1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.32 2010/04/05 07:21:48 joerg Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.32 2010/04/05 07:21:48 joerg Exp $"); 28 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 41 #include <sys/bus.h> 42 #include <machine/endian.h> 43 #include <sys/intr.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_netbsd.h> 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <dev/firmload.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include <dev/usb/usbdevs.h> 69 70 #include <dev/usb/if_rumreg.h> 71 #include <dev/usb/if_rumvar.h> 72 73 #ifdef USB_DEBUG 74 #define RUM_DEBUG 75 #endif 76 77 #ifdef RUM_DEBUG 78 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0) 79 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0) 80 int rum_debug = 1; 81 #else 82 #define DPRINTF(x) 83 #define DPRINTFN(n, x) 84 #endif 85 86 /* various supported device vendors/products */ 87 static const struct usb_devno rum_devs[] = { 88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 93 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 95 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 100 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 101 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 102 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 110 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 111 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 114 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 129 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 130 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 }, 131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 134 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 } 135 }; 136 137 Static int rum_attachhook(void *); 138 Static int rum_alloc_tx_list(struct rum_softc *); 139 Static void rum_free_tx_list(struct rum_softc *); 140 Static int rum_alloc_rx_list(struct rum_softc *); 141 Static void rum_free_rx_list(struct rum_softc *); 142 Static int rum_media_change(struct ifnet *); 143 Static void rum_next_scan(void *); 144 Static void rum_task(void *); 145 Static int rum_newstate(struct ieee80211com *, 146 enum ieee80211_state, int); 147 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 148 usbd_status); 149 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 150 usbd_status); 151 Static uint8_t rum_rxrate(const struct rum_rx_desc *); 152 Static int rum_ack_rate(struct ieee80211com *, int); 153 Static uint16_t rum_txtime(int, int, uint32_t); 154 Static uint8_t rum_plcp_signal(int); 155 Static void rum_setup_tx_desc(struct rum_softc *, 156 struct rum_tx_desc *, uint32_t, uint16_t, int, 157 int); 158 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 159 struct ieee80211_node *); 160 Static int rum_tx_data(struct rum_softc *, struct mbuf *, 161 struct ieee80211_node *); 162 Static void rum_start(struct ifnet *); 163 Static void rum_watchdog(struct ifnet *); 164 Static int rum_ioctl(struct ifnet *, u_long, void *); 165 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 166 int); 167 Static uint32_t rum_read(struct rum_softc *, uint16_t); 168 Static void rum_read_multi(struct rum_softc *, uint16_t, void *, 169 int); 170 Static void rum_write(struct rum_softc *, uint16_t, uint32_t); 171 Static void rum_write_multi(struct rum_softc *, uint16_t, void *, 172 size_t); 173 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 174 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 175 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 176 Static void rum_select_antenna(struct rum_softc *); 177 Static void rum_enable_mrr(struct rum_softc *); 178 Static void rum_set_txpreamble(struct rum_softc *); 179 Static void rum_set_basicrates(struct rum_softc *); 180 Static void rum_select_band(struct rum_softc *, 181 struct ieee80211_channel *); 182 Static void rum_set_chan(struct rum_softc *, 183 struct ieee80211_channel *); 184 Static void rum_enable_tsf_sync(struct rum_softc *); 185 Static void rum_update_slot(struct rum_softc *); 186 Static void rum_set_bssid(struct rum_softc *, const uint8_t *); 187 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 188 Static void rum_update_promisc(struct rum_softc *); 189 Static const char *rum_get_rf(int); 190 Static void rum_read_eeprom(struct rum_softc *); 191 Static int rum_bbp_init(struct rum_softc *); 192 Static int rum_init(struct ifnet *); 193 Static void rum_stop(struct ifnet *, int); 194 Static int rum_load_microcode(struct rum_softc *, const u_char *, 195 size_t); 196 Static int rum_prepare_beacon(struct rum_softc *); 197 Static void rum_newassoc(struct ieee80211_node *, int); 198 Static void rum_amrr_start(struct rum_softc *, 199 struct ieee80211_node *); 200 Static void rum_amrr_timeout(void *); 201 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 202 usbd_status status); 203 204 /* 205 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 206 */ 207 static const struct ieee80211_rateset rum_rateset_11a = 208 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 209 210 static const struct ieee80211_rateset rum_rateset_11b = 211 { 4, { 2, 4, 11, 22 } }; 212 213 static const struct ieee80211_rateset rum_rateset_11g = 214 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 215 216 static const struct { 217 uint32_t reg; 218 uint32_t val; 219 } rum_def_mac[] = { 220 RT2573_DEF_MAC 221 }; 222 223 static const struct { 224 uint8_t reg; 225 uint8_t val; 226 } rum_def_bbp[] = { 227 RT2573_DEF_BBP 228 }; 229 230 static const struct rfprog { 231 uint8_t chan; 232 uint32_t r1, r2, r3, r4; 233 } rum_rf5226[] = { 234 RT2573_RF5226 235 }, rum_rf5225[] = { 236 RT2573_RF5225 237 }; 238 239 USB_DECLARE_DRIVER(rum); 240 241 USB_MATCH(rum) 242 { 243 USB_MATCH_START(rum, uaa); 244 245 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 246 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 247 } 248 249 Static int 250 rum_attachhook(void *xsc) 251 { 252 struct rum_softc *sc = xsc; 253 firmware_handle_t fwh; 254 const char *name = "rum-rt2573"; 255 u_char *ucode; 256 size_t size; 257 int error; 258 259 if ((error = firmware_open("rum", name, &fwh)) != 0) { 260 printf("%s: failed loadfirmware of file %s (error %d)\n", 261 USBDEVNAME(sc->sc_dev), name, error); 262 return error; 263 } 264 size = firmware_get_size(fwh); 265 ucode = firmware_malloc(size); 266 if (ucode == NULL) { 267 printf("%s: failed to allocate firmware memory\n", 268 USBDEVNAME(sc->sc_dev)); 269 firmware_close(fwh); 270 return ENOMEM; 271 } 272 error = firmware_read(fwh, 0, ucode, size); 273 firmware_close(fwh); 274 if (error != 0) { 275 printf("%s: failed to read firmware (error %d)\n", 276 USBDEVNAME(sc->sc_dev), error); 277 firmware_free(ucode, 0); 278 return error; 279 } 280 281 if (rum_load_microcode(sc, ucode, size) != 0) { 282 printf("%s: could not load 8051 microcode\n", 283 USBDEVNAME(sc->sc_dev)); 284 firmware_free(ucode, 0); 285 return ENXIO; 286 } 287 288 firmware_free(ucode, 0); 289 sc->sc_flags |= RT2573_FWLOADED; 290 291 return 0; 292 } 293 294 USB_ATTACH(rum) 295 { 296 USB_ATTACH_START(rum, sc, uaa); 297 struct ieee80211com *ic = &sc->sc_ic; 298 struct ifnet *ifp = &sc->sc_if; 299 usb_interface_descriptor_t *id; 300 usb_endpoint_descriptor_t *ed; 301 usbd_status error; 302 char *devinfop; 303 int i, ntries; 304 uint32_t tmp; 305 306 sc->sc_dev = self; 307 sc->sc_udev = uaa->device; 308 sc->sc_flags = 0; 309 310 aprint_naive("\n"); 311 aprint_normal("\n"); 312 313 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 314 aprint_normal_dev(self, "%s\n", devinfop); 315 usbd_devinfo_free(devinfop); 316 317 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 318 aprint_error_dev(self, "could not set configuration no\n"); 319 USB_ATTACH_ERROR_RETURN; 320 } 321 322 /* get the first interface handle */ 323 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 324 &sc->sc_iface); 325 if (error != 0) { 326 aprint_error_dev(self, "could not get interface handle\n"); 327 USB_ATTACH_ERROR_RETURN; 328 } 329 330 /* 331 * Find endpoints. 332 */ 333 id = usbd_get_interface_descriptor(sc->sc_iface); 334 335 sc->sc_rx_no = sc->sc_tx_no = -1; 336 for (i = 0; i < id->bNumEndpoints; i++) { 337 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 338 if (ed == NULL) { 339 aprint_error_dev(self, 340 "no endpoint descriptor for iface %d\n", i); 341 USB_ATTACH_ERROR_RETURN; 342 } 343 344 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 345 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 346 sc->sc_rx_no = ed->bEndpointAddress; 347 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 348 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 349 sc->sc_tx_no = ed->bEndpointAddress; 350 } 351 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 352 aprint_error_dev(self, "missing endpoint\n"); 353 USB_ATTACH_ERROR_RETURN; 354 } 355 356 usb_init_task(&sc->sc_task, rum_task, sc); 357 usb_callout_init(sc->sc_scan_ch); 358 359 sc->amrr.amrr_min_success_threshold = 1; 360 sc->amrr.amrr_max_success_threshold = 10; 361 usb_callout_init(sc->sc_amrr_ch); 362 363 /* retrieve RT2573 rev. no */ 364 for (ntries = 0; ntries < 1000; ntries++) { 365 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 366 break; 367 DELAY(1000); 368 } 369 if (ntries == 1000) { 370 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 371 USB_ATTACH_ERROR_RETURN; 372 } 373 374 /* retrieve MAC address and various other things from EEPROM */ 375 rum_read_eeprom(sc); 376 377 aprint_normal_dev(self, 378 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 379 sc->macbbp_rev, tmp, 380 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 381 382 ic->ic_ifp = ifp; 383 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 384 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 385 ic->ic_state = IEEE80211_S_INIT; 386 387 /* set device capabilities */ 388 ic->ic_caps = 389 IEEE80211_C_IBSS | /* IBSS mode supported */ 390 IEEE80211_C_MONITOR | /* monitor mode supported */ 391 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 392 IEEE80211_C_TXPMGT | /* tx power management */ 393 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 394 IEEE80211_C_SHSLOT | /* short slot time supported */ 395 IEEE80211_C_WPA; /* 802.11i */ 396 397 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 398 /* set supported .11a rates */ 399 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 400 401 /* set supported .11a channels */ 402 for (i = 34; i <= 46; i += 4) { 403 ic->ic_channels[i].ic_freq = 404 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 405 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 406 } 407 for (i = 36; i <= 64; i += 4) { 408 ic->ic_channels[i].ic_freq = 409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 411 } 412 for (i = 100; i <= 140; i += 4) { 413 ic->ic_channels[i].ic_freq = 414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 416 } 417 for (i = 149; i <= 165; i += 4) { 418 ic->ic_channels[i].ic_freq = 419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 421 } 422 } 423 424 /* set supported .11b and .11g rates */ 425 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 426 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 427 428 /* set supported .11b and .11g channels (1 through 14) */ 429 for (i = 1; i <= 14; i++) { 430 ic->ic_channels[i].ic_freq = 431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 432 ic->ic_channels[i].ic_flags = 433 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 434 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 435 } 436 437 ifp->if_softc = sc; 438 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 439 ifp->if_init = rum_init; 440 ifp->if_ioctl = rum_ioctl; 441 ifp->if_start = rum_start; 442 ifp->if_watchdog = rum_watchdog; 443 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 444 IFQ_SET_READY(&ifp->if_snd); 445 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 446 447 if_attach(ifp); 448 ieee80211_ifattach(ic); 449 ic->ic_newassoc = rum_newassoc; 450 451 /* override state transition machine */ 452 sc->sc_newstate = ic->ic_newstate; 453 ic->ic_newstate = rum_newstate; 454 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 455 456 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 457 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 458 &sc->sc_drvbpf); 459 460 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 461 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 462 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 463 464 sc->sc_txtap_len = sizeof sc->sc_txtapu; 465 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 466 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 467 468 ieee80211_announce(ic); 469 470 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 471 USBDEV(sc->sc_dev)); 472 473 USB_ATTACH_SUCCESS_RETURN; 474 } 475 476 USB_DETACH(rum) 477 { 478 USB_DETACH_START(rum, sc); 479 struct ieee80211com *ic = &sc->sc_ic; 480 struct ifnet *ifp = &sc->sc_if; 481 int s; 482 483 if (!ifp->if_softc) 484 return 0; 485 486 s = splusb(); 487 488 rum_stop(ifp, 1); 489 usb_rem_task(sc->sc_udev, &sc->sc_task); 490 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc); 491 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc); 492 493 if (sc->amrr_xfer != NULL) { 494 usbd_free_xfer(sc->amrr_xfer); 495 sc->amrr_xfer = NULL; 496 } 497 498 if (sc->sc_rx_pipeh != NULL) { 499 usbd_abort_pipe(sc->sc_rx_pipeh); 500 usbd_close_pipe(sc->sc_rx_pipeh); 501 } 502 503 if (sc->sc_tx_pipeh != NULL) { 504 usbd_abort_pipe(sc->sc_tx_pipeh); 505 usbd_close_pipe(sc->sc_tx_pipeh); 506 } 507 508 bpf_detach(ifp); 509 ieee80211_ifdetach(ic); /* free all nodes */ 510 if_detach(ifp); 511 512 splx(s); 513 514 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 515 USBDEV(sc->sc_dev)); 516 517 return 0; 518 } 519 520 Static int 521 rum_alloc_tx_list(struct rum_softc *sc) 522 { 523 struct rum_tx_data *data; 524 int i, error; 525 526 sc->tx_queued = 0; 527 528 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 529 data = &sc->tx_data[i]; 530 531 data->sc = sc; 532 533 data->xfer = usbd_alloc_xfer(sc->sc_udev); 534 if (data->xfer == NULL) { 535 printf("%s: could not allocate tx xfer\n", 536 USBDEVNAME(sc->sc_dev)); 537 error = ENOMEM; 538 goto fail; 539 } 540 541 data->buf = usbd_alloc_buffer(data->xfer, 542 RT2573_TX_DESC_SIZE + MCLBYTES); 543 if (data->buf == NULL) { 544 printf("%s: could not allocate tx buffer\n", 545 USBDEVNAME(sc->sc_dev)); 546 error = ENOMEM; 547 goto fail; 548 } 549 550 /* clean Tx descriptor */ 551 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 552 } 553 554 return 0; 555 556 fail: rum_free_tx_list(sc); 557 return error; 558 } 559 560 Static void 561 rum_free_tx_list(struct rum_softc *sc) 562 { 563 struct rum_tx_data *data; 564 int i; 565 566 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 567 data = &sc->tx_data[i]; 568 569 if (data->xfer != NULL) { 570 usbd_free_xfer(data->xfer); 571 data->xfer = NULL; 572 } 573 574 if (data->ni != NULL) { 575 ieee80211_free_node(data->ni); 576 data->ni = NULL; 577 } 578 } 579 } 580 581 Static int 582 rum_alloc_rx_list(struct rum_softc *sc) 583 { 584 struct rum_rx_data *data; 585 int i, error; 586 587 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 588 data = &sc->rx_data[i]; 589 590 data->sc = sc; 591 592 data->xfer = usbd_alloc_xfer(sc->sc_udev); 593 if (data->xfer == NULL) { 594 printf("%s: could not allocate rx xfer\n", 595 USBDEVNAME(sc->sc_dev)); 596 error = ENOMEM; 597 goto fail; 598 } 599 600 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 601 printf("%s: could not allocate rx buffer\n", 602 USBDEVNAME(sc->sc_dev)); 603 error = ENOMEM; 604 goto fail; 605 } 606 607 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 608 if (data->m == NULL) { 609 printf("%s: could not allocate rx mbuf\n", 610 USBDEVNAME(sc->sc_dev)); 611 error = ENOMEM; 612 goto fail; 613 } 614 615 MCLGET(data->m, M_DONTWAIT); 616 if (!(data->m->m_flags & M_EXT)) { 617 printf("%s: could not allocate rx mbuf cluster\n", 618 USBDEVNAME(sc->sc_dev)); 619 error = ENOMEM; 620 goto fail; 621 } 622 623 data->buf = mtod(data->m, uint8_t *); 624 } 625 626 return 0; 627 628 fail: rum_free_tx_list(sc); 629 return error; 630 } 631 632 Static void 633 rum_free_rx_list(struct rum_softc *sc) 634 { 635 struct rum_rx_data *data; 636 int i; 637 638 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 639 data = &sc->rx_data[i]; 640 641 if (data->xfer != NULL) { 642 usbd_free_xfer(data->xfer); 643 data->xfer = NULL; 644 } 645 646 if (data->m != NULL) { 647 m_freem(data->m); 648 data->m = NULL; 649 } 650 } 651 } 652 653 Static int 654 rum_media_change(struct ifnet *ifp) 655 { 656 int error; 657 658 error = ieee80211_media_change(ifp); 659 if (error != ENETRESET) 660 return error; 661 662 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 663 rum_init(ifp); 664 665 return 0; 666 } 667 668 /* 669 * This function is called periodically (every 200ms) during scanning to 670 * switch from one channel to another. 671 */ 672 Static void 673 rum_next_scan(void *arg) 674 { 675 struct rum_softc *sc = arg; 676 struct ieee80211com *ic = &sc->sc_ic; 677 678 if (ic->ic_state == IEEE80211_S_SCAN) 679 ieee80211_next_scan(ic); 680 } 681 682 Static void 683 rum_task(void *arg) 684 { 685 struct rum_softc *sc = arg; 686 struct ieee80211com *ic = &sc->sc_ic; 687 enum ieee80211_state ostate; 688 struct ieee80211_node *ni; 689 uint32_t tmp; 690 691 ostate = ic->ic_state; 692 693 switch (sc->sc_state) { 694 case IEEE80211_S_INIT: 695 if (ostate == IEEE80211_S_RUN) { 696 /* abort TSF synchronization */ 697 tmp = rum_read(sc, RT2573_TXRX_CSR9); 698 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 699 } 700 break; 701 702 case IEEE80211_S_SCAN: 703 rum_set_chan(sc, ic->ic_curchan); 704 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 705 break; 706 707 case IEEE80211_S_AUTH: 708 rum_set_chan(sc, ic->ic_curchan); 709 break; 710 711 case IEEE80211_S_ASSOC: 712 rum_set_chan(sc, ic->ic_curchan); 713 break; 714 715 case IEEE80211_S_RUN: 716 rum_set_chan(sc, ic->ic_curchan); 717 718 ni = ic->ic_bss; 719 720 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 721 rum_update_slot(sc); 722 rum_enable_mrr(sc); 723 rum_set_txpreamble(sc); 724 rum_set_basicrates(sc); 725 rum_set_bssid(sc, ni->ni_bssid); 726 } 727 728 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 729 ic->ic_opmode == IEEE80211_M_IBSS) 730 rum_prepare_beacon(sc); 731 732 if (ic->ic_opmode != IEEE80211_M_MONITOR) 733 rum_enable_tsf_sync(sc); 734 735 if (ic->ic_opmode == IEEE80211_M_STA) { 736 /* fake a join to init the tx rate */ 737 rum_newassoc(ic->ic_bss, 1); 738 739 /* enable automatic rate adaptation in STA mode */ 740 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 741 rum_amrr_start(sc, ni); 742 } 743 744 break; 745 } 746 747 sc->sc_newstate(ic, sc->sc_state, -1); 748 } 749 750 Static int 751 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 752 { 753 struct rum_softc *sc = ic->ic_ifp->if_softc; 754 755 usb_rem_task(sc->sc_udev, &sc->sc_task); 756 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc); 757 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc); 758 759 /* do it in a process context */ 760 sc->sc_state = nstate; 761 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 762 763 return 0; 764 } 765 766 /* quickly determine if a given rate is CCK or OFDM */ 767 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 768 769 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 770 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 771 772 Static void 773 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 774 { 775 struct rum_tx_data *data = priv; 776 struct rum_softc *sc = data->sc; 777 struct ifnet *ifp = &sc->sc_if; 778 int s; 779 780 if (status != USBD_NORMAL_COMPLETION) { 781 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 782 return; 783 784 printf("%s: could not transmit buffer: %s\n", 785 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 786 787 if (status == USBD_STALLED) 788 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 789 790 ifp->if_oerrors++; 791 return; 792 } 793 794 s = splnet(); 795 796 ieee80211_free_node(data->ni); 797 data->ni = NULL; 798 799 sc->tx_queued--; 800 ifp->if_opackets++; 801 802 DPRINTFN(10, ("tx done\n")); 803 804 sc->sc_tx_timer = 0; 805 ifp->if_flags &= ~IFF_OACTIVE; 806 rum_start(ifp); 807 808 splx(s); 809 } 810 811 Static void 812 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 813 { 814 struct rum_rx_data *data = priv; 815 struct rum_softc *sc = data->sc; 816 struct ieee80211com *ic = &sc->sc_ic; 817 struct ifnet *ifp = &sc->sc_if; 818 struct rum_rx_desc *desc; 819 struct ieee80211_frame *wh; 820 struct ieee80211_node *ni; 821 struct mbuf *mnew, *m; 822 int s, len; 823 824 if (status != USBD_NORMAL_COMPLETION) { 825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 826 return; 827 828 if (status == USBD_STALLED) 829 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 830 goto skip; 831 } 832 833 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 834 835 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 836 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), 837 len)); 838 ifp->if_ierrors++; 839 goto skip; 840 } 841 842 desc = (struct rum_rx_desc *)data->buf; 843 844 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 845 /* 846 * This should not happen since we did not request to receive 847 * those frames when we filled RT2573_TXRX_CSR0. 848 */ 849 DPRINTFN(5, ("CRC error\n")); 850 ifp->if_ierrors++; 851 goto skip; 852 } 853 854 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 855 if (mnew == NULL) { 856 printf("%s: could not allocate rx mbuf\n", 857 USBDEVNAME(sc->sc_dev)); 858 ifp->if_ierrors++; 859 goto skip; 860 } 861 862 MCLGET(mnew, M_DONTWAIT); 863 if (!(mnew->m_flags & M_EXT)) { 864 printf("%s: could not allocate rx mbuf cluster\n", 865 USBDEVNAME(sc->sc_dev)); 866 m_freem(mnew); 867 ifp->if_ierrors++; 868 goto skip; 869 } 870 871 m = data->m; 872 data->m = mnew; 873 data->buf = mtod(data->m, uint8_t *); 874 875 /* finalize mbuf */ 876 m->m_pkthdr.rcvif = ifp; 877 m->m_data = (void *)(desc + 1); 878 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 879 880 s = splnet(); 881 882 if (sc->sc_drvbpf != NULL) { 883 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 884 885 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 886 tap->wr_rate = rum_rxrate(desc); 887 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 888 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 889 tap->wr_antenna = sc->rx_ant; 890 tap->wr_antsignal = desc->rssi; 891 892 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 893 } 894 895 wh = mtod(m, struct ieee80211_frame *); 896 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 897 898 /* send the frame to the 802.11 layer */ 899 ieee80211_input(ic, m, ni, desc->rssi, 0); 900 901 /* node is no longer needed */ 902 ieee80211_free_node(ni); 903 904 splx(s); 905 906 DPRINTFN(15, ("rx done\n")); 907 908 skip: /* setup a new transfer */ 909 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 910 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 911 usbd_transfer(xfer); 912 } 913 914 /* 915 * This function is only used by the Rx radiotap code. It returns the rate at 916 * which a given frame was received. 917 */ 918 Static uint8_t 919 rum_rxrate(const struct rum_rx_desc *desc) 920 { 921 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 922 /* reverse function of rum_plcp_signal */ 923 switch (desc->rate) { 924 case 0xb: return 12; 925 case 0xf: return 18; 926 case 0xa: return 24; 927 case 0xe: return 36; 928 case 0x9: return 48; 929 case 0xd: return 72; 930 case 0x8: return 96; 931 case 0xc: return 108; 932 } 933 } else { 934 if (desc->rate == 10) 935 return 2; 936 if (desc->rate == 20) 937 return 4; 938 if (desc->rate == 55) 939 return 11; 940 if (desc->rate == 110) 941 return 22; 942 } 943 return 2; /* should not get there */ 944 } 945 946 /* 947 * Return the expected ack rate for a frame transmitted at rate `rate'. 948 * XXX: this should depend on the destination node basic rate set. 949 */ 950 Static int 951 rum_ack_rate(struct ieee80211com *ic, int rate) 952 { 953 switch (rate) { 954 /* CCK rates */ 955 case 2: 956 return 2; 957 case 4: 958 case 11: 959 case 22: 960 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 961 962 /* OFDM rates */ 963 case 12: 964 case 18: 965 return 12; 966 case 24: 967 case 36: 968 return 24; 969 case 48: 970 case 72: 971 case 96: 972 case 108: 973 return 48; 974 } 975 976 /* default to 1Mbps */ 977 return 2; 978 } 979 980 /* 981 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 982 * The function automatically determines the operating mode depending on the 983 * given rate. `flags' indicates whether short preamble is in use or not. 984 */ 985 Static uint16_t 986 rum_txtime(int len, int rate, uint32_t flags) 987 { 988 uint16_t txtime; 989 990 if (RUM_RATE_IS_OFDM(rate)) { 991 /* IEEE Std 802.11a-1999, pp. 37 */ 992 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 993 txtime = 16 + 4 + 4 * txtime + 6; 994 } else { 995 /* IEEE Std 802.11b-1999, pp. 28 */ 996 txtime = (16 * len + rate - 1) / rate; 997 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 998 txtime += 72 + 24; 999 else 1000 txtime += 144 + 48; 1001 } 1002 return txtime; 1003 } 1004 1005 Static uint8_t 1006 rum_plcp_signal(int rate) 1007 { 1008 switch (rate) { 1009 /* CCK rates (returned values are device-dependent) */ 1010 case 2: return 0x0; 1011 case 4: return 0x1; 1012 case 11: return 0x2; 1013 case 22: return 0x3; 1014 1015 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1016 case 12: return 0xb; 1017 case 18: return 0xf; 1018 case 24: return 0xa; 1019 case 36: return 0xe; 1020 case 48: return 0x9; 1021 case 72: return 0xd; 1022 case 96: return 0x8; 1023 case 108: return 0xc; 1024 1025 /* unsupported rates (should not get there) */ 1026 default: return 0xff; 1027 } 1028 } 1029 1030 Static void 1031 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1032 uint32_t flags, uint16_t xflags, int len, int rate) 1033 { 1034 struct ieee80211com *ic = &sc->sc_ic; 1035 uint16_t plcp_length; 1036 int remainder; 1037 1038 desc->flags = htole32(flags); 1039 desc->flags |= htole32(RT2573_TX_VALID); 1040 desc->flags |= htole32(len << 16); 1041 1042 desc->xflags = htole16(xflags); 1043 1044 desc->wme = htole16( 1045 RT2573_QID(0) | 1046 RT2573_AIFSN(2) | 1047 RT2573_LOGCWMIN(4) | 1048 RT2573_LOGCWMAX(10)); 1049 1050 /* setup PLCP fields */ 1051 desc->plcp_signal = rum_plcp_signal(rate); 1052 desc->plcp_service = 4; 1053 1054 len += IEEE80211_CRC_LEN; 1055 if (RUM_RATE_IS_OFDM(rate)) { 1056 desc->flags |= htole32(RT2573_TX_OFDM); 1057 1058 plcp_length = len & 0xfff; 1059 desc->plcp_length_hi = plcp_length >> 6; 1060 desc->plcp_length_lo = plcp_length & 0x3f; 1061 } else { 1062 plcp_length = (16 * len + rate - 1) / rate; 1063 if (rate == 22) { 1064 remainder = (16 * len) % 22; 1065 if (remainder != 0 && remainder < 7) 1066 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1067 } 1068 desc->plcp_length_hi = plcp_length >> 8; 1069 desc->plcp_length_lo = plcp_length & 0xff; 1070 1071 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1072 desc->plcp_signal |= 0x08; 1073 } 1074 } 1075 1076 #define RUM_TX_TIMEOUT 5000 1077 1078 Static int 1079 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1080 { 1081 struct ieee80211com *ic = &sc->sc_ic; 1082 struct rum_tx_desc *desc; 1083 struct rum_tx_data *data; 1084 struct ieee80211_frame *wh; 1085 struct ieee80211_key *k; 1086 uint32_t flags = 0; 1087 uint16_t dur; 1088 usbd_status error; 1089 int xferlen, rate; 1090 1091 data = &sc->tx_data[0]; 1092 desc = (struct rum_tx_desc *)data->buf; 1093 1094 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1095 1096 data->m = m0; 1097 data->ni = ni; 1098 1099 wh = mtod(m0, struct ieee80211_frame *); 1100 1101 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1102 k = ieee80211_crypto_encap(ic, ni, m0); 1103 if (k == NULL) { 1104 m_freem(m0); 1105 return ENOBUFS; 1106 } 1107 } 1108 1109 wh = mtod(m0, struct ieee80211_frame *); 1110 1111 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1112 flags |= RT2573_TX_NEED_ACK; 1113 1114 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1115 ic->ic_flags) + sc->sifs; 1116 *(uint16_t *)wh->i_dur = htole16(dur); 1117 1118 /* tell hardware to set timestamp in probe responses */ 1119 if ((wh->i_fc[0] & 1120 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1121 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1122 flags |= RT2573_TX_TIMESTAMP; 1123 } 1124 1125 if (sc->sc_drvbpf != NULL) { 1126 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1127 1128 tap->wt_flags = 0; 1129 tap->wt_rate = rate; 1130 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1131 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1132 tap->wt_antenna = sc->tx_ant; 1133 1134 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1135 } 1136 1137 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1138 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1139 1140 /* align end on a 4-bytes boundary */ 1141 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1142 1143 /* 1144 * No space left in the last URB to store the extra 4 bytes, force 1145 * sending of another URB. 1146 */ 1147 if ((xferlen % 64) == 0) 1148 xferlen += 4; 1149 1150 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n", 1151 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1152 rate, xferlen)); 1153 1154 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1155 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1156 1157 error = usbd_transfer(data->xfer); 1158 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1159 m_freem(m0); 1160 return error; 1161 } 1162 1163 sc->tx_queued++; 1164 1165 return 0; 1166 } 1167 1168 Static int 1169 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1170 { 1171 struct ieee80211com *ic = &sc->sc_ic; 1172 struct rum_tx_desc *desc; 1173 struct rum_tx_data *data; 1174 struct ieee80211_frame *wh; 1175 struct ieee80211_key *k; 1176 uint32_t flags = 0; 1177 uint16_t dur; 1178 usbd_status error; 1179 int xferlen, rate; 1180 1181 wh = mtod(m0, struct ieee80211_frame *); 1182 1183 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1184 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1185 else 1186 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1187 if (rate == 0) 1188 rate = 2; /* XXX should not happen */ 1189 rate &= IEEE80211_RATE_VAL; 1190 1191 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1192 k = ieee80211_crypto_encap(ic, ni, m0); 1193 if (k == NULL) { 1194 m_freem(m0); 1195 return ENOBUFS; 1196 } 1197 1198 /* packet header may have moved, reset our local pointer */ 1199 wh = mtod(m0, struct ieee80211_frame *); 1200 } 1201 1202 data = &sc->tx_data[0]; 1203 desc = (struct rum_tx_desc *)data->buf; 1204 1205 data->ni = ni; 1206 1207 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1208 flags |= RT2573_TX_NEED_ACK; 1209 1210 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1211 ic->ic_flags) + sc->sifs; 1212 *(uint16_t *)wh->i_dur = htole16(dur); 1213 } 1214 1215 if (sc->sc_drvbpf != NULL) { 1216 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1217 1218 tap->wt_flags = 0; 1219 tap->wt_rate = rate; 1220 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1221 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1222 tap->wt_antenna = sc->tx_ant; 1223 1224 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1225 } 1226 1227 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1228 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1229 1230 /* align end on a 4-bytes boundary */ 1231 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1232 1233 /* 1234 * No space left in the last URB to store the extra 4 bytes, force 1235 * sending of another URB. 1236 */ 1237 if ((xferlen % 64) == 0) 1238 xferlen += 4; 1239 1240 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1241 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1242 rate, xferlen)); 1243 1244 /* mbuf is no longer needed */ 1245 m_freem(m0); 1246 1247 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1248 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1249 1250 error = usbd_transfer(data->xfer); 1251 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1252 return error; 1253 1254 sc->tx_queued++; 1255 1256 return 0; 1257 } 1258 1259 Static void 1260 rum_start(struct ifnet *ifp) 1261 { 1262 struct rum_softc *sc = ifp->if_softc; 1263 struct ieee80211com *ic = &sc->sc_ic; 1264 struct ether_header *eh; 1265 struct ieee80211_node *ni; 1266 struct mbuf *m0; 1267 1268 for (;;) { 1269 IF_POLL(&ic->ic_mgtq, m0); 1270 if (m0 != NULL) { 1271 if (sc->tx_queued >= RUM_TX_LIST_COUNT) { 1272 ifp->if_flags |= IFF_OACTIVE; 1273 break; 1274 } 1275 IF_DEQUEUE(&ic->ic_mgtq, m0); 1276 1277 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1278 m0->m_pkthdr.rcvif = NULL; 1279 bpf_mtap3(ic->ic_rawbpf, m0); 1280 if (rum_tx_mgt(sc, m0, ni) != 0) 1281 break; 1282 1283 } else { 1284 if (ic->ic_state != IEEE80211_S_RUN) 1285 break; 1286 IFQ_POLL(&ifp->if_snd, m0); 1287 if (m0 == NULL) 1288 break; 1289 if (sc->tx_queued >= RUM_TX_LIST_COUNT) { 1290 ifp->if_flags |= IFF_OACTIVE; 1291 break; 1292 } 1293 IFQ_DEQUEUE(&ifp->if_snd, m0); 1294 if (m0->m_len < sizeof(struct ether_header) && 1295 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1296 continue; 1297 1298 eh = mtod(m0, struct ether_header *); 1299 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1300 if (ni == NULL) { 1301 m_freem(m0); 1302 continue; 1303 } 1304 bpf_mtap(ifp, m0); 1305 m0 = ieee80211_encap(ic, m0, ni); 1306 if (m0 == NULL) { 1307 ieee80211_free_node(ni); 1308 continue; 1309 } 1310 bpf_mtap3(ic->ic_rawbpf, m0); 1311 if (rum_tx_data(sc, m0, ni) != 0) { 1312 ieee80211_free_node(ni); 1313 ifp->if_oerrors++; 1314 break; 1315 } 1316 } 1317 1318 sc->sc_tx_timer = 5; 1319 ifp->if_timer = 1; 1320 } 1321 } 1322 1323 Static void 1324 rum_watchdog(struct ifnet *ifp) 1325 { 1326 struct rum_softc *sc = ifp->if_softc; 1327 struct ieee80211com *ic = &sc->sc_ic; 1328 1329 ifp->if_timer = 0; 1330 1331 if (sc->sc_tx_timer > 0) { 1332 if (--sc->sc_tx_timer == 0) { 1333 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 1334 /*rum_init(ifp); XXX needs a process context! */ 1335 ifp->if_oerrors++; 1336 return; 1337 } 1338 ifp->if_timer = 1; 1339 } 1340 1341 ieee80211_watchdog(ic); 1342 } 1343 1344 Static int 1345 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1346 { 1347 struct rum_softc *sc = ifp->if_softc; 1348 struct ieee80211com *ic = &sc->sc_ic; 1349 int s, error = 0; 1350 1351 s = splnet(); 1352 1353 switch (cmd) { 1354 case SIOCSIFFLAGS: 1355 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1356 break; 1357 /* XXX re-use ether_ioctl() */ 1358 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1359 case IFF_UP|IFF_RUNNING: 1360 rum_update_promisc(sc); 1361 break; 1362 case IFF_UP: 1363 rum_init(ifp); 1364 break; 1365 case IFF_RUNNING: 1366 rum_stop(ifp, 1); 1367 break; 1368 case 0: 1369 break; 1370 } 1371 break; 1372 1373 default: 1374 error = ieee80211_ioctl(ic, cmd, data); 1375 } 1376 1377 if (error == ENETRESET) { 1378 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1379 (IFF_UP | IFF_RUNNING)) 1380 rum_init(ifp); 1381 error = 0; 1382 } 1383 1384 splx(s); 1385 1386 return error; 1387 } 1388 1389 Static void 1390 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1391 { 1392 usb_device_request_t req; 1393 usbd_status error; 1394 1395 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1396 req.bRequest = RT2573_READ_EEPROM; 1397 USETW(req.wValue, 0); 1398 USETW(req.wIndex, addr); 1399 USETW(req.wLength, len); 1400 1401 error = usbd_do_request(sc->sc_udev, &req, buf); 1402 if (error != 0) { 1403 printf("%s: could not read EEPROM: %s\n", 1404 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1405 } 1406 } 1407 1408 Static uint32_t 1409 rum_read(struct rum_softc *sc, uint16_t reg) 1410 { 1411 uint32_t val; 1412 1413 rum_read_multi(sc, reg, &val, sizeof val); 1414 1415 return le32toh(val); 1416 } 1417 1418 Static void 1419 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1420 { 1421 usb_device_request_t req; 1422 usbd_status error; 1423 1424 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1425 req.bRequest = RT2573_READ_MULTI_MAC; 1426 USETW(req.wValue, 0); 1427 USETW(req.wIndex, reg); 1428 USETW(req.wLength, len); 1429 1430 error = usbd_do_request(sc->sc_udev, &req, buf); 1431 if (error != 0) { 1432 printf("%s: could not multi read MAC register: %s\n", 1433 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1434 } 1435 } 1436 1437 Static void 1438 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1439 { 1440 uint32_t tmp = htole32(val); 1441 1442 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1443 } 1444 1445 Static void 1446 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1447 { 1448 usb_device_request_t req; 1449 usbd_status error; 1450 1451 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1452 req.bRequest = RT2573_WRITE_MULTI_MAC; 1453 USETW(req.wValue, 0); 1454 USETW(req.wIndex, reg); 1455 USETW(req.wLength, len); 1456 1457 error = usbd_do_request(sc->sc_udev, &req, buf); 1458 if (error != 0) { 1459 printf("%s: could not multi write MAC register: %s\n", 1460 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1461 } 1462 } 1463 1464 Static void 1465 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1466 { 1467 uint32_t tmp; 1468 int ntries; 1469 1470 for (ntries = 0; ntries < 5; ntries++) { 1471 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1472 break; 1473 } 1474 if (ntries == 5) { 1475 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); 1476 return; 1477 } 1478 1479 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1480 rum_write(sc, RT2573_PHY_CSR3, tmp); 1481 } 1482 1483 Static uint8_t 1484 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1485 { 1486 uint32_t val; 1487 int ntries; 1488 1489 for (ntries = 0; ntries < 5; ntries++) { 1490 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1491 break; 1492 } 1493 if (ntries == 5) { 1494 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1495 return 0; 1496 } 1497 1498 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1499 rum_write(sc, RT2573_PHY_CSR3, val); 1500 1501 for (ntries = 0; ntries < 100; ntries++) { 1502 val = rum_read(sc, RT2573_PHY_CSR3); 1503 if (!(val & RT2573_BBP_BUSY)) 1504 return val & 0xff; 1505 DELAY(1); 1506 } 1507 1508 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1509 return 0; 1510 } 1511 1512 Static void 1513 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1514 { 1515 uint32_t tmp; 1516 int ntries; 1517 1518 for (ntries = 0; ntries < 5; ntries++) { 1519 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1520 break; 1521 } 1522 if (ntries == 5) { 1523 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); 1524 return; 1525 } 1526 1527 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1528 (reg & 3); 1529 rum_write(sc, RT2573_PHY_CSR4, tmp); 1530 1531 /* remember last written value in sc */ 1532 sc->rf_regs[reg] = val; 1533 1534 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1535 } 1536 1537 Static void 1538 rum_select_antenna(struct rum_softc *sc) 1539 { 1540 uint8_t bbp4, bbp77; 1541 uint32_t tmp; 1542 1543 bbp4 = rum_bbp_read(sc, 4); 1544 bbp77 = rum_bbp_read(sc, 77); 1545 1546 /* TBD */ 1547 1548 /* make sure Rx is disabled before switching antenna */ 1549 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1550 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1551 1552 rum_bbp_write(sc, 4, bbp4); 1553 rum_bbp_write(sc, 77, bbp77); 1554 1555 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1556 } 1557 1558 /* 1559 * Enable multi-rate retries for frames sent at OFDM rates. 1560 * In 802.11b/g mode, allow fallback to CCK rates. 1561 */ 1562 Static void 1563 rum_enable_mrr(struct rum_softc *sc) 1564 { 1565 struct ieee80211com *ic = &sc->sc_ic; 1566 uint32_t tmp; 1567 1568 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1569 1570 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1571 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1572 tmp |= RT2573_MRR_CCK_FALLBACK; 1573 tmp |= RT2573_MRR_ENABLED; 1574 1575 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1576 } 1577 1578 Static void 1579 rum_set_txpreamble(struct rum_softc *sc) 1580 { 1581 uint32_t tmp; 1582 1583 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1584 1585 tmp &= ~RT2573_SHORT_PREAMBLE; 1586 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1587 tmp |= RT2573_SHORT_PREAMBLE; 1588 1589 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1590 } 1591 1592 Static void 1593 rum_set_basicrates(struct rum_softc *sc) 1594 { 1595 struct ieee80211com *ic = &sc->sc_ic; 1596 1597 /* update basic rate set */ 1598 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1599 /* 11b basic rates: 1, 2Mbps */ 1600 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1601 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1602 /* 11a basic rates: 6, 12, 24Mbps */ 1603 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1604 } else { 1605 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1606 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1607 } 1608 } 1609 1610 /* 1611 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1612 * driver. 1613 */ 1614 Static void 1615 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1616 { 1617 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1618 uint32_t tmp; 1619 1620 /* update all BBP registers that depend on the band */ 1621 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1622 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1623 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1624 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1625 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1626 } 1627 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1628 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1629 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1630 } 1631 1632 sc->bbp17 = bbp17; 1633 rum_bbp_write(sc, 17, bbp17); 1634 rum_bbp_write(sc, 96, bbp96); 1635 rum_bbp_write(sc, 104, bbp104); 1636 1637 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1638 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1639 rum_bbp_write(sc, 75, 0x80); 1640 rum_bbp_write(sc, 86, 0x80); 1641 rum_bbp_write(sc, 88, 0x80); 1642 } 1643 1644 rum_bbp_write(sc, 35, bbp35); 1645 rum_bbp_write(sc, 97, bbp97); 1646 rum_bbp_write(sc, 98, bbp98); 1647 1648 tmp = rum_read(sc, RT2573_PHY_CSR0); 1649 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1650 if (IEEE80211_IS_CHAN_2GHZ(c)) 1651 tmp |= RT2573_PA_PE_2GHZ; 1652 else 1653 tmp |= RT2573_PA_PE_5GHZ; 1654 rum_write(sc, RT2573_PHY_CSR0, tmp); 1655 1656 /* 802.11a uses a 16 microseconds short interframe space */ 1657 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1658 } 1659 1660 Static void 1661 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1662 { 1663 struct ieee80211com *ic = &sc->sc_ic; 1664 const struct rfprog *rfprog; 1665 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1666 int8_t power; 1667 u_int i, chan; 1668 1669 chan = ieee80211_chan2ieee(ic, c); 1670 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1671 return; 1672 1673 /* select the appropriate RF settings based on what EEPROM says */ 1674 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1675 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1676 1677 /* find the settings for this channel (we know it exists) */ 1678 for (i = 0; rfprog[i].chan != chan; i++); 1679 1680 power = sc->txpow[i]; 1681 if (power < 0) { 1682 bbp94 += power; 1683 power = 0; 1684 } else if (power > 31) { 1685 bbp94 += power - 31; 1686 power = 31; 1687 } 1688 1689 /* 1690 * If we are switching from the 2GHz band to the 5GHz band or 1691 * vice-versa, BBP registers need to be reprogrammed. 1692 */ 1693 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1694 rum_select_band(sc, c); 1695 rum_select_antenna(sc); 1696 } 1697 ic->ic_curchan = c; 1698 1699 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1700 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1701 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1702 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1703 1704 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1705 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1706 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1707 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1708 1709 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1710 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1711 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1712 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1713 1714 DELAY(10); 1715 1716 /* enable smart mode for MIMO-capable RFs */ 1717 bbp3 = rum_bbp_read(sc, 3); 1718 1719 bbp3 &= ~RT2573_SMART_MODE; 1720 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1721 bbp3 |= RT2573_SMART_MODE; 1722 1723 rum_bbp_write(sc, 3, bbp3); 1724 1725 if (bbp94 != RT2573_BBPR94_DEFAULT) 1726 rum_bbp_write(sc, 94, bbp94); 1727 } 1728 1729 /* 1730 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1731 * and HostAP operating modes. 1732 */ 1733 Static void 1734 rum_enable_tsf_sync(struct rum_softc *sc) 1735 { 1736 struct ieee80211com *ic = &sc->sc_ic; 1737 uint32_t tmp; 1738 1739 if (ic->ic_opmode != IEEE80211_M_STA) { 1740 /* 1741 * Change default 16ms TBTT adjustment to 8ms. 1742 * Must be done before enabling beacon generation. 1743 */ 1744 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1745 } 1746 1747 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1748 1749 /* set beacon interval (in 1/16ms unit) */ 1750 tmp |= ic->ic_bss->ni_intval * 16; 1751 1752 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1753 if (ic->ic_opmode == IEEE80211_M_STA) 1754 tmp |= RT2573_TSF_MODE(1); 1755 else 1756 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1757 1758 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1759 } 1760 1761 Static void 1762 rum_update_slot(struct rum_softc *sc) 1763 { 1764 struct ieee80211com *ic = &sc->sc_ic; 1765 uint8_t slottime; 1766 uint32_t tmp; 1767 1768 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1769 1770 tmp = rum_read(sc, RT2573_MAC_CSR9); 1771 tmp = (tmp & ~0xff) | slottime; 1772 rum_write(sc, RT2573_MAC_CSR9, tmp); 1773 1774 DPRINTF(("setting slot time to %uus\n", slottime)); 1775 } 1776 1777 Static void 1778 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1779 { 1780 uint32_t tmp; 1781 1782 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1783 rum_write(sc, RT2573_MAC_CSR4, tmp); 1784 1785 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1786 rum_write(sc, RT2573_MAC_CSR5, tmp); 1787 } 1788 1789 Static void 1790 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1791 { 1792 uint32_t tmp; 1793 1794 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1795 rum_write(sc, RT2573_MAC_CSR2, tmp); 1796 1797 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1798 rum_write(sc, RT2573_MAC_CSR3, tmp); 1799 } 1800 1801 Static void 1802 rum_update_promisc(struct rum_softc *sc) 1803 { 1804 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1805 uint32_t tmp; 1806 1807 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1808 1809 tmp &= ~RT2573_DROP_NOT_TO_ME; 1810 if (!(ifp->if_flags & IFF_PROMISC)) 1811 tmp |= RT2573_DROP_NOT_TO_ME; 1812 1813 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1814 1815 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1816 "entering" : "leaving")); 1817 } 1818 1819 Static const char * 1820 rum_get_rf(int rev) 1821 { 1822 switch (rev) { 1823 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1824 case RT2573_RF_2528: return "RT2528"; 1825 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1826 case RT2573_RF_5226: return "RT5226"; 1827 default: return "unknown"; 1828 } 1829 } 1830 1831 Static void 1832 rum_read_eeprom(struct rum_softc *sc) 1833 { 1834 struct ieee80211com *ic = &sc->sc_ic; 1835 uint16_t val; 1836 #ifdef RUM_DEBUG 1837 int i; 1838 #endif 1839 1840 /* read MAC/BBP type */ 1841 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1842 sc->macbbp_rev = le16toh(val); 1843 1844 /* read MAC address */ 1845 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1846 1847 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1848 val = le16toh(val); 1849 sc->rf_rev = (val >> 11) & 0x1f; 1850 sc->hw_radio = (val >> 10) & 0x1; 1851 sc->rx_ant = (val >> 4) & 0x3; 1852 sc->tx_ant = (val >> 2) & 0x3; 1853 sc->nb_ant = val & 0x3; 1854 1855 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1856 1857 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1858 val = le16toh(val); 1859 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1860 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1861 1862 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1863 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1864 1865 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1866 val = le16toh(val); 1867 if ((val & 0xff) != 0xff) 1868 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1869 1870 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1871 val = le16toh(val); 1872 if ((val & 0xff) != 0xff) 1873 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1874 1875 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1876 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1877 1878 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1879 val = le16toh(val); 1880 if ((val & 0xff) != 0xff) 1881 sc->rffreq = val & 0xff; 1882 1883 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1884 1885 /* read Tx power for all a/b/g channels */ 1886 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1887 /* XXX default Tx power for 802.11a channels */ 1888 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1889 #ifdef RUM_DEBUG 1890 for (i = 0; i < 14; i++) 1891 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1892 #endif 1893 1894 /* read default values for BBP registers */ 1895 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1896 #ifdef RUM_DEBUG 1897 for (i = 0; i < 14; i++) { 1898 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1899 continue; 1900 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1901 sc->bbp_prom[i].val)); 1902 } 1903 #endif 1904 } 1905 1906 Static int 1907 rum_bbp_init(struct rum_softc *sc) 1908 { 1909 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1910 int i, ntries; 1911 uint8_t val; 1912 1913 /* wait for BBP to be ready */ 1914 for (ntries = 0; ntries < 100; ntries++) { 1915 val = rum_bbp_read(sc, 0); 1916 if (val != 0 && val != 0xff) 1917 break; 1918 DELAY(1000); 1919 } 1920 if (ntries == 100) { 1921 printf("%s: timeout waiting for BBP\n", 1922 USBDEVNAME(sc->sc_dev)); 1923 return EIO; 1924 } 1925 1926 /* initialize BBP registers to default values */ 1927 for (i = 0; i < N(rum_def_bbp); i++) 1928 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1929 1930 /* write vendor-specific BBP values (from EEPROM) */ 1931 for (i = 0; i < 16; i++) { 1932 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1933 continue; 1934 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1935 } 1936 1937 return 0; 1938 #undef N 1939 } 1940 1941 Static int 1942 rum_init(struct ifnet *ifp) 1943 { 1944 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1945 struct rum_softc *sc = ifp->if_softc; 1946 struct ieee80211com *ic = &sc->sc_ic; 1947 struct rum_rx_data *data; 1948 uint32_t tmp; 1949 usbd_status error = 0; 1950 int i, ntries; 1951 1952 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1953 if (rum_attachhook(sc)) 1954 goto fail; 1955 } 1956 1957 rum_stop(ifp, 0); 1958 1959 /* initialize MAC registers to default values */ 1960 for (i = 0; i < N(rum_def_mac); i++) 1961 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1962 1963 /* set host ready */ 1964 rum_write(sc, RT2573_MAC_CSR1, 3); 1965 rum_write(sc, RT2573_MAC_CSR1, 0); 1966 1967 /* wait for BBP/RF to wakeup */ 1968 for (ntries = 0; ntries < 1000; ntries++) { 1969 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1970 break; 1971 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1972 DELAY(1000); 1973 } 1974 if (ntries == 1000) { 1975 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1976 USBDEVNAME(sc->sc_dev)); 1977 goto fail; 1978 } 1979 1980 if ((error = rum_bbp_init(sc)) != 0) 1981 goto fail; 1982 1983 /* select default channel */ 1984 rum_select_band(sc, ic->ic_curchan); 1985 rum_select_antenna(sc); 1986 rum_set_chan(sc, ic->ic_curchan); 1987 1988 /* clear STA registers */ 1989 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1990 1991 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1992 rum_set_macaddr(sc, ic->ic_myaddr); 1993 1994 /* initialize ASIC */ 1995 rum_write(sc, RT2573_MAC_CSR1, 4); 1996 1997 /* 1998 * Allocate xfer for AMRR statistics requests. 1999 */ 2000 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2001 if (sc->amrr_xfer == NULL) { 2002 printf("%s: could not allocate AMRR xfer\n", 2003 USBDEVNAME(sc->sc_dev)); 2004 goto fail; 2005 } 2006 2007 /* 2008 * Open Tx and Rx USB bulk pipes. 2009 */ 2010 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2011 &sc->sc_tx_pipeh); 2012 if (error != 0) { 2013 printf("%s: could not open Tx pipe: %s\n", 2014 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2015 goto fail; 2016 } 2017 2018 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2019 &sc->sc_rx_pipeh); 2020 if (error != 0) { 2021 printf("%s: could not open Rx pipe: %s\n", 2022 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2023 goto fail; 2024 } 2025 2026 /* 2027 * Allocate Tx and Rx xfer queues. 2028 */ 2029 error = rum_alloc_tx_list(sc); 2030 if (error != 0) { 2031 printf("%s: could not allocate Tx list\n", 2032 USBDEVNAME(sc->sc_dev)); 2033 goto fail; 2034 } 2035 2036 error = rum_alloc_rx_list(sc); 2037 if (error != 0) { 2038 printf("%s: could not allocate Rx list\n", 2039 USBDEVNAME(sc->sc_dev)); 2040 goto fail; 2041 } 2042 2043 /* 2044 * Start up the receive pipe. 2045 */ 2046 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2047 data = &sc->rx_data[i]; 2048 2049 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2050 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2051 error = usbd_transfer(data->xfer); 2052 if (error != USBD_NORMAL_COMPLETION && 2053 error != USBD_IN_PROGRESS) { 2054 printf("%s: could not queue Rx transfer\n", 2055 USBDEVNAME(sc->sc_dev)); 2056 goto fail; 2057 } 2058 } 2059 2060 /* update Rx filter */ 2061 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2062 2063 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2064 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2065 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2066 RT2573_DROP_ACKCTS; 2067 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2068 tmp |= RT2573_DROP_TODS; 2069 if (!(ifp->if_flags & IFF_PROMISC)) 2070 tmp |= RT2573_DROP_NOT_TO_ME; 2071 } 2072 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2073 2074 ifp->if_flags &= ~IFF_OACTIVE; 2075 ifp->if_flags |= IFF_RUNNING; 2076 2077 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2078 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2079 else 2080 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2081 2082 return 0; 2083 2084 fail: rum_stop(ifp, 1); 2085 return error; 2086 #undef N 2087 } 2088 2089 Static void 2090 rum_stop(struct ifnet *ifp, int disable) 2091 { 2092 struct rum_softc *sc = ifp->if_softc; 2093 struct ieee80211com *ic = &sc->sc_ic; 2094 uint32_t tmp; 2095 2096 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2097 2098 sc->sc_tx_timer = 0; 2099 ifp->if_timer = 0; 2100 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2101 2102 /* disable Rx */ 2103 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2104 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2105 2106 /* reset ASIC */ 2107 rum_write(sc, RT2573_MAC_CSR1, 3); 2108 rum_write(sc, RT2573_MAC_CSR1, 0); 2109 2110 if (sc->sc_rx_pipeh != NULL) { 2111 usbd_abort_pipe(sc->sc_rx_pipeh); 2112 usbd_close_pipe(sc->sc_rx_pipeh); 2113 sc->sc_rx_pipeh = NULL; 2114 } 2115 2116 if (sc->sc_tx_pipeh != NULL) { 2117 usbd_abort_pipe(sc->sc_tx_pipeh); 2118 usbd_close_pipe(sc->sc_tx_pipeh); 2119 sc->sc_tx_pipeh = NULL; 2120 } 2121 2122 rum_free_rx_list(sc); 2123 rum_free_tx_list(sc); 2124 } 2125 2126 Static int 2127 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2128 { 2129 usb_device_request_t req; 2130 uint16_t reg = RT2573_MCU_CODE_BASE; 2131 usbd_status error; 2132 2133 /* copy firmware image into NIC */ 2134 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2135 rum_write(sc, reg, UGETDW(ucode)); 2136 2137 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2138 req.bRequest = RT2573_MCU_CNTL; 2139 USETW(req.wValue, RT2573_MCU_RUN); 2140 USETW(req.wIndex, 0); 2141 USETW(req.wLength, 0); 2142 2143 error = usbd_do_request(sc->sc_udev, &req, NULL); 2144 if (error != 0) { 2145 printf("%s: could not run firmware: %s\n", 2146 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2147 } 2148 return error; 2149 } 2150 2151 Static int 2152 rum_prepare_beacon(struct rum_softc *sc) 2153 { 2154 struct ieee80211com *ic = &sc->sc_ic; 2155 struct rum_tx_desc desc; 2156 struct mbuf *m0; 2157 int rate; 2158 2159 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2160 if (m0 == NULL) { 2161 aprint_error_dev(sc->sc_dev, 2162 "could not allocate beacon frame\n"); 2163 return ENOBUFS; 2164 } 2165 2166 /* send beacons at the lowest available rate */ 2167 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2168 2169 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2170 m0->m_pkthdr.len, rate); 2171 2172 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2173 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2174 2175 /* copy beacon header and payload into NIC memory */ 2176 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2177 m0->m_pkthdr.len); 2178 2179 m_freem(m0); 2180 2181 return 0; 2182 } 2183 2184 Static void 2185 rum_newassoc(struct ieee80211_node *ni, int isnew) 2186 { 2187 /* start with lowest Tx rate */ 2188 ni->ni_txrate = 0; 2189 } 2190 2191 Static void 2192 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2193 { 2194 int i; 2195 2196 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2197 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2198 2199 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2200 2201 /* set rate to some reasonable initial value */ 2202 for (i = ni->ni_rates.rs_nrates - 1; 2203 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2204 i--); 2205 ni->ni_txrate = i; 2206 2207 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2208 } 2209 2210 Static void 2211 rum_amrr_timeout(void *arg) 2212 { 2213 struct rum_softc *sc = arg; 2214 usb_device_request_t req; 2215 2216 /* 2217 * Asynchronously read statistic registers (cleared by read). 2218 */ 2219 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2220 req.bRequest = RT2573_READ_MULTI_MAC; 2221 USETW(req.wValue, 0); 2222 USETW(req.wIndex, RT2573_STA_CSR0); 2223 USETW(req.wLength, sizeof sc->sta); 2224 2225 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2226 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2227 rum_amrr_update); 2228 (void)usbd_transfer(sc->amrr_xfer); 2229 } 2230 2231 Static void 2232 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2233 usbd_status status) 2234 { 2235 struct rum_softc *sc = (struct rum_softc *)priv; 2236 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2237 2238 if (status != USBD_NORMAL_COMPLETION) { 2239 printf("%s: could not retrieve Tx statistics - cancelling " 2240 "automatic rate control\n", USBDEVNAME(sc->sc_dev)); 2241 return; 2242 } 2243 2244 /* count TX retry-fail as Tx errors */ 2245 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2246 2247 sc->amn.amn_retrycnt = 2248 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2249 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2250 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2251 2252 sc->amn.amn_txcnt = 2253 sc->amn.amn_retrycnt + 2254 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2255 2256 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2257 2258 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2259 } 2260 2261 int 2262 rum_activate(device_ptr_t self, enum devact act) 2263 { 2264 switch (act) { 2265 case DVACT_DEACTIVATE: 2266 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2267 return 0; 2268 default: 2269 return EOPNOTSUPP; 2270 } 2271 } 2272