCSIFFLAGS:
1377 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1378 			break;
1379 		/* XXX re-use ether_ioctl() */
1380 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1381 		case IFF_UP|IFF_RUNNING:
1382 			rum_update_promisc(sc);
1383 			break;
1384 		case IFF_UP:
1385 			rum_init(ifp);
1386 			break;
1387 		case IFF_RUNNING:
1388 			rum_stop(ifp, 1);
1389 			break;
1390 		case 0:
1391 			break;
1392 		}
1393 		break;
1394 
1395 	default:
1396 		error = ieee80211_ioctl(ic, cmd, data);
1397 	}
1398 
1399 	if (error == ENETRESET) {
1400 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1401 		    (IFF_UP | IFF_RUNNING))
1402 			rum_init(ifp);
1403 		error = 0;
1404 	}
1405 
1406 	splx(s);
1407 
1408 	return error;
1409 }
1410 
1411 Static void
1412 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1413 {
1414 	usb_device_request_t req;
1415 	usbd_status error;
1416 
1417 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1418 	req.bRequest = RT2573_READ_EEPROM;
1419 	USETW(req.wValue, 0);
1420 	USETW(req.wIndex, addr);
1421 	USETW(req.wLength, len);
1422 
1423 	error = usbd_do_request(sc->sc_udev, &req, buf);
1424 	if (error != 0) {
1425 		printf("%s: could not read EEPROM: %s\n",
1426 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1427 	}
1428 }
1429 
1430 Static uint32_t
1431 rum_read(struct rum_softc *sc, uint16_t reg)
1432 {
1433 	uint32_t val;
1434 
1435 	rum_read_multi(sc, reg, &val, sizeof val);
1436 
1437 	return le32toh(val);
1438 }
1439 
1440 Static void
1441 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1442 {
1443 	usb_device_request_t req;
1444 	usbd_status error;
1445 
1446 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1447 	req.bRequest = RT2573_READ_MULTI_MAC;
1448 	USETW(req.wValue, 0);
1449 	USETW(req.wIndex, reg);
1450 	USETW(req.wLength, len);
1451 
1452 	error = usbd_do_request(sc->sc_udev, &req, buf);
1453 	if (error != 0) {
1454 		printf("%s: could not multi read MAC register: %s\n",
1455 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1456 	}
1457 }
1458 
1459 Static void
1460 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1461 {
1462 	uint32_t tmp = htole32(val);
1463 
1464 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1465 }
1466 
1467 Static void
1468 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1469 {
1470 	usb_device_request_t req;
1471 	usbd_status error;
1472 
1473 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1474 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1475 	USETW(req.wValue, 0);
1476 	USETW(req.wIndex, reg);
1477 	USETW(req.wLength, len);
1478 
1479 	error = usbd_do_request(sc->sc_udev, &req, buf);
1480 	if (error != 0) {
1481 		printf("%s: could not multi write MAC register: %s\n",
1482 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1483 	}
1484 }
1485 
1486 Static void
1487 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1488 {
1489 	uint32_t tmp;
1490 	int ntries;
1491 
1492 	for (ntries = 0; ntries < 5; ntries++) {
1493 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1494 			break;
1495 	}
1496 	if (ntries == 5) {
1497 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1498 		return;
1499 	}
1500 
1501 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1502 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1503 }
1504 
1505 Static uint8_t
1506 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1507 {
1508 	uint32_t val;
1509 	int ntries;
1510 
1511 	for (ntries = 0; ntries < 5; ntries++) {
1512 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1513 			break;
1514 	}
1515 	if (ntries == 5) {
1516 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1517 		return 0;
1518 	}
1519 
1520 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1521 	rum_write(sc, RT2573_PHY_CSR3, val);
1522 
1523 	for (ntries = 0; ntries < 100; ntries++) {
1524 		val = rum_read(sc, RT2573_PHY_CSR3);
1525 		if (!(val & RT2573_BBP_BUSY))
1526 			return val & 0xff;
1527 		DELAY(1);
1528 	}
1529 
1530 	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1531 	return 0;
1532 }
1533 
1534 Static void
1535 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1536 {
1537 	uint32_t tmp;
1538 	int ntries;
1539 
1540 	for (ntries = 0; ntries < 5; ntries++) {
1541 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1542 			break;
1543 	}
1544 	if (ntries == 5) {
1545 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1546 		return;
1547 	}
1548 
1549 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1550 	    (reg & 3);
1551 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1552 
1553 	/* remember last written value in sc */
1554 	sc->rf_regs[reg] = val;
1555 
1556 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1557 }
1558 
1559 Static void
1560 rum_select_antenna(struct rum_softc *sc)
1561 {
1562 	uint8_t bbp4, bbp77;
1563 	uint32_t tmp;
1564 
1565 	bbp4  = rum_bbp_read(sc, 4);
1566 	bbp77 = rum_bbp_read(sc, 77);
1567 
1568 	/* TBD */
1569 
1570 	/* make sure Rx is disabled before switching antenna */
1571 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1572 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1573 
1574 	rum_bbp_write(sc,  4, bbp4);
1575 	rum_bbp_write(sc, 77, bbp77);
1576 
1577 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1578 }
1579 
1580 /*
1581  * Enable multi-rate retries for frames sent at OFDM rates.
1582  * In 802.11b/g mode, allow fallback to CCK rates.
1583  */
1584 Static void
1585 rum_enable_mrr(struct rum_softc *sc)
1586 {
1587 	struct ieee80211com *ic = &sc->sc_ic;
1588 	uint32_t tmp;
1589 
1590 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1591 
1592 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1593 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1594 		tmp |= RT2573_MRR_CCK_FALLBACK;
1595 	tmp |= RT2573_MRR_ENABLED;
1596 
1597 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1598 }
1599 
1600 Static void
1601 rum_set_txpreamble(struct rum_softc *sc)
1602 {
1603 	uint32_t tmp;
1604 
1605 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1606 
1607 	tmp &= ~RT2573_SHORT_PREAMBLE;
1608 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1609 		tmp |= RT2573_SHORT_PREAMBLE;
1610 
1611 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1612 }
1613 
1614 Static void
1615 rum_set_basicrates(struct rum_softc *sc)
1616 {
1617 	struct ieee80211com *ic = &sc->sc_ic;
1618 
1619 	/* update basic rate set */
1620 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1621 		/* 11b basic rates: 1, 2Mbps */
1622 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1623 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1624 		/* 11a basic rates: 6, 12, 24Mbps */
1625 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1626 	} else {
1627 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1628 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1629 	}
1630 }
1631 
1632 /*
1633  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1634  * driver.
1635  */
1636 Static void
1637 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1638 {
1639 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1640 	uint32_t tmp;
1641 
1642 	/* update all BBP registers that depend on the band */
1643 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1644 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1645 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1646 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1647 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1648 	}
1649 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1652 	}
1653 
1654 	sc->bbp17 = bbp17;
1655 	rum_bbp_write(sc,  17, bbp17);
1656 	rum_bbp_write(sc,  96, bbp96);
1657 	rum_bbp_write(sc, 104, bbp104);
1658 
1659 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1660 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1661 		rum_bbp_write(sc, 75, 0x80);
1662 		rum_bbp_write(sc, 86, 0x80);
1663 		rum_bbp_write(sc, 88, 0x80);
1664 	}
1665 
1666 	rum_bbp_write(sc, 35, bbp35);
1667 	rum_bbp_write(sc, 97, bbp97);
1668 	rum_bbp_write(sc, 98, bbp98);
1669 
1670 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1671 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1672 	if (IEEE80211_IS_CHAN_2GHZ(c))
1673 		tmp |= RT2573_PA_PE_2GHZ;
1674 	else
1675 		tmp |= RT2573_PA_PE_5GHZ;
1676 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1677 
1678 	/* 802.11a uses a 16 microseconds short interframe space */
1679 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1680 }
1681 
1682 Static void
1683 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1684 {
1685 	struct ieee80211com *ic = &sc->sc_ic;
1686 	const struct rfprog *rfprog;
1687 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1688 	int8_t power;
1689 	u_int i, chan;
1690 
1691 	chan = ieee80211_chan2ieee(ic, c);
1692 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1693 		return;
1694 
1695 	/* select the appropriate RF settings based on what EEPROM says */
1696 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1697 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1698 
1699 	/* find the settings for this channel (we know it exists) */
1700 	for (i = 0; rfprog[i].chan != chan; i++);
1701 
1702 	power = sc->txpow[i];
1703 	if (power < 0) {
1704 		bbp94 += power;
1705 		power = 0;
1706 	} else if (power > 31) {
1707 		bbp94 += power - 31;
1708 		power = 31;
1709 	}
1710 
1711 	/*
1712 	 * If we are switching from the 2GHz band to the 5GHz band or
1713 	 * vice-versa, BBP registers need to be reprogrammed.
1714 	 */
1715 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1716 		rum_select_band(sc, c);
1717 		rum_select_antenna(sc);
1718 	}
1719 	ic->ic_curchan = c;
1720 
1721 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725 
1726 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1727 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1728 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1729 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1730 
1731 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1732 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1733 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1734 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1735 
1736 	DELAY(10);
1737 
1738 	/* enable smart mode for MIMO-capable RFs */
1739 	bbp3 = rum_bbp_read(sc, 3);
1740 
1741 	bbp3 &= ~RT2573_SMART_MODE;
1742 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1743 		bbp3 |= RT2573_SMART_MODE;
1744 
1745 	rum_bbp_write(sc, 3, bbp3);
1746 
1747 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1748 		rum_bbp_write(sc, 94, bbp94);
1749 }
1750 
1751 /*
1752  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1753  * and HostAP operating modes.
1754  */
1755 Static void
1756 rum_enable_tsf_sync(struct rum_softc *sc)
1757 {
1758 	struct ieee80211com *ic = &sc->sc_ic;
1759 	uint32_t tmp;
1760 
1761 	if (ic->ic_opmode != IEEE80211_M_STA) {
1762 		/*
1763 		 * Change default 16ms TBTT adjustment to 8ms.
1764 		 * Must be done before enabling beacon generation.
1765 		 */
1766 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1767 	}
1768 
1769 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1770 
1771 	/* set beacon interval (in 1/16ms unit) */
1772 	tmp |= ic->ic_bss->ni_intval * 16;
1773 
1774 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1775 	if (ic->ic_opmode == IEEE80211_M_STA)
1776 		tmp |= RT2573_TSF_MODE(1);
1777 	else
1778 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1779 
1780 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1781 }
1782 
1783 Static void
1784 rum_update_slot(struct rum_softc *sc)
1785 {
1786 	struct ieee80211com *ic = &sc->sc_ic;
1787 	uint8_t slottime;
1788 	uint32_t tmp;
1789 
1790 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1791 
1792 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1793 	tmp = (tmp & ~0xff) | slottime;
1794 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1795 
1796 	DPRINTF(("setting slot time to %uus\n", slottime));
1797 }
1798 
1799 Static void
1800 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1801 {
1802 	uint32_t tmp;
1803 
1804 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1805 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1806 
1807 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1808 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1809 }
1810 
1811 Static void
1812 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1813 {
1814 	uint32_t tmp;
1815 
1816 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1817 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1818 
1819 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1820 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1821 }
1822 
1823 Static void
1824 rum_update_promisc(struct rum_softc *sc)
1825 {
1826 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1827 	uint32_t tmp;
1828 
1829 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1830 
1831 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1832 	if (!(ifp->if_flags & IFF_PROMISC))
1833 		tmp |= RT2573_DROP_NOT_TO_ME;
1834 
1835 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1836 
1837 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1838 	    "entering" : "leaving"));
1839 }
1840 
1841 Static const char *
1842 rum_get_rf(int rev)
1843 {
1844 	switch (rev) {
1845 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1846 	case RT2573_RF_2528:	return "RT2528";
1847 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1848 	case RT2573_RF_5226:	return "RT5226";
1849 	default:		return "unknown";
1850 	}
1851 }
1852 
1853 Static void
1854 rum_read_eeprom(struct rum_softc *sc)
1855 {
1856 	struct ieee80211com *ic = &sc->sc_ic;
1857 	uint16_t val;
1858 #ifdef RUM_DEBUG
1859 	int i;
1860 #endif
1861 
1862 	/* read MAC/BBP type */
1863 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1864 	sc->macbbp_rev = le16toh(val);
1865 
1866 	/* read MAC address */
1867 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1868 
1869 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1870 	val = le16toh(val);
1871 	sc->rf_rev =   (val >> 11) & 0x1f;
1872 	sc->hw_radio = (val >> 10) & 0x1;
1873 	sc->rx_ant =   (val >> 4)  & 0x3;
1874 	sc->tx_ant =   (val >> 2)  & 0x3;
1875 	sc->nb_ant =   val & 0x3;
1876 
1877 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1878 
1879 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1880 	val = le16toh(val);
1881 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1882 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1883 
1884 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1885 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1886 
1887 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1888 	val = le16toh(val);
1889 	if ((val & 0xff) != 0xff)
1890 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1891 
1892 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1893 	val = le16toh(val);
1894 	if ((val & 0xff) != 0xff)
1895 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1896 
1897 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1898 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1899 
1900 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1901 	val = le16toh(val);
1902 	if ((val & 0xff) != 0xff)
1903 		sc->rffreq = val & 0xff;
1904 
1905 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1906 
1907 	/* read Tx power for all a/b/g channels */
1908 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1909 	/* XXX default Tx power for 802.11a channels */
1910 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1911 #ifdef RUM_DEBUG
1912 	for (i = 0; i < 14; i++)
1913 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1914 #endif
1915 
1916 	/* read default values for BBP registers */
1917 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1918 #ifdef RUM_DEBUG
1919 	for (i = 0; i < 14; i++) {
1920 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1921 			continue;
1922 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1923 		    sc->bbp_prom[i].val));
1924 	}
1925 #endif
1926 }
1927 
1928 Static int
1929 rum_bbp_init(struct rum_softc *sc)
1930 {
1931 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1932 	int i, ntries;
1933 	uint8_t val;
1934 
1935 	/* wait for BBP to be ready */
1936 	for (ntries = 0; ntries < 100; ntries++) {
1937 		val = rum_bbp_read(sc, 0);
1938 		if (val != 0 && val != 0xff)
1939 			break;
1940 		DELAY(1000);
1941 	}
1942 	if (ntries == 100) {
1943 		printf("%s: timeout waiting for BBP\n",
1944 		    USBDEVNAME(sc->sc_dev));
1945 		return EIO;
1946 	}
1947 
1948 	/* initialize BBP registers to default values */
1949 	for (i = 0; i < N(rum_def_bbp); i++)
1950 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1951 
1952 	/* write vendor-specific BBP values (from EEPROM) */
1953 	for (i = 0; i < 16; i++) {
1954 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1955 			continue;
1956 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1957 	}
1958 
1959 	return 0;
1960 #undef N
1961 }
1962 
1963 Static int
1964 rum_init(struct ifnet *ifp)
1965 {
1966 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1967 	struct rum_softc *sc = ifp->if_softc;
1968 	struct ieee80211com *ic = &sc->sc_ic;
1969 	struct rum_rx_data *data;
1970 	uint32_t tmp;
1971 	usbd_status error = 0;
1972 	int i, ntries;
1973 
1974 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1975 		if (rum_attachhook(sc))
1976 			goto fail;
1977 	}
1978 
1979 	rum_stop(ifp, 0);
1980 
1981 	/* initialize MAC registers to default values */
1982 	for (i = 0; i < N(rum_def_mac); i++)
1983 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1984 
1985 	/* set host ready */
1986 	rum_write(sc, RT2573_MAC_CSR1, 3);
1987 	rum_write(sc, RT2573_MAC_CSR1, 0);
1988 
1989 	/* wait for BBP/RF to wakeup */
1990 	for (ntries = 0; ntries < 1000; ntries++) {
1991 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1992 			break;
1993 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1994 		DELAY(1000);
1995 	}
1996 	if (ntries == 1000) {
1997 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1998 		    USBDEVNAME(sc->sc_dev));
1999 		goto fail;
2000 	}
2001 
2002 	if ((error = rum_bbp_init(sc)) != 0)
2003 		goto fail;
2004 
2005 	/* select default channel */
2006 	rum_select_band(sc, ic->ic_curchan);
2007 	rum_select_antenna(sc);
2008 	rum_set_chan(sc, ic->ic_curchan);
2009 
2010 	/* clear STA registers */
2011 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2012 
2013 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2014 	rum_set_macaddr(sc, ic->ic_myaddr);
2015 
2016 	/* initialize ASIC */
2017 	rum_write(sc, RT2573_MAC_CSR1, 4);
2018 
2019 	/*
2020 	 * Allocate xfer for AMRR statistics requests.
2021 	 */
2022 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2023 	if (sc->amrr_xfer == NULL) {
2024 		printf("%s: could not allocate AMRR xfer\n",
2025 		    USBDEVNAME(sc->sc_dev));
2026 		goto fail;
2027 	}
2028 
2029 	/*
2030 	 * Open Tx and Rx USB bulk pipes.
2031 	 */
2032 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2033 	    &sc->sc_tx_pipeh);
2034 	if (error != 0) {
2035 		printf("%s: could not open Tx pipe: %s\n",
2036 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2037 		goto fail;
2038 	}
2039 
2040 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2041 	    &sc->sc_rx_pipeh);
2042 	if (error != 0) {
2043 		printf("%s: could not open Rx pipe: %s\n",
2044 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2045 		goto fail;
2046 	}
2047 
2048 	/*
2049 	 * Allocate Tx and Rx xfer queues.
2050 	 */
2051 	error = rum_alloc_tx_list(sc);
2052 	if (error != 0) {
2053 		printf("%s: could not allocate Tx list\n",
2054 		    USBDEVNAME(sc->sc_dev));
2055 		goto fail;
2056 	}
2057 
2058 	error = rum_alloc_rx_list(sc);
2059 	if (error != 0) {
2060 		printf("%s: could not allocate Rx list\n",
2061 		    USBDEVNAME(sc->sc_dev));
2062 		goto fail;
2063 	}
2064 
2065 	/*
2066 	 * Start up the receive pipe.
2067 	 */
2068 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2069 		data = &sc->rx_data[i];
2070 
2071 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2072 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2073 		error = usbd_transfer(data->xfer);
2074 		if (error != USBD_NORMAL_COMPLETION &&
2075 		    error != USBD_IN_PROGRESS) {
2076 			printf("%s: could not queue Rx transfer\n",
2077 			    USBDEVNAME(sc->sc_dev));
2078 			goto fail;
2079 		}
2080 	}
2081 
2082 	/* update Rx filter */
2083 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2084 
2085 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2086 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2087 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2088 		       RT2573_DROP_ACKCTS;
2089 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2090 			tmp |= RT2573_DROP_TODS;
2091 		if (!(ifp->if_flags & IFF_PROMISC))
2092 			tmp |= RT2573_DROP_NOT_TO_ME;
2093 	}
2094 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2095 
2096 	ifp->if_flags &= ~IFF_OACTIVE;
2097 	ifp->if_flags |= IFF_RUNNING;
2098 
2099 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2100 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2101 	else
2102 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2103 
2104 	return 0;
2105 
2106 fail:	rum_stop(ifp, 1);
2107 	return error;
2108 #undef N
2109 }
2110 
2111 Static void
2112 rum_stop(struct ifnet *ifp, int disable)
2113 {
2114 	struct rum_softc *sc = ifp->if_softc;
2115 	struct ieee80211com *ic = &sc->sc_ic;
2116 	uint32_t tmp;
2117 
2118 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2119 
2120 	sc->sc_tx_timer = 0;
2121 	ifp->if_timer = 0;
2122 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2123 
2124 	/* disable Rx */
2125 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2126 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2127 
2128 	/* reset ASIC */
2129 	rum_write(sc, RT2573_MAC_CSR1, 3);
2130 	rum_write(sc, RT2573_MAC_CSR1, 0);
2131 
2132 	if (sc->sc_rx_pipeh != NULL) {
2133 		usbd_abort_pipe(sc->sc_rx_pipeh);
2134 		usbd_close_pipe(sc->sc_rx_pipeh);
2135 		sc->sc_rx_pipeh = NULL;
2136 	}
2137 
2138 	if (sc->sc_tx_pipeh != NULL) {
2139 		usbd_abort_pipe(sc->sc_tx_pipeh);
2140 		usbd_close_pipe(sc->sc_tx_pipeh);
2141 		sc->sc_tx_pipeh = NULL;
2142 	}
2143 
2144 	rum_free_rx_list(sc);
2145 	rum_free_tx_list(sc);
2146 }
2147 
2148 Static int
2149 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2150 {
2151 	usb_device_request_t req;
2152 	uint16_t reg = RT2573_MCU_CODE_BASE;
2153 	usbd_status error;
2154 
2155 	/* copy firmware image into NIC */
2156 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2157 		rum_write(sc, reg, UGETDW(ucode));
2158 
2159 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2160 	req.bRequest = RT2573_MCU_CNTL;
2161 	USETW(req.wValue, RT2573_MCU_RUN);
2162 	USETW(req.wIndex, 0);
2163 	USETW(req.wLength, 0);
2164 
2165 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2166 	if (error != 0) {
2167 		printf("%s: could not run firmware: %s\n",
2168 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2169 	}
2170 	return error;
2171 }
2172 
2173 Static int
2174 rum_prepare_beacon(struct rum_softc *sc)
2175 {
2176 	struct ieee80211com *ic = &sc->sc_ic;
2177 	struct rum_tx_desc desc;
2178 	struct mbuf *m0;
2179 	int rate;
2180 
2181 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2182 	if (m0 == NULL) {
2183 		aprint_error_dev(sc->sc_dev,
2184 		    "could not allocate beacon frame\n");
2185 		return ENOBUFS;
2186 	}
2187 
2188 	/* send beacons at the lowest available rate */
2189 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2190 
2191 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2192 	    m0->m_pkthdr.len, rate);
2193 
2194 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2195 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2196 
2197 	/* copy beacon header and payload into NIC memory */
2198 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2199 	    m0->m_pkthdr.len);
2200 
2201 	m_freem(m0);
2202 
2203 	return 0;
2204 }
2205 
2206 Static void
2207 rum_newassoc(struct ieee80211_node *ni, int isnew)
2208 {
2209 	/* start with lowest Tx rate */
2210 	ni->ni_txrate = 0;
2211 }
2212 
2213 Static void
2214 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2215 {
2216 	int i;
2217 
2218 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2219 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2220 
2221 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2222 
2223 	/* set rate to some reasonable initial value */
2224 	for (i = ni->ni_rates.rs_nrates - 1;
2225 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2226 	     i--);
2227 	ni->ni_txrate = i;
2228 
2229 	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2230 }
2231 
2232 Static void
2233 rum_amrr_timeout(void *arg)
2234 {
2235 	struct rum_softc *sc = arg;
2236 	usb_device_request_t req;
2237 
2238 	/*
2239 	 * Asynchronously read statistic registers (cleared by read).
2240 	 */
2241 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2242 	req.bRequest = RT2573_READ_MULTI_MAC;
2243 	USETW(req.wValue, 0);
2244 	USETW(req.wIndex, RT2573_STA_CSR0);
2245 	USETW(req.wLength, sizeof sc->sta);
2246 
2247 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2248 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2249 	    rum_amrr_update);
2250 	(void)usbd_transfer(sc->amrr_xfer);
2251 }
2252 
2253 Static void
2254 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2255     usbd_status status)
2256 {
2257 	struct rum_softc *sc = (struct rum_softc *)priv;
2258 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2259 
2260 	if (status != USBD_NORMAL_COMPLETION) {
2261 		printf("%s: could not retrieve Tx statistics - cancelling "
2262 		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2263 		return;
2264 	}
2265 
2266 	/* count TX retry-fail as Tx errors */
2267 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2268 
2269 	sc->amn.amn_retrycnt =
2270 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2271 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2272 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2273 
2274 	sc->amn.amn_txcnt =
2275 	    sc->amn.amn_retrycnt +
2276 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2277 
2278 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2279 
2280 	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2281 }
2282 
2283 int
2284 rum_activate(device_ptr_t self, enum devact act)
2285 {
2286 	switch (act) {
2287 	case DVACT_ACTIVATE:
2288 		return EOPNOTSUPP;
2289 
2290 	case DVACT_DEACTIVATE:
2291 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2292 		break;
2293 	}
2294 
2295 	return 0;
2296 }
2297