1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.61 2018/06/26 06:48:02 msaitoh Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.61 2018/06/26 06:48:02 msaitoh Exp $"); 28 29 #ifdef _KERNEL_OPT 30 #include "opt_usb.h" 31 #endif 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/module.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/firmload.h> 67 68 #include <dev/usb/usb.h> 69 #include <dev/usb/usbdi.h> 70 #include <dev/usb/usbdi_util.h> 71 #include <dev/usb/usbdevs.h> 72 73 #include <dev/usb/if_rumreg.h> 74 #include <dev/usb/if_rumvar.h> 75 76 #ifdef RUM_DEBUG 77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 79 int rum_debug = 1; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 /* various supported device vendors/products */ 86 static const struct usb_devno rum_devs[] = { 87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS }, 142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 143 }; 144 145 static int rum_attachhook(void *); 146 static int rum_alloc_tx_list(struct rum_softc *); 147 static void rum_free_tx_list(struct rum_softc *); 148 static int rum_alloc_rx_list(struct rum_softc *); 149 static void rum_free_rx_list(struct rum_softc *); 150 static int rum_media_change(struct ifnet *); 151 static void rum_next_scan(void *); 152 static void rum_task(void *); 153 static int rum_newstate(struct ieee80211com *, 154 enum ieee80211_state, int); 155 static void rum_txeof(struct usbd_xfer *, void *, 156 usbd_status); 157 static void rum_rxeof(struct usbd_xfer *, void *, 158 usbd_status); 159 static uint8_t rum_rxrate(const struct rum_rx_desc *); 160 static int rum_ack_rate(struct ieee80211com *, int); 161 static uint16_t rum_txtime(int, int, uint32_t); 162 static uint8_t rum_plcp_signal(int); 163 static void rum_setup_tx_desc(struct rum_softc *, 164 struct rum_tx_desc *, uint32_t, uint16_t, int, 165 int); 166 static int rum_tx_data(struct rum_softc *, struct mbuf *, 167 struct ieee80211_node *); 168 static void rum_start(struct ifnet *); 169 static void rum_watchdog(struct ifnet *); 170 static int rum_ioctl(struct ifnet *, u_long, void *); 171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 172 int); 173 static uint32_t rum_read(struct rum_softc *, uint16_t); 174 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 175 int); 176 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 177 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 178 size_t); 179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 182 static void rum_select_antenna(struct rum_softc *); 183 static void rum_enable_mrr(struct rum_softc *); 184 static void rum_set_txpreamble(struct rum_softc *); 185 static void rum_set_basicrates(struct rum_softc *); 186 static void rum_select_band(struct rum_softc *, 187 struct ieee80211_channel *); 188 static void rum_set_chan(struct rum_softc *, 189 struct ieee80211_channel *); 190 static void rum_enable_tsf_sync(struct rum_softc *); 191 static void rum_update_slot(struct rum_softc *); 192 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 194 static void rum_update_promisc(struct rum_softc *); 195 static const char *rum_get_rf(int); 196 static void rum_read_eeprom(struct rum_softc *); 197 static int rum_bbp_init(struct rum_softc *); 198 static int rum_init(struct ifnet *); 199 static void rum_stop(struct ifnet *, int); 200 static int rum_load_microcode(struct rum_softc *, const u_char *, 201 size_t); 202 static int rum_prepare_beacon(struct rum_softc *); 203 static void rum_newassoc(struct ieee80211_node *, int); 204 static void rum_amrr_start(struct rum_softc *, 205 struct ieee80211_node *); 206 static void rum_amrr_timeout(void *); 207 static void rum_amrr_update(struct usbd_xfer *, void *, 208 usbd_status); 209 210 static const struct { 211 uint32_t reg; 212 uint32_t val; 213 } rum_def_mac[] = { 214 RT2573_DEF_MAC 215 }; 216 217 static const struct { 218 uint8_t reg; 219 uint8_t val; 220 } rum_def_bbp[] = { 221 RT2573_DEF_BBP 222 }; 223 224 static const struct rfprog { 225 uint8_t chan; 226 uint32_t r1, r2, r3, r4; 227 } rum_rf5226[] = { 228 RT2573_RF5226 229 }, rum_rf5225[] = { 230 RT2573_RF5225 231 }; 232 233 static int rum_match(device_t, cfdata_t, void *); 234 static void rum_attach(device_t, device_t, void *); 235 static int rum_detach(device_t, int); 236 static int rum_activate(device_t, enum devact); 237 extern struct cfdriver rum_cd; 238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 239 rum_detach, rum_activate); 240 241 static int 242 rum_match(device_t parent, cfdata_t match, void *aux) 243 { 244 struct usb_attach_arg *uaa = aux; 245 246 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 248 } 249 250 static int 251 rum_attachhook(void *xsc) 252 { 253 struct rum_softc *sc = xsc; 254 firmware_handle_t fwh; 255 const char *name = "rum-rt2573"; 256 u_char *ucode; 257 size_t size; 258 int error; 259 260 if ((error = firmware_open("rum", name, &fwh)) != 0) { 261 printf("%s: failed firmware_open of file %s (error %d)\n", 262 device_xname(sc->sc_dev), name, error); 263 return error; 264 } 265 size = firmware_get_size(fwh); 266 ucode = firmware_malloc(size); 267 if (ucode == NULL) { 268 printf("%s: failed to allocate firmware memory\n", 269 device_xname(sc->sc_dev)); 270 firmware_close(fwh); 271 return ENOMEM; 272 } 273 error = firmware_read(fwh, 0, ucode, size); 274 firmware_close(fwh); 275 if (error != 0) { 276 printf("%s: failed to read firmware (error %d)\n", 277 device_xname(sc->sc_dev), error); 278 firmware_free(ucode, size); 279 return error; 280 } 281 282 if (rum_load_microcode(sc, ucode, size) != 0) { 283 printf("%s: could not load 8051 microcode\n", 284 device_xname(sc->sc_dev)); 285 firmware_free(ucode, size); 286 return ENXIO; 287 } 288 289 firmware_free(ucode, size); 290 sc->sc_flags |= RT2573_FWLOADED; 291 292 return 0; 293 } 294 295 static void 296 rum_attach(device_t parent, device_t self, void *aux) 297 { 298 struct rum_softc *sc = device_private(self); 299 struct usb_attach_arg *uaa = aux; 300 struct ieee80211com *ic = &sc->sc_ic; 301 struct ifnet *ifp = &sc->sc_if; 302 usb_interface_descriptor_t *id; 303 usb_endpoint_descriptor_t *ed; 304 usbd_status error; 305 char *devinfop; 306 int i, ntries; 307 uint32_t tmp; 308 309 sc->sc_dev = self; 310 sc->sc_udev = uaa->uaa_device; 311 sc->sc_flags = 0; 312 313 aprint_naive("\n"); 314 aprint_normal("\n"); 315 316 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 317 aprint_normal_dev(self, "%s\n", devinfop); 318 usbd_devinfo_free(devinfop); 319 320 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0); 321 if (error != 0) { 322 aprint_error_dev(self, "failed to set configuration" 323 ", err=%s\n", usbd_errstr(error)); 324 return; 325 } 326 327 /* get the first interface handle */ 328 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 329 &sc->sc_iface); 330 if (error != 0) { 331 aprint_error_dev(self, "could not get interface handle\n"); 332 return; 333 } 334 335 /* 336 * Find endpoints. 337 */ 338 id = usbd_get_interface_descriptor(sc->sc_iface); 339 340 sc->sc_rx_no = sc->sc_tx_no = -1; 341 for (i = 0; i < id->bNumEndpoints; i++) { 342 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 343 if (ed == NULL) { 344 aprint_error_dev(self, 345 "no endpoint descriptor for iface %d\n", i); 346 return; 347 } 348 349 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 351 sc->sc_rx_no = ed->bEndpointAddress; 352 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 353 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 354 sc->sc_tx_no = ed->bEndpointAddress; 355 } 356 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 357 aprint_error_dev(self, "missing endpoint\n"); 358 return; 359 } 360 361 usb_init_task(&sc->sc_task, rum_task, sc, 0); 362 callout_init(&sc->sc_scan_ch, 0); 363 364 sc->amrr.amrr_min_success_threshold = 1; 365 sc->amrr.amrr_max_success_threshold = 10; 366 callout_init(&sc->sc_amrr_ch, 0); 367 368 /* retrieve RT2573 rev. no */ 369 for (ntries = 0; ntries < 1000; ntries++) { 370 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 371 break; 372 DELAY(1000); 373 } 374 if (ntries == 1000) { 375 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 376 return; 377 } 378 379 /* retrieve MAC address and various other things from EEPROM */ 380 rum_read_eeprom(sc); 381 382 aprint_normal_dev(self, 383 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 384 sc->macbbp_rev, tmp, 385 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 386 387 ic->ic_ifp = ifp; 388 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 389 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 390 ic->ic_state = IEEE80211_S_INIT; 391 392 /* set device capabilities */ 393 ic->ic_caps = 394 IEEE80211_C_IBSS | /* IBSS mode supported */ 395 IEEE80211_C_MONITOR | /* monitor mode supported */ 396 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 397 IEEE80211_C_TXPMGT | /* tx power management */ 398 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 399 IEEE80211_C_SHSLOT | /* short slot time supported */ 400 IEEE80211_C_WPA; /* 802.11i */ 401 402 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 403 /* set supported .11a rates */ 404 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 405 406 /* set supported .11a channels */ 407 for (i = 34; i <= 46; i += 4) { 408 ic->ic_channels[i].ic_freq = 409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 411 } 412 for (i = 36; i <= 64; i += 4) { 413 ic->ic_channels[i].ic_freq = 414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 416 } 417 for (i = 100; i <= 140; i += 4) { 418 ic->ic_channels[i].ic_freq = 419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 421 } 422 for (i = 149; i <= 165; i += 4) { 423 ic->ic_channels[i].ic_freq = 424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 425 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 426 } 427 } 428 429 /* set supported .11b and .11g rates */ 430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 432 433 /* set supported .11b and .11g channels (1 through 14) */ 434 for (i = 1; i <= 14; i++) { 435 ic->ic_channels[i].ic_freq = 436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 437 ic->ic_channels[i].ic_flags = 438 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 439 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 440 } 441 442 ifp->if_softc = sc; 443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 444 ifp->if_init = rum_init; 445 ifp->if_ioctl = rum_ioctl; 446 ifp->if_start = rum_start; 447 ifp->if_watchdog = rum_watchdog; 448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 449 IFQ_SET_READY(&ifp->if_snd); 450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 451 452 if_attach(ifp); 453 ieee80211_ifattach(ic); 454 ic->ic_newassoc = rum_newassoc; 455 456 /* override state transition machine */ 457 sc->sc_newstate = ic->ic_newstate; 458 ic->ic_newstate = rum_newstate; 459 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 460 461 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 462 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 463 &sc->sc_drvbpf); 464 465 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 466 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 467 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 468 469 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 470 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 471 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 472 473 ieee80211_announce(ic); 474 475 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 476 477 if (!pmf_device_register(self, NULL, NULL)) 478 aprint_error_dev(self, "couldn't establish power handler\n"); 479 480 return; 481 } 482 483 static int 484 rum_detach(device_t self, int flags) 485 { 486 struct rum_softc *sc = device_private(self); 487 struct ieee80211com *ic = &sc->sc_ic; 488 struct ifnet *ifp = &sc->sc_if; 489 int s; 490 491 if (!ifp->if_softc) 492 return 0; 493 494 pmf_device_deregister(self); 495 496 s = splusb(); 497 498 rum_stop(ifp, 1); 499 usb_rem_task(sc->sc_udev, &sc->sc_task); 500 callout_stop(&sc->sc_scan_ch); 501 callout_stop(&sc->sc_amrr_ch); 502 503 bpf_detach(ifp); 504 ieee80211_ifdetach(ic); /* free all nodes */ 505 if_detach(ifp); 506 507 splx(s); 508 509 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 510 511 return 0; 512 } 513 514 static int 515 rum_alloc_tx_list(struct rum_softc *sc) 516 { 517 struct rum_tx_data *data; 518 int i, error; 519 520 sc->tx_cur = sc->tx_queued = 0; 521 522 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 523 data = &sc->tx_data[i]; 524 525 data->sc = sc; 526 527 error = usbd_create_xfer(sc->sc_tx_pipeh, 528 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN, 529 USBD_FORCE_SHORT_XFER, 0, &data->xfer); 530 if (error) { 531 printf("%s: could not allocate tx xfer\n", 532 device_xname(sc->sc_dev)); 533 goto fail; 534 } 535 data->buf = usbd_get_buffer(data->xfer); 536 537 /* clean Tx descriptor */ 538 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 539 } 540 541 return 0; 542 543 fail: rum_free_tx_list(sc); 544 return error; 545 } 546 547 static void 548 rum_free_tx_list(struct rum_softc *sc) 549 { 550 struct rum_tx_data *data; 551 int i; 552 553 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 554 data = &sc->tx_data[i]; 555 556 if (data->xfer != NULL) { 557 usbd_destroy_xfer(data->xfer); 558 data->xfer = NULL; 559 } 560 561 if (data->ni != NULL) { 562 ieee80211_free_node(data->ni); 563 data->ni = NULL; 564 } 565 } 566 } 567 568 static int 569 rum_alloc_rx_list(struct rum_softc *sc) 570 { 571 struct rum_rx_data *data; 572 int i, error; 573 574 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 575 data = &sc->rx_data[i]; 576 577 data->sc = sc; 578 579 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 580 0, 0, &data->xfer); 581 if (error) { 582 printf("%s: could not allocate rx xfer\n", 583 device_xname(sc->sc_dev)); 584 goto fail; 585 } 586 587 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 588 if (data->m == NULL) { 589 printf("%s: could not allocate rx mbuf\n", 590 device_xname(sc->sc_dev)); 591 error = ENOMEM; 592 goto fail; 593 } 594 595 MCLGET(data->m, M_DONTWAIT); 596 if (!(data->m->m_flags & M_EXT)) { 597 printf("%s: could not allocate rx mbuf cluster\n", 598 device_xname(sc->sc_dev)); 599 error = ENOMEM; 600 goto fail; 601 } 602 603 data->buf = mtod(data->m, uint8_t *); 604 } 605 606 return 0; 607 608 fail: rum_free_rx_list(sc); 609 return error; 610 } 611 612 static void 613 rum_free_rx_list(struct rum_softc *sc) 614 { 615 struct rum_rx_data *data; 616 int i; 617 618 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 619 data = &sc->rx_data[i]; 620 621 if (data->xfer != NULL) { 622 usbd_destroy_xfer(data->xfer); 623 data->xfer = NULL; 624 } 625 626 if (data->m != NULL) { 627 m_freem(data->m); 628 data->m = NULL; 629 } 630 } 631 } 632 633 static int 634 rum_media_change(struct ifnet *ifp) 635 { 636 int error; 637 638 error = ieee80211_media_change(ifp); 639 if (error != ENETRESET) 640 return error; 641 642 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 643 rum_init(ifp); 644 645 return 0; 646 } 647 648 /* 649 * This function is called periodically (every 200ms) during scanning to 650 * switch from one channel to another. 651 */ 652 static void 653 rum_next_scan(void *arg) 654 { 655 struct rum_softc *sc = arg; 656 struct ieee80211com *ic = &sc->sc_ic; 657 int s; 658 659 s = splnet(); 660 if (ic->ic_state == IEEE80211_S_SCAN) 661 ieee80211_next_scan(ic); 662 splx(s); 663 } 664 665 static void 666 rum_task(void *arg) 667 { 668 struct rum_softc *sc = arg; 669 struct ieee80211com *ic = &sc->sc_ic; 670 enum ieee80211_state ostate; 671 struct ieee80211_node *ni; 672 uint32_t tmp; 673 674 ostate = ic->ic_state; 675 676 switch (sc->sc_state) { 677 case IEEE80211_S_INIT: 678 if (ostate == IEEE80211_S_RUN) { 679 /* abort TSF synchronization */ 680 tmp = rum_read(sc, RT2573_TXRX_CSR9); 681 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 682 } 683 break; 684 685 case IEEE80211_S_SCAN: 686 rum_set_chan(sc, ic->ic_curchan); 687 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 688 break; 689 690 case IEEE80211_S_AUTH: 691 rum_set_chan(sc, ic->ic_curchan); 692 break; 693 694 case IEEE80211_S_ASSOC: 695 rum_set_chan(sc, ic->ic_curchan); 696 break; 697 698 case IEEE80211_S_RUN: 699 rum_set_chan(sc, ic->ic_curchan); 700 701 ni = ic->ic_bss; 702 703 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 704 rum_update_slot(sc); 705 rum_enable_mrr(sc); 706 rum_set_txpreamble(sc); 707 rum_set_basicrates(sc); 708 rum_set_bssid(sc, ni->ni_bssid); 709 } 710 711 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 712 ic->ic_opmode == IEEE80211_M_IBSS) 713 rum_prepare_beacon(sc); 714 715 if (ic->ic_opmode != IEEE80211_M_MONITOR) 716 rum_enable_tsf_sync(sc); 717 718 if (ic->ic_opmode == IEEE80211_M_STA) { 719 /* fake a join to init the tx rate */ 720 rum_newassoc(ic->ic_bss, 1); 721 722 /* enable automatic rate adaptation in STA mode */ 723 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 724 rum_amrr_start(sc, ni); 725 } 726 727 break; 728 } 729 730 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 731 } 732 733 static int 734 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 735 { 736 struct rum_softc *sc = ic->ic_ifp->if_softc; 737 738 usb_rem_task(sc->sc_udev, &sc->sc_task); 739 callout_stop(&sc->sc_scan_ch); 740 callout_stop(&sc->sc_amrr_ch); 741 742 /* do it in a process context */ 743 sc->sc_state = nstate; 744 sc->sc_arg = arg; 745 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 746 747 return 0; 748 } 749 750 /* quickly determine if a given rate is CCK or OFDM */ 751 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 752 753 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 754 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 755 756 static void 757 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 758 { 759 struct rum_tx_data *data = priv; 760 struct rum_softc *sc = data->sc; 761 struct ifnet *ifp = &sc->sc_if; 762 int s; 763 764 if (status != USBD_NORMAL_COMPLETION) { 765 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 766 return; 767 768 printf("%s: could not transmit buffer: %s\n", 769 device_xname(sc->sc_dev), usbd_errstr(status)); 770 771 if (status == USBD_STALLED) 772 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 773 774 ifp->if_oerrors++; 775 return; 776 } 777 778 s = splnet(); 779 780 ieee80211_free_node(data->ni); 781 data->ni = NULL; 782 783 sc->tx_queued--; 784 ifp->if_opackets++; 785 786 DPRINTFN(10, ("tx done\n")); 787 788 sc->sc_tx_timer = 0; 789 ifp->if_flags &= ~IFF_OACTIVE; 790 rum_start(ifp); 791 792 splx(s); 793 } 794 795 static void 796 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 797 { 798 struct rum_rx_data *data = priv; 799 struct rum_softc *sc = data->sc; 800 struct ieee80211com *ic = &sc->sc_ic; 801 struct ifnet *ifp = &sc->sc_if; 802 struct rum_rx_desc *desc; 803 struct ieee80211_frame *wh; 804 struct ieee80211_node *ni; 805 struct mbuf *mnew, *m; 806 int s, len; 807 808 if (status != USBD_NORMAL_COMPLETION) { 809 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 810 return; 811 812 if (status == USBD_STALLED) 813 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 814 goto skip; 815 } 816 817 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 818 819 if (len < (int)(RT2573_RX_DESC_SIZE + 820 sizeof(struct ieee80211_frame_min))) { 821 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 822 len)); 823 ifp->if_ierrors++; 824 goto skip; 825 } 826 827 desc = (struct rum_rx_desc *)data->buf; 828 829 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 830 /* 831 * This should not happen since we did not request to receive 832 * those frames when we filled RT2573_TXRX_CSR0. 833 */ 834 DPRINTFN(5, ("CRC error\n")); 835 ifp->if_ierrors++; 836 goto skip; 837 } 838 839 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 840 if (mnew == NULL) { 841 printf("%s: could not allocate rx mbuf\n", 842 device_xname(sc->sc_dev)); 843 ifp->if_ierrors++; 844 goto skip; 845 } 846 847 MCLGET(mnew, M_DONTWAIT); 848 if (!(mnew->m_flags & M_EXT)) { 849 printf("%s: could not allocate rx mbuf cluster\n", 850 device_xname(sc->sc_dev)); 851 m_freem(mnew); 852 ifp->if_ierrors++; 853 goto skip; 854 } 855 856 m = data->m; 857 data->m = mnew; 858 data->buf = mtod(data->m, uint8_t *); 859 860 /* finalize mbuf */ 861 m_set_rcvif(m, ifp); 862 m->m_data = (void *)(desc + 1); 863 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 864 865 s = splnet(); 866 867 if (sc->sc_drvbpf != NULL) { 868 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 869 870 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 871 tap->wr_rate = rum_rxrate(desc); 872 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 873 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 874 tap->wr_antenna = sc->rx_ant; 875 tap->wr_antsignal = desc->rssi; 876 877 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 878 } 879 880 wh = mtod(m, struct ieee80211_frame *); 881 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 882 883 /* send the frame to the 802.11 layer */ 884 ieee80211_input(ic, m, ni, desc->rssi, 0); 885 886 /* node is no longer needed */ 887 ieee80211_free_node(ni); 888 889 splx(s); 890 891 DPRINTFN(15, ("rx done\n")); 892 893 skip: /* setup a new transfer */ 894 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, 895 USBD_NO_TIMEOUT, rum_rxeof); 896 usbd_transfer(xfer); 897 } 898 899 /* 900 * This function is only used by the Rx radiotap code. It returns the rate at 901 * which a given frame was received. 902 */ 903 static uint8_t 904 rum_rxrate(const struct rum_rx_desc *desc) 905 { 906 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 907 /* reverse function of rum_plcp_signal */ 908 switch (desc->rate) { 909 case 0xb: return 12; 910 case 0xf: return 18; 911 case 0xa: return 24; 912 case 0xe: return 36; 913 case 0x9: return 48; 914 case 0xd: return 72; 915 case 0x8: return 96; 916 case 0xc: return 108; 917 } 918 } else { 919 if (desc->rate == 10) 920 return 2; 921 if (desc->rate == 20) 922 return 4; 923 if (desc->rate == 55) 924 return 11; 925 if (desc->rate == 110) 926 return 22; 927 } 928 return 2; /* should not get there */ 929 } 930 931 /* 932 * Return the expected ack rate for a frame transmitted at rate `rate'. 933 * XXX: this should depend on the destination node basic rate set. 934 */ 935 static int 936 rum_ack_rate(struct ieee80211com *ic, int rate) 937 { 938 switch (rate) { 939 /* CCK rates */ 940 case 2: 941 return 2; 942 case 4: 943 case 11: 944 case 22: 945 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 946 947 /* OFDM rates */ 948 case 12: 949 case 18: 950 return 12; 951 case 24: 952 case 36: 953 return 24; 954 case 48: 955 case 72: 956 case 96: 957 case 108: 958 return 48; 959 } 960 961 /* default to 1Mbps */ 962 return 2; 963 } 964 965 /* 966 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 967 * The function automatically determines the operating mode depending on the 968 * given rate. `flags' indicates whether short preamble is in use or not. 969 */ 970 static uint16_t 971 rum_txtime(int len, int rate, uint32_t flags) 972 { 973 uint16_t txtime; 974 975 if (RUM_RATE_IS_OFDM(rate)) { 976 /* IEEE Std 802.11a-1999, pp. 37 */ 977 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 978 txtime = 16 + 4 + 4 * txtime + 6; 979 } else { 980 /* IEEE Std 802.11b-1999, pp. 28 */ 981 txtime = (16 * len + rate - 1) / rate; 982 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 983 txtime += 72 + 24; 984 else 985 txtime += 144 + 48; 986 } 987 return txtime; 988 } 989 990 static uint8_t 991 rum_plcp_signal(int rate) 992 { 993 switch (rate) { 994 /* CCK rates (returned values are device-dependent) */ 995 case 2: return 0x0; 996 case 4: return 0x1; 997 case 11: return 0x2; 998 case 22: return 0x3; 999 1000 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1001 case 12: return 0xb; 1002 case 18: return 0xf; 1003 case 24: return 0xa; 1004 case 36: return 0xe; 1005 case 48: return 0x9; 1006 case 72: return 0xd; 1007 case 96: return 0x8; 1008 case 108: return 0xc; 1009 1010 /* unsupported rates (should not get there) */ 1011 default: return 0xff; 1012 } 1013 } 1014 1015 static void 1016 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1017 uint32_t flags, uint16_t xflags, int len, int rate) 1018 { 1019 struct ieee80211com *ic = &sc->sc_ic; 1020 uint16_t plcp_length; 1021 int remainder; 1022 1023 desc->flags = htole32(flags); 1024 desc->flags |= htole32(RT2573_TX_VALID); 1025 desc->flags |= htole32(len << 16); 1026 1027 desc->xflags = htole16(xflags); 1028 1029 desc->wme = htole16( 1030 RT2573_QID(0) | 1031 RT2573_AIFSN(2) | 1032 RT2573_LOGCWMIN(4) | 1033 RT2573_LOGCWMAX(10)); 1034 1035 /* setup PLCP fields */ 1036 desc->plcp_signal = rum_plcp_signal(rate); 1037 desc->plcp_service = 4; 1038 1039 len += IEEE80211_CRC_LEN; 1040 if (RUM_RATE_IS_OFDM(rate)) { 1041 desc->flags |= htole32(RT2573_TX_OFDM); 1042 1043 plcp_length = len & 0xfff; 1044 desc->plcp_length_hi = plcp_length >> 6; 1045 desc->plcp_length_lo = plcp_length & 0x3f; 1046 } else { 1047 plcp_length = (16 * len + rate - 1) / rate; 1048 if (rate == 22) { 1049 remainder = (16 * len) % 22; 1050 if (remainder != 0 && remainder < 7) 1051 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1052 } 1053 desc->plcp_length_hi = plcp_length >> 8; 1054 desc->plcp_length_lo = plcp_length & 0xff; 1055 1056 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1057 desc->plcp_signal |= 0x08; 1058 } 1059 } 1060 1061 #define RUM_TX_TIMEOUT 5000 1062 1063 static int 1064 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1065 { 1066 struct ieee80211com *ic = &sc->sc_ic; 1067 struct rum_tx_desc *desc; 1068 struct rum_tx_data *data; 1069 struct ieee80211_frame *wh; 1070 struct ieee80211_key *k; 1071 uint32_t flags = 0; 1072 uint16_t dur; 1073 usbd_status error; 1074 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1075 1076 wh = mtod(m0, struct ieee80211_frame *); 1077 1078 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1079 k = ieee80211_crypto_encap(ic, ni, m0); 1080 if (k == NULL) { 1081 m_freem(m0); 1082 return ENOBUFS; 1083 } 1084 1085 /* packet header may have moved, reset our local pointer */ 1086 wh = mtod(m0, struct ieee80211_frame *); 1087 } 1088 1089 /* compute actual packet length (including CRC and crypto overhead) */ 1090 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1091 1092 /* pickup a rate */ 1093 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1094 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1095 IEEE80211_FC0_TYPE_MGT)) { 1096 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1097 rate = ni->ni_rates.rs_rates[0]; 1098 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1099 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1100 } else 1101 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1102 if (rate == 0) 1103 rate = 2; /* XXX should not happen */ 1104 rate &= IEEE80211_RATE_VAL; 1105 1106 /* check if RTS/CTS or CTS-to-self protection must be used */ 1107 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1108 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1109 if (pktlen > ic->ic_rtsthreshold) { 1110 needrts = 1; /* RTS/CTS based on frame length */ 1111 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1112 RUM_RATE_IS_OFDM(rate)) { 1113 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1114 needcts = 1; /* CTS-to-self */ 1115 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1116 needrts = 1; /* RTS/CTS */ 1117 } 1118 } 1119 if (needrts || needcts) { 1120 struct mbuf *mprot; 1121 int protrate, ackrate; 1122 1123 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1124 ackrate = rum_ack_rate(ic, rate); 1125 1126 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1127 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1128 2 * sc->sifs; 1129 if (needrts) { 1130 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1131 protrate), ic->ic_flags) + sc->sifs; 1132 mprot = ieee80211_get_rts(ic, wh, dur); 1133 } else { 1134 mprot = ieee80211_get_cts_to_self(ic, dur); 1135 } 1136 if (mprot == NULL) { 1137 aprint_error_dev(sc->sc_dev, 1138 "couldn't allocate protection frame\n"); 1139 m_freem(m0); 1140 return ENOBUFS; 1141 } 1142 1143 data = &sc->tx_data[sc->tx_cur]; 1144 desc = (struct rum_tx_desc *)data->buf; 1145 1146 /* avoid multiple free() of the same node for each fragment */ 1147 data->ni = ieee80211_ref_node(ni); 1148 1149 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1150 data->buf + RT2573_TX_DESC_SIZE); 1151 rum_setup_tx_desc(sc, desc, 1152 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1153 0, mprot->m_pkthdr.len, protrate); 1154 1155 /* no roundup necessary here */ 1156 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1157 1158 /* XXX may want to pass the protection frame to BPF */ 1159 1160 /* mbuf is no longer needed */ 1161 m_freem(mprot); 1162 1163 usbd_setup_xfer(data->xfer, data, data->buf, 1164 xferlen, USBD_FORCE_SHORT_XFER, 1165 RUM_TX_TIMEOUT, rum_txeof); 1166 error = usbd_transfer(data->xfer); 1167 if (error != USBD_NORMAL_COMPLETION && 1168 error != USBD_IN_PROGRESS) { 1169 m_freem(m0); 1170 return error; 1171 } 1172 1173 sc->tx_queued++; 1174 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1175 1176 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1177 } 1178 1179 data = &sc->tx_data[sc->tx_cur]; 1180 desc = (struct rum_tx_desc *)data->buf; 1181 1182 data->ni = ni; 1183 1184 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1185 flags |= RT2573_TX_NEED_ACK; 1186 1187 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1188 ic->ic_flags) + sc->sifs; 1189 *(uint16_t *)wh->i_dur = htole16(dur); 1190 1191 /* tell hardware to set timestamp in probe responses */ 1192 if ((wh->i_fc[0] & 1193 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1194 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1195 flags |= RT2573_TX_TIMESTAMP; 1196 } 1197 1198 if (sc->sc_drvbpf != NULL) { 1199 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1200 1201 tap->wt_flags = 0; 1202 tap->wt_rate = rate; 1203 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1204 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1205 tap->wt_antenna = sc->tx_ant; 1206 1207 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1208 } 1209 1210 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1211 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1212 1213 /* align end on a 4-bytes boundary */ 1214 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1215 1216 /* 1217 * No space left in the last URB to store the extra 4 bytes, force 1218 * sending of another URB. 1219 */ 1220 if ((xferlen % 64) == 0) 1221 xferlen += 4; 1222 1223 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1224 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1225 rate, xferlen)); 1226 1227 /* mbuf is no longer needed */ 1228 m_freem(m0); 1229 1230 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1231 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof); 1232 error = usbd_transfer(data->xfer); 1233 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1234 return error; 1235 1236 sc->tx_queued++; 1237 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1238 1239 return 0; 1240 } 1241 1242 static void 1243 rum_start(struct ifnet *ifp) 1244 { 1245 struct rum_softc *sc = ifp->if_softc; 1246 struct ieee80211com *ic = &sc->sc_ic; 1247 struct ether_header *eh; 1248 struct ieee80211_node *ni; 1249 struct mbuf *m0; 1250 1251 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1252 return; 1253 1254 for (;;) { 1255 IF_POLL(&ic->ic_mgtq, m0); 1256 if (m0 != NULL) { 1257 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1258 ifp->if_flags |= IFF_OACTIVE; 1259 break; 1260 } 1261 IF_DEQUEUE(&ic->ic_mgtq, m0); 1262 1263 ni = M_GETCTX(m0, struct ieee80211_node *); 1264 M_CLEARCTX(m0); 1265 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1266 if (rum_tx_data(sc, m0, ni) != 0) 1267 break; 1268 1269 } else { 1270 if (ic->ic_state != IEEE80211_S_RUN) 1271 break; 1272 IFQ_POLL(&ifp->if_snd, m0); 1273 if (m0 == NULL) 1274 break; 1275 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1276 ifp->if_flags |= IFF_OACTIVE; 1277 break; 1278 } 1279 IFQ_DEQUEUE(&ifp->if_snd, m0); 1280 if (m0->m_len < (int)sizeof(struct ether_header) && 1281 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1282 continue; 1283 1284 eh = mtod(m0, struct ether_header *); 1285 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1286 if (ni == NULL) { 1287 m_freem(m0); 1288 continue; 1289 } 1290 bpf_mtap(ifp, m0, BPF_D_OUT); 1291 m0 = ieee80211_encap(ic, m0, ni); 1292 if (m0 == NULL) { 1293 ieee80211_free_node(ni); 1294 continue; 1295 } 1296 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1297 if (rum_tx_data(sc, m0, ni) != 0) { 1298 ieee80211_free_node(ni); 1299 ifp->if_oerrors++; 1300 break; 1301 } 1302 } 1303 1304 sc->sc_tx_timer = 5; 1305 ifp->if_timer = 1; 1306 } 1307 } 1308 1309 static void 1310 rum_watchdog(struct ifnet *ifp) 1311 { 1312 struct rum_softc *sc = ifp->if_softc; 1313 struct ieee80211com *ic = &sc->sc_ic; 1314 1315 ifp->if_timer = 0; 1316 1317 if (sc->sc_tx_timer > 0) { 1318 if (--sc->sc_tx_timer == 0) { 1319 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1320 /*rum_init(ifp); XXX needs a process context! */ 1321 ifp->if_oerrors++; 1322 return; 1323 } 1324 ifp->if_timer = 1; 1325 } 1326 1327 ieee80211_watchdog(ic); 1328 } 1329 1330 static int 1331 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1332 { 1333 #define IS_RUNNING(ifp) \ 1334 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1335 1336 struct rum_softc *sc = ifp->if_softc; 1337 struct ieee80211com *ic = &sc->sc_ic; 1338 int s, error = 0; 1339 1340 s = splnet(); 1341 1342 switch (cmd) { 1343 case SIOCSIFFLAGS: 1344 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1345 break; 1346 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1347 case IFF_UP|IFF_RUNNING: 1348 rum_update_promisc(sc); 1349 break; 1350 case IFF_UP: 1351 rum_init(ifp); 1352 break; 1353 case IFF_RUNNING: 1354 rum_stop(ifp, 1); 1355 break; 1356 case 0: 1357 break; 1358 } 1359 break; 1360 1361 case SIOCADDMULTI: 1362 case SIOCDELMULTI: 1363 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1364 error = 0; 1365 } 1366 break; 1367 1368 default: 1369 error = ieee80211_ioctl(ic, cmd, data); 1370 } 1371 1372 if (error == ENETRESET) { 1373 if (IS_RUNNING(ifp) && 1374 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1375 rum_init(ifp); 1376 error = 0; 1377 } 1378 1379 splx(s); 1380 1381 return error; 1382 #undef IS_RUNNING 1383 } 1384 1385 static void 1386 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1387 { 1388 usb_device_request_t req; 1389 usbd_status error; 1390 1391 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1392 req.bRequest = RT2573_READ_EEPROM; 1393 USETW(req.wValue, 0); 1394 USETW(req.wIndex, addr); 1395 USETW(req.wLength, len); 1396 1397 error = usbd_do_request(sc->sc_udev, &req, buf); 1398 if (error != 0) { 1399 printf("%s: could not read EEPROM: %s\n", 1400 device_xname(sc->sc_dev), usbd_errstr(error)); 1401 } 1402 } 1403 1404 static uint32_t 1405 rum_read(struct rum_softc *sc, uint16_t reg) 1406 { 1407 uint32_t val; 1408 1409 rum_read_multi(sc, reg, &val, sizeof(val)); 1410 1411 return le32toh(val); 1412 } 1413 1414 static void 1415 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1416 { 1417 usb_device_request_t req; 1418 usbd_status error; 1419 1420 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1421 req.bRequest = RT2573_READ_MULTI_MAC; 1422 USETW(req.wValue, 0); 1423 USETW(req.wIndex, reg); 1424 USETW(req.wLength, len); 1425 1426 error = usbd_do_request(sc->sc_udev, &req, buf); 1427 if (error != 0) { 1428 printf("%s: could not multi read MAC register: %s\n", 1429 device_xname(sc->sc_dev), usbd_errstr(error)); 1430 } 1431 } 1432 1433 static void 1434 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1435 { 1436 uint32_t tmp = htole32(val); 1437 1438 rum_write_multi(sc, reg, &tmp, sizeof(tmp)); 1439 } 1440 1441 static void 1442 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1443 { 1444 usb_device_request_t req; 1445 usbd_status error; 1446 int offset; 1447 1448 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1449 req.bRequest = RT2573_WRITE_MULTI_MAC; 1450 USETW(req.wValue, 0); 1451 1452 /* write at most 64 bytes at a time */ 1453 for (offset = 0; offset < len; offset += 64) { 1454 USETW(req.wIndex, reg + offset); 1455 USETW(req.wLength, MIN(len - offset, 64)); 1456 1457 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset); 1458 if (error != 0) { 1459 printf("%s: could not multi write MAC register: %s\n", 1460 device_xname(sc->sc_dev), usbd_errstr(error)); 1461 } 1462 } 1463 } 1464 1465 static void 1466 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1467 { 1468 uint32_t tmp; 1469 int ntries; 1470 1471 for (ntries = 0; ntries < 5; ntries++) { 1472 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1473 break; 1474 } 1475 if (ntries == 5) { 1476 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1477 return; 1478 } 1479 1480 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1481 rum_write(sc, RT2573_PHY_CSR3, tmp); 1482 } 1483 1484 static uint8_t 1485 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1486 { 1487 uint32_t val; 1488 int ntries; 1489 1490 for (ntries = 0; ntries < 5; ntries++) { 1491 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1492 break; 1493 } 1494 if (ntries == 5) { 1495 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1496 return 0; 1497 } 1498 1499 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1500 rum_write(sc, RT2573_PHY_CSR3, val); 1501 1502 for (ntries = 0; ntries < 100; ntries++) { 1503 val = rum_read(sc, RT2573_PHY_CSR3); 1504 if (!(val & RT2573_BBP_BUSY)) 1505 return val & 0xff; 1506 DELAY(1); 1507 } 1508 1509 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1510 return 0; 1511 } 1512 1513 static void 1514 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1515 { 1516 uint32_t tmp; 1517 int ntries; 1518 1519 for (ntries = 0; ntries < 5; ntries++) { 1520 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1521 break; 1522 } 1523 if (ntries == 5) { 1524 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1525 return; 1526 } 1527 1528 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1529 (reg & 3); 1530 rum_write(sc, RT2573_PHY_CSR4, tmp); 1531 1532 /* remember last written value in sc */ 1533 sc->rf_regs[reg] = val; 1534 1535 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1536 } 1537 1538 static void 1539 rum_select_antenna(struct rum_softc *sc) 1540 { 1541 uint8_t bbp4, bbp77; 1542 uint32_t tmp; 1543 1544 bbp4 = rum_bbp_read(sc, 4); 1545 bbp77 = rum_bbp_read(sc, 77); 1546 1547 /* TBD */ 1548 1549 /* make sure Rx is disabled before switching antenna */ 1550 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1551 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1552 1553 rum_bbp_write(sc, 4, bbp4); 1554 rum_bbp_write(sc, 77, bbp77); 1555 1556 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1557 } 1558 1559 /* 1560 * Enable multi-rate retries for frames sent at OFDM rates. 1561 * In 802.11b/g mode, allow fallback to CCK rates. 1562 */ 1563 static void 1564 rum_enable_mrr(struct rum_softc *sc) 1565 { 1566 struct ieee80211com *ic = &sc->sc_ic; 1567 uint32_t tmp; 1568 1569 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1570 1571 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1572 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1573 tmp |= RT2573_MRR_CCK_FALLBACK; 1574 tmp |= RT2573_MRR_ENABLED; 1575 1576 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1577 } 1578 1579 static void 1580 rum_set_txpreamble(struct rum_softc *sc) 1581 { 1582 uint32_t tmp; 1583 1584 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1585 1586 tmp &= ~RT2573_SHORT_PREAMBLE; 1587 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1588 tmp |= RT2573_SHORT_PREAMBLE; 1589 1590 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1591 } 1592 1593 static void 1594 rum_set_basicrates(struct rum_softc *sc) 1595 { 1596 struct ieee80211com *ic = &sc->sc_ic; 1597 1598 /* update basic rate set */ 1599 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1600 /* 11b basic rates: 1, 2Mbps */ 1601 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1602 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1603 /* 11a basic rates: 6, 12, 24Mbps */ 1604 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1605 } else { 1606 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1607 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1608 } 1609 } 1610 1611 /* 1612 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1613 * driver. 1614 */ 1615 static void 1616 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1617 { 1618 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1619 uint32_t tmp; 1620 1621 /* update all BBP registers that depend on the band */ 1622 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1623 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1624 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1625 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1626 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1627 } 1628 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1629 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1630 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1631 } 1632 1633 sc->bbp17 = bbp17; 1634 rum_bbp_write(sc, 17, bbp17); 1635 rum_bbp_write(sc, 96, bbp96); 1636 rum_bbp_write(sc, 104, bbp104); 1637 1638 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1639 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1640 rum_bbp_write(sc, 75, 0x80); 1641 rum_bbp_write(sc, 86, 0x80); 1642 rum_bbp_write(sc, 88, 0x80); 1643 } 1644 1645 rum_bbp_write(sc, 35, bbp35); 1646 rum_bbp_write(sc, 97, bbp97); 1647 rum_bbp_write(sc, 98, bbp98); 1648 1649 tmp = rum_read(sc, RT2573_PHY_CSR0); 1650 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1651 if (IEEE80211_IS_CHAN_2GHZ(c)) 1652 tmp |= RT2573_PA_PE_2GHZ; 1653 else 1654 tmp |= RT2573_PA_PE_5GHZ; 1655 rum_write(sc, RT2573_PHY_CSR0, tmp); 1656 1657 /* 802.11a uses a 16 microseconds short interframe space */ 1658 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1659 } 1660 1661 static void 1662 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1663 { 1664 struct ieee80211com *ic = &sc->sc_ic; 1665 const struct rfprog *rfprog; 1666 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1667 int8_t power; 1668 u_int i, chan; 1669 1670 chan = ieee80211_chan2ieee(ic, c); 1671 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1672 return; 1673 1674 /* select the appropriate RF settings based on what EEPROM says */ 1675 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1676 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1677 1678 /* find the settings for this channel (we know it exists) */ 1679 for (i = 0; rfprog[i].chan != chan; i++); 1680 1681 power = sc->txpow[i]; 1682 if (power < 0) { 1683 bbp94 += power; 1684 power = 0; 1685 } else if (power > 31) { 1686 bbp94 += power - 31; 1687 power = 31; 1688 } 1689 1690 /* 1691 * If we are switching from the 2GHz band to the 5GHz band or 1692 * vice-versa, BBP registers need to be reprogrammed. 1693 */ 1694 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1695 rum_select_band(sc, c); 1696 rum_select_antenna(sc); 1697 } 1698 ic->ic_curchan = c; 1699 1700 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1701 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1702 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1703 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1704 1705 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1706 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1707 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1708 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1709 1710 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1711 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1712 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1713 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1714 1715 DELAY(10); 1716 1717 /* enable smart mode for MIMO-capable RFs */ 1718 bbp3 = rum_bbp_read(sc, 3); 1719 1720 bbp3 &= ~RT2573_SMART_MODE; 1721 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1722 bbp3 |= RT2573_SMART_MODE; 1723 1724 rum_bbp_write(sc, 3, bbp3); 1725 1726 if (bbp94 != RT2573_BBPR94_DEFAULT) 1727 rum_bbp_write(sc, 94, bbp94); 1728 } 1729 1730 /* 1731 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1732 * and HostAP operating modes. 1733 */ 1734 static void 1735 rum_enable_tsf_sync(struct rum_softc *sc) 1736 { 1737 struct ieee80211com *ic = &sc->sc_ic; 1738 uint32_t tmp; 1739 1740 if (ic->ic_opmode != IEEE80211_M_STA) { 1741 /* 1742 * Change default 16ms TBTT adjustment to 8ms. 1743 * Must be done before enabling beacon generation. 1744 */ 1745 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1746 } 1747 1748 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1749 1750 /* set beacon interval (in 1/16ms unit) */ 1751 tmp |= ic->ic_bss->ni_intval * 16; 1752 1753 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1754 if (ic->ic_opmode == IEEE80211_M_STA) 1755 tmp |= RT2573_TSF_MODE(1); 1756 else 1757 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1758 1759 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1760 } 1761 1762 static void 1763 rum_update_slot(struct rum_softc *sc) 1764 { 1765 struct ieee80211com *ic = &sc->sc_ic; 1766 uint8_t slottime; 1767 uint32_t tmp; 1768 1769 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1770 1771 tmp = rum_read(sc, RT2573_MAC_CSR9); 1772 tmp = (tmp & ~0xff) | slottime; 1773 rum_write(sc, RT2573_MAC_CSR9, tmp); 1774 1775 DPRINTF(("setting slot time to %uus\n", slottime)); 1776 } 1777 1778 static void 1779 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1780 { 1781 uint32_t tmp; 1782 1783 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1784 rum_write(sc, RT2573_MAC_CSR4, tmp); 1785 1786 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1787 rum_write(sc, RT2573_MAC_CSR5, tmp); 1788 } 1789 1790 static void 1791 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1792 { 1793 uint32_t tmp; 1794 1795 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1796 rum_write(sc, RT2573_MAC_CSR2, tmp); 1797 1798 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1799 rum_write(sc, RT2573_MAC_CSR3, tmp); 1800 } 1801 1802 static void 1803 rum_update_promisc(struct rum_softc *sc) 1804 { 1805 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1806 uint32_t tmp; 1807 1808 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1809 1810 tmp &= ~RT2573_DROP_NOT_TO_ME; 1811 if (!(ifp->if_flags & IFF_PROMISC)) 1812 tmp |= RT2573_DROP_NOT_TO_ME; 1813 1814 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1815 1816 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1817 "entering" : "leaving")); 1818 } 1819 1820 static const char * 1821 rum_get_rf(int rev) 1822 { 1823 switch (rev) { 1824 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1825 case RT2573_RF_2528: return "RT2528"; 1826 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1827 case RT2573_RF_5226: return "RT5226"; 1828 default: return "unknown"; 1829 } 1830 } 1831 1832 static void 1833 rum_read_eeprom(struct rum_softc *sc) 1834 { 1835 struct ieee80211com *ic = &sc->sc_ic; 1836 uint16_t val; 1837 #ifdef RUM_DEBUG 1838 int i; 1839 #endif 1840 1841 /* read MAC/BBP type */ 1842 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1843 sc->macbbp_rev = le16toh(val); 1844 1845 /* read MAC address */ 1846 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1847 1848 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1849 val = le16toh(val); 1850 sc->rf_rev = (val >> 11) & 0x1f; 1851 sc->hw_radio = (val >> 10) & 0x1; 1852 sc->rx_ant = (val >> 4) & 0x3; 1853 sc->tx_ant = (val >> 2) & 0x3; 1854 sc->nb_ant = val & 0x3; 1855 1856 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1857 1858 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1859 val = le16toh(val); 1860 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1861 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1862 1863 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1864 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1865 1866 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1867 val = le16toh(val); 1868 if ((val & 0xff) != 0xff) 1869 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1870 1871 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1872 val = le16toh(val); 1873 if ((val & 0xff) != 0xff) 1874 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1875 1876 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1877 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1878 1879 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1880 val = le16toh(val); 1881 if ((val & 0xff) != 0xff) 1882 sc->rffreq = val & 0xff; 1883 1884 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1885 1886 /* read Tx power for all a/b/g channels */ 1887 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1888 /* XXX default Tx power for 802.11a channels */ 1889 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14); 1890 #ifdef RUM_DEBUG 1891 for (i = 0; i < 14; i++) 1892 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1893 #endif 1894 1895 /* read default values for BBP registers */ 1896 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1897 #ifdef RUM_DEBUG 1898 for (i = 0; i < 14; i++) { 1899 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1900 continue; 1901 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1902 sc->bbp_prom[i].val)); 1903 } 1904 #endif 1905 } 1906 1907 static int 1908 rum_bbp_init(struct rum_softc *sc) 1909 { 1910 unsigned int i, ntries; 1911 uint8_t val; 1912 1913 /* wait for BBP to be ready */ 1914 for (ntries = 0; ntries < 100; ntries++) { 1915 val = rum_bbp_read(sc, 0); 1916 if (val != 0 && val != 0xff) 1917 break; 1918 DELAY(1000); 1919 } 1920 if (ntries == 100) { 1921 printf("%s: timeout waiting for BBP\n", 1922 device_xname(sc->sc_dev)); 1923 return EIO; 1924 } 1925 1926 /* initialize BBP registers to default values */ 1927 for (i = 0; i < __arraycount(rum_def_bbp); i++) 1928 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1929 1930 /* write vendor-specific BBP values (from EEPROM) */ 1931 for (i = 0; i < 16; i++) { 1932 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1933 continue; 1934 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1935 } 1936 1937 return 0; 1938 } 1939 1940 static int 1941 rum_init(struct ifnet *ifp) 1942 { 1943 struct rum_softc *sc = ifp->if_softc; 1944 struct ieee80211com *ic = &sc->sc_ic; 1945 uint32_t tmp; 1946 usbd_status error = 0; 1947 unsigned int i, ntries; 1948 1949 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1950 if (rum_attachhook(sc)) 1951 goto fail; 1952 } 1953 1954 rum_stop(ifp, 0); 1955 1956 /* initialize MAC registers to default values */ 1957 for (i = 0; i < __arraycount(rum_def_mac); i++) 1958 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1959 1960 /* set host ready */ 1961 rum_write(sc, RT2573_MAC_CSR1, 3); 1962 rum_write(sc, RT2573_MAC_CSR1, 0); 1963 1964 /* wait for BBP/RF to wakeup */ 1965 for (ntries = 0; ntries < 1000; ntries++) { 1966 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1967 break; 1968 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1969 DELAY(1000); 1970 } 1971 if (ntries == 1000) { 1972 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1973 device_xname(sc->sc_dev)); 1974 goto fail; 1975 } 1976 1977 if ((error = rum_bbp_init(sc)) != 0) 1978 goto fail; 1979 1980 /* select default channel */ 1981 rum_select_band(sc, ic->ic_curchan); 1982 rum_select_antenna(sc); 1983 rum_set_chan(sc, ic->ic_curchan); 1984 1985 /* clear STA registers */ 1986 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 1987 1988 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1989 rum_set_macaddr(sc, ic->ic_myaddr); 1990 1991 /* initialize ASIC */ 1992 rum_write(sc, RT2573_MAC_CSR1, 4); 1993 1994 /* 1995 * Allocate xfer for AMRR statistics requests. 1996 */ 1997 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 1998 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, 1999 &sc->amrr_xfer); 2000 if (error) { 2001 printf("%s: could not allocate AMRR xfer\n", 2002 device_xname(sc->sc_dev)); 2003 goto fail; 2004 } 2005 2006 /* 2007 * Open Tx and Rx USB bulk pipes. 2008 */ 2009 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2010 &sc->sc_tx_pipeh); 2011 if (error != 0) { 2012 printf("%s: could not open Tx pipe: %s\n", 2013 device_xname(sc->sc_dev), usbd_errstr(error)); 2014 goto fail; 2015 } 2016 2017 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2018 &sc->sc_rx_pipeh); 2019 if (error != 0) { 2020 printf("%s: could not open Rx pipe: %s\n", 2021 device_xname(sc->sc_dev), usbd_errstr(error)); 2022 goto fail; 2023 } 2024 2025 /* 2026 * Allocate Tx and Rx xfer queues. 2027 */ 2028 error = rum_alloc_tx_list(sc); 2029 if (error != 0) { 2030 printf("%s: could not allocate Tx list\n", 2031 device_xname(sc->sc_dev)); 2032 goto fail; 2033 } 2034 2035 error = rum_alloc_rx_list(sc); 2036 if (error != 0) { 2037 printf("%s: could not allocate Rx list\n", 2038 device_xname(sc->sc_dev)); 2039 goto fail; 2040 } 2041 2042 /* 2043 * Start up the receive pipe. 2044 */ 2045 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2046 struct rum_rx_data *data; 2047 2048 data = &sc->rx_data[i]; 2049 2050 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2051 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2052 error = usbd_transfer(data->xfer); 2053 if (error != USBD_NORMAL_COMPLETION && 2054 error != USBD_IN_PROGRESS) { 2055 printf("%s: could not queue Rx transfer\n", 2056 device_xname(sc->sc_dev)); 2057 goto fail; 2058 } 2059 } 2060 2061 /* update Rx filter */ 2062 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2063 2064 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2065 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2066 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2067 RT2573_DROP_ACKCTS; 2068 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2069 tmp |= RT2573_DROP_TODS; 2070 if (!(ifp->if_flags & IFF_PROMISC)) 2071 tmp |= RT2573_DROP_NOT_TO_ME; 2072 } 2073 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2074 2075 ifp->if_flags &= ~IFF_OACTIVE; 2076 ifp->if_flags |= IFF_RUNNING; 2077 2078 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2079 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2080 else 2081 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2082 2083 return 0; 2084 2085 fail: rum_stop(ifp, 1); 2086 return error; 2087 } 2088 2089 static void 2090 rum_stop(struct ifnet *ifp, int disable) 2091 { 2092 struct rum_softc *sc = ifp->if_softc; 2093 struct ieee80211com *ic = &sc->sc_ic; 2094 uint32_t tmp; 2095 2096 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2097 2098 sc->sc_tx_timer = 0; 2099 ifp->if_timer = 0; 2100 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2101 2102 /* disable Rx */ 2103 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2104 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2105 2106 /* reset ASIC */ 2107 rum_write(sc, RT2573_MAC_CSR1, 3); 2108 rum_write(sc, RT2573_MAC_CSR1, 0); 2109 2110 if (sc->amrr_xfer != NULL) { 2111 usbd_destroy_xfer(sc->amrr_xfer); 2112 sc->amrr_xfer = NULL; 2113 } 2114 2115 if (sc->sc_rx_pipeh != NULL) { 2116 usbd_abort_pipe(sc->sc_rx_pipeh); 2117 } 2118 2119 if (sc->sc_tx_pipeh != NULL) { 2120 usbd_abort_pipe(sc->sc_tx_pipeh); 2121 } 2122 2123 rum_free_rx_list(sc); 2124 rum_free_tx_list(sc); 2125 2126 if (sc->sc_rx_pipeh != NULL) { 2127 usbd_close_pipe(sc->sc_rx_pipeh); 2128 sc->sc_rx_pipeh = NULL; 2129 } 2130 2131 if (sc->sc_tx_pipeh != NULL) { 2132 usbd_close_pipe(sc->sc_tx_pipeh); 2133 sc->sc_tx_pipeh = NULL; 2134 } 2135 } 2136 2137 static int 2138 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2139 { 2140 usb_device_request_t req; 2141 uint16_t reg = RT2573_MCU_CODE_BASE; 2142 usbd_status error; 2143 2144 /* copy firmware image into NIC */ 2145 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2146 rum_write(sc, reg, UGETDW(ucode)); 2147 2148 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2149 req.bRequest = RT2573_MCU_CNTL; 2150 USETW(req.wValue, RT2573_MCU_RUN); 2151 USETW(req.wIndex, 0); 2152 USETW(req.wLength, 0); 2153 2154 error = usbd_do_request(sc->sc_udev, &req, NULL); 2155 if (error != 0) { 2156 printf("%s: could not run firmware: %s\n", 2157 device_xname(sc->sc_dev), usbd_errstr(error)); 2158 } 2159 return error; 2160 } 2161 2162 static int 2163 rum_prepare_beacon(struct rum_softc *sc) 2164 { 2165 struct ieee80211com *ic = &sc->sc_ic; 2166 struct rum_tx_desc desc; 2167 struct mbuf *m0; 2168 int rate; 2169 2170 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2171 if (m0 == NULL) { 2172 aprint_error_dev(sc->sc_dev, 2173 "could not allocate beacon frame\n"); 2174 return ENOBUFS; 2175 } 2176 2177 /* send beacons at the lowest available rate */ 2178 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2179 2180 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2181 m0->m_pkthdr.len, rate); 2182 2183 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2184 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2185 2186 /* copy beacon header and payload into NIC memory */ 2187 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2188 m0->m_pkthdr.len); 2189 2190 m_freem(m0); 2191 2192 return 0; 2193 } 2194 2195 static void 2196 rum_newassoc(struct ieee80211_node *ni, int isnew) 2197 { 2198 /* start with lowest Tx rate */ 2199 ni->ni_txrate = 0; 2200 } 2201 2202 static void 2203 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2204 { 2205 int i; 2206 2207 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2208 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2209 2210 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2211 2212 /* set rate to some reasonable initial value */ 2213 for (i = ni->ni_rates.rs_nrates - 1; 2214 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2215 i--); 2216 ni->ni_txrate = i; 2217 2218 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2219 } 2220 2221 static void 2222 rum_amrr_timeout(void *arg) 2223 { 2224 struct rum_softc *sc = arg; 2225 usb_device_request_t req; 2226 2227 /* 2228 * Asynchronously read statistic registers (cleared by read). 2229 */ 2230 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2231 req.bRequest = RT2573_READ_MULTI_MAC; 2232 USETW(req.wValue, 0); 2233 USETW(req.wIndex, RT2573_STA_CSR0); 2234 USETW(req.wLength, sizeof(sc->sta)); 2235 2236 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2237 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2238 rum_amrr_update); 2239 (void)usbd_transfer(sc->amrr_xfer); 2240 } 2241 2242 static void 2243 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2244 usbd_status status) 2245 { 2246 struct rum_softc *sc = (struct rum_softc *)priv; 2247 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2248 2249 if (status != USBD_NORMAL_COMPLETION) { 2250 printf("%s: could not retrieve Tx statistics - cancelling " 2251 "automatic rate control\n", device_xname(sc->sc_dev)); 2252 return; 2253 } 2254 2255 /* count TX retry-fail as Tx errors */ 2256 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2257 2258 sc->amn.amn_retrycnt = 2259 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2260 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2261 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2262 2263 sc->amn.amn_txcnt = 2264 sc->amn.amn_retrycnt + 2265 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2266 2267 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2268 2269 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2270 } 2271 2272 static int 2273 rum_activate(device_t self, enum devact act) 2274 { 2275 switch (act) { 2276 case DVACT_DEACTIVATE: 2277 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2278 return 0; 2279 default: 2280 return 0; 2281 } 2282 } 2283 2284 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf"); 2285 2286 #ifdef _MODULE 2287 #include "ioconf.c" 2288 #endif 2289 2290 static int 2291 if_rum_modcmd(modcmd_t cmd, void *aux) 2292 { 2293 int error = 0; 2294 2295 switch (cmd) { 2296 case MODULE_CMD_INIT: 2297 #ifdef _MODULE 2298 error = config_init_component(cfdriver_ioconf_rum, 2299 cfattach_ioconf_rum, cfdata_ioconf_rum); 2300 #endif 2301 return error; 2302 case MODULE_CMD_FINI: 2303 #ifdef _MODULE 2304 error = config_fini_component(cfdriver_ioconf_rum, 2305 cfattach_ioconf_rum, cfdata_ioconf_rum); 2306 #endif 2307 return error; 2308 default: 2309 return ENOTTY; 2310 } 2311 } 2312