xref: /netbsd-src/sys/dev/usb/if_rum.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.17 2007/10/21 17:03:37 degroote Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.17 2007/10/21 17:03:37 degroote Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79 
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88 
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
92 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
93 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
94 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
95 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
96 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
97 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
98 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
99 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
101 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
102 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
103 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
104 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
107 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
108 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
109 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
110 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
111 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
112 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
113 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
114 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
115 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
116 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
117 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
118 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
119 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
120 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
121 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
122 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
123 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
124 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
125 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
126 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
127 	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
128 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
129 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
130 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
131 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
132 };
133 
134 Static int		rum_attachhook(void *);
135 Static int		rum_alloc_tx_list(struct rum_softc *);
136 Static void		rum_free_tx_list(struct rum_softc *);
137 Static int		rum_alloc_rx_list(struct rum_softc *);
138 Static void		rum_free_rx_list(struct rum_softc *);
139 Static int		rum_media_change(struct ifnet *);
140 Static void		rum_next_scan(void *);
141 Static void		rum_task(void *);
142 Static int		rum_newstate(struct ieee80211com *,
143 			    enum ieee80211_state, int);
144 Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
145 			    usbd_status);
146 Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
147 			    usbd_status);
148 #if NBPFILTER > 0
149 Static uint8_t		rum_rxrate(struct rum_rx_desc *);
150 #endif
151 Static int		rum_ack_rate(struct ieee80211com *, int);
152 Static uint16_t		rum_txtime(int, int, uint32_t);
153 Static uint8_t		rum_plcp_signal(int);
154 Static void		rum_setup_tx_desc(struct rum_softc *,
155 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
156 			    int);
157 Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
158 			    struct ieee80211_node *);
159 Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
160 			    struct ieee80211_node *);
161 Static void		rum_start(struct ifnet *);
162 Static void		rum_watchdog(struct ifnet *);
163 Static int		rum_ioctl(struct ifnet *, u_long, void *);
164 Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 			    int);
166 Static uint32_t		rum_read(struct rum_softc *, uint16_t);
167 Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
168 			    int);
169 Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
170 Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
171 			    size_t);
172 Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
174 Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 Static void		rum_select_antenna(struct rum_softc *);
176 Static void		rum_enable_mrr(struct rum_softc *);
177 Static void		rum_set_txpreamble(struct rum_softc *);
178 Static void		rum_set_basicrates(struct rum_softc *);
179 Static void		rum_select_band(struct rum_softc *,
180 			    struct ieee80211_channel *);
181 Static void		rum_set_chan(struct rum_softc *,
182 			    struct ieee80211_channel *);
183 Static void		rum_enable_tsf_sync(struct rum_softc *);
184 Static void		rum_update_slot(struct rum_softc *);
185 Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
186 Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 Static void		rum_update_promisc(struct rum_softc *);
188 Static const char	*rum_get_rf(int);
189 Static void		rum_read_eeprom(struct rum_softc *);
190 Static int		rum_bbp_init(struct rum_softc *);
191 Static int		rum_init(struct ifnet *);
192 Static void		rum_stop(struct ifnet *, int);
193 Static int		rum_load_microcode(struct rum_softc *, const u_char *,
194 			    size_t);
195 Static int		rum_prepare_beacon(struct rum_softc *);
196 Static void		rum_amrr_start(struct rum_softc *,
197 			    struct ieee80211_node *);
198 Static void		rum_amrr_timeout(void *);
199 Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 			    usbd_status status);
201 
202 /*
203  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204  */
205 static const struct ieee80211_rateset rum_rateset_11a =
206 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207 
208 static const struct ieee80211_rateset rum_rateset_11b =
209 	{ 4, { 2, 4, 11, 22 } };
210 
211 static const struct ieee80211_rateset rum_rateset_11g =
212 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213 
214 static const struct {
215 	uint32_t	reg;
216 	uint32_t	val;
217 } rum_def_mac[] = {
218 	RT2573_DEF_MAC
219 };
220 
221 static const struct {
222 	uint8_t	reg;
223 	uint8_t	val;
224 } rum_def_bbp[] = {
225 	RT2573_DEF_BBP
226 };
227 
228 static const struct rfprog {
229 	uint8_t		chan;
230 	uint32_t	r1, r2, r3, r4;
231 }  rum_rf5226[] = {
232 	RT2573_RF5226
233 }, rum_rf5225[] = {
234 	RT2573_RF5225
235 };
236 
237 USB_DECLARE_DRIVER(rum);
238 
239 USB_MATCH(rum)
240 {
241 	USB_MATCH_START(rum, uaa);
242 
243 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
244 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
245 }
246 
247 Static int
248 rum_attachhook(void *xsc)
249 {
250 	struct rum_softc *sc = xsc;
251 	firmware_handle_t fwh;
252 	const char *name = "rum-rt2573";
253 	u_char *ucode;
254 	size_t size;
255 	int error;
256 
257 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
258 		printf("%s: failed loadfirmware of file %s (error %d)\n",
259 		    USBDEVNAME(sc->sc_dev), name, error);
260 		return error;
261 	}
262 	size = firmware_get_size(fwh);
263 	ucode = firmware_malloc(size);
264 	if (ucode == NULL) {
265 		printf("%s: failed to allocate firmware memory\n",
266 		    USBDEVNAME(sc->sc_dev));
267 		firmware_close(fwh);
268 		return ENOMEM;;
269 	}
270 	error = firmware_read(fwh, 0, ucode, size);
271 	firmware_close(fwh);
272 	if (error != 0) {
273 		printf("%s: failed to read firmware (error %d)\n",
274 		    USBDEVNAME(sc->sc_dev), error);
275 		firmware_free(ucode, 0);
276 		return error;
277 	}
278 
279 	if (rum_load_microcode(sc, ucode, size) != 0) {
280 		printf("%s: could not load 8051 microcode\n",
281 		    USBDEVNAME(sc->sc_dev));
282 		firmware_free(ucode, 0);
283 		return ENXIO;
284 	}
285 
286 	firmware_free(ucode, 0);
287 	sc->sc_flags |= RT2573_FWLOADED;
288 
289 	return 0;
290 }
291 
292 USB_ATTACH(rum)
293 {
294 	USB_ATTACH_START(rum, sc, uaa);
295 	struct ieee80211com *ic = &sc->sc_ic;
296 	struct ifnet *ifp = &sc->sc_if;
297 	usb_interface_descriptor_t *id;
298 	usb_endpoint_descriptor_t *ed;
299 	usbd_status error;
300 	char *devinfop;
301 	int i, ntries;
302 	uint32_t tmp;
303 
304 	sc->sc_udev = uaa->device;
305 	sc->sc_flags = 0;
306 
307 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
308 	USB_ATTACH_SETUP;
309 	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
310 	usbd_devinfo_free(devinfop);
311 
312 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
313 		printf("%s: could not set configuration no\n",
314 		    USBDEVNAME(sc->sc_dev));
315 		USB_ATTACH_ERROR_RETURN;
316 	}
317 
318 	/* get the first interface handle */
319 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
320 	    &sc->sc_iface);
321 	if (error != 0) {
322 		printf("%s: could not get interface handle\n",
323 		    USBDEVNAME(sc->sc_dev));
324 		USB_ATTACH_ERROR_RETURN;
325 	}
326 
327 	/*
328 	 * Find endpoints.
329 	 */
330 	id = usbd_get_interface_descriptor(sc->sc_iface);
331 
332 	sc->sc_rx_no = sc->sc_tx_no = -1;
333 	for (i = 0; i < id->bNumEndpoints; i++) {
334 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
335 		if (ed == NULL) {
336 			printf("%s: no endpoint descriptor for iface %d\n",
337 			    USBDEVNAME(sc->sc_dev), i);
338 			USB_ATTACH_ERROR_RETURN;
339 		}
340 
341 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
342 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
343 			sc->sc_rx_no = ed->bEndpointAddress;
344 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
345 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
346 			sc->sc_tx_no = ed->bEndpointAddress;
347 	}
348 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
349 		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
350 		USB_ATTACH_ERROR_RETURN;
351 	}
352 
353 	usb_init_task(&sc->sc_task, rum_task, sc);
354 	usb_callout_init(sc->sc_scan_ch);
355 
356 	sc->amrr.amrr_min_success_threshold =  1;
357 	sc->amrr.amrr_max_success_threshold = 10;
358 	usb_callout_init(sc->sc_amrr_ch);
359 
360 	/* retrieve RT2573 rev. no */
361 	for (ntries = 0; ntries < 1000; ntries++) {
362 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
363 			break;
364 		DELAY(1000);
365 	}
366 	if (ntries == 1000) {
367 		printf("%s: timeout waiting for chip to settle\n",
368 		    USBDEVNAME(sc->sc_dev));
369 		USB_ATTACH_ERROR_RETURN;
370 	}
371 
372 	/* retrieve MAC address and various other things from EEPROM */
373 	rum_read_eeprom(sc);
374 
375 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
376 	    USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
377 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
378 
379 	ic->ic_ifp = ifp;
380 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
381 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
382 	ic->ic_state = IEEE80211_S_INIT;
383 
384 	/* set device capabilities */
385 	ic->ic_caps =
386 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
387 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
388 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
389 	    IEEE80211_C_TXPMGT |	/* tx power management */
390 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
391 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
392 	    IEEE80211_C_WPA;		/* 802.11i */
393 
394 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
395 		/* set supported .11a rates */
396 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
397 
398 		/* set supported .11a channels */
399 		for (i = 34; i <= 46; i += 4) {
400 			ic->ic_channels[i].ic_freq =
401 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
402 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
403 		}
404 		for (i = 36; i <= 64; i += 4) {
405 			ic->ic_channels[i].ic_freq =
406 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
407 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
408 		}
409 		for (i = 100; i <= 140; i += 4) {
410 			ic->ic_channels[i].ic_freq =
411 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 		}
414 		for (i = 149; i <= 165; i += 4) {
415 			ic->ic_channels[i].ic_freq =
416 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 		}
419 	}
420 
421 	/* set supported .11b and .11g rates */
422 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
423 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
424 
425 	/* set supported .11b and .11g channels (1 through 14) */
426 	for (i = 1; i <= 14; i++) {
427 		ic->ic_channels[i].ic_freq =
428 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
429 		ic->ic_channels[i].ic_flags =
430 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 	}
433 
434 	ifp->if_softc = sc;
435 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
436 	ifp->if_init = rum_init;
437 	ifp->if_ioctl = rum_ioctl;
438 	ifp->if_start = rum_start;
439 	ifp->if_watchdog = rum_watchdog;
440 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
441 	IFQ_SET_READY(&ifp->if_snd);
442 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
443 
444 	if_attach(ifp);
445 	ieee80211_ifattach(ic);
446 
447 	/* override state transition machine */
448 	sc->sc_newstate = ic->ic_newstate;
449 	ic->ic_newstate = rum_newstate;
450 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
451 
452 #if NBPFILTER > 0
453 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
454 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
455 
456 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
457 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
458 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
459 
460 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
461 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
462 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
463 #endif
464 
465 	ieee80211_announce(ic);
466 
467 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
468 	    USBDEV(sc->sc_dev));
469 
470 	USB_ATTACH_SUCCESS_RETURN;
471 }
472 
473 USB_DETACH(rum)
474 {
475 	USB_DETACH_START(rum, sc);
476 	struct ieee80211com *ic = &sc->sc_ic;
477 	struct ifnet *ifp = &sc->sc_if;
478 	int s;
479 
480 	if (!ifp->if_softc)
481 		return 0;
482 
483 	s = splusb();
484 
485 	rum_stop(ifp, 1);
486 	usb_rem_task(sc->sc_udev, &sc->sc_task);
487 	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
488 	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
489 
490 	if (sc->amrr_xfer != NULL) {
491 		usbd_free_xfer(sc->amrr_xfer);
492 		sc->amrr_xfer = NULL;
493 	}
494 
495 	if (sc->sc_rx_pipeh != NULL) {
496 		usbd_abort_pipe(sc->sc_rx_pipeh);
497 		usbd_close_pipe(sc->sc_rx_pipeh);
498 	}
499 
500 	if (sc->sc_tx_pipeh != NULL) {
501 		usbd_abort_pipe(sc->sc_tx_pipeh);
502 		usbd_close_pipe(sc->sc_tx_pipeh);
503 	}
504 
505 #if NBPFILTER > 0
506 	bpfdetach(ifp);
507 #endif
508 	ieee80211_ifdetach(ic);	/* free all nodes */
509 	if_detach(ifp);
510 
511 	splx(s);
512 
513 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
514 	    USBDEV(sc->sc_dev));
515 
516 	return 0;
517 }
518 
519 Static int
520 rum_alloc_tx_list(struct rum_softc *sc)
521 {
522 	struct rum_tx_data *data;
523 	int i, error;
524 
525 	sc->tx_queued = 0;
526 
527 	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
528 		data = &sc->tx_data[i];
529 
530 		data->sc = sc;
531 
532 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
533 		if (data->xfer == NULL) {
534 			printf("%s: could not allocate tx xfer\n",
535 			    USBDEVNAME(sc->sc_dev));
536 			error = ENOMEM;
537 			goto fail;
538 		}
539 
540 		data->buf = usbd_alloc_buffer(data->xfer,
541 		    RT2573_TX_DESC_SIZE + MCLBYTES);
542 		if (data->buf == NULL) {
543 			printf("%s: could not allocate tx buffer\n",
544 			    USBDEVNAME(sc->sc_dev));
545 			error = ENOMEM;
546 			goto fail;
547 		}
548 
549 		/* clean Tx descriptor */
550 		bzero(data->buf, RT2573_TX_DESC_SIZE);
551 	}
552 
553 	return 0;
554 
555 fail:	rum_free_tx_list(sc);
556 	return error;
557 }
558 
559 Static void
560 rum_free_tx_list(struct rum_softc *sc)
561 {
562 	struct rum_tx_data *data;
563 	int i;
564 
565 	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
566 		data = &sc->tx_data[i];
567 
568 		if (data->xfer != NULL) {
569 			usbd_free_xfer(data->xfer);
570 			data->xfer = NULL;
571 		}
572 
573 		if (data->ni != NULL) {
574 			ieee80211_free_node(data->ni);
575 			data->ni = NULL;
576 		}
577 	}
578 }
579 
580 Static int
581 rum_alloc_rx_list(struct rum_softc *sc)
582 {
583 	struct rum_rx_data *data;
584 	int i, error;
585 
586 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
587 		data = &sc->rx_data[i];
588 
589 		data->sc = sc;
590 
591 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
592 		if (data->xfer == NULL) {
593 			printf("%s: could not allocate rx xfer\n",
594 			    USBDEVNAME(sc->sc_dev));
595 			error = ENOMEM;
596 			goto fail;
597 		}
598 
599 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
600 			printf("%s: could not allocate rx buffer\n",
601 			    USBDEVNAME(sc->sc_dev));
602 			error = ENOMEM;
603 			goto fail;
604 		}
605 
606 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
607 		if (data->m == NULL) {
608 			printf("%s: could not allocate rx mbuf\n",
609 			    USBDEVNAME(sc->sc_dev));
610 			error = ENOMEM;
611 			goto fail;
612 		}
613 
614 		MCLGET(data->m, M_DONTWAIT);
615 		if (!(data->m->m_flags & M_EXT)) {
616 			printf("%s: could not allocate rx mbuf cluster\n",
617 			    USBDEVNAME(sc->sc_dev));
618 			error = ENOMEM;
619 			goto fail;
620 		}
621 
622 		data->buf = mtod(data->m, uint8_t *);
623 	}
624 
625 	return 0;
626 
627 fail:	rum_free_tx_list(sc);
628 	return error;
629 }
630 
631 Static void
632 rum_free_rx_list(struct rum_softc *sc)
633 {
634 	struct rum_rx_data *data;
635 	int i;
636 
637 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
638 		data = &sc->rx_data[i];
639 
640 		if (data->xfer != NULL) {
641 			usbd_free_xfer(data->xfer);
642 			data->xfer = NULL;
643 		}
644 
645 		if (data->m != NULL) {
646 			m_freem(data->m);
647 			data->m = NULL;
648 		}
649 	}
650 }
651 
652 Static int
653 rum_media_change(struct ifnet *ifp)
654 {
655 	int error;
656 
657 	error = ieee80211_media_change(ifp);
658 	if (error != ENETRESET)
659 		return error;
660 
661 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
662 		rum_init(ifp);
663 
664 	return 0;
665 }
666 
667 /*
668  * This function is called periodically (every 200ms) during scanning to
669  * switch from one channel to another.
670  */
671 Static void
672 rum_next_scan(void *arg)
673 {
674 	struct rum_softc *sc = arg;
675 	struct ieee80211com *ic = &sc->sc_ic;
676 
677 	if (ic->ic_state == IEEE80211_S_SCAN)
678 		ieee80211_next_scan(ic);
679 }
680 
681 Static void
682 rum_task(void *arg)
683 {
684 	struct rum_softc *sc = arg;
685 	struct ieee80211com *ic = &sc->sc_ic;
686 	enum ieee80211_state ostate;
687 	struct ieee80211_node *ni;
688 	uint32_t tmp;
689 
690 	ostate = ic->ic_state;
691 
692 	switch (sc->sc_state) {
693 	case IEEE80211_S_INIT:
694 		if (ostate == IEEE80211_S_RUN) {
695 			/* abort TSF synchronization */
696 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
697 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
698 		}
699 		break;
700 
701 	case IEEE80211_S_SCAN:
702 		rum_set_chan(sc, ic->ic_curchan);
703 		usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
704 		break;
705 
706 	case IEEE80211_S_AUTH:
707 		rum_set_chan(sc, ic->ic_curchan);
708 		break;
709 
710 	case IEEE80211_S_ASSOC:
711 		rum_set_chan(sc, ic->ic_curchan);
712 		break;
713 
714 	case IEEE80211_S_RUN:
715 		rum_set_chan(sc, ic->ic_curchan);
716 
717 		ni = ic->ic_bss;
718 
719 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
720 			rum_update_slot(sc);
721 			rum_enable_mrr(sc);
722 			rum_set_txpreamble(sc);
723 			rum_set_basicrates(sc);
724 			rum_set_bssid(sc, ni->ni_bssid);
725 		}
726 
727 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
728 		    ic->ic_opmode == IEEE80211_M_IBSS)
729 			rum_prepare_beacon(sc);
730 
731 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
732 			rum_enable_tsf_sync(sc);
733 
734 		/* enable automatic rate adaptation in STA mode */
735 		if (ic->ic_opmode == IEEE80211_M_STA &&
736 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
737 			rum_amrr_start(sc, ni);
738 
739 		break;
740 	}
741 
742 	sc->sc_newstate(ic, sc->sc_state, -1);
743 }
744 
745 Static int
746 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
747 {
748 	struct rum_softc *sc = ic->ic_ifp->if_softc;
749 
750 	usb_rem_task(sc->sc_udev, &sc->sc_task);
751 	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
752 	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
753 
754 	/* do it in a process context */
755 	sc->sc_state = nstate;
756 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
757 
758 	return 0;
759 }
760 
761 /* quickly determine if a given rate is CCK or OFDM */
762 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
763 
764 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
765 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
766 
767 Static void
768 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
769 {
770 	struct rum_tx_data *data = priv;
771 	struct rum_softc *sc = data->sc;
772 	struct ifnet *ifp = &sc->sc_if;
773 	int s;
774 
775 	if (status != USBD_NORMAL_COMPLETION) {
776 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
777 			return;
778 
779 		printf("%s: could not transmit buffer: %s\n",
780 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
781 
782 		if (status == USBD_STALLED)
783 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
784 
785 		ifp->if_oerrors++;
786 		return;
787 	}
788 
789 	s = splnet();
790 
791 	m_freem(data->m);
792 	data->m = NULL;
793 	ieee80211_free_node(data->ni);
794 	data->ni = NULL;
795 
796 	sc->tx_queued--;
797 	ifp->if_opackets++;
798 
799 	DPRINTFN(10, ("tx done\n"));
800 
801 	sc->sc_tx_timer = 0;
802 	ifp->if_flags &= ~IFF_OACTIVE;
803 	rum_start(ifp);
804 
805 	splx(s);
806 }
807 
808 Static void
809 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
810 {
811 	struct rum_rx_data *data = priv;
812 	struct rum_softc *sc = data->sc;
813 	struct ieee80211com *ic = &sc->sc_ic;
814 	struct ifnet *ifp = &sc->sc_if;
815 	struct rum_rx_desc *desc;
816 	struct ieee80211_frame *wh;
817 	struct ieee80211_node *ni;
818 	struct mbuf *mnew, *m;
819 	int s, len;
820 
821 	if (status != USBD_NORMAL_COMPLETION) {
822 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
823 			return;
824 
825 		if (status == USBD_STALLED)
826 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
827 		goto skip;
828 	}
829 
830 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
831 
832 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
833 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
834 		    len));
835 		ifp->if_ierrors++;
836 		goto skip;
837 	}
838 
839 	desc = (struct rum_rx_desc *)data->buf;
840 
841 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
842 		/*
843 		 * This should not happen since we did not request to receive
844 		 * those frames when we filled RT2573_TXRX_CSR0.
845 		 */
846 		DPRINTFN(5, ("CRC error\n"));
847 		ifp->if_ierrors++;
848 		goto skip;
849 	}
850 
851 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
852 	if (mnew == NULL) {
853 		printf("%s: could not allocate rx mbuf\n",
854 		    USBDEVNAME(sc->sc_dev));
855 		ifp->if_ierrors++;
856 		goto skip;
857 	}
858 
859 	MCLGET(mnew, M_DONTWAIT);
860 	if (!(mnew->m_flags & M_EXT)) {
861 		printf("%s: could not allocate rx mbuf cluster\n",
862 		    USBDEVNAME(sc->sc_dev));
863 		m_freem(mnew);
864 		ifp->if_ierrors++;
865 		goto skip;
866 	}
867 
868 	m = data->m;
869 	data->m = mnew;
870 	data->buf = mtod(data->m, uint8_t *);
871 
872 	/* finalize mbuf */
873 	m->m_pkthdr.rcvif = ifp;
874 	m->m_data = (void *)(desc + 1);
875 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
876 
877 	s = splnet();
878 
879 #if NBPFILTER > 0
880 	if (sc->sc_drvbpf != NULL) {
881 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
882 
883 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
884 		tap->wr_rate = rum_rxrate(desc);
885 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
886 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
887 		tap->wr_antenna = sc->rx_ant;
888 		tap->wr_antsignal = desc->rssi;
889 
890 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
891 	}
892 #endif
893 
894 	wh = mtod(m, struct ieee80211_frame *);
895 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
896 
897 	/* send the frame to the 802.11 layer */
898 	ieee80211_input(ic, m, ni, desc->rssi, 0);
899 
900 	/* node is no longer needed */
901 	ieee80211_free_node(ni);
902 
903 	splx(s);
904 
905 	DPRINTFN(15, ("rx done\n"));
906 
907 skip:	/* setup a new transfer */
908 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
909 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
910 	usbd_transfer(xfer);
911 }
912 
913 /*
914  * This function is only used by the Rx radiotap code. It returns the rate at
915  * which a given frame was received.
916  */
917 #if NBPFILTER > 0
918 Static uint8_t
919 rum_rxrate(struct rum_rx_desc *desc)
920 {
921 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
922 		/* reverse function of rum_plcp_signal */
923 		switch (desc->rate) {
924 		case 0xb:	return 12;
925 		case 0xf:	return 18;
926 		case 0xa:	return 24;
927 		case 0xe:	return 36;
928 		case 0x9:	return 48;
929 		case 0xd:	return 72;
930 		case 0x8:	return 96;
931 		case 0xc:	return 108;
932 		}
933 	} else {
934 		if (desc->rate == 10)
935 			return 2;
936 		if (desc->rate == 20)
937 			return 4;
938 		if (desc->rate == 55)
939 			return 11;
940 		if (desc->rate == 110)
941 			return 22;
942 	}
943 	return 2;	/* should not get there */
944 }
945 #endif
946 
947 /*
948  * Return the expected ack rate for a frame transmitted at rate `rate'.
949  * XXX: this should depend on the destination node basic rate set.
950  */
951 Static int
952 rum_ack_rate(struct ieee80211com *ic, int rate)
953 {
954 	switch (rate) {
955 	/* CCK rates */
956 	case 2:
957 		return 2;
958 	case 4:
959 	case 11:
960 	case 22:
961 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
962 
963 	/* OFDM rates */
964 	case 12:
965 	case 18:
966 		return 12;
967 	case 24:
968 	case 36:
969 		return 24;
970 	case 48:
971 	case 72:
972 	case 96:
973 	case 108:
974 		return 48;
975 	}
976 
977 	/* default to 1Mbps */
978 	return 2;
979 }
980 
981 /*
982  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
983  * The function automatically determines the operating mode depending on the
984  * given rate. `flags' indicates whether short preamble is in use or not.
985  */
986 Static uint16_t
987 rum_txtime(int len, int rate, uint32_t flags)
988 {
989 	uint16_t txtime;
990 
991 	if (RUM_RATE_IS_OFDM(rate)) {
992 		/* IEEE Std 802.11a-1999, pp. 37 */
993 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
994 		txtime = 16 + 4 + 4 * txtime + 6;
995 	} else {
996 		/* IEEE Std 802.11b-1999, pp. 28 */
997 		txtime = (16 * len + rate - 1) / rate;
998 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
999 			txtime +=  72 + 24;
1000 		else
1001 			txtime += 144 + 48;
1002 	}
1003 	return txtime;
1004 }
1005 
1006 Static uint8_t
1007 rum_plcp_signal(int rate)
1008 {
1009 	switch (rate) {
1010 	/* CCK rates (returned values are device-dependent) */
1011 	case 2:		return 0x0;
1012 	case 4:		return 0x1;
1013 	case 11:	return 0x2;
1014 	case 22:	return 0x3;
1015 
1016 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1017 	case 12:	return 0xb;
1018 	case 18:	return 0xf;
1019 	case 24:	return 0xa;
1020 	case 36:	return 0xe;
1021 	case 48:	return 0x9;
1022 	case 72:	return 0xd;
1023 	case 96:	return 0x8;
1024 	case 108:	return 0xc;
1025 
1026 	/* unsupported rates (should not get there) */
1027 	default:	return 0xff;
1028 	}
1029 }
1030 
1031 Static void
1032 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1033     uint32_t flags, uint16_t xflags, int len, int rate)
1034 {
1035 	struct ieee80211com *ic = &sc->sc_ic;
1036 	uint16_t plcp_length;
1037 	int remainder;
1038 
1039 	desc->flags = htole32(flags);
1040 	desc->flags |= htole32(RT2573_TX_VALID);
1041 	desc->flags |= htole32(len << 16);
1042 
1043 	desc->xflags = htole16(xflags);
1044 
1045 	desc->wme = htole16(
1046 	    RT2573_QID(0) |
1047 	    RT2573_AIFSN(2) |
1048 	    RT2573_LOGCWMIN(4) |
1049 	    RT2573_LOGCWMAX(10));
1050 
1051 	/* setup PLCP fields */
1052 	desc->plcp_signal  = rum_plcp_signal(rate);
1053 	desc->plcp_service = 4;
1054 
1055 	len += IEEE80211_CRC_LEN;
1056 	if (RUM_RATE_IS_OFDM(rate)) {
1057 		desc->flags |= htole32(RT2573_TX_OFDM);
1058 
1059 		plcp_length = len & 0xfff;
1060 		desc->plcp_length_hi = plcp_length >> 6;
1061 		desc->plcp_length_lo = plcp_length & 0x3f;
1062 	} else {
1063 		plcp_length = (16 * len + rate - 1) / rate;
1064 		if (rate == 22) {
1065 			remainder = (16 * len) % 22;
1066 			if (remainder != 0 && remainder < 7)
1067 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1068 		}
1069 		desc->plcp_length_hi = plcp_length >> 8;
1070 		desc->plcp_length_lo = plcp_length & 0xff;
1071 
1072 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1073 			desc->plcp_signal |= 0x08;
1074 	}
1075 }
1076 
1077 #define RUM_TX_TIMEOUT	5000
1078 
1079 Static int
1080 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1081 {
1082 	struct ieee80211com *ic = &sc->sc_ic;
1083 	struct rum_tx_desc *desc;
1084 	struct rum_tx_data *data;
1085 	struct ieee80211_frame *wh;
1086 	struct ieee80211_key *k;
1087 	uint32_t flags = 0;
1088 	uint16_t dur;
1089 	usbd_status error;
1090 	int xferlen, rate;
1091 
1092 	data = &sc->tx_data[0];
1093 	desc = (struct rum_tx_desc *)data->buf;
1094 
1095 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1096 
1097 	data->m = m0;
1098 	data->ni = ni;
1099 
1100 	wh = mtod(m0, struct ieee80211_frame *);
1101 
1102 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1103 		k = ieee80211_crypto_encap(ic, ni, m0);
1104 		if (k == NULL) {
1105 			m_freem(m0);
1106 			return ENOBUFS;
1107 		}
1108 	}
1109 
1110 	wh = mtod(m0, struct ieee80211_frame *);
1111 
1112 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1113 		flags |= RT2573_TX_ACK;
1114 
1115 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1116 		    ic->ic_flags) + sc->sifs;
1117 		*(uint16_t *)wh->i_dur = htole16(dur);
1118 
1119 		/* tell hardware to set timestamp in probe responses */
1120 		if ((wh->i_fc[0] &
1121 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1122 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1123 			flags |= RT2573_TX_TIMESTAMP;
1124 	}
1125 
1126 #if NBPFILTER > 0
1127 	if (sc->sc_drvbpf != NULL) {
1128 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1129 
1130 		tap->wt_flags = 0;
1131 		tap->wt_rate = rate;
1132 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1133 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1134 		tap->wt_antenna = sc->tx_ant;
1135 
1136 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1137 	}
1138 #endif
1139 
1140 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1141 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1142 
1143 	/* align end on a 4-bytes boundary */
1144 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1145 
1146 	/*
1147 	 * No space left in the last URB to store the extra 4 bytes, force
1148 	 * sending of another URB.
1149 	 */
1150 	if ((xferlen % 64) == 0)
1151 		xferlen += 4;
1152 
1153 	DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1154 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1155 	    rate, xferlen));
1156 
1157 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1158 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1159 
1160 	error = usbd_transfer(data->xfer);
1161 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1162 		m_freem(m0);
1163 		return error;
1164 	}
1165 
1166 	sc->tx_queued++;
1167 
1168 	return 0;
1169 }
1170 
1171 Static int
1172 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1173 {
1174 	struct ieee80211com *ic = &sc->sc_ic;
1175 	struct rum_tx_desc *desc;
1176 	struct rum_tx_data *data;
1177 	struct ieee80211_frame *wh;
1178 	struct ieee80211_key *k;
1179 	uint32_t flags = 0;
1180 	uint16_t dur;
1181 	usbd_status error;
1182 	int xferlen, rate;
1183 
1184 	wh = mtod(m0, struct ieee80211_frame *);
1185 
1186 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1187 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1188 	else
1189 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1190 	rate &= IEEE80211_RATE_VAL;
1191 
1192 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1193 		k = ieee80211_crypto_encap(ic, ni, m0);
1194 		if (k == NULL) {
1195 			m_freem(m0);
1196 			return ENOBUFS;
1197 		}
1198 
1199 		/* packet header may have moved, reset our local pointer */
1200 		wh = mtod(m0, struct ieee80211_frame *);
1201 	}
1202 
1203 	data = &sc->tx_data[0];
1204 	desc = (struct rum_tx_desc *)data->buf;
1205 
1206 	data->m = m0;
1207 	data->ni = ni;
1208 
1209 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1210 		flags |= RT2573_TX_ACK;
1211 
1212 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1213 		    ic->ic_flags) + sc->sifs;
1214 		*(uint16_t *)wh->i_dur = htole16(dur);
1215 	}
1216 
1217 #if NBPFILTER > 0
1218 	if (sc->sc_drvbpf != NULL) {
1219 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1220 
1221 		tap->wt_flags = 0;
1222 		tap->wt_rate = rate;
1223 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1224 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1225 		tap->wt_antenna = sc->tx_ant;
1226 
1227 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1228 	}
1229 #endif
1230 
1231 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1232 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1233 
1234 	/* align end on a 4-bytes boundary */
1235 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1236 
1237 	/*
1238 	 * No space left in the last URB to store the extra 4 bytes, force
1239 	 * sending of another URB.
1240 	 */
1241 	if ((xferlen % 64) == 0)
1242 		xferlen += 4;
1243 
1244 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1245 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1246 	    rate, xferlen));
1247 
1248 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1249 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1250 
1251 	error = usbd_transfer(data->xfer);
1252 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1253 		m_freem(m0);
1254 		return error;
1255 	}
1256 
1257 	sc->tx_queued++;
1258 
1259 	return 0;
1260 }
1261 
1262 Static void
1263 rum_start(struct ifnet *ifp)
1264 {
1265 	struct rum_softc *sc = ifp->if_softc;
1266 	struct ieee80211com *ic = &sc->sc_ic;
1267 	struct ether_header *eh;
1268 	struct ieee80211_node *ni;
1269 	struct mbuf *m0;
1270 
1271 	for (;;) {
1272 		IF_POLL(&ic->ic_mgtq, m0);
1273 		if (m0 != NULL) {
1274 			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1275 				ifp->if_flags |= IFF_OACTIVE;
1276 				break;
1277 			}
1278 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1279 
1280 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1281 			m0->m_pkthdr.rcvif = NULL;
1282 #if NBPFILTER > 0
1283 			if (ic->ic_rawbpf != NULL)
1284 				bpf_mtap(ic->ic_rawbpf, m0);
1285 #endif
1286 			if (rum_tx_mgt(sc, m0, ni) != 0)
1287 				break;
1288 
1289 		} else {
1290 			if (ic->ic_state != IEEE80211_S_RUN)
1291 				break;
1292 			IFQ_POLL(&ifp->if_snd, m0);
1293 			if (m0 == NULL)
1294 				break;
1295 			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1296 				ifp->if_flags |= IFF_OACTIVE;
1297 				break;
1298 			}
1299 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1300 			if (m0->m_len < sizeof(struct ether_header) &&
1301 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1302 				continue;
1303 
1304 			eh = mtod(m0, struct ether_header *);
1305 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1306 			if (ni == NULL) {
1307 				m_freem(m0);
1308 				continue;
1309 			}
1310 #if NBPFILTER > 0
1311 			if (ifp->if_bpf != NULL)
1312 				bpf_mtap(ifp->if_bpf, m0);
1313 #endif
1314 			m0 = ieee80211_encap(ic, m0, ni);
1315 			if (m0 == NULL) {
1316 				ieee80211_free_node(ni);
1317 				continue;
1318 			}
1319 #if NBPFILTER > 0
1320 			if (ic->ic_rawbpf != NULL)
1321 				bpf_mtap(ic->ic_rawbpf, m0);
1322 #endif
1323 			if (rum_tx_data(sc, m0, ni) != 0) {
1324 				ieee80211_free_node(ni);
1325 				ifp->if_oerrors++;
1326 				break;
1327 			}
1328 		}
1329 
1330 		sc->sc_tx_timer = 5;
1331 		ifp->if_timer = 1;
1332 	}
1333 }
1334 
1335 Static void
1336 rum_watchdog(struct ifnet *ifp)
1337 {
1338 	struct rum_softc *sc = ifp->if_softc;
1339 	struct ieee80211com *ic = &sc->sc_ic;
1340 
1341 	ifp->if_timer = 0;
1342 
1343 	if (sc->sc_tx_timer > 0) {
1344 		if (--sc->sc_tx_timer == 0) {
1345 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1346 			/*rum_init(ifp); XXX needs a process context! */
1347 			ifp->if_oerrors++;
1348 			return;
1349 		}
1350 		ifp->if_timer = 1;
1351 	}
1352 
1353 	ieee80211_watchdog(ic);
1354 }
1355 
1356 Static int
1357 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1358 {
1359 	struct rum_softc *sc = ifp->if_softc;
1360 	struct ieee80211com *ic = &sc->sc_ic;
1361 	int s, error = 0;
1362 
1363 	s = splnet();
1364 
1365 	switch (cmd) {
1366 	case SIOCSIFFLAGS:
1367 		if (ifp->if_flags & IFF_UP) {
1368 			if (ifp->if_flags & IFF_RUNNING)
1369 				rum_update_promisc(sc);
1370 			else
1371 				rum_init(ifp);
1372 		} else {
1373 			if (ifp->if_flags & IFF_RUNNING)
1374 				rum_stop(ifp, 1);
1375 		}
1376 		break;
1377 
1378 	default:
1379 		error = ieee80211_ioctl(ic, cmd, data);
1380 	}
1381 
1382 	if (error == ENETRESET) {
1383 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1384 		    (IFF_UP | IFF_RUNNING))
1385 			rum_init(ifp);
1386 		error = 0;
1387 	}
1388 
1389 	splx(s);
1390 
1391 	return error;
1392 }
1393 
1394 Static void
1395 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1396 {
1397 	usb_device_request_t req;
1398 	usbd_status error;
1399 
1400 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1401 	req.bRequest = RT2573_READ_EEPROM;
1402 	USETW(req.wValue, 0);
1403 	USETW(req.wIndex, addr);
1404 	USETW(req.wLength, len);
1405 
1406 	error = usbd_do_request(sc->sc_udev, &req, buf);
1407 	if (error != 0) {
1408 		printf("%s: could not read EEPROM: %s\n",
1409 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1410 	}
1411 }
1412 
1413 Static uint32_t
1414 rum_read(struct rum_softc *sc, uint16_t reg)
1415 {
1416 	uint32_t val;
1417 
1418 	rum_read_multi(sc, reg, &val, sizeof val);
1419 
1420 	return le32toh(val);
1421 }
1422 
1423 Static void
1424 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1425 {
1426 	usb_device_request_t req;
1427 	usbd_status error;
1428 
1429 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430 	req.bRequest = RT2573_READ_MULTI_MAC;
1431 	USETW(req.wValue, 0);
1432 	USETW(req.wIndex, reg);
1433 	USETW(req.wLength, len);
1434 
1435 	error = usbd_do_request(sc->sc_udev, &req, buf);
1436 	if (error != 0) {
1437 		printf("%s: could not multi read MAC register: %s\n",
1438 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1439 	}
1440 }
1441 
1442 Static void
1443 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1444 {
1445 	uint32_t tmp = htole32(val);
1446 
1447 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1448 }
1449 
1450 Static void
1451 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1452 {
1453 	usb_device_request_t req;
1454 	usbd_status error;
1455 
1456 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1457 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1458 	USETW(req.wValue, 0);
1459 	USETW(req.wIndex, reg);
1460 	USETW(req.wLength, len);
1461 
1462 	error = usbd_do_request(sc->sc_udev, &req, buf);
1463 	if (error != 0) {
1464 		printf("%s: could not multi write MAC register: %s\n",
1465 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1466 	}
1467 }
1468 
1469 Static void
1470 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1471 {
1472 	uint32_t tmp;
1473 	int ntries;
1474 
1475 	for (ntries = 0; ntries < 5; ntries++) {
1476 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1477 			break;
1478 	}
1479 	if (ntries == 5) {
1480 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1481 		return;
1482 	}
1483 
1484 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1485 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1486 }
1487 
1488 Static uint8_t
1489 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1490 {
1491 	uint32_t val;
1492 	int ntries;
1493 
1494 	for (ntries = 0; ntries < 5; ntries++) {
1495 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1496 			break;
1497 	}
1498 	if (ntries == 5) {
1499 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1500 		return 0;
1501 	}
1502 
1503 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1504 	rum_write(sc, RT2573_PHY_CSR3, val);
1505 
1506 	for (ntries = 0; ntries < 100; ntries++) {
1507 		val = rum_read(sc, RT2573_PHY_CSR3);
1508 		if (!(val & RT2573_BBP_BUSY))
1509 			return val & 0xff;
1510 		DELAY(1);
1511 	}
1512 
1513 	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1514 	return 0;
1515 }
1516 
1517 Static void
1518 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1519 {
1520 	uint32_t tmp;
1521 	int ntries;
1522 
1523 	for (ntries = 0; ntries < 5; ntries++) {
1524 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1525 			break;
1526 	}
1527 	if (ntries == 5) {
1528 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1529 		return;
1530 	}
1531 
1532 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1533 	    (reg & 3);
1534 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1535 
1536 	/* remember last written value in sc */
1537 	sc->rf_regs[reg] = val;
1538 
1539 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1540 }
1541 
1542 Static void
1543 rum_select_antenna(struct rum_softc *sc)
1544 {
1545 	uint8_t bbp4, bbp77;
1546 	uint32_t tmp;
1547 
1548 	bbp4  = rum_bbp_read(sc, 4);
1549 	bbp77 = rum_bbp_read(sc, 77);
1550 
1551 	/* TBD */
1552 
1553 	/* make sure Rx is disabled before switching antenna */
1554 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1555 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1556 
1557 	rum_bbp_write(sc,  4, bbp4);
1558 	rum_bbp_write(sc, 77, bbp77);
1559 
1560 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1561 }
1562 
1563 /*
1564  * Enable multi-rate retries for frames sent at OFDM rates.
1565  * In 802.11b/g mode, allow fallback to CCK rates.
1566  */
1567 Static void
1568 rum_enable_mrr(struct rum_softc *sc)
1569 {
1570 	struct ieee80211com *ic = &sc->sc_ic;
1571 	uint32_t tmp;
1572 
1573 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1574 
1575 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1576 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1577 		tmp |= RT2573_MRR_CCK_FALLBACK;
1578 	tmp |= RT2573_MRR_ENABLED;
1579 
1580 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1581 }
1582 
1583 Static void
1584 rum_set_txpreamble(struct rum_softc *sc)
1585 {
1586 	uint32_t tmp;
1587 
1588 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1589 
1590 	tmp &= ~RT2573_SHORT_PREAMBLE;
1591 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1592 		tmp |= RT2573_SHORT_PREAMBLE;
1593 
1594 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1595 }
1596 
1597 Static void
1598 rum_set_basicrates(struct rum_softc *sc)
1599 {
1600 	struct ieee80211com *ic = &sc->sc_ic;
1601 
1602 	/* update basic rate set */
1603 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1604 		/* 11b basic rates: 1, 2Mbps */
1605 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1606 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1607 		/* 11a basic rates: 6, 12, 24Mbps */
1608 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1609 	} else {
1610 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1611 		rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1612 	}
1613 }
1614 
1615 /*
1616  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1617  * driver.
1618  */
1619 Static void
1620 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1621 {
1622 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1623 	uint32_t tmp;
1624 
1625 	/* update all BBP registers that depend on the band */
1626 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1627 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1628 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1629 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1630 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1631 	}
1632 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1633 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1634 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1635 	}
1636 
1637 	sc->bbp17 = bbp17;
1638 	rum_bbp_write(sc,  17, bbp17);
1639 	rum_bbp_write(sc,  96, bbp96);
1640 	rum_bbp_write(sc, 104, bbp104);
1641 
1642 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1643 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1644 		rum_bbp_write(sc, 75, 0x80);
1645 		rum_bbp_write(sc, 86, 0x80);
1646 		rum_bbp_write(sc, 88, 0x80);
1647 	}
1648 
1649 	rum_bbp_write(sc, 35, bbp35);
1650 	rum_bbp_write(sc, 97, bbp97);
1651 	rum_bbp_write(sc, 98, bbp98);
1652 
1653 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1654 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1655 	if (IEEE80211_IS_CHAN_2GHZ(c))
1656 		tmp |= RT2573_PA_PE_2GHZ;
1657 	else
1658 		tmp |= RT2573_PA_PE_5GHZ;
1659 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1660 
1661 	/* 802.11a uses a 16 microseconds short interframe space */
1662 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1663 }
1664 
1665 Static void
1666 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1667 {
1668 	struct ieee80211com *ic = &sc->sc_ic;
1669 	const struct rfprog *rfprog;
1670 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1671 	int8_t power;
1672 	u_int i, chan;
1673 
1674 	chan = ieee80211_chan2ieee(ic, c);
1675 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1676 		return;
1677 
1678 	/* select the appropriate RF settings based on what EEPROM says */
1679 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1680 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1681 
1682 	/* find the settings for this channel (we know it exists) */
1683 	for (i = 0; rfprog[i].chan != chan; i++);
1684 
1685 	power = sc->txpow[i];
1686 	if (power < 0) {
1687 		bbp94 += power;
1688 		power = 0;
1689 	} else if (power > 31) {
1690 		bbp94 += power - 31;
1691 		power = 31;
1692 	}
1693 
1694 	/*
1695 	 * If we are switching from the 2GHz band to the 5GHz band or
1696 	 * vice-versa, BBP registers need to be reprogrammed.
1697 	 */
1698 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1699 		rum_select_band(sc, c);
1700 		rum_select_antenna(sc);
1701 	}
1702 	ic->ic_curchan = c;
1703 
1704 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1705 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1706 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1707 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1708 
1709 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1710 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1711 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1712 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1713 
1714 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1715 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1716 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1717 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1718 
1719 	DELAY(10);
1720 
1721 	/* enable smart mode for MIMO-capable RFs */
1722 	bbp3 = rum_bbp_read(sc, 3);
1723 
1724 	bbp3 &= ~RT2573_SMART_MODE;
1725 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1726 		bbp3 |= RT2573_SMART_MODE;
1727 
1728 	rum_bbp_write(sc, 3, bbp3);
1729 
1730 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1731 		rum_bbp_write(sc, 94, bbp94);
1732 }
1733 
1734 /*
1735  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1736  * and HostAP operating modes.
1737  */
1738 Static void
1739 rum_enable_tsf_sync(struct rum_softc *sc)
1740 {
1741 	struct ieee80211com *ic = &sc->sc_ic;
1742 	uint32_t tmp;
1743 
1744 	if (ic->ic_opmode != IEEE80211_M_STA) {
1745 		/*
1746 		 * Change default 16ms TBTT adjustment to 8ms.
1747 		 * Must be done before enabling beacon generation.
1748 		 */
1749 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1750 	}
1751 
1752 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1753 
1754 	/* set beacon interval (in 1/16ms unit) */
1755 	tmp |= ic->ic_bss->ni_intval * 16;
1756 
1757 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1758 	if (ic->ic_opmode == IEEE80211_M_STA)
1759 		tmp |= RT2573_TSF_MODE(1);
1760 	else
1761 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1762 
1763 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1764 }
1765 
1766 Static void
1767 rum_update_slot(struct rum_softc *sc)
1768 {
1769 	struct ieee80211com *ic = &sc->sc_ic;
1770 	uint8_t slottime;
1771 	uint32_t tmp;
1772 
1773 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1774 
1775 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1776 	tmp = (tmp & ~0xff) | slottime;
1777 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1778 
1779 	DPRINTF(("setting slot time to %uus\n", slottime));
1780 }
1781 
1782 Static void
1783 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1784 {
1785 	uint32_t tmp;
1786 
1787 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1788 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1789 
1790 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1791 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1792 }
1793 
1794 Static void
1795 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1796 {
1797 	uint32_t tmp;
1798 
1799 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1800 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1801 
1802 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1803 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1804 }
1805 
1806 Static void
1807 rum_update_promisc(struct rum_softc *sc)
1808 {
1809 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1810 	uint32_t tmp;
1811 
1812 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1813 
1814 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1815 	if (!(ifp->if_flags & IFF_PROMISC))
1816 		tmp |= RT2573_DROP_NOT_TO_ME;
1817 
1818 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1819 
1820 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1821 	    "entering" : "leaving"));
1822 }
1823 
1824 Static const char *
1825 rum_get_rf(int rev)
1826 {
1827 	switch (rev) {
1828 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1829 	case RT2573_RF_2528:	return "RT2528";
1830 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1831 	case RT2573_RF_5226:	return "RT5226";
1832 	default:		return "unknown";
1833 	}
1834 }
1835 
1836 Static void
1837 rum_read_eeprom(struct rum_softc *sc)
1838 {
1839 	struct ieee80211com *ic = &sc->sc_ic;
1840 	uint16_t val;
1841 #ifdef RUM_DEBUG
1842 	int i;
1843 #endif
1844 
1845 	/* read MAC/BBP type */
1846 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1847 	sc->macbbp_rev = le16toh(val);
1848 
1849 	/* read MAC address */
1850 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1851 
1852 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1853 	val = le16toh(val);
1854 	sc->rf_rev =   (val >> 11) & 0x1f;
1855 	sc->hw_radio = (val >> 10) & 0x1;
1856 	sc->rx_ant =   (val >> 4)  & 0x3;
1857 	sc->tx_ant =   (val >> 2)  & 0x3;
1858 	sc->nb_ant =   val & 0x3;
1859 
1860 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1861 
1862 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1863 	val = le16toh(val);
1864 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1865 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1866 
1867 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1868 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1869 
1870 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1871 	val = le16toh(val);
1872 	if ((val & 0xff) != 0xff)
1873 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1874 
1875 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1876 	val = le16toh(val);
1877 	if ((val & 0xff) != 0xff)
1878 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1879 
1880 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1881 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1882 
1883 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1884 	val = le16toh(val);
1885 	if ((val & 0xff) != 0xff)
1886 		sc->rffreq = val & 0xff;
1887 
1888 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1889 
1890 	/* read Tx power for all a/b/g channels */
1891 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1892 	/* XXX default Tx power for 802.11a channels */
1893 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1894 #ifdef RUM_DEBUG
1895 	for (i = 0; i < 14; i++)
1896 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1897 #endif
1898 
1899 	/* read default values for BBP registers */
1900 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1901 #ifdef RUM_DEBUG
1902 	for (i = 0; i < 14; i++) {
1903 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1904 			continue;
1905 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1906 		    sc->bbp_prom[i].val));
1907 	}
1908 #endif
1909 }
1910 
1911 Static int
1912 rum_bbp_init(struct rum_softc *sc)
1913 {
1914 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1915 	int i, ntries;
1916 	uint8_t val;
1917 
1918 	/* wait for BBP to be ready */
1919 	for (ntries = 0; ntries < 100; ntries++) {
1920 		val = rum_bbp_read(sc, 0);
1921 		if (val != 0 && val != 0xff)
1922 			break;
1923 		DELAY(1000);
1924 	}
1925 	if (ntries == 100) {
1926 		printf("%s: timeout waiting for BBP\n",
1927 		    USBDEVNAME(sc->sc_dev));
1928 		return EIO;
1929 	}
1930 
1931 	/* initialize BBP registers to default values */
1932 	for (i = 0; i < N(rum_def_bbp); i++)
1933 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1934 
1935 	/* write vendor-specific BBP values (from EEPROM) */
1936 	for (i = 0; i < 16; i++) {
1937 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1938 			continue;
1939 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1940 	}
1941 
1942 	return 0;
1943 #undef N
1944 }
1945 
1946 Static int
1947 rum_init(struct ifnet *ifp)
1948 {
1949 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1950 	struct rum_softc *sc = ifp->if_softc;
1951 	struct ieee80211com *ic = &sc->sc_ic;
1952 	struct rum_rx_data *data;
1953 	uint32_t tmp;
1954 	usbd_status error = 0;
1955 	int i, ntries;
1956 
1957 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1958 		if (rum_attachhook(sc))
1959 			goto fail;
1960 	}
1961 
1962 	rum_stop(ifp, 0);
1963 
1964 	/* initialize MAC registers to default values */
1965 	for (i = 0; i < N(rum_def_mac); i++)
1966 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1967 
1968 	/* set host ready */
1969 	rum_write(sc, RT2573_MAC_CSR1, 3);
1970 	rum_write(sc, RT2573_MAC_CSR1, 0);
1971 
1972 	/* wait for BBP/RF to wakeup */
1973 	for (ntries = 0; ntries < 1000; ntries++) {
1974 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1975 			break;
1976 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1977 		DELAY(1000);
1978 	}
1979 	if (ntries == 1000) {
1980 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1981 		    USBDEVNAME(sc->sc_dev));
1982 		goto fail;
1983 	}
1984 
1985 	if ((error = rum_bbp_init(sc)) != 0)
1986 		goto fail;
1987 
1988 	/* select default channel */
1989 	rum_select_band(sc, ic->ic_curchan);
1990 	rum_select_antenna(sc);
1991 	rum_set_chan(sc, ic->ic_curchan);
1992 
1993 	/* clear STA registers */
1994 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1995 
1996 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1997 	rum_set_macaddr(sc, ic->ic_myaddr);
1998 
1999 	/* initialize ASIC */
2000 	rum_write(sc, RT2573_MAC_CSR1, 4);
2001 
2002 	/*
2003 	 * Allocate xfer for AMRR statistics requests.
2004 	 */
2005 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2006 	if (sc->amrr_xfer == NULL) {
2007 		printf("%s: could not allocate AMRR xfer\n",
2008 		    USBDEVNAME(sc->sc_dev));
2009 		goto fail;
2010 	}
2011 
2012 	/*
2013 	 * Open Tx and Rx USB bulk pipes.
2014 	 */
2015 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2016 	    &sc->sc_tx_pipeh);
2017 	if (error != 0) {
2018 		printf("%s: could not open Tx pipe: %s\n",
2019 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2020 		goto fail;
2021 	}
2022 
2023 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2024 	    &sc->sc_rx_pipeh);
2025 	if (error != 0) {
2026 		printf("%s: could not open Rx pipe: %s\n",
2027 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2028 		goto fail;
2029 	}
2030 
2031 	/*
2032 	 * Allocate Tx and Rx xfer queues.
2033 	 */
2034 	error = rum_alloc_tx_list(sc);
2035 	if (error != 0) {
2036 		printf("%s: could not allocate Tx list\n",
2037 		    USBDEVNAME(sc->sc_dev));
2038 		goto fail;
2039 	}
2040 
2041 	error = rum_alloc_rx_list(sc);
2042 	if (error != 0) {
2043 		printf("%s: could not allocate Rx list\n",
2044 		    USBDEVNAME(sc->sc_dev));
2045 		goto fail;
2046 	}
2047 
2048 	/*
2049 	 * Start up the receive pipe.
2050 	 */
2051 	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2052 		data = &sc->rx_data[i];
2053 
2054 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2055 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2056 		usbd_transfer(data->xfer);
2057 	}
2058 
2059 	/* update Rx filter */
2060 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2061 
2062 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2063 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2064 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2065 		       RT2573_DROP_ACKCTS;
2066 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2067 			tmp |= RT2573_DROP_TODS;
2068 		if (!(ifp->if_flags & IFF_PROMISC))
2069 			tmp |= RT2573_DROP_NOT_TO_ME;
2070 	}
2071 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2072 
2073 	ifp->if_flags &= ~IFF_OACTIVE;
2074 	ifp->if_flags |= IFF_RUNNING;
2075 
2076 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2077 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2078 	else
2079 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2080 
2081 	return 0;
2082 
2083 fail:	rum_stop(ifp, 1);
2084 	return error;
2085 #undef N
2086 }
2087 
2088 Static void
2089 rum_stop(struct ifnet *ifp, int disable)
2090 {
2091 	struct rum_softc *sc = ifp->if_softc;
2092 	struct ieee80211com *ic = &sc->sc_ic;
2093 	uint32_t tmp;
2094 
2095 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2096 
2097 	sc->sc_tx_timer = 0;
2098 	ifp->if_timer = 0;
2099 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2100 
2101 	/* disable Rx */
2102 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2103 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2104 
2105 	/* reset ASIC */
2106 	rum_write(sc, RT2573_MAC_CSR1, 3);
2107 	rum_write(sc, RT2573_MAC_CSR1, 0);
2108 
2109 	if (sc->sc_rx_pipeh != NULL) {
2110 		usbd_abort_pipe(sc->sc_rx_pipeh);
2111 		usbd_close_pipe(sc->sc_rx_pipeh);
2112 		sc->sc_rx_pipeh = NULL;
2113 	}
2114 
2115 	if (sc->sc_tx_pipeh != NULL) {
2116 		usbd_abort_pipe(sc->sc_tx_pipeh);
2117 		usbd_close_pipe(sc->sc_tx_pipeh);
2118 		sc->sc_tx_pipeh = NULL;
2119 	}
2120 
2121 	rum_free_rx_list(sc);
2122 	rum_free_tx_list(sc);
2123 }
2124 
2125 Static int
2126 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2127 {
2128 	usb_device_request_t req;
2129 	uint16_t reg = RT2573_MCU_CODE_BASE;
2130 	usbd_status error;
2131 
2132 	/* copy firmware image into NIC */
2133 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2134 		rum_write(sc, reg, UGETDW(ucode));
2135 
2136 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2137 	req.bRequest = RT2573_MCU_CNTL;
2138 	USETW(req.wValue, RT2573_MCU_RUN);
2139 	USETW(req.wIndex, 0);
2140 	USETW(req.wLength, 0);
2141 
2142 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2143 	if (error != 0) {
2144 		printf("%s: could not run firmware: %s\n",
2145 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2146 	}
2147 	return error;
2148 }
2149 
2150 Static int
2151 rum_prepare_beacon(struct rum_softc *sc)
2152 {
2153 	struct ieee80211com *ic = &sc->sc_ic;
2154 	struct rum_tx_desc desc;
2155 	struct mbuf *m0;
2156 	int rate;
2157 
2158 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2159 	if (m0 == NULL) {
2160 		printf("%s: could not allocate beacon frame\n",
2161 		    sc->sc_dev.dv_xname);
2162 		return ENOBUFS;
2163 	}
2164 
2165 	/* send beacons at the lowest available rate */
2166 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2167 
2168 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2169 	    m0->m_pkthdr.len, rate);
2170 
2171 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2172 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2173 
2174 	/* copy beacon header and payload into NIC memory */
2175 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2176 	    m0->m_pkthdr.len);
2177 
2178 	m_freem(m0);
2179 
2180 	return 0;
2181 }
2182 
2183 Static void
2184 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2185 {
2186 	int i;
2187 
2188 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2189 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2190 
2191 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2192 
2193 	/* set rate to some reasonable initial value */
2194 	for (i = ni->ni_rates.rs_nrates - 1;
2195 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2196 	     i--);
2197 	ni->ni_txrate = i;
2198 
2199 	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2200 }
2201 
2202 Static void
2203 rum_amrr_timeout(void *arg)
2204 {
2205 	struct rum_softc *sc = arg;
2206 	usb_device_request_t req;
2207 	int s;
2208 
2209 	s = splusb();
2210 
2211 	/*
2212 	 * Asynchronously read statistic registers (cleared by read).
2213 	 */
2214 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2215 	req.bRequest = RT2573_READ_MULTI_MAC;
2216 	USETW(req.wValue, 0);
2217 	USETW(req.wIndex, RT2573_STA_CSR0);
2218 	USETW(req.wLength, sizeof sc->sta);
2219 
2220 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2221 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2222 	    rum_amrr_update);
2223 	(void)usbd_transfer(sc->amrr_xfer);
2224 
2225 	splx(s);
2226 }
2227 
2228 Static void
2229 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2230     usbd_status status)
2231 {
2232 	struct rum_softc *sc = (struct rum_softc *)priv;
2233 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2234 
2235 	if (status != USBD_NORMAL_COMPLETION) {
2236 		printf("%s: could not retrieve Tx statistics - cancelling "
2237 		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2238 		return;
2239 	}
2240 
2241 	/* count TX retry-fail as Tx errors */
2242 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2243 
2244 	sc->amn.amn_retrycnt =
2245 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2246 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2247 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2248 
2249 	sc->amn.amn_txcnt =
2250 	    sc->amn.amn_retrycnt +
2251 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2252 
2253 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2254 
2255 	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2256 }
2257 
2258 int
2259 rum_activate(device_ptr_t self, enum devact act)
2260 {
2261 	switch (act) {
2262 	case DVACT_ACTIVATE:
2263 		return EOPNOTSUPP;
2264 
2265 	case DVACT_DEACTIVATE:
2266 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2267 		break;
2268 	}
2269 
2270 	return 0;
2271 }
2272