xref: /netbsd-src/sys/dev/usb/if_rum.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.58 2017/05/23 00:32:47 khorben Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
92 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
93 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
94 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
95 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
96 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
98 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
104 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
106 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
110 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
111 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
112 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
113 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
114 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
115 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
116 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
117 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
121 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
122 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
123 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
125 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
126 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
127 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
128 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
129 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
130 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
132 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
133 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
134 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
135 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
136 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
137 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
138 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
139 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
140 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
141 	{ USB_VENDOR_SYNET,		USB_PRODUCT_SYNET_MWP54SS },
142 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
143 };
144 
145 static int		rum_attachhook(void *);
146 static int		rum_alloc_tx_list(struct rum_softc *);
147 static void		rum_free_tx_list(struct rum_softc *);
148 static int		rum_alloc_rx_list(struct rum_softc *);
149 static void		rum_free_rx_list(struct rum_softc *);
150 static int		rum_media_change(struct ifnet *);
151 static void		rum_next_scan(void *);
152 static void		rum_task(void *);
153 static int		rum_newstate(struct ieee80211com *,
154 			    enum ieee80211_state, int);
155 static void		rum_txeof(struct usbd_xfer *, void *,
156 			    usbd_status);
157 static void		rum_rxeof(struct usbd_xfer *, void *,
158 			    usbd_status);
159 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
160 static int		rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t		rum_txtime(int, int, uint32_t);
162 static uint8_t		rum_plcp_signal(int);
163 static void		rum_setup_tx_desc(struct rum_softc *,
164 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
165 			    int);
166 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
167 			    struct ieee80211_node *);
168 static void		rum_start(struct ifnet *);
169 static void		rum_watchdog(struct ifnet *);
170 static int		rum_ioctl(struct ifnet *, u_long, void *);
171 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 			    int);
173 static uint32_t		rum_read(struct rum_softc *, uint16_t);
174 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
175 			    int);
176 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
178 			    size_t);
179 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
181 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void		rum_select_antenna(struct rum_softc *);
183 static void		rum_enable_mrr(struct rum_softc *);
184 static void		rum_set_txpreamble(struct rum_softc *);
185 static void		rum_set_basicrates(struct rum_softc *);
186 static void		rum_select_band(struct rum_softc *,
187 			    struct ieee80211_channel *);
188 static void		rum_set_chan(struct rum_softc *,
189 			    struct ieee80211_channel *);
190 static void		rum_enable_tsf_sync(struct rum_softc *);
191 static void		rum_update_slot(struct rum_softc *);
192 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void		rum_update_promisc(struct rum_softc *);
195 static const char	*rum_get_rf(int);
196 static void		rum_read_eeprom(struct rum_softc *);
197 static int		rum_bbp_init(struct rum_softc *);
198 static int		rum_init(struct ifnet *);
199 static void		rum_stop(struct ifnet *, int);
200 static int		rum_load_microcode(struct rum_softc *, const u_char *,
201 			    size_t);
202 static int		rum_prepare_beacon(struct rum_softc *);
203 static void		rum_newassoc(struct ieee80211_node *, int);
204 static void		rum_amrr_start(struct rum_softc *,
205 			    struct ieee80211_node *);
206 static void		rum_amrr_timeout(void *);
207 static void		rum_amrr_update(struct usbd_xfer *, void *,
208 			    usbd_status);
209 
210 /*
211  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
212  */
213 static const struct ieee80211_rateset rum_rateset_11a =
214 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
215 
216 static const struct ieee80211_rateset rum_rateset_11b =
217 	{ 4, { 2, 4, 11, 22 } };
218 
219 static const struct ieee80211_rateset rum_rateset_11g =
220 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
221 
222 static const struct {
223 	uint32_t	reg;
224 	uint32_t	val;
225 } rum_def_mac[] = {
226 	RT2573_DEF_MAC
227 };
228 
229 static const struct {
230 	uint8_t	reg;
231 	uint8_t	val;
232 } rum_def_bbp[] = {
233 	RT2573_DEF_BBP
234 };
235 
236 static const struct rfprog {
237 	uint8_t		chan;
238 	uint32_t	r1, r2, r3, r4;
239 }  rum_rf5226[] = {
240 	RT2573_RF5226
241 }, rum_rf5225[] = {
242 	RT2573_RF5225
243 };
244 
245 static int rum_match(device_t, cfdata_t, void *);
246 static void rum_attach(device_t, device_t, void *);
247 static int rum_detach(device_t, int);
248 static int rum_activate(device_t, enum devact);
249 extern struct cfdriver rum_cd;
250 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
251     rum_detach, rum_activate);
252 
253 static int
254 rum_match(device_t parent, cfdata_t match, void *aux)
255 {
256 	struct usb_attach_arg *uaa = aux;
257 
258 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
259 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
260 }
261 
262 static int
263 rum_attachhook(void *xsc)
264 {
265 	struct rum_softc *sc = xsc;
266 	firmware_handle_t fwh;
267 	const char *name = "rum-rt2573";
268 	u_char *ucode;
269 	size_t size;
270 	int error;
271 
272 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
273 		printf("%s: failed firmware_open of file %s (error %d)\n",
274 		    device_xname(sc->sc_dev), name, error);
275 		return error;
276 	}
277 	size = firmware_get_size(fwh);
278 	ucode = firmware_malloc(size);
279 	if (ucode == NULL) {
280 		printf("%s: failed to allocate firmware memory\n",
281 		    device_xname(sc->sc_dev));
282 		firmware_close(fwh);
283 		return ENOMEM;
284 	}
285 	error = firmware_read(fwh, 0, ucode, size);
286 	firmware_close(fwh);
287 	if (error != 0) {
288 		printf("%s: failed to read firmware (error %d)\n",
289 		    device_xname(sc->sc_dev), error);
290 		firmware_free(ucode, size);
291 		return error;
292 	}
293 
294 	if (rum_load_microcode(sc, ucode, size) != 0) {
295 		printf("%s: could not load 8051 microcode\n",
296 		    device_xname(sc->sc_dev));
297 		firmware_free(ucode, size);
298 		return ENXIO;
299 	}
300 
301 	firmware_free(ucode, size);
302 	sc->sc_flags |= RT2573_FWLOADED;
303 
304 	return 0;
305 }
306 
307 static void
308 rum_attach(device_t parent, device_t self, void *aux)
309 {
310 	struct rum_softc *sc = device_private(self);
311 	struct usb_attach_arg *uaa = aux;
312 	struct ieee80211com *ic = &sc->sc_ic;
313 	struct ifnet *ifp = &sc->sc_if;
314 	usb_interface_descriptor_t *id;
315 	usb_endpoint_descriptor_t *ed;
316 	usbd_status error;
317 	char *devinfop;
318 	int i, ntries;
319 	uint32_t tmp;
320 
321 	sc->sc_dev = self;
322 	sc->sc_udev = uaa->uaa_device;
323 	sc->sc_flags = 0;
324 
325 	aprint_naive("\n");
326 	aprint_normal("\n");
327 
328 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
329 	aprint_normal_dev(self, "%s\n", devinfop);
330 	usbd_devinfo_free(devinfop);
331 
332 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
333 	if (error != 0) {
334 		aprint_error_dev(self, "failed to set configuration"
335 		    ", err=%s\n", usbd_errstr(error));
336 		return;
337 	}
338 
339 	/* get the first interface handle */
340 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
341 	    &sc->sc_iface);
342 	if (error != 0) {
343 		aprint_error_dev(self, "could not get interface handle\n");
344 		return;
345 	}
346 
347 	/*
348 	 * Find endpoints.
349 	 */
350 	id = usbd_get_interface_descriptor(sc->sc_iface);
351 
352 	sc->sc_rx_no = sc->sc_tx_no = -1;
353 	for (i = 0; i < id->bNumEndpoints; i++) {
354 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
355 		if (ed == NULL) {
356 			aprint_error_dev(self,
357 			    "no endpoint descriptor for iface %d\n", i);
358 			return;
359 		}
360 
361 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
362 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
363 			sc->sc_rx_no = ed->bEndpointAddress;
364 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
365 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
366 			sc->sc_tx_no = ed->bEndpointAddress;
367 	}
368 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
369 		aprint_error_dev(self, "missing endpoint\n");
370 		return;
371 	}
372 
373 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
374 	callout_init(&sc->sc_scan_ch, 0);
375 
376 	sc->amrr.amrr_min_success_threshold =  1;
377 	sc->amrr.amrr_max_success_threshold = 10;
378 	callout_init(&sc->sc_amrr_ch, 0);
379 
380 	/* retrieve RT2573 rev. no */
381 	for (ntries = 0; ntries < 1000; ntries++) {
382 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
383 			break;
384 		DELAY(1000);
385 	}
386 	if (ntries == 1000) {
387 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
388 		return;
389 	}
390 
391 	/* retrieve MAC address and various other things from EEPROM */
392 	rum_read_eeprom(sc);
393 
394 	aprint_normal_dev(self,
395 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
396 	    sc->macbbp_rev, tmp,
397 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
398 
399 	ic->ic_ifp = ifp;
400 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
401 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
402 	ic->ic_state = IEEE80211_S_INIT;
403 
404 	/* set device capabilities */
405 	ic->ic_caps =
406 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
407 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
408 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
409 	    IEEE80211_C_TXPMGT |	/* tx power management */
410 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
411 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
412 	    IEEE80211_C_WPA;		/* 802.11i */
413 
414 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
415 		/* set supported .11a rates */
416 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
417 
418 		/* set supported .11a channels */
419 		for (i = 34; i <= 46; i += 4) {
420 			ic->ic_channels[i].ic_freq =
421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 		}
424 		for (i = 36; i <= 64; i += 4) {
425 			ic->ic_channels[i].ic_freq =
426 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 		}
429 		for (i = 100; i <= 140; i += 4) {
430 			ic->ic_channels[i].ic_freq =
431 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433 		}
434 		for (i = 149; i <= 165; i += 4) {
435 			ic->ic_channels[i].ic_freq =
436 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
437 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
438 		}
439 	}
440 
441 	/* set supported .11b and .11g rates */
442 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
443 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
444 
445 	/* set supported .11b and .11g channels (1 through 14) */
446 	for (i = 1; i <= 14; i++) {
447 		ic->ic_channels[i].ic_freq =
448 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
449 		ic->ic_channels[i].ic_flags =
450 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
451 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
452 	}
453 
454 	ifp->if_softc = sc;
455 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
456 	ifp->if_init = rum_init;
457 	ifp->if_ioctl = rum_ioctl;
458 	ifp->if_start = rum_start;
459 	ifp->if_watchdog = rum_watchdog;
460 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
461 	IFQ_SET_READY(&ifp->if_snd);
462 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
463 
464 	if_attach(ifp);
465 	ieee80211_ifattach(ic);
466 	ic->ic_newassoc = rum_newassoc;
467 
468 	/* override state transition machine */
469 	sc->sc_newstate = ic->ic_newstate;
470 	ic->ic_newstate = rum_newstate;
471 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
472 
473 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
474 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
475 	    &sc->sc_drvbpf);
476 
477 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
478 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
479 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
480 
481 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
482 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
483 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
484 
485 	ieee80211_announce(ic);
486 
487 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
488 
489 	if (!pmf_device_register(self, NULL, NULL))
490 		aprint_error_dev(self, "couldn't establish power handler\n");
491 
492 	return;
493 }
494 
495 static int
496 rum_detach(device_t self, int flags)
497 {
498 	struct rum_softc *sc = device_private(self);
499 	struct ieee80211com *ic = &sc->sc_ic;
500 	struct ifnet *ifp = &sc->sc_if;
501 	int s;
502 
503 	if (!ifp->if_softc)
504 		return 0;
505 
506 	pmf_device_deregister(self);
507 
508 	s = splusb();
509 
510 	rum_stop(ifp, 1);
511 	usb_rem_task(sc->sc_udev, &sc->sc_task);
512 	callout_stop(&sc->sc_scan_ch);
513 	callout_stop(&sc->sc_amrr_ch);
514 
515 	bpf_detach(ifp);
516 	ieee80211_ifdetach(ic);	/* free all nodes */
517 	if_detach(ifp);
518 
519 	splx(s);
520 
521 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
522 
523 	return 0;
524 }
525 
526 static int
527 rum_alloc_tx_list(struct rum_softc *sc)
528 {
529 	struct rum_tx_data *data;
530 	int i, error;
531 
532 	sc->tx_cur = sc->tx_queued = 0;
533 
534 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
535 		data = &sc->tx_data[i];
536 
537 		data->sc = sc;
538 
539 		error = usbd_create_xfer(sc->sc_tx_pipeh,
540 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
541 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
542 		if (error) {
543 			printf("%s: could not allocate tx xfer\n",
544 			    device_xname(sc->sc_dev));
545 			goto fail;
546 		}
547 		data->buf = usbd_get_buffer(data->xfer);
548 
549 		/* clean Tx descriptor */
550 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
551 	}
552 
553 	return 0;
554 
555 fail:	rum_free_tx_list(sc);
556 	return error;
557 }
558 
559 static void
560 rum_free_tx_list(struct rum_softc *sc)
561 {
562 	struct rum_tx_data *data;
563 	int i;
564 
565 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
566 		data = &sc->tx_data[i];
567 
568 		if (data->xfer != NULL) {
569 			usbd_destroy_xfer(data->xfer);
570 			data->xfer = NULL;
571 		}
572 
573 		if (data->ni != NULL) {
574 			ieee80211_free_node(data->ni);
575 			data->ni = NULL;
576 		}
577 	}
578 }
579 
580 static int
581 rum_alloc_rx_list(struct rum_softc *sc)
582 {
583 	struct rum_rx_data *data;
584 	int i, error;
585 
586 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
587 		data = &sc->rx_data[i];
588 
589 		data->sc = sc;
590 
591 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
592 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
593 		if (error) {
594 			printf("%s: could not allocate rx xfer\n",
595 			    device_xname(sc->sc_dev));
596 			goto fail;
597 		}
598 
599 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
600 		if (data->m == NULL) {
601 			printf("%s: could not allocate rx mbuf\n",
602 			    device_xname(sc->sc_dev));
603 			error = ENOMEM;
604 			goto fail;
605 		}
606 
607 		MCLGET(data->m, M_DONTWAIT);
608 		if (!(data->m->m_flags & M_EXT)) {
609 			printf("%s: could not allocate rx mbuf cluster\n",
610 			    device_xname(sc->sc_dev));
611 			error = ENOMEM;
612 			goto fail;
613 		}
614 
615 		data->buf = mtod(data->m, uint8_t *);
616 	}
617 
618 	return 0;
619 
620 fail:	rum_free_rx_list(sc);
621 	return error;
622 }
623 
624 static void
625 rum_free_rx_list(struct rum_softc *sc)
626 {
627 	struct rum_rx_data *data;
628 	int i;
629 
630 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
631 		data = &sc->rx_data[i];
632 
633 		if (data->xfer != NULL) {
634 			usbd_destroy_xfer(data->xfer);
635 			data->xfer = NULL;
636 		}
637 
638 		if (data->m != NULL) {
639 			m_freem(data->m);
640 			data->m = NULL;
641 		}
642 	}
643 }
644 
645 static int
646 rum_media_change(struct ifnet *ifp)
647 {
648 	int error;
649 
650 	error = ieee80211_media_change(ifp);
651 	if (error != ENETRESET)
652 		return error;
653 
654 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
655 		rum_init(ifp);
656 
657 	return 0;
658 }
659 
660 /*
661  * This function is called periodically (every 200ms) during scanning to
662  * switch from one channel to another.
663  */
664 static void
665 rum_next_scan(void *arg)
666 {
667 	struct rum_softc *sc = arg;
668 	struct ieee80211com *ic = &sc->sc_ic;
669 	int s;
670 
671 	s = splnet();
672 	if (ic->ic_state == IEEE80211_S_SCAN)
673 		ieee80211_next_scan(ic);
674 	splx(s);
675 }
676 
677 static void
678 rum_task(void *arg)
679 {
680 	struct rum_softc *sc = arg;
681 	struct ieee80211com *ic = &sc->sc_ic;
682 	enum ieee80211_state ostate;
683 	struct ieee80211_node *ni;
684 	uint32_t tmp;
685 
686 	ostate = ic->ic_state;
687 
688 	switch (sc->sc_state) {
689 	case IEEE80211_S_INIT:
690 		if (ostate == IEEE80211_S_RUN) {
691 			/* abort TSF synchronization */
692 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
693 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
694 		}
695 		break;
696 
697 	case IEEE80211_S_SCAN:
698 		rum_set_chan(sc, ic->ic_curchan);
699 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
700 		break;
701 
702 	case IEEE80211_S_AUTH:
703 		rum_set_chan(sc, ic->ic_curchan);
704 		break;
705 
706 	case IEEE80211_S_ASSOC:
707 		rum_set_chan(sc, ic->ic_curchan);
708 		break;
709 
710 	case IEEE80211_S_RUN:
711 		rum_set_chan(sc, ic->ic_curchan);
712 
713 		ni = ic->ic_bss;
714 
715 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
716 			rum_update_slot(sc);
717 			rum_enable_mrr(sc);
718 			rum_set_txpreamble(sc);
719 			rum_set_basicrates(sc);
720 			rum_set_bssid(sc, ni->ni_bssid);
721 		}
722 
723 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
724 		    ic->ic_opmode == IEEE80211_M_IBSS)
725 			rum_prepare_beacon(sc);
726 
727 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
728 			rum_enable_tsf_sync(sc);
729 
730 		if (ic->ic_opmode == IEEE80211_M_STA) {
731 			/* fake a join to init the tx rate */
732 			rum_newassoc(ic->ic_bss, 1);
733 
734 			/* enable automatic rate adaptation in STA mode */
735 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
736 				rum_amrr_start(sc, ni);
737 		}
738 
739 		break;
740 	}
741 
742 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
743 }
744 
745 static int
746 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
747 {
748 	struct rum_softc *sc = ic->ic_ifp->if_softc;
749 
750 	usb_rem_task(sc->sc_udev, &sc->sc_task);
751 	callout_stop(&sc->sc_scan_ch);
752 	callout_stop(&sc->sc_amrr_ch);
753 
754 	/* do it in a process context */
755 	sc->sc_state = nstate;
756 	sc->sc_arg = arg;
757 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
758 
759 	return 0;
760 }
761 
762 /* quickly determine if a given rate is CCK or OFDM */
763 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
764 
765 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
766 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
767 
768 static void
769 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
770 {
771 	struct rum_tx_data *data = priv;
772 	struct rum_softc *sc = data->sc;
773 	struct ifnet *ifp = &sc->sc_if;
774 	int s;
775 
776 	if (status != USBD_NORMAL_COMPLETION) {
777 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
778 			return;
779 
780 		printf("%s: could not transmit buffer: %s\n",
781 		    device_xname(sc->sc_dev), usbd_errstr(status));
782 
783 		if (status == USBD_STALLED)
784 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
785 
786 		ifp->if_oerrors++;
787 		return;
788 	}
789 
790 	s = splnet();
791 
792 	ieee80211_free_node(data->ni);
793 	data->ni = NULL;
794 
795 	sc->tx_queued--;
796 	ifp->if_opackets++;
797 
798 	DPRINTFN(10, ("tx done\n"));
799 
800 	sc->sc_tx_timer = 0;
801 	ifp->if_flags &= ~IFF_OACTIVE;
802 	rum_start(ifp);
803 
804 	splx(s);
805 }
806 
807 static void
808 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
809 {
810 	struct rum_rx_data *data = priv;
811 	struct rum_softc *sc = data->sc;
812 	struct ieee80211com *ic = &sc->sc_ic;
813 	struct ifnet *ifp = &sc->sc_if;
814 	struct rum_rx_desc *desc;
815 	struct ieee80211_frame *wh;
816 	struct ieee80211_node *ni;
817 	struct mbuf *mnew, *m;
818 	int s, len;
819 
820 	if (status != USBD_NORMAL_COMPLETION) {
821 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
822 			return;
823 
824 		if (status == USBD_STALLED)
825 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
826 		goto skip;
827 	}
828 
829 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
830 
831 	if (len < (int)(RT2573_RX_DESC_SIZE +
832 		        sizeof(struct ieee80211_frame_min))) {
833 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
834 		    len));
835 		ifp->if_ierrors++;
836 		goto skip;
837 	}
838 
839 	desc = (struct rum_rx_desc *)data->buf;
840 
841 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
842 		/*
843 		 * This should not happen since we did not request to receive
844 		 * those frames when we filled RT2573_TXRX_CSR0.
845 		 */
846 		DPRINTFN(5, ("CRC error\n"));
847 		ifp->if_ierrors++;
848 		goto skip;
849 	}
850 
851 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
852 	if (mnew == NULL) {
853 		printf("%s: could not allocate rx mbuf\n",
854 		    device_xname(sc->sc_dev));
855 		ifp->if_ierrors++;
856 		goto skip;
857 	}
858 
859 	MCLGET(mnew, M_DONTWAIT);
860 	if (!(mnew->m_flags & M_EXT)) {
861 		printf("%s: could not allocate rx mbuf cluster\n",
862 		    device_xname(sc->sc_dev));
863 		m_freem(mnew);
864 		ifp->if_ierrors++;
865 		goto skip;
866 	}
867 
868 	m = data->m;
869 	data->m = mnew;
870 	data->buf = mtod(data->m, uint8_t *);
871 
872 	/* finalize mbuf */
873 	m_set_rcvif(m, ifp);
874 	m->m_data = (void *)(desc + 1);
875 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
876 
877 	s = splnet();
878 
879 	if (sc->sc_drvbpf != NULL) {
880 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
881 
882 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
883 		tap->wr_rate = rum_rxrate(desc);
884 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
885 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
886 		tap->wr_antenna = sc->rx_ant;
887 		tap->wr_antsignal = desc->rssi;
888 
889 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
890 	}
891 
892 	wh = mtod(m, struct ieee80211_frame *);
893 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
894 
895 	/* send the frame to the 802.11 layer */
896 	ieee80211_input(ic, m, ni, desc->rssi, 0);
897 
898 	/* node is no longer needed */
899 	ieee80211_free_node(ni);
900 
901 	splx(s);
902 
903 	DPRINTFN(15, ("rx done\n"));
904 
905 skip:	/* setup a new transfer */
906 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
907 	    USBD_NO_TIMEOUT, rum_rxeof);
908 	usbd_transfer(xfer);
909 }
910 
911 /*
912  * This function is only used by the Rx radiotap code. It returns the rate at
913  * which a given frame was received.
914  */
915 static uint8_t
916 rum_rxrate(const struct rum_rx_desc *desc)
917 {
918 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
919 		/* reverse function of rum_plcp_signal */
920 		switch (desc->rate) {
921 		case 0xb:	return 12;
922 		case 0xf:	return 18;
923 		case 0xa:	return 24;
924 		case 0xe:	return 36;
925 		case 0x9:	return 48;
926 		case 0xd:	return 72;
927 		case 0x8:	return 96;
928 		case 0xc:	return 108;
929 		}
930 	} else {
931 		if (desc->rate == 10)
932 			return 2;
933 		if (desc->rate == 20)
934 			return 4;
935 		if (desc->rate == 55)
936 			return 11;
937 		if (desc->rate == 110)
938 			return 22;
939 	}
940 	return 2;	/* should not get there */
941 }
942 
943 /*
944  * Return the expected ack rate for a frame transmitted at rate `rate'.
945  * XXX: this should depend on the destination node basic rate set.
946  */
947 static int
948 rum_ack_rate(struct ieee80211com *ic, int rate)
949 {
950 	switch (rate) {
951 	/* CCK rates */
952 	case 2:
953 		return 2;
954 	case 4:
955 	case 11:
956 	case 22:
957 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
958 
959 	/* OFDM rates */
960 	case 12:
961 	case 18:
962 		return 12;
963 	case 24:
964 	case 36:
965 		return 24;
966 	case 48:
967 	case 72:
968 	case 96:
969 	case 108:
970 		return 48;
971 	}
972 
973 	/* default to 1Mbps */
974 	return 2;
975 }
976 
977 /*
978  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
979  * The function automatically determines the operating mode depending on the
980  * given rate. `flags' indicates whether short preamble is in use or not.
981  */
982 static uint16_t
983 rum_txtime(int len, int rate, uint32_t flags)
984 {
985 	uint16_t txtime;
986 
987 	if (RUM_RATE_IS_OFDM(rate)) {
988 		/* IEEE Std 802.11a-1999, pp. 37 */
989 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
990 		txtime = 16 + 4 + 4 * txtime + 6;
991 	} else {
992 		/* IEEE Std 802.11b-1999, pp. 28 */
993 		txtime = (16 * len + rate - 1) / rate;
994 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
995 			txtime +=  72 + 24;
996 		else
997 			txtime += 144 + 48;
998 	}
999 	return txtime;
1000 }
1001 
1002 static uint8_t
1003 rum_plcp_signal(int rate)
1004 {
1005 	switch (rate) {
1006 	/* CCK rates (returned values are device-dependent) */
1007 	case 2:		return 0x0;
1008 	case 4:		return 0x1;
1009 	case 11:	return 0x2;
1010 	case 22:	return 0x3;
1011 
1012 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1013 	case 12:	return 0xb;
1014 	case 18:	return 0xf;
1015 	case 24:	return 0xa;
1016 	case 36:	return 0xe;
1017 	case 48:	return 0x9;
1018 	case 72:	return 0xd;
1019 	case 96:	return 0x8;
1020 	case 108:	return 0xc;
1021 
1022 	/* unsupported rates (should not get there) */
1023 	default:	return 0xff;
1024 	}
1025 }
1026 
1027 static void
1028 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1029     uint32_t flags, uint16_t xflags, int len, int rate)
1030 {
1031 	struct ieee80211com *ic = &sc->sc_ic;
1032 	uint16_t plcp_length;
1033 	int remainder;
1034 
1035 	desc->flags = htole32(flags);
1036 	desc->flags |= htole32(RT2573_TX_VALID);
1037 	desc->flags |= htole32(len << 16);
1038 
1039 	desc->xflags = htole16(xflags);
1040 
1041 	desc->wme = htole16(
1042 	    RT2573_QID(0) |
1043 	    RT2573_AIFSN(2) |
1044 	    RT2573_LOGCWMIN(4) |
1045 	    RT2573_LOGCWMAX(10));
1046 
1047 	/* setup PLCP fields */
1048 	desc->plcp_signal  = rum_plcp_signal(rate);
1049 	desc->plcp_service = 4;
1050 
1051 	len += IEEE80211_CRC_LEN;
1052 	if (RUM_RATE_IS_OFDM(rate)) {
1053 		desc->flags |= htole32(RT2573_TX_OFDM);
1054 
1055 		plcp_length = len & 0xfff;
1056 		desc->plcp_length_hi = plcp_length >> 6;
1057 		desc->plcp_length_lo = plcp_length & 0x3f;
1058 	} else {
1059 		plcp_length = (16 * len + rate - 1) / rate;
1060 		if (rate == 22) {
1061 			remainder = (16 * len) % 22;
1062 			if (remainder != 0 && remainder < 7)
1063 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1064 		}
1065 		desc->plcp_length_hi = plcp_length >> 8;
1066 		desc->plcp_length_lo = plcp_length & 0xff;
1067 
1068 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1069 			desc->plcp_signal |= 0x08;
1070 	}
1071 }
1072 
1073 #define RUM_TX_TIMEOUT	5000
1074 
1075 static int
1076 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1077 {
1078 	struct ieee80211com *ic = &sc->sc_ic;
1079 	struct rum_tx_desc *desc;
1080 	struct rum_tx_data *data;
1081 	struct ieee80211_frame *wh;
1082 	struct ieee80211_key *k;
1083 	uint32_t flags = 0;
1084 	uint16_t dur;
1085 	usbd_status error;
1086 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1087 
1088 	wh = mtod(m0, struct ieee80211_frame *);
1089 
1090 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1091 		k = ieee80211_crypto_encap(ic, ni, m0);
1092 		if (k == NULL) {
1093 			m_freem(m0);
1094 			return ENOBUFS;
1095 		}
1096 
1097 		/* packet header may have moved, reset our local pointer */
1098 		wh = mtod(m0, struct ieee80211_frame *);
1099 	}
1100 
1101 	/* compute actual packet length (including CRC and crypto overhead) */
1102 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1103 
1104 	/* pickup a rate */
1105 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1106 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1107 	     IEEE80211_FC0_TYPE_MGT)) {
1108 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1109 		rate = ni->ni_rates.rs_rates[0];
1110 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1111 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1112 	} else
1113 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1114 	if (rate == 0)
1115 		rate = 2;	/* XXX should not happen */
1116 	rate &= IEEE80211_RATE_VAL;
1117 
1118 	/* check if RTS/CTS or CTS-to-self protection must be used */
1119 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1120 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1121 		if (pktlen > ic->ic_rtsthreshold) {
1122 			needrts = 1;	/* RTS/CTS based on frame length */
1123 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1124 		    RUM_RATE_IS_OFDM(rate)) {
1125 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1126 				needcts = 1;	/* CTS-to-self */
1127 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1128 				needrts = 1;	/* RTS/CTS */
1129 		}
1130 	}
1131 	if (needrts || needcts) {
1132 		struct mbuf *mprot;
1133 		int protrate, ackrate;
1134 
1135 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1136 		ackrate  = rum_ack_rate(ic, rate);
1137 
1138 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1139 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1140 		      2 * sc->sifs;
1141 		if (needrts) {
1142 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1143 			    protrate), ic->ic_flags) + sc->sifs;
1144 			mprot = ieee80211_get_rts(ic, wh, dur);
1145 		} else {
1146 			mprot = ieee80211_get_cts_to_self(ic, dur);
1147 		}
1148 		if (mprot == NULL) {
1149 			aprint_error_dev(sc->sc_dev,
1150 			    "couldn't allocate protection frame\n");
1151 			m_freem(m0);
1152 			return ENOBUFS;
1153 		}
1154 
1155 		data = &sc->tx_data[sc->tx_cur];
1156 		desc = (struct rum_tx_desc *)data->buf;
1157 
1158 		/* avoid multiple free() of the same node for each fragment */
1159 		data->ni = ieee80211_ref_node(ni);
1160 
1161 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1162 		    data->buf + RT2573_TX_DESC_SIZE);
1163 		rum_setup_tx_desc(sc, desc,
1164 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1165 		    0, mprot->m_pkthdr.len, protrate);
1166 
1167 		/* no roundup necessary here */
1168 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1169 
1170 		/* XXX may want to pass the protection frame to BPF */
1171 
1172 		/* mbuf is no longer needed */
1173 		m_freem(mprot);
1174 
1175 		usbd_setup_xfer(data->xfer, data, data->buf,
1176 		    xferlen, USBD_FORCE_SHORT_XFER,
1177 		    RUM_TX_TIMEOUT, rum_txeof);
1178 		error = usbd_transfer(data->xfer);
1179 		if (error != USBD_NORMAL_COMPLETION &&
1180 		    error != USBD_IN_PROGRESS) {
1181 			m_freem(m0);
1182 			return error;
1183 		}
1184 
1185 		sc->tx_queued++;
1186 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1187 
1188 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1189 	}
1190 
1191 	data = &sc->tx_data[sc->tx_cur];
1192 	desc = (struct rum_tx_desc *)data->buf;
1193 
1194 	data->ni = ni;
1195 
1196 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1197 		flags |= RT2573_TX_NEED_ACK;
1198 
1199 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1200 		    ic->ic_flags) + sc->sifs;
1201 		*(uint16_t *)wh->i_dur = htole16(dur);
1202 
1203 		/* tell hardware to set timestamp in probe responses */
1204 		if ((wh->i_fc[0] &
1205 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1206 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1207 			flags |= RT2573_TX_TIMESTAMP;
1208 	}
1209 
1210 	if (sc->sc_drvbpf != NULL) {
1211 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1212 
1213 		tap->wt_flags = 0;
1214 		tap->wt_rate = rate;
1215 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1216 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1217 		tap->wt_antenna = sc->tx_ant;
1218 
1219 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1220 	}
1221 
1222 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1223 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1224 
1225 	/* align end on a 4-bytes boundary */
1226 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1227 
1228 	/*
1229 	 * No space left in the last URB to store the extra 4 bytes, force
1230 	 * sending of another URB.
1231 	 */
1232 	if ((xferlen % 64) == 0)
1233 		xferlen += 4;
1234 
1235 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1236 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1237 	    rate, xferlen));
1238 
1239 	/* mbuf is no longer needed */
1240 	m_freem(m0);
1241 
1242 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1243 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1244 	error = usbd_transfer(data->xfer);
1245 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1246 		return error;
1247 
1248 	sc->tx_queued++;
1249 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1250 
1251 	return 0;
1252 }
1253 
1254 static void
1255 rum_start(struct ifnet *ifp)
1256 {
1257 	struct rum_softc *sc = ifp->if_softc;
1258 	struct ieee80211com *ic = &sc->sc_ic;
1259 	struct ether_header *eh;
1260 	struct ieee80211_node *ni;
1261 	struct mbuf *m0;
1262 
1263 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1264 		return;
1265 
1266 	for (;;) {
1267 		IF_POLL(&ic->ic_mgtq, m0);
1268 		if (m0 != NULL) {
1269 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1270 				ifp->if_flags |= IFF_OACTIVE;
1271 				break;
1272 			}
1273 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1274 
1275 			ni = M_GETCTX(m0, struct ieee80211_node *);
1276 			M_CLEARCTX(m0);
1277 			bpf_mtap3(ic->ic_rawbpf, m0);
1278 			if (rum_tx_data(sc, m0, ni) != 0)
1279 				break;
1280 
1281 		} else {
1282 			if (ic->ic_state != IEEE80211_S_RUN)
1283 				break;
1284 			IFQ_POLL(&ifp->if_snd, m0);
1285 			if (m0 == NULL)
1286 				break;
1287 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1288 				ifp->if_flags |= IFF_OACTIVE;
1289 				break;
1290 			}
1291 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1292 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1293 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1294 				continue;
1295 
1296 			eh = mtod(m0, struct ether_header *);
1297 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1298 			if (ni == NULL) {
1299 				m_freem(m0);
1300 				continue;
1301 			}
1302 			bpf_mtap(ifp, m0);
1303 			m0 = ieee80211_encap(ic, m0, ni);
1304 			if (m0 == NULL) {
1305 				ieee80211_free_node(ni);
1306 				continue;
1307 			}
1308 			bpf_mtap3(ic->ic_rawbpf, m0);
1309 			if (rum_tx_data(sc, m0, ni) != 0) {
1310 				ieee80211_free_node(ni);
1311 				ifp->if_oerrors++;
1312 				break;
1313 			}
1314 		}
1315 
1316 		sc->sc_tx_timer = 5;
1317 		ifp->if_timer = 1;
1318 	}
1319 }
1320 
1321 static void
1322 rum_watchdog(struct ifnet *ifp)
1323 {
1324 	struct rum_softc *sc = ifp->if_softc;
1325 	struct ieee80211com *ic = &sc->sc_ic;
1326 
1327 	ifp->if_timer = 0;
1328 
1329 	if (sc->sc_tx_timer > 0) {
1330 		if (--sc->sc_tx_timer == 0) {
1331 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1332 			/*rum_init(ifp); XXX needs a process context! */
1333 			ifp->if_oerrors++;
1334 			return;
1335 		}
1336 		ifp->if_timer = 1;
1337 	}
1338 
1339 	ieee80211_watchdog(ic);
1340 }
1341 
1342 static int
1343 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1344 {
1345 #define IS_RUNNING(ifp) \
1346 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1347 
1348 	struct rum_softc *sc = ifp->if_softc;
1349 	struct ieee80211com *ic = &sc->sc_ic;
1350 	int s, error = 0;
1351 
1352 	s = splnet();
1353 
1354 	switch (cmd) {
1355 	case SIOCSIFFLAGS:
1356 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1357 			break;
1358 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1359 		case IFF_UP|IFF_RUNNING:
1360 			rum_update_promisc(sc);
1361 			break;
1362 		case IFF_UP:
1363 			rum_init(ifp);
1364 			break;
1365 		case IFF_RUNNING:
1366 			rum_stop(ifp, 1);
1367 			break;
1368 		case 0:
1369 			break;
1370 		}
1371 		break;
1372 
1373 	case SIOCADDMULTI:
1374 	case SIOCDELMULTI:
1375 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1376 			error = 0;
1377 		}
1378 		break;
1379 
1380 	default:
1381 		error = ieee80211_ioctl(ic, cmd, data);
1382 	}
1383 
1384 	if (error == ENETRESET) {
1385 		if (IS_RUNNING(ifp) &&
1386 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1387 			rum_init(ifp);
1388 		error = 0;
1389 	}
1390 
1391 	splx(s);
1392 
1393 	return error;
1394 #undef IS_RUNNING
1395 }
1396 
1397 static void
1398 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1399 {
1400 	usb_device_request_t req;
1401 	usbd_status error;
1402 
1403 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1404 	req.bRequest = RT2573_READ_EEPROM;
1405 	USETW(req.wValue, 0);
1406 	USETW(req.wIndex, addr);
1407 	USETW(req.wLength, len);
1408 
1409 	error = usbd_do_request(sc->sc_udev, &req, buf);
1410 	if (error != 0) {
1411 		printf("%s: could not read EEPROM: %s\n",
1412 		    device_xname(sc->sc_dev), usbd_errstr(error));
1413 	}
1414 }
1415 
1416 static uint32_t
1417 rum_read(struct rum_softc *sc, uint16_t reg)
1418 {
1419 	uint32_t val;
1420 
1421 	rum_read_multi(sc, reg, &val, sizeof(val));
1422 
1423 	return le32toh(val);
1424 }
1425 
1426 static void
1427 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1428 {
1429 	usb_device_request_t req;
1430 	usbd_status error;
1431 
1432 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1433 	req.bRequest = RT2573_READ_MULTI_MAC;
1434 	USETW(req.wValue, 0);
1435 	USETW(req.wIndex, reg);
1436 	USETW(req.wLength, len);
1437 
1438 	error = usbd_do_request(sc->sc_udev, &req, buf);
1439 	if (error != 0) {
1440 		printf("%s: could not multi read MAC register: %s\n",
1441 		    device_xname(sc->sc_dev), usbd_errstr(error));
1442 	}
1443 }
1444 
1445 static void
1446 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1447 {
1448 	uint32_t tmp = htole32(val);
1449 
1450 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1451 }
1452 
1453 static void
1454 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1455 {
1456 	usb_device_request_t req;
1457 	usbd_status error;
1458 	int offset;
1459 
1460 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1461 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1462 	USETW(req.wValue, 0);
1463 
1464 	/* write at most 64 bytes at a time */
1465 	for (offset = 0; offset < len; offset += 64) {
1466 		USETW(req.wIndex, reg + offset);
1467 		USETW(req.wLength, MIN(len - offset, 64));
1468 
1469 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1470 		if (error != 0) {
1471 			printf("%s: could not multi write MAC register: %s\n",
1472 			    device_xname(sc->sc_dev), usbd_errstr(error));
1473 		}
1474 	}
1475 }
1476 
1477 static void
1478 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1479 {
1480 	uint32_t tmp;
1481 	int ntries;
1482 
1483 	for (ntries = 0; ntries < 5; ntries++) {
1484 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1485 			break;
1486 	}
1487 	if (ntries == 5) {
1488 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1489 		return;
1490 	}
1491 
1492 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1493 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1494 }
1495 
1496 static uint8_t
1497 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1498 {
1499 	uint32_t val;
1500 	int ntries;
1501 
1502 	for (ntries = 0; ntries < 5; ntries++) {
1503 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1504 			break;
1505 	}
1506 	if (ntries == 5) {
1507 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1508 		return 0;
1509 	}
1510 
1511 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1512 	rum_write(sc, RT2573_PHY_CSR3, val);
1513 
1514 	for (ntries = 0; ntries < 100; ntries++) {
1515 		val = rum_read(sc, RT2573_PHY_CSR3);
1516 		if (!(val & RT2573_BBP_BUSY))
1517 			return val & 0xff;
1518 		DELAY(1);
1519 	}
1520 
1521 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1522 	return 0;
1523 }
1524 
1525 static void
1526 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1527 {
1528 	uint32_t tmp;
1529 	int ntries;
1530 
1531 	for (ntries = 0; ntries < 5; ntries++) {
1532 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1533 			break;
1534 	}
1535 	if (ntries == 5) {
1536 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1537 		return;
1538 	}
1539 
1540 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1541 	    (reg & 3);
1542 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1543 
1544 	/* remember last written value in sc */
1545 	sc->rf_regs[reg] = val;
1546 
1547 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1548 }
1549 
1550 static void
1551 rum_select_antenna(struct rum_softc *sc)
1552 {
1553 	uint8_t bbp4, bbp77;
1554 	uint32_t tmp;
1555 
1556 	bbp4  = rum_bbp_read(sc, 4);
1557 	bbp77 = rum_bbp_read(sc, 77);
1558 
1559 	/* TBD */
1560 
1561 	/* make sure Rx is disabled before switching antenna */
1562 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1563 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1564 
1565 	rum_bbp_write(sc,  4, bbp4);
1566 	rum_bbp_write(sc, 77, bbp77);
1567 
1568 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1569 }
1570 
1571 /*
1572  * Enable multi-rate retries for frames sent at OFDM rates.
1573  * In 802.11b/g mode, allow fallback to CCK rates.
1574  */
1575 static void
1576 rum_enable_mrr(struct rum_softc *sc)
1577 {
1578 	struct ieee80211com *ic = &sc->sc_ic;
1579 	uint32_t tmp;
1580 
1581 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1582 
1583 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1584 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1585 		tmp |= RT2573_MRR_CCK_FALLBACK;
1586 	tmp |= RT2573_MRR_ENABLED;
1587 
1588 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1589 }
1590 
1591 static void
1592 rum_set_txpreamble(struct rum_softc *sc)
1593 {
1594 	uint32_t tmp;
1595 
1596 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1597 
1598 	tmp &= ~RT2573_SHORT_PREAMBLE;
1599 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1600 		tmp |= RT2573_SHORT_PREAMBLE;
1601 
1602 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1603 }
1604 
1605 static void
1606 rum_set_basicrates(struct rum_softc *sc)
1607 {
1608 	struct ieee80211com *ic = &sc->sc_ic;
1609 
1610 	/* update basic rate set */
1611 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1612 		/* 11b basic rates: 1, 2Mbps */
1613 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1614 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1615 		/* 11a basic rates: 6, 12, 24Mbps */
1616 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1617 	} else {
1618 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1619 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1620 	}
1621 }
1622 
1623 /*
1624  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1625  * driver.
1626  */
1627 static void
1628 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1629 {
1630 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1631 	uint32_t tmp;
1632 
1633 	/* update all BBP registers that depend on the band */
1634 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1635 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1636 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1637 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1638 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1639 	}
1640 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1641 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1642 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1643 	}
1644 
1645 	sc->bbp17 = bbp17;
1646 	rum_bbp_write(sc,  17, bbp17);
1647 	rum_bbp_write(sc,  96, bbp96);
1648 	rum_bbp_write(sc, 104, bbp104);
1649 
1650 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1651 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1652 		rum_bbp_write(sc, 75, 0x80);
1653 		rum_bbp_write(sc, 86, 0x80);
1654 		rum_bbp_write(sc, 88, 0x80);
1655 	}
1656 
1657 	rum_bbp_write(sc, 35, bbp35);
1658 	rum_bbp_write(sc, 97, bbp97);
1659 	rum_bbp_write(sc, 98, bbp98);
1660 
1661 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1662 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1663 	if (IEEE80211_IS_CHAN_2GHZ(c))
1664 		tmp |= RT2573_PA_PE_2GHZ;
1665 	else
1666 		tmp |= RT2573_PA_PE_5GHZ;
1667 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1668 
1669 	/* 802.11a uses a 16 microseconds short interframe space */
1670 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1671 }
1672 
1673 static void
1674 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1675 {
1676 	struct ieee80211com *ic = &sc->sc_ic;
1677 	const struct rfprog *rfprog;
1678 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1679 	int8_t power;
1680 	u_int i, chan;
1681 
1682 	chan = ieee80211_chan2ieee(ic, c);
1683 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1684 		return;
1685 
1686 	/* select the appropriate RF settings based on what EEPROM says */
1687 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1688 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1689 
1690 	/* find the settings for this channel (we know it exists) */
1691 	for (i = 0; rfprog[i].chan != chan; i++);
1692 
1693 	power = sc->txpow[i];
1694 	if (power < 0) {
1695 		bbp94 += power;
1696 		power = 0;
1697 	} else if (power > 31) {
1698 		bbp94 += power - 31;
1699 		power = 31;
1700 	}
1701 
1702 	/*
1703 	 * If we are switching from the 2GHz band to the 5GHz band or
1704 	 * vice-versa, BBP registers need to be reprogrammed.
1705 	 */
1706 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1707 		rum_select_band(sc, c);
1708 		rum_select_antenna(sc);
1709 	}
1710 	ic->ic_curchan = c;
1711 
1712 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1713 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1714 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1715 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1716 
1717 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1718 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1719 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1720 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1721 
1722 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1723 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1724 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1725 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1726 
1727 	DELAY(10);
1728 
1729 	/* enable smart mode for MIMO-capable RFs */
1730 	bbp3 = rum_bbp_read(sc, 3);
1731 
1732 	bbp3 &= ~RT2573_SMART_MODE;
1733 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1734 		bbp3 |= RT2573_SMART_MODE;
1735 
1736 	rum_bbp_write(sc, 3, bbp3);
1737 
1738 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1739 		rum_bbp_write(sc, 94, bbp94);
1740 }
1741 
1742 /*
1743  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1744  * and HostAP operating modes.
1745  */
1746 static void
1747 rum_enable_tsf_sync(struct rum_softc *sc)
1748 {
1749 	struct ieee80211com *ic = &sc->sc_ic;
1750 	uint32_t tmp;
1751 
1752 	if (ic->ic_opmode != IEEE80211_M_STA) {
1753 		/*
1754 		 * Change default 16ms TBTT adjustment to 8ms.
1755 		 * Must be done before enabling beacon generation.
1756 		 */
1757 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1758 	}
1759 
1760 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1761 
1762 	/* set beacon interval (in 1/16ms unit) */
1763 	tmp |= ic->ic_bss->ni_intval * 16;
1764 
1765 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1766 	if (ic->ic_opmode == IEEE80211_M_STA)
1767 		tmp |= RT2573_TSF_MODE(1);
1768 	else
1769 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1770 
1771 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1772 }
1773 
1774 static void
1775 rum_update_slot(struct rum_softc *sc)
1776 {
1777 	struct ieee80211com *ic = &sc->sc_ic;
1778 	uint8_t slottime;
1779 	uint32_t tmp;
1780 
1781 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1782 
1783 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1784 	tmp = (tmp & ~0xff) | slottime;
1785 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1786 
1787 	DPRINTF(("setting slot time to %uus\n", slottime));
1788 }
1789 
1790 static void
1791 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1792 {
1793 	uint32_t tmp;
1794 
1795 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1796 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1797 
1798 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1799 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1800 }
1801 
1802 static void
1803 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1804 {
1805 	uint32_t tmp;
1806 
1807 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1808 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1809 
1810 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1811 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1812 }
1813 
1814 static void
1815 rum_update_promisc(struct rum_softc *sc)
1816 {
1817 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1818 	uint32_t tmp;
1819 
1820 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1821 
1822 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1823 	if (!(ifp->if_flags & IFF_PROMISC))
1824 		tmp |= RT2573_DROP_NOT_TO_ME;
1825 
1826 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1827 
1828 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1829 	    "entering" : "leaving"));
1830 }
1831 
1832 static const char *
1833 rum_get_rf(int rev)
1834 {
1835 	switch (rev) {
1836 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1837 	case RT2573_RF_2528:	return "RT2528";
1838 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1839 	case RT2573_RF_5226:	return "RT5226";
1840 	default:		return "unknown";
1841 	}
1842 }
1843 
1844 static void
1845 rum_read_eeprom(struct rum_softc *sc)
1846 {
1847 	struct ieee80211com *ic = &sc->sc_ic;
1848 	uint16_t val;
1849 #ifdef RUM_DEBUG
1850 	int i;
1851 #endif
1852 
1853 	/* read MAC/BBP type */
1854 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1855 	sc->macbbp_rev = le16toh(val);
1856 
1857 	/* read MAC address */
1858 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1859 
1860 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1861 	val = le16toh(val);
1862 	sc->rf_rev =   (val >> 11) & 0x1f;
1863 	sc->hw_radio = (val >> 10) & 0x1;
1864 	sc->rx_ant =   (val >> 4)  & 0x3;
1865 	sc->tx_ant =   (val >> 2)  & 0x3;
1866 	sc->nb_ant =   val & 0x3;
1867 
1868 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1869 
1870 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1871 	val = le16toh(val);
1872 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1873 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1874 
1875 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1876 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1877 
1878 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1879 	val = le16toh(val);
1880 	if ((val & 0xff) != 0xff)
1881 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1882 
1883 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1884 	val = le16toh(val);
1885 	if ((val & 0xff) != 0xff)
1886 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1887 
1888 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1889 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1890 
1891 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1892 	val = le16toh(val);
1893 	if ((val & 0xff) != 0xff)
1894 		sc->rffreq = val & 0xff;
1895 
1896 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1897 
1898 	/* read Tx power for all a/b/g channels */
1899 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1900 	/* XXX default Tx power for 802.11a channels */
1901 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1902 #ifdef RUM_DEBUG
1903 	for (i = 0; i < 14; i++)
1904 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1905 #endif
1906 
1907 	/* read default values for BBP registers */
1908 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1909 #ifdef RUM_DEBUG
1910 	for (i = 0; i < 14; i++) {
1911 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1912 			continue;
1913 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1914 		    sc->bbp_prom[i].val));
1915 	}
1916 #endif
1917 }
1918 
1919 static int
1920 rum_bbp_init(struct rum_softc *sc)
1921 {
1922 	unsigned int i, ntries;
1923 	uint8_t val;
1924 
1925 	/* wait for BBP to be ready */
1926 	for (ntries = 0; ntries < 100; ntries++) {
1927 		val = rum_bbp_read(sc, 0);
1928 		if (val != 0 && val != 0xff)
1929 			break;
1930 		DELAY(1000);
1931 	}
1932 	if (ntries == 100) {
1933 		printf("%s: timeout waiting for BBP\n",
1934 		    device_xname(sc->sc_dev));
1935 		return EIO;
1936 	}
1937 
1938 	/* initialize BBP registers to default values */
1939 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
1940 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1941 
1942 	/* write vendor-specific BBP values (from EEPROM) */
1943 	for (i = 0; i < 16; i++) {
1944 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1945 			continue;
1946 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static int
1953 rum_init(struct ifnet *ifp)
1954 {
1955 	struct rum_softc *sc = ifp->if_softc;
1956 	struct ieee80211com *ic = &sc->sc_ic;
1957 	uint32_t tmp;
1958 	usbd_status error = 0;
1959 	unsigned int i, ntries;
1960 
1961 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1962 		if (rum_attachhook(sc))
1963 			goto fail;
1964 	}
1965 
1966 	rum_stop(ifp, 0);
1967 
1968 	/* initialize MAC registers to default values */
1969 	for (i = 0; i < __arraycount(rum_def_mac); i++)
1970 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1971 
1972 	/* set host ready */
1973 	rum_write(sc, RT2573_MAC_CSR1, 3);
1974 	rum_write(sc, RT2573_MAC_CSR1, 0);
1975 
1976 	/* wait for BBP/RF to wakeup */
1977 	for (ntries = 0; ntries < 1000; ntries++) {
1978 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1979 			break;
1980 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1981 		DELAY(1000);
1982 	}
1983 	if (ntries == 1000) {
1984 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1985 		    device_xname(sc->sc_dev));
1986 		goto fail;
1987 	}
1988 
1989 	if ((error = rum_bbp_init(sc)) != 0)
1990 		goto fail;
1991 
1992 	/* select default channel */
1993 	rum_select_band(sc, ic->ic_curchan);
1994 	rum_select_antenna(sc);
1995 	rum_set_chan(sc, ic->ic_curchan);
1996 
1997 	/* clear STA registers */
1998 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1999 
2000 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2001 	rum_set_macaddr(sc, ic->ic_myaddr);
2002 
2003 	/* initialize ASIC */
2004 	rum_write(sc, RT2573_MAC_CSR1, 4);
2005 
2006 	/*
2007 	 * Allocate xfer for AMRR statistics requests.
2008 	 */
2009 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2010 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2011 	    &sc->amrr_xfer);
2012 	if (error) {
2013 		printf("%s: could not allocate AMRR xfer\n",
2014 		    device_xname(sc->sc_dev));
2015 		goto fail;
2016 	}
2017 
2018 	/*
2019 	 * Open Tx and Rx USB bulk pipes.
2020 	 */
2021 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2022 	    &sc->sc_tx_pipeh);
2023 	if (error != 0) {
2024 		printf("%s: could not open Tx pipe: %s\n",
2025 		    device_xname(sc->sc_dev), usbd_errstr(error));
2026 		goto fail;
2027 	}
2028 
2029 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2030 	    &sc->sc_rx_pipeh);
2031 	if (error != 0) {
2032 		printf("%s: could not open Rx pipe: %s\n",
2033 		    device_xname(sc->sc_dev), usbd_errstr(error));
2034 		goto fail;
2035 	}
2036 
2037 	/*
2038 	 * Allocate Tx and Rx xfer queues.
2039 	 */
2040 	error = rum_alloc_tx_list(sc);
2041 	if (error != 0) {
2042 		printf("%s: could not allocate Tx list\n",
2043 		    device_xname(sc->sc_dev));
2044 		goto fail;
2045 	}
2046 
2047 	error = rum_alloc_rx_list(sc);
2048 	if (error != 0) {
2049 		printf("%s: could not allocate Rx list\n",
2050 		    device_xname(sc->sc_dev));
2051 		goto fail;
2052 	}
2053 
2054 	/*
2055 	 * Start up the receive pipe.
2056 	 */
2057 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2058 		struct rum_rx_data *data;
2059 
2060 		data = &sc->rx_data[i];
2061 
2062 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2063 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2064 		error = usbd_transfer(data->xfer);
2065 		if (error != USBD_NORMAL_COMPLETION &&
2066 		    error != USBD_IN_PROGRESS) {
2067 			printf("%s: could not queue Rx transfer\n",
2068 			    device_xname(sc->sc_dev));
2069 			goto fail;
2070 		}
2071 	}
2072 
2073 	/* update Rx filter */
2074 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2075 
2076 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2077 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2078 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2079 		       RT2573_DROP_ACKCTS;
2080 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2081 			tmp |= RT2573_DROP_TODS;
2082 		if (!(ifp->if_flags & IFF_PROMISC))
2083 			tmp |= RT2573_DROP_NOT_TO_ME;
2084 	}
2085 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2086 
2087 	ifp->if_flags &= ~IFF_OACTIVE;
2088 	ifp->if_flags |= IFF_RUNNING;
2089 
2090 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2091 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2092 	else
2093 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2094 
2095 	return 0;
2096 
2097 fail:	rum_stop(ifp, 1);
2098 	return error;
2099 }
2100 
2101 static void
2102 rum_stop(struct ifnet *ifp, int disable)
2103 {
2104 	struct rum_softc *sc = ifp->if_softc;
2105 	struct ieee80211com *ic = &sc->sc_ic;
2106 	uint32_t tmp;
2107 
2108 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2109 
2110 	sc->sc_tx_timer = 0;
2111 	ifp->if_timer = 0;
2112 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2113 
2114 	/* disable Rx */
2115 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2116 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2117 
2118 	/* reset ASIC */
2119 	rum_write(sc, RT2573_MAC_CSR1, 3);
2120 	rum_write(sc, RT2573_MAC_CSR1, 0);
2121 
2122 	if (sc->amrr_xfer != NULL) {
2123 		usbd_destroy_xfer(sc->amrr_xfer);
2124 		sc->amrr_xfer = NULL;
2125 	}
2126 
2127 	if (sc->sc_rx_pipeh != NULL) {
2128 		usbd_abort_pipe(sc->sc_rx_pipeh);
2129 	}
2130 
2131 	if (sc->sc_tx_pipeh != NULL) {
2132 		usbd_abort_pipe(sc->sc_tx_pipeh);
2133 	}
2134 
2135 	rum_free_rx_list(sc);
2136 	rum_free_tx_list(sc);
2137 
2138 	if (sc->sc_rx_pipeh != NULL) {
2139 		usbd_close_pipe(sc->sc_rx_pipeh);
2140 		sc->sc_rx_pipeh = NULL;
2141 	}
2142 
2143 	if (sc->sc_tx_pipeh != NULL) {
2144 		usbd_close_pipe(sc->sc_tx_pipeh);
2145 		sc->sc_tx_pipeh = NULL;
2146 	}
2147 }
2148 
2149 static int
2150 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2151 {
2152 	usb_device_request_t req;
2153 	uint16_t reg = RT2573_MCU_CODE_BASE;
2154 	usbd_status error;
2155 
2156 	/* copy firmware image into NIC */
2157 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2158 		rum_write(sc, reg, UGETDW(ucode));
2159 
2160 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2161 	req.bRequest = RT2573_MCU_CNTL;
2162 	USETW(req.wValue, RT2573_MCU_RUN);
2163 	USETW(req.wIndex, 0);
2164 	USETW(req.wLength, 0);
2165 
2166 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2167 	if (error != 0) {
2168 		printf("%s: could not run firmware: %s\n",
2169 		    device_xname(sc->sc_dev), usbd_errstr(error));
2170 	}
2171 	return error;
2172 }
2173 
2174 static int
2175 rum_prepare_beacon(struct rum_softc *sc)
2176 {
2177 	struct ieee80211com *ic = &sc->sc_ic;
2178 	struct rum_tx_desc desc;
2179 	struct mbuf *m0;
2180 	int rate;
2181 
2182 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2183 	if (m0 == NULL) {
2184 		aprint_error_dev(sc->sc_dev,
2185 		    "could not allocate beacon frame\n");
2186 		return ENOBUFS;
2187 	}
2188 
2189 	/* send beacons at the lowest available rate */
2190 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2191 
2192 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2193 	    m0->m_pkthdr.len, rate);
2194 
2195 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2196 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2197 
2198 	/* copy beacon header and payload into NIC memory */
2199 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2200 	    m0->m_pkthdr.len);
2201 
2202 	m_freem(m0);
2203 
2204 	return 0;
2205 }
2206 
2207 static void
2208 rum_newassoc(struct ieee80211_node *ni, int isnew)
2209 {
2210 	/* start with lowest Tx rate */
2211 	ni->ni_txrate = 0;
2212 }
2213 
2214 static void
2215 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2216 {
2217 	int i;
2218 
2219 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2220 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2221 
2222 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2223 
2224 	/* set rate to some reasonable initial value */
2225 	for (i = ni->ni_rates.rs_nrates - 1;
2226 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2227 	     i--);
2228 	ni->ni_txrate = i;
2229 
2230 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2231 }
2232 
2233 static void
2234 rum_amrr_timeout(void *arg)
2235 {
2236 	struct rum_softc *sc = arg;
2237 	usb_device_request_t req;
2238 
2239 	/*
2240 	 * Asynchronously read statistic registers (cleared by read).
2241 	 */
2242 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2243 	req.bRequest = RT2573_READ_MULTI_MAC;
2244 	USETW(req.wValue, 0);
2245 	USETW(req.wIndex, RT2573_STA_CSR0);
2246 	USETW(req.wLength, sizeof(sc->sta));
2247 
2248 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2249 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2250 	    rum_amrr_update);
2251 	(void)usbd_transfer(sc->amrr_xfer);
2252 }
2253 
2254 static void
2255 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2256     usbd_status status)
2257 {
2258 	struct rum_softc *sc = (struct rum_softc *)priv;
2259 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2260 
2261 	if (status != USBD_NORMAL_COMPLETION) {
2262 		printf("%s: could not retrieve Tx statistics - cancelling "
2263 		    "automatic rate control\n", device_xname(sc->sc_dev));
2264 		return;
2265 	}
2266 
2267 	/* count TX retry-fail as Tx errors */
2268 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2269 
2270 	sc->amn.amn_retrycnt =
2271 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2272 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2273 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2274 
2275 	sc->amn.amn_txcnt =
2276 	    sc->amn.amn_retrycnt +
2277 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2278 
2279 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2280 
2281 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2282 }
2283 
2284 static int
2285 rum_activate(device_t self, enum devact act)
2286 {
2287 	switch (act) {
2288 	case DVACT_DEACTIVATE:
2289 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2290 		return 0;
2291 	default:
2292 		return 0;
2293 	}
2294 }
2295 
2296 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2297 
2298 #ifdef _MODULE
2299 #include "ioconf.c"
2300 #endif
2301 
2302 static int
2303 if_rum_modcmd(modcmd_t cmd, void *aux)
2304 {
2305 	int error = 0;
2306 
2307 	switch (cmd) {
2308 	case MODULE_CMD_INIT:
2309 #ifdef _MODULE
2310 		error = config_init_component(cfdriver_ioconf_rum,
2311 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2312 #endif
2313 		return error;
2314 	case MODULE_CMD_FINI:
2315 #ifdef _MODULE
2316 		error = config_fini_component(cfdriver_ioconf_rum,
2317 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2318 #endif
2319 		return error;
2320 	default:
2321 		return ENOTTY;
2322 	}
2323 }
2324