1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.56 2016/07/07 06:55:42 msaitoh Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.56 2016/07/07 06:55:42 msaitoh Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/module.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <machine/endian.h> 42 #include <sys/intr.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_arp.h> 47 #include <net/if_dl.h> 48 #include <net/if_ether.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/in_var.h> 55 #include <netinet/ip.h> 56 57 #include <net80211/ieee80211_netbsd.h> 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_amrr.h> 60 #include <net80211/ieee80211_radiotap.h> 61 62 #include <dev/firmload.h> 63 64 #include <dev/usb/usb.h> 65 #include <dev/usb/usbdi.h> 66 #include <dev/usb/usbdi_util.h> 67 #include <dev/usb/usbdevs.h> 68 69 #include <dev/usb/if_rumreg.h> 70 #include <dev/usb/if_rumvar.h> 71 72 #ifdef RUM_DEBUG 73 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 74 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 75 int rum_debug = 1; 76 #else 77 #define DPRINTF(x) 78 #define DPRINTFN(n, x) 79 #endif 80 81 /* various supported device vendors/products */ 82 static const struct usb_devno rum_devs[] = { 83 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 84 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 85 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 86 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 88 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 96 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 97 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 98 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 99 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 100 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 101 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 102 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 103 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 104 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 107 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 124 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 135 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 136 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 137 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 138 }; 139 140 static int rum_attachhook(void *); 141 static int rum_alloc_tx_list(struct rum_softc *); 142 static void rum_free_tx_list(struct rum_softc *); 143 static int rum_alloc_rx_list(struct rum_softc *); 144 static void rum_free_rx_list(struct rum_softc *); 145 static int rum_media_change(struct ifnet *); 146 static void rum_next_scan(void *); 147 static void rum_task(void *); 148 static int rum_newstate(struct ieee80211com *, 149 enum ieee80211_state, int); 150 static void rum_txeof(struct usbd_xfer *, void *, 151 usbd_status); 152 static void rum_rxeof(struct usbd_xfer *, void *, 153 usbd_status); 154 static uint8_t rum_rxrate(const struct rum_rx_desc *); 155 static int rum_ack_rate(struct ieee80211com *, int); 156 static uint16_t rum_txtime(int, int, uint32_t); 157 static uint8_t rum_plcp_signal(int); 158 static void rum_setup_tx_desc(struct rum_softc *, 159 struct rum_tx_desc *, uint32_t, uint16_t, int, 160 int); 161 static int rum_tx_data(struct rum_softc *, struct mbuf *, 162 struct ieee80211_node *); 163 static void rum_start(struct ifnet *); 164 static void rum_watchdog(struct ifnet *); 165 static int rum_ioctl(struct ifnet *, u_long, void *); 166 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 167 int); 168 static uint32_t rum_read(struct rum_softc *, uint16_t); 169 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 170 int); 171 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 172 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 173 size_t); 174 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 175 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 176 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 177 static void rum_select_antenna(struct rum_softc *); 178 static void rum_enable_mrr(struct rum_softc *); 179 static void rum_set_txpreamble(struct rum_softc *); 180 static void rum_set_basicrates(struct rum_softc *); 181 static void rum_select_band(struct rum_softc *, 182 struct ieee80211_channel *); 183 static void rum_set_chan(struct rum_softc *, 184 struct ieee80211_channel *); 185 static void rum_enable_tsf_sync(struct rum_softc *); 186 static void rum_update_slot(struct rum_softc *); 187 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 188 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 189 static void rum_update_promisc(struct rum_softc *); 190 static const char *rum_get_rf(int); 191 static void rum_read_eeprom(struct rum_softc *); 192 static int rum_bbp_init(struct rum_softc *); 193 static int rum_init(struct ifnet *); 194 static void rum_stop(struct ifnet *, int); 195 static int rum_load_microcode(struct rum_softc *, const u_char *, 196 size_t); 197 static int rum_prepare_beacon(struct rum_softc *); 198 static void rum_newassoc(struct ieee80211_node *, int); 199 static void rum_amrr_start(struct rum_softc *, 200 struct ieee80211_node *); 201 static void rum_amrr_timeout(void *); 202 static void rum_amrr_update(struct usbd_xfer *, void *, 203 usbd_status); 204 205 /* 206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 207 */ 208 static const struct ieee80211_rateset rum_rateset_11a = 209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 210 211 static const struct ieee80211_rateset rum_rateset_11b = 212 { 4, { 2, 4, 11, 22 } }; 213 214 static const struct ieee80211_rateset rum_rateset_11g = 215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 216 217 static const struct { 218 uint32_t reg; 219 uint32_t val; 220 } rum_def_mac[] = { 221 RT2573_DEF_MAC 222 }; 223 224 static const struct { 225 uint8_t reg; 226 uint8_t val; 227 } rum_def_bbp[] = { 228 RT2573_DEF_BBP 229 }; 230 231 static const struct rfprog { 232 uint8_t chan; 233 uint32_t r1, r2, r3, r4; 234 } rum_rf5226[] = { 235 RT2573_RF5226 236 }, rum_rf5225[] = { 237 RT2573_RF5225 238 }; 239 240 static int rum_match(device_t, cfdata_t, void *); 241 static void rum_attach(device_t, device_t, void *); 242 static int rum_detach(device_t, int); 243 static int rum_activate(device_t, enum devact); 244 extern struct cfdriver rum_cd; 245 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 246 rum_detach, rum_activate); 247 248 static int 249 rum_match(device_t parent, cfdata_t match, void *aux) 250 { 251 struct usb_attach_arg *uaa = aux; 252 253 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 254 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 255 } 256 257 static int 258 rum_attachhook(void *xsc) 259 { 260 struct rum_softc *sc = xsc; 261 firmware_handle_t fwh; 262 const char *name = "rum-rt2573"; 263 u_char *ucode; 264 size_t size; 265 int error; 266 267 if ((error = firmware_open("rum", name, &fwh)) != 0) { 268 printf("%s: failed firmware_open of file %s (error %d)\n", 269 device_xname(sc->sc_dev), name, error); 270 return error; 271 } 272 size = firmware_get_size(fwh); 273 ucode = firmware_malloc(size); 274 if (ucode == NULL) { 275 printf("%s: failed to allocate firmware memory\n", 276 device_xname(sc->sc_dev)); 277 firmware_close(fwh); 278 return ENOMEM; 279 } 280 error = firmware_read(fwh, 0, ucode, size); 281 firmware_close(fwh); 282 if (error != 0) { 283 printf("%s: failed to read firmware (error %d)\n", 284 device_xname(sc->sc_dev), error); 285 firmware_free(ucode, size); 286 return error; 287 } 288 289 if (rum_load_microcode(sc, ucode, size) != 0) { 290 printf("%s: could not load 8051 microcode\n", 291 device_xname(sc->sc_dev)); 292 firmware_free(ucode, size); 293 return ENXIO; 294 } 295 296 firmware_free(ucode, size); 297 sc->sc_flags |= RT2573_FWLOADED; 298 299 return 0; 300 } 301 302 static void 303 rum_attach(device_t parent, device_t self, void *aux) 304 { 305 struct rum_softc *sc = device_private(self); 306 struct usb_attach_arg *uaa = aux; 307 struct ieee80211com *ic = &sc->sc_ic; 308 struct ifnet *ifp = &sc->sc_if; 309 usb_interface_descriptor_t *id; 310 usb_endpoint_descriptor_t *ed; 311 usbd_status error; 312 char *devinfop; 313 int i, ntries; 314 uint32_t tmp; 315 316 sc->sc_dev = self; 317 sc->sc_udev = uaa->uaa_device; 318 sc->sc_flags = 0; 319 320 aprint_naive("\n"); 321 aprint_normal("\n"); 322 323 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 324 aprint_normal_dev(self, "%s\n", devinfop); 325 usbd_devinfo_free(devinfop); 326 327 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0); 328 if (error != 0) { 329 aprint_error_dev(self, "failed to set configuration" 330 ", err=%s\n", usbd_errstr(error)); 331 return; 332 } 333 334 /* get the first interface handle */ 335 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 336 &sc->sc_iface); 337 if (error != 0) { 338 aprint_error_dev(self, "could not get interface handle\n"); 339 return; 340 } 341 342 /* 343 * Find endpoints. 344 */ 345 id = usbd_get_interface_descriptor(sc->sc_iface); 346 347 sc->sc_rx_no = sc->sc_tx_no = -1; 348 for (i = 0; i < id->bNumEndpoints; i++) { 349 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 350 if (ed == NULL) { 351 aprint_error_dev(self, 352 "no endpoint descriptor for iface %d\n", i); 353 return; 354 } 355 356 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 357 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 358 sc->sc_rx_no = ed->bEndpointAddress; 359 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 360 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 361 sc->sc_tx_no = ed->bEndpointAddress; 362 } 363 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 364 aprint_error_dev(self, "missing endpoint\n"); 365 return; 366 } 367 368 usb_init_task(&sc->sc_task, rum_task, sc, 0); 369 callout_init(&sc->sc_scan_ch, 0); 370 371 sc->amrr.amrr_min_success_threshold = 1; 372 sc->amrr.amrr_max_success_threshold = 10; 373 callout_init(&sc->sc_amrr_ch, 0); 374 375 /* retrieve RT2573 rev. no */ 376 for (ntries = 0; ntries < 1000; ntries++) { 377 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 378 break; 379 DELAY(1000); 380 } 381 if (ntries == 1000) { 382 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 383 return; 384 } 385 386 /* retrieve MAC address and various other things from EEPROM */ 387 rum_read_eeprom(sc); 388 389 aprint_normal_dev(self, 390 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 391 sc->macbbp_rev, tmp, 392 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 393 394 ic->ic_ifp = ifp; 395 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 396 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 397 ic->ic_state = IEEE80211_S_INIT; 398 399 /* set device capabilities */ 400 ic->ic_caps = 401 IEEE80211_C_IBSS | /* IBSS mode supported */ 402 IEEE80211_C_MONITOR | /* monitor mode supported */ 403 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 404 IEEE80211_C_TXPMGT | /* tx power management */ 405 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 406 IEEE80211_C_SHSLOT | /* short slot time supported */ 407 IEEE80211_C_WPA; /* 802.11i */ 408 409 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 410 /* set supported .11a rates */ 411 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 412 413 /* set supported .11a channels */ 414 for (i = 34; i <= 46; i += 4) { 415 ic->ic_channels[i].ic_freq = 416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 418 } 419 for (i = 36; i <= 64; i += 4) { 420 ic->ic_channels[i].ic_freq = 421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 423 } 424 for (i = 100; i <= 140; i += 4) { 425 ic->ic_channels[i].ic_freq = 426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 428 } 429 for (i = 149; i <= 165; i += 4) { 430 ic->ic_channels[i].ic_freq = 431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 432 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 433 } 434 } 435 436 /* set supported .11b and .11g rates */ 437 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 438 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 439 440 /* set supported .11b and .11g channels (1 through 14) */ 441 for (i = 1; i <= 14; i++) { 442 ic->ic_channels[i].ic_freq = 443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 444 ic->ic_channels[i].ic_flags = 445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 447 } 448 449 ifp->if_softc = sc; 450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 451 ifp->if_init = rum_init; 452 ifp->if_ioctl = rum_ioctl; 453 ifp->if_start = rum_start; 454 ifp->if_watchdog = rum_watchdog; 455 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 456 IFQ_SET_READY(&ifp->if_snd); 457 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 458 459 if_attach(ifp); 460 ieee80211_ifattach(ic); 461 ic->ic_newassoc = rum_newassoc; 462 463 /* override state transition machine */ 464 sc->sc_newstate = ic->ic_newstate; 465 ic->ic_newstate = rum_newstate; 466 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 467 468 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 469 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 470 &sc->sc_drvbpf); 471 472 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 473 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 474 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 475 476 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 477 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 478 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 479 480 ieee80211_announce(ic); 481 482 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 483 484 if (!pmf_device_register(self, NULL, NULL)) 485 aprint_error_dev(self, "couldn't establish power handler\n"); 486 487 return; 488 } 489 490 static int 491 rum_detach(device_t self, int flags) 492 { 493 struct rum_softc *sc = device_private(self); 494 struct ieee80211com *ic = &sc->sc_ic; 495 struct ifnet *ifp = &sc->sc_if; 496 int s; 497 498 if (!ifp->if_softc) 499 return 0; 500 501 pmf_device_deregister(self); 502 503 s = splusb(); 504 505 rum_stop(ifp, 1); 506 usb_rem_task(sc->sc_udev, &sc->sc_task); 507 callout_stop(&sc->sc_scan_ch); 508 callout_stop(&sc->sc_amrr_ch); 509 510 bpf_detach(ifp); 511 ieee80211_ifdetach(ic); /* free all nodes */ 512 if_detach(ifp); 513 514 splx(s); 515 516 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 517 518 return 0; 519 } 520 521 static int 522 rum_alloc_tx_list(struct rum_softc *sc) 523 { 524 struct rum_tx_data *data; 525 int i, error; 526 527 sc->tx_cur = sc->tx_queued = 0; 528 529 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 530 data = &sc->tx_data[i]; 531 532 data->sc = sc; 533 534 error = usbd_create_xfer(sc->sc_tx_pipeh, 535 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN, 536 USBD_FORCE_SHORT_XFER, 0, &data->xfer); 537 if (error) { 538 printf("%s: could not allocate tx xfer\n", 539 device_xname(sc->sc_dev)); 540 goto fail; 541 } 542 data->buf = usbd_get_buffer(data->xfer); 543 544 /* clean Tx descriptor */ 545 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 546 } 547 548 return 0; 549 550 fail: rum_free_tx_list(sc); 551 return error; 552 } 553 554 static void 555 rum_free_tx_list(struct rum_softc *sc) 556 { 557 struct rum_tx_data *data; 558 int i; 559 560 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 561 data = &sc->tx_data[i]; 562 563 if (data->xfer != NULL) { 564 usbd_destroy_xfer(data->xfer); 565 data->xfer = NULL; 566 } 567 568 if (data->ni != NULL) { 569 ieee80211_free_node(data->ni); 570 data->ni = NULL; 571 } 572 } 573 } 574 575 static int 576 rum_alloc_rx_list(struct rum_softc *sc) 577 { 578 struct rum_rx_data *data; 579 int i, error; 580 581 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 582 data = &sc->rx_data[i]; 583 584 data->sc = sc; 585 586 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 587 USBD_SHORT_XFER_OK, 0, &data->xfer); 588 if (error) { 589 printf("%s: could not allocate rx xfer\n", 590 device_xname(sc->sc_dev)); 591 goto fail; 592 } 593 594 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 595 if (data->m == NULL) { 596 printf("%s: could not allocate rx mbuf\n", 597 device_xname(sc->sc_dev)); 598 error = ENOMEM; 599 goto fail; 600 } 601 602 MCLGET(data->m, M_DONTWAIT); 603 if (!(data->m->m_flags & M_EXT)) { 604 printf("%s: could not allocate rx mbuf cluster\n", 605 device_xname(sc->sc_dev)); 606 error = ENOMEM; 607 goto fail; 608 } 609 610 data->buf = mtod(data->m, uint8_t *); 611 } 612 613 return 0; 614 615 fail: rum_free_rx_list(sc); 616 return error; 617 } 618 619 static void 620 rum_free_rx_list(struct rum_softc *sc) 621 { 622 struct rum_rx_data *data; 623 int i; 624 625 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 626 data = &sc->rx_data[i]; 627 628 if (data->xfer != NULL) { 629 usbd_destroy_xfer(data->xfer); 630 data->xfer = NULL; 631 } 632 633 if (data->m != NULL) { 634 m_freem(data->m); 635 data->m = NULL; 636 } 637 } 638 } 639 640 static int 641 rum_media_change(struct ifnet *ifp) 642 { 643 int error; 644 645 error = ieee80211_media_change(ifp); 646 if (error != ENETRESET) 647 return error; 648 649 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 650 rum_init(ifp); 651 652 return 0; 653 } 654 655 /* 656 * This function is called periodically (every 200ms) during scanning to 657 * switch from one channel to another. 658 */ 659 static void 660 rum_next_scan(void *arg) 661 { 662 struct rum_softc *sc = arg; 663 struct ieee80211com *ic = &sc->sc_ic; 664 int s; 665 666 s = splnet(); 667 if (ic->ic_state == IEEE80211_S_SCAN) 668 ieee80211_next_scan(ic); 669 splx(s); 670 } 671 672 static void 673 rum_task(void *arg) 674 { 675 struct rum_softc *sc = arg; 676 struct ieee80211com *ic = &sc->sc_ic; 677 enum ieee80211_state ostate; 678 struct ieee80211_node *ni; 679 uint32_t tmp; 680 681 ostate = ic->ic_state; 682 683 switch (sc->sc_state) { 684 case IEEE80211_S_INIT: 685 if (ostate == IEEE80211_S_RUN) { 686 /* abort TSF synchronization */ 687 tmp = rum_read(sc, RT2573_TXRX_CSR9); 688 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 689 } 690 break; 691 692 case IEEE80211_S_SCAN: 693 rum_set_chan(sc, ic->ic_curchan); 694 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 695 break; 696 697 case IEEE80211_S_AUTH: 698 rum_set_chan(sc, ic->ic_curchan); 699 break; 700 701 case IEEE80211_S_ASSOC: 702 rum_set_chan(sc, ic->ic_curchan); 703 break; 704 705 case IEEE80211_S_RUN: 706 rum_set_chan(sc, ic->ic_curchan); 707 708 ni = ic->ic_bss; 709 710 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 711 rum_update_slot(sc); 712 rum_enable_mrr(sc); 713 rum_set_txpreamble(sc); 714 rum_set_basicrates(sc); 715 rum_set_bssid(sc, ni->ni_bssid); 716 } 717 718 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 719 ic->ic_opmode == IEEE80211_M_IBSS) 720 rum_prepare_beacon(sc); 721 722 if (ic->ic_opmode != IEEE80211_M_MONITOR) 723 rum_enable_tsf_sync(sc); 724 725 if (ic->ic_opmode == IEEE80211_M_STA) { 726 /* fake a join to init the tx rate */ 727 rum_newassoc(ic->ic_bss, 1); 728 729 /* enable automatic rate adaptation in STA mode */ 730 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 731 rum_amrr_start(sc, ni); 732 } 733 734 break; 735 } 736 737 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 738 } 739 740 static int 741 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 742 { 743 struct rum_softc *sc = ic->ic_ifp->if_softc; 744 745 usb_rem_task(sc->sc_udev, &sc->sc_task); 746 callout_stop(&sc->sc_scan_ch); 747 callout_stop(&sc->sc_amrr_ch); 748 749 /* do it in a process context */ 750 sc->sc_state = nstate; 751 sc->sc_arg = arg; 752 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 753 754 return 0; 755 } 756 757 /* quickly determine if a given rate is CCK or OFDM */ 758 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 759 760 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 761 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 762 763 static void 764 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 765 { 766 struct rum_tx_data *data = priv; 767 struct rum_softc *sc = data->sc; 768 struct ifnet *ifp = &sc->sc_if; 769 int s; 770 771 if (status != USBD_NORMAL_COMPLETION) { 772 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 773 return; 774 775 printf("%s: could not transmit buffer: %s\n", 776 device_xname(sc->sc_dev), usbd_errstr(status)); 777 778 if (status == USBD_STALLED) 779 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 780 781 ifp->if_oerrors++; 782 return; 783 } 784 785 s = splnet(); 786 787 ieee80211_free_node(data->ni); 788 data->ni = NULL; 789 790 sc->tx_queued--; 791 ifp->if_opackets++; 792 793 DPRINTFN(10, ("tx done\n")); 794 795 sc->sc_tx_timer = 0; 796 ifp->if_flags &= ~IFF_OACTIVE; 797 rum_start(ifp); 798 799 splx(s); 800 } 801 802 static void 803 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 804 { 805 struct rum_rx_data *data = priv; 806 struct rum_softc *sc = data->sc; 807 struct ieee80211com *ic = &sc->sc_ic; 808 struct ifnet *ifp = &sc->sc_if; 809 struct rum_rx_desc *desc; 810 struct ieee80211_frame *wh; 811 struct ieee80211_node *ni; 812 struct mbuf *mnew, *m; 813 int s, len; 814 815 if (status != USBD_NORMAL_COMPLETION) { 816 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 817 return; 818 819 if (status == USBD_STALLED) 820 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 821 goto skip; 822 } 823 824 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 825 826 if (len < (int)(RT2573_RX_DESC_SIZE + 827 sizeof(struct ieee80211_frame_min))) { 828 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 829 len)); 830 ifp->if_ierrors++; 831 goto skip; 832 } 833 834 desc = (struct rum_rx_desc *)data->buf; 835 836 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 837 /* 838 * This should not happen since we did not request to receive 839 * those frames when we filled RT2573_TXRX_CSR0. 840 */ 841 DPRINTFN(5, ("CRC error\n")); 842 ifp->if_ierrors++; 843 goto skip; 844 } 845 846 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 847 if (mnew == NULL) { 848 printf("%s: could not allocate rx mbuf\n", 849 device_xname(sc->sc_dev)); 850 ifp->if_ierrors++; 851 goto skip; 852 } 853 854 MCLGET(mnew, M_DONTWAIT); 855 if (!(mnew->m_flags & M_EXT)) { 856 printf("%s: could not allocate rx mbuf cluster\n", 857 device_xname(sc->sc_dev)); 858 m_freem(mnew); 859 ifp->if_ierrors++; 860 goto skip; 861 } 862 863 m = data->m; 864 data->m = mnew; 865 data->buf = mtod(data->m, uint8_t *); 866 867 /* finalize mbuf */ 868 m_set_rcvif(m, ifp); 869 m->m_data = (void *)(desc + 1); 870 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 871 872 s = splnet(); 873 874 if (sc->sc_drvbpf != NULL) { 875 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 876 877 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 878 tap->wr_rate = rum_rxrate(desc); 879 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 880 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 881 tap->wr_antenna = sc->rx_ant; 882 tap->wr_antsignal = desc->rssi; 883 884 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 885 } 886 887 wh = mtod(m, struct ieee80211_frame *); 888 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 889 890 /* send the frame to the 802.11 layer */ 891 ieee80211_input(ic, m, ni, desc->rssi, 0); 892 893 /* node is no longer needed */ 894 ieee80211_free_node(ni); 895 896 splx(s); 897 898 DPRINTFN(15, ("rx done\n")); 899 900 skip: /* setup a new transfer */ 901 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, 902 USBD_NO_TIMEOUT, rum_rxeof); 903 usbd_transfer(xfer); 904 } 905 906 /* 907 * This function is only used by the Rx radiotap code. It returns the rate at 908 * which a given frame was received. 909 */ 910 static uint8_t 911 rum_rxrate(const struct rum_rx_desc *desc) 912 { 913 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 914 /* reverse function of rum_plcp_signal */ 915 switch (desc->rate) { 916 case 0xb: return 12; 917 case 0xf: return 18; 918 case 0xa: return 24; 919 case 0xe: return 36; 920 case 0x9: return 48; 921 case 0xd: return 72; 922 case 0x8: return 96; 923 case 0xc: return 108; 924 } 925 } else { 926 if (desc->rate == 10) 927 return 2; 928 if (desc->rate == 20) 929 return 4; 930 if (desc->rate == 55) 931 return 11; 932 if (desc->rate == 110) 933 return 22; 934 } 935 return 2; /* should not get there */ 936 } 937 938 /* 939 * Return the expected ack rate for a frame transmitted at rate `rate'. 940 * XXX: this should depend on the destination node basic rate set. 941 */ 942 static int 943 rum_ack_rate(struct ieee80211com *ic, int rate) 944 { 945 switch (rate) { 946 /* CCK rates */ 947 case 2: 948 return 2; 949 case 4: 950 case 11: 951 case 22: 952 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 953 954 /* OFDM rates */ 955 case 12: 956 case 18: 957 return 12; 958 case 24: 959 case 36: 960 return 24; 961 case 48: 962 case 72: 963 case 96: 964 case 108: 965 return 48; 966 } 967 968 /* default to 1Mbps */ 969 return 2; 970 } 971 972 /* 973 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 974 * The function automatically determines the operating mode depending on the 975 * given rate. `flags' indicates whether short preamble is in use or not. 976 */ 977 static uint16_t 978 rum_txtime(int len, int rate, uint32_t flags) 979 { 980 uint16_t txtime; 981 982 if (RUM_RATE_IS_OFDM(rate)) { 983 /* IEEE Std 802.11a-1999, pp. 37 */ 984 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 985 txtime = 16 + 4 + 4 * txtime + 6; 986 } else { 987 /* IEEE Std 802.11b-1999, pp. 28 */ 988 txtime = (16 * len + rate - 1) / rate; 989 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 990 txtime += 72 + 24; 991 else 992 txtime += 144 + 48; 993 } 994 return txtime; 995 } 996 997 static uint8_t 998 rum_plcp_signal(int rate) 999 { 1000 switch (rate) { 1001 /* CCK rates (returned values are device-dependent) */ 1002 case 2: return 0x0; 1003 case 4: return 0x1; 1004 case 11: return 0x2; 1005 case 22: return 0x3; 1006 1007 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1008 case 12: return 0xb; 1009 case 18: return 0xf; 1010 case 24: return 0xa; 1011 case 36: return 0xe; 1012 case 48: return 0x9; 1013 case 72: return 0xd; 1014 case 96: return 0x8; 1015 case 108: return 0xc; 1016 1017 /* unsupported rates (should not get there) */ 1018 default: return 0xff; 1019 } 1020 } 1021 1022 static void 1023 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1024 uint32_t flags, uint16_t xflags, int len, int rate) 1025 { 1026 struct ieee80211com *ic = &sc->sc_ic; 1027 uint16_t plcp_length; 1028 int remainder; 1029 1030 desc->flags = htole32(flags); 1031 desc->flags |= htole32(RT2573_TX_VALID); 1032 desc->flags |= htole32(len << 16); 1033 1034 desc->xflags = htole16(xflags); 1035 1036 desc->wme = htole16( 1037 RT2573_QID(0) | 1038 RT2573_AIFSN(2) | 1039 RT2573_LOGCWMIN(4) | 1040 RT2573_LOGCWMAX(10)); 1041 1042 /* setup PLCP fields */ 1043 desc->plcp_signal = rum_plcp_signal(rate); 1044 desc->plcp_service = 4; 1045 1046 len += IEEE80211_CRC_LEN; 1047 if (RUM_RATE_IS_OFDM(rate)) { 1048 desc->flags |= htole32(RT2573_TX_OFDM); 1049 1050 plcp_length = len & 0xfff; 1051 desc->plcp_length_hi = plcp_length >> 6; 1052 desc->plcp_length_lo = plcp_length & 0x3f; 1053 } else { 1054 plcp_length = (16 * len + rate - 1) / rate; 1055 if (rate == 22) { 1056 remainder = (16 * len) % 22; 1057 if (remainder != 0 && remainder < 7) 1058 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1059 } 1060 desc->plcp_length_hi = plcp_length >> 8; 1061 desc->plcp_length_lo = plcp_length & 0xff; 1062 1063 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1064 desc->plcp_signal |= 0x08; 1065 } 1066 } 1067 1068 #define RUM_TX_TIMEOUT 5000 1069 1070 static int 1071 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1072 { 1073 struct ieee80211com *ic = &sc->sc_ic; 1074 struct rum_tx_desc *desc; 1075 struct rum_tx_data *data; 1076 struct ieee80211_frame *wh; 1077 struct ieee80211_key *k; 1078 uint32_t flags = 0; 1079 uint16_t dur; 1080 usbd_status error; 1081 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1082 1083 wh = mtod(m0, struct ieee80211_frame *); 1084 1085 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1086 k = ieee80211_crypto_encap(ic, ni, m0); 1087 if (k == NULL) { 1088 m_freem(m0); 1089 return ENOBUFS; 1090 } 1091 1092 /* packet header may have moved, reset our local pointer */ 1093 wh = mtod(m0, struct ieee80211_frame *); 1094 } 1095 1096 /* compute actual packet length (including CRC and crypto overhead) */ 1097 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1098 1099 /* pickup a rate */ 1100 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1101 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1102 IEEE80211_FC0_TYPE_MGT)) { 1103 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1104 rate = ni->ni_rates.rs_rates[0]; 1105 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1106 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1107 } else 1108 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1109 if (rate == 0) 1110 rate = 2; /* XXX should not happen */ 1111 rate &= IEEE80211_RATE_VAL; 1112 1113 /* check if RTS/CTS or CTS-to-self protection must be used */ 1114 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1115 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1116 if (pktlen > ic->ic_rtsthreshold) { 1117 needrts = 1; /* RTS/CTS based on frame length */ 1118 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1119 RUM_RATE_IS_OFDM(rate)) { 1120 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1121 needcts = 1; /* CTS-to-self */ 1122 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1123 needrts = 1; /* RTS/CTS */ 1124 } 1125 } 1126 if (needrts || needcts) { 1127 struct mbuf *mprot; 1128 int protrate, ackrate; 1129 1130 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1131 ackrate = rum_ack_rate(ic, rate); 1132 1133 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1134 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1135 2 * sc->sifs; 1136 if (needrts) { 1137 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1138 protrate), ic->ic_flags) + sc->sifs; 1139 mprot = ieee80211_get_rts(ic, wh, dur); 1140 } else { 1141 mprot = ieee80211_get_cts_to_self(ic, dur); 1142 } 1143 if (mprot == NULL) { 1144 aprint_error_dev(sc->sc_dev, 1145 "couldn't allocate protection frame\n"); 1146 m_freem(m0); 1147 return ENOBUFS; 1148 } 1149 1150 data = &sc->tx_data[sc->tx_cur]; 1151 desc = (struct rum_tx_desc *)data->buf; 1152 1153 /* avoid multiple free() of the same node for each fragment */ 1154 data->ni = ieee80211_ref_node(ni); 1155 1156 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1157 data->buf + RT2573_TX_DESC_SIZE); 1158 rum_setup_tx_desc(sc, desc, 1159 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1160 0, mprot->m_pkthdr.len, protrate); 1161 1162 /* no roundup necessary here */ 1163 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1164 1165 /* XXX may want to pass the protection frame to BPF */ 1166 1167 /* mbuf is no longer needed */ 1168 m_freem(mprot); 1169 1170 usbd_setup_xfer(data->xfer, data, data->buf, 1171 xferlen, USBD_FORCE_SHORT_XFER, 1172 RUM_TX_TIMEOUT, rum_txeof); 1173 error = usbd_transfer(data->xfer); 1174 if (error != USBD_NORMAL_COMPLETION && 1175 error != USBD_IN_PROGRESS) { 1176 m_freem(m0); 1177 return error; 1178 } 1179 1180 sc->tx_queued++; 1181 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1182 1183 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1184 } 1185 1186 data = &sc->tx_data[sc->tx_cur]; 1187 desc = (struct rum_tx_desc *)data->buf; 1188 1189 data->ni = ni; 1190 1191 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1192 flags |= RT2573_TX_NEED_ACK; 1193 1194 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1195 ic->ic_flags) + sc->sifs; 1196 *(uint16_t *)wh->i_dur = htole16(dur); 1197 1198 /* tell hardware to set timestamp in probe responses */ 1199 if ((wh->i_fc[0] & 1200 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1201 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1202 flags |= RT2573_TX_TIMESTAMP; 1203 } 1204 1205 if (sc->sc_drvbpf != NULL) { 1206 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1207 1208 tap->wt_flags = 0; 1209 tap->wt_rate = rate; 1210 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1211 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1212 tap->wt_antenna = sc->tx_ant; 1213 1214 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1215 } 1216 1217 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1218 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1219 1220 /* align end on a 4-bytes boundary */ 1221 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1222 1223 /* 1224 * No space left in the last URB to store the extra 4 bytes, force 1225 * sending of another URB. 1226 */ 1227 if ((xferlen % 64) == 0) 1228 xferlen += 4; 1229 1230 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1231 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1232 rate, xferlen)); 1233 1234 /* mbuf is no longer needed */ 1235 m_freem(m0); 1236 1237 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1238 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof); 1239 error = usbd_transfer(data->xfer); 1240 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1241 return error; 1242 1243 sc->tx_queued++; 1244 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1245 1246 return 0; 1247 } 1248 1249 static void 1250 rum_start(struct ifnet *ifp) 1251 { 1252 struct rum_softc *sc = ifp->if_softc; 1253 struct ieee80211com *ic = &sc->sc_ic; 1254 struct ether_header *eh; 1255 struct ieee80211_node *ni; 1256 struct mbuf *m0; 1257 1258 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1259 return; 1260 1261 for (;;) { 1262 IF_POLL(&ic->ic_mgtq, m0); 1263 if (m0 != NULL) { 1264 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1265 ifp->if_flags |= IFF_OACTIVE; 1266 break; 1267 } 1268 IF_DEQUEUE(&ic->ic_mgtq, m0); 1269 1270 ni = M_GETCTX(m0, struct ieee80211_node *); 1271 M_CLEARCTX(m0); 1272 bpf_mtap3(ic->ic_rawbpf, m0); 1273 if (rum_tx_data(sc, m0, ni) != 0) 1274 break; 1275 1276 } else { 1277 if (ic->ic_state != IEEE80211_S_RUN) 1278 break; 1279 IFQ_POLL(&ifp->if_snd, m0); 1280 if (m0 == NULL) 1281 break; 1282 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1283 ifp->if_flags |= IFF_OACTIVE; 1284 break; 1285 } 1286 IFQ_DEQUEUE(&ifp->if_snd, m0); 1287 if (m0->m_len < (int)sizeof(struct ether_header) && 1288 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1289 continue; 1290 1291 eh = mtod(m0, struct ether_header *); 1292 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1293 if (ni == NULL) { 1294 m_freem(m0); 1295 continue; 1296 } 1297 bpf_mtap(ifp, m0); 1298 m0 = ieee80211_encap(ic, m0, ni); 1299 if (m0 == NULL) { 1300 ieee80211_free_node(ni); 1301 continue; 1302 } 1303 bpf_mtap3(ic->ic_rawbpf, m0); 1304 if (rum_tx_data(sc, m0, ni) != 0) { 1305 ieee80211_free_node(ni); 1306 ifp->if_oerrors++; 1307 break; 1308 } 1309 } 1310 1311 sc->sc_tx_timer = 5; 1312 ifp->if_timer = 1; 1313 } 1314 } 1315 1316 static void 1317 rum_watchdog(struct ifnet *ifp) 1318 { 1319 struct rum_softc *sc = ifp->if_softc; 1320 struct ieee80211com *ic = &sc->sc_ic; 1321 1322 ifp->if_timer = 0; 1323 1324 if (sc->sc_tx_timer > 0) { 1325 if (--sc->sc_tx_timer == 0) { 1326 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1327 /*rum_init(ifp); XXX needs a process context! */ 1328 ifp->if_oerrors++; 1329 return; 1330 } 1331 ifp->if_timer = 1; 1332 } 1333 1334 ieee80211_watchdog(ic); 1335 } 1336 1337 static int 1338 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1339 { 1340 #define IS_RUNNING(ifp) \ 1341 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1342 1343 struct rum_softc *sc = ifp->if_softc; 1344 struct ieee80211com *ic = &sc->sc_ic; 1345 int s, error = 0; 1346 1347 s = splnet(); 1348 1349 switch (cmd) { 1350 case SIOCSIFFLAGS: 1351 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1352 break; 1353 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1354 case IFF_UP|IFF_RUNNING: 1355 rum_update_promisc(sc); 1356 break; 1357 case IFF_UP: 1358 rum_init(ifp); 1359 break; 1360 case IFF_RUNNING: 1361 rum_stop(ifp, 1); 1362 break; 1363 case 0: 1364 break; 1365 } 1366 break; 1367 1368 case SIOCADDMULTI: 1369 case SIOCDELMULTI: 1370 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1371 error = 0; 1372 } 1373 break; 1374 1375 default: 1376 error = ieee80211_ioctl(ic, cmd, data); 1377 } 1378 1379 if (error == ENETRESET) { 1380 if (IS_RUNNING(ifp) && 1381 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1382 rum_init(ifp); 1383 error = 0; 1384 } 1385 1386 splx(s); 1387 1388 return error; 1389 #undef IS_RUNNING 1390 } 1391 1392 static void 1393 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1394 { 1395 usb_device_request_t req; 1396 usbd_status error; 1397 1398 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1399 req.bRequest = RT2573_READ_EEPROM; 1400 USETW(req.wValue, 0); 1401 USETW(req.wIndex, addr); 1402 USETW(req.wLength, len); 1403 1404 error = usbd_do_request(sc->sc_udev, &req, buf); 1405 if (error != 0) { 1406 printf("%s: could not read EEPROM: %s\n", 1407 device_xname(sc->sc_dev), usbd_errstr(error)); 1408 } 1409 } 1410 1411 static uint32_t 1412 rum_read(struct rum_softc *sc, uint16_t reg) 1413 { 1414 uint32_t val; 1415 1416 rum_read_multi(sc, reg, &val, sizeof(val)); 1417 1418 return le32toh(val); 1419 } 1420 1421 static void 1422 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1423 { 1424 usb_device_request_t req; 1425 usbd_status error; 1426 1427 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1428 req.bRequest = RT2573_READ_MULTI_MAC; 1429 USETW(req.wValue, 0); 1430 USETW(req.wIndex, reg); 1431 USETW(req.wLength, len); 1432 1433 error = usbd_do_request(sc->sc_udev, &req, buf); 1434 if (error != 0) { 1435 printf("%s: could not multi read MAC register: %s\n", 1436 device_xname(sc->sc_dev), usbd_errstr(error)); 1437 } 1438 } 1439 1440 static void 1441 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1442 { 1443 uint32_t tmp = htole32(val); 1444 1445 rum_write_multi(sc, reg, &tmp, sizeof(tmp)); 1446 } 1447 1448 static void 1449 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1450 { 1451 usb_device_request_t req; 1452 usbd_status error; 1453 int offset; 1454 1455 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1456 req.bRequest = RT2573_WRITE_MULTI_MAC; 1457 USETW(req.wValue, 0); 1458 1459 /* write at most 64 bytes at a time */ 1460 for (offset = 0; offset < len; offset += 64) { 1461 USETW(req.wIndex, reg + offset); 1462 USETW(req.wLength, MIN(len - offset, 64)); 1463 1464 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset); 1465 if (error != 0) { 1466 printf("%s: could not multi write MAC register: %s\n", 1467 device_xname(sc->sc_dev), usbd_errstr(error)); 1468 } 1469 } 1470 } 1471 1472 static void 1473 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1474 { 1475 uint32_t tmp; 1476 int ntries; 1477 1478 for (ntries = 0; ntries < 5; ntries++) { 1479 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1480 break; 1481 } 1482 if (ntries == 5) { 1483 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1484 return; 1485 } 1486 1487 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1488 rum_write(sc, RT2573_PHY_CSR3, tmp); 1489 } 1490 1491 static uint8_t 1492 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1493 { 1494 uint32_t val; 1495 int ntries; 1496 1497 for (ntries = 0; ntries < 5; ntries++) { 1498 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1499 break; 1500 } 1501 if (ntries == 5) { 1502 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1503 return 0; 1504 } 1505 1506 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1507 rum_write(sc, RT2573_PHY_CSR3, val); 1508 1509 for (ntries = 0; ntries < 100; ntries++) { 1510 val = rum_read(sc, RT2573_PHY_CSR3); 1511 if (!(val & RT2573_BBP_BUSY)) 1512 return val & 0xff; 1513 DELAY(1); 1514 } 1515 1516 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1517 return 0; 1518 } 1519 1520 static void 1521 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1522 { 1523 uint32_t tmp; 1524 int ntries; 1525 1526 for (ntries = 0; ntries < 5; ntries++) { 1527 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1528 break; 1529 } 1530 if (ntries == 5) { 1531 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1532 return; 1533 } 1534 1535 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1536 (reg & 3); 1537 rum_write(sc, RT2573_PHY_CSR4, tmp); 1538 1539 /* remember last written value in sc */ 1540 sc->rf_regs[reg] = val; 1541 1542 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1543 } 1544 1545 static void 1546 rum_select_antenna(struct rum_softc *sc) 1547 { 1548 uint8_t bbp4, bbp77; 1549 uint32_t tmp; 1550 1551 bbp4 = rum_bbp_read(sc, 4); 1552 bbp77 = rum_bbp_read(sc, 77); 1553 1554 /* TBD */ 1555 1556 /* make sure Rx is disabled before switching antenna */ 1557 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1558 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1559 1560 rum_bbp_write(sc, 4, bbp4); 1561 rum_bbp_write(sc, 77, bbp77); 1562 1563 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1564 } 1565 1566 /* 1567 * Enable multi-rate retries for frames sent at OFDM rates. 1568 * In 802.11b/g mode, allow fallback to CCK rates. 1569 */ 1570 static void 1571 rum_enable_mrr(struct rum_softc *sc) 1572 { 1573 struct ieee80211com *ic = &sc->sc_ic; 1574 uint32_t tmp; 1575 1576 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1577 1578 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1579 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1580 tmp |= RT2573_MRR_CCK_FALLBACK; 1581 tmp |= RT2573_MRR_ENABLED; 1582 1583 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1584 } 1585 1586 static void 1587 rum_set_txpreamble(struct rum_softc *sc) 1588 { 1589 uint32_t tmp; 1590 1591 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1592 1593 tmp &= ~RT2573_SHORT_PREAMBLE; 1594 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1595 tmp |= RT2573_SHORT_PREAMBLE; 1596 1597 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1598 } 1599 1600 static void 1601 rum_set_basicrates(struct rum_softc *sc) 1602 { 1603 struct ieee80211com *ic = &sc->sc_ic; 1604 1605 /* update basic rate set */ 1606 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1607 /* 11b basic rates: 1, 2Mbps */ 1608 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1609 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1610 /* 11a basic rates: 6, 12, 24Mbps */ 1611 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1612 } else { 1613 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1614 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1615 } 1616 } 1617 1618 /* 1619 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1620 * driver. 1621 */ 1622 static void 1623 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1624 { 1625 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1626 uint32_t tmp; 1627 1628 /* update all BBP registers that depend on the band */ 1629 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1630 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1631 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1632 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1633 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1634 } 1635 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1636 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1637 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1638 } 1639 1640 sc->bbp17 = bbp17; 1641 rum_bbp_write(sc, 17, bbp17); 1642 rum_bbp_write(sc, 96, bbp96); 1643 rum_bbp_write(sc, 104, bbp104); 1644 1645 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1646 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1647 rum_bbp_write(sc, 75, 0x80); 1648 rum_bbp_write(sc, 86, 0x80); 1649 rum_bbp_write(sc, 88, 0x80); 1650 } 1651 1652 rum_bbp_write(sc, 35, bbp35); 1653 rum_bbp_write(sc, 97, bbp97); 1654 rum_bbp_write(sc, 98, bbp98); 1655 1656 tmp = rum_read(sc, RT2573_PHY_CSR0); 1657 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1658 if (IEEE80211_IS_CHAN_2GHZ(c)) 1659 tmp |= RT2573_PA_PE_2GHZ; 1660 else 1661 tmp |= RT2573_PA_PE_5GHZ; 1662 rum_write(sc, RT2573_PHY_CSR0, tmp); 1663 1664 /* 802.11a uses a 16 microseconds short interframe space */ 1665 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1666 } 1667 1668 static void 1669 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1670 { 1671 struct ieee80211com *ic = &sc->sc_ic; 1672 const struct rfprog *rfprog; 1673 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1674 int8_t power; 1675 u_int i, chan; 1676 1677 chan = ieee80211_chan2ieee(ic, c); 1678 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1679 return; 1680 1681 /* select the appropriate RF settings based on what EEPROM says */ 1682 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1683 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1684 1685 /* find the settings for this channel (we know it exists) */ 1686 for (i = 0; rfprog[i].chan != chan; i++); 1687 1688 power = sc->txpow[i]; 1689 if (power < 0) { 1690 bbp94 += power; 1691 power = 0; 1692 } else if (power > 31) { 1693 bbp94 += power - 31; 1694 power = 31; 1695 } 1696 1697 /* 1698 * If we are switching from the 2GHz band to the 5GHz band or 1699 * vice-versa, BBP registers need to be reprogrammed. 1700 */ 1701 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1702 rum_select_band(sc, c); 1703 rum_select_antenna(sc); 1704 } 1705 ic->ic_curchan = c; 1706 1707 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1708 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1709 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1710 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1711 1712 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1713 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1714 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1715 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1716 1717 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1718 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1719 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1720 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1721 1722 DELAY(10); 1723 1724 /* enable smart mode for MIMO-capable RFs */ 1725 bbp3 = rum_bbp_read(sc, 3); 1726 1727 bbp3 &= ~RT2573_SMART_MODE; 1728 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1729 bbp3 |= RT2573_SMART_MODE; 1730 1731 rum_bbp_write(sc, 3, bbp3); 1732 1733 if (bbp94 != RT2573_BBPR94_DEFAULT) 1734 rum_bbp_write(sc, 94, bbp94); 1735 } 1736 1737 /* 1738 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1739 * and HostAP operating modes. 1740 */ 1741 static void 1742 rum_enable_tsf_sync(struct rum_softc *sc) 1743 { 1744 struct ieee80211com *ic = &sc->sc_ic; 1745 uint32_t tmp; 1746 1747 if (ic->ic_opmode != IEEE80211_M_STA) { 1748 /* 1749 * Change default 16ms TBTT adjustment to 8ms. 1750 * Must be done before enabling beacon generation. 1751 */ 1752 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1753 } 1754 1755 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1756 1757 /* set beacon interval (in 1/16ms unit) */ 1758 tmp |= ic->ic_bss->ni_intval * 16; 1759 1760 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1761 if (ic->ic_opmode == IEEE80211_M_STA) 1762 tmp |= RT2573_TSF_MODE(1); 1763 else 1764 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1765 1766 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1767 } 1768 1769 static void 1770 rum_update_slot(struct rum_softc *sc) 1771 { 1772 struct ieee80211com *ic = &sc->sc_ic; 1773 uint8_t slottime; 1774 uint32_t tmp; 1775 1776 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1777 1778 tmp = rum_read(sc, RT2573_MAC_CSR9); 1779 tmp = (tmp & ~0xff) | slottime; 1780 rum_write(sc, RT2573_MAC_CSR9, tmp); 1781 1782 DPRINTF(("setting slot time to %uus\n", slottime)); 1783 } 1784 1785 static void 1786 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1787 { 1788 uint32_t tmp; 1789 1790 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1791 rum_write(sc, RT2573_MAC_CSR4, tmp); 1792 1793 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1794 rum_write(sc, RT2573_MAC_CSR5, tmp); 1795 } 1796 1797 static void 1798 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1799 { 1800 uint32_t tmp; 1801 1802 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1803 rum_write(sc, RT2573_MAC_CSR2, tmp); 1804 1805 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1806 rum_write(sc, RT2573_MAC_CSR3, tmp); 1807 } 1808 1809 static void 1810 rum_update_promisc(struct rum_softc *sc) 1811 { 1812 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1813 uint32_t tmp; 1814 1815 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1816 1817 tmp &= ~RT2573_DROP_NOT_TO_ME; 1818 if (!(ifp->if_flags & IFF_PROMISC)) 1819 tmp |= RT2573_DROP_NOT_TO_ME; 1820 1821 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1822 1823 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1824 "entering" : "leaving")); 1825 } 1826 1827 static const char * 1828 rum_get_rf(int rev) 1829 { 1830 switch (rev) { 1831 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1832 case RT2573_RF_2528: return "RT2528"; 1833 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1834 case RT2573_RF_5226: return "RT5226"; 1835 default: return "unknown"; 1836 } 1837 } 1838 1839 static void 1840 rum_read_eeprom(struct rum_softc *sc) 1841 { 1842 struct ieee80211com *ic = &sc->sc_ic; 1843 uint16_t val; 1844 #ifdef RUM_DEBUG 1845 int i; 1846 #endif 1847 1848 /* read MAC/BBP type */ 1849 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1850 sc->macbbp_rev = le16toh(val); 1851 1852 /* read MAC address */ 1853 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1854 1855 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1856 val = le16toh(val); 1857 sc->rf_rev = (val >> 11) & 0x1f; 1858 sc->hw_radio = (val >> 10) & 0x1; 1859 sc->rx_ant = (val >> 4) & 0x3; 1860 sc->tx_ant = (val >> 2) & 0x3; 1861 sc->nb_ant = val & 0x3; 1862 1863 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1864 1865 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1866 val = le16toh(val); 1867 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1868 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1869 1870 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1871 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1872 1873 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1874 val = le16toh(val); 1875 if ((val & 0xff) != 0xff) 1876 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1877 1878 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1879 val = le16toh(val); 1880 if ((val & 0xff) != 0xff) 1881 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1882 1883 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1884 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1885 1886 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1887 val = le16toh(val); 1888 if ((val & 0xff) != 0xff) 1889 sc->rffreq = val & 0xff; 1890 1891 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1892 1893 /* read Tx power for all a/b/g channels */ 1894 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1895 /* XXX default Tx power for 802.11a channels */ 1896 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14); 1897 #ifdef RUM_DEBUG 1898 for (i = 0; i < 14; i++) 1899 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1900 #endif 1901 1902 /* read default values for BBP registers */ 1903 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1904 #ifdef RUM_DEBUG 1905 for (i = 0; i < 14; i++) { 1906 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1907 continue; 1908 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1909 sc->bbp_prom[i].val)); 1910 } 1911 #endif 1912 } 1913 1914 static int 1915 rum_bbp_init(struct rum_softc *sc) 1916 { 1917 unsigned int i, ntries; 1918 uint8_t val; 1919 1920 /* wait for BBP to be ready */ 1921 for (ntries = 0; ntries < 100; ntries++) { 1922 val = rum_bbp_read(sc, 0); 1923 if (val != 0 && val != 0xff) 1924 break; 1925 DELAY(1000); 1926 } 1927 if (ntries == 100) { 1928 printf("%s: timeout waiting for BBP\n", 1929 device_xname(sc->sc_dev)); 1930 return EIO; 1931 } 1932 1933 /* initialize BBP registers to default values */ 1934 for (i = 0; i < __arraycount(rum_def_bbp); i++) 1935 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1936 1937 /* write vendor-specific BBP values (from EEPROM) */ 1938 for (i = 0; i < 16; i++) { 1939 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1940 continue; 1941 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1942 } 1943 1944 return 0; 1945 } 1946 1947 static int 1948 rum_init(struct ifnet *ifp) 1949 { 1950 struct rum_softc *sc = ifp->if_softc; 1951 struct ieee80211com *ic = &sc->sc_ic; 1952 uint32_t tmp; 1953 usbd_status error = 0; 1954 unsigned int i, ntries; 1955 1956 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1957 if (rum_attachhook(sc)) 1958 goto fail; 1959 } 1960 1961 rum_stop(ifp, 0); 1962 1963 /* initialize MAC registers to default values */ 1964 for (i = 0; i < __arraycount(rum_def_mac); i++) 1965 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1966 1967 /* set host ready */ 1968 rum_write(sc, RT2573_MAC_CSR1, 3); 1969 rum_write(sc, RT2573_MAC_CSR1, 0); 1970 1971 /* wait for BBP/RF to wakeup */ 1972 for (ntries = 0; ntries < 1000; ntries++) { 1973 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1974 break; 1975 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1976 DELAY(1000); 1977 } 1978 if (ntries == 1000) { 1979 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1980 device_xname(sc->sc_dev)); 1981 goto fail; 1982 } 1983 1984 if ((error = rum_bbp_init(sc)) != 0) 1985 goto fail; 1986 1987 /* select default channel */ 1988 rum_select_band(sc, ic->ic_curchan); 1989 rum_select_antenna(sc); 1990 rum_set_chan(sc, ic->ic_curchan); 1991 1992 /* clear STA registers */ 1993 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 1994 1995 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1996 rum_set_macaddr(sc, ic->ic_myaddr); 1997 1998 /* initialize ASIC */ 1999 rum_write(sc, RT2573_MAC_CSR1, 4); 2000 2001 /* 2002 * Allocate xfer for AMRR statistics requests. 2003 */ 2004 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 2005 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, 2006 &sc->amrr_xfer); 2007 if (error) { 2008 printf("%s: could not allocate AMRR xfer\n", 2009 device_xname(sc->sc_dev)); 2010 goto fail; 2011 } 2012 2013 /* 2014 * Open Tx and Rx USB bulk pipes. 2015 */ 2016 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2017 &sc->sc_tx_pipeh); 2018 if (error != 0) { 2019 printf("%s: could not open Tx pipe: %s\n", 2020 device_xname(sc->sc_dev), usbd_errstr(error)); 2021 goto fail; 2022 } 2023 2024 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2025 &sc->sc_rx_pipeh); 2026 if (error != 0) { 2027 printf("%s: could not open Rx pipe: %s\n", 2028 device_xname(sc->sc_dev), usbd_errstr(error)); 2029 goto fail; 2030 } 2031 2032 /* 2033 * Allocate Tx and Rx xfer queues. 2034 */ 2035 error = rum_alloc_tx_list(sc); 2036 if (error != 0) { 2037 printf("%s: could not allocate Tx list\n", 2038 device_xname(sc->sc_dev)); 2039 goto fail; 2040 } 2041 2042 error = rum_alloc_rx_list(sc); 2043 if (error != 0) { 2044 printf("%s: could not allocate Rx list\n", 2045 device_xname(sc->sc_dev)); 2046 goto fail; 2047 } 2048 2049 /* 2050 * Start up the receive pipe. 2051 */ 2052 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2053 struct rum_rx_data *data; 2054 2055 data = &sc->rx_data[i]; 2056 2057 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2058 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2059 error = usbd_transfer(data->xfer); 2060 if (error != USBD_NORMAL_COMPLETION && 2061 error != USBD_IN_PROGRESS) { 2062 printf("%s: could not queue Rx transfer\n", 2063 device_xname(sc->sc_dev)); 2064 goto fail; 2065 } 2066 } 2067 2068 /* update Rx filter */ 2069 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2070 2071 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2072 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2073 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2074 RT2573_DROP_ACKCTS; 2075 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2076 tmp |= RT2573_DROP_TODS; 2077 if (!(ifp->if_flags & IFF_PROMISC)) 2078 tmp |= RT2573_DROP_NOT_TO_ME; 2079 } 2080 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2081 2082 ifp->if_flags &= ~IFF_OACTIVE; 2083 ifp->if_flags |= IFF_RUNNING; 2084 2085 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2086 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2087 else 2088 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2089 2090 return 0; 2091 2092 fail: rum_stop(ifp, 1); 2093 return error; 2094 } 2095 2096 static void 2097 rum_stop(struct ifnet *ifp, int disable) 2098 { 2099 struct rum_softc *sc = ifp->if_softc; 2100 struct ieee80211com *ic = &sc->sc_ic; 2101 uint32_t tmp; 2102 2103 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2104 2105 sc->sc_tx_timer = 0; 2106 ifp->if_timer = 0; 2107 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2108 2109 /* disable Rx */ 2110 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2111 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2112 2113 /* reset ASIC */ 2114 rum_write(sc, RT2573_MAC_CSR1, 3); 2115 rum_write(sc, RT2573_MAC_CSR1, 0); 2116 2117 if (sc->amrr_xfer != NULL) { 2118 usbd_destroy_xfer(sc->amrr_xfer); 2119 sc->amrr_xfer = NULL; 2120 } 2121 2122 if (sc->sc_rx_pipeh != NULL) { 2123 usbd_abort_pipe(sc->sc_rx_pipeh); 2124 } 2125 2126 if (sc->sc_tx_pipeh != NULL) { 2127 usbd_abort_pipe(sc->sc_tx_pipeh); 2128 } 2129 2130 rum_free_rx_list(sc); 2131 rum_free_tx_list(sc); 2132 2133 if (sc->sc_rx_pipeh != NULL) { 2134 usbd_close_pipe(sc->sc_rx_pipeh); 2135 sc->sc_rx_pipeh = NULL; 2136 } 2137 2138 if (sc->sc_tx_pipeh != NULL) { 2139 usbd_close_pipe(sc->sc_tx_pipeh); 2140 sc->sc_tx_pipeh = NULL; 2141 } 2142 } 2143 2144 static int 2145 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2146 { 2147 usb_device_request_t req; 2148 uint16_t reg = RT2573_MCU_CODE_BASE; 2149 usbd_status error; 2150 2151 /* copy firmware image into NIC */ 2152 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2153 rum_write(sc, reg, UGETDW(ucode)); 2154 2155 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2156 req.bRequest = RT2573_MCU_CNTL; 2157 USETW(req.wValue, RT2573_MCU_RUN); 2158 USETW(req.wIndex, 0); 2159 USETW(req.wLength, 0); 2160 2161 error = usbd_do_request(sc->sc_udev, &req, NULL); 2162 if (error != 0) { 2163 printf("%s: could not run firmware: %s\n", 2164 device_xname(sc->sc_dev), usbd_errstr(error)); 2165 } 2166 return error; 2167 } 2168 2169 static int 2170 rum_prepare_beacon(struct rum_softc *sc) 2171 { 2172 struct ieee80211com *ic = &sc->sc_ic; 2173 struct rum_tx_desc desc; 2174 struct mbuf *m0; 2175 int rate; 2176 2177 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2178 if (m0 == NULL) { 2179 aprint_error_dev(sc->sc_dev, 2180 "could not allocate beacon frame\n"); 2181 return ENOBUFS; 2182 } 2183 2184 /* send beacons at the lowest available rate */ 2185 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2186 2187 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2188 m0->m_pkthdr.len, rate); 2189 2190 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2191 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2192 2193 /* copy beacon header and payload into NIC memory */ 2194 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2195 m0->m_pkthdr.len); 2196 2197 m_freem(m0); 2198 2199 return 0; 2200 } 2201 2202 static void 2203 rum_newassoc(struct ieee80211_node *ni, int isnew) 2204 { 2205 /* start with lowest Tx rate */ 2206 ni->ni_txrate = 0; 2207 } 2208 2209 static void 2210 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2211 { 2212 int i; 2213 2214 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2215 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2216 2217 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2218 2219 /* set rate to some reasonable initial value */ 2220 for (i = ni->ni_rates.rs_nrates - 1; 2221 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2222 i--); 2223 ni->ni_txrate = i; 2224 2225 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2226 } 2227 2228 static void 2229 rum_amrr_timeout(void *arg) 2230 { 2231 struct rum_softc *sc = arg; 2232 usb_device_request_t req; 2233 2234 /* 2235 * Asynchronously read statistic registers (cleared by read). 2236 */ 2237 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2238 req.bRequest = RT2573_READ_MULTI_MAC; 2239 USETW(req.wValue, 0); 2240 USETW(req.wIndex, RT2573_STA_CSR0); 2241 USETW(req.wLength, sizeof(sc->sta)); 2242 2243 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2244 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2245 rum_amrr_update); 2246 (void)usbd_transfer(sc->amrr_xfer); 2247 } 2248 2249 static void 2250 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2251 usbd_status status) 2252 { 2253 struct rum_softc *sc = (struct rum_softc *)priv; 2254 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2255 2256 if (status != USBD_NORMAL_COMPLETION) { 2257 printf("%s: could not retrieve Tx statistics - cancelling " 2258 "automatic rate control\n", device_xname(sc->sc_dev)); 2259 return; 2260 } 2261 2262 /* count TX retry-fail as Tx errors */ 2263 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2264 2265 sc->amn.amn_retrycnt = 2266 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2267 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2268 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2269 2270 sc->amn.amn_txcnt = 2271 sc->amn.amn_retrycnt + 2272 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2273 2274 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2275 2276 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2277 } 2278 2279 static int 2280 rum_activate(device_t self, enum devact act) 2281 { 2282 switch (act) { 2283 case DVACT_DEACTIVATE: 2284 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2285 return 0; 2286 default: 2287 return 0; 2288 } 2289 } 2290 2291 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf"); 2292 2293 #ifdef _MODULE 2294 #include "ioconf.c" 2295 #endif 2296 2297 static int 2298 if_rum_modcmd(modcmd_t cmd, void *aux) 2299 { 2300 int error = 0; 2301 2302 switch (cmd) { 2303 case MODULE_CMD_INIT: 2304 #ifdef _MODULE 2305 error = config_init_component(cfdriver_ioconf_rum, 2306 cfattach_ioconf_rum, cfdata_ioconf_rum); 2307 #endif 2308 return error; 2309 case MODULE_CMD_FINI: 2310 #ifdef _MODULE 2311 error = config_fini_component(cfdriver_ioconf_rum, 2312 cfattach_ioconf_rum, cfdata_ioconf_rum); 2313 #endif 2314 return error; 2315 default: 2316 return ENOTTY; 2317 } 2318 } 2319