xref: /netbsd-src/sys/dev/usb/if_rum.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.47 2013/01/22 12:40:42 jmcneill Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.47 2013/01/22 12:40:42 jmcneill Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/firmload.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_rumreg.h>
71 #include <dev/usb/if_rumvar.h>
72 
73 #ifdef RUM_DEBUG
74 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
76 int rum_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno rum_devs[] = {
84 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
85 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
86 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
89 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
91 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
92 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
93 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
94 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
95 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
96 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
97 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
98 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
99 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
100 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
101 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
102 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
103 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
104 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
108 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
109 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
125 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
128 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
131 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
133 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
135 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
136 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
137 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
138 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
139 };
140 
141 static int		rum_attachhook(void *);
142 static int		rum_alloc_tx_list(struct rum_softc *);
143 static void		rum_free_tx_list(struct rum_softc *);
144 static int		rum_alloc_rx_list(struct rum_softc *);
145 static void		rum_free_rx_list(struct rum_softc *);
146 static int		rum_media_change(struct ifnet *);
147 static void		rum_next_scan(void *);
148 static void		rum_task(void *);
149 static int		rum_newstate(struct ieee80211com *,
150 			    enum ieee80211_state, int);
151 static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
152 			    usbd_status);
153 static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
154 			    usbd_status);
155 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
156 static int		rum_ack_rate(struct ieee80211com *, int);
157 static uint16_t		rum_txtime(int, int, uint32_t);
158 static uint8_t		rum_plcp_signal(int);
159 static void		rum_setup_tx_desc(struct rum_softc *,
160 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
161 			    int);
162 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
163 			    struct ieee80211_node *);
164 static void		rum_start(struct ifnet *);
165 static void		rum_watchdog(struct ifnet *);
166 static int		rum_ioctl(struct ifnet *, u_long, void *);
167 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
168 			    int);
169 static uint32_t		rum_read(struct rum_softc *, uint16_t);
170 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
171 			    int);
172 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
173 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
174 			    size_t);
175 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
176 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
177 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
178 static void		rum_select_antenna(struct rum_softc *);
179 static void		rum_enable_mrr(struct rum_softc *);
180 static void		rum_set_txpreamble(struct rum_softc *);
181 static void		rum_set_basicrates(struct rum_softc *);
182 static void		rum_select_band(struct rum_softc *,
183 			    struct ieee80211_channel *);
184 static void		rum_set_chan(struct rum_softc *,
185 			    struct ieee80211_channel *);
186 static void		rum_enable_tsf_sync(struct rum_softc *);
187 static void		rum_update_slot(struct rum_softc *);
188 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
189 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
190 static void		rum_update_promisc(struct rum_softc *);
191 static const char	*rum_get_rf(int);
192 static void		rum_read_eeprom(struct rum_softc *);
193 static int		rum_bbp_init(struct rum_softc *);
194 static int		rum_init(struct ifnet *);
195 static void		rum_stop(struct ifnet *, int);
196 static int		rum_load_microcode(struct rum_softc *, const u_char *,
197 			    size_t);
198 static int		rum_prepare_beacon(struct rum_softc *);
199 static void		rum_newassoc(struct ieee80211_node *, int);
200 static void		rum_amrr_start(struct rum_softc *,
201 			    struct ieee80211_node *);
202 static void		rum_amrr_timeout(void *);
203 static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
204 			    usbd_status status);
205 
206 /*
207  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
208  */
209 static const struct ieee80211_rateset rum_rateset_11a =
210 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
211 
212 static const struct ieee80211_rateset rum_rateset_11b =
213 	{ 4, { 2, 4, 11, 22 } };
214 
215 static const struct ieee80211_rateset rum_rateset_11g =
216 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
217 
218 static const struct {
219 	uint32_t	reg;
220 	uint32_t	val;
221 } rum_def_mac[] = {
222 	RT2573_DEF_MAC
223 };
224 
225 static const struct {
226 	uint8_t	reg;
227 	uint8_t	val;
228 } rum_def_bbp[] = {
229 	RT2573_DEF_BBP
230 };
231 
232 static const struct rfprog {
233 	uint8_t		chan;
234 	uint32_t	r1, r2, r3, r4;
235 }  rum_rf5226[] = {
236 	RT2573_RF5226
237 }, rum_rf5225[] = {
238 	RT2573_RF5225
239 };
240 
241 static int rum_match(device_t, cfdata_t, void *);
242 static void rum_attach(device_t, device_t, void *);
243 static int rum_detach(device_t, int);
244 static int rum_activate(device_t, enum devact);
245 extern struct cfdriver rum_cd;
246 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
247     rum_detach, rum_activate);
248 
249 static int
250 rum_match(device_t parent, cfdata_t match, void *aux)
251 {
252 	struct usb_attach_arg *uaa = aux;
253 
254 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
255 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
256 }
257 
258 static int
259 rum_attachhook(void *xsc)
260 {
261 	struct rum_softc *sc = xsc;
262 	firmware_handle_t fwh;
263 	const char *name = "rum-rt2573";
264 	u_char *ucode;
265 	size_t size;
266 	int error;
267 
268 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
269 		printf("%s: failed loadfirmware of file %s (error %d)\n",
270 		    device_xname(sc->sc_dev), name, error);
271 		return error;
272 	}
273 	size = firmware_get_size(fwh);
274 	ucode = firmware_malloc(size);
275 	if (ucode == NULL) {
276 		printf("%s: failed to allocate firmware memory\n",
277 		    device_xname(sc->sc_dev));
278 		firmware_close(fwh);
279 		return ENOMEM;
280 	}
281 	error = firmware_read(fwh, 0, ucode, size);
282 	firmware_close(fwh);
283 	if (error != 0) {
284 		printf("%s: failed to read firmware (error %d)\n",
285 		    device_xname(sc->sc_dev), error);
286 		firmware_free(ucode, 0);
287 		return error;
288 	}
289 
290 	if (rum_load_microcode(sc, ucode, size) != 0) {
291 		printf("%s: could not load 8051 microcode\n",
292 		    device_xname(sc->sc_dev));
293 		firmware_free(ucode, 0);
294 		return ENXIO;
295 	}
296 
297 	firmware_free(ucode, 0);
298 	sc->sc_flags |= RT2573_FWLOADED;
299 
300 	return 0;
301 }
302 
303 static void
304 rum_attach(device_t parent, device_t self, void *aux)
305 {
306 	struct rum_softc *sc = device_private(self);
307 	struct usb_attach_arg *uaa = aux;
308 	struct ieee80211com *ic = &sc->sc_ic;
309 	struct ifnet *ifp = &sc->sc_if;
310 	usb_interface_descriptor_t *id;
311 	usb_endpoint_descriptor_t *ed;
312 	usbd_status error;
313 	char *devinfop;
314 	int i, ntries;
315 	uint32_t tmp;
316 
317 	sc->sc_dev = self;
318 	sc->sc_udev = uaa->device;
319 	sc->sc_flags = 0;
320 
321 	aprint_naive("\n");
322 	aprint_normal("\n");
323 
324 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
325 	aprint_normal_dev(self, "%s\n", devinfop);
326 	usbd_devinfo_free(devinfop);
327 
328 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
329 	if (error != 0) {
330 		aprint_error_dev(self, "failed to set configuration"
331 		    ", err=%s\n", usbd_errstr(error));
332 		return;
333 	}
334 
335 	/* get the first interface handle */
336 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
337 	    &sc->sc_iface);
338 	if (error != 0) {
339 		aprint_error_dev(self, "could not get interface handle\n");
340 		return;
341 	}
342 
343 	/*
344 	 * Find endpoints.
345 	 */
346 	id = usbd_get_interface_descriptor(sc->sc_iface);
347 
348 	sc->sc_rx_no = sc->sc_tx_no = -1;
349 	for (i = 0; i < id->bNumEndpoints; i++) {
350 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
351 		if (ed == NULL) {
352 			aprint_error_dev(self,
353 			    "no endpoint descriptor for iface %d\n", i);
354 			return;
355 		}
356 
357 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
358 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
359 			sc->sc_rx_no = ed->bEndpointAddress;
360 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
361 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 			sc->sc_tx_no = ed->bEndpointAddress;
363 	}
364 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
365 		aprint_error_dev(self, "missing endpoint\n");
366 		return;
367 	}
368 
369 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
370 	callout_init(&sc->sc_scan_ch, 0);
371 
372 	sc->amrr.amrr_min_success_threshold =  1;
373 	sc->amrr.amrr_max_success_threshold = 10;
374 	callout_init(&sc->sc_amrr_ch, 0);
375 
376 	/* retrieve RT2573 rev. no */
377 	for (ntries = 0; ntries < 1000; ntries++) {
378 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
379 			break;
380 		DELAY(1000);
381 	}
382 	if (ntries == 1000) {
383 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
384 		return;
385 	}
386 
387 	/* retrieve MAC address and various other things from EEPROM */
388 	rum_read_eeprom(sc);
389 
390 	aprint_normal_dev(self,
391 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
392 	    sc->macbbp_rev, tmp,
393 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
394 
395 	ic->ic_ifp = ifp;
396 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
397 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
398 	ic->ic_state = IEEE80211_S_INIT;
399 
400 	/* set device capabilities */
401 	ic->ic_caps =
402 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
403 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
404 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
405 	    IEEE80211_C_TXPMGT |	/* tx power management */
406 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
407 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
408 	    IEEE80211_C_WPA;		/* 802.11i */
409 
410 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
411 		/* set supported .11a rates */
412 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
413 
414 		/* set supported .11a channels */
415 		for (i = 34; i <= 46; i += 4) {
416 			ic->ic_channels[i].ic_freq =
417 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419 		}
420 		for (i = 36; i <= 64; i += 4) {
421 			ic->ic_channels[i].ic_freq =
422 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424 		}
425 		for (i = 100; i <= 140; i += 4) {
426 			ic->ic_channels[i].ic_freq =
427 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
428 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
429 		}
430 		for (i = 149; i <= 165; i += 4) {
431 			ic->ic_channels[i].ic_freq =
432 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
433 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
434 		}
435 	}
436 
437 	/* set supported .11b and .11g rates */
438 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
439 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
440 
441 	/* set supported .11b and .11g channels (1 through 14) */
442 	for (i = 1; i <= 14; i++) {
443 		ic->ic_channels[i].ic_freq =
444 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
445 		ic->ic_channels[i].ic_flags =
446 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
447 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
448 	}
449 
450 	ifp->if_softc = sc;
451 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
452 	ifp->if_init = rum_init;
453 	ifp->if_ioctl = rum_ioctl;
454 	ifp->if_start = rum_start;
455 	ifp->if_watchdog = rum_watchdog;
456 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
457 	IFQ_SET_READY(&ifp->if_snd);
458 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
459 
460 	if_attach(ifp);
461 	ieee80211_ifattach(ic);
462 	ic->ic_newassoc = rum_newassoc;
463 
464 	/* override state transition machine */
465 	sc->sc_newstate = ic->ic_newstate;
466 	ic->ic_newstate = rum_newstate;
467 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
468 
469 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
470 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
471 	    &sc->sc_drvbpf);
472 
473 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
474 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
475 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
476 
477 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
478 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
479 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
480 
481 	ieee80211_announce(ic);
482 
483 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
484 	    sc->sc_dev);
485 
486 	return;
487 }
488 
489 static int
490 rum_detach(device_t self, int flags)
491 {
492 	struct rum_softc *sc = device_private(self);
493 	struct ieee80211com *ic = &sc->sc_ic;
494 	struct ifnet *ifp = &sc->sc_if;
495 	int s;
496 
497 	if (!ifp->if_softc)
498 		return 0;
499 
500 	s = splusb();
501 
502 	rum_stop(ifp, 1);
503 	usb_rem_task(sc->sc_udev, &sc->sc_task);
504 	callout_stop(&sc->sc_scan_ch);
505 	callout_stop(&sc->sc_amrr_ch);
506 
507 	if (sc->amrr_xfer != NULL) {
508 		usbd_free_xfer(sc->amrr_xfer);
509 		sc->amrr_xfer = NULL;
510 	}
511 
512 	if (sc->sc_rx_pipeh != NULL) {
513 		usbd_abort_pipe(sc->sc_rx_pipeh);
514 		usbd_close_pipe(sc->sc_rx_pipeh);
515 	}
516 
517 	if (sc->sc_tx_pipeh != NULL) {
518 		usbd_abort_pipe(sc->sc_tx_pipeh);
519 		usbd_close_pipe(sc->sc_tx_pipeh);
520 	}
521 
522 	bpf_detach(ifp);
523 	ieee80211_ifdetach(ic);	/* free all nodes */
524 	if_detach(ifp);
525 
526 	splx(s);
527 
528 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
529 
530 	return 0;
531 }
532 
533 static int
534 rum_alloc_tx_list(struct rum_softc *sc)
535 {
536 	struct rum_tx_data *data;
537 	int i, error;
538 
539 	sc->tx_cur = sc->tx_queued = 0;
540 
541 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
542 		data = &sc->tx_data[i];
543 
544 		data->sc = sc;
545 
546 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
547 		if (data->xfer == NULL) {
548 			printf("%s: could not allocate tx xfer\n",
549 			    device_xname(sc->sc_dev));
550 			error = ENOMEM;
551 			goto fail;
552 		}
553 
554 		data->buf = usbd_alloc_buffer(data->xfer,
555 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
556 		if (data->buf == NULL) {
557 			printf("%s: could not allocate tx buffer\n",
558 			    device_xname(sc->sc_dev));
559 			error = ENOMEM;
560 			goto fail;
561 		}
562 
563 		/* clean Tx descriptor */
564 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
565 	}
566 
567 	return 0;
568 
569 fail:	rum_free_tx_list(sc);
570 	return error;
571 }
572 
573 static void
574 rum_free_tx_list(struct rum_softc *sc)
575 {
576 	struct rum_tx_data *data;
577 	int i;
578 
579 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
580 		data = &sc->tx_data[i];
581 
582 		if (data->xfer != NULL) {
583 			usbd_free_xfer(data->xfer);
584 			data->xfer = NULL;
585 		}
586 
587 		if (data->ni != NULL) {
588 			ieee80211_free_node(data->ni);
589 			data->ni = NULL;
590 		}
591 	}
592 }
593 
594 static int
595 rum_alloc_rx_list(struct rum_softc *sc)
596 {
597 	struct rum_rx_data *data;
598 	int i, error;
599 
600 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
601 		data = &sc->rx_data[i];
602 
603 		data->sc = sc;
604 
605 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
606 		if (data->xfer == NULL) {
607 			printf("%s: could not allocate rx xfer\n",
608 			    device_xname(sc->sc_dev));
609 			error = ENOMEM;
610 			goto fail;
611 		}
612 
613 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
614 			printf("%s: could not allocate rx buffer\n",
615 			    device_xname(sc->sc_dev));
616 			error = ENOMEM;
617 			goto fail;
618 		}
619 
620 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
621 		if (data->m == NULL) {
622 			printf("%s: could not allocate rx mbuf\n",
623 			    device_xname(sc->sc_dev));
624 			error = ENOMEM;
625 			goto fail;
626 		}
627 
628 		MCLGET(data->m, M_DONTWAIT);
629 		if (!(data->m->m_flags & M_EXT)) {
630 			printf("%s: could not allocate rx mbuf cluster\n",
631 			    device_xname(sc->sc_dev));
632 			error = ENOMEM;
633 			goto fail;
634 		}
635 
636 		data->buf = mtod(data->m, uint8_t *);
637 	}
638 
639 	return 0;
640 
641 fail:	rum_free_rx_list(sc);
642 	return error;
643 }
644 
645 static void
646 rum_free_rx_list(struct rum_softc *sc)
647 {
648 	struct rum_rx_data *data;
649 	int i;
650 
651 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
652 		data = &sc->rx_data[i];
653 
654 		if (data->xfer != NULL) {
655 			usbd_free_xfer(data->xfer);
656 			data->xfer = NULL;
657 		}
658 
659 		if (data->m != NULL) {
660 			m_freem(data->m);
661 			data->m = NULL;
662 		}
663 	}
664 }
665 
666 static int
667 rum_media_change(struct ifnet *ifp)
668 {
669 	int error;
670 
671 	error = ieee80211_media_change(ifp);
672 	if (error != ENETRESET)
673 		return error;
674 
675 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
676 		rum_init(ifp);
677 
678 	return 0;
679 }
680 
681 /*
682  * This function is called periodically (every 200ms) during scanning to
683  * switch from one channel to another.
684  */
685 static void
686 rum_next_scan(void *arg)
687 {
688 	struct rum_softc *sc = arg;
689 	struct ieee80211com *ic = &sc->sc_ic;
690 	int s;
691 
692 	s = splnet();
693 	if (ic->ic_state == IEEE80211_S_SCAN)
694 		ieee80211_next_scan(ic);
695 	splx(s);
696 }
697 
698 static void
699 rum_task(void *arg)
700 {
701 	struct rum_softc *sc = arg;
702 	struct ieee80211com *ic = &sc->sc_ic;
703 	enum ieee80211_state ostate;
704 	struct ieee80211_node *ni;
705 	uint32_t tmp;
706 
707 	ostate = ic->ic_state;
708 
709 	switch (sc->sc_state) {
710 	case IEEE80211_S_INIT:
711 		if (ostate == IEEE80211_S_RUN) {
712 			/* abort TSF synchronization */
713 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
714 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
715 		}
716 		break;
717 
718 	case IEEE80211_S_SCAN:
719 		rum_set_chan(sc, ic->ic_curchan);
720 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
721 		break;
722 
723 	case IEEE80211_S_AUTH:
724 		rum_set_chan(sc, ic->ic_curchan);
725 		break;
726 
727 	case IEEE80211_S_ASSOC:
728 		rum_set_chan(sc, ic->ic_curchan);
729 		break;
730 
731 	case IEEE80211_S_RUN:
732 		rum_set_chan(sc, ic->ic_curchan);
733 
734 		ni = ic->ic_bss;
735 
736 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
737 			rum_update_slot(sc);
738 			rum_enable_mrr(sc);
739 			rum_set_txpreamble(sc);
740 			rum_set_basicrates(sc);
741 			rum_set_bssid(sc, ni->ni_bssid);
742 		}
743 
744 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
745 		    ic->ic_opmode == IEEE80211_M_IBSS)
746 			rum_prepare_beacon(sc);
747 
748 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
749 			rum_enable_tsf_sync(sc);
750 
751 		if (ic->ic_opmode == IEEE80211_M_STA) {
752 			/* fake a join to init the tx rate */
753 			rum_newassoc(ic->ic_bss, 1);
754 
755 			/* enable automatic rate adaptation in STA mode */
756 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
757 				rum_amrr_start(sc, ni);
758 		}
759 
760 		break;
761 	}
762 
763 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
764 }
765 
766 static int
767 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
768 {
769 	struct rum_softc *sc = ic->ic_ifp->if_softc;
770 
771 	usb_rem_task(sc->sc_udev, &sc->sc_task);
772 	callout_stop(&sc->sc_scan_ch);
773 	callout_stop(&sc->sc_amrr_ch);
774 
775 	/* do it in a process context */
776 	sc->sc_state = nstate;
777 	sc->sc_arg = arg;
778 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
779 
780 	return 0;
781 }
782 
783 /* quickly determine if a given rate is CCK or OFDM */
784 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
785 
786 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
787 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
788 
789 static void
790 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
791 {
792 	struct rum_tx_data *data = priv;
793 	struct rum_softc *sc = data->sc;
794 	struct ifnet *ifp = &sc->sc_if;
795 	int s;
796 
797 	if (status != USBD_NORMAL_COMPLETION) {
798 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
799 			return;
800 
801 		printf("%s: could not transmit buffer: %s\n",
802 		    device_xname(sc->sc_dev), usbd_errstr(status));
803 
804 		if (status == USBD_STALLED)
805 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
806 
807 		ifp->if_oerrors++;
808 		return;
809 	}
810 
811 	s = splnet();
812 
813 	ieee80211_free_node(data->ni);
814 	data->ni = NULL;
815 
816 	sc->tx_queued--;
817 	ifp->if_opackets++;
818 
819 	DPRINTFN(10, ("tx done\n"));
820 
821 	sc->sc_tx_timer = 0;
822 	ifp->if_flags &= ~IFF_OACTIVE;
823 	rum_start(ifp);
824 
825 	splx(s);
826 }
827 
828 static void
829 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
830 {
831 	struct rum_rx_data *data = priv;
832 	struct rum_softc *sc = data->sc;
833 	struct ieee80211com *ic = &sc->sc_ic;
834 	struct ifnet *ifp = &sc->sc_if;
835 	struct rum_rx_desc *desc;
836 	struct ieee80211_frame *wh;
837 	struct ieee80211_node *ni;
838 	struct mbuf *mnew, *m;
839 	int s, len;
840 
841 	if (status != USBD_NORMAL_COMPLETION) {
842 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
843 			return;
844 
845 		if (status == USBD_STALLED)
846 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
847 		goto skip;
848 	}
849 
850 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
851 
852 	if (len < (int)(RT2573_RX_DESC_SIZE +
853 		        sizeof(struct ieee80211_frame_min))) {
854 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
855 		    len));
856 		ifp->if_ierrors++;
857 		goto skip;
858 	}
859 
860 	desc = (struct rum_rx_desc *)data->buf;
861 
862 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
863 		/*
864 		 * This should not happen since we did not request to receive
865 		 * those frames when we filled RT2573_TXRX_CSR0.
866 		 */
867 		DPRINTFN(5, ("CRC error\n"));
868 		ifp->if_ierrors++;
869 		goto skip;
870 	}
871 
872 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
873 	if (mnew == NULL) {
874 		printf("%s: could not allocate rx mbuf\n",
875 		    device_xname(sc->sc_dev));
876 		ifp->if_ierrors++;
877 		goto skip;
878 	}
879 
880 	MCLGET(mnew, M_DONTWAIT);
881 	if (!(mnew->m_flags & M_EXT)) {
882 		printf("%s: could not allocate rx mbuf cluster\n",
883 		    device_xname(sc->sc_dev));
884 		m_freem(mnew);
885 		ifp->if_ierrors++;
886 		goto skip;
887 	}
888 
889 	m = data->m;
890 	data->m = mnew;
891 	data->buf = mtod(data->m, uint8_t *);
892 
893 	/* finalize mbuf */
894 	m->m_pkthdr.rcvif = ifp;
895 	m->m_data = (void *)(desc + 1);
896 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
897 
898 	s = splnet();
899 
900 	if (sc->sc_drvbpf != NULL) {
901 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
902 
903 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
904 		tap->wr_rate = rum_rxrate(desc);
905 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
906 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
907 		tap->wr_antenna = sc->rx_ant;
908 		tap->wr_antsignal = desc->rssi;
909 
910 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
911 	}
912 
913 	wh = mtod(m, struct ieee80211_frame *);
914 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
915 
916 	/* send the frame to the 802.11 layer */
917 	ieee80211_input(ic, m, ni, desc->rssi, 0);
918 
919 	/* node is no longer needed */
920 	ieee80211_free_node(ni);
921 
922 	splx(s);
923 
924 	DPRINTFN(15, ("rx done\n"));
925 
926 skip:	/* setup a new transfer */
927 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
928 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
929 	usbd_transfer(xfer);
930 }
931 
932 /*
933  * This function is only used by the Rx radiotap code. It returns the rate at
934  * which a given frame was received.
935  */
936 static uint8_t
937 rum_rxrate(const struct rum_rx_desc *desc)
938 {
939 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
940 		/* reverse function of rum_plcp_signal */
941 		switch (desc->rate) {
942 		case 0xb:	return 12;
943 		case 0xf:	return 18;
944 		case 0xa:	return 24;
945 		case 0xe:	return 36;
946 		case 0x9:	return 48;
947 		case 0xd:	return 72;
948 		case 0x8:	return 96;
949 		case 0xc:	return 108;
950 		}
951 	} else {
952 		if (desc->rate == 10)
953 			return 2;
954 		if (desc->rate == 20)
955 			return 4;
956 		if (desc->rate == 55)
957 			return 11;
958 		if (desc->rate == 110)
959 			return 22;
960 	}
961 	return 2;	/* should not get there */
962 }
963 
964 /*
965  * Return the expected ack rate for a frame transmitted at rate `rate'.
966  * XXX: this should depend on the destination node basic rate set.
967  */
968 static int
969 rum_ack_rate(struct ieee80211com *ic, int rate)
970 {
971 	switch (rate) {
972 	/* CCK rates */
973 	case 2:
974 		return 2;
975 	case 4:
976 	case 11:
977 	case 22:
978 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
979 
980 	/* OFDM rates */
981 	case 12:
982 	case 18:
983 		return 12;
984 	case 24:
985 	case 36:
986 		return 24;
987 	case 48:
988 	case 72:
989 	case 96:
990 	case 108:
991 		return 48;
992 	}
993 
994 	/* default to 1Mbps */
995 	return 2;
996 }
997 
998 /*
999  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1000  * The function automatically determines the operating mode depending on the
1001  * given rate. `flags' indicates whether short preamble is in use or not.
1002  */
1003 static uint16_t
1004 rum_txtime(int len, int rate, uint32_t flags)
1005 {
1006 	uint16_t txtime;
1007 
1008 	if (RUM_RATE_IS_OFDM(rate)) {
1009 		/* IEEE Std 802.11a-1999, pp. 37 */
1010 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1011 		txtime = 16 + 4 + 4 * txtime + 6;
1012 	} else {
1013 		/* IEEE Std 802.11b-1999, pp. 28 */
1014 		txtime = (16 * len + rate - 1) / rate;
1015 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1016 			txtime +=  72 + 24;
1017 		else
1018 			txtime += 144 + 48;
1019 	}
1020 	return txtime;
1021 }
1022 
1023 static uint8_t
1024 rum_plcp_signal(int rate)
1025 {
1026 	switch (rate) {
1027 	/* CCK rates (returned values are device-dependent) */
1028 	case 2:		return 0x0;
1029 	case 4:		return 0x1;
1030 	case 11:	return 0x2;
1031 	case 22:	return 0x3;
1032 
1033 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1034 	case 12:	return 0xb;
1035 	case 18:	return 0xf;
1036 	case 24:	return 0xa;
1037 	case 36:	return 0xe;
1038 	case 48:	return 0x9;
1039 	case 72:	return 0xd;
1040 	case 96:	return 0x8;
1041 	case 108:	return 0xc;
1042 
1043 	/* unsupported rates (should not get there) */
1044 	default:	return 0xff;
1045 	}
1046 }
1047 
1048 static void
1049 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1050     uint32_t flags, uint16_t xflags, int len, int rate)
1051 {
1052 	struct ieee80211com *ic = &sc->sc_ic;
1053 	uint16_t plcp_length;
1054 	int remainder;
1055 
1056 	desc->flags = htole32(flags);
1057 	desc->flags |= htole32(RT2573_TX_VALID);
1058 	desc->flags |= htole32(len << 16);
1059 
1060 	desc->xflags = htole16(xflags);
1061 
1062 	desc->wme = htole16(
1063 	    RT2573_QID(0) |
1064 	    RT2573_AIFSN(2) |
1065 	    RT2573_LOGCWMIN(4) |
1066 	    RT2573_LOGCWMAX(10));
1067 
1068 	/* setup PLCP fields */
1069 	desc->plcp_signal  = rum_plcp_signal(rate);
1070 	desc->plcp_service = 4;
1071 
1072 	len += IEEE80211_CRC_LEN;
1073 	if (RUM_RATE_IS_OFDM(rate)) {
1074 		desc->flags |= htole32(RT2573_TX_OFDM);
1075 
1076 		plcp_length = len & 0xfff;
1077 		desc->plcp_length_hi = plcp_length >> 6;
1078 		desc->plcp_length_lo = plcp_length & 0x3f;
1079 	} else {
1080 		plcp_length = (16 * len + rate - 1) / rate;
1081 		if (rate == 22) {
1082 			remainder = (16 * len) % 22;
1083 			if (remainder != 0 && remainder < 7)
1084 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1085 		}
1086 		desc->plcp_length_hi = plcp_length >> 8;
1087 		desc->plcp_length_lo = plcp_length & 0xff;
1088 
1089 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1090 			desc->plcp_signal |= 0x08;
1091 	}
1092 }
1093 
1094 #define RUM_TX_TIMEOUT	5000
1095 
1096 static int
1097 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1098 {
1099 	struct ieee80211com *ic = &sc->sc_ic;
1100 	struct rum_tx_desc *desc;
1101 	struct rum_tx_data *data;
1102 	struct ieee80211_frame *wh;
1103 	struct ieee80211_key *k;
1104 	uint32_t flags = 0;
1105 	uint16_t dur;
1106 	usbd_status error;
1107 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1108 
1109 	wh = mtod(m0, struct ieee80211_frame *);
1110 
1111 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1112 		k = ieee80211_crypto_encap(ic, ni, m0);
1113 		if (k == NULL) {
1114 			m_freem(m0);
1115 			return ENOBUFS;
1116 		}
1117 
1118 		/* packet header may have moved, reset our local pointer */
1119 		wh = mtod(m0, struct ieee80211_frame *);
1120 	}
1121 
1122 	/* compute actual packet length (including CRC and crypto overhead) */
1123 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1124 
1125 	/* pickup a rate */
1126 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1127 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1128 	     IEEE80211_FC0_TYPE_MGT)) {
1129 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1130 		rate = ni->ni_rates.rs_rates[0];
1131 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1132 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1133 	} else
1134 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1135 	if (rate == 0)
1136 		rate = 2;	/* XXX should not happen */
1137 	rate &= IEEE80211_RATE_VAL;
1138 
1139 	/* check if RTS/CTS or CTS-to-self protection must be used */
1140 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1141 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1142 		if (pktlen > ic->ic_rtsthreshold) {
1143 			needrts = 1;	/* RTS/CTS based on frame length */
1144 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1145 		    RUM_RATE_IS_OFDM(rate)) {
1146 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1147 				needcts = 1;	/* CTS-to-self */
1148 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1149 				needrts = 1;	/* RTS/CTS */
1150 		}
1151 	}
1152 	if (needrts || needcts) {
1153 		struct mbuf *mprot;
1154 		int protrate, ackrate;
1155 
1156 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1157 		ackrate  = rum_ack_rate(ic, rate);
1158 
1159 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1160 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1161 		      2 * sc->sifs;
1162 		if (needrts) {
1163 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1164 			    protrate), ic->ic_flags) + sc->sifs;
1165 			mprot = ieee80211_get_rts(ic, wh, dur);
1166 		} else {
1167 			mprot = ieee80211_get_cts_to_self(ic, dur);
1168 		}
1169 		if (mprot == NULL) {
1170 			aprint_error_dev(sc->sc_dev,
1171 			    "couldn't allocate protection frame\n");
1172 			m_freem(m0);
1173 			return ENOBUFS;
1174 		}
1175 
1176 		data = &sc->tx_data[sc->tx_cur];
1177 		desc = (struct rum_tx_desc *)data->buf;
1178 
1179 		/* avoid multiple free() of the same node for each fragment */
1180 		data->ni = ieee80211_ref_node(ni);
1181 
1182 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1183 		    data->buf + RT2573_TX_DESC_SIZE);
1184 		rum_setup_tx_desc(sc, desc,
1185 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1186 		    0, mprot->m_pkthdr.len, protrate);
1187 
1188 		/* no roundup necessary here */
1189 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1190 
1191 		/* XXX may want to pass the protection frame to BPF */
1192 
1193 		/* mbuf is no longer needed */
1194 		m_freem(mprot);
1195 
1196 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1197 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1198 		    RUM_TX_TIMEOUT, rum_txeof);
1199 		error = usbd_transfer(data->xfer);
1200 		if (error != USBD_NORMAL_COMPLETION &&
1201 		    error != USBD_IN_PROGRESS) {
1202 			m_freem(m0);
1203 			return error;
1204 		}
1205 
1206 		sc->tx_queued++;
1207 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1208 
1209 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1210 	}
1211 
1212 	data = &sc->tx_data[sc->tx_cur];
1213 	desc = (struct rum_tx_desc *)data->buf;
1214 
1215 	data->ni = ni;
1216 
1217 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1218 		flags |= RT2573_TX_NEED_ACK;
1219 
1220 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1221 		    ic->ic_flags) + sc->sifs;
1222 		*(uint16_t *)wh->i_dur = htole16(dur);
1223 
1224 		/* tell hardware to set timestamp in probe responses */
1225 		if ((wh->i_fc[0] &
1226 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1227 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1228 			flags |= RT2573_TX_TIMESTAMP;
1229 	}
1230 
1231 	if (sc->sc_drvbpf != NULL) {
1232 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1233 
1234 		tap->wt_flags = 0;
1235 		tap->wt_rate = rate;
1236 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1237 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1238 		tap->wt_antenna = sc->tx_ant;
1239 
1240 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1241 	}
1242 
1243 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1244 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1245 
1246 	/* align end on a 4-bytes boundary */
1247 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1248 
1249 	/*
1250 	 * No space left in the last URB to store the extra 4 bytes, force
1251 	 * sending of another URB.
1252 	 */
1253 	if ((xferlen % 64) == 0)
1254 		xferlen += 4;
1255 
1256 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1257 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1258 	    rate, xferlen));
1259 
1260 	/* mbuf is no longer needed */
1261 	m_freem(m0);
1262 
1263 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1264 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1265 	error = usbd_transfer(data->xfer);
1266 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1267 		return error;
1268 
1269 	sc->tx_queued++;
1270 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1271 
1272 	return 0;
1273 }
1274 
1275 static void
1276 rum_start(struct ifnet *ifp)
1277 {
1278 	struct rum_softc *sc = ifp->if_softc;
1279 	struct ieee80211com *ic = &sc->sc_ic;
1280 	struct ether_header *eh;
1281 	struct ieee80211_node *ni;
1282 	struct mbuf *m0;
1283 
1284 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1285 		return;
1286 
1287 	for (;;) {
1288 		IF_POLL(&ic->ic_mgtq, m0);
1289 		if (m0 != NULL) {
1290 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1291 				ifp->if_flags |= IFF_OACTIVE;
1292 				break;
1293 			}
1294 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1295 
1296 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1297 			m0->m_pkthdr.rcvif = NULL;
1298 			bpf_mtap3(ic->ic_rawbpf, m0);
1299 			if (rum_tx_data(sc, m0, ni) != 0)
1300 				break;
1301 
1302 		} else {
1303 			if (ic->ic_state != IEEE80211_S_RUN)
1304 				break;
1305 			IFQ_POLL(&ifp->if_snd, m0);
1306 			if (m0 == NULL)
1307 				break;
1308 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1309 				ifp->if_flags |= IFF_OACTIVE;
1310 				break;
1311 			}
1312 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1313 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1314 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1315 				continue;
1316 
1317 			eh = mtod(m0, struct ether_header *);
1318 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1319 			if (ni == NULL) {
1320 				m_freem(m0);
1321 				continue;
1322 			}
1323 			bpf_mtap(ifp, m0);
1324 			m0 = ieee80211_encap(ic, m0, ni);
1325 			if (m0 == NULL) {
1326 				ieee80211_free_node(ni);
1327 				continue;
1328 			}
1329 			bpf_mtap3(ic->ic_rawbpf, m0);
1330 			if (rum_tx_data(sc, m0, ni) != 0) {
1331 				ieee80211_free_node(ni);
1332 				ifp->if_oerrors++;
1333 				break;
1334 			}
1335 		}
1336 
1337 		sc->sc_tx_timer = 5;
1338 		ifp->if_timer = 1;
1339 	}
1340 }
1341 
1342 static void
1343 rum_watchdog(struct ifnet *ifp)
1344 {
1345 	struct rum_softc *sc = ifp->if_softc;
1346 	struct ieee80211com *ic = &sc->sc_ic;
1347 
1348 	ifp->if_timer = 0;
1349 
1350 	if (sc->sc_tx_timer > 0) {
1351 		if (--sc->sc_tx_timer == 0) {
1352 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1353 			/*rum_init(ifp); XXX needs a process context! */
1354 			ifp->if_oerrors++;
1355 			return;
1356 		}
1357 		ifp->if_timer = 1;
1358 	}
1359 
1360 	ieee80211_watchdog(ic);
1361 }
1362 
1363 static int
1364 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1365 {
1366 #define IS_RUNNING(ifp) \
1367 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1368 
1369 	struct rum_softc *sc = ifp->if_softc;
1370 	struct ieee80211com *ic = &sc->sc_ic;
1371 	int s, error = 0;
1372 
1373 	s = splnet();
1374 
1375 	switch (cmd) {
1376 	case SIOCSIFFLAGS:
1377 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1378 			break;
1379 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1380 		case IFF_UP|IFF_RUNNING:
1381 			rum_update_promisc(sc);
1382 			break;
1383 		case IFF_UP:
1384 			rum_init(ifp);
1385 			break;
1386 		case IFF_RUNNING:
1387 			rum_stop(ifp, 1);
1388 			break;
1389 		case 0:
1390 			break;
1391 		}
1392 		break;
1393 
1394 	case SIOCADDMULTI:
1395 	case SIOCDELMULTI:
1396 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1397 			error = 0;
1398 		}
1399 		break;
1400 
1401 	default:
1402 		error = ieee80211_ioctl(ic, cmd, data);
1403 	}
1404 
1405 	if (error == ENETRESET) {
1406 		if (IS_RUNNING(ifp) &&
1407 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1408 			rum_init(ifp);
1409 		error = 0;
1410 	}
1411 
1412 	splx(s);
1413 
1414 	return error;
1415 #undef IS_RUNNING
1416 }
1417 
1418 static void
1419 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1420 {
1421 	usb_device_request_t req;
1422 	usbd_status error;
1423 
1424 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1425 	req.bRequest = RT2573_READ_EEPROM;
1426 	USETW(req.wValue, 0);
1427 	USETW(req.wIndex, addr);
1428 	USETW(req.wLength, len);
1429 
1430 	error = usbd_do_request(sc->sc_udev, &req, buf);
1431 	if (error != 0) {
1432 		printf("%s: could not read EEPROM: %s\n",
1433 		    device_xname(sc->sc_dev), usbd_errstr(error));
1434 	}
1435 }
1436 
1437 static uint32_t
1438 rum_read(struct rum_softc *sc, uint16_t reg)
1439 {
1440 	uint32_t val;
1441 
1442 	rum_read_multi(sc, reg, &val, sizeof val);
1443 
1444 	return le32toh(val);
1445 }
1446 
1447 static void
1448 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1449 {
1450 	usb_device_request_t req;
1451 	usbd_status error;
1452 
1453 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1454 	req.bRequest = RT2573_READ_MULTI_MAC;
1455 	USETW(req.wValue, 0);
1456 	USETW(req.wIndex, reg);
1457 	USETW(req.wLength, len);
1458 
1459 	error = usbd_do_request(sc->sc_udev, &req, buf);
1460 	if (error != 0) {
1461 		printf("%s: could not multi read MAC register: %s\n",
1462 		    device_xname(sc->sc_dev), usbd_errstr(error));
1463 	}
1464 }
1465 
1466 static void
1467 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1468 {
1469 	uint32_t tmp = htole32(val);
1470 
1471 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1472 }
1473 
1474 static void
1475 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1476 {
1477 	usb_device_request_t req;
1478 	usbd_status error;
1479 
1480 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1481 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1482 	USETW(req.wValue, 0);
1483 	USETW(req.wIndex, reg);
1484 	USETW(req.wLength, len);
1485 
1486 	error = usbd_do_request(sc->sc_udev, &req, buf);
1487 	if (error != 0) {
1488 		printf("%s: could not multi write MAC register: %s\n",
1489 		    device_xname(sc->sc_dev), usbd_errstr(error));
1490 	}
1491 }
1492 
1493 static void
1494 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1495 {
1496 	uint32_t tmp;
1497 	int ntries;
1498 
1499 	for (ntries = 0; ntries < 5; ntries++) {
1500 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1501 			break;
1502 	}
1503 	if (ntries == 5) {
1504 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1505 		return;
1506 	}
1507 
1508 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1509 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1510 }
1511 
1512 static uint8_t
1513 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1514 {
1515 	uint32_t val;
1516 	int ntries;
1517 
1518 	for (ntries = 0; ntries < 5; ntries++) {
1519 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1520 			break;
1521 	}
1522 	if (ntries == 5) {
1523 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1524 		return 0;
1525 	}
1526 
1527 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1528 	rum_write(sc, RT2573_PHY_CSR3, val);
1529 
1530 	for (ntries = 0; ntries < 100; ntries++) {
1531 		val = rum_read(sc, RT2573_PHY_CSR3);
1532 		if (!(val & RT2573_BBP_BUSY))
1533 			return val & 0xff;
1534 		DELAY(1);
1535 	}
1536 
1537 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1538 	return 0;
1539 }
1540 
1541 static void
1542 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1543 {
1544 	uint32_t tmp;
1545 	int ntries;
1546 
1547 	for (ntries = 0; ntries < 5; ntries++) {
1548 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1549 			break;
1550 	}
1551 	if (ntries == 5) {
1552 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1553 		return;
1554 	}
1555 
1556 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1557 	    (reg & 3);
1558 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1559 
1560 	/* remember last written value in sc */
1561 	sc->rf_regs[reg] = val;
1562 
1563 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1564 }
1565 
1566 static void
1567 rum_select_antenna(struct rum_softc *sc)
1568 {
1569 	uint8_t bbp4, bbp77;
1570 	uint32_t tmp;
1571 
1572 	bbp4  = rum_bbp_read(sc, 4);
1573 	bbp77 = rum_bbp_read(sc, 77);
1574 
1575 	/* TBD */
1576 
1577 	/* make sure Rx is disabled before switching antenna */
1578 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1579 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1580 
1581 	rum_bbp_write(sc,  4, bbp4);
1582 	rum_bbp_write(sc, 77, bbp77);
1583 
1584 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1585 }
1586 
1587 /*
1588  * Enable multi-rate retries for frames sent at OFDM rates.
1589  * In 802.11b/g mode, allow fallback to CCK rates.
1590  */
1591 static void
1592 rum_enable_mrr(struct rum_softc *sc)
1593 {
1594 	struct ieee80211com *ic = &sc->sc_ic;
1595 	uint32_t tmp;
1596 
1597 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1598 
1599 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1600 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1601 		tmp |= RT2573_MRR_CCK_FALLBACK;
1602 	tmp |= RT2573_MRR_ENABLED;
1603 
1604 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1605 }
1606 
1607 static void
1608 rum_set_txpreamble(struct rum_softc *sc)
1609 {
1610 	uint32_t tmp;
1611 
1612 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1613 
1614 	tmp &= ~RT2573_SHORT_PREAMBLE;
1615 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1616 		tmp |= RT2573_SHORT_PREAMBLE;
1617 
1618 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1619 }
1620 
1621 static void
1622 rum_set_basicrates(struct rum_softc *sc)
1623 {
1624 	struct ieee80211com *ic = &sc->sc_ic;
1625 
1626 	/* update basic rate set */
1627 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1628 		/* 11b basic rates: 1, 2Mbps */
1629 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1630 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1631 		/* 11a basic rates: 6, 12, 24Mbps */
1632 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1633 	} else {
1634 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1635 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1636 	}
1637 }
1638 
1639 /*
1640  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1641  * driver.
1642  */
1643 static void
1644 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1645 {
1646 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1647 	uint32_t tmp;
1648 
1649 	/* update all BBP registers that depend on the band */
1650 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1651 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1652 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1653 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1654 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1655 	}
1656 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1657 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1658 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1659 	}
1660 
1661 	sc->bbp17 = bbp17;
1662 	rum_bbp_write(sc,  17, bbp17);
1663 	rum_bbp_write(sc,  96, bbp96);
1664 	rum_bbp_write(sc, 104, bbp104);
1665 
1666 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1667 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1668 		rum_bbp_write(sc, 75, 0x80);
1669 		rum_bbp_write(sc, 86, 0x80);
1670 		rum_bbp_write(sc, 88, 0x80);
1671 	}
1672 
1673 	rum_bbp_write(sc, 35, bbp35);
1674 	rum_bbp_write(sc, 97, bbp97);
1675 	rum_bbp_write(sc, 98, bbp98);
1676 
1677 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1678 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1679 	if (IEEE80211_IS_CHAN_2GHZ(c))
1680 		tmp |= RT2573_PA_PE_2GHZ;
1681 	else
1682 		tmp |= RT2573_PA_PE_5GHZ;
1683 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1684 
1685 	/* 802.11a uses a 16 microseconds short interframe space */
1686 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1687 }
1688 
1689 static void
1690 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1691 {
1692 	struct ieee80211com *ic = &sc->sc_ic;
1693 	const struct rfprog *rfprog;
1694 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1695 	int8_t power;
1696 	u_int i, chan;
1697 
1698 	chan = ieee80211_chan2ieee(ic, c);
1699 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1700 		return;
1701 
1702 	/* select the appropriate RF settings based on what EEPROM says */
1703 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1704 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1705 
1706 	/* find the settings for this channel (we know it exists) */
1707 	for (i = 0; rfprog[i].chan != chan; i++);
1708 
1709 	power = sc->txpow[i];
1710 	if (power < 0) {
1711 		bbp94 += power;
1712 		power = 0;
1713 	} else if (power > 31) {
1714 		bbp94 += power - 31;
1715 		power = 31;
1716 	}
1717 
1718 	/*
1719 	 * If we are switching from the 2GHz band to the 5GHz band or
1720 	 * vice-versa, BBP registers need to be reprogrammed.
1721 	 */
1722 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1723 		rum_select_band(sc, c);
1724 		rum_select_antenna(sc);
1725 	}
1726 	ic->ic_curchan = c;
1727 
1728 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1729 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1730 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1731 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1732 
1733 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1734 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1735 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1736 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1737 
1738 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1739 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1740 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1741 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1742 
1743 	DELAY(10);
1744 
1745 	/* enable smart mode for MIMO-capable RFs */
1746 	bbp3 = rum_bbp_read(sc, 3);
1747 
1748 	bbp3 &= ~RT2573_SMART_MODE;
1749 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1750 		bbp3 |= RT2573_SMART_MODE;
1751 
1752 	rum_bbp_write(sc, 3, bbp3);
1753 
1754 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1755 		rum_bbp_write(sc, 94, bbp94);
1756 }
1757 
1758 /*
1759  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1760  * and HostAP operating modes.
1761  */
1762 static void
1763 rum_enable_tsf_sync(struct rum_softc *sc)
1764 {
1765 	struct ieee80211com *ic = &sc->sc_ic;
1766 	uint32_t tmp;
1767 
1768 	if (ic->ic_opmode != IEEE80211_M_STA) {
1769 		/*
1770 		 * Change default 16ms TBTT adjustment to 8ms.
1771 		 * Must be done before enabling beacon generation.
1772 		 */
1773 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1774 	}
1775 
1776 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1777 
1778 	/* set beacon interval (in 1/16ms unit) */
1779 	tmp |= ic->ic_bss->ni_intval * 16;
1780 
1781 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1782 	if (ic->ic_opmode == IEEE80211_M_STA)
1783 		tmp |= RT2573_TSF_MODE(1);
1784 	else
1785 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1786 
1787 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1788 }
1789 
1790 static void
1791 rum_update_slot(struct rum_softc *sc)
1792 {
1793 	struct ieee80211com *ic = &sc->sc_ic;
1794 	uint8_t slottime;
1795 	uint32_t tmp;
1796 
1797 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1798 
1799 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1800 	tmp = (tmp & ~0xff) | slottime;
1801 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1802 
1803 	DPRINTF(("setting slot time to %uus\n", slottime));
1804 }
1805 
1806 static void
1807 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1808 {
1809 	uint32_t tmp;
1810 
1811 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1812 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1813 
1814 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1815 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1816 }
1817 
1818 static void
1819 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1820 {
1821 	uint32_t tmp;
1822 
1823 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1824 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1825 
1826 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1827 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1828 }
1829 
1830 static void
1831 rum_update_promisc(struct rum_softc *sc)
1832 {
1833 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1834 	uint32_t tmp;
1835 
1836 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1837 
1838 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1839 	if (!(ifp->if_flags & IFF_PROMISC))
1840 		tmp |= RT2573_DROP_NOT_TO_ME;
1841 
1842 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1843 
1844 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1845 	    "entering" : "leaving"));
1846 }
1847 
1848 static const char *
1849 rum_get_rf(int rev)
1850 {
1851 	switch (rev) {
1852 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1853 	case RT2573_RF_2528:	return "RT2528";
1854 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1855 	case RT2573_RF_5226:	return "RT5226";
1856 	default:		return "unknown";
1857 	}
1858 }
1859 
1860 static void
1861 rum_read_eeprom(struct rum_softc *sc)
1862 {
1863 	struct ieee80211com *ic = &sc->sc_ic;
1864 	uint16_t val;
1865 #ifdef RUM_DEBUG
1866 	int i;
1867 #endif
1868 
1869 	/* read MAC/BBP type */
1870 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1871 	sc->macbbp_rev = le16toh(val);
1872 
1873 	/* read MAC address */
1874 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1875 
1876 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1877 	val = le16toh(val);
1878 	sc->rf_rev =   (val >> 11) & 0x1f;
1879 	sc->hw_radio = (val >> 10) & 0x1;
1880 	sc->rx_ant =   (val >> 4)  & 0x3;
1881 	sc->tx_ant =   (val >> 2)  & 0x3;
1882 	sc->nb_ant =   val & 0x3;
1883 
1884 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1885 
1886 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1887 	val = le16toh(val);
1888 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1889 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1890 
1891 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1892 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1893 
1894 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1895 	val = le16toh(val);
1896 	if ((val & 0xff) != 0xff)
1897 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1898 
1899 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1900 	val = le16toh(val);
1901 	if ((val & 0xff) != 0xff)
1902 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1903 
1904 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1905 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1906 
1907 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1908 	val = le16toh(val);
1909 	if ((val & 0xff) != 0xff)
1910 		sc->rffreq = val & 0xff;
1911 
1912 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1913 
1914 	/* read Tx power for all a/b/g channels */
1915 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1916 	/* XXX default Tx power for 802.11a channels */
1917 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1918 #ifdef RUM_DEBUG
1919 	for (i = 0; i < 14; i++)
1920 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1921 #endif
1922 
1923 	/* read default values for BBP registers */
1924 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1925 #ifdef RUM_DEBUG
1926 	for (i = 0; i < 14; i++) {
1927 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1928 			continue;
1929 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1930 		    sc->bbp_prom[i].val));
1931 	}
1932 #endif
1933 }
1934 
1935 static int
1936 rum_bbp_init(struct rum_softc *sc)
1937 {
1938 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1939 	unsigned int i, ntries;
1940 	uint8_t val;
1941 
1942 	/* wait for BBP to be ready */
1943 	for (ntries = 0; ntries < 100; ntries++) {
1944 		val = rum_bbp_read(sc, 0);
1945 		if (val != 0 && val != 0xff)
1946 			break;
1947 		DELAY(1000);
1948 	}
1949 	if (ntries == 100) {
1950 		printf("%s: timeout waiting for BBP\n",
1951 		    device_xname(sc->sc_dev));
1952 		return EIO;
1953 	}
1954 
1955 	/* initialize BBP registers to default values */
1956 	for (i = 0; i < N(rum_def_bbp); i++)
1957 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1958 
1959 	/* write vendor-specific BBP values (from EEPROM) */
1960 	for (i = 0; i < 16; i++) {
1961 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1962 			continue;
1963 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1964 	}
1965 
1966 	return 0;
1967 #undef N
1968 }
1969 
1970 static int
1971 rum_init(struct ifnet *ifp)
1972 {
1973 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1974 	struct rum_softc *sc = ifp->if_softc;
1975 	struct ieee80211com *ic = &sc->sc_ic;
1976 	struct rum_rx_data *data;
1977 	uint32_t tmp;
1978 	usbd_status error = 0;
1979 	unsigned int i, ntries;
1980 
1981 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1982 		if (rum_attachhook(sc))
1983 			goto fail;
1984 	}
1985 
1986 	rum_stop(ifp, 0);
1987 
1988 	/* initialize MAC registers to default values */
1989 	for (i = 0; i < N(rum_def_mac); i++)
1990 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1991 
1992 	/* set host ready */
1993 	rum_write(sc, RT2573_MAC_CSR1, 3);
1994 	rum_write(sc, RT2573_MAC_CSR1, 0);
1995 
1996 	/* wait for BBP/RF to wakeup */
1997 	for (ntries = 0; ntries < 1000; ntries++) {
1998 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1999 			break;
2000 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2001 		DELAY(1000);
2002 	}
2003 	if (ntries == 1000) {
2004 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2005 		    device_xname(sc->sc_dev));
2006 		goto fail;
2007 	}
2008 
2009 	if ((error = rum_bbp_init(sc)) != 0)
2010 		goto fail;
2011 
2012 	/* select default channel */
2013 	rum_select_band(sc, ic->ic_curchan);
2014 	rum_select_antenna(sc);
2015 	rum_set_chan(sc, ic->ic_curchan);
2016 
2017 	/* clear STA registers */
2018 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2019 
2020 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2021 	rum_set_macaddr(sc, ic->ic_myaddr);
2022 
2023 	/* initialize ASIC */
2024 	rum_write(sc, RT2573_MAC_CSR1, 4);
2025 
2026 	/*
2027 	 * Allocate xfer for AMRR statistics requests.
2028 	 */
2029 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2030 	if (sc->amrr_xfer == NULL) {
2031 		printf("%s: could not allocate AMRR xfer\n",
2032 		    device_xname(sc->sc_dev));
2033 		goto fail;
2034 	}
2035 
2036 	/*
2037 	 * Open Tx and Rx USB bulk pipes.
2038 	 */
2039 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2040 	    &sc->sc_tx_pipeh);
2041 	if (error != 0) {
2042 		printf("%s: could not open Tx pipe: %s\n",
2043 		    device_xname(sc->sc_dev), usbd_errstr(error));
2044 		goto fail;
2045 	}
2046 
2047 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2048 	    &sc->sc_rx_pipeh);
2049 	if (error != 0) {
2050 		printf("%s: could not open Rx pipe: %s\n",
2051 		    device_xname(sc->sc_dev), usbd_errstr(error));
2052 		goto fail;
2053 	}
2054 
2055 	/*
2056 	 * Allocate Tx and Rx xfer queues.
2057 	 */
2058 	error = rum_alloc_tx_list(sc);
2059 	if (error != 0) {
2060 		printf("%s: could not allocate Tx list\n",
2061 		    device_xname(sc->sc_dev));
2062 		goto fail;
2063 	}
2064 
2065 	error = rum_alloc_rx_list(sc);
2066 	if (error != 0) {
2067 		printf("%s: could not allocate Rx list\n",
2068 		    device_xname(sc->sc_dev));
2069 		goto fail;
2070 	}
2071 
2072 	/*
2073 	 * Start up the receive pipe.
2074 	 */
2075 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2076 		data = &sc->rx_data[i];
2077 
2078 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2079 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2080 		error = usbd_transfer(data->xfer);
2081 		if (error != USBD_NORMAL_COMPLETION &&
2082 		    error != USBD_IN_PROGRESS) {
2083 			printf("%s: could not queue Rx transfer\n",
2084 			    device_xname(sc->sc_dev));
2085 			goto fail;
2086 		}
2087 	}
2088 
2089 	/* update Rx filter */
2090 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2091 
2092 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2093 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2094 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2095 		       RT2573_DROP_ACKCTS;
2096 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2097 			tmp |= RT2573_DROP_TODS;
2098 		if (!(ifp->if_flags & IFF_PROMISC))
2099 			tmp |= RT2573_DROP_NOT_TO_ME;
2100 	}
2101 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2102 
2103 	ifp->if_flags &= ~IFF_OACTIVE;
2104 	ifp->if_flags |= IFF_RUNNING;
2105 
2106 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2107 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2108 	else
2109 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2110 
2111 	return 0;
2112 
2113 fail:	rum_stop(ifp, 1);
2114 	return error;
2115 #undef N
2116 }
2117 
2118 static void
2119 rum_stop(struct ifnet *ifp, int disable)
2120 {
2121 	struct rum_softc *sc = ifp->if_softc;
2122 	struct ieee80211com *ic = &sc->sc_ic;
2123 	uint32_t tmp;
2124 
2125 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2126 
2127 	sc->sc_tx_timer = 0;
2128 	ifp->if_timer = 0;
2129 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2130 
2131 	/* disable Rx */
2132 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2133 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2134 
2135 	/* reset ASIC */
2136 	rum_write(sc, RT2573_MAC_CSR1, 3);
2137 	rum_write(sc, RT2573_MAC_CSR1, 0);
2138 
2139 	if (sc->amrr_xfer != NULL) {
2140 		usbd_free_xfer(sc->amrr_xfer);
2141 		sc->amrr_xfer = NULL;
2142 	}
2143 
2144 	if (sc->sc_rx_pipeh != NULL) {
2145 		usbd_abort_pipe(sc->sc_rx_pipeh);
2146 		usbd_close_pipe(sc->sc_rx_pipeh);
2147 		sc->sc_rx_pipeh = NULL;
2148 	}
2149 
2150 	if (sc->sc_tx_pipeh != NULL) {
2151 		usbd_abort_pipe(sc->sc_tx_pipeh);
2152 		usbd_close_pipe(sc->sc_tx_pipeh);
2153 		sc->sc_tx_pipeh = NULL;
2154 	}
2155 
2156 	rum_free_rx_list(sc);
2157 	rum_free_tx_list(sc);
2158 }
2159 
2160 static int
2161 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2162 {
2163 	usb_device_request_t req;
2164 	uint16_t reg = RT2573_MCU_CODE_BASE;
2165 	usbd_status error;
2166 
2167 	/* copy firmware image into NIC */
2168 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2169 		rum_write(sc, reg, UGETDW(ucode));
2170 
2171 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2172 	req.bRequest = RT2573_MCU_CNTL;
2173 	USETW(req.wValue, RT2573_MCU_RUN);
2174 	USETW(req.wIndex, 0);
2175 	USETW(req.wLength, 0);
2176 
2177 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2178 	if (error != 0) {
2179 		printf("%s: could not run firmware: %s\n",
2180 		    device_xname(sc->sc_dev), usbd_errstr(error));
2181 	}
2182 	return error;
2183 }
2184 
2185 static int
2186 rum_prepare_beacon(struct rum_softc *sc)
2187 {
2188 	struct ieee80211com *ic = &sc->sc_ic;
2189 	struct rum_tx_desc desc;
2190 	struct mbuf *m0;
2191 	int rate;
2192 
2193 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2194 	if (m0 == NULL) {
2195 		aprint_error_dev(sc->sc_dev,
2196 		    "could not allocate beacon frame\n");
2197 		return ENOBUFS;
2198 	}
2199 
2200 	/* send beacons at the lowest available rate */
2201 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2202 
2203 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2204 	    m0->m_pkthdr.len, rate);
2205 
2206 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2207 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2208 
2209 	/* copy beacon header and payload into NIC memory */
2210 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2211 	    m0->m_pkthdr.len);
2212 
2213 	m_freem(m0);
2214 
2215 	return 0;
2216 }
2217 
2218 static void
2219 rum_newassoc(struct ieee80211_node *ni, int isnew)
2220 {
2221 	/* start with lowest Tx rate */
2222 	ni->ni_txrate = 0;
2223 }
2224 
2225 static void
2226 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2227 {
2228 	int i;
2229 
2230 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2231 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2232 
2233 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2234 
2235 	/* set rate to some reasonable initial value */
2236 	for (i = ni->ni_rates.rs_nrates - 1;
2237 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2238 	     i--);
2239 	ni->ni_txrate = i;
2240 
2241 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2242 }
2243 
2244 static void
2245 rum_amrr_timeout(void *arg)
2246 {
2247 	struct rum_softc *sc = arg;
2248 	usb_device_request_t req;
2249 
2250 	/*
2251 	 * Asynchronously read statistic registers (cleared by read).
2252 	 */
2253 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2254 	req.bRequest = RT2573_READ_MULTI_MAC;
2255 	USETW(req.wValue, 0);
2256 	USETW(req.wIndex, RT2573_STA_CSR0);
2257 	USETW(req.wLength, sizeof sc->sta);
2258 
2259 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2260 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2261 	    rum_amrr_update);
2262 	(void)usbd_transfer(sc->amrr_xfer);
2263 }
2264 
2265 static void
2266 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2267     usbd_status status)
2268 {
2269 	struct rum_softc *sc = (struct rum_softc *)priv;
2270 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2271 
2272 	if (status != USBD_NORMAL_COMPLETION) {
2273 		printf("%s: could not retrieve Tx statistics - cancelling "
2274 		    "automatic rate control\n", device_xname(sc->sc_dev));
2275 		return;
2276 	}
2277 
2278 	/* count TX retry-fail as Tx errors */
2279 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2280 
2281 	sc->amn.amn_retrycnt =
2282 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2283 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2284 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2285 
2286 	sc->amn.amn_txcnt =
2287 	    sc->amn.amn_retrycnt +
2288 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2289 
2290 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2291 
2292 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2293 }
2294 
2295 static int
2296 rum_activate(device_t self, enum devact act)
2297 {
2298 	switch (act) {
2299 	case DVACT_DEACTIVATE:
2300 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2301 		return 0;
2302 	default:
2303 		return 0;
2304 	}
2305 }
2306 
2307 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2308 
2309 #ifdef _MODULE
2310 #include "ioconf.c"
2311 #endif
2312 
2313 static int
2314 if_rum_modcmd(modcmd_t cmd, void *aux)
2315 {
2316 	int error = 0;
2317 
2318 	switch (cmd) {
2319 	case MODULE_CMD_INIT:
2320 #ifdef _MODULE
2321 		error = config_init_component(cfdriver_ioconf_rum,
2322 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2323 #endif
2324 		return error;
2325 	case MODULE_CMD_FINI:
2326 #ifdef _MODULE
2327 		error = config_fini_component(cfdriver_ioconf_rum,
2328 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2329 #endif
2330 		return error;
2331 	default:
2332 		return ENOTTY;
2333 	}
2334 }
2335