1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $"); 28 29 #ifdef _KERNEL_OPT 30 #include "opt_usb.h" 31 #endif 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/module.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/firmload.h> 67 68 #include <dev/usb/usb.h> 69 #include <dev/usb/usbdi.h> 70 #include <dev/usb/usbdi_util.h> 71 #include <dev/usb/usbdevs.h> 72 73 #include <dev/usb/if_rumreg.h> 74 #include <dev/usb/if_rumvar.h> 75 76 #ifdef RUM_DEBUG 77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 79 int rum_debug = 1; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 /* various supported device vendors/products */ 86 static const struct usb_devno rum_devs[] = { 87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS }, 142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 143 }; 144 145 static int rum_attachhook(void *); 146 static int rum_alloc_tx_list(struct rum_softc *); 147 static void rum_free_tx_list(struct rum_softc *); 148 static int rum_alloc_rx_list(struct rum_softc *); 149 static void rum_free_rx_list(struct rum_softc *); 150 static int rum_media_change(struct ifnet *); 151 static void rum_next_scan(void *); 152 static void rum_task(void *); 153 static int rum_newstate(struct ieee80211com *, 154 enum ieee80211_state, int); 155 static void rum_txeof(struct usbd_xfer *, void *, 156 usbd_status); 157 static void rum_rxeof(struct usbd_xfer *, void *, 158 usbd_status); 159 static uint8_t rum_rxrate(const struct rum_rx_desc *); 160 static int rum_ack_rate(struct ieee80211com *, int); 161 static uint16_t rum_txtime(int, int, uint32_t); 162 static uint8_t rum_plcp_signal(int); 163 static void rum_setup_tx_desc(struct rum_softc *, 164 struct rum_tx_desc *, uint32_t, uint16_t, int, 165 int); 166 static int rum_tx_data(struct rum_softc *, struct mbuf *, 167 struct ieee80211_node *); 168 static void rum_start(struct ifnet *); 169 static void rum_watchdog(struct ifnet *); 170 static int rum_ioctl(struct ifnet *, u_long, void *); 171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 172 int); 173 static uint32_t rum_read(struct rum_softc *, uint16_t); 174 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 175 int); 176 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 177 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 178 size_t); 179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 182 static void rum_select_antenna(struct rum_softc *); 183 static void rum_enable_mrr(struct rum_softc *); 184 static void rum_set_txpreamble(struct rum_softc *); 185 static void rum_set_basicrates(struct rum_softc *); 186 static void rum_select_band(struct rum_softc *, 187 struct ieee80211_channel *); 188 static void rum_set_chan(struct rum_softc *, 189 struct ieee80211_channel *); 190 static void rum_enable_tsf_sync(struct rum_softc *); 191 static void rum_update_slot(struct rum_softc *); 192 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 194 static void rum_update_promisc(struct rum_softc *); 195 static const char *rum_get_rf(int); 196 static void rum_read_eeprom(struct rum_softc *); 197 static int rum_bbp_init(struct rum_softc *); 198 static int rum_init(struct ifnet *); 199 static void rum_stop(struct ifnet *, int); 200 static int rum_load_microcode(struct rum_softc *, const u_char *, 201 size_t); 202 static int rum_prepare_beacon(struct rum_softc *); 203 static void rum_newassoc(struct ieee80211_node *, int); 204 static void rum_amrr_start(struct rum_softc *, 205 struct ieee80211_node *); 206 static void rum_amrr_timeout(void *); 207 static void rum_amrr_update(struct usbd_xfer *, void *, 208 usbd_status); 209 210 /* 211 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 212 */ 213 static const struct ieee80211_rateset rum_rateset_11a = 214 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 215 216 static const struct ieee80211_rateset rum_rateset_11b = 217 { 4, { 2, 4, 11, 22 } }; 218 219 static const struct ieee80211_rateset rum_rateset_11g = 220 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 221 222 static const struct { 223 uint32_t reg; 224 uint32_t val; 225 } rum_def_mac[] = { 226 RT2573_DEF_MAC 227 }; 228 229 static const struct { 230 uint8_t reg; 231 uint8_t val; 232 } rum_def_bbp[] = { 233 RT2573_DEF_BBP 234 }; 235 236 static const struct rfprog { 237 uint8_t chan; 238 uint32_t r1, r2, r3, r4; 239 } rum_rf5226[] = { 240 RT2573_RF5226 241 }, rum_rf5225[] = { 242 RT2573_RF5225 243 }; 244 245 static int rum_match(device_t, cfdata_t, void *); 246 static void rum_attach(device_t, device_t, void *); 247 static int rum_detach(device_t, int); 248 static int rum_activate(device_t, enum devact); 249 extern struct cfdriver rum_cd; 250 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 251 rum_detach, rum_activate); 252 253 static int 254 rum_match(device_t parent, cfdata_t match, void *aux) 255 { 256 struct usb_attach_arg *uaa = aux; 257 258 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 259 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 260 } 261 262 static int 263 rum_attachhook(void *xsc) 264 { 265 struct rum_softc *sc = xsc; 266 firmware_handle_t fwh; 267 const char *name = "rum-rt2573"; 268 u_char *ucode; 269 size_t size; 270 int error; 271 272 if ((error = firmware_open("rum", name, &fwh)) != 0) { 273 printf("%s: failed firmware_open of file %s (error %d)\n", 274 device_xname(sc->sc_dev), name, error); 275 return error; 276 } 277 size = firmware_get_size(fwh); 278 ucode = firmware_malloc(size); 279 if (ucode == NULL) { 280 printf("%s: failed to allocate firmware memory\n", 281 device_xname(sc->sc_dev)); 282 firmware_close(fwh); 283 return ENOMEM; 284 } 285 error = firmware_read(fwh, 0, ucode, size); 286 firmware_close(fwh); 287 if (error != 0) { 288 printf("%s: failed to read firmware (error %d)\n", 289 device_xname(sc->sc_dev), error); 290 firmware_free(ucode, size); 291 return error; 292 } 293 294 if (rum_load_microcode(sc, ucode, size) != 0) { 295 printf("%s: could not load 8051 microcode\n", 296 device_xname(sc->sc_dev)); 297 firmware_free(ucode, size); 298 return ENXIO; 299 } 300 301 firmware_free(ucode, size); 302 sc->sc_flags |= RT2573_FWLOADED; 303 304 return 0; 305 } 306 307 static void 308 rum_attach(device_t parent, device_t self, void *aux) 309 { 310 struct rum_softc *sc = device_private(self); 311 struct usb_attach_arg *uaa = aux; 312 struct ieee80211com *ic = &sc->sc_ic; 313 struct ifnet *ifp = &sc->sc_if; 314 usb_interface_descriptor_t *id; 315 usb_endpoint_descriptor_t *ed; 316 usbd_status error; 317 char *devinfop; 318 int i, ntries; 319 uint32_t tmp; 320 321 sc->sc_dev = self; 322 sc->sc_udev = uaa->uaa_device; 323 sc->sc_flags = 0; 324 325 aprint_naive("\n"); 326 aprint_normal("\n"); 327 328 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 329 aprint_normal_dev(self, "%s\n", devinfop); 330 usbd_devinfo_free(devinfop); 331 332 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0); 333 if (error != 0) { 334 aprint_error_dev(self, "failed to set configuration" 335 ", err=%s\n", usbd_errstr(error)); 336 return; 337 } 338 339 /* get the first interface handle */ 340 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 341 &sc->sc_iface); 342 if (error != 0) { 343 aprint_error_dev(self, "could not get interface handle\n"); 344 return; 345 } 346 347 /* 348 * Find endpoints. 349 */ 350 id = usbd_get_interface_descriptor(sc->sc_iface); 351 352 sc->sc_rx_no = sc->sc_tx_no = -1; 353 for (i = 0; i < id->bNumEndpoints; i++) { 354 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 355 if (ed == NULL) { 356 aprint_error_dev(self, 357 "no endpoint descriptor for iface %d\n", i); 358 return; 359 } 360 361 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 362 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 363 sc->sc_rx_no = ed->bEndpointAddress; 364 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 365 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 366 sc->sc_tx_no = ed->bEndpointAddress; 367 } 368 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 369 aprint_error_dev(self, "missing endpoint\n"); 370 return; 371 } 372 373 usb_init_task(&sc->sc_task, rum_task, sc, 0); 374 callout_init(&sc->sc_scan_ch, 0); 375 376 sc->amrr.amrr_min_success_threshold = 1; 377 sc->amrr.amrr_max_success_threshold = 10; 378 callout_init(&sc->sc_amrr_ch, 0); 379 380 /* retrieve RT2573 rev. no */ 381 for (ntries = 0; ntries < 1000; ntries++) { 382 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 383 break; 384 DELAY(1000); 385 } 386 if (ntries == 1000) { 387 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 388 return; 389 } 390 391 /* retrieve MAC address and various other things from EEPROM */ 392 rum_read_eeprom(sc); 393 394 aprint_normal_dev(self, 395 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 396 sc->macbbp_rev, tmp, 397 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 398 399 ic->ic_ifp = ifp; 400 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 401 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 402 ic->ic_state = IEEE80211_S_INIT; 403 404 /* set device capabilities */ 405 ic->ic_caps = 406 IEEE80211_C_IBSS | /* IBSS mode supported */ 407 IEEE80211_C_MONITOR | /* monitor mode supported */ 408 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 409 IEEE80211_C_TXPMGT | /* tx power management */ 410 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 411 IEEE80211_C_SHSLOT | /* short slot time supported */ 412 IEEE80211_C_WPA; /* 802.11i */ 413 414 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 415 /* set supported .11a rates */ 416 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 417 418 /* set supported .11a channels */ 419 for (i = 34; i <= 46; i += 4) { 420 ic->ic_channels[i].ic_freq = 421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 423 } 424 for (i = 36; i <= 64; i += 4) { 425 ic->ic_channels[i].ic_freq = 426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 428 } 429 for (i = 100; i <= 140; i += 4) { 430 ic->ic_channels[i].ic_freq = 431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 432 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 433 } 434 for (i = 149; i <= 165; i += 4) { 435 ic->ic_channels[i].ic_freq = 436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 437 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 438 } 439 } 440 441 /* set supported .11b and .11g rates */ 442 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 443 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 444 445 /* set supported .11b and .11g channels (1 through 14) */ 446 for (i = 1; i <= 14; i++) { 447 ic->ic_channels[i].ic_freq = 448 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 449 ic->ic_channels[i].ic_flags = 450 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 451 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 452 } 453 454 ifp->if_softc = sc; 455 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 456 ifp->if_init = rum_init; 457 ifp->if_ioctl = rum_ioctl; 458 ifp->if_start = rum_start; 459 ifp->if_watchdog = rum_watchdog; 460 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 461 IFQ_SET_READY(&ifp->if_snd); 462 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 463 464 if_attach(ifp); 465 ieee80211_ifattach(ic); 466 ic->ic_newassoc = rum_newassoc; 467 468 /* override state transition machine */ 469 sc->sc_newstate = ic->ic_newstate; 470 ic->ic_newstate = rum_newstate; 471 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 472 473 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 474 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 475 &sc->sc_drvbpf); 476 477 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 478 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 479 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 480 481 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 482 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 483 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 484 485 ieee80211_announce(ic); 486 487 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 488 489 if (!pmf_device_register(self, NULL, NULL)) 490 aprint_error_dev(self, "couldn't establish power handler\n"); 491 492 return; 493 } 494 495 static int 496 rum_detach(device_t self, int flags) 497 { 498 struct rum_softc *sc = device_private(self); 499 struct ieee80211com *ic = &sc->sc_ic; 500 struct ifnet *ifp = &sc->sc_if; 501 int s; 502 503 if (!ifp->if_softc) 504 return 0; 505 506 pmf_device_deregister(self); 507 508 s = splusb(); 509 510 rum_stop(ifp, 1); 511 usb_rem_task(sc->sc_udev, &sc->sc_task); 512 callout_stop(&sc->sc_scan_ch); 513 callout_stop(&sc->sc_amrr_ch); 514 515 bpf_detach(ifp); 516 ieee80211_ifdetach(ic); /* free all nodes */ 517 if_detach(ifp); 518 519 splx(s); 520 521 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 522 523 return 0; 524 } 525 526 static int 527 rum_alloc_tx_list(struct rum_softc *sc) 528 { 529 struct rum_tx_data *data; 530 int i, error; 531 532 sc->tx_cur = sc->tx_queued = 0; 533 534 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 535 data = &sc->tx_data[i]; 536 537 data->sc = sc; 538 539 error = usbd_create_xfer(sc->sc_tx_pipeh, 540 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN, 541 USBD_FORCE_SHORT_XFER, 0, &data->xfer); 542 if (error) { 543 printf("%s: could not allocate tx xfer\n", 544 device_xname(sc->sc_dev)); 545 goto fail; 546 } 547 data->buf = usbd_get_buffer(data->xfer); 548 549 /* clean Tx descriptor */ 550 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 551 } 552 553 return 0; 554 555 fail: rum_free_tx_list(sc); 556 return error; 557 } 558 559 static void 560 rum_free_tx_list(struct rum_softc *sc) 561 { 562 struct rum_tx_data *data; 563 int i; 564 565 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 566 data = &sc->tx_data[i]; 567 568 if (data->xfer != NULL) { 569 usbd_destroy_xfer(data->xfer); 570 data->xfer = NULL; 571 } 572 573 if (data->ni != NULL) { 574 ieee80211_free_node(data->ni); 575 data->ni = NULL; 576 } 577 } 578 } 579 580 static int 581 rum_alloc_rx_list(struct rum_softc *sc) 582 { 583 struct rum_rx_data *data; 584 int i, error; 585 586 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 587 data = &sc->rx_data[i]; 588 589 data->sc = sc; 590 591 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 592 USBD_SHORT_XFER_OK, 0, &data->xfer); 593 if (error) { 594 printf("%s: could not allocate rx xfer\n", 595 device_xname(sc->sc_dev)); 596 goto fail; 597 } 598 599 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 600 if (data->m == NULL) { 601 printf("%s: could not allocate rx mbuf\n", 602 device_xname(sc->sc_dev)); 603 error = ENOMEM; 604 goto fail; 605 } 606 607 MCLGET(data->m, M_DONTWAIT); 608 if (!(data->m->m_flags & M_EXT)) { 609 printf("%s: could not allocate rx mbuf cluster\n", 610 device_xname(sc->sc_dev)); 611 error = ENOMEM; 612 goto fail; 613 } 614 615 data->buf = mtod(data->m, uint8_t *); 616 } 617 618 return 0; 619 620 fail: rum_free_rx_list(sc); 621 return error; 622 } 623 624 static void 625 rum_free_rx_list(struct rum_softc *sc) 626 { 627 struct rum_rx_data *data; 628 int i; 629 630 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 631 data = &sc->rx_data[i]; 632 633 if (data->xfer != NULL) { 634 usbd_destroy_xfer(data->xfer); 635 data->xfer = NULL; 636 } 637 638 if (data->m != NULL) { 639 m_freem(data->m); 640 data->m = NULL; 641 } 642 } 643 } 644 645 static int 646 rum_media_change(struct ifnet *ifp) 647 { 648 int error; 649 650 error = ieee80211_media_change(ifp); 651 if (error != ENETRESET) 652 return error; 653 654 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 655 rum_init(ifp); 656 657 return 0; 658 } 659 660 /* 661 * This function is called periodically (every 200ms) during scanning to 662 * switch from one channel to another. 663 */ 664 static void 665 rum_next_scan(void *arg) 666 { 667 struct rum_softc *sc = arg; 668 struct ieee80211com *ic = &sc->sc_ic; 669 int s; 670 671 s = splnet(); 672 if (ic->ic_state == IEEE80211_S_SCAN) 673 ieee80211_next_scan(ic); 674 splx(s); 675 } 676 677 static void 678 rum_task(void *arg) 679 { 680 struct rum_softc *sc = arg; 681 struct ieee80211com *ic = &sc->sc_ic; 682 enum ieee80211_state ostate; 683 struct ieee80211_node *ni; 684 uint32_t tmp; 685 686 ostate = ic->ic_state; 687 688 switch (sc->sc_state) { 689 case IEEE80211_S_INIT: 690 if (ostate == IEEE80211_S_RUN) { 691 /* abort TSF synchronization */ 692 tmp = rum_read(sc, RT2573_TXRX_CSR9); 693 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 694 } 695 break; 696 697 case IEEE80211_S_SCAN: 698 rum_set_chan(sc, ic->ic_curchan); 699 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 700 break; 701 702 case IEEE80211_S_AUTH: 703 rum_set_chan(sc, ic->ic_curchan); 704 break; 705 706 case IEEE80211_S_ASSOC: 707 rum_set_chan(sc, ic->ic_curchan); 708 break; 709 710 case IEEE80211_S_RUN: 711 rum_set_chan(sc, ic->ic_curchan); 712 713 ni = ic->ic_bss; 714 715 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 716 rum_update_slot(sc); 717 rum_enable_mrr(sc); 718 rum_set_txpreamble(sc); 719 rum_set_basicrates(sc); 720 rum_set_bssid(sc, ni->ni_bssid); 721 } 722 723 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 724 ic->ic_opmode == IEEE80211_M_IBSS) 725 rum_prepare_beacon(sc); 726 727 if (ic->ic_opmode != IEEE80211_M_MONITOR) 728 rum_enable_tsf_sync(sc); 729 730 if (ic->ic_opmode == IEEE80211_M_STA) { 731 /* fake a join to init the tx rate */ 732 rum_newassoc(ic->ic_bss, 1); 733 734 /* enable automatic rate adaptation in STA mode */ 735 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 736 rum_amrr_start(sc, ni); 737 } 738 739 break; 740 } 741 742 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 743 } 744 745 static int 746 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 747 { 748 struct rum_softc *sc = ic->ic_ifp->if_softc; 749 750 usb_rem_task(sc->sc_udev, &sc->sc_task); 751 callout_stop(&sc->sc_scan_ch); 752 callout_stop(&sc->sc_amrr_ch); 753 754 /* do it in a process context */ 755 sc->sc_state = nstate; 756 sc->sc_arg = arg; 757 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 758 759 return 0; 760 } 761 762 /* quickly determine if a given rate is CCK or OFDM */ 763 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 764 765 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 766 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 767 768 static void 769 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 770 { 771 struct rum_tx_data *data = priv; 772 struct rum_softc *sc = data->sc; 773 struct ifnet *ifp = &sc->sc_if; 774 int s; 775 776 if (status != USBD_NORMAL_COMPLETION) { 777 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 778 return; 779 780 printf("%s: could not transmit buffer: %s\n", 781 device_xname(sc->sc_dev), usbd_errstr(status)); 782 783 if (status == USBD_STALLED) 784 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 785 786 ifp->if_oerrors++; 787 return; 788 } 789 790 s = splnet(); 791 792 ieee80211_free_node(data->ni); 793 data->ni = NULL; 794 795 sc->tx_queued--; 796 ifp->if_opackets++; 797 798 DPRINTFN(10, ("tx done\n")); 799 800 sc->sc_tx_timer = 0; 801 ifp->if_flags &= ~IFF_OACTIVE; 802 rum_start(ifp); 803 804 splx(s); 805 } 806 807 static void 808 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 809 { 810 struct rum_rx_data *data = priv; 811 struct rum_softc *sc = data->sc; 812 struct ieee80211com *ic = &sc->sc_ic; 813 struct ifnet *ifp = &sc->sc_if; 814 struct rum_rx_desc *desc; 815 struct ieee80211_frame *wh; 816 struct ieee80211_node *ni; 817 struct mbuf *mnew, *m; 818 int s, len; 819 820 if (status != USBD_NORMAL_COMPLETION) { 821 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 822 return; 823 824 if (status == USBD_STALLED) 825 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 826 goto skip; 827 } 828 829 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 830 831 if (len < (int)(RT2573_RX_DESC_SIZE + 832 sizeof(struct ieee80211_frame_min))) { 833 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 834 len)); 835 ifp->if_ierrors++; 836 goto skip; 837 } 838 839 desc = (struct rum_rx_desc *)data->buf; 840 841 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 842 /* 843 * This should not happen since we did not request to receive 844 * those frames when we filled RT2573_TXRX_CSR0. 845 */ 846 DPRINTFN(5, ("CRC error\n")); 847 ifp->if_ierrors++; 848 goto skip; 849 } 850 851 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 852 if (mnew == NULL) { 853 printf("%s: could not allocate rx mbuf\n", 854 device_xname(sc->sc_dev)); 855 ifp->if_ierrors++; 856 goto skip; 857 } 858 859 MCLGET(mnew, M_DONTWAIT); 860 if (!(mnew->m_flags & M_EXT)) { 861 printf("%s: could not allocate rx mbuf cluster\n", 862 device_xname(sc->sc_dev)); 863 m_freem(mnew); 864 ifp->if_ierrors++; 865 goto skip; 866 } 867 868 m = data->m; 869 data->m = mnew; 870 data->buf = mtod(data->m, uint8_t *); 871 872 /* finalize mbuf */ 873 m_set_rcvif(m, ifp); 874 m->m_data = (void *)(desc + 1); 875 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 876 877 s = splnet(); 878 879 if (sc->sc_drvbpf != NULL) { 880 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 881 882 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 883 tap->wr_rate = rum_rxrate(desc); 884 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 885 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 886 tap->wr_antenna = sc->rx_ant; 887 tap->wr_antsignal = desc->rssi; 888 889 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 890 } 891 892 wh = mtod(m, struct ieee80211_frame *); 893 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 894 895 /* send the frame to the 802.11 layer */ 896 ieee80211_input(ic, m, ni, desc->rssi, 0); 897 898 /* node is no longer needed */ 899 ieee80211_free_node(ni); 900 901 splx(s); 902 903 DPRINTFN(15, ("rx done\n")); 904 905 skip: /* setup a new transfer */ 906 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, 907 USBD_NO_TIMEOUT, rum_rxeof); 908 usbd_transfer(xfer); 909 } 910 911 /* 912 * This function is only used by the Rx radiotap code. It returns the rate at 913 * which a given frame was received. 914 */ 915 static uint8_t 916 rum_rxrate(const struct rum_rx_desc *desc) 917 { 918 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 919 /* reverse function of rum_plcp_signal */ 920 switch (desc->rate) { 921 case 0xb: return 12; 922 case 0xf: return 18; 923 case 0xa: return 24; 924 case 0xe: return 36; 925 case 0x9: return 48; 926 case 0xd: return 72; 927 case 0x8: return 96; 928 case 0xc: return 108; 929 } 930 } else { 931 if (desc->rate == 10) 932 return 2; 933 if (desc->rate == 20) 934 return 4; 935 if (desc->rate == 55) 936 return 11; 937 if (desc->rate == 110) 938 return 22; 939 } 940 return 2; /* should not get there */ 941 } 942 943 /* 944 * Return the expected ack rate for a frame transmitted at rate `rate'. 945 * XXX: this should depend on the destination node basic rate set. 946 */ 947 static int 948 rum_ack_rate(struct ieee80211com *ic, int rate) 949 { 950 switch (rate) { 951 /* CCK rates */ 952 case 2: 953 return 2; 954 case 4: 955 case 11: 956 case 22: 957 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 958 959 /* OFDM rates */ 960 case 12: 961 case 18: 962 return 12; 963 case 24: 964 case 36: 965 return 24; 966 case 48: 967 case 72: 968 case 96: 969 case 108: 970 return 48; 971 } 972 973 /* default to 1Mbps */ 974 return 2; 975 } 976 977 /* 978 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 979 * The function automatically determines the operating mode depending on the 980 * given rate. `flags' indicates whether short preamble is in use or not. 981 */ 982 static uint16_t 983 rum_txtime(int len, int rate, uint32_t flags) 984 { 985 uint16_t txtime; 986 987 if (RUM_RATE_IS_OFDM(rate)) { 988 /* IEEE Std 802.11a-1999, pp. 37 */ 989 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 990 txtime = 16 + 4 + 4 * txtime + 6; 991 } else { 992 /* IEEE Std 802.11b-1999, pp. 28 */ 993 txtime = (16 * len + rate - 1) / rate; 994 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 995 txtime += 72 + 24; 996 else 997 txtime += 144 + 48; 998 } 999 return txtime; 1000 } 1001 1002 static uint8_t 1003 rum_plcp_signal(int rate) 1004 { 1005 switch (rate) { 1006 /* CCK rates (returned values are device-dependent) */ 1007 case 2: return 0x0; 1008 case 4: return 0x1; 1009 case 11: return 0x2; 1010 case 22: return 0x3; 1011 1012 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1013 case 12: return 0xb; 1014 case 18: return 0xf; 1015 case 24: return 0xa; 1016 case 36: return 0xe; 1017 case 48: return 0x9; 1018 case 72: return 0xd; 1019 case 96: return 0x8; 1020 case 108: return 0xc; 1021 1022 /* unsupported rates (should not get there) */ 1023 default: return 0xff; 1024 } 1025 } 1026 1027 static void 1028 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1029 uint32_t flags, uint16_t xflags, int len, int rate) 1030 { 1031 struct ieee80211com *ic = &sc->sc_ic; 1032 uint16_t plcp_length; 1033 int remainder; 1034 1035 desc->flags = htole32(flags); 1036 desc->flags |= htole32(RT2573_TX_VALID); 1037 desc->flags |= htole32(len << 16); 1038 1039 desc->xflags = htole16(xflags); 1040 1041 desc->wme = htole16( 1042 RT2573_QID(0) | 1043 RT2573_AIFSN(2) | 1044 RT2573_LOGCWMIN(4) | 1045 RT2573_LOGCWMAX(10)); 1046 1047 /* setup PLCP fields */ 1048 desc->plcp_signal = rum_plcp_signal(rate); 1049 desc->plcp_service = 4; 1050 1051 len += IEEE80211_CRC_LEN; 1052 if (RUM_RATE_IS_OFDM(rate)) { 1053 desc->flags |= htole32(RT2573_TX_OFDM); 1054 1055 plcp_length = len & 0xfff; 1056 desc->plcp_length_hi = plcp_length >> 6; 1057 desc->plcp_length_lo = plcp_length & 0x3f; 1058 } else { 1059 plcp_length = (16 * len + rate - 1) / rate; 1060 if (rate == 22) { 1061 remainder = (16 * len) % 22; 1062 if (remainder != 0 && remainder < 7) 1063 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1064 } 1065 desc->plcp_length_hi = plcp_length >> 8; 1066 desc->plcp_length_lo = plcp_length & 0xff; 1067 1068 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1069 desc->plcp_signal |= 0x08; 1070 } 1071 } 1072 1073 #define RUM_TX_TIMEOUT 5000 1074 1075 static int 1076 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1077 { 1078 struct ieee80211com *ic = &sc->sc_ic; 1079 struct rum_tx_desc *desc; 1080 struct rum_tx_data *data; 1081 struct ieee80211_frame *wh; 1082 struct ieee80211_key *k; 1083 uint32_t flags = 0; 1084 uint16_t dur; 1085 usbd_status error; 1086 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1087 1088 wh = mtod(m0, struct ieee80211_frame *); 1089 1090 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1091 k = ieee80211_crypto_encap(ic, ni, m0); 1092 if (k == NULL) { 1093 m_freem(m0); 1094 return ENOBUFS; 1095 } 1096 1097 /* packet header may have moved, reset our local pointer */ 1098 wh = mtod(m0, struct ieee80211_frame *); 1099 } 1100 1101 /* compute actual packet length (including CRC and crypto overhead) */ 1102 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1103 1104 /* pickup a rate */ 1105 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1106 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1107 IEEE80211_FC0_TYPE_MGT)) { 1108 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1109 rate = ni->ni_rates.rs_rates[0]; 1110 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1111 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1112 } else 1113 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1114 if (rate == 0) 1115 rate = 2; /* XXX should not happen */ 1116 rate &= IEEE80211_RATE_VAL; 1117 1118 /* check if RTS/CTS or CTS-to-self protection must be used */ 1119 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1120 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1121 if (pktlen > ic->ic_rtsthreshold) { 1122 needrts = 1; /* RTS/CTS based on frame length */ 1123 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1124 RUM_RATE_IS_OFDM(rate)) { 1125 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1126 needcts = 1; /* CTS-to-self */ 1127 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1128 needrts = 1; /* RTS/CTS */ 1129 } 1130 } 1131 if (needrts || needcts) { 1132 struct mbuf *mprot; 1133 int protrate, ackrate; 1134 1135 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1136 ackrate = rum_ack_rate(ic, rate); 1137 1138 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1139 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1140 2 * sc->sifs; 1141 if (needrts) { 1142 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1143 protrate), ic->ic_flags) + sc->sifs; 1144 mprot = ieee80211_get_rts(ic, wh, dur); 1145 } else { 1146 mprot = ieee80211_get_cts_to_self(ic, dur); 1147 } 1148 if (mprot == NULL) { 1149 aprint_error_dev(sc->sc_dev, 1150 "couldn't allocate protection frame\n"); 1151 m_freem(m0); 1152 return ENOBUFS; 1153 } 1154 1155 data = &sc->tx_data[sc->tx_cur]; 1156 desc = (struct rum_tx_desc *)data->buf; 1157 1158 /* avoid multiple free() of the same node for each fragment */ 1159 data->ni = ieee80211_ref_node(ni); 1160 1161 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1162 data->buf + RT2573_TX_DESC_SIZE); 1163 rum_setup_tx_desc(sc, desc, 1164 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1165 0, mprot->m_pkthdr.len, protrate); 1166 1167 /* no roundup necessary here */ 1168 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1169 1170 /* XXX may want to pass the protection frame to BPF */ 1171 1172 /* mbuf is no longer needed */ 1173 m_freem(mprot); 1174 1175 usbd_setup_xfer(data->xfer, data, data->buf, 1176 xferlen, USBD_FORCE_SHORT_XFER, 1177 RUM_TX_TIMEOUT, rum_txeof); 1178 error = usbd_transfer(data->xfer); 1179 if (error != USBD_NORMAL_COMPLETION && 1180 error != USBD_IN_PROGRESS) { 1181 m_freem(m0); 1182 return error; 1183 } 1184 1185 sc->tx_queued++; 1186 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1187 1188 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1189 } 1190 1191 data = &sc->tx_data[sc->tx_cur]; 1192 desc = (struct rum_tx_desc *)data->buf; 1193 1194 data->ni = ni; 1195 1196 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1197 flags |= RT2573_TX_NEED_ACK; 1198 1199 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1200 ic->ic_flags) + sc->sifs; 1201 *(uint16_t *)wh->i_dur = htole16(dur); 1202 1203 /* tell hardware to set timestamp in probe responses */ 1204 if ((wh->i_fc[0] & 1205 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1206 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1207 flags |= RT2573_TX_TIMESTAMP; 1208 } 1209 1210 if (sc->sc_drvbpf != NULL) { 1211 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1212 1213 tap->wt_flags = 0; 1214 tap->wt_rate = rate; 1215 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1216 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1217 tap->wt_antenna = sc->tx_ant; 1218 1219 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1220 } 1221 1222 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1223 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1224 1225 /* align end on a 4-bytes boundary */ 1226 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1227 1228 /* 1229 * No space left in the last URB to store the extra 4 bytes, force 1230 * sending of another URB. 1231 */ 1232 if ((xferlen % 64) == 0) 1233 xferlen += 4; 1234 1235 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1236 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1237 rate, xferlen)); 1238 1239 /* mbuf is no longer needed */ 1240 m_freem(m0); 1241 1242 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1243 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof); 1244 error = usbd_transfer(data->xfer); 1245 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1246 return error; 1247 1248 sc->tx_queued++; 1249 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1250 1251 return 0; 1252 } 1253 1254 static void 1255 rum_start(struct ifnet *ifp) 1256 { 1257 struct rum_softc *sc = ifp->if_softc; 1258 struct ieee80211com *ic = &sc->sc_ic; 1259 struct ether_header *eh; 1260 struct ieee80211_node *ni; 1261 struct mbuf *m0; 1262 1263 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1264 return; 1265 1266 for (;;) { 1267 IF_POLL(&ic->ic_mgtq, m0); 1268 if (m0 != NULL) { 1269 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1270 ifp->if_flags |= IFF_OACTIVE; 1271 break; 1272 } 1273 IF_DEQUEUE(&ic->ic_mgtq, m0); 1274 1275 ni = M_GETCTX(m0, struct ieee80211_node *); 1276 M_CLEARCTX(m0); 1277 bpf_mtap3(ic->ic_rawbpf, m0); 1278 if (rum_tx_data(sc, m0, ni) != 0) 1279 break; 1280 1281 } else { 1282 if (ic->ic_state != IEEE80211_S_RUN) 1283 break; 1284 IFQ_POLL(&ifp->if_snd, m0); 1285 if (m0 == NULL) 1286 break; 1287 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1288 ifp->if_flags |= IFF_OACTIVE; 1289 break; 1290 } 1291 IFQ_DEQUEUE(&ifp->if_snd, m0); 1292 if (m0->m_len < (int)sizeof(struct ether_header) && 1293 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1294 continue; 1295 1296 eh = mtod(m0, struct ether_header *); 1297 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1298 if (ni == NULL) { 1299 m_freem(m0); 1300 continue; 1301 } 1302 bpf_mtap(ifp, m0); 1303 m0 = ieee80211_encap(ic, m0, ni); 1304 if (m0 == NULL) { 1305 ieee80211_free_node(ni); 1306 continue; 1307 } 1308 bpf_mtap3(ic->ic_rawbpf, m0); 1309 if (rum_tx_data(sc, m0, ni) != 0) { 1310 ieee80211_free_node(ni); 1311 ifp->if_oerrors++; 1312 break; 1313 } 1314 } 1315 1316 sc->sc_tx_timer = 5; 1317 ifp->if_timer = 1; 1318 } 1319 } 1320 1321 static void 1322 rum_watchdog(struct ifnet *ifp) 1323 { 1324 struct rum_softc *sc = ifp->if_softc; 1325 struct ieee80211com *ic = &sc->sc_ic; 1326 1327 ifp->if_timer = 0; 1328 1329 if (sc->sc_tx_timer > 0) { 1330 if (--sc->sc_tx_timer == 0) { 1331 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1332 /*rum_init(ifp); XXX needs a process context! */ 1333 ifp->if_oerrors++; 1334 return; 1335 } 1336 ifp->if_timer = 1; 1337 } 1338 1339 ieee80211_watchdog(ic); 1340 } 1341 1342 static int 1343 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1344 { 1345 #define IS_RUNNING(ifp) \ 1346 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1347 1348 struct rum_softc *sc = ifp->if_softc; 1349 struct ieee80211com *ic = &sc->sc_ic; 1350 int s, error = 0; 1351 1352 s = splnet(); 1353 1354 switch (cmd) { 1355 case SIOCSIFFLAGS: 1356 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1357 break; 1358 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1359 case IFF_UP|IFF_RUNNING: 1360 rum_update_promisc(sc); 1361 break; 1362 case IFF_UP: 1363 rum_init(ifp); 1364 break; 1365 case IFF_RUNNING: 1366 rum_stop(ifp, 1); 1367 break; 1368 case 0: 1369 break; 1370 } 1371 break; 1372 1373 case SIOCADDMULTI: 1374 case SIOCDELMULTI: 1375 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1376 error = 0; 1377 } 1378 break; 1379 1380 default: 1381 error = ieee80211_ioctl(ic, cmd, data); 1382 } 1383 1384 if (error == ENETRESET) { 1385 if (IS_RUNNING(ifp) && 1386 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1387 rum_init(ifp); 1388 error = 0; 1389 } 1390 1391 splx(s); 1392 1393 return error; 1394 #undef IS_RUNNING 1395 } 1396 1397 static void 1398 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1399 { 1400 usb_device_request_t req; 1401 usbd_status error; 1402 1403 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1404 req.bRequest = RT2573_READ_EEPROM; 1405 USETW(req.wValue, 0); 1406 USETW(req.wIndex, addr); 1407 USETW(req.wLength, len); 1408 1409 error = usbd_do_request(sc->sc_udev, &req, buf); 1410 if (error != 0) { 1411 printf("%s: could not read EEPROM: %s\n", 1412 device_xname(sc->sc_dev), usbd_errstr(error)); 1413 } 1414 } 1415 1416 static uint32_t 1417 rum_read(struct rum_softc *sc, uint16_t reg) 1418 { 1419 uint32_t val; 1420 1421 rum_read_multi(sc, reg, &val, sizeof(val)); 1422 1423 return le32toh(val); 1424 } 1425 1426 static void 1427 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1428 { 1429 usb_device_request_t req; 1430 usbd_status error; 1431 1432 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1433 req.bRequest = RT2573_READ_MULTI_MAC; 1434 USETW(req.wValue, 0); 1435 USETW(req.wIndex, reg); 1436 USETW(req.wLength, len); 1437 1438 error = usbd_do_request(sc->sc_udev, &req, buf); 1439 if (error != 0) { 1440 printf("%s: could not multi read MAC register: %s\n", 1441 device_xname(sc->sc_dev), usbd_errstr(error)); 1442 } 1443 } 1444 1445 static void 1446 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1447 { 1448 uint32_t tmp = htole32(val); 1449 1450 rum_write_multi(sc, reg, &tmp, sizeof(tmp)); 1451 } 1452 1453 static void 1454 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1455 { 1456 usb_device_request_t req; 1457 usbd_status error; 1458 int offset; 1459 1460 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1461 req.bRequest = RT2573_WRITE_MULTI_MAC; 1462 USETW(req.wValue, 0); 1463 1464 /* write at most 64 bytes at a time */ 1465 for (offset = 0; offset < len; offset += 64) { 1466 USETW(req.wIndex, reg + offset); 1467 USETW(req.wLength, MIN(len - offset, 64)); 1468 1469 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset); 1470 if (error != 0) { 1471 printf("%s: could not multi write MAC register: %s\n", 1472 device_xname(sc->sc_dev), usbd_errstr(error)); 1473 } 1474 } 1475 } 1476 1477 static void 1478 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1479 { 1480 uint32_t tmp; 1481 int ntries; 1482 1483 for (ntries = 0; ntries < 5; ntries++) { 1484 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1485 break; 1486 } 1487 if (ntries == 5) { 1488 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1489 return; 1490 } 1491 1492 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1493 rum_write(sc, RT2573_PHY_CSR3, tmp); 1494 } 1495 1496 static uint8_t 1497 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1498 { 1499 uint32_t val; 1500 int ntries; 1501 1502 for (ntries = 0; ntries < 5; ntries++) { 1503 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1504 break; 1505 } 1506 if (ntries == 5) { 1507 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1508 return 0; 1509 } 1510 1511 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1512 rum_write(sc, RT2573_PHY_CSR3, val); 1513 1514 for (ntries = 0; ntries < 100; ntries++) { 1515 val = rum_read(sc, RT2573_PHY_CSR3); 1516 if (!(val & RT2573_BBP_BUSY)) 1517 return val & 0xff; 1518 DELAY(1); 1519 } 1520 1521 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1522 return 0; 1523 } 1524 1525 static void 1526 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1527 { 1528 uint32_t tmp; 1529 int ntries; 1530 1531 for (ntries = 0; ntries < 5; ntries++) { 1532 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1533 break; 1534 } 1535 if (ntries == 5) { 1536 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1537 return; 1538 } 1539 1540 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1541 (reg & 3); 1542 rum_write(sc, RT2573_PHY_CSR4, tmp); 1543 1544 /* remember last written value in sc */ 1545 sc->rf_regs[reg] = val; 1546 1547 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1548 } 1549 1550 static void 1551 rum_select_antenna(struct rum_softc *sc) 1552 { 1553 uint8_t bbp4, bbp77; 1554 uint32_t tmp; 1555 1556 bbp4 = rum_bbp_read(sc, 4); 1557 bbp77 = rum_bbp_read(sc, 77); 1558 1559 /* TBD */ 1560 1561 /* make sure Rx is disabled before switching antenna */ 1562 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1563 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1564 1565 rum_bbp_write(sc, 4, bbp4); 1566 rum_bbp_write(sc, 77, bbp77); 1567 1568 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1569 } 1570 1571 /* 1572 * Enable multi-rate retries for frames sent at OFDM rates. 1573 * In 802.11b/g mode, allow fallback to CCK rates. 1574 */ 1575 static void 1576 rum_enable_mrr(struct rum_softc *sc) 1577 { 1578 struct ieee80211com *ic = &sc->sc_ic; 1579 uint32_t tmp; 1580 1581 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1582 1583 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1584 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1585 tmp |= RT2573_MRR_CCK_FALLBACK; 1586 tmp |= RT2573_MRR_ENABLED; 1587 1588 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1589 } 1590 1591 static void 1592 rum_set_txpreamble(struct rum_softc *sc) 1593 { 1594 uint32_t tmp; 1595 1596 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1597 1598 tmp &= ~RT2573_SHORT_PREAMBLE; 1599 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1600 tmp |= RT2573_SHORT_PREAMBLE; 1601 1602 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1603 } 1604 1605 static void 1606 rum_set_basicrates(struct rum_softc *sc) 1607 { 1608 struct ieee80211com *ic = &sc->sc_ic; 1609 1610 /* update basic rate set */ 1611 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1612 /* 11b basic rates: 1, 2Mbps */ 1613 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1614 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1615 /* 11a basic rates: 6, 12, 24Mbps */ 1616 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1617 } else { 1618 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1619 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1620 } 1621 } 1622 1623 /* 1624 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1625 * driver. 1626 */ 1627 static void 1628 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1629 { 1630 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1631 uint32_t tmp; 1632 1633 /* update all BBP registers that depend on the band */ 1634 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1635 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1636 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1637 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1638 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1639 } 1640 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1641 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1642 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1643 } 1644 1645 sc->bbp17 = bbp17; 1646 rum_bbp_write(sc, 17, bbp17); 1647 rum_bbp_write(sc, 96, bbp96); 1648 rum_bbp_write(sc, 104, bbp104); 1649 1650 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1651 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1652 rum_bbp_write(sc, 75, 0x80); 1653 rum_bbp_write(sc, 86, 0x80); 1654 rum_bbp_write(sc, 88, 0x80); 1655 } 1656 1657 rum_bbp_write(sc, 35, bbp35); 1658 rum_bbp_write(sc, 97, bbp97); 1659 rum_bbp_write(sc, 98, bbp98); 1660 1661 tmp = rum_read(sc, RT2573_PHY_CSR0); 1662 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1663 if (IEEE80211_IS_CHAN_2GHZ(c)) 1664 tmp |= RT2573_PA_PE_2GHZ; 1665 else 1666 tmp |= RT2573_PA_PE_5GHZ; 1667 rum_write(sc, RT2573_PHY_CSR0, tmp); 1668 1669 /* 802.11a uses a 16 microseconds short interframe space */ 1670 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1671 } 1672 1673 static void 1674 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1675 { 1676 struct ieee80211com *ic = &sc->sc_ic; 1677 const struct rfprog *rfprog; 1678 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1679 int8_t power; 1680 u_int i, chan; 1681 1682 chan = ieee80211_chan2ieee(ic, c); 1683 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1684 return; 1685 1686 /* select the appropriate RF settings based on what EEPROM says */ 1687 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1688 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1689 1690 /* find the settings for this channel (we know it exists) */ 1691 for (i = 0; rfprog[i].chan != chan; i++); 1692 1693 power = sc->txpow[i]; 1694 if (power < 0) { 1695 bbp94 += power; 1696 power = 0; 1697 } else if (power > 31) { 1698 bbp94 += power - 31; 1699 power = 31; 1700 } 1701 1702 /* 1703 * If we are switching from the 2GHz band to the 5GHz band or 1704 * vice-versa, BBP registers need to be reprogrammed. 1705 */ 1706 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1707 rum_select_band(sc, c); 1708 rum_select_antenna(sc); 1709 } 1710 ic->ic_curchan = c; 1711 1712 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1713 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1714 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1715 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1716 1717 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1718 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1719 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1720 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1721 1722 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1723 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1724 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1725 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1726 1727 DELAY(10); 1728 1729 /* enable smart mode for MIMO-capable RFs */ 1730 bbp3 = rum_bbp_read(sc, 3); 1731 1732 bbp3 &= ~RT2573_SMART_MODE; 1733 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1734 bbp3 |= RT2573_SMART_MODE; 1735 1736 rum_bbp_write(sc, 3, bbp3); 1737 1738 if (bbp94 != RT2573_BBPR94_DEFAULT) 1739 rum_bbp_write(sc, 94, bbp94); 1740 } 1741 1742 /* 1743 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1744 * and HostAP operating modes. 1745 */ 1746 static void 1747 rum_enable_tsf_sync(struct rum_softc *sc) 1748 { 1749 struct ieee80211com *ic = &sc->sc_ic; 1750 uint32_t tmp; 1751 1752 if (ic->ic_opmode != IEEE80211_M_STA) { 1753 /* 1754 * Change default 16ms TBTT adjustment to 8ms. 1755 * Must be done before enabling beacon generation. 1756 */ 1757 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1758 } 1759 1760 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1761 1762 /* set beacon interval (in 1/16ms unit) */ 1763 tmp |= ic->ic_bss->ni_intval * 16; 1764 1765 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1766 if (ic->ic_opmode == IEEE80211_M_STA) 1767 tmp |= RT2573_TSF_MODE(1); 1768 else 1769 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1770 1771 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1772 } 1773 1774 static void 1775 rum_update_slot(struct rum_softc *sc) 1776 { 1777 struct ieee80211com *ic = &sc->sc_ic; 1778 uint8_t slottime; 1779 uint32_t tmp; 1780 1781 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1782 1783 tmp = rum_read(sc, RT2573_MAC_CSR9); 1784 tmp = (tmp & ~0xff) | slottime; 1785 rum_write(sc, RT2573_MAC_CSR9, tmp); 1786 1787 DPRINTF(("setting slot time to %uus\n", slottime)); 1788 } 1789 1790 static void 1791 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1792 { 1793 uint32_t tmp; 1794 1795 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1796 rum_write(sc, RT2573_MAC_CSR4, tmp); 1797 1798 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1799 rum_write(sc, RT2573_MAC_CSR5, tmp); 1800 } 1801 1802 static void 1803 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1804 { 1805 uint32_t tmp; 1806 1807 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1808 rum_write(sc, RT2573_MAC_CSR2, tmp); 1809 1810 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1811 rum_write(sc, RT2573_MAC_CSR3, tmp); 1812 } 1813 1814 static void 1815 rum_update_promisc(struct rum_softc *sc) 1816 { 1817 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1818 uint32_t tmp; 1819 1820 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1821 1822 tmp &= ~RT2573_DROP_NOT_TO_ME; 1823 if (!(ifp->if_flags & IFF_PROMISC)) 1824 tmp |= RT2573_DROP_NOT_TO_ME; 1825 1826 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1827 1828 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1829 "entering" : "leaving")); 1830 } 1831 1832 static const char * 1833 rum_get_rf(int rev) 1834 { 1835 switch (rev) { 1836 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1837 case RT2573_RF_2528: return "RT2528"; 1838 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1839 case RT2573_RF_5226: return "RT5226"; 1840 default: return "unknown"; 1841 } 1842 } 1843 1844 static void 1845 rum_read_eeprom(struct rum_softc *sc) 1846 { 1847 struct ieee80211com *ic = &sc->sc_ic; 1848 uint16_t val; 1849 #ifdef RUM_DEBUG 1850 int i; 1851 #endif 1852 1853 /* read MAC/BBP type */ 1854 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1855 sc->macbbp_rev = le16toh(val); 1856 1857 /* read MAC address */ 1858 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1859 1860 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1861 val = le16toh(val); 1862 sc->rf_rev = (val >> 11) & 0x1f; 1863 sc->hw_radio = (val >> 10) & 0x1; 1864 sc->rx_ant = (val >> 4) & 0x3; 1865 sc->tx_ant = (val >> 2) & 0x3; 1866 sc->nb_ant = val & 0x3; 1867 1868 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1869 1870 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1871 val = le16toh(val); 1872 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1873 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1874 1875 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1876 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1877 1878 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1879 val = le16toh(val); 1880 if ((val & 0xff) != 0xff) 1881 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1882 1883 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1884 val = le16toh(val); 1885 if ((val & 0xff) != 0xff) 1886 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1887 1888 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1889 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1890 1891 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1892 val = le16toh(val); 1893 if ((val & 0xff) != 0xff) 1894 sc->rffreq = val & 0xff; 1895 1896 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1897 1898 /* read Tx power for all a/b/g channels */ 1899 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1900 /* XXX default Tx power for 802.11a channels */ 1901 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14); 1902 #ifdef RUM_DEBUG 1903 for (i = 0; i < 14; i++) 1904 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1905 #endif 1906 1907 /* read default values for BBP registers */ 1908 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1909 #ifdef RUM_DEBUG 1910 for (i = 0; i < 14; i++) { 1911 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1912 continue; 1913 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1914 sc->bbp_prom[i].val)); 1915 } 1916 #endif 1917 } 1918 1919 static int 1920 rum_bbp_init(struct rum_softc *sc) 1921 { 1922 unsigned int i, ntries; 1923 uint8_t val; 1924 1925 /* wait for BBP to be ready */ 1926 for (ntries = 0; ntries < 100; ntries++) { 1927 val = rum_bbp_read(sc, 0); 1928 if (val != 0 && val != 0xff) 1929 break; 1930 DELAY(1000); 1931 } 1932 if (ntries == 100) { 1933 printf("%s: timeout waiting for BBP\n", 1934 device_xname(sc->sc_dev)); 1935 return EIO; 1936 } 1937 1938 /* initialize BBP registers to default values */ 1939 for (i = 0; i < __arraycount(rum_def_bbp); i++) 1940 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1941 1942 /* write vendor-specific BBP values (from EEPROM) */ 1943 for (i = 0; i < 16; i++) { 1944 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1945 continue; 1946 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1947 } 1948 1949 return 0; 1950 } 1951 1952 static int 1953 rum_init(struct ifnet *ifp) 1954 { 1955 struct rum_softc *sc = ifp->if_softc; 1956 struct ieee80211com *ic = &sc->sc_ic; 1957 uint32_t tmp; 1958 usbd_status error = 0; 1959 unsigned int i, ntries; 1960 1961 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1962 if (rum_attachhook(sc)) 1963 goto fail; 1964 } 1965 1966 rum_stop(ifp, 0); 1967 1968 /* initialize MAC registers to default values */ 1969 for (i = 0; i < __arraycount(rum_def_mac); i++) 1970 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1971 1972 /* set host ready */ 1973 rum_write(sc, RT2573_MAC_CSR1, 3); 1974 rum_write(sc, RT2573_MAC_CSR1, 0); 1975 1976 /* wait for BBP/RF to wakeup */ 1977 for (ntries = 0; ntries < 1000; ntries++) { 1978 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1979 break; 1980 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1981 DELAY(1000); 1982 } 1983 if (ntries == 1000) { 1984 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1985 device_xname(sc->sc_dev)); 1986 goto fail; 1987 } 1988 1989 if ((error = rum_bbp_init(sc)) != 0) 1990 goto fail; 1991 1992 /* select default channel */ 1993 rum_select_band(sc, ic->ic_curchan); 1994 rum_select_antenna(sc); 1995 rum_set_chan(sc, ic->ic_curchan); 1996 1997 /* clear STA registers */ 1998 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 1999 2000 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2001 rum_set_macaddr(sc, ic->ic_myaddr); 2002 2003 /* initialize ASIC */ 2004 rum_write(sc, RT2573_MAC_CSR1, 4); 2005 2006 /* 2007 * Allocate xfer for AMRR statistics requests. 2008 */ 2009 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 2010 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, 2011 &sc->amrr_xfer); 2012 if (error) { 2013 printf("%s: could not allocate AMRR xfer\n", 2014 device_xname(sc->sc_dev)); 2015 goto fail; 2016 } 2017 2018 /* 2019 * Open Tx and Rx USB bulk pipes. 2020 */ 2021 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2022 &sc->sc_tx_pipeh); 2023 if (error != 0) { 2024 printf("%s: could not open Tx pipe: %s\n", 2025 device_xname(sc->sc_dev), usbd_errstr(error)); 2026 goto fail; 2027 } 2028 2029 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2030 &sc->sc_rx_pipeh); 2031 if (error != 0) { 2032 printf("%s: could not open Rx pipe: %s\n", 2033 device_xname(sc->sc_dev), usbd_errstr(error)); 2034 goto fail; 2035 } 2036 2037 /* 2038 * Allocate Tx and Rx xfer queues. 2039 */ 2040 error = rum_alloc_tx_list(sc); 2041 if (error != 0) { 2042 printf("%s: could not allocate Tx list\n", 2043 device_xname(sc->sc_dev)); 2044 goto fail; 2045 } 2046 2047 error = rum_alloc_rx_list(sc); 2048 if (error != 0) { 2049 printf("%s: could not allocate Rx list\n", 2050 device_xname(sc->sc_dev)); 2051 goto fail; 2052 } 2053 2054 /* 2055 * Start up the receive pipe. 2056 */ 2057 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2058 struct rum_rx_data *data; 2059 2060 data = &sc->rx_data[i]; 2061 2062 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2063 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2064 error = usbd_transfer(data->xfer); 2065 if (error != USBD_NORMAL_COMPLETION && 2066 error != USBD_IN_PROGRESS) { 2067 printf("%s: could not queue Rx transfer\n", 2068 device_xname(sc->sc_dev)); 2069 goto fail; 2070 } 2071 } 2072 2073 /* update Rx filter */ 2074 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2075 2076 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2077 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2078 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2079 RT2573_DROP_ACKCTS; 2080 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2081 tmp |= RT2573_DROP_TODS; 2082 if (!(ifp->if_flags & IFF_PROMISC)) 2083 tmp |= RT2573_DROP_NOT_TO_ME; 2084 } 2085 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2086 2087 ifp->if_flags &= ~IFF_OACTIVE; 2088 ifp->if_flags |= IFF_RUNNING; 2089 2090 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2091 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2092 else 2093 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2094 2095 return 0; 2096 2097 fail: rum_stop(ifp, 1); 2098 return error; 2099 } 2100 2101 static void 2102 rum_stop(struct ifnet *ifp, int disable) 2103 { 2104 struct rum_softc *sc = ifp->if_softc; 2105 struct ieee80211com *ic = &sc->sc_ic; 2106 uint32_t tmp; 2107 2108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2109 2110 sc->sc_tx_timer = 0; 2111 ifp->if_timer = 0; 2112 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2113 2114 /* disable Rx */ 2115 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2116 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2117 2118 /* reset ASIC */ 2119 rum_write(sc, RT2573_MAC_CSR1, 3); 2120 rum_write(sc, RT2573_MAC_CSR1, 0); 2121 2122 if (sc->amrr_xfer != NULL) { 2123 usbd_destroy_xfer(sc->amrr_xfer); 2124 sc->amrr_xfer = NULL; 2125 } 2126 2127 if (sc->sc_rx_pipeh != NULL) { 2128 usbd_abort_pipe(sc->sc_rx_pipeh); 2129 } 2130 2131 if (sc->sc_tx_pipeh != NULL) { 2132 usbd_abort_pipe(sc->sc_tx_pipeh); 2133 } 2134 2135 rum_free_rx_list(sc); 2136 rum_free_tx_list(sc); 2137 2138 if (sc->sc_rx_pipeh != NULL) { 2139 usbd_close_pipe(sc->sc_rx_pipeh); 2140 sc->sc_rx_pipeh = NULL; 2141 } 2142 2143 if (sc->sc_tx_pipeh != NULL) { 2144 usbd_close_pipe(sc->sc_tx_pipeh); 2145 sc->sc_tx_pipeh = NULL; 2146 } 2147 } 2148 2149 static int 2150 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2151 { 2152 usb_device_request_t req; 2153 uint16_t reg = RT2573_MCU_CODE_BASE; 2154 usbd_status error; 2155 2156 /* copy firmware image into NIC */ 2157 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2158 rum_write(sc, reg, UGETDW(ucode)); 2159 2160 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2161 req.bRequest = RT2573_MCU_CNTL; 2162 USETW(req.wValue, RT2573_MCU_RUN); 2163 USETW(req.wIndex, 0); 2164 USETW(req.wLength, 0); 2165 2166 error = usbd_do_request(sc->sc_udev, &req, NULL); 2167 if (error != 0) { 2168 printf("%s: could not run firmware: %s\n", 2169 device_xname(sc->sc_dev), usbd_errstr(error)); 2170 } 2171 return error; 2172 } 2173 2174 static int 2175 rum_prepare_beacon(struct rum_softc *sc) 2176 { 2177 struct ieee80211com *ic = &sc->sc_ic; 2178 struct rum_tx_desc desc; 2179 struct mbuf *m0; 2180 int rate; 2181 2182 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2183 if (m0 == NULL) { 2184 aprint_error_dev(sc->sc_dev, 2185 "could not allocate beacon frame\n"); 2186 return ENOBUFS; 2187 } 2188 2189 /* send beacons at the lowest available rate */ 2190 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2191 2192 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2193 m0->m_pkthdr.len, rate); 2194 2195 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2196 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2197 2198 /* copy beacon header and payload into NIC memory */ 2199 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2200 m0->m_pkthdr.len); 2201 2202 m_freem(m0); 2203 2204 return 0; 2205 } 2206 2207 static void 2208 rum_newassoc(struct ieee80211_node *ni, int isnew) 2209 { 2210 /* start with lowest Tx rate */ 2211 ni->ni_txrate = 0; 2212 } 2213 2214 static void 2215 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2216 { 2217 int i; 2218 2219 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2220 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2221 2222 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2223 2224 /* set rate to some reasonable initial value */ 2225 for (i = ni->ni_rates.rs_nrates - 1; 2226 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2227 i--); 2228 ni->ni_txrate = i; 2229 2230 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2231 } 2232 2233 static void 2234 rum_amrr_timeout(void *arg) 2235 { 2236 struct rum_softc *sc = arg; 2237 usb_device_request_t req; 2238 2239 /* 2240 * Asynchronously read statistic registers (cleared by read). 2241 */ 2242 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2243 req.bRequest = RT2573_READ_MULTI_MAC; 2244 USETW(req.wValue, 0); 2245 USETW(req.wIndex, RT2573_STA_CSR0); 2246 USETW(req.wLength, sizeof(sc->sta)); 2247 2248 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2249 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2250 rum_amrr_update); 2251 (void)usbd_transfer(sc->amrr_xfer); 2252 } 2253 2254 static void 2255 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2256 usbd_status status) 2257 { 2258 struct rum_softc *sc = (struct rum_softc *)priv; 2259 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2260 2261 if (status != USBD_NORMAL_COMPLETION) { 2262 printf("%s: could not retrieve Tx statistics - cancelling " 2263 "automatic rate control\n", device_xname(sc->sc_dev)); 2264 return; 2265 } 2266 2267 /* count TX retry-fail as Tx errors */ 2268 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2269 2270 sc->amn.amn_retrycnt = 2271 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2272 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2273 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2274 2275 sc->amn.amn_txcnt = 2276 sc->amn.amn_retrycnt + 2277 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2278 2279 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2280 2281 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2282 } 2283 2284 static int 2285 rum_activate(device_t self, enum devact act) 2286 { 2287 switch (act) { 2288 case DVACT_DEACTIVATE: 2289 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2290 return 0; 2291 default: 2292 return 0; 2293 } 2294 } 2295 2296 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf"); 2297 2298 #ifdef _MODULE 2299 #include "ioconf.c" 2300 #endif 2301 2302 static int 2303 if_rum_modcmd(modcmd_t cmd, void *aux) 2304 { 2305 int error = 0; 2306 2307 switch (cmd) { 2308 case MODULE_CMD_INIT: 2309 #ifdef _MODULE 2310 error = config_init_component(cfdriver_ioconf_rum, 2311 cfattach_ioconf_rum, cfdata_ioconf_rum); 2312 #endif 2313 return error; 2314 case MODULE_CMD_FINI: 2315 #ifdef _MODULE 2316 error = config_fini_component(cfdriver_ioconf_rum, 2317 cfattach_ioconf_rum, cfdata_ioconf_rum); 2318 #endif 2319 return error; 2320 default: 2321 return ENOTTY; 2322 } 2323 } 2324